க.பொ.த உயர்தர வகுப்புக்கான

பிரயோக கணிதம்

APPLIED MATHEMATICS FOR GC.E. ADVANCED LEVEL

நிகழ்தகவும் புள்ளிவிபரவியலும் பயிற்சிகள் PROBABILITY AND STATISTICS EXERCISES

கா. கணேசலிங்கம், B.Sc. Dip-in-Ed.

க. பொ. த

உயர்தர வகுப்புக்கான

பிரயோக கணிதம்

நிகழ்தகவும் புள்ளிவிபரவியலும் பயிற்சிகள்

K. GANESHALINGAM. B. Sc. Dip in Ed.

Rs. 300/-

Sai Educational Publications

155/2, Canal Road, Colombo - 6 Phone: 592707

BIBLIOGRAPHICAL DATA

Title : Applied Mathematics for G.C.E (A/L)

Probability and Statistics

Language : Tamil

Author : Karthigesu Ganeshalingam B.Sc.Dip-in-Ed

Puttali, puloly.

Publications : Sai Educational publication

155/2, Canal Road, Colombo-06.

Date of Issue : January, 1999 September 2000

No of pages : 262+ iv

Copyright : Sai Educational Publication.

Type Setting : SDS COMPUTER SERVICES, Col-06. Tel: 593920

நூலின் விபரம்

தலைப்பு : க.பொ.த உயர்தர வகுப்புக்கான

பிரயோக கணிதம் – நிகழ்தகவும் புள்ளிவிபரவியலும்

மொழி : தமிழ்

ஆசிரியர் : கார்த்திகேசு கணேசலிங்கம்.

புற்றளை, புலோலி

வெளியீடு : சா.பி கல்வி வெளியீட்டகம்

155/2, கனல் வீதி கொழும்பு - 06

பிரசுரத்திகதி : ஜனவரி, 1999 செப்டம்பர் 2000

பக்கங்கள் : 262+ iv

பதிப்புரிமை : சாயி கல்வி வெளியீட்டகம்.

கணணிப்பரிவு : எஸ்.டி.எஸ் கம்மியூட்டர் சேர்விசஸ் 33வது ஒழுங்கை.

என்னுரை

க.பொ.த உயர்தர வகுப்புக்கான பிரயோககணித நூல் பகுதி III ஆகிய "**நிகழ்தகவும், புள்ளிவிபரவியலும்"** என்னும் இப்பகுதியுடன் நிறைவடைகிறது.

க.பொ.த உயர்தர வகுப்பில் 2000 ஆண்டுக்கு முன்னரும், மேலும் 2000 ஆண்டிலும் அதற்குப் பின்னரும் தோற்றவிருக்கும் மாணவர்களுக்கும் ஏற்றவிதத்தில் இந்நூல் எழுதப்பட்டுள்ளது. முதன்முறையாக 2000 ஆண்டிற்கு முன்னர் தோற்றும் மாணவர்களுக்கு **நிகழ்தகவு, புள்ளி** விபரவியல் II ஆகிய பகுதிகள் பிரயோக கணிதத்தில் தேவையான பகுதிகளாகும்.

"இணைந்த கணிதம்" – பாடத்திட்டத்திற்குத் தோற்றும் மாணவர்களுக்கு நிகழ்தகவு, புள்ளிவிபரவியல் I எனும் இருபகுதிகளும் போதுமானவையாகும்.

"**உயர்கணிதம்"** பாடத்திட்டத்தைப் பின்பற்றும் மாணவர்கள் புள்ளிவிபரவியல் II ஐயும் கற்றல் வேண்டும்.

இவ்விரு பகுதிகளையும், மாணவர்கள் மிக எளிமையாகத் தாமே வாசித்து விளங்கக்கூடிய முறையில் உதாரணக் கணக்குகள் மூலம் ஒவ்வொரு பகுதியும் விளங்கப்படுத்தப்பட்டுள்ளது. மேலும் மாணவர்களின் பயிற்சித்திறனை அதிகரிக்கும் விதத்தில் பயிற்சிக் கணக்குகள் அதிக அளவில் சேர்த்துள்ளேன்.

இந்நூலை ஒழுங்காக உபயோகிக்குமிடத்து நிகழ்தகவு, புள்ளிவிபரவியல் என்னும் பகுதிகள் மிக இலகுவானதாக இருப்பதை விளங்கிக் கொள்ளமுடியும். நிறைவுகள் ஏற்று, குறைவுகள் சுட்டி, மேலும் அடுத்து வெளியிடவிருக்கும் தூயகணிதத்தின் ஒரு பகுதியான "நூண் கணிதம்"(Calculas) நூலுக்கு ஆக்கமும், ஊக்கமும் தருவார்களென மாணவர்களையும், ஆசிரிய சமூகத்தையும் கேட்டு இந்நூலை புத்தக உருவில் வெளிக் கொணர்ந்த சாயி கல்வி வெளியீட்டகத்திற்கும் எனது நன்றியைத் தெரிவித்துக் கொள்கிறேன்.

நன்றி.

தை 1999

ஆசிரியர்.

பொருளடக்கம்

நிகழ்தகவு

		பக்கம்
1.	நிகழ்தகவு	1
2.	அறிமுறை நிகழ்தகவு	10
3.	நிபந்தனை நிகழ்தகவு, நிகழ்ச்சிகளின் சாராமை மரவரிப்படம்	20
	புள்ளிவிபரவியல் I	
1.	விவரணப் புள்ளிவிபரவியல்	59
	<u> புள்ளிவிபரவியல்</u> II	

1. பின்னக எழுமாற்றுமாறிகள்	110
2. விசேட பின்னக நிகழ்தகவுச் சார்புகள்	140
3. தொடர் எழுமாற்றுமாறி	178
4. விசேட தொடர் நிகழ்தகவுப்பரம்பல்	204
விடைகள்	243
வாய்ப்பாடுகள்	255

நீகழ்தகவு (Probability)

அலகு I

பரிசோதனை ஒன்று மாறா நிபந்தனைகளின் கீழ் மீண்டும் மீண்டும் செய்யும்போது ஒவ்வொரு பரிசோதனையின் போதும் இருவகையான சந்தர்ப்பங்களை நாம் எதிர்பார்க்கலாம்.

- (i) அப்பரிசோதனையின் பேறுகள் உறுதியானதாக அல்லது தனியானதாக இருக்கும். இப்பரிசோதனைகள் தீர்மானிக்கப்படக்கூடிய பரிசோதனைகள் (Deterministic Experiments) எனப்படும். உ+ம் :- பௌதீகவிதிகள்,
- (ii) அப்பரிசோதனையின் பேறுகள் தனியானதாக அல்லது நிகழக்கூடிய பலமுறைகளில் ஒன்றாக இருக்கும். இப்பரிசோதனைகள் தீர்மானிக்கப்படமுடியாத பரிசோதனைகள் (Non-deterministic Experiments) எனப்படும்.

உதாரணமாக, தாயக்கட்டை ஒன்றை எறியும் போது அதன் மேன்முகத்தில் காணப்படும் இலக்கம்.

குறித்த ஒரு நேர இடைவெளியில் வரும் தொலைபேசி அழைப்புக்களின் எண்ணிக்கை என்பனவாகும்.

எழுமாற்றுப் பரிசோதனைகள் (Random Experiments) பரிசோதனை ஒன்று எழுமாற்றுப் பரிசோதனையாக இருக்கப் பின்வரும் அம்சங்களைக் கொண்டிருத்தல் வேண்டும்.

- (a) அத்தியாவசியமான மாறா நிபந்தனைகளின் கீழ், இப்பரிசோதனை மீளவும் வரையறையற்ற பல தடவைகள் செய்யப்படலாம்.
- (b) பொதுவாக, பரிசோதனையின் பெறுபேறினை சரியாக எதிர்வு கூற முடியாது.
- (c) பரிசோதனையின் இயல்தகு பேறுகள் கொண்ட தொடையினைக் கூறமுடியும்.
- (d) பரிசோதனை மீளமீளச் செய்யப்படக் கூடுமாதலால், பெறுபேறுகள் ஒழுங்கற்ற முறையில் தோன்றும். எப்படியிருப்பினும் பரிசோதனை பல தடவைகள் செய்யப்பட, பெறுபேறுகளால் ஓர் ஒழுங்கான கோலம் தோன்றுவதை அவதானிக்கலாம்.

பின்வரும் பரிசோதனைகள் எழுமாற்றுப் பரிசோதனைக்கு உதாரணங்களாகும்.

- E₁: தாயக்கட்டை ஒன்று எறியப்பட்டு, அதன் மேல்முகத்தில் தோன்றும் இலக்கத்தை அவதானித்தல்.
- E₂: நாணயம் ஒன்று இருமுறை எறியப்பட்டு தோன்றும் தலை, பூ என்பவற்றின் தொடரியை அவதானித்தல்.
- E₃: நாணயம் ஒன்று இருமுறை எறியப்பட்டு தோன்றும் தலைகளின் எண்ணிக்கையை அவதானித்தல்.

மாதிரிவெளி (Sample Space)

பரிசோதனை ஒன்றின் எல்லா இயல்தகு பேறுகளையும் கொண்ட தொடை, அப்பரிசோதனையின் மாதிரிவெளி எனப்படும். மாதிரிவெளி Ω அல்லது S என்பதால் குறிக்கப்படும்.

மேலே தரப்பட்ட E_1, E_2, E_3 ஆகிய மூன்று பரிசோதனைகளுக்குமான மாதிரி வெளிகள் $\Omega_1, \Omega_2, \Omega_3$ என்பன முறையே

$$\Omega_1 = \{1,2,3,4,5,6\}$$

$$\Omega_2 = \{HH,HT,TH,TT\}$$

 $\Omega_3 = \{0,1,2\}$ ஆகும்.

நிகழ்ச்சி (Event)

E என்னும் பரிசோதனைக்குரிய மாதிரிவெளி Ω ஐக் குறித்து, ஒரு நிகழ்ச்சி என்பது Ω இன் ஒரு தொடைப்பிரிவு ஆகும்.

நிகழ்ச்சி வெளி (Event space)

E என்னும் பரிசோதனைக்குரிய மாதிரிவெளி Ω இன் எல்லாத் தொடைப் பிரிவுகளையும் கொண்ட தொடை, பரிசோதனை E இன் நிகழ்ச்சிவெளி எனப்படும். நிகழ்ச்சி வெளி $\mathcal E$ என்பதால் குறிக்கப்படும்.

பரிசோதனை E_3 இன் மாதிரிவெளி Ω_3 ஆகும்.

$$\Omega_3 = \{0,1,2\}$$

நிகழ்ச்சி வெளி $\mathcal{E}_3=\left\{\left\{\right.\right\},\left\{0\right\},\left\{1\right\},\left\{2\right\},\left\{0,1\right\},\left\{1,2\right\},\left\{0,2\right\},\left\{0,1,2\right\}\right\}$ ஆகும். $^{\circ}$

எளிய நிகழ்ச்சி (Simple event) ஒரு நிகழ்ச்சியானது ஒன்றுக்கு மேற்பட்ட நிகழ்ச்சிகளாக மேலும் பிரிக்கப்பட முடியாதெனின், அந்நிகழ்ச்சி எளிய நிகழ்ச்சி எனப்படும்.

கூட்டு நிகழ்ச்சி (Compound event)

ஒரு நிகழ்ச்சியானது இரண்டு அல்லது இரண்டிற்கு மேற்பட்ட எளிய நிகழ்ச்சிகளைக் கொண்டிருப்பின் அந்நிகழ்ச்சி கூட்டு நிகழ்ச்சி எனப்படும்.

 E_2 : நாணயம் ஒன்று இருமுறை எறியப்பட்டு தோன்றும் தலை, பூ என்பவற்றின் தொடரியை அவதானித்தல்.

இங்கு
$$\Omega_2 = \{HH, HT, TH, TT\}$$

 $\{HH\}, \{HT\}, \{TH\}, \{TT\}$ ஆகிய எல்லாம் எளிய நிகழ்ச்சிகளாகும். இந்நிகழ்ச்சிகளை ஒன்றுக்கு மேற்பட்ட நிகழ்ச்சிகளாக மேலும் பிரிக்கமுடியாது.

 E_3 : நாணயம் ஒன்று இருமுறை எறியப்பட்டு, தோன்றும் தலைகளின் எண்ணிக்கையை அவதானித்தல்.

இங்கு
$$\Omega_3 = \{0,1,2\}$$

இங்கு {1}- கூட்டுநிகழ்ச்சியாகும். ஏனெனில் இது இரு எளிய நிகழ்ச்சிகள் {HT}, {TH} என்பவற்றைக் கொண்டுள்ளது.

சூனிய நிகழ்ச்சி (Null event)

சூனியத் தொடைக்குரிய நிகழ்ச்சி, சூனிய நிகழ்ச்சி எனப்படும். இந்நிகழ்ச்சி ф என்பதால் குறிக்கப்படும்.

தம்முள்புறநீக்கும் நிகழ்ச்சிகள் (Mutually exclusive events)

இரு நிகழ்ச்சிகளின் நிகழ்வின் போது, ஒரு நிகழ்ச்சியின் நிகழ்வு மற்றைய நிகழ்ச்சியின் நிகழ்வைப் புறநீக்குகின்றதெனின், அவ்விரு நிகழ்ச்சிகளும், தம்முள்புறநீக்கும் நிகழ்ச்சிகள் எனப்படும்.

A,B எனும் இரு நிகள்ச்சிகள் $A\cap B=\emptyset$ எனின், A,B என்பன தம்முள் புறநீங்கும் நிகழ்ச்சிகள் எனப்படும்.

நிரப்பி நிகழ்ச்சி (Complementary event)

இரு தம்முள் புறநீங்கும் நிகழ்ச்சிகள் A,B பரிசோதனையின் எல்லா இயல்தகு **நிகழ்ச்சிகளையும் கொண்டிருப்பின்**, ஒரு நிகழ்ச்சியானது, மற்றைய நிகழ்ச்சியின் **நிரப்பி நிகழ்ச்சி** எ**னப்படு**ம்.

அதாவது B,A இன் நிரப்பி ஆகும். B=A'

A,B இன் நிரப்பி ஆகும் A=B'

$$[A \cap B = \emptyset, \ A \cup B = \Omega]$$

சமநேர்தகவுள்ள பேறுகள் (Equally likely outcomes) யாதுமொரு எழுமாறறுப் பரிசோதனையின் போது, பெறப்படும் ஒரு பேறு, வேறொரு பேறிலும் கூடுதலாக நடைபெறும் என விசேடமாகக் கூறமுடியாதெனின், அப்பேறுகள் யாவும் சமநேர்தகவுடைய பேறுகள் எனப்படும்.

ஒன்றையொன்று தம்முள் புறநீக்கம் செய்கின்றதும், சமநேர்தகவுடையதுமான Nபேறுகளைக் கொண்ட ஒரு பரிசோதனையில் A என்னும் நிகழ்ச்சி mஎண்ணிக்கையான பேறுகளைக் கொண்டதாயின் நிகழ்ச்சி A யின் நிகழ்தகவு

$$\frac{n(A)}{N} = \frac{m}{N}$$
 ஆகும்.

$$P(A) = \frac{m}{N}$$
 ஆகும்.

 $O \le m \le N$ இங்கு $O \le P(A) \le 1$ என்பதை அவதானிக்கலாம். மேலே தரப்பட்ட வரைவிலக்கணம் வலிதற்றதாகும் சந்தர்ப்பங்கள்.

- (i) எழுமாற்றுப் பரிசோதனையின் பேறுகள் சமநேர்தகவற்றதாகும்போது. உதாரணமாக, மாணவன் ஒருவன் பாடசாலைக்கு நேரத்திற்கு வருதல், அல்லது வராதிருத்தல் என்பதை எடுத்து நோக்கினால், இரு பேறுகள் மட்டும் உண்டு. இப்பேறுகள் சமநேர்தகவுடையவையல்ல.
- (ii) பரிசோதனையின் பேறுகளின் எண்ணிக்கை முடிவிலியாக இருப்பின்.

உதாரணம் 1

கோடாத தாயக்கட்டை ஒன்று எறியப்படுகிறது

- (a) ஒற்றை எண் பெறுவதற்கான
- (b) முதன்மை எண் பெறுவதற்கான நிகழ்தகவு யாது? மாதிரி வெளி $\Omega = \{1, 2, 3, 4, 5, 6\}$

(1, 2, 3, 1, 3, 0)

ஒற்றை எண் தோன்றும் நிகழ்ச்சி $A,\ A=\{\,1,\,3,\,5\,\}$

முதன்மை எண் தோன்றும் நிகழ்ச்சி $B,\ B=\{\,2,\,3,\,5\,\}$

Ω இலுள்ள ஒவ்வொரு பேறும் சம நேர்த்தகவுள்ளதால்

$$P(A) = \frac{3}{6} = \frac{1}{2}, \qquad P(B) = \frac{3}{6} = \frac{1}{2}$$

உதாரணம் 2.

கோடாத 3 நாணயங்கள் ஒரே தடவைகள் சுண்டப்படுகின்றன.

- (a) இரு தலைகளைப் பெறுவதற்கான
- (b) குறைந்தது ஒரு தலையாவது பெறுவதற்கான நிகழ்தகவு யாது?

 $\Omega = \{ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}$ இரு தலைகளைப் பெறும் நிகழ்ச்சி A என்க. $A = \{ HHT, HTH, THH \}$ குறைந்தது ஒரு தலையைப் பெறும் நிகழ்ச்சி B என்க.

 $B = \{HHH, HHT, HTH, HTT, THH, THT, TTH\}$

$$P(A) = \frac{3}{8}, \qquad P(B) = \frac{7}{8}$$

உதாரணம் 3

READING என்ற சொல்லில் இருந்து 4 எழுத்துக்கள் எழுமாற்றாகத் தெரியப்படுகின்றன.

- (i) சரியாக 2 உயிரெழுத்துக்கள் இருப்பதற்கு
- (ii) உயிரெழுத்து எதுவும் இல்லாமல் இருப்பதற்கு நிகழ்தகவு யாது?

READING - 7 எழுத்துக்கள் உள்ளன. 3 உயிரெழுத்துக்கள் - A, E, I 7 உயிரெழுத்துக்களில், 4 எழுத்துக்களைத் தெரியும் முறைகளின் எண்ணிக்கை $7C_4$

2 உயிரேழுத்துக்களைக் கொண்டிருக்கும் முறைகளின் எண்ணிக்கை $4C_2 imes 3C_2$

(i) இற்குரிய நிகழ்தகவு =
$$\frac{4C_2 \times 3C_2}{7C_4} = \frac{18}{35}$$

(ii) உயிரெழுத்தல்லாதவை R, D, N, G - இவற்றிலிருந்து 4 எழுத்துக்களைத் தெரிவு செய்யும் முறைகளின் எண்ணிக்கை $4C_4=1$

எனவே நிகழ்தகவு
$$=\frac{4C_4}{7C_4}=\frac{1}{35}$$

உதாரணம் 4

பெட்டி ஒன்றில் 5 சிவப்பு நிற மாபிள்களும், 3 நீலநிற மாபிள்களும் உள்ளன. பெட்டியிலிருந்து எழுமாற்றாக 3 மாபிள்கள் எடுக்கப்பட்டால், அவற்றில் 2 சிவப்பு நிற**மாபிள்களு**ம், 1 நீலநிற மாபிளும் இருப்பதற்கான நிகழ்தகவு யாது?

3 **மாபி**ள்களை எடுக்கக்கூடிய வழிகளின் எண்ணிக்கை $8C_3 = 56$

2 சிவப்பு நிற மாபிள்களையும், 1 நீலநிற மாபிளையும் எடுக்கக்கூடிய வ**ழிக**ளின் எண்ணிக்கை $5C_2 \times 3C_1 = 30$

நிகழ்தகவு
$$\frac{30}{56} = \frac{15}{28}$$

உதாரணம் 5

NARROW என்ற சொல்லிலுள்ள எழுத்துக்களின் வெவ்வேறு ஒழுங்குகளில் 2R உம் ஒன்றாக வருவதற்குரிய நிகழ்தகவு யாது?

ஒழுங்குபடுத்தக்கூடிய வேறுவேறான வழிகளின் எண்ணிக்கை 6!/ 2! ஆகும். இரண்டு R உம் ஒன்றாக வரும் வழிகளின் எண்ணிக்கை = 5! ஆகும்.

இரண்டு R உம் ஒன்றாக வருவதற்கான நிகழ்தகவு $=\frac{5! \times 2!}{6!} = \frac{1}{3}$

உதாரணம் 6

பன்னிரண்டு மாணவாகளின் பெயாகள் ஒவ்வொன்றும், ஒவ்வொரு கடதாசித்துண்டில் எழுதப்பட்டுப் பெட்டி ஒன்றில் போடப்பட்டுள்ளது.

இவர்களில் மூவர் சகோதரர்களாகும். பெட்டியிலிருந்து 5 துண்டுகள் எடுக்கப்பட்டால் அவற்றுள் மூன்று சகோதரரர்களின் பெயர்களையும் ஒருங்கே கொண்டிராதிருப்பதற்கான நிகழ்தகவு யாது?

- 5 துண்டுகளை எடுப்பதற்கான வழிகளின் எண்ணிக்கை $12C_5$
- 3 சகோதரர்களின் பெயர்களும் ஒருங்கே கொண்டிராதிருப்பதற்கான வழிகளின் எண்ணிக்கை $=9C_2 imes 1$

ஆகவே 3 சகோதரர்களின் பெயர்களும் ஒருங்கே கொண்டிராதிருப்பதற்கான நிகழ்தகவு

$$= \frac{12C_5 - 9C_2}{12C_5}$$

$$= 1 - \frac{9C_2}{12C_5}$$

$$= 1 - \frac{1}{22} = \frac{21}{22}$$

உதாரணங் 7

இரு கோடாத நாணயங்கள் சுண்டப்படுகின்றன. விழும் தலைகளின் எண்ணிக்கை அவதானிக்கப்படுகிறது. 1 என்ற எண்ணைப் பெறுவதற்கான நிகழ்தகவு யாது? தோன்றும் தலைகளின் எண்ணிக்கை அவதானிக்கப்படுவதால்,

$$\Omega = \{0,1,2\}$$

இங்கு மாதிரிவெளியில் முன்று பேறுகள் உள்ளன. இவை சமநேர்தகவுள்ளவை அல்ல.

TT ஆக இருக்கும்போது, தலைகளின் எண்ணிக்கை 0 HT அல்லது TH ஆக இருக்க தலைகளின் எண்ணிக்கை 1 HH ஆக இருக்க தலைகளின் எண்ணிக்கை 2

எனவே 1 ஐப் பெறுவதற்கான நிகழ்தகவு $\frac{2}{4} = \frac{1}{2}$ ஆகும்.

பயிற்சி I

- இரு கோடாத தாயக்கட்டைகள் எறியப்பட்டு, அவற்றில் தோன்றும் எண்கள் அவதானிக்கப்படுகின்றன.
 பெறப்படும் ஈட்டுக்களின் வித்தியாசம் 2 அல்லது அதனிலும் குறைவாக இருப்பதற்கான நிகழ்தகவு யாது?
- நான்கு கோடாத தாயக்கட்டைகள் எறியப்பட்டு, அவற்றில் தோன்றும் எண்கள் அவதானிக்கப்படுகின்றன.
 பெறப்படும் ஈட்டுக்களின் கூட்டுத்தொகை 23 அல்லது அதனிலும் கூடுதலாக இருப்பதற்கான நிகழ்தகவு யாது?
- 3. பெட்டி ஒன்றில் 3 நீலநிறப்பந்துகளும், 3 பச்சை நிறப்பந்துகளும், 3 வெள்ளை நிறப்பந்துகளும் உள்ளன. இப்பெட்டியில் இருந்து 2 பந்துகள் எழுமாற்றாக எடுக்கப்படுகின்றன. எடுக்கப்பட்ட பந்துகள்
 - (i) ஒன்றேனும் சிவப்பு நிறமானதாக இருக்க
 - (ii) குறைந்தது ஒன்றாவது சிவப்பு நிறமானதாக இருக்க
 - (iii) இரண்டும் சிவப்பு நிறமானதாக இருக்க நிகழ்தகவு யாது?
- 4. MOON என்ற சொல்லிலுள்ள இரு எழுத்துக்களின் வேறு வேறான ஒழுங்குகளில் இரு "O" உம் ஒன்றாக வராமலிருப்பதற்கான நிகழ்த்கவு யாது?

- 5. { 2, 3, 4, 5, 6, 7 }என்ற தொடையிலுள்ள இரு நிறை எண்கள் எழுமாற்றாக எடுக்கப்பட்டு, இரு இலக்கங்களைக் கொண்ட ஒரு எண் பெறப்படுகின்றது. ஒவ்வொறு நிறை எண்ணும் ஒரு தடவைக்கு மேல் பயன்படுத்தலாம் எனின், பெறப்பட்ட எண்
 - (a) 2 ஆல் பிரிபடக்கூடியதாக
 - (b) 5 ஆல் பிரிபடாமலிருப்பதற்கான நிகழ்தகவு யாது?
- RIGID என்ற சொல்லிலிருந்து மூன்று எழுத்துக்கள் எழுமாற்றாக எடுக்கப்படுகின்றன. இவ் எழுத்துக்களில்
 - (a) R இருப்பதற்கு
 - (b) இரண்டு I இருப்பதற்கு
 - (c) ஆகக் குறைந்தது ஒரு I ஆவது இருப்பதற்கு நிகழ்தகவு யாது?
- மூன்று ஆண்களிலிருந்தும் நான்கு பெண்களிலுமிருந்தும் நான்கு பேரைக் கொண்ட ஒரு குழு தெரிவு செய்யப்படுகின்றது. இக் குழுவில்
 - (i) ஆண்கள் எவரும் இல்லாதிருப்பதற்கான
 - (ii) குறைந்தது இரு ஆண்களாவது இருப்பதற்கான நிகழ்தகவு யாது?
- 8. { 6, 7, 8, 9 } எனும் தொடையிலிருந்து இரண்டு அல்லது மூன்று எண்களைத் தெரிவு செய்து ஓர் எண் பெறப்படுகின்றது. எந்த ஒரு எண்ணும் ஒரு தடவைக்கு மேல் தெரிவு செய்யப்படலாம் எனக் கொண்டு, 700 இலும் குறைந்த ஓர் எண்ணைப் பெறுவதற்கான நிகழ்தகவு யாது?
- இரு தாயக்கட்டைகள் ஒருங்கே எறியப்பட்டு, பெறப்படும் எண்கள் அவதானிக்கப்படுகின்றன.
 - (a) இரு எண்களின் கூட்டுத்தொகையும் 3 ஆக இருக்க
 - (b) இரு எண்களும் ஒரே எண்ணாக இருக்க
 - (c) இரு எண்களின் கூட்டுத்தொகையும் 9 இலும் பெரிதாக இருக்க
 - (d) இரு எண்களினதும் வித்தியாசம் 2 இலும் பெரிதாக இருக்க
 - (e) இரு எண்களினதும் பெருக்கம் இரட்டை எண்ணாக இருக்க, நிகழ்தகவு யாது?
- 10. நான்முகித் தாயக்கட்டை இரண்டு எறியப்படுகின்றன. முகங்களில் 1,2,3,4 என இலக்கமிடப்பட்டுள்ளது. நிலத்தில் படும் முகத்தின் மீதுள்ள இலக்கம் ஈட்டு ஆகும்.
 - (a) இரு ஈட்டுக்களினதும் கூட்டுத்தொகை 5
 - (b) இரு ஈட்டுக்களின் வித்தியாசம் 1
 - (c) இரு ஈட்டுக்களினதும் பெருக்கம் 4 இன் மடங்கு ஆக இருக்க, நிகழ்தகவு யாது?

- 11. இரு நாணயங்களும், தாயக்கட்டை ஒன்றும் ஒருங்கே எறியப்படுகின்றன.
 - (a) இரு தலைகளும், 3 இலும் குறைந்த எண் ஒன்றும் விழுவதற்கு,
 - (b) நாணயங்களின் வெவ்வேறு முகங்களும், 4 என்ற எண்ணையும் பெறுவகற்கு
 - நாணயங்களின் ஒரே முகங்களும், தாயக்கட்டையில் ஒற்றை எண்ணையும் (c) பெறுவதற்கு
 - (d) குறைந்தது ஒரு தலையையும், 6 என்ற எண்ணையும் பெறுவதற்கு நிகழ்தகவு யாது?
- 12. இரு தாயக்கட்டைகள் ஒருங்கே எறியப்படுகின்றன. ஈட்டுக்களின் பெருக்கம் கணிக்கப்படுகின்றது. பெருக்கம் n ஐப் பெறுவதற்கான நிகழ்தகவு p(n) ஆகும்.

- (a) P(9) (b) P(4) (c) P(14) (d) $\sum_{m=16}^{30} P(m)$

என்பவற்றைக் காண்க.

 $P(t)=rac{1}{\Omega}$ எனின், t இன் சாத்தியமான பெறுமானங்களைக் காண்க.

13. வகுப்பு ஒன்றிலுள்ள மாணவர்களிடம் அவர்களின் சகோதர சகோதரிகளின் எண்ணிக்கை பெறப்பட்டு கீழே உள்ள அட்டவணையில் தரப்பட்டுள்ளது.

சகோதர சகோதரிகளின் எண்ணிக்கை	0	1	2	3	4	5
மாணவர்களின் எண்ணிக்கை	4	12	8	3	2	1

வகுப்பில் மாணவன் ஒருவன் எழுமாற்றாகத் தெரியப்படின் அவனுடைய குடும்பத்தில் 3 பிள்ளைகள் இருப்பதற்கான நிகழ்தகவு யாது?

- 14.30cm பக்கமுடைய ஒரு வெள்ளை நிறச் சதுரப்பலகையில் 10cm ஆரையுடைய சிவப்பு நிற வட்டம் ஒன்று வரையப்பட்டுள்ளது. சதுரத்தினுள்ளிருந்து புள்ளி ஒன்று எழுமாற்றாக எடுக்கப்பட்டால், அது அவ் வட்டத்தினுள் இருப்பதற்கான நிகழ்தகவு யாது?
- 15. கீழே தரப்பட்டுள்ள கோலமானது, சம வட்டங்கள் தொட்டுக் கொண்டிருக்கும் முடிவில் ஒழுங்கின் ஒரு பகுதியாகும். புள்ளி ஒன்று எழுமாற்றாக எடுக்கப்பட்டால், அது வட்டத்தினுள் இருப்பதற்கான நிகழ்தகவு யாது?

அலகு 2

அநிமுறை நிகழ்தகவு

அறிமுறை நிகழ்தகவு (Axiomatic Probability)

E என்னும் எழுமாற்றுப் பரிசோதனையின் மாதிரிவெளி Ω உம், நிகழ்ச்சி வெளி $\mathcal E$ உம் என்க.

 $P:\mathcal{E}: \ o \ [\ 0,1\]$ இற்கு சார்பு ஒன்று வரையறுக்கப்படுகிறது.

இங்கு [0,1] - முடிய ஆயிடை ஆகும்.

 \mathcal{E} யிலுள்ள ஒவ்வொரு நிகழ்ச்சி A யிற்கும், $[\,0,1\,]$ ஆயிடையில் ஒரு மெய்யெண் குறிக்கப்பட்டுள்ளது. இவ்வெண் $P\left(A\right)$ எனக் குறிக்கப்படும். இது பின்வரும் 3 வெளிப்படை உண்மைகளையும் திருப்தி செய்கிறது.

- (i) $\mathscr E$ யிலுள்ள எல்லா A இற்கும், $P(A) \geq 0$
- (ii) $P(\Omega) = 1$
- $(iii) \ A_{1,} \ A_{2,} \ A_{n}$ என்பன தம்முள் புறநீக்கும் நிகழ்ச்சிகள் எனின்,

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$$

தேற்றங்கள் :

- (i) $P(\phi) = 0$
- (ii) A யின் நிரப்பி நிகழ்ச்சி A' எனின், P(A')=1-P(A)
- (iii) A, B இரு நிகழ்ச்சிகள்

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(iv) A, B இரு நிகழ்ச்சிகள்

$$A \subseteq B$$
 எனின், $P(A) \le P(B)$
மேலும் $P(B-A) = P(B) - P(A)$

நிறுவல் :

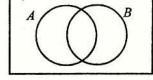
- (i) பரிசோதனையின் மாதிரிவெளி Ω என்க.
 - φ, Ω இரு நிகழ்ச்சிகள்

இவை தம்முள்புறநீக்கும் நிகழ்ச்சிகள்
$$\left[\phi \cap \Omega = \phi\right]$$

$$\phi \cup \Omega = \Omega$$
 $P(\phi \cup \Omega) = P(\Omega)$ $P(\phi) + P(\Omega) = P(\Omega)$ where $P(\phi) = 0$

(ii) பரிசோதனையின் மாதிரிவெளி Ω என்க. நிகழ்ச்சி A யின் நிரப்பி நிகழ்ச்சி A'

$$A,A'$$
 தம்முள் புறநீக்கும் நிகழ்ச்சிகள் $\left[A\cap A'=\emptyset
ight]$


$$P(A \cup A') = P(\Omega)$$

$$P(A) + P(A') = 1$$

$$P(A') = 1 - P(A)$$

(iii) மாதிரிவெளி Ω A, B இரு நிகழ்ச்சிகள்.

 $A \cup A' = \Omega$

$$A = (A \cap B) \cup (A \cap B')$$

A∩*B*, *A*∩*B*′ என்பன தம்முள் புறநீக்கும் நிகழ்ச்சிகள்

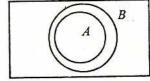
$$P(A) = P[(A \cap B) \cup (A \cap B')]$$

$$P(A) = P(A \cap B) + (A \cap B')$$

$$A \cup B = B \cup (A \cap B')$$
(1)

 $B,\ A\cap B'$ என்பன தம்முள் புறநீக்கும் நிகழ்ச்சிகள்.

$$P(A \cup B) = P(B) + P(A \cap B')$$
 (2)


(1), (2) இலிருந்து,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

(iv) A ⊆ B ஆகையால்,

$$B = A \cup (B \cap A')$$

 A, B∩A' என்பவை தம்முள் புறநீக்கும் நிகழ்ச்சிகள்.

$$P(B) = P(A) + P(B \cap A')$$

$$P(B) - P(A) = P(B \cap A')$$
(1)

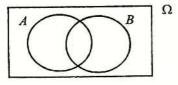
$$P(B \cap A') \ge O$$
 ஆகையால், $P(B) - P(A) \ge O$

ஆகவே
$$P(A) \leq P(B)$$

$$B \cap A' = \phi$$
 எனின், $P(A) = P(B)$ ஆகும்.

$$(B \cap A' = \phi \Rightarrow B = A)$$

மேலும்
$$B \cap A' = B - A$$


$$P(B \cap A') = P(B - A)$$

(1) இலிருந்து
$$P(B-A) = P(B) - P(A)$$

உதாரணம் 1

நிறுவனம் ஒன்று மக்களுக்கு இலவச சேவையினை வழங்குவதற்காக, 870 பேரிடமிருந்து நன்கொடைகளைப் பெற்றது. இவர்களுள் 600 போ, 100 ரூபாவிலும் கூடுதலாகவும், 420 பேர் 500 ரூபாவிலும் குறைவாகவும் நன்கொடை அளித்திருந்தார்கள். நன்கொடை செலுத்தியவர்களில் ஒருவர் எழுமாற்றாகத் தெரிவு செய்யப்பட்டால், அவர் 100 ரூபாவிற்கும், 500 ரூபாவிற்குமிடையில் நன்கொடை செலுத்தியிருப்பதற்கான நிகழ்தகவு யாது?

100 ரூபாவிலும் கூடுதலாக நன்கொடை அளித்தோர் A 500 ரூபாவிலும் குறைவாக நன்கொடை அளித்தோர் B

$$n(A \cap B) = x$$
 என்க

$$n(A) = 600, \quad n(B) = 420, \quad n(A \cup B) = 870$$

$$n(A \cap B) = n(A) + n(B) - n(A \cup B)$$

$$= 600 + 420 - 870$$

$$= 150$$

$$P(A \cap B) = \frac{150}{870} = \frac{5}{29}$$

உதாரணம் 2

A, B, C ஆகிய மூன்று மாணவர்கள் நீச்சல் போட்டி ஒன்றில் கலந்து கொள்கிறார்கள். A, B ஆகிய மாணவர்கள் ஒவ்வொருவரும் அப்போட்டியில் வெற்றி பெறுவதற்கான நிகழ்தகவு சமமாகவும், C வெற்றி பெறுவதற்கான நிகழ்தகவின் இரண்டு மடங்காகவும் உள்ளது. இப்போட்டியில் B அல்லது C வெற்றி பெறுவதற்கான நிகழ்தகவு யாது?

C வெற்றியடையும் நிகழ்தகவு P(C)=p என்க.

$$P(A) = P(B) = 2 p$$

$$2p + 2p + p = 1$$

$$p = \frac{1}{5}$$

$$P(B \cup C) = P(B) + P(C)$$

$$= 2p + p = 3p = \frac{3}{5}$$

உதாரணம் 3

தாயக்கட்டை ஒன்று எறியப்படும்போது, இரட்டை எண்கள் தோன்றும் சந்தர்ப்பங்கள் சமமானதாயும், ஒற்றை எண்கள் தோன்றும் சந்தர்ப்பங்கள் சமமானதாயும் உள்ளன. மேலும் இரட்டை எண் ஒவ்வொன்றும் தோன்றுவதற்கான நிகழ்தகவு, ஒற்றை எண் ஒவ்வொன்றும் தோன்றுவதற்கான நிகழ்தகவின் இருமடங்காகவும் உள்ளது. இத் தாயுக்கட்டை எறியப்படும்போது.

- (a) இரட்டை எண் தோன்றுவதற்கான
- (b) ஒற்றை எண் தோன்றுவதற்கான
- (c) முதன்மை எண் தோன்றுவதற்கான

- (d) ஒற்றை முதன்மை எண் தோன்றுவதற்கான
- (e) ஒற்றை எண் அல்லது முதன்மை எண் தோன்றுவதற்கான நிகழ்தகவு யாது?

$$C = \{(ழதன்மை எண்கள் \} = \{ 2, 3, 5 \}$$

$$P(1) = P(3) = P(5) = p$$
 எனின் $P(2) = P(4) = P(6) = 2p$ ஆகும். $3p + 6p = 1$ $p = \frac{1}{2}$

(a)
$$P(A) = P(2) + P(4) + P(6) = 6p = \frac{6}{9} = \frac{2}{3}$$

(b)
$$P(B) = P(1) + P(3) + P(5) = 3p = \frac{3}{9} = \frac{1}{3}$$

(c)
$$P(C) = P(2) + P(3) + P(5) = 2p + p + p = 4p = \frac{4}{9}$$

(d)
$$P(B \cap C) = P(3) + P(5)$$

$$=2p=\frac{2}{9}$$

(e)
$$P(B \cup C) = P(B) + P(C) - P(B \cap C)$$

= $\frac{1}{3} + \frac{4}{9} - \frac{2}{9} = \frac{5}{9}$

உதாரணம் 4

எழுமாற்றுப் பரிசோதனையொன்றில் $A,\,B$ என்பன இரு நிகழ்ச்சிகள்.

$$P(A \cup B) = \frac{7}{8}$$
, $P(A \cap B) = \frac{1}{4}$, $P(A') = \frac{5}{8}$ similar

$$P(B)$$
, $P(A \cap B')$ என்பவற்றைக் காண்க.

நிகழ்தகவு =
$$\frac{5C_2}{20C_2}$$
 = $\frac{1}{19}$

எடுக்கக்கூடிய வழிமுறைகளின் எண்ணிக்கை = 20 × 19
 இரண்டும் பழுதாக இருக்கும் வழிமுறைகளின் எண்ணிக்கை = 5 × 4

நிகழ்தகவு
$$\frac{5 \times 4}{20 \times 19} = \frac{1}{19}$$

(iii) எடுக்கக்கூடிய வழிமுறைகளின் எண்ணிக்கை $=20\times20$ இரண்டும் பழுதாக இருக்கும் வழிமுறைகளின் எண்ணிக்கை $=5\times5$

நிகழ்தகவு
$$\frac{5 \times 5}{20 \times 20} = \frac{1}{16}$$

பயிற்சி 2

 மூன்று கோடாத நாணயங்கள் சுண்டப்படுகின்றன. பின்வரும் நிகழ்ச்சிகள் C, D, E என்பன வரையறுக்கப்பட்டுள்ளன.

 $C = \{$ எல்லா நாணயங்களிலும் தலை தோன்றுதல் $\}$ $D = \{$ ஒன்று அல்லது அதற்கு மேற்பட்ட நாணயங்களில் பூ தோன்றுதல் $\}$ $E = \{$ தலை, பூ இரண்டும் தோன்றுதல் $\}$

- (a) தம்முள் புறநீக்கும் நிகழ்ச்சிகளைக் குறிப்பிடுக.
- (b) $P(D\cap E)$, $P(D\cup E)$, $P(C'\cap E')$ என்பவற்றைக் கணிக்க.
- இரு தாயக்கட்டைகள் எறியப்படுகின்றன.
 - (a) குறைந்தது ஒரு 6 ஐப் பெறுவதற்கு
 - (b) குறைந்தது ஒரு 3 ஐப் பெறுவதற்கு
 - (c) குறைந்தது ஒரு 6 அல்லது குறைந்தது ஒரு 3 ஐப் பெறுவதற்கான நிகழ்தகவு யாது?
- 3. 30 மாணவர்களைக் கொண்ட மாணவர் குழுவில், எல்லோரும் கணிதம், இரசாயனம் ஆகிய பாடங்களில் குறைந்தது ஒன்றையேனும் கற்கிறார்கள். 20 மாணவர்கள் கணிதமும், 21 மாணவர்கள் இரசாயனமும் கற்கிறார்கள். மாணவன் ஒருவன் எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்டால், அவன் கணிதம், இரசாயனம் இரண்டையும் கற்பதற்கான நிகழ்தகவு யாது?

$$P(A) = 1 - P(A') = 1 - \frac{5}{8} = \frac{3}{8}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\frac{7}{8} = \frac{3}{8} + P(B) - \frac{1}{4}$$

$$P(B) = \frac{3}{4}$$

$$P(B) = \frac{3}{4}$$

$$P(A \cap B') = P(A) - P(A \cap B)$$

. 8

உ_தாரணம் 5 எழுமாற்றுப் பரிசோதனையொன்றில் *A, B* என்பன இரு நிகழ்ச்சிகள்

$$P(A) = \frac{1}{2}, \quad P(A \cup B) = \frac{3}{4}, \quad P(B') = \frac{5}{8}$$
 similari

 $P(A \cap B), \ P(A' \cap B'), \ P(A' \cup B'), \ P(B \cap A')$ என்பவற்றைக் காண்க.

(2)

$$P(B) = 1 - P(B') = 1 - \frac{5}{8} = \frac{3}{8}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $=\frac{3}{9}-\frac{1}{4}=\frac{1}{9}$

$$\frac{3}{4} = \frac{1}{2} + \frac{3}{8} - P(A \cap B)$$

$$P(A \cap B) = \frac{1}{8} \quad ---- \quad (1)$$

$$P(A' \cap B') = P[(A \cup B)'] = 1 - P(A \cup B) = 1 - \frac{3}{4} = \frac{1}{4} - \dots$$
 (2)

$$P(A' \cup B') = P[(A \cap B)'] = 1 - P(A \cap B) = 1 - \frac{1}{8} = \frac{7}{8}$$
 (3)

$$P(B \cap A') = P(B) - P(B \cap A) = \frac{3}{8} - \frac{1}{8} = \frac{1}{4} - \frac{1}$$

உதாரணம் 6

பெட்டி ஒன்றினுள் 1 பச்சை நிறப்பந்தும், 2 மஞ்சள் நிறப்பந்துகளும், 3 சிவப்பு நிறப்பந்துகளும், 6 நீல நிறப்பந்துகளும் உள்ளன. பெட்டியிலிருந்து எழுமாற்றாக 4 பந்துகள் ஒருங்கே எடுக்கப்படுகின்றன. எடுக்கப்பட்ட பந்துகள்

(a) எல்லாம் நீலநிறமாக இருப்பதற்கு

(b) ஒவ்வொன்றும் வேறுவேறான நிறமாக இருப்பதற்கு நிகழ்தகவு யாது?

$$G-1$$
, $Y-2$, $R-3$, $B-6$

பெட்டியில் 12 பந்துகள் உள்ளன.

- 4 பந்துகளை எடுக்கக்கூடிய வழிமுறைகள் = $12C_4$
- 4 நீலநிறப்பந்துகளை எடுக்கக்கூடிய வழிமுறைகள் $= 6C_4$
- (a) நான்கு பந்துகளும் நீலநிறமாக இருப்பதற்குரிய நிகழ்தகவு

$$\frac{6C_4}{12C_4} = \frac{6!}{4! \ 2!} \times \frac{8! \times 4!}{12!} = \frac{1}{33}$$

ஒவ்வொரு பந்தும் வெவ்வேறு நிறமாக இருக்கக் கூடிய வழிமுறைகள் = $1C_1 \times 2C_1 \times 3C_1 \times 6C_1 = 36$

எனவே நிகழ்தகவு
$$=\frac{36}{12C_4}=\frac{4}{55}$$

உதாரணம் 7

பெட்டி ஒன்றில் 20 மின்குமிழ்கள் உள்ளன. அவற்றுள் 5 பழுதானவை. பெட்டியிலிருந்து 2 மின்குமிழ்கள் எழுமாற்றாக எடுக்கப்படுகின்றன.

- (i) **இரண்டு மின்குமி**ழ்களும் ஒருங்கே எடுக்கப்படின்
- (ii) ஒன்றன்பின் ஒன்றாக மீள்வைப்பின்றி எடுக்கப்படின்
- (iii) ஒன்றன்பின் ஒன்றாக மீள்வைப்புடன் எடுக்கப்படின்

இரண்டு மின்குமிழ்களும் பழுதானதாக இருப்பதற்குரிய நிகழ்தகவு யாது?

 20 மின்குமிழ்களிலிருந்து 2 மின்குமிழ்களை எடுக்கும் வழிமுறைகளின் எண்ணிக்கை = 20C₂

பழுதான 2 மின் குமிழ்களை எடுக்கும் வழிமுறைகள் $5C_2$

- 4. 64 விளையாட்டு வீரர்களில் 50 பேர் கிரிக்கெட் விளையாடக் கூடியவர்கள். 24 பேர் உதைபந்தாட்டம் விளையாடக் கூடியவர்கள். 8 பேர் இவ்விரு விளையாட்டுக்களையும் விளையாடுவதில்லை. ஒருவர் எழுமாற்றாகத் தெரியப்படின், அவர்
 - (a) கிரிக்கெட் விளையாடுபவராக, ஆனால் உதைபந்தாட்டம் விளையாடாதவராக இருக்க,
 - (b) உதைபந்தாட்டம் விளையாடுபவராக, ஆனால் கிரிக்கெட் விளையாடதவராக இருக்க, நிகழ்தகவைக் கணிக்க.
- 5. 20 குடும்பங்களில் ஆய்வு ஒன்று மேற்கொள்ளப்பட்ட போது 12 வீடுகளில் கறுப்பு - வெள்ளைத் தொலைக்காட்சிகளும், 7 வீடுகளில் கறுப்பு - வெள்ளை, வாணத்தொலைக்காட்சி இரண்டும், வைத்திருக்கக் காணப்பட்டனர். 3 வீடுகளில் தொலைக்காட்சிப்பெட்டிகள் இருக்கவில்லை. குடும்பம் ஒன்று எழுமாற்றாகத் தெரிந்தெடுக்கப்படின், அவர்களிடம் வர்ணத் தொலைக்காட்சி இருப்பதற்கான நிகழ்தகவு யாது?
- விஞ்ஞானபீட மாணவர்கள் 58 பேரில், அவர்கள் கற்கும் பாடங்களும், மாணவர் எண்ணிக்கையும் தரப்பட்டுள்ளன.

கணிதம்	30	கணிதமும் பௌதீகமும்	23
பௌதீகம்	48	பௌதீகமும் இரசாயனமும்	30
இரசாயனம்	34	கணிதமும் இரசாயனமும்	13

எழுமாற்றாகத் தெரிவு செய்யப்பட்ட ஒரு மாணவன்

- (a) கணிதம் மட்டும் கற்பவனாக
- (b) கணிதமும் பௌதீகமும் கற்பவனாகவும், இரசாயனம் கற்காதவனாகவும்,
- (c) மூன்று பாடங்களையும் கற்பவனாக இருக்க நிகழ்தகவு யாது?
- எழுமாற்றுப் பரிசோதனையொன்றில் A, B என்பன இரு நிகழ்ச்சிகள்.

$$P(A)=rac{3}{8}, \quad P(B)=rac{1}{2}, \quad P(A\cap B)=rac{1}{4}$$
 எனின் $P(A\cup B), \quad P(A'\cap B'), \quad P(A'\cup B'), \quad P(B\cap A')$ என்பவற்றைக் காண்க.

8. எழுமாற்றுப் பரிசோதனையொன்றில் *A, B* என்பன இரு நிகழ்ச்சிகள்.

$$P(A \cup B) = \frac{3}{4}, \quad P(A') = \frac{2}{3}, \quad P(A \cap B) = \frac{1}{4}$$
 so so so

P(B), $P(A \cap B')$ என்பவற்றைக் காண்க.

 தாயக்கட்டை ஒன்று எறியப்படும்போது, ஓர் எண் தோன்றுவதற்கான நிகழ்தகவு, அவ் வெண்ணிற்கு விகித சமமாக இருக்குமாறு அத்தாயக்கட்டை அமைக்கப்பட்டுள்ளது.

 $A = \{$ இரட்டை எண் $\}$ $B = \{$ முதன்மை எண் $\}$ $C = \{$ ஒற்றை எண் $\}$ என்க

- (a) P(A), P(B), P(C) என்பவற்றைக் காண்க.
- (b) இரட்டை எண் அல்லது முதன்மை எண் தோன்றுவதற்கான
- (c) A நடைபெறவும், B நடைபெறாமலுமிருப்பதற்கான நிகழ்த்கவு யாது?
- 10. பெட்டி ஒன்றில் 10 சிவப்புநிறப்பந்துகளும், 5 வெள்ளைநிறப்பந்துகளும், உள்ளன. பெட்டியிலிருந்து 3 மாபிள்கள் எடுக்கப்படுகின்றன. எடுக்கப்பட்ட பந்துகளில்
 - (i) வெள்ளை நிறப்பந்துகள் இல்லாமலிருப்பதற்கு,
 - (ii) ஒரு பந்து மட்டும் வெள்ளையாக இருப்பதற்கு,
 - (iii) குறைந்தது ஒரு பந்தாவது வெள்ளையாக இருப்பதற்கு நிகழ்த்கவு யாது?
- 11. இரு நாணயங்கள் சுண்டப்படுகின்றன. ஒரு நாணயம் கோடாதது. மற்றையது தலை விழுவதற்கான நிகழ்தகவு, பூ விழுவதற்கான நிகழ்தகவின் மூன்று மடங்காகும். பின்வரும் நிகழ்தகவுகளைக் காண்க.
 - (a) இரு நாணயங்களும் ஒரு முறை சுண்டப்படும் போது, இரண்டிலும் தலை தோன்றுதல்.
 - (b) இரு நாணயங்களும் இரு முறை கண்டப்படும்போது, இரு தடவைகளிலும், இரண்டிலும் பூ தோன்றுதல்

அலகு 3

நிபந்தனை நிகழ்தகவு, நிகழ்ச்சிகளின் சாராமை, மரவரிப்படம்

Conditional Probability, Independence of events and Tree diagrams

நிபந்தனை நிகழ்தகவு

எழுமாற்றுப் பரிசோதனை ஒன்றின் மாதிரிவெளி Ω . Ω இற்குரிய நிகழ்ச்சிவெளி $\mathcal E$ ஆகும். A, B, \in $\mathcal E$ உம் P(A)>0 உம் ஆகும். நிகழ்ச்சி A நடைபெற்றதெனின். நிகழ்ச்சி B நடைபெறுவதற்கான நிபந்தனை நிகழ்தகவு P (B/A) எனக் குறிப்பிடப்படும்.

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$
 என வரையறுக்கப்படும்.

$$P(A \cap B) = P(A) \cdot P(B/A)$$
 பெருக்கல் விதி எனப்படும்.

உதாரணம் 1

தாயக்கட்டை ஒன்று எறியப்படுகிறது. ஒற்றை எண் தோன்றியதெனின், அது முதன்மை எண்ணாக இருப்பதற்குரிய நிகழ்தகவு யாது?

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{$$
 ஒற்றை எண்கள் $\} = \{1, 3, 5\}$

$$B = \{(pgg)$$
ன்மை எண்கள் $\} = \{3, 5\}$

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3}$$

உதாரணம் 2

மூன்று நாணயங்கள் சுண்டப்படுகின்றன. தலை, பூ இரண்டும் தோன்றியதெனின் சரியாக 1 தலை மட்டும் தோன்றுவதற்கான நிகழ்தகவு யாது?

 $\Omega = \{ HHH, HHT, HTH, HTT, THH, THT. TTH, TTT \}$

தலை, பூ இரண்டும் தோன்றும் நிகழ்ச்சி A என்க.

சரியாக 1 தலை மட்டும் தோன்றும் நிகழ்ச்சி *B* என்க.

$$A = \{ HHT, HTH, HTT, THH, THT, TTH \}$$

$$B = \{ HTT, THT, TTH \}$$

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{3}{8}}{\frac{6}{8}} = \frac{3}{6} = \frac{1}{2}$$

உதாரணம் 3

- 1 இலிருந்து 9 வரையான எண்களிலிருந்து இரு வேறு வேறான எண்கள் தெரிவு செய்யப்படுகின்றன.
- (i) கூட்டுத்தொகை ஒற்றை எனின், தெரிவு செய்யப்பட்ட எண்களில் 2 இருப்பதற்கான நிகழ்தகவு யாது?
- (ii) தெரிவு செய்யப்பட்ட ஒரு எண் 2 எனின், கூட்டுத்தொகை ஒற்றையாக இருப்பதற்கான நிகழ்தகவு யாது?

ஒற்றை எண்கள் = { 1, 3, 5, 7, 9 }, இரட்டை எண்கள் = { 2, 4, 6, 8 }

கூட்டுத்தொகை ஒற்றை எண் ஆகும் நிகழ்ச்சி A என்க. எண் 2 ஐத் தெரிவு செய்யும் நிகழ்ச்சி B என்க.

9 எண்களிலிருந்து இரு எண்களை $9C_2$ வழிமுறைகளில் தெரிவுசெய்யலாம். கூட்டுத்தொகை ஒற்றை எண்ணாக இருக்க வேண்டுமெனின், ஒற்றை எண் ஒன்றையும், இரட்டை எண் ஒன்றையும் கூட்டுதல் வேண்டும். எனவே $5 \times 4 = 20$ வழிகளில் பெற்றுக் கொள்ளலாம்.

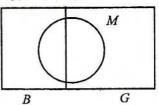
$$P(A) = \frac{20}{9C_2} = \frac{20}{36}$$

இருஎண்களை தெரிவு செய்யும் போது 2 ஐத் தெரிவு செய்யும் வழிமுறைகள் $1 \times 8 = 8$

$$P(B) = \frac{8}{9C_2} = \frac{8}{36}$$

தெரிவு செய்யப்பட்ட ஒரு எண் 2 ஆகவும், கூட்டுத்தொகை ஒற்றை எண்ணாகவும் இருக்கும் நிகழ்ச்சி $A \cap B$

$$P(A \cap B) = \frac{5}{9C_2} = \frac{5}{36}$$


$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{5}{36}}{\frac{20}{36}} = \frac{5}{20} = \frac{1}{4}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{5}{36}}{\frac{8}{36}} = \frac{5}{8}$$

உதாரணம் 4

கல்லூரி ஒன்றிலுள்ள மாணவர்களில், ஆண்களில் 25% மானோரும், பெண்களில் 10% மானோரும் கல்வி கற்கிறார்கள். மாணவர்களில் பெண்கள் 60% ஆகும். எழுமாற்றாக தெரிந்தெடுக்கப்பட்ட மாணவர்களில் ஒருவர் கணிதம் கற்கின்றார் எனின், அவர் பெண்ணாக இருப்பதற்குரிய நிகழ்தகவு யாது?

 $\{$ கல்லூரியிலுள்ள ஆண்கள் $\}=B$ $\{$ கல்லூரியிலுள்ள பெண்கள் $\}=G$ $\{$ கல்லூரியில் கணிதம் கற்போர் $\}=M$

$$P(B) = 0.40, \quad P(G) = 0.60$$

 $P(M) = 0.40 \times 0.25 + 0.60 \times 0.10 = 0.16$
 $[P(M \cap B) = 0.40 \times 0.25, \quad P(M \cap G) = 0.60 \times 0.10]$

$$P(G/M) = \frac{P(M \cap G)}{P(M)} = \frac{0.06}{0.16} = \frac{3}{8}$$

உதாரணம் 5

பெட்டி ஒன்றில் 10 கறுப்பு நிறப்பந்துகளும், 5 வெள்ளை நிறப்பந்துகளும் உள்ளன. பெட்டியிலிருந்து ஒன்றன்பின் ஒன்றாக 3 பந்துகள் எழுமாற்றாக எடுக்கப்படுகின்றன.

- (i) முதலிரண்டும் கறுப்பாகவும், முன்றாவது வெள்ளையாகவும்
- (ii) இரண்டாவது வெள்ளையாகவும் மற்றைய இரண்டும் கறுப்பாகவும்
- (iii)முதலாவதும் மூன்றாவதும் ஒரே நிறமானதாகவும், இரண்டாவது வித்தியாசமான நிறமானதாகவும் இருக்க நிகழ்தகவு யாது?

முறை I

15 பந்துகளிலிருந்து 3 பந்துகள் ஒன்றன் பின் ஒன்றாக எடுக்கும் வழிகளின் எண்ணிக்கை = $15 \times 14 \times 13$

B - கறுப்பு நிறப்பந்து, W - வெள்ளை நிறப்பந்து

(I) BBW என்ற ஒழுங்கில் எடுக்கக்கூடிய வழிகளின் எண்ணிக்கை = $10 \times 9 \times 5$

ஆகவே நிகழ்தகவு =
$$\frac{10 \times 9 \times 5}{15 \times 14 \times 13} = \frac{15}{91}$$

(II)BWB என்ற ஒழுங்கில் எடுக்கக்கூடிய வழிகளின் எண்ணிக்கை = $10 \times 5 \times 9$ ஆகவே நிகழ்தகவு = $\frac{10 \times 5 \times 9}{15 \times 14 \times 13} = \frac{15}{91}$

(III)BWB, அல்லது WBW என்ற ஒழுங்கில் அமையலாம். BWB என்ற ஒழுங்கில் எடுக்கக்கூடிய வழிகளின் எண்ணிக்கை $=10\times5\times9$

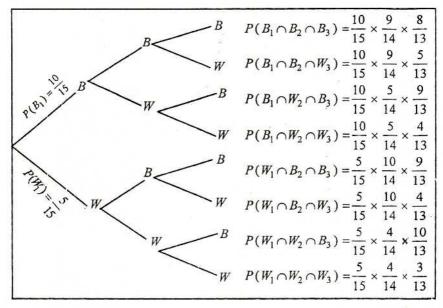
WBW என்ற ஒழுங்கில் எடுக்கக்கூடிய வழிகளின் எண்ணிக்கை = $5 \times 10 \times 4$ ஆகவே நிகழ்தகவு = $\frac{10 \times 5 \times 9 + 5 \times 10 \times 4}{15 \times 14 \times 13} = \frac{5}{21}$

முறை II

(i) முதலாவது பந்து கறுப்பு நிறமாக இருப்பதற்குரிய நிகழ்தகவு $P\left(B_1\right)=\frac{10}{15}$ முதலாவது பந்து கறுப்பு நிறமெனின், இரண்டாவது பந்து கறுப்பு நிறமானதாக இருப்பதற்குரிய நிகழ்தகவு $P\left(B_2/B_1\right)=\frac{9}{14}$ முதலிரண்டும் கறுப்பு நிறமாக இருக்க, மூன்றாவது வெள்ளை நிறமாக

இருப்பதற்குரிய நிகழ்தகவு $P(W_3 / B_1 \cap B_2) = \frac{5}{13}$

 $P(B_1 \cap B_2 \cap W_3) = P(B_1) \cdot P(B_2 / B_1) \cdot P(W_3 / B_1 \cap B_2)$ $= \frac{10}{15} \times \frac{9}{14} \times \frac{5}{13} = \frac{15}{91}$


(ii) $P(B_1 \cap W_2 \cap B_3) = P(B_1) \cdot P(W_2 / B_1) \cdot P(B_3 / B_1 \cap W_2)$ = $\frac{10}{15} \times \frac{5}{14} \times \frac{9}{13} = \frac{15}{91}$

(iii) $P(B_1 \cap W_2 \cap B_3) + P(W_1 \cap B_2 \cap B_3)$ = $\frac{15}{91} + \frac{5}{15} \times \frac{10}{14} \times \frac{4}{13} = \frac{5}{21}$ இங்கு பெருக்கல் விதியை உபயோகித்துள்ளோம்.

$$P(B/A)=rac{P(A\cap B)}{P(A)}$$
 என்பதில்
$$P(A\cap B)=P(A)\cdot P(B/A)$$
 ஆகும். இதிலிருந்து A_1,A_2,\ldots,A_n என்பன நிகழ்ச்சிகளாக இருக்க
$$P(A_1\cap A_2\cap\ldots\cap A_n)=P(A_1)\cdot P(A_2/A_1)\cdot P(A_3/A_1\cap A_2)$$

...... $P(A_n / A_1 \cap A_2 \dots \cap A_{n-1})$

என தொகுத்தறி முறைமூலம் நிறுவலாம். இம் முடிபினை மரவரிப்படமூலமும் இலகுவில் பெற்றுக்கொள்ளலாம். மேலேயுள்ள உதாரணத்தை மரவரிப்படமூலம் நோக்குவோம்.

பரிசோதனையொன்றின் மாதிரிவெளி Ω . A, B, B_1 , B_2 என்பன நிகழ்ச் δ கள். P(A) > 0

(i)
$$P(\phi/A) = 0$$
 ஆகும்.

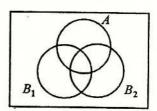
$$P(\phi/A) = \frac{P(A \cap \phi)}{P(A)} = \frac{P(\phi)}{P(A)} = 0$$

(ii)
$$P(B/A) + P(B'/A) = 1$$
 ஆகும்.
$$A = (A \cap B) \cup (A \cap B')$$

 $A \cap B$, $A \cap B'$ என்பன தம்முள் புறநீக்கும் நிகழ்ச்சிகள் என்பதால்,

$$P(A) = P(A \cap B) + P(A \cap B')$$

P(A)>0; இருபக்கமும் P(A) யால் பிரிக்க,


$$1 = \frac{P(A \cap B)}{P(A)} + \frac{P(A \cap B')}{P(A)}$$

$$1 = P(B/A) + P(B'/A)$$

(iii)
$$P(B_1/A) = P((B_1 \cap B_2)/A) + P((B_1 \cap B_2')/A)$$
 Algebre

$$P(B_1/A) = P\frac{(B_1 \cap A)}{P(A)}$$
 Substitution
$$B_1 = (B_1 \cap B_2) \cup (B_1 \cap B_2')$$

$$[(B_1 \cap B_2) \cap (B_1 \cap B_2') = \phi]$$

$$B_1 \cap A = \left[(B_1 \cap B_2) \cup (B_1 \cap B_2') \right] \cap A$$
$$= \left[(B_1 \cap B_2) \cap A \right] \cup \left[(B_1 \cap B_2') \cap A \right]$$

[வலதுகைப் பக்கத்திலுள்ள இரு நிகழ்ச்சிகளும் தம்முள் புற நீங்கலானவை]

ஆகவே, $P(B_1 \cap A) = P\left[(B_1 \cap B_2) \cap A \right] + P\left[(B_1 \cap B_2') \cap A \right]$ இருபக்கமும் P(A) ஆல் பிரிக்க,

$$\frac{P(B_1 \cap A)}{P(A)} = \frac{P\left[(B_1 \cap B_2) \cap A\right]}{P(A)} + \frac{P\left[(B_1 \cap B_2') \cap A\right]}{P(A)}$$

$$P(B_1 / A) = P(B_1 \cap B_2 / A) + P(B_1 \cap B_2')' / A)$$

சாரா நிகழ்ச்சிகள் (Independent events)
பரிசோதனையொன்றின் மாதிரிவெளி Ω. A, B என்பன இரு நிகழ்ச்சிகள். நிகழ்ச்சி
B நிகழ்வதற்கான நிகழ்தகவு, நிகழ்ச்சி A நடைபெறுகிறது அல்லது நடைபெறவில்லை
என்பதில் தங்கியிருக்கவில்லை எனின், B, A என்பன
சாரா நிகழ்ச்சிகள் எனப்படும்.

அதாவது
$$P(B) = P(B/A)$$
 $P(B) = \frac{P(A \cap B)}{P(A)}$ $P(A \cap B) = P(A) \cdot P(B)$

வரைவிலக்கணம்:

A,B என்பன இரு நிகழ்ச்சிகள்

 $P(A \cap B) = P(A) \cdot P(B)$ எனின், எனின் மட்டுமே

A,B சாரா நிகழ்ச்சிகள் எனப்படும்.

A,B என்பன சாரா நிகழ்ச்சிகள் எனின்,

- (i) A' உம் B' உம்
- (ii) A உம் B' உம்
- (iii) A' உம் B உம் சாரா நிகழ்ச்சிகள் என நிறுவுக.

A,B சாரா நிகழ்ச்சிகளாதலால், $P\left(A\cap B\right)=P(A)\cdot P(B)$ ஆகும்.

(i)
$$P(A' \cap B') = P[(A \cup B)'] = 1 - P(A \cup B)$$

 $= 1 - [P(A) + P(B) - P(A \cap B)]$
 $= 1 - P(A) - P(B) + P(A) \cdot P(B)$
 $= [1 - P(A)] - P(B)[1 - P(A)]$
 $= [1 - P(A)][1 - P(B)]$
 $= P(A') \cdot P(B')$

(ii)
$$A = (A \cap B) \cup (A \cap B')$$

$$[(A \cap B) \cap (A \cap B') = \phi]$$

$$P(A) = P(A \cap B) + P(A \cap B')$$

$$P(A \cap B') = P(A) - P(A \cap B)$$

$$= P(A) - P(A) \cdot P(B)$$

$$= P(A) [1 - P(B)]$$

$$= P(A) \cdot P(B')$$

ஆகவே A உம், B' உம் சாரா நிகழ்ச்சிகள் .

குறிப் பு:

A, B, C என்னும் மூன்று நிகழ்ச்சிகள், சாரா நிகழ்ச்சிகளாக இருக்க,

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(B \cap C) = P(B) \cdot P(C)$$

$$P(A \cap C) = P(A) \cdot P(C)$$

 $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$ ஆதல் வேண்டும்.

உதாரணம் 6

A என்பவன் ஒரு இலக்கினை அடிப்பதற்குரிய நிகழ்தகவு 1/4 B என்பவன் அவ்விலக்கினை அடிப்பதற்குரிய நிகழ்தகவு 1/3 ஆகும்.

- (a) ஒவ்வொருவரும் ஒரு முறை சுடுகின்றனர் எனின், A அல்லது B அவ்விலக்கினை அடிப்பதற்குரிய நிகழ்தகவு யாது?
- (b) ஒவ்வொருவரும் இரு முறை சுடுகின்றனர் எனின், இலக்கானது குறைந்தது ஒரு தடவையானது அடிக்கப்படுவதற்குரிய நிகழ்தகவு யாது?
- (c) ஒவ்வொருவரும் ஒரு முறை சுடும் போது இலக்கு ஒரு தடவை மட்டுமே அடிக்கப்படுகிறது எனின், A அதனை அடிப்பதற்கான நிகழ்தகவு யாது?
- (d) A இரு முறை மட்டுமே சுடுகிறார் எனின், இலக்கை அடிப்பதற்கான நிகழ்தகவு 90% இலும் கூடுதலாக இருக்க B எத்தனை தடவை சுட வேண்டும்?
- (a) $P(A)=rac{1}{4}, \quad P(B)=rac{1}{3}$ இங்கு A,B என்பன சாரா நிகழ்ச்சி. A யும், B யும் இலக்கை அடிக்கும் நிகழ்ச்சி $A\cap B$.

$$P(A \cap B) = P(A) \cdot P(B) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$$

A அல்லது B இலக்கினை அடிக்கும் நிகழ்ச்சி $A\cup B$.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{1}{4} + \frac{1}{3} - \frac{1}{12} = \frac{6}{12} = \frac{1}{2}$$

(b) A, இருமுறை சுடும் போது, ஒரு தடவையேனும் இலக்கை அடிக்காமலிருப் பதற்குரிய நிகழ்த்கவு = $3/4 \times 3/4 = 9/16$ எனவே, குறைந்தது ஒரு தடவையேனும் A இலக்கை அடிப்பதற்குரிய நிகழ்த்கவு = 1 - 9/16 = 7/16

இதேபோல், இருதடவைகளில் B குறைந்தது ஒரு தடவையேனும் இலக்கை அடிப்பதற்குரிய நிகழ்தகவு $=1-2/3\times2/3=5/9$ எனவே A அல்லது B, இலக்கை குறைந்தது ஒரு தடவையேனும்

அடிப்பதற்குரிய நிகழ்தகவு
$$=$$
 $\frac{7}{16} + \frac{5}{9} - \frac{7}{16} \times \frac{5}{19}$ $=$ $\frac{63 + 80 - 35}{144} = \frac{108}{144} = \frac{3}{4}$

இதனை மரவுரிப்படம் மூலம் காட்டலாம் •

H - இலக்கை அடித்தல், NH - இலக்கை அடிக்காமலிருத்தல்

[A]
$$P(H_{1} \cap H_{2}) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$$

$$NH \qquad P(H_{1} \cap NH_{2}) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$$

$$P(NH_{1} \cap H_{2}) = \frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$$

$$P(NH_{1} \cap H_{2}) = \frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$$

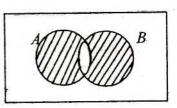
$$P(NH_{1} \cap NH_{2}) = \frac{3}{4} \times \frac{3}{4} = \frac{9}{16}$$

மரவரிப்படத்திலிருந்து, குறைந்தது ஒரு தடவையேனும் இலக்கை அடிப்பதற்குரிய நிதுந்தது _____1 ___3 ___3 ___7 [_1 ___9]

நிகழ்த்கவு =
$$\frac{1}{16} + \frac{3}{16} + \frac{3}{16} = \frac{7}{16} \left[1 - \frac{9}{16} \right]$$

மேலும் $P\left(H_2/H_1\right)=P(H_2)$ ஆகும். இதேபோல் B இற்கும் மரவரிப்படமூலம் நிகழ்தகவைப் பெறலாம்.

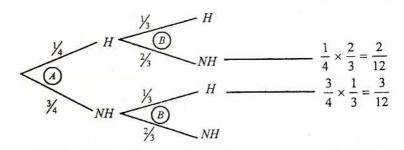
(c) ஒவ்வொருவரும் ஒருமுறை சுடும் போது இலக்கினை ஒரு தடவை மட்டும் அடிப்பதற்குரிய நிகழ்தகவு

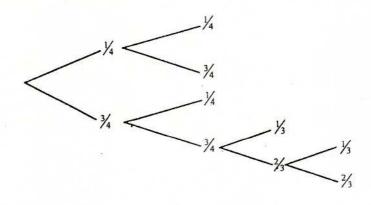

$$P[(A'\cap B)\cup (A\cap B')]$$

 $[A'\cap B, A\cap B'$ தம்முள்புறநீக்கும் நிகழ்ச்சிகள்]

$$P\left[(A' \cap B) \cup (A \cap B')\right] = P(A' \cap B) + (A \cap B')$$

$$= \frac{3}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3}$$


$$= \frac{5}{12}$$



ஒரு தடவை மட்டும் அடிக்கும் நிகழ்ச்சி X எனின், நாம் $P\left(A/X\right)$ ஐக் காண வேண்டும்.

$$P(A/X) = \frac{P(A \cap X)}{P(X)} = \frac{1/4 - 1/12}{5/12} = \frac{2/12}{5/12} = \frac{2}{5}$$

மரவரிப்படமூலம் இதனை விளக்கலாம்.

A இரு தடவைகளும் $B,\,n$ தடவைகளும் சுடும்போது, ஒரு தடவையேனும் இலக்கை அடியாமலிருப்பதற்கான நிகழ்தகவு

$$= \frac{3}{4} \times \frac{3}{4} \times \frac{2}{3} \times \frac{2}{3} \times \dots \times \frac{2}{3}$$

$$= \frac{3^{2}}{4^{2}} \times \frac{2^{n}}{3^{n}}$$

$$= \frac{2^{n-4}}{3^{n-2}}$$

$$\frac{2^{n-4}}{3^{n-2}} < \frac{1}{10}$$

$$I_{2n} \left(2^{n-4} \right) < I_{2n}$$

$$\log\left(\frac{2^{n-4}}{3^{n-2}}\right) < \log\left(\frac{1}{10}\right)$$

$$(n-4)\log 2 - (n-2)\log 3 < \log 1 - \log 10$$

$$(n-4)0 \cdot 3010 - (n-2)0 \cdot 4771 < 0 - 1$$

$$(0 \cdot 3010 - 0 \cdot 4771)n < -1 + 1 \cdot 2040 - 0 \cdot 9542$$

$$-0 \cdot 1761n < -0 \cdot 7502$$

$$n > \frac{0 \cdot 7502}{0 \cdot 1761}$$

$$n > 4 \cdot 2$$

5 தடவைகள் சுடவேண்டும்.

உதாரணம் 7

குறித்த கல்லூரியொன்றில் கணிதம் கற்கும் மாணவன், ஆங்கிலமும் கற்பதற்கான நிகழ்தகவு 1/4 ஆகவும், ஆங்கிலம் கற்கும் மாணவன் கணிதமும் கற்பதற்கான நிகழ்தகவு 1/5 ஆகவும் உள்ளது. எழுமாற்றாகத் தெரிவு செய்யப்படும் ஒரு மாணவன் இவ்விரண்டில் ஒன்றையேனும் கற்காதிருப்பதற்கான நிகழ்தகவு 1/3 ஆகுமெனின், எழுமாற்றாகத் தெரிவுசெய்யப்படும் மாணவன் ஒருவன் இவ்விரண்டு பாடத்தையும் கற்பதற்கான நிகழ்தகவு யாது?

M= {கணிதம் கற்கும் மாணவர்கள்} E = {ஆங்கிலம் கற்கும் மாணவர்கள்}

$$P(E/M) = \frac{1}{4}, \quad P(M/E) = \frac{1}{5}$$

$$P[(M \cup E)'] = \frac{1}{3}$$

$$P(E/M) = \frac{1}{4}$$

$$P(M/E) = \frac{1}{5}$$

$$\frac{P(M\cap E)}{P(E)} = -\frac{1}{2}$$

$$M$$
 E

$$P(E/M) = \frac{1}{4}$$
 $P(M/E) = \frac{1}{5}$ $P[(M \cup E)'] = \frac{1}{3}$

$$\frac{P(M \cap E)}{P(M)} = \frac{1}{4} \qquad \frac{P(M \cap E)}{P(E)} = \frac{1}{5} \qquad P(M \cup E) = 1 - \frac{1}{3} = \frac{2}{3}$$

$$P\left(M \cup E\right) = P(M) + P(E) - P(M \cap E)$$

$$\frac{2}{3} = 4P(M \cap E) + 5P(M \cap E) - P(M \cap E)$$

$$P(M \cap E) = \frac{1}{12} \tag{1}$$

$$P(M) = 4 \times \frac{1}{12} = \frac{1}{3}, \qquad P(E) = 5 \times \frac{1}{12} = \frac{5}{12}$$

$$P(M \cap E) \neq P(M).P(E)$$

எனவே கணிதமும், ஆங்கிலமும் சாரா தெரிவுகள் அல்ல.

மாதிரி வெளி ஒன்றின்பிரிப்பு (Paritions of a sample space)

பரிசோதனை ஒன்றின் மாதிரி வெளி Ω எனவும், Ω இற்குரிய நிகழ்ச்சி வெளியில் $\left\{ B_{1.} \; B_{2.} \; B_{n}
ight\}$ என்பன ஒரு நிகழ்ச்சித் தொடரியும் என்க.

(1)
$$B_i \cap B_j = \emptyset$$
 $(i \neq j, i, j = 1, 2, \dots, n)$

(II)
$$\bigcup_{i=1}^{n} B_i = \Omega$$
 எனின்,

 $\left\{B_{1,.}B_{2,.}B_{3}......B_{n}
ight\}$ எனும் நிகழ்ச்சித் தொடரி, மாதிரிவெளி Ω இன் ஒரு பிரிப்பு (partition) எனப்படும்.

மொத்த நிகழ்தகவு (Total Probability)

மாதிரி வெளி Ω உம், $\left\{B_{1,} B_{2,} \dots, B_{n}\right\}$ என்பது Ω இன் ஒரு பிரிப்பு என்க. Ω இன் நிகழ்ச்சி வெளியில் A ஒரு நிகழ்ச்சி எனின்,

$$P(A) = \sum P(A/B_i).P(B_i)$$
 ஆகும். (இங்கு $P(B_i) > 0$)

நிறுவல்

$$A = (A \cap B_1) \cup (A \cap B_2) \cup (A \cap B_3) \dots \cup (A \cap B_n)$$

$$A = \bigcup_{i=1}^{n} (A \cap B_i)$$

$$(A \cap B_i) \cap (A \cap B_i) = \phi (i \neq j)$$

$$\left[B_i \cap B_j = \emptyset, i \neq j,$$
 என் பதால் $\right]$

எனவே

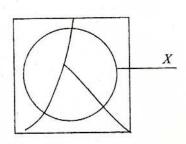
$$B_1$$
 B_2 B_3

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots P(A \cap B_n)$$
$$= \sum_{i=1}^{n} P(A \cap B_i)$$

மேலும்
$$P(A/B_i) = \frac{P(A \cap B_i)}{P(B_i)}$$

எனவே
$$P(A) = \sum P(A/B_i) \cdot P(B_i)$$
 ஆகும்.

உதாரணம் 8


 $A,\ B,\ C$ என்னும் மூன்று மாணவர்களில், ஒருவர் எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்டு, வினா ஒன்றிற்கு விடை அளிக்குமாறு கேட்கப்படுகின்றார். $A,\ B,\ C$ ஆகியோர் இவ் வினாவிற்கு விடையளிப்பதற்கான நிகழ்தகவுகள் முறையே $0\cdot 2,\ 0\cdot 7,\ 0\cdot 9$ எனின், அவ்வினாவிற்கு விடையளிப்பதற்கான நிகழ்தகவு யாது?

நிகழ்ச்சி E_i = { மாணவன் ஒருவனைத் தெரிவு செய்தல் } நிகழ்ச்சி X = { வினாவிற்கு விடையளித்தல் } மாணவன் A $\mathfrak B$, அல்லது B $\mathfrak B$ அல்லது C $\mathfrak B$ த் தெரிவு செய்யலாம். E_1 = $\{A\}$, E_2 = $\{B\}$, E_3 = $\{C\}$ என்க. P(X) $\mathfrak B$ க் கணித்தல் வேண்டும்.

$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$

$$P(X/E_1) = 0.2$$
, $P(X/E_2) = 0.7$, $P(X/E_3) = 0.9$

$$P(X) = \sum_{i=1}^{3} P(X/E_2) \cdot P(E_2)$$
 [பொத்த நிகழ்வுத் தேற்றம்]
$$= \frac{1}{3} \times 0.2 + \frac{1}{3} \times 0.7 + \frac{1}{3} \times 0.9$$

$$= \frac{1}{3} \times 1.8 = 0.6$$

 B_2

பேயிசின் தேற்றம் (Bayes Theorem)

மாதிரிவெளி Ω உம் $\{B_1,B_2,......B_n\}$ என்பது Ω இன் ஒரு பிரிப்பும் $P(B_i)>0$ உம் என்க. இன் நிகழ்ச்சி வெளியில் A ஒரு நிகழ்ச்சி எனின்,

$$P(B_{j}/A) = \frac{P(A/B_{j}) \cdot P(B_{j})}{\sum_{i=1}^{n} P(A/B_{i}) \cdot P(B_{j})} \qquad [j = 1, 2,n]$$

நிறுவல்
$$P(B_j/A) = \frac{P(A \cap B_j)}{P(A)}$$
 ——(1)

$$P(A/B_j) = \frac{P(A \cap B_j)}{P(B_j)}$$
 (2)

(2) இலிருந்து
$$P(A \cap B_j) = P(A/B_j) \cdot P(B_j)$$

(1) இல் பிரதியிட

$$P(B_j/A) = \frac{P(A/B_j) \cdot P(B_j)}{P(A)}$$

ஆனால்
$$P(A) = \sum_{i=1}^{n} P(A/B_i) \cdot P(B_j)$$
 [நிறுவப்பட்டது]

ஆகவே
$$P(B_j/A) = \frac{P(A/B_j) \cdot P(B_j)}{\sum_{i=1}^{n} P(A/B_i) \cdot P(B_i)}$$

உதாரணம் 9

A, B, C என்னும் மூன்று மாணவர்களில் ஒருவர் எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்டு, வினா ஒன்றிற்கு விடையளிக்குமாறு கேட்கப்படுகிறார். $A,\,B,\,C$ ஆகியோர் இவ் வினாவிற்கு விடையளிப்பதற்கான நிகழ்தகவுகள் முறையே 0.2, 0.7, 0.9 ஆகும். இவ் விணாவிற்கு விடையளிக்கப்பட்டதெனின் B_{ullet} இவ் விணாவிற்கு விடையளிப்பதற்கான நிகழ்தகவு யாது?

நிகழ்ச்சி $E_i = \{$ மாணவன் ஒருவனைத் தெரிவு செய்தல் $\}$ நிகழ்ச்சி X= { வினாவிற்கு விடையளித்தல் } $E_1 = \{A\}, E_2 = \{B\}, E_3 = \{C\}$

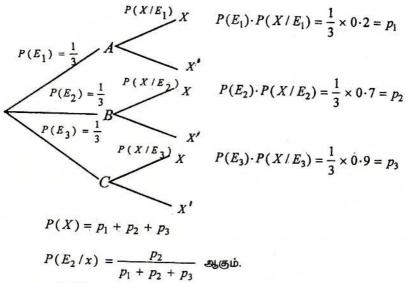
$$E_1 = \{A\}, \quad E_2 = \{B\}, \quad E_3 = \{C\}$$

 $P(E_2/X)$ ஐக் கணித்தல் வேண்டும்.

$$P(E_2/X) = \frac{P(E_2 \cap X)}{P(X)}$$

$$= \frac{P(E_2 \cap X)}{P(X/E_1) \cdot P(E_1) + P(X/E_2) \cdot P(E_2) + P(X/E_3) \cdot P(E_3)}$$

ஆனால்
$$P\left(E_2 \cap X\right) = P\left(X/E_2\right)$$
. $P(E_2)$


$$P(E_2/X) = \frac{P(X/E_2) \cdot P(E_2)}{P(X/E_1) \cdot P(E_1) + P(X/E_2) \cdot P(E_2) + P(X/E_3) \cdot P(E_3)}$$

இற்கு உதாரணம் 8 இலிருந்து பிரதியிட

$$P(E_2/X) = \frac{0.7 \times \frac{1}{3}}{0.6} = \frac{0.7}{1.8} = 0.39$$

குறிப்பு

உதாரணம் 8 ஐயும், 9 ஐயும் மரவரிப்பட மூலம் விளக்கலாம்.

உதாரணம் 10

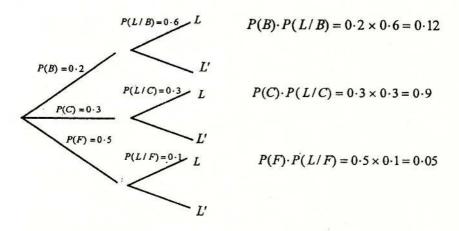
பஸ், சைக்கிள், அல்லது நடந்து, மாணவன் ஒருவன் பாடசாலைக்குச் செல்லும் நிகழ்தகவுகள் முறையே $0\cdot 2$, $0\cdot 3$, $0\cdot 5$ ஆகும். இவ் வழிகளில் அவன் பாடசாலைக்குச் செல்கையில், அவன் பாடசாலைக்கு தாமதமாக வருவதற்கான நிகழ்தகவுகள் முறையே $0\cdot 6$, $0\cdot 3$, $0\cdot 1$ ஆகும். குறித்த ஒரு நாளில் பாடசாலைக்கு அவன் தாமதமாக வந்தானெனின், அவன் சைக்கிளில் பயணம் செய்திருப்பதற்கான நிகழ்தகவு யாது?

பஸ்சில் பயணம் செய்யும் நிகழ்ச்சி *B* சைக்கிளில் பயணம் செய்யும் நிகழ்ச்சி *C*

நடந்து செல்லும் நிகழ்ச்சி *F*

பாடசாலைக்குத் தாமதமாகச் செல்லும் நிகழ்ச்சி L என்க.

$$P(B) = 0.2$$
, $P(C) = 0.3$, $P(F) = 0.5$


$$P(L/B) = 0.6$$
, $P(L/C) = 0.3$, $P(L/F) = 0.1$

$$P(L) = P(L/B) \cdot P(B) + P(L/C) \cdot P(C) + P(L/F) \cdot P(F)$$
 [மொத்த - நிகழ்தகவு] = $0.6 \times 0.2 + 0.3 \times 0.3 + 0.1 \times 0.5$ = 0.26

P(C/L) ஐக் கணிக்க வேண்டும் பேயிசின் தேற்றத்தின்படி,

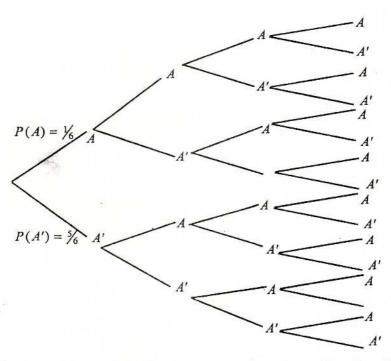
$$P(C/L) = \frac{P(L/C) \cdot P(C)}{P(L)} = \frac{0.3 \times 0.3}{0.26} = \frac{9}{26}$$

முறை II மரவரிப்படமுலம்,

எனவே தாமதமாக வருவதற்குரிய நிகழ்தகவு = 0.12 + 0.09 + 0.05= 0.26

$$P(L) = 0.26$$

$$P(C/L) = \frac{0.3 \times 0.3}{0.26} = \frac{9}{26}$$


சாரா பரிசோதனைகள். (Independent trials)

உதாரணம் 11

தாயக்கட்டை ஒன்று நான்கு தடவைகள் எறியப்படுகின்றன. அவற்றில் இரண்டு தடவைகள் இலக்கம் 6 ஐப் பெறுவதற்கான நிகழ்தகவு. தாயக்கட்டை ஒருமுறை எறியப்படும் போது, அதில் 6 தோன்றுவதற்கான நிகழ்ச்சி A என்க.

இப்பொழுது
$$P(A)=rac{1}{6}\cdot$$

$$P(A')=rac{5}{6}$$
 ஆகும்.

நான்கு முறை எறியப்படும் சந்தர்ப்பத்தை மரவரிப்படமூலம் முதலில் நோக்குவோம்.

இங்கு, மாதிரி வெளி Ω இல் 16 மூலகங்கள் உள்ளன. மேலும் ஒவ்வொரு பரிசோதனையும், முன்னைய பரிசோதனையில் தங்கியிருக்கவில்லை. உதாரணமாக இரண்டாவது தடவை தாயக்கட்டையை எறியும் போது 6 எனும் எண் பெறப்படும் நிகழ்ச்சி, முதலாவது முறையில் 6 பெறப்பட்டதா, பெறப்படவில்லையா என்பதில் தங்கியிருக்கவில்லை.

அதாவது
$$P(A_2/A_1) = \frac{1}{6} = P(A_2)$$

நான்கு தடவைகளிலும் 6 ஐப் பெறும் நிகழ்ச்சி B_4 எனின்,

$$B_4 = \{AAAA\}$$

மூன்று தடவைகளில் 6 ஐப் பெறும் நிகழ்ச்சி B_3 எனின்,

$$B_3 = \{AAAA', AAA'A, AA'AA, A'AAA\}$$

இரண்டு தடவைகளில் 6 ஐப் பெறும் நிகழ்ச்சி B_2 எனின்,

$$B_2 = \{AAA'A', AA'AA', AA'A', A'AAA', A'AAA', A'A', A'AAA'\}$$

ஒரு தடவை 6 ஐப் பெறும் நிகழ்ச்சி $B_{
m l}$ எனின்,

$$B_1 = \{A A' A' A', A'A A'A', A' A' AA', A' A' A' A'\}$$

எந்த ஒரு தடவையிலும் 6 தோன்றாத நிகழ்ச்சி B_0 எனின்,

$$B_0 = \{A'A' A'A'\}$$

$$\Omega = B_0 \cup B_1 \cup B_2 \cup B_3 \cup B_4$$

$$=\bigcup_{i=0}^4 B_i$$
, GLOSHO $B_i \cap B_j = \emptyset$ $(i \neq j)$

$$P(B_0) + P(B_1) + P(B_2) + P(B_3) + P(B_4) = P(\Omega) = 1$$

$$P(B_0) = \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} = \left(\frac{5}{6}\right)^4 = 4C_0 \left(\frac{5}{6}\right)^4$$

$$P(B_1) = \left(\frac{1}{6} \times \frac{5}{6} \times \frac{5}{9} \times \frac{5}{6}\right) \times 4 = 4C_1 \left(\frac{1}{6}\right) \times \left(\frac{5}{6}\right)^3$$

$$P(B_2) = \left(\frac{1}{6} \times \frac{1}{6} : \frac{5}{6} \times \frac{5}{6}\right) \times 6 = 4C_2 \left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^2$$

$$P(B_3) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times 4 = 4C_3 \left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)^3$$

$$P(B_4) = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} = 4C_4 \left(\frac{1}{6}\right)^4$$
 ALESIÓ.

எனவே இரு தடவைகளில் 6 தோன்றுவதற்கான நிகழ்தகவு

$$=4C_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^2$$
 As (5).

பரிசோதனை ஒன்று n தடவைகள் மீள மீளச் செய்யப்படுகின்றது. ஒவ்வொரு தடவையும் பேறுகள் வெற்றி அல்லது தோல்வி என வகைப்படுத்தப்படுகின்றது. ஒரு தடவை வெற்றி பெறுவதற்கான நிகழ்தகவு p எனின், மேலே தரப்பட்ட பரிசோதனையில் r தடவைகள் $(r \le n)$ வெற்றி பெறுவதற்கான நிகழ்தகவு $= nc_r p^r (1-p)^{n-r}$ ஆகும்.

உதாரணம் 12

பயிற்சியாளர் ஒருவர் குறித்த ஒரு இலக்கினை சரியாகச் சுடுவதற்குரிய நிகழ்ச்சி 1/5 ஆகும். அவர் 14 தடவைகள் சுட்டார் எனின், இரு தடவை இலக்கை அடிப்பதற்கான நிகழ்த்கவு யாது?

இலக்கை அடிக்கும் தடவைகளின் எண்ணிக்கை X எனின்,

$$P(X=2) = 14C_2 \left(\frac{1}{5}\right)^2 \times \left(\frac{4}{5}\right)^{12}$$

= 0.250

உதாரணம் 13

பெட்டி ஒன்றில் பெரும் எண்ணிக்கையான பந்துகள் உள்ளன. அவற்றுள் 60% நீலநிறமானவை, 40% பச்சை நிறமானவை. இப் பெட்டியிலிருந்து 3 பந்துகள் எடுக்கப்படுகின்றன.

- (a) எல்லாப் பந்துகளும் நீலநிறமாக இருப்பதற்கு
- (b) இரண்டு பந்துகள் நீலநிறமாக இருப்பதற்கு நிகழ்தகவு யாது?

பந்து ஒன்று எடுக்கப்படும் போது, அது

- (i) நீலமாக இருப்பதற்குரிய நிகழ்தகவு P(B) = 0.6
- (ii) பச்சையாக இருப்பதற்குரிய நிகழ்தகவு P(G) = 0.4

3 பந்துகள் எடுக்கப்படும் போது எடுக்கப்பட்ட நீல நிறப்பந்துகளின் எண்ணிக்கை X என்க.

(a)
$$P(X=3) = 3C_3(0.6)^3 = 0.6 \times 0.6 \times 0.6 = 0.216$$

(b)
$$P(X=2) = 3C_2(0.6)^2 \times (0.4) = 3 \times 0.144 = 0.432$$

உதாரணம் 14

முதன்முறையாக தலை தென்படும் வரை, கோடாத நாணயம் ஒன்று எறியப்படுகின்றது. இப் பரிசோதனையின் மாதிரிவெளியை எழுதிக் காட்டுக. பீன்வரும் சந்தர்ப்பங்கள் ஒவ்வொன்றிற்கும் முதன்முறையாக தலை தென்படுவதற்கான நிகம்தகவைக் காண்க,

- (i) r ஆவது எறிதலின் போது
- (ii) இரட்டை எண்ணையுடைய எறிதலின் போது
- (iii)3 ஆல் வகுபடக்கூடிய எண்ணையுடைய எறிதலின் போது

$$\Omega = \{H, TH, TTH, 1TTH, TTTTH,\dots\}$$

(i) r ஆவது எறிதலின் போது H தோன்றுதல்

$$P(TTT..TH) = \left(\frac{1}{2}\right)^{r-1} \cdot \frac{1}{2} = \left(\frac{1}{2}\right)^{r}$$

(ii) TH, TTTH, TTTTTH,.....

$$P(TH) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
 (இரண்டாவது எறிதலின் போது)

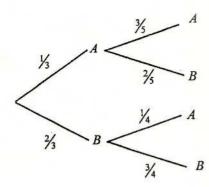
$$P(TTTH) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$$
 (நான்காவது எறிதலின் போது)

$$P(TTTTTH) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{64}$$
 (ஆறாவது எறிதலின்போது)

*P (இரட்டை எண்ணையுடைய எறிதலின் போது தலை தோன்றுதல்)

$$= P(TH) + P(TTTH) + P(TTTTTH) + \dots$$

$$=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...$$
 (பெருக்கல் தொடர்)
$$=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}\left[S\infty=\frac{a}{1-r}\right]$$


(iii) P (3 ஆல் வகுபடக்கூடிய எண்ணையுடைய எறிதலின் போது தலை தோன்றுதல்) $= P(TTH) + P(TTTTTH) + P(TTTTTTH) + \dots$ $= \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^6 + \left(\frac{1}{2}\right)^9 + \dots$

$$=\frac{\left(\frac{1}{2}\right)^3}{1-\left(\frac{1}{2}\right)^3}=\frac{1}{7}$$

உதாரணம் 15

A, B என்னும் இருவர் டென்னிஸ் போட்டி ஒன்றில் பங்குபற்றுகின்றனர். இரு ஆட்டங்களில் முதலில் வெற்றி பெறுபவர் போட்டியில் வெற்றி பெற்றவராவர். டென்னிஸ்சில் எந்தவொரு ஆட்டமும் வெற்றி தோல்வியின்றி முடிவதில்லை. முதலாவது ஆட்டத்தில் A வெற்றி பெறுவதற்கான நிகழ்தகவு 1/3 ஆகும். முதலாவதற்குப் பிறகு, முன்னைய ஆட்டத்தில் A வெற்றி பெறுவதற்கான நிகழ்தகவு 3/5; முன்னைய ஆட்டத்தில் வெற்றி பெறுவதற்கான நிகழ்தகவு 3/5; முன்னைய ஆட்டத்தில் வெற்றி பெறுவதற்கான நிகழ்தகவு 1/4 ஆகும்.

- (i) இரு ஆட்டங்களில் போட்டி முடிவடைவதற்கு
- (ii) இரு ஆட்டங்களில் போட்டி முடிவடைந்தது எ**னத் தரப்படின்** $m{A}$ வெல்வதற்கு
- (iii) A போட்டியில் வெல்வதற்கு
- (iv) முன்று ஆட்டங்கள் நடைபெற்றது எனத் தரப்படின் A வெல்வதற்கு
- (v) A வெற்றி பெற்றாரெனின், அவர் இரு ஆட்டங்களில் வென்றிருப்பதற்கு நிகழ்தகவு யாது?

(i) இரு ஆட்டங்களில் போட்டி முடிவடையும் எனில், AA அல்லது BB

$$P(AA) + P(BB) = \frac{1}{3} \times \frac{3}{5} + \frac{2}{3} \times \frac{3}{4}$$

= $\frac{1}{5} + \frac{1}{2} = \frac{7}{10}$

(ii)
$$P(AA/2 \otimes_{\mathbf{L}} \perp \text{ Lini as off }) = \frac{\frac{1}{5}}{\frac{7}{10}} = \frac{2}{7}$$

(iii)இப் போட்டியில் 3 ஆட்டங்கள் மட்டுமே நடைபெறலாம். மாதிரிவெளி Ω ஐக் கருதினால்

 $Ω = \{AA, BB, ABA, BAA, ABB, BAB\}$ ஆகும்.

$$P(AA) = \frac{1}{3} \times \frac{3}{5} = \frac{1}{5}$$

$$P(BB) = \frac{2}{3} \times \frac{3}{4} = \frac{1}{2}$$

$$P(ABA) = \frac{1}{3} \times \frac{2}{5} \times \frac{1}{4} = \frac{2}{60}$$

$$P(BAA) = \frac{2}{3} \times \frac{1}{4} \times \frac{3}{5} = \frac{6}{60}$$

$$P(BAB) = \frac{2}{3} \times \frac{1}{4} \times \frac{2}{5} = \frac{4}{60}$$

$$P(ABB) = \frac{1}{3} \times \frac{2}{5} \times \frac{3}{4} = \frac{6}{60}$$

A போட்டியில் வெல்வதற்கான நிகழ்தகவு

$$P(AA) + P(ABA) + P(BAA)$$

$$=\frac{1}{5}+\frac{2}{60}+\frac{6}{60}=\frac{1}{3}$$

P (A வெல்லுதல் / 3 ஆட்டங்கள்)

$$=\frac{\frac{8}{60}}{\frac{18}{60}}=\frac{4}{9}$$

(v) P (AA / வெற்றி பெற்றார்)

$$= \frac{\frac{1}{5}}{\frac{1}{5} + \frac{2}{60} + \frac{6}{60}}$$

$$=\frac{3}{5}$$

பயிற்சி 3

- 1. பெட்டி ஒன்றினுள் 5 சிவப்பு நிற மாபிள்களும், 3 வெள்ளை நிற மாபிள்களும் உள்ளன. பெட்டியிலிருந்து மாபிள் ஒன்று எழுமாற்றாக வெளியே எடுக்கப்பட்டு, மற்றைய நிறத்தையுடைய இரு மாபிள்கள் பெட்டியினுள் போடப்படுகின்றது. பின்னர் பெட்டியிலிருந்து மாபிளொன்று எடுக்கப்படுகிறது.
 - (a) இரண்டாவது தடவை எடுக்கப்பட்ட மாபிள் சிவப்பு நிறமாக இருக்க
 - (b) எடுக்கப்பட்ட இரு மாபிள்களும் ஒரே நிறமாக இருக்க
 - (c) இரண்டாவது தடவை எடுக்கப்பட்ட மாபிள் சிவப்பு நிறமெனின், முதலாவது தடவை எடுக்கப்பட்ட மாபிள்களும் சிவப்பு நிறமாக இருக்க,
 - (d) இரு தடவைகளும் எடுக்கப்பட்ட மாபிள்கள் ஒரே நிறமுடையன எனின், அவைகள் இரண்டும் வெள்ளை நிறமுடையனவாக இருக்க நிகழ்தகவு யாது?
- 2. பெட்டி A யினுள் 5 சிவப்பு நிறமாபிள்களும் 3 வெள்ளை நிற மாபிள்களும் உள்ளன. பெட்டி B யினுள் 1 சிவப்பு நிற மாபிளும் 2 வெள்ளை நிற மாபிள்களும் உள்ளன. தாயக்கட்டை ஒன்று எறியப்படுகின்றது. 1 அல்லது 6 தோன்றினால் பெட்டி B யிலிருந்து ஒரு மாபிள் எடுக்கப்பட்டு A யினுள் போடப்படுகிறது. பின்னர் A யிலிருந்து ஒரு மாபிள் எடுக்கப்படுகிறது. மற்றைய வேளைகளில் பெட்டி A யிலிருந்து ஒரு மாபிள் எடுக்கப்பட்டு, B யினுள் போடப்படுகின்றது, பின்னர் B யிலிருந்து ஒரு மாபிள் வெளியே எடுக்கப்படுகின்றது.
 (a) இரு மாபிள்களும் சிவப்பாக இருக்க
 - (b) இரு மாபிள்களும் வெள்ளையாக இருக்க நிகழ்தகவு யாது?
- பெட்டி A யினுள் 5 சிவப்பு நிற மாபிள்களும் 3 வெள்ளைநிற மாபிள்களும் உள்ளன. பெட்டி B யினுள் 2 சிவப்பு நிற மாபிள்களும், 6 வெள்ளைநிற மாபிள்களும் உள்ளன.
 - (i) ஒவ்வொரு பெட்டியிலிருந்தும் இரு மாபிள்கள் எடுக்கப்படுகின்றது. இரு மாபிள்களும் ஒரே நிறமாக இருப்பதற்குரிய நிகழ்தகவு யாது?
 - (ii) ஒவ்வொரு பெட்டியிலிருந்தும் இரு மாபிள்கள் எடுக்கப்படுகின்றன. நான்கு மாபிள்களும் ஒரே நிறமாக இருப்பதற்குரிய நிகழ்தகவு யாது?
- 4. A என்பவர் இலக்கு ஒன்றினை அடிப்பதற்குரிய நிகழ்தகவு 1/4 உம் В என்பவர் இலக்கு ஒன்றினை அடிப்பதற்குரிய நிகழ்தகவு 1/3 உம் ஆகும்.
 - (i) ஒவ்வொருவரும் இரு முறை சுடுகின்றனர் எனின், இலக்கானது குறைந்தது ஒரு தடவையாவது அடிக்கப்படுவதற்குரிய நிகழ்தகவு யாது?

(ii) ஒவ்வொருவரும் ஒரு முறை சுடுகின்றனர் எனவும், இலக்கு ஒரு முறை மட்டுமே அடிக்கப்படுகின்றதெனின் A அவ்விலக்கை அடிப்பதற்குரிய நிகழ்தகவு யாது?

(iii) A இரு முறை மட்டுமே சுடுகின்றார் எனின், இலக்கானது அடிக்கப்படுவதற்குரிய நிகழ்தகவு 90%இலும் கூடுதலாக இருக்க B எத்தனை தடவைகள் சுட

வேண்டும்?

 ஒருவன் இலக்கொன்றினை அடிப்பதற்குரிய நிகழ்தகவு 0.4 ஆகும். அவன் நான்கு முறை சுடுகின்றான் எனின்,

(i) சரியாக இரண்டு தடவைகள் இலக்கினை அடிப்பதற்கு

(ii) குறைந்தது ஒரு தடவையாவது இலக்கினை அடிப்பதற்கு நிகழ்தகவு யாது?

- 6. பெட்டி ஒன்றில் சம அளவில் பெரும் எண்ணிக்கையான சிவப்பு நிறப் பந்துகளும் பச்சை நிறப் பந்துகளும் உள்ளன. மூன்று பந்துகள் வெளியே எடுக்கப்பட்டால் இரு நிற பந்துகளும் இருப்பதற்கான நிகழ்தகவு யாது?
- 7. கோடிய தாயக்கட்டை ஒன்று 100 முறை சுண்டப்படுகிறது. பெற்ற முடிபுகள் வருமாறு

#ĿĠ	1	2	3	4	5	6
மீடிறன்	17	21	15	10	21	16

அடுத்தடுத்து இருமுறை எறியப்பட்ட பேறுகளின் கூட்டுத்தொகை ஆகக் குறைந்தது 4 ஆக இருப்பதற்கான இயல்தகு சிறந்த மதிப்பீடு (Best posible estimate) ஒன்றினை காண்க.

- 8. இரு பெட்டிகள் ஒவ்வொன்றிலும் மூன்று சிவப்பு நிற மாபிள்களும், ஒரு வெள்ளை நிற மாபிள்களும் உள்ளன. முதலாவது பெட்டியிலிருந்து ஒரு மாபிள் எடுக்கப்பட்டு இரண்டாவது பெட்டியினுள் போடப்படுகின்றது. பின்னர் இரண்டாவது பெட்டியிலிருந்து ஒரு மாபிள் எடுக்கப்பட்டு முதலாவதனுள் போடப்படுகின்றது. ஒவ்வொரு பெட்டியிலும் 3 சிவப்பு நிற மாபிள்களும், ஒரு வெள்ளை நிற மாபிளும் இருப்பதற்கான நிகழ்தகவு யாது?
- 9. நீளமான நேரிய தெரு ஒன்றிலே, ஒன்றிலொன்று தங்கியிராது 4 வீதிச் சமிக்கைஞ விளக்குகள் உள்ளன. ஒவ்வொன்றிலும் 120 செக்கன்களுக்கு சிவப்பு நிற விளக்கும் தொடர்ந்து 60 செக்கன்களுக்கு பச்சை நிற விளக்கும் மாறி மாறி எரிகின்றன. இவ் வீதி வழியே வரும் கார் ஒன்று இச் சமிக்கை விளக்குகள் ஒன்றிலாவது நிறுத்தப்படுவதற்கான நிகழ்தகவு யாது?

- 10. பெட்டி ஒன்றில் 3 கறுப்பு நிறப்பந்துகளும், 7 வெள்ளை நிறப் பந்துகளும் உள்ளன. பெட்டியிலிருந்து மீள் வைப்பின்றி ஒன்றன் பின் ஒன்றாக பந்துகள் எடுக்கப்படுகின்றன. நான்காவது முறையில் முதலாவதாக கறுப்புப் பந்து வருவதற்கான நிகழ்தகவு யாது?
- **11. பன்னிரண்டு தாயக்கட்டைகள்** எறியப்படுகின்றன. மூன்றிலும் குறைந்தவற்றில் **எண் 1 விழுவ**தற்கான நிகழ்தகவு யாது?
- 12.5 பிள்ளைகள் கொண்ட குடும்பம் ஒன்றில், 2 ஆண் பிள்ளைகளும் 3 பெண் பிள்ளைகளும் இருப்பதற்கான நிகழ்தகவு யாது? [P (ஆண்பிள்ளை) = 0.5 = P பெண்பிள்ளை எனக் கொள்க.]
- 13. A, B, C எனும் மூவர் தனித்தனியாக பிரசினம் ஒன்றை தீர்ப்பதற்காக நிகழ்தகவுகள் முறையே 1/3, 1/3, 1/4 ஆகும். இவர்களில் இருவர் மட்டும் அப் பிரசினத்தை தீர்ப்பதற்கான நிகழ்தகவு யாது?
- 14. இரு தாயக்கட்டைகள் எறியப்படுகின்றன. ஈட்டுக்களின் பெருக்கம் இரட்டை எண்ணாக இருப்பதற்குரிய நிகழ்தகவு யாது? n எண்ணிக்கையான தாயக்கட்டைகள் எறியப்படின், ஈட்டுக்களின் பெருக்கம் இரட்டை எண்ணாக இருப்பதற்குரிய நிகழ்தகவு யாது?
- 15. தாயக்கட்டை ஒன்று 12 தடவைகள் எறியப்படுகின்றன.
 - (i) 6 விழாமலிருப்பதற்கான
 - (ii) 6 ஒரு தடவை மட்டும் விழுவதற்கான
 - (iii) 6 குறைந்தது 2 தடவைகள் விழுவதற்கான நிகழ்தகவு யாது?
- 16. மூன்று மனிதர்கள் எழுமாற்றாக தெரிவு செய்யப்படுகிறார்கள். பிறந்த நாட்கள் சம நேர் தகவுள்ளன எனக் கொண்டு அவர்கள் ஒவ்வொருவரும் கிழமையின் வெவ்வேறு நாட்களில் பிறந்திருப்பதற்கான நிகழ்தகவு யாது? 7 பேர் தெரிவு செய்யப்பட்டிருப்பின், 7 பேரும் கிழமை ஒன்றின் வெவ்வேறு நாட்களில் பிறந்திருப்பதற்கான நிகழ்தகவு யாது?
- 17. பெட்டி ஒன்றில் 5 கறுப்பு நிற மாபிள்களும், 3 சிவப்பு நிற மாபிள்களும் உள்ளன. இரண்டாவது பெட்டியொன்றில் 2 கறுப்பு நிற மாபிள்களும் 6 சிவப்பு நிற மாபிள்களும் உள்ளன. பெட்டி ஒன்று எழுமாற்றாக எடுக்கப்பட்டு அதிலிருந்து ஒரு மாபிள் எடுக்கப்படுகிறது. எடுக்கப்பட்ட மாபிள் சிவப்பு நிறமானதெனின், அது முதலாவது பெட்டியிலிருந்து வந்திருப்பதற்கான நிகழ்தகவு யாது?

- 18. போட்டியாளர் ஒருவர் எந்த ஒருமுறை சுடும் போதும், இலக்கை அடிப்பதற்குரிய நிகழ்தகவு 2/5 ஆகும். அவர் மூன்றாவது முறையில் முதலில் அவ்விலக்கை அடிப்பதற்குரிய நிகழ்தகவு யாது? அவர் அவ்விலக்கினை அடிப்பதற்கான நிகழ்தகவு 4/5 இலும் அதிகமாக இருப்பதற்கு அவர் எத்தனை தடவை சுட வேண்டும்?
- 19. A, B ஆகிய இருவர் நாணயம் ஒன்றை சுண்டும் விளையாட்டில் ஈடுபடுகின்றனர். A யும் B யும் மாறி மாறி சுண்டுகின்றனர். முதலில் தலையைப் பெறுபவர் போட்டியில் வெற்றி பெற்றவராவார். A முதலில் நாணயத்தை சுண்டுகிறார் எனின்,
 - (a) தன்னுடைய முதலாவது முறையில் A வெற்றி பெற
 - (b) தன்னுடைய முதலாவது முறையில் *B* வெற்றி பெற
 - (c) தன்னுடைய இரணடாவது முறையில் A வெற்றி பெற
 - (d) இப்போட்டியில் A வெற்றி பெற நிகழ்தகவினைக் காண்க.
- 20. நான்முகித் தாயக்கட்டை ஒன்றின் முகங்களில் சிவப்பு, பச்சை, மஞ்சள், நீலம் ஆகிய நான்கு நிறங்கள் தீட்டப்பட்டுள்ளன. இவ்வாறான 8 தாயக்கட்டைகள் ஒருங்கே எறியப்படுகின்றன. சிவப்பு முகங்களை பார்க்கக்கூடிய தாயக்கட்டைகளின் எண்ணிக்கை x எனின், x=2, 3, 4 என்பவற்றிற்கான நிகழ்தகவைக் காண்க. இவ்வாறு 200 தடவைகள் எறியப்படின் 2 சிவப்பு முகங்களை எத்தனை தடவைகள் எதிர்பார்க்கலாம்?
- 21. SEEN SCNSE என்ற சொற்களிலிருந்து இரு எழுத்துக்கள் மீள்வைப்பின்றி ஒன்றன் பின் ஒன்றாக எடுக்கப்படுகின்றன. முதலாவது எழுத்து E ஆக இருப்பதற்குரிய நிகழ்தகவும் இரண்டாவது எழுத்து E ஆக இருப்பதற்குரிய எழுத்தும் சமமாகும் என மரவரிப்படமூலம் காட்டுக.

இப் பண்பு *N*, *S* ஆகிய எழுத்துக்களுக்கும் உண்மையாகுமெனக் காட்டுக. இதற்கான காரணம் யாது?

- 22. A. B. C ஆகிய மூவர் தாயக்கட்டை ஒன்றினை எறியும் போட்டியில் பங்கு பற்றுகின்றனர். முதலில் 6 ஐப் பெறுபவர் வெற்றியடைந்தவர் ஆவார். அவர்கள் முதலில் A, பின்னர் B, அதன் பின்னர் C என்ற ஒழுங்கில் விளையாடுகின்றனர். இப் போட்டியில் B வெற்றி பெறுவதற்கான நிகழ்தகவு யாது?
- 23. குறித்த ஒரு மாதிரி வெளி Ω இல் $A,\ B$ என்பன சாரா நிகழ்ச்சிகள் ஆகும்.

$$P(A \cup B) = \frac{5}{8}, \quad P(A \cap B') = \frac{7}{24}$$
 எனில்,

(a) P(B) (b) $P(A \cap B)$ (c) P(A) (d) $P(A' \cup B')$ என்பவற்றைக் காண்க.

24. மாணவன் ஒருவன் இரு பாதைகள்னால் பாடசாலைக்குச் செல்ல முடியும். எந்த ஒரு நாளிலும் முதலாவது பாதையை அவன் தெரிவு செய்வதற்குரிய நிகழ்த்கவு 0.6 ஆகும். முதலாவது பாதையினால் செல்லும் போது பாடசாலைக்குப் பிந்தி வருவதற்கான நிகழ்த்கவு 0.1 உம் இரண்டாவது பாதையினால் செல்லும் போது பிந்தி வருவதற்கான நிகழ்த்கவு 0.2 உம் ஆகும். அவன் பாடச் கு தாமதம் இன்றி செல்வதற்கான நிகழ்த்கவைக் கணிக்க.

இதிலிருந்து மூன்று நாடகளில் ஒரு நாள் மட்டும் பாடசாலைக்கு தாமதமாக அவன் செல்வதற்கான நிகழ்தகவு 0.31 இலும் சற்று அதிகமானது எனக் காட்டுக.

- 25. முன்று தாயக்கட்டைகள் எறியப்படுகின்றன.
 - (a) முன்று எண்களும் வித்தியாசமானதாக இருப்பதற்கு
 - (b) மூன்று எண்களும் ஒரே எண்ணாக இருக்க
 - (c) மூன்றில் இரண்டு மட்டும் ஒரே எண்ணாக இருக்க
 - (d) முன்று எண்களினதும் கூட்டுத்தொகை 15 இலும் பெரிதாக இருக்க நிகழ்த்கவை காண்க.
- 26. பெட்டி ஒன்றில் 5 மின்குமிழ்கள் உள்ளன. இவற்றுள் 2 பழுதானவை. பழுதான 2 மின்குமிழ்களையும் கண்டுபிடிக்கப்படும் வரை ஒன்றன் பின் ஒன்றாக மின்குமிழ்கள் சோதனையிடப்படுகின்றன. இச் சோதனையானது,
 - இரு சோதனையுடன் நிறுத்தப்பட
 - (ii) மூன்று சோதனையுடன் நிறுத்தப்பட நிகழ்தகவு யாது?
 - இச் செய்கையானது, மூன்றாவது சோதனையுடன் நிறுத்தப்பட்டதெனின், முதலாவது சோதனையிடப்பட்ட மின்குமிழ் பழுதற்றதாக இருப்பதற்குரிய நிகழ்தகவு யாது?
- 27.A, B, C என்னும் மூவர் இலக்கு ஒன்றினை அடிப்பதற்கன நிகழ்தகவுகள் முறையே 1/6, 1/4, 1/3 ஆகும் ஒவ்வொருவரும் ஒரு முறை சுடுகின்றனரெனின்,
 - (i) சரியாக ஒருவர் மட்டும் இலக்கை அடிப்பதற்கு
 - (ii) சரியாக ஒருவர் மட்டும் இலக்கை அடித்தாரெனின், அது A யாக இருப்பதற்கு நிகழ்தகவு யாது?
- 28. மனிதன் ஒருவன் இன்னும் 10 வருடங்கள் உயிர் வாழ்வதற்குரிய நிகழ்தகவு 1/4. அவனுடைய மனைவி இன்னும் 10 வருடங்கள் உயிர் வாழ்வதற்குரிய நிகழ்தகவு 1/3
 - (i) இருவரும் 10 வருடங்கள் உயிர் வாழ்வதற்கு
 - (ii) இருவரில் குறைந்தது ஒருவராவது 10 வருடங்கள் உயிர் வாழ்வதற்கு

- (iii) இருவரும் 10 வருடங்கள் உயிர் வா**ழாதிருப்பதற்கு** (iv)மனைவி மட்டும் 10 வருடங்கள் உயிர் வாழ்வதற்கு நிகழ்தகவைக் காண்க.
- 29. A. B எனும் இரு நிகழ்ச்சிகள்,

$$P(A) = \frac{8}{15}$$
, $P(A \cap B) = \frac{1}{3}$, $P(A/B) = \frac{4}{7}$ என்றவாறு உள்ளன.

P(B), P(B/A), P(B/A') என்பவற்றைக் கணிக்க.

நிகழ்ச்சிகள் A யும் B யும் (a) தூராதவையாக

(b) தம்முள்புறநீக்கமானவையா எனக் கூறுக.

- 30.(a).1, 2, 3, 4 ஆகிய எண்களைப் பயன்படுத்தி 3000 இற்கும் 4000 இற்கு மிடையில் எத்தனை எண்களை அமைக்கலாம். (ஓர் எண்ணின் இலக்கம் மீளவரக் கூடாது.)
 - (b).பெட்டி ஒன்றில் 4 சிவப்பு நிறப்பந்துகளும், 6 வெள்ளை நிறப்பந்துகளும் உள்ளன. எழுமாற்றாக ஒரு பந்து எடுக்கப்படுகிறது. அப் பந்து வெள்ளை நிறமெனின் பந்து பெட்டியினுள் திரும்பவும் வைக்கப்படுகிறது. ஆனால் அது சிவப்புநிறமெனின் பெட்டியினுள் மீளவைக்கப்படுவதில்லை. இரண்டாவதாகப் பந்தொன்று எடுக்கப்படுகிறது. நிகழ்ச்சி X "முதலாவது பந்து சிவப்பு நிறமானது."

நிகழ்ச்சி Y "இரண்டாவது பந்து சிவப்பு நிறமானது." என்பதைக் குறிக்கிறது.

பின்வரும் நிகழ்தகவுகளைக் காண்க.

(i) P(X)

(ii) P (Y/X)

(iii) P(Y)

(iv) P(X அல்லது Y ஆனால் இரண்டும் அல்ல)

31.3 நாணயங்கள் உள்ளன. இவற்றுள் இரண்டு நாணயங்களும் கோடாதவை. முன்றாவது, தலை வீழுவதற்கான நிகழ்தகவு, பூ விழுவதற்கான நிகழ்தகவின் இரண்டு மடங்காகும். நாணயம் ஒன்று எழுமாற்றாக எடுக்கப்பட்டு, மூன்று தடவைகளிலும் தலை விழுந்திருப்பின், எடுக்கப்பட்ட நாணயம் கோடியதாக இருப்பதற்கான நிகழ்தகவு யாது?

32.(a) எந்த ஒரு நேர் முழுஎண் *n* இனதும், நான்காம் அடுக்கு 6 இல் முடிவடைவதற்கான நிகழ்த்கவு யாது?

(b) A, B என்னுமிருவர் விளையாட்டு ஒன்றில் பங்குபற்றுகின்றனர். இவ் விளையாட்டு வெற்றி தோல்வியின்றி முடிவடைவதில்லை. மொத்தம் மூன்று விளையாட்டுக்களில் வெற்றி பெற்றவர், வெற்றி பெற்றவராகக் கருதப்படுவார். B இற்கு எதிரான போட்டியில் A வெற்றி பெறுவதற்கான நிகழ்தகவு p ஆகும். பின்வருவனவற்றிற்கான நிகழ்தகவுகளைக் காண்க.

(i) முதல் மூன்று விளையாட்டுக்களிலும் A வெற்றி பெறுதல்

(ii) முன்றாவது விளையாட்டில் போட்டி முடிவடைதல்

- (iii) நாலாவது விளையாட்டில் A வென்று போட்டி முடிவடைதல்
- (iv)நாலாவது விளையாட்டில், போட்டி முடிவடைதல் p = 2/3 எனின், ஆறாவது விளையாட்டிற்கு முன் A வெற்றி பெறுவதற்கான நிதழ்தகவு யாது?
- 33.(a) சுடும் போட்டியொன்றில் A என்பவர் சுடும்போது, இலக்கினை அடிப்பதற்கான நிகழ்தகவு ${f p}$ ஆகும்.

(i) அவர் 5 தடவைகள் சுடும்போது, குறைந்தது 4 தடவையாவது இலக்கை

அடிப்பதற்கான நிகழ்தகவு

- (ii) n தடவைகள் (n≥2) சுடும்போது குறைந்தது 2 தடவையாவது இலக்கை அடிப்பதற்கான நிகழ்தகவு யாது?
- (b) 1 முதல் 6 வரை இலக்கமிடப்பட்ட தாயக்கட்டை ஒன்றில் P (இலக்கம் r ஐப் பெறுதல்) = $k \, r$.(r = 1, 2,6) ஆகுமாறு உள்ளது. k இன் பெறுமானத்தைக் காண்க. இத் தாயக்கட்டை இரு தடவைகள் எறியப்பட்டால், ஈட்டுக்களின் மொத்தக் கூட்டுத்தொகை 10 இலும் அதிகமாக இருப்பதற்கான நிகழ்தகவு யாது?
- 34. (a) பெட்டி ஒன்றிலுள்ள 6 தாயக்கட்டைகளில் ஒன்று கோடியது. பெட்டியிலிருந்து ஒரே சமயத்தில் இரண்டு தாயக்கட்டைகள் எடுக்கப்பட்டால், அவற்றுள் கோடிய தாயக்கட்டை இருப்பதற்கான நிகழ்தகவு யாது?
 - (b) பரிசோதனையொன்றின் இரு நிகழ்ச்சிகள் A, B ஆகும். அவற்றின் நிகழ்தகவுகள் முறையே a, b ஆகும்.
 - (i) A உம் B உம் நிகழ்வதற்கு
 - (ii) A நிகழவும் B நிகழாமலுமிருக்க நிகழவும்
 - (iii) நிகழ்ச்சி A, B எதுவுமே நிகழாமலிருக்க நிகழ்க்கவு யாது?

இப்பரிசோதனைகள் n தடவைகள் செய்யப்படுகின்றன, எனவும், a,b இன் பெறுமானங்களில் மாற்றமில்லை எனவும் கொண்டு, A,B எதுவுே நடைபெறாதிருப்பதற்கான நிகழ்தகவு யாது?

a=b=0.01 எனின், இந்நிகழ்தகவு 0.5 இலும் குறைவாக இருக்க n இன் பெறுமானத்தைக் காண்க.

- 35. தளமொன்றில் 6 நேர்கோடுகள் வரையப்பட்டு, அவை யாவும் ஒன்றையொன்று வெட்டும் புள்ளிகளுக்கு நீட்டப்படுகின்றன. எந்த இரு நேர்கோடுகளும் சமாந்தரமல்ல எனவும், மூன்று நேர்கோடுகள் ஒரு புள்ளியில் சந்திக்கவில்லை எனவும் கொண்டு, இடைவெட்டும் புள்ளிகளின் எண்ணிக்கை 15 எனக் காட்டுக. மூன்று புள்ளிகள் எழுமாற்றாகத் தெரியப்பட்டால், அவை யாவும் தரப்பட்ட நேர்கோடொன்றில் இருப்பதற்கான நிகழ்தகவு 12/91 எனக் காட்டுக. நான்கு புள்ளிகள் எழுமாற்றாகத் தெரியப்பட்டால், அவை யாவும் தரப்பட்ட நேர்கோடொன்றில் அமையாதிருப்பதற்கான நிகழ்தகவு யாது?
- 36. (a) மூன்று தாயக்கட்டைகள் ஒருமித்து ஒருதடவை எறியப்படும்போது, குறைந்தது ஆறு ஒன்றினைப் பெறுவதற்குரிய சந்தர்ப்பமானது இரு தாயக்கட்டைகள் பதினைந்து தடவை எறியப்படும்போது ஒருமுறை இரு ஆறினைப் பெறுவதிலும் கூடியதாகுமெனக் காட்டுக.
 - (b) ஒரே மாதிரியான 3 பெட்டிகளில் பணம் உள்ளன. ஒவ்வொரு பெட்டியிலுமுள்ள பணத்தின் தொகை வெவ்வேறானது ஆகும். X என்பவர் பெட்டி ஒன்றினைப் பின்வரும் முறையில் தெரிவு செய்கிறார். முதலில் எழுமாற்றாக ஒரு பெட்டியைத் தெரிவு செய்து (A என்க), அதிலுள்ள பணம் எவ்வளவு என்பதை அறிகிறார். பின்னர், மற்றைய இரு பெட்டிகளில் தெரிவுசெய்து (B என்க) அதிலுள்ள பணம் எவ்வளவு என்பதை அறிகிறார். B யிலுள்ள பணத்தின் தொகை A யிலுள்ளதிலும் கூடுதலாக இருப்பின் அவர் பெட்டி B யைத் தெரிவு செய்கிறார். B யிலுள்ள பணத்தின் தொகை A யிலுள்ளதிலும் குறைவெனின் அவர் மூன்றாவது பெட்டியைத் (C என்க) தெரிவு செய்கிறார். அவர்
 - (a) மிகக் கூடுதலாகப் பணம் உள்ள பெட்டியைத் தெரிவு செய்யும்
 - (b) மிகக் குறைவாகப் பணம் உள்ள பெட்டியைத் தெரிவு செய்யும் நிகழ்தகவைக் காண்க?
- 37. கண்ணாடிக்குற்றிகள் பெரும் எண்ணிக்கையில் உற்பத்தி செய்யப்படும் தொழிற்சாலை ஒன்றில், அவைகளில் பழுதானவற்றை அறிவதற்காக சோதனை ஒன்று செய்யப்பட்டது. கண்ணாடிக்குற்றி ஒன்றினுள் வளிக்குமிழ்கள் (air bubbles) இருப்பதற்கான நிகழ்தகவு 0.002. கண்ணாடிக் குற்றி ஒன்று, வளிக்ளகுமிழினைக் கொண்டுள்ளதெனின், அதில் வெடிப்பு (crack) இருப்பதற்கான நிகழ்தகவு 0.5 உம், வளிக்குமிழ் இல்லையெனில் வெடிப்பு இருப்பதற்குரிய நிகழ்தகவு 0.005 உம் ஆகும். எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்ட கண்ணாடிக்குற்றி ஒன்றில் வெடிப்பு இருப்பதற்கான நிகழ்தகவு யாது?

கண்ணாடிக் குற்றி ஒன்றில் அதன் நிறம் இல்லாமல் (discolour) போவதற்குரிய நிகழ்தகவு 0.006 ஆகும். நிறம் இல்லாமல் போதல் மற்றைய இரு நிகழ்ச்சிகளையும் சாராததெனில், எழுமாற்றாகத் தெரிவு செய்யப்பட்ட கண்ணாடிக்குற்றி ஒன்றில் எந்த ஒரு பழுதும் இல்லாமலிருப்பதற்கான நிகழ்த்கவு யாது?

- 38. A, B, C ஆகிய முவரும் பங்குபற்றும் ஆட்டம் ஒன்றில் அவர்கள் வெல்வதற்கான நிகழ்தகவுகள் முறையே 0·5, 0·3, 0·2 ஆகும். இரு ஆட்டங்களில் முதலில் வெற்றி பெறுபவர், அப்போட்டியில் வெற்றி பெற்றவராவார். இம்மூன்று வீரர்களும் பங்கு பற்றும் போட்டியில் A வெற்றி பெறுவதற்கான நிகழ்தகவு யாது? இப்பொழுது இவர்கள் மூவருடனும் போட்டியாளர் D உம் சேர்ந்து கொள்ளும் போது, ஆட்டம் ஒன்றில் A, B, C, D ஆகியோர் வெல்வதற்கான நிகழ்தகவுகள் முறையே 0·3, 0·2, 0·1, 0·4 ஆகும். போட்டி ஒன்றில் நான்கு வீரர்களும் பங்கு பற்றுகின்றனர். மறுபடியும், இரு ஆட்டங்களில் முதலில் வெற்றி பெறுபவர், அப்போட்டியில் வெற்றிபெற்றவராவார். அவர்கள்
 - (i) நான்கு ஆட்டங்களிலும் குறைவாக
 - (ii) ஐந்து ஆட்டங்களிலும் குறைவாக
 - (iii) ஆறு ஆட்டங்களிலும் குறைவாக பங்குபற்றி, D போட்டியில் வெல்வதற்கான நிகழ்தகவு யாது?
- 39. பெட்டி ஒன்றில் 5 சிவப்பு நிறமாபிள்களும், 4 கறுப்பு நிறமாபிள்களும், 3 மஞ்சள் நிறமாபிள்களும் உள்ளன. மூன்று குழந்தைகள் ஒருவாபின் ஒருவராக, ஒவ்வொருவரும் ஒவ்வொரு மாபிளை எடுக்கின்றனர். பெட்டி n மாபிள்களைக்

கொண்டிருக்கையில் ஒரு மாபிளை எடுப்பதற்குரிய நிகழ்தகவு $\frac{1}{n}$ ஆகும்.

- (a) மூவரும் சிவப்பு நிற மாபிள்களை தெரிவு செய்வதற்கு
- (b) குறைந்தது ஒரு கறுப்பு நிற மாபிள் தெரிவு செய்வதற்கு
- (c) ஒவ்வொருவரும் வித்தியாசமான நிற மாபிள்களைத் தெரிவு செய்வதற்கு
- (d) எல்லோரும் ஒரே நிற மாபிளைத் தெரிவு செய்வதற்கு நிகழ்த்கவு யாது?
- 40. A, B, C ஆகிய மூவர் திரை அரங்கு ஒன்றில் சந்திப்பதாக முடிவு செய்கிறார்கள். P, Q, R என்னும் மூன்று திரை அரங்குகள் உள்ளன. அவர்கள் எத்திரை அரங்கில் சந்திப்பது என்பதை மறந்து விட்டதால், நாணயம் ஒன்றைச் சுண்டி முடிவெடுக்கிறார்கள். A என்பவர் திரை அரங்கு P அல்லது Q இற்குச் செல்ல நாணயம் ஒன்றைச் சுண்டித் தீர்மானிக்கிறார். B என்பவர் Q அல்லது R இற்குச் செல்வதைத் தீர்மானிக்க நாணயம் ஒன்றைச் சுண்டுகிறார். C நாணயம் ஒன்றைச் சுண்டி P இற்குச் செல்வதா, இல்லையா எனத் தீர்மானிக்கிறார். இல்லையெனில் மீண்டும் ஒருமுறை சுண்டி Q இற்குச் செல்வதா R இற்குச் செல்வதா எனத் தீர்மானிக்கிறார்.

- (a) A யும் B யும் சந்திக்க
- (b) B யும் C யும் சந்திக்க
- (c) A, B, C எல்லோரும் சந்திக்க
- (d) A, B, C எல்லோரும் வெவ்வேறு திரை அரங்குகளுக்குச் செல்ல
- (e) குறைந்தது இருவராவது சந்திக்க நிகழ்தகவு யாது?
- 41. பெட்டி ஒன்றில் சிவப்பு, நீல, பச்சை நிற மாபிள்கள் உள்ளன. பெட்டியிலிருந்து ஒருமாபின் எழுமாற்றாக எடுக்கப்படுகிறது. அது சிவப்பாக இருப்பதற்குரிய நிகழ்தகவானது, அது நீலமாக இருப்பதற்குரியதன் 1.5 மடங்காகவும், நீலமாக இருப்பதற்குரியதன் 6 மடங்காகவும் உள்ளது. எடுக்கப்பட்ட மாபிள்
 - (a) சிவப்பு நிறமாக (b) நீலநிறமாக (c) பச்சை நிறமாக இருப்பதற்குரிய நிகழ்த்தவ யாது?

பெட்டியிலிருந்து எழுமாற்றாக ஒரு மாபிள் எடுக்கப்பட்டு அதன் நிறம் குறிக்கப்பட்டபின் மீண்டும் பெட்டியினுள் போடப்படுகிறது. பெட்டியிலுள்ள மாபிள்களின் ஒவ்வொரு நிறமும் குறைந்தது ஒரு தடவையாவது பெறப்படும் வரை இச்செயல்முறை தொடர்கிறது. முதலில் காணப்பட்ட நிறங்களின் வரிசையைக் கருதி

- (i) பச்சைக்கு முதல் சிவப்பு பெறப்படுவதற்கு
- (ii) பச்சை, நீலம் இறுதியாக சிவப்பு என்ற வரிசையிலமைவதற்கான நிகழ்த்கவு யாது?
- 42. ஆட்டம் ஒன்றில் போட்டியாளர் ஒருவர் தாயக்கட்டைகள் மூன்றை எறிந்து அம் மூன்றிலும் ஒரே எண்ணைப் பெற முயற்சிக்கிறார்.
 - (a) அம் முன்றிலும் ஒரே எண்ணைப் பெறுவதற்கு
 - (b) இரண்டில் மட்டும் ஒரே எண்ணைப் பெறுவதற்கு நிகழ்தகவு யாது? முதல் தடவை, இரு தாயக்கட்டைகளில் மட்டும் ஒரே எண் தோன்றியிருப்பின், முன்றாவது தாயக்கட்டையை மீண்டும் எறிகிறார். இரு தாயக்கட்டைகளில் ஒரே எண் தோன்றாவிடின், எல்லாத் தாயக்கட்டைகளையும் மீண்டும் எறிகிறார். அத்துடன் போட்டியாளர் தன்னுடைய முறையை முடிக்கிறார்.
 - (c) போட்டியாளர் தன்னுடைய முறையில், மூன்று தாயக்கட்டைகளிலும் ஒரே எண்ணைப் பெறுவதற்கான நிகழ்தகவு யாது?
 - (d) ஒரு முறையில் மூன்று தாயக்கட்டைகளிலும் வெவ்வேறு எண்கள் தோன்றுவதற்கான நிகழ்தகவு யாது?
- 43. A, B ஆகியோர் மேசைப்பந்தாட்டத்தின் (table tennis) தொடர் ஆட்டங்களில் பல தடவைகளில் பங்கு கொண்டவர்கள். பதிவேடுகளிலிருந்து இருவரும் தொடர் ஆட்டங்களில் விளையாடும்போது, A முதலாவது ஆட்டத்தில் வெற்றிபெறும் நிகழ்தகவு 0.6 எனவும், அடுத்துவரும் ஆட்டங்களில் வெற்றி பெறுவதற்கான

நிகழ்தகவு. அதற்கு முந்திய ஆட்டத்தில் வெற்றிபெற்றிருப்பின் 0.7 எனவும், அவ்வாறில்லையெனில் 0.5 எனவும் தெரிகிறது. எந்த ஒரு ஆட்டமும் வெற்றி தோல்வியின்றி முடிவடைவதில்லை. அடுத்து வரும் ஆட்டத்தொடரில், A, B யுடன் விளையாடும் போது மூன்றாவது ஆட்டத்தில் வெற்றி பெறுவதற்கான நிகழ்தகவு யாது?

- 44. செயற்குழு ஒன்றின் அங்கத்தினர்கள் ஏழுபேரில் 4 பெண்களும் 3 ஆண்களும் உள்ளனர். அவர்கள் அடுத்த சனிக்கிழமை சந்திப்பதற்குத் திட்டமிட்டுள்ளார்கள். ஒவ்வொரு ஆணும் மற்ற எந்த ஒரு ஆணிலும் சாராது, கூட்டத்திற்கு சமூகமளிப்பதற்கான நிகழ்தகவு 2/3 ஆகும். சமுகமளிக்கும் ஆண்களின் எண்ணிக்கை (a) 0, (b) 1, (c) 2 (d) 3 ஆக இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - கூட்டத்திற்குச் சமூகமளிப்பதற்கான நிகழ்தகவு 1/2 ஆகும். (e) கூட்டத்திற்கு சமூகமளிக்கும் பெண்களின் எண்ணிக்கை, ஆண்களின்

பெண்கள் ஒவ்வொருவரும், மற்றைய ஆண்களையும் பெண்களையும் சாராது,

- எண்ணிக்கைக்கு சமமாக இருப்பதற்கான நிகழ்தகவு யாது? (f) இருபாலாரும் சமூகமளிப்பதற்கான நிகழ்தகவு யாது?
- (g) கூட்டத்தில் குறைந்தது 1ஆணும் 1 பெண்ணும் கலந்து கொண்டார்கள் எனத் தரப்படின், சம எண்ணிக்கையான ஆண்களும், பெண்களும் கலந்து கொண்டதற்கான நிகழ்தகவு யாது?
- 45. A, B என்னும் இரு வள்ளங்கள் ஒரு தொடரான வள்ளம் ஓட்டும் போட்டிகளில் பங்குபற்றுகின்றன. இத்தொடரின் ஒவ்வொரு போட்டியும் ஒன்றையொன்று சாராதவை. மூன்று ஓட்டங்களில் முதலில் வெற்றி பெறும் வள்ளம் போட்டியில் வென்றதாகக் கொள்ளப்படும். ஒவ்வொரு ஓட்டத்திலும் A அல்லது B வெற்றி பெறும். இவ் வெற்றியானது காலநிலையில் தங்கியுள்ளது. காலநிலை சீரற்றதாயின் A வெற்றி பெறுவதற்கான நிகழ்தகவு 0.9 உம், காலநிலை சீரானதாயின் A வெற்றி பெறும் நிகழ்தகவு 0.4 உம் ஆகும். ஒவ்வொரு ஓட்டத்தின் போதும் காலநிலை சீரானதாகவோ காலநிலை சீரானதாகவோ காலநிலை சீரானதாகவோ இருக்கலாம் காலநிலை சீரற்றதாக இருப்பதற்கான நிகழ்தகவு 0.2 ஆகும். A முதலாவது ஓட்டத்தில் வெல்வதற்கான நிகழ்தகவு 0.5 எனக் காட்டுக.
 - (a) முதலாவது ஓட்டத்தில் காலநிலை சீரற்றதாக இருந்திருக்க
 - (b) A போட்டியில் வெற்றி பெறுவதற்கான நிகழ்த்கவு யாது?
- 46. மாவட்டம் ஒன்றில் உள்ள சனத் தொகைக் கணக்கெடுப்பிலுள்ள பதிவேட்டிலிருந்து பின்வரும் விபரங்கள் பெறப்பட்டன. 50% மான குடும்பத்தினர் சொந்தமாக வீடு வைத்திருக்கவில்லை. 40% மானோர் ஒரு வீடு வைத்திருக்கிறார்கள். மீதி

10% மானோர் இரண்டு வீடுகள் வைத்திருக்கின்றார்கள். மூன்று குடும்பங்கள் எழுமாற்றாகத் தெரிவு செய்யப்பட்டால்,

(a) ஒரு குடும்பம் சொந்தமாக வீடு இல்லாததாகவும், ஒரு குடும்பம் ஒரு வீடு உள்ளதாகவும், ஒரு குடும்பம் இரண்டு வீடு உள்ளதாகவுமிருப்பதற்கான நிகழ்தகவு யாது?

(b) மூன்று குடும்பத்திடமும் மொத்தமாக மூன்று வீடுகள் இருப்பதற்கான நிகழ்தகவு யாது?

மேலும் வீடு இல்லாதவர்களில் 16% குடும்பங்களிலும் ஒரு வீடு உள்ளவர்களில், 45% குடும்பங்களிலும், இரு வீடுகள் உள்ளவர்களில் 60% குடும்பங்களிலும் கணவனும் மனைவியும் வேலை செய்கின்றனர்.

(c) ஒரு குடும்பம் எழுமாற்றாகத் தெரிவு செய்யப்பட்டால் கணவனும் மனைவீயும் வேலை செய்வதற்கான நிகழ்த்கவு யாது?

- (d) எழுமாற்றாகத் தெரிவு செய்யப்பட்ட குடும்பம் ஒன்றில் கணவனும், மனைவியும் வேலை செய்கிறார்கள் எனத் தரப்படின் அவர்களிடம் வீடு இல்லாமலிருப்பதற்கான நிகழ்தகவு யாது?
- 47. தொழிற்சாலை ஒன்றில் இயந்திரங்கள் A, B, C என்பன முறையே, குறித்த ஒரு பொருளின் 25%, 25%, 50% ஐ உற்பத்தி செய்கின்றன. மொத்த உற்பத்தியிலிருந்து 3 பொருட்களைக் கொண்ட மாதிரி ஒன்று எழுமாற்றாகத் தெரிவு செய்யப்படுகிறது.
 - (a) அவைகள் எல்லாம் C யினால் உற்பத்தி செய்யப்பட்டதாக இருக்க
 - (b) குறைந்தது இரண்டு பொருட்களாவது *B* யினால் உற்பத்தி செய்யப்பட்டிருப்பதற்கு

நிகழ்த்கவு யாது?

இரண்டாவதாக, மூன்று பொருட்களைக் கொண்ட மாதிரி ஒன்று தெரிவு செய்யப்பட்டால், இரு மாதிரிகளிலும் A யினால் உற்பத்தி செய்யப்பட்ட பொருட்களின் எண்ணிக்கை ஒரேயளவினதாக இருப்பதற்குரிய நிகழ்தகவு யாது?

A, B, C யினால் உற்பத்தி செய்யப்பட்ட பொருட்களில் முறையே 1%, 2%, 5% பழுதானவை ஆகும். உற்பத்தியிலிருந்து ஒரு பொருள் எழுமாற்றாக எடுக்கப்படுகிறது. "பழுதானது" என்னும் நிகழ்ச்சியை D உம், "இயந்திரம் C யினால் செய்யப்பட்டது" என்னும் நிகழ்ச்சியை C உம் குறிப்பின், $P(D), P(C \cap D)$ என்பவற்றைக் காண்க.

அப்பொருள் பழுதானதெனின், அது Cயினால் உற்பத்தி செய்யப்பட்டிருப்பதற்கான நிகழ்தகவு யாது?

- 48. (a) மூன்று தாயக்கட்டைகள் ஒருமித்து எறியப்படுகின்றன. கூட்டுத்தொகை 9 ஐப் பெறுவதற்கான நிகழ்தகவையும், கூட்டுத்தொகை 10 ஐப் பெறுவதற்கான நிகழ்தகவையும் ஒப்பிடுக.
 - (b) தாயக்கட்டை ஒன்று நான்கு தடவைகள் எறியப்படும்போது குறைந்தது ஒரு தடவையாவது 6 ஐப் பெறுவதற்கான நிகழ்தகவையும், இரு தாயக்கட்டைகள்

- 24 தடவை எறியப்படும்போது குறைந்தது ஒரு தடவையாவது இரண்டிலும் 6 ஐப் பெறுவதற்கான நிகழ்த்கவையும் ஒப்பிடுக்.
- (c) ஆறு தாயக் கட்டைகள் எறியப்படும் போது குறைந்தது ஒரு 6 ஐப் பெறுவதற்கான நிகழ்தகவையும் பன்னிரண்டு தாயக் கட்டைகள் எறியப்படும் போது குறைந்தது இரண்டு 6 ஐப் பெறுவதற்கான நிகழ்தகவையும் ஒப்பீடுக.
- 49.12 அளவீடுகள் கொண்ட தொடை ஒன்றில், எந்த இரு அளவீடுகளும் சமமானவையல்ல. ஐந்து அளவீடுகள் எழுமாற்றாகத் தெரிவு செய்யப்படு கின்றன.
 - (a) ஐந்து அளவீடுகளிலும், 12 அளவீடுகளிலுமுள்ள மிகப்பெரிய அளவீடும், மிகச்சிறிய அளவீடும் அடங்கியிருப்பதற்கு,
 - (b) இரண்டாவது மிகப் பெரிய அளவீடும், இரண்டாவது மிகச் சிறிய அளவீடும், அடங்கியிருப்பதற்கு,
 - (c) மிகச் சிறிய ஐந்து அளவீடுகளையும் கொண்டிருப்பதற்கு
 - (d) மிகச் சிறிய ஐந்து அளவீடுகளில், ஆகக் குறைந்தது முன்றையாவது கொண்டிருப்பதற்கு நிகழ்தகவைக் காண்க.
- 50. (a) 10 மாணவர்களை,
 - (i) 7 மாணவர்களும், 3 மாணவர்களும், கொண்ட இரு குழுக்களாக,
 - (ii) 4 மாணவர்கள், 3 மாணவர்கள், 2 மாணவர்கள் கொண்ட மூன்று குழுக்களாக (ஒருவர் தவிர்க்கப்படுகிறார்.) எத்தனை வழிகளில் பிரிக்கலாம்.
 - (b) பெட்டி ஒன்றில் 3 வெள்ளி நாணயங்களும், 4 செப்பு நாணயங்களும் உள்ளன. 3 நாணயங்கள் எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்டு பை ஒன்றினுள் (A என்க) போடப்படுகின்றன. மீதி நாணயங்கள் இரண்டாவது பையினுள் (B என்க) போடப்படுகின்றது. பை A யினுள் இருக்கக்கூடிய வெள்ளி நாணயங்களின் எண்ணிக்கைக்கான (0 இலுருந்து 3 வரை) நிகழ்தகவுகளைக் காண்க.
 - (d) குறித்த ஒரு சந்தாப்பத்தில் பை A யில் 2 வெள்ளி நாணயங்களும் 1 செப்பு நாணயமும் உள்ளன எனத் தெரியவருகிறது. மீதி நாணயங்கள் பை B யில் உள்ளன. எழுமாற்றாகத் தெரிவுசெய்யப்பட்டு, அதிலிருந்து நாணயம் ஒன்று எழுமாற்றாக எடுக்கப்படுகிறது. எடுக்கப்பட்ட நாணயம் வெள்ளியாக இருப்பதற்குரிய நிகழ்தகவு யாது?
- 51.22 பேரைக் கொண்ட குழு ஒன்று உள்ளது. இவர்களில் 7 பேரின் தலைமயிர் கறுப்பாகவும், புகைபிடிக்காதவர்களும், மூக்குக்கண்ணாடி அணியாதவர்களாகவும்; 5 பேரின் தலைமயிர் வெள்ளை நிறமாகவும் புகைபிடிக்காதவர்களாகவும்,

- முக்குக்கன்ணாடி அணியாதவர்களாகவும்; 4 பேரின் தலைமயிர் வெள்ளை நிறமாகவும் புகைபிடிப்பவர்களாகவும் முக்குக்கண்ணாடி அணிபவர்களாகவும் உள்ளனர். 3 பேரின் தலை மயிர் கறுப்பு நிறமாகவும் புகைப்பிடிப்பவர்களாகவும் கண்ணாடி அணியாதவர்களாகவும் உள்ளனர். 2 பேரின் தலைமயிர் வெள்ளை நிறமாகவும் புகைபிடிக்காதவர்களாகவும், முக்குக்கண்ணாடி அணிபவர்களாகவும் உள்ளனர். ஒருவர் கறுப்பு நிறத் தலைமயிர் உடையவராகவும் புகைபிடிப்பவராகவும் முக்குக்கண்ணாடி அணிபவராகவும் உள்ளார்.
 - (a) இக்குழுவிலிருந்து ஒருவர் எழுமாற்றாகத் தெரிவு செய்யப்படுகிறார். இவருடைய தலைமயிர் வெள்ளை நிறமாக இருக்கும் நிகழ்ச்சி W எனவும், கண்ணாடி அணியும் நிகழ்ச்சி G எனவும், புகைபிடிக்கும் நிகழ்ச்சி S எனவும் கொண்டு (i) P(W) (ii) P(W/S) (iii) P(W/G) (iv) இவர் புகைபிடிப்பவர் எனத் தரப்படின் வெள்ளை நிறத் தலைமயிரை உடையவராக அல்லது கண்ணாடி அணிபவராக (ஆனால் இரண்டும் அல்ல) இருக்க நிகழ்தகவு யாது? நிகழ்ச்சிகள் W, S ஒன்றையொன்று சாராதவையா? நிகழ்ச்சிகள் W, G ஒன்றையோன்று சாராதவையா?
 - - (i) $P\left(W_{2}\right)$ (ii) $P\left(W_{2}/S_{2}\right)$ ஐக். காண்க.
- 52. {1,2,3,......n} என்ற தொடையிலிருந்து மூன்று எண்கள் மீள்வைப்பின்றி எழுமாற்றாக எடுக்கப்படுகின்றன. பின்னா் மிகக்கூடிய எண்ணும், மிகக் குறைந்த எண்ணும் நீக்கப்படுகின்றன. எஞ்சிய எண் 2 ஆக இருப்பதற்கான

நிகழ்தகவு
$$\frac{6}{n (n-1)}$$
 எனக் காட்டுக.

எஞ்சியிருக்கும் எண் (a) 3 , (b) 4 ஆக இருப்பதற்கான நிகழ்தகவு யாது?

புள்ளிவிபரவியல் I

விவரணப் புள்ளிவிபரவியல் (Descriptive Statistics)

பின்னகத் தரவுகள் (Discrete Data)

பின்னகத் தரவுகள் சரியான பெறுமானங்களை (exact values) மட்டும் எடுக்கும். உதாரணம்

- (i) குடும்பம் ஒன்றிலுள்ள பிள்ளைகளின் எண்ணிக்கை.
- (ii) இன்று பாடசாலைக்கு வராத மாணவரின் எண்ணிக்கை.
- (iii) 30 நிமிடங்களில் சோதனைச் சாவடியொன்றைக் கடந்து சென்ற வாகனங்களின் எண்ணிக்கை.

ஆகியன பின்னகத் தரவுகளுக்கு உதாரணங்களாகும்.

இங்கு குடும்பம் ஒன்றிலுள்ள பிள்ளைகளின் எண்ணிக்கை நிறையெண் பெறுமானங்களை மட்டும் எடுக்கும். அதாவது 0, 1, 2, 3, 4 என்றவாறு அமையும். இவ்வாறே (ii), (iii) ஆகியவற்றிலும் அமையும்.

தொடர்ச்சியான தரவுகள் (Continuous Data)

வகுப்போன்றிலுள்ள மாணவர்களின் உயரங்கள் கிட்டிய cm இல் அளக்கப்பட்டன என்க. உதாரணமாக 5 மாணவர்களின் உயரங்கள் 133cm, 138cm, 134cm, 141cm, 139cm என்க. இவை தொடர்ச்சியான தரவுகள் எனப்படும். இங்கு உயரம் 133cm (கிட்டிய சென்ரிமீற்றரில்) எனக் கூறும் போது உயரம் h cm ஆனது $132 \cdot 5 \le h < 133 \cdot 5$ ஆக அமையும்.

இடை (Mean)

தரப்பட்ட ஈட்டுக்களின் இடையைக் கணித்தல்.

n ஈட்டுக்கள் முறையே x_1 x_2 x_n எனின்,

இடை
$$\overline{x} = \frac{\displaystyle\sum_{i=1}^{n} xi}{n}$$
 ஆகும்.

உதாரணம் 1:10 மாணவர்கள் கணித பாடத்தில் பெற்ற புள்ளிகள் முறையே, 63, 52, 64, 58, 69, 72, 30, 78, 85, 50 ஆகும். இடையைக் காண்க.

$$\Re D = \frac{63 + 52 + 64 + 58 + 69 + 72 + 30 + 78 + 85 + 50}{10}$$
$$= \frac{621}{10} = 62 \cdot 1$$

மீள்திறன் பரம்பலொன்றின் இடை

(The mean of a frequency distribution) (a)கூட்டமாக்கப்படாத தரவு (Ungrouped data)

உதாரணம் 2

எழுமாற்றாக தெரியப்பட்ட 30 குடும்பங்களில் உள்ள பிள்ளைகளின் எண்ணிக்கையின் பரம்பல் கீழே தரப்பட்டுள்ளது. இடையைக் காண்க.

பிள்ளைகளின் எண்ணிக்கை <i>x</i>	0	1	2	3	4	5
மீடிறன் <i>f</i>	3	5	11	8	2	1

பிள்ளைகளின் எண்ணிக்கை <i>x</i>	மீடிறன் <i>f</i>	fx
0	3	0
1	5	5
2	11	22
3	8	24
4	2	8
5	1	5
	30	64

$$\text{genL} = \frac{\sum f x}{\sum f}$$
$$= \frac{64}{30} = 2.13$$

(b) கூட்டமாக்கப்பட்ட தரவு (Grouped data)

 (i) 100 மாணவர்கள் பொது அறிவுப் பரீட்சையொன்றில் பெற்ற புள்ளிகளின் மீள்திறன் பரம்பல் கீழே தரப்பட்டுள்ளது.

புள்ளிகள் (x)	30-39	40-49	50 - 59	60-69	70-79	80 - 89
மீடிறன் (ƒ)	10	14	26	20	18	12

- இப் பரம்பலை இரு முறைகளில் விளக்கலாம்.
- (a) பின்னகத் தரவுகளாக இங்கு வகுப்பு எல்லைகள் 30, 40, 50, 60, 70, 80, 90. வகுப்பாயிடையின் பருமன் 10 ஆகும்.
- (b) தொடர் தரவுகளாக புள்ளிகள் கிட்டிய முழு எண்களாக்கப்பட்டிருப்பின் வகுப்பு எல்லைகள் 29⋅5, 39⋅5, 49⋅5, 59⋅5, 69⋅5, 79⋅5, 89⋅5 அதாவது 30 – 39 என்பதின் கருத்து 29⋅5 ≤ x < 39⋅5 என்பதாகும். வகுப்பாயிடையின் பருமன் 10 ஆகும்.
- (ii) தொலைபேசி அழைப்பு நிலையம் ஒன்றிற்கு வந்த தொலைபேசி அழைப்புக்களும் அவற்றிற்கான நேரங்களிற்கான மீடிறன் பரம்பல் (நேரம் - நிமிடங்களில்)

தொலைபேசி அழைப்பிற்கான நேரம்	0-3	3-6	6-9	9-12	12-18	18-
ழீடிறன	9	12	15	10	4	0

3-6 என்பதன் கருத்து $3 \le t < 6$ என்பதாகும்.

இங்கு வகுப்பாயிடையின் எல்லைகள் 0, 3, 6, 9, 12, 18. வகுப்பாயிடையின் பருமன் 3, 3, 3, 6 ஆகும்.

உதாரணம் 3 இங்கு நாம் b(i) இல் தரப்பட்ட பரம்பலின் இடையை அவதானிப்போம்.

		நடுப்புள்ளி x	மீன் ச	புள்ளிகள்
வகுப்பாயிடையின் கீழ்	fx		,	
எல்லைப் பெறுமானம் = 29.5	345	34.5	10	30 – 39
வகுப்பாயிடையின் மேல் எல்லைப் பெறுமானம் = 39.5	623	44.5	14	40 – 49
	1417	54.5	26	50 – 59
நடுப்புள்ளி $=\frac{29\cdot 5+39\cdot 5}{2}$	1290	64.5	20	60 - 69
= 34.5	1341	74.5	28	70 – 79
$2 \sum_{x} f(x) = \frac{1}{2} \int_{x} f(x) dx$	1014	84.5	12	80 - 89
$\sum f = 100$	6030	$\sum f x =$	$\sum f = 100$	
= 60.3				

x = a + by என்ற பிரதியீட்டின் மூலம் இதை இலகுவாக கணிக்கலாம்.

$$x_{i} = a + b y_{i}$$

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} a + \sum_{i=1}^{n} b y_{i}$$

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} a + b \sum_{i=1}^{n} y_{i}$$

$$\overline{x} = a + b \overline{y}$$

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{\sum f_i (a + by_i)}{\sum f_i}$$

$$= \frac{a \sum f_i}{\sum f_i} + \frac{b \sum f_i x_i}{\sum f_i}$$

$$= a + b \bar{y}$$

$$\therefore \bar{x} = a + b \bar{y}$$

மேலே தரப்பட்ட வினாவில் உத்தேசித்த இடை $64\cdot 5$ ($a=64\cdot 5$, வகுப்பாயிடை 60-69 இன் நடுப்புள்ளி) எனக்கொண்டால்.

புள்ளிகள் <i>X</i>	f.	d	fd
30-39	10	-3	-30
40 – 49	14	-2	-28
50 – 59	26	-1	-26
60 – 69	20	0	0
70 – 79	18	1	18
80 – 89	12	2	24
Σ	$\int f = 100$	$\sum f$	d = -42

இங்கு
$$x = a + by$$
 $a = 64.5, b = 10$ ஆகும். (b - வகுப்பாயிடையின் பருமன்) உதாரணமாக $x = 74.5$ எனின், $y = \frac{74.5 - 64.5}{10} = 1$ $(y = d$ என எடுக்கப் பட்டுள்ளது)

$$\overline{x} = 64.5 + 10 \times \frac{\sum f d}{\sum f}$$

$$= 64.5 + \frac{10 \times (-42)}{100}$$

$$= 64.5 - 4.2$$

$$= 60.3$$

இடையம் (Median)

ஈட்டுக்கள், பருமனின் வரிசைப்படி ஒழுங்குபடுத்தப்பட்ட போது பரம்பலின் 50% இனது பெறுமானம் இடையம் ஆகும். அதாவது நடுப் பெறுமானம் கூட்டமாக்கப் படாத தரவுகளுக்கு n ஈட்டுக்களும் பருமனின் வரிசைப் படி ஒழுங்குபடுத்தப்படின் $\frac{1}{2}(n+1)$ ஆவது ஈட்டின் பெறுமானம் இடையம் ஆகும். உதாரணம் 4

- (i) பின்வரும் எண்களின் இடையம் யாது?
 8, 6, 9, 3, 10, 7, 4, 12, 11
 இங்குள்ள 9 ஈட்டுக்களையும் ஏறு வரிசையில் எழுதினால்
 3, 4, 6, 7, 8, 9, 10, 11, 12
 இடையம் ½ (9 + 1) ஆவது ஈட்டு = 5 ஆவது ஈட்டு
 = 8 ஆகும்.
- (ii) 10 மாணவர்கள் கணித பாடத்தில் பெற்ற புள்ளிகள் 63, 52, 64, 58, 69, 72, 30, 78, 85, 50 ஆகும். இப் பரம்பலின் இடையம் யாது? ஈட்டுக்களை ஏறுவரிசையில் எழுதினால், 30, 50, 52, 58, 63, 64, 69, 72, 78, 85

இடையம்
$$=\frac{1}{2}(10+1)$$
 ஆவது ஈட்டு $=5\frac{1}{2}$ ஆவது ஈட்டு $=63+\frac{1}{2}(64-63)$ $=63\frac{1}{2}$

உதாரணம் 5

தரப்பட்ட பரம்பலின் இடையத்தைக் காண்க.

பிள்ளை களின் எண்ணிக்கை	0	1	2	3	4	5
மீடிறன் (/)	3	5	11	8	2	1

Х	f	திரள்பரம்பல் <i>cf</i>
0	3	3
1	5	8
2	11	19
3	8.	27
4	2	29
5	1	30

இப் பரம்பலின் இடையம் $\frac{1}{2} (30 + 1) அவுது ஈட்டு
15.5 ஆவது ஈட்டு
∴ இடையம் 2$

உதாரணம் 6 :

100 மாணவர்கள் பொது அறிவுப் பரீட்சை ஒன்றில் பெற்ற புள்ளிகளின் பரம்பலின் இடையத்தைக் காண்க.

புள்ளிகள் (x)	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	80 – 89
மீடிறன் f	10	14	30	20	18.	8

புள்ளிகள்	மீழ்றன் <i>f</i>	cf
30 – 39	10	10
40 – 49	14	24
50 – 59	30	54
60 – 69	20	74
70 – 79	18	92
80 - 89	8	100

இடையம் 50 ஆவது ஈட்டு

50 ஆவது ஈட்டு வகுப்பாயிடை 50 -- 59 க்குள் உள்ளது.

இடையம் =
$$49.5 + \frac{10}{30} \times 26$$

= $49.5 + 8.6$

= 58.1

65

ஆகாரம் (Mode)

பரம்பலில் அதிக தடவைகள் தோன்றும் ஈட்டு ஆகாரம் எனப்படும்.

உதாரணம் 7

3, 6, 7, 5, 7, 4, 8, 7, 9

இங்கு கூடுதலான தடவைகள் தோன்றும் ஈட்டு 7

். ஆகாரம் 7 ஆகும்.

உதாரணம் 8

30 குடும்பங்களில் உள்ள பிள்ளைகளின் எண்ணிக்கையின் பரம்பல்

பிள்ளை களின் எண்ணிக்கை	0	1	2	3	4	5
மீடிறன் (ƒ)	3	5	11	8	2	1

இங்கு ஈட்டு 2, 11 தடவைகள் தோன்றுகிறது. கூடுதலான தடவைகள் 2 தோன்றுவதால் ஆகாரம் 2 ஆகும்.

கூட்டமாக்கப்பட்ட மீடிறன் பரம்பலொன்றின் ஆகாரம்.

உதாரணம் 9

100 மாணவர்கள் பெற்ற புள்ளிகளின் பரம்பல் தரப்பட்டுள்ளது. ஆகாரத்தைக் காண்க.

புள்ளிகள்	0-9	10 - 19	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	80 - 89	90 - 99
மிழ்றன்	0	3	7	12	18	22	17	11	7.	3

இங்கு வகுப்பாயிடை ஒவ்வொன்றினதும் பருமன் 10 ஆகும். தரப்பட்ட பரம்பலில் 50 – 59 வகுப்பாயிடையில் கூடிய மீடிறன் இருப்பதை அவதானிக்கலாம். இவ் வகுப்பாயிடை ஆகார வகுப்பு (Modal class) எனப்படும்.

ஆகார வகுப்பு 50 — 59

இவ் வகுப்பின் கீழ் எல்லைப் பெறுமானம் 49.5

மேல் எல்லைப் பெறுமானம் 59.5 ஆகும்.

இங்கு தரப்படும் முறையில் சமமான வகுப்பாயிடையைக் கொண்ட பரம்பல்களுக்கு மட்டும் ஆகாரம் கணிக்கலாம். ஆகாரத்தைக் கணிப்பதற்கு ஆகார வகுப்பாயிடையும் அதற்கு முந்திய அடுத்த இரு வகுப்பாயிடைகளும் போதுமானவை ஆகும். ஆகார வகுப்பிற்கும் அடுத்த வகுப்பிற்கும் இடையேயான வித்தியாசம் = 22 - 17 = 5.

ஆகார வகுப்பிற்கும் அதற்கு முதல் வகுப்பிற்குமிடையேயான

ஆகார வகுப்பிற்கும் அதற்கு முதல் வகுப்பிற்குமிடையேயான வித்தியாசம் = 22 – 18 = 4.

ஆகாரம் =
$$49.5 + \frac{4}{4+5} \times 10$$

= $49.5 + \frac{4}{9} \times 10$
= 53.9

ஆகாரம்
$$M_o = L + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)C$$

இங்கு L – ஆகார வகுப்பாயிடையின் கீழ் எல்லைப் பெறுமானம்.

C – வகுப்பாயிடையின் பருமன்.

Δ₁ ஆகார வகுப்பாயிடையின் மீடிறனுக்கும் அதற்கு முந்திய வகுப்பாயிடையின் மீடிறனுக்கும் உள்ள வித்தியாசம்.

Δ₂ ஆகார வகுப்பாயிடையின் மீடிறனுக்கும் அதற்கு அடுத்த வகுப்பாயிடையின் மீடிறனுக்கும் இடையே உள்ள வித்தியாசம்.

இடை, இடையம், ஆகாரம் ஆகிய மூன்றும் மைய நாட்ட அளவைகள் எனப்படும். இடை, இடையம், ஆகாரம் என்பவற்றிற்கிடையேயான ஓர் அண்ணளவான தொடர்பு உண்டு.

$$Mode = mean + 3 (median - mean)$$

விலகலின் அளவை (Measures of dispersion) விலகலின் அளவைகள்

- (i) வீச்சு (range)
- (ii) காலனை இடை வீச்சு (Interquartile range)
- (iii) இடை விலகல் (Mean deviation)
- (iv)நியம விலகல் (Standard deviation)
- (v) மாறற்றிறன் (Variance) என்பவைகள் ஆகும்.

உதாரணம் 10

பின்வரும் தரவுகளின் வீச்சத்தைக் காண்க.

- (i) 4, 11, 17, 18, 21, 19, 5
- (ii) 4, 10, 11, 12, 12, 13, 13, 21
- (i) இங்கு மிகக் குறைந்த பெறுமானம் 4 மிகக் கூடிய பெறுமானம் 21 ஆகவே, வீச்சு = 21 - 4 = 17
- (ii) இப்பரம்பலின் மிகக்குறைந்த பெறுமானம் 4 மிகக் கூடிய பெறுமானம் 21 ஆகவே வீச்சு 21 – 4 =17

இவ்விரு பரம்பல்களிலும் வீச்சு 17 ஆக இருந்த போதிலும், இரண்டாவதிலும் பார்க்க, முதலாவதில் வீலகல் கூடுதலாக இருப்பதை அவதானிக்கலாம். வீச்சானது அதன் அந்தத்திலுள்ள பெறுமானங்களால் (Extreme Values) மட்டும் தீர்மானிக்கப்படுகிறது.

காலணைகள் (Quartiles)

முதலாம் காலணை (First Quartile / Lower quartile) தரவுகள் / ஈட்டுக்கள் பருமனின் வரிசையில் ஒழுங்குபடுத்தப்படும்போது பரம்பலின் 25% இனது பெறுமானம் முதலாம்காலணை (Q_1) எனப்படும்.

கூட்டமாக்கப்படாத தரவுகளுக்கு -n ஈட்டுக்கள் பரம்பலில் இருப்பின் $rac{1}{4}$ (n+1)

ஆவது பெறுமானம், $\,Q_1\,$ ஆகும்.

மூன்றாம் காலணை (Third Quartile / Upper quartile)

தரவுகள் / ஈட்டுக்கள் பருமனின் வரிசையில் ஒழுங்கு படுத்தப்படும் போது பரம்பலின் 75% இனது பெறுமானம் மூன்றாம் காலணை (Q_3) எனப்படும்.

கூட்டமாக்கப்படாத தரவுகளுக்கு -n ஈட்டுக்கள் பரம்பலில் இருப்பின் $\frac{3}{4}$ (n+1) ஆவது பெறுமானம், Q_3 ஆகும்.

உதாரணம் 11

கீழே தரப்பட்டுள்ள இரு பரம்பல்களினதும், முதலாம், மூன்றாம் காலணைகளைக் காண்க.

(i) 6, 7, 12, 14, 9, 17, 12, 15, 24, 20, 21 இவற்றை ஏறு வரிசையில் எழுதும் போது 6, 7, 9, 12, 12, 14, 15, 17, 20, 21, 24 இங்கு 11 ஈட்டுக்கள் உள்ளன. n = 1

முதலாம் காலணை
$$Q_1 = \frac{1}{4}(n+1)$$
 ஆவது ஈட்டு = 3 ஆவது ஈட்டு = 9

மூன்றாம் காலணை $Q_3 = \frac{3}{4}(n+1)$ ஆவது ஈட்டு = 9 ஆவது ஈட்டு = 20

(ii) 154, 150, 147, 158, 164, 159, 162, 165, 168 ஏறு வரிசையில் எழுதும் போது, 147, 150, 154, 158, 159, 162, 164, 165, 168 இங்கு n = 9

$$Q_1 = \frac{1}{4} (n+1)$$
 ஆவது ஈட்டு
$$= \frac{1}{4} (9+1)$$
 ஆவது ஈட்டு
$$= 2\frac{1}{2}$$
 ஆவது ஈட்டு

$$= 150 + \frac{1}{2} (154 - 150) = 152$$
 ஆவது ஈட்டு

$$Q_3 = \frac{3}{4}(n+1)$$
 ஆவது ஈட்டு $= \frac{3}{4}(9+1)$ ஆவது ஈட்டு $= 7\frac{1}{2}$ ஆவது ஈட்டு

$$= 164 + \frac{1}{2} (165 - 164)$$
$$= 164.5$$

இரண்டாம் காலணை (Q_2) இடையமாகும். கூட்டமாக்கப்பட்ட தரவுகளின் காலணைகளைக் காணுதல்

உதாரணம் 12

100 மாணவர்கள் பொது அறிவுப் பரீட்சையொன்றில் பெற்ற புள்ளிகளின் மீடிறன் பரம்பல் கீழே தரப்பட்டுள்ளது.

புள்ளிகள்	30 - 3 9	40 - 49	50 - 59	60 - 69	70 - 79	80 – 89
மூர்றன் (f)	10	14	26	20	18	12

புள்ளிகள்	மீடிறன் <i>f</i>	திரள் மீடிறன் <i>cf</i>	
30 – 39	10	10	முதலாம் காலணை $Q_1 = 4.95 + \frac{10}{26} \times 1$ (25%)
40 – 49	14	24	= 4.95 + 0.47
50 – 59	26	50	= 49.97
60 - 69	20	70	மூன்றாம் காலணை $Q_3 = 69.5 + \frac{10}{8} \times 5$
70 – 79	18	88	(75%)
80 – 89	12	100	= 69.5 + +2.4
			= 71.7

காலணை இடைவீச்சு (Interquartile range)

காலணை இடைவீச்சு Q_3-Q_1 ஆகும்.

இது பரம்பலின் நடுப்பகுதி 50 % ஐக் கொண்டுள்ள வீச்சாகும். அந்தத்திலுள்ள பெறுமானங்களினால், இக் காலணை இடைவீச்சு பாதிக்கப்படுவதில்லை.

அரைக்காலணை இடைவீச்சு (Semi interquartile range)

அரை காலணை இடைவீச்சு = $\frac{1}{2}(Q_3 - Q_1)$ ஆகும்.

இடைவிலகல் (Mean deviation)

 x_1, x_2, \ldots, x_n என்னும் ஈட்டுக்களுக்கான இடைவிலகல்

$$\sum_{i=1}^n \frac{\left|x_i-\overline{x}\right|}{n}$$
 என வரையறுக்கப்படும். இங்கு \overline{x} , பரம்பலின் இடை ஆகும்.

கூட்டமாக்கப்படாத மீடிறன் பரம்பலொன்று

x	<i>x</i> ₁	<i>x</i> ₂	x_n
f	f_1	f_2	f_n

எனத் தரப்படுமிடத்து, இடைவிலகல்
$$=\frac{\displaystyle\sum_{i=1}^{n}f_{i}(x_{i}-\overline{x})}{\displaystyle\sum_{i=1}^{n}f_{i}}$$
 ஆகும்.

உதாரணம் 13

பின்வரும் தரவுகளின் இடை விலகலைக் காண்க.

$$\overline{x} = \frac{6+10+14+18+27}{5}$$
$$= \frac{75}{5} = 15$$

இடைவில்கல =
$$\sum_{i=1}^{5} \frac{|x_i - \overline{x}|}{5}$$

= $\frac{1}{5} \left[|-9| + |-5| + |-1| + |3| + |12| \right]$

$$=\frac{1}{5}\left[9+5+1+3+12\right]=6$$

(ii)

x	0	1	2	3	4	5
f	. 3	5	11	8	2	1

$$n = \sum f = 32$$

$$\sum f x = 0 + 5 + 22 + 24 + 8 + 5 = 64$$

$$\text{QSOL} \quad \overline{x} = \frac{\sum f x}{\sum f} = \frac{64}{32} = 2$$

இடைவிலகல் =
$$\frac{\sum |f_i(x_i - \bar{x})|}{n}$$

$$=\frac{\left|5 (0-2)\right|+\left|5 (1-2)\right|+\left|11 (2-2)\right|+\left|8 (3-2)\right|+\left|2 (4-2)\right|+\left|1 (5-2)\right|}{32}$$

$$=\frac{10+5+0+8+4+3}{32}=\frac{30}{32}$$
$$=0.92$$

நியமவிலகல் (Standard Deviation)

$$S = \sqrt{\sum_{i=1}^{n} \frac{(xi - \overrightarrow{x})^2}{n}}$$
 என வரையறுக்கப்படும்.

இங்கு 😾 இடையமாகும்.

72

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2\overline{x} x_{i} + \overline{x}^{2})$$

$$= \frac{1}{n} \left[\sum_{i=1}^{n} x_{i}^{2} - 2\overline{x} \sum_{i=1}^{n} x_{i} + \sum_{i=1}^{n} \overline{x}^{2} \right]$$

$$= \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - 2\overline{x} \frac{\sum_{i=1}^{n} x_{i}}{n} + \frac{n\overline{x}^{2}}{n}$$

$$= \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - 2\overline{x} (\overline{x}) + \overline{x}^{2}$$

$$= \frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \overline{x}^{2}$$
equation $S = \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \overline{x}^{2}}$

கூட்டமாக்கப்படாத மீடிறன் பரம்பலுக்கு நியமவிலகல்

x	x ₁	x ₂	x ₃	x _n
.f·	f_1	f ₂	f_3	f_n

நியமவிலகல்
$$S = \sqrt{\frac{\displaystyle\sum_{i=1}^n f_i \ (x_i - \overline{x})^2}{\displaystyle\sum_{i=1}^n f_i}}$$
 என வரையறுக்கப்படும்.

இதிலிருந்து,

$$S = \sqrt{\frac{\sum_{i=1}^{n} f_i \ x_i^2}{\sum_{i=1}^{n} f_i}} - \overline{x}^2$$

எனப் பெறலாம்.

உதாரணம் 14

(i) 2, 3, 5, 6, 9 என்னும் எண்களின் நியம விலகலைக் காண்க.

முறை I

x	$x - \overline{x}$	$(x-\bar{x})^2$
2	-3	9
3	-2	4
5	0	0
6	1	1
9	4	16

$$\bar{x} = \frac{2+3+5+6+9}{5} = 5$$

$$\sqrt{\sum (x-\bar{x})^2} \qquad \boxed{30} \qquad =$$

$$S = \sqrt{\frac{\sum (x - \bar{x})^2}{n}} = \sqrt{\frac{30}{5}} = \sqrt{6} = 2.45$$

முறை II

$\cdot x$	x 2
2	4
3	9
5	25
6	36
9	81

$$S = \sqrt{\frac{\sum x^2}{n} - \bar{x}^2}$$

$$= \sqrt{\frac{155}{5} - 5^2} = \sqrt{31 - 25}$$

$$= \sqrt{6} = 2.45$$

(ii) 20 குடும்பங்கள் ஒவ்வொன்றிலுமுள்ள பிள்ளைகளின் எண்ணிக்கை கீழே தரப்பட்டுள்ளது. பரம்பலின் நியமவிலகலைக் காண்க.

குடும்பம் ஒன்றிலுள்ள பிள்ளைகளின் எண்ணிக்கை (x)	1	2	3	4	5
மீடிறன் f	3	4	8	2	3

X	f	$(x-\overline{x})$	$(x-\overline{x})^2$	$f(x-\overline{x})^2$
1	3	-1.9	3.61	10.83
2	4	-0.9	0-81	3.24
3	8	0.1	0.01	0.08
4	2	1-1	1.21	2.42
5	3	2.1	4.41	13.23

$$\overline{x} = \frac{\sum f x}{\sum f}$$

$$\overline{x} = \frac{3+8+24+8+15}{20}$$

$$= \frac{58}{20} = 2.9$$

$$\sum f = 20 \qquad \sum f (x - \bar{x})^2 = 29.80$$

$$S^2 = \frac{\sum f (x - \bar{x})^2}{\sum f} = \frac{29.28}{20} = 1.49$$

$$S = \sqrt{1.49} = 1.22$$

முறை II

X	f	x ²	$f x^2$
1	3	1	3
2	4	4	16
3	8	9	72
4	2	16	32
5	3	25	75

$$\overline{x} = \frac{\sum f x}{\sum f}$$

$$= 2.9$$

$$\sum f = 20 \qquad \sum f x^2 = 198$$

$$S^2 = \frac{\sum f x^2}{\sum f} - \overline{x}^2$$

$$= \frac{198}{20} - (2 \cdot 9)^2$$

$$= 1 \cdot 49$$

$$S = \sqrt{1 \cdot 49} = 1 \cdot 22$$

கூட்டமாக்கப்பட்ட தரவுகளின் நியமவிலகலைக் கணித்தல்

உதாரணம் 15

கம்பித் துண்டுகளின் நீளங்கள் கிட்டிய மில்லி மீற்றரில் அளக்கப்பட்டு கீழே அட்டவணைப்படுத்தப்பட்டுள்ளது. நீளங்களின் இடையையும், நியம விலகலையும் காண்க.

நீளம் (mm)	20 - 22	23 - 25	26 - 28	29 - 31	32 – 34
மீடிறன்	3	6	12	9	2

20 – 22 ஆயிடையின் கீழ் எல்லைப் பெறுமானம் 19.5 மேல் எல்லைப் பெறுமானம் 22.5 வகுப்பாயிடைகள் எல்லாம் சமமானவை. ஒவ்வொரு வகுப்பாயிடையினதும் பரும

வகுப்பாயிடைகள் எல்லாம் சமமானவை. ஒவ்வொரு வகுப்பாயிடையினதும் பருமன் 3 ஆகும்.

நீளம் (mm)	f	நடுப்புள்ளி x	x ²	f x.	$f x^2$
20 – 22	3	21	441	63	1323
23 – 25	6	24	576	144	3456
26 – 28	12	27	729	324	8748
29 – 31	9	30	900	270	8100
32 - 34	2	33	1089	66	2178
	$\sum f = 32$			$\sum f x = 867$	$\sum f x^2 = 2380$

$$2 \text{ (SOL } \bar{x} = \frac{\sum f x}{\sum f} = \frac{867}{32} = 27.1$$

நியமவிலகல்
$$S=\sqrt{\dfrac{\sum f\,x^2}{\sum f}-\overline{x}^2}$$

$$=\sqrt{\dfrac{23805}{32}-\left(\dfrac{867}{32}\right)^2}$$

$$=3.14$$

நீளங்களின் இடை 27.1 mm உம் நியமவிலகல் 3.14 mm உம் ஆகும்.

மேலே தரப்பட்ட வினாவை நாம் x = a + by என்ற பிரதியீட்டு முறையில் இலகுவாகக் கணிக்கலாம்.

$$x = a + by$$

எனவே,
$$y = \frac{x-a}{b}$$
 ; $a-$ உத்தேசித்த இடையும்

b - வகுப்பாயிடையின் பருமனும் ஆகும்.

$$x = a + by$$
 எனின் $\bar{x} = a + b\bar{y}$ என நிறுவியுள்ளோம்.

$$S = b \sqrt{\frac{\sum f y^2}{\sum f} - \overline{y}^2}$$

நீளம் (mm)	ſ	நடுப்புள்ளி	d	fd	$\int d^2$
20 – 22	3	21	-2	-6	12
23 – 25	6	24	-1	-6	6
26 – 28	12	27	0	0	0
29 – 31	9	30	1	9	9
32 - 34	2	33	2	4	8
	$\sum f = 32$			$\sum f d=1$	$\sum f d^2 = 3$

இங்கு y ஆனது d எனக் குறிக்கப்பட்டுள்ளது. $a=27,\ b=3$

$$\overline{x} = 27 + 3 \frac{\sum f d}{\sum f}$$

$$= 27 + \frac{3 \times 1}{32}$$

$$= 27 \cdot 1$$

$$S = b\sqrt{\frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2}$$
$$= 3\sqrt{\frac{35}{32} - \left(\frac{1}{32}\right)^2}$$
$$= 3\sqrt{1.092} = 3 \times 1.045 = 3.14$$

மாறற்றிறன் (Variance)

மாறற் குணகம் (Coefficient of Variation)

இரு வெவ்வேறு பரம்பல்கள் மாறும் தன்மையை ஒப்பிடுவதற்கு மாறற் குணகம் பயன்படுத்தப்படுகிறது.

உதாரணம் 16

30 எண்களின் இடை 27 உம், நியமவிலகல் 5.6 உம் ஆகும். வேறு 40 எண்களின் இடை 33 உம், நியம விலகல் 6.4 உம் ஆகும். 70 எண்களின்தும் இடையையும் நியம விலகலையும் காண்க.

30 எண்களினதும் கூட்டுத்தொகை = 30 x 27 = 810 40 எண்களினதும் கூட்டுத்தொகை = 40 x 33 = 1320

70 எண்களினதும் இடை
$$=\frac{810+1320}{70}$$
 $=\frac{2130}{70}=30.4$

30 எண்களினதும் நியமவிலகல் = 5.6

மாறற்றிறன் =
$$(5 \cdot 6)^2 = \frac{\sum x^2}{30} - 27^2$$

40 எண்களின் நியமவிலகல் 6.4

ယားစွာတိုက်တော်
$$= (6 \cdot 4)^2 = \frac{\sum y^2}{40} - 33^2$$

$$\sum Z^2 = \sum x^2 + \sum y^2 = 30 \left[27^2 + (5 \cdot 6)^2 \right] + 40 \left[33^2 + (64)^2 \right]$$

$$= 68009 \cdot 2$$

$$\sigma_Z^2 = \frac{\sum Z^2}{70} - (30 \cdot 4)^2$$

$$= \frac{68009 \cdot 2}{70} - (30 \cdot 4)^2$$

$$\sigma_Z = 6 \cdot 8$$

உதாரணம் 17

- (a) 4, 6, 12, 4, 10, 12, 3, x, y ஆகிய எண்களின் இடை 7 உம், ஆகாரம் 4 உம் ஆகும். (i) x, y இன் பெறுமானங்களைக் காண்க.
 - (ii) ஒன்பது எண்களினதும் இடையத்தைக் காண்க.
 - (iii) மேலேயுள்ள ஒன்பது எண்களுடனும் 7+n, 7-n ஆகிய எண்கள் சேர்க்கப்பட்ட போது, பதினொரு எண்களினதும் நியம விலகல் 4 எனின், n இன் பெறுமானத்தைக் காண்க.
- (b) ஒரு வகுப்பிலுள்ள மாணவர்கள் கணிதத்திலும் ஆங்கிலத்திலும் பெற்ற புள்ளிகளின் இடை, நியமவிலகல் என்பன அட்டவணையில் தரப்பட்டுள்ளன

	இடை	நியமவிலகல்
கணிதம்	m	12
ஆங்கிலம்	53	s

ஒவ்வொரு பாடத்திலும் பெற்ற புள்ளிகள் 50 ஐ இடையாகவும் 15 ஐ நியமவிலகலாககவும் கொண்ட அளவத் திட்டத்திற்கு ஏக பரிமாணமாக மாற்றப்பட்டது. குறித்த மாணவரொருவரின் ஆரம்பப் (மூலப்) புள்ளியும், மாற்றப்பட்ட புதிய புள்ளியும் தரப்பட்டுள்ளது. *m* ஐயும் s ஐயும் காண்க.

	மூலப்புள்ளி	புதிய புள்ளி
கணிதம்	40	40
ஆங்கிலம்	61	56

(a) 4, 6, 12, 4, 10, 12, 3, x, y

(i) **QSOL**
$$7 = \frac{x + y + 51}{9}$$

 $x + y = 12$

ஆகாரம் 4 ஆதலால் x அல்லது y, 4 ஆக இருத்தல் வேண்டும் (ஏனெனில் x, y தவிர்ந்த ஏனைய 7 எண்களிலும் 4, 12 என்பன இருதடவைகள் தோன்றுகின்றன)

$$x = 4$$
 எனின் $y = 8$

$$y = 4$$
 எனின் $x = 8$

(II) ஒன்பது எண்களையும் ஏறு வரிசையில் ஒழுங்குபடுத்த 3, 4, 4, 4, 6, 8, 10, 12, 12 இடையம் 6 ஆகும்.

(iii) 11 எண்களினதும் இடை =
$$\frac{63 + 14}{11}$$
 = 7

(நியம விலகல்)² =
$$\sum \frac{(x-\overline{x})^2}{n}$$

$$16 = \frac{16 + 9 + 9 + 9 + 1 + 1 + 9 + 25 + 25 + n^2 + n^2}{11}$$

$$\Rightarrow$$
 $2n^2 = 72$

$$n^2 = 36$$

$$n = \pm 6$$

(b) கணிதத்தில் பெற்றபுள்ளிகள்

y = a x + b எனும் ஏகபரிமாணத் தொடர்பினால் மாற்றப்படுகிறது என்க.

இப்பொழுது
$$\overline{y} = a\overline{x} + b$$

$$\sigma_y = a\sigma_x$$

$$y = ax + b \implies 40 = 40a + b \tag{1}$$

$$\overline{y} = a\overline{x} + b \Rightarrow 50 = ma + b$$
 (2)

$$\sigma_y = a\sigma_x \Rightarrow 15 = 12a$$
 (3)

- (3) இலிருந்து $a = \frac{5}{4}$
- (1) இலிருந்து b = -10
- (2) இலிருந்து m = 48

ஆங்கிலத்தில் பெற்ற புள்ளிகள் x=ct+d எனும் ஏகபரிமாணத்தொடர்பினால் மாற்றப்படுகிறது என்க.

$$\overline{Z} = c\overline{t} + d$$

$$\sigma_Z = cZ_t$$

$$Z = ct + d \Rightarrow 56 = 61c + d \qquad ---- (4)$$

$$\overline{Z} = c\overline{t} + d \Rightarrow 50 = 53c + d$$
 (5)

$$\sigma_Z = cZ_T \Rightarrow 15 = c \cdot s$$
 (6)

$$(4)$$
, (5) இலிருந்து, $c = \frac{3}{4}$

(6) இலிருந்து, s = 20

உதாரணம் 18

 $n_1,\ n_2$ பருமன்களையுடைய இரு தொடைப் பெறுமானங்களின் இடைகள் முறையே $\overline{x}_1,\ \overline{x}_2$ உம், மாறற்றிறன்கள் முறையே σ_1^2,σ_2^2 உம் ஆகும். (n_1+n_2) பருமனுடைய இரு தொடைகளினதும் பெறுமானங்களின் மாறற்றிறன் σ^2 ஆனது $(n_1+n_2)\sigma^2=n_1\sigma_1^2+n_2\sigma_2^2+\frac{n_1\,n_2}{(n_1+n_2)}\,(\overline{x}_1-\overline{x}_2)^2$ என்பதால் தரப்படுமெனக் காட்டுக.

$$\sigma_1^2 = \frac{\sum x^2}{n_1} - \bar{x}_1^2 \quad (1)$$

$$\sigma_2^2 = \frac{\sum y^2}{n_2} - \bar{x}_2^2 \quad ----- (2)$$

$$(1) \Rightarrow \sum x^2 = n_1 \sigma_1^2 + n_1 \overline{x}_1^2 \qquad ----- (A)$$

(2)
$$\Rightarrow \sum y^2 = n_2 \sigma_2^2 + n_2 \overline{x}_2^2 - B$$

$$\sum x^2 + \sum y^2 = n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 \overline{x}_1^2 + n_2 \overline{x}_2^2$$

வரைவிலக்கணத்திலிருந்து,

$$\sigma^{2} = \frac{\sum x^{2} + \sum y^{2}}{n_{1} + n_{2}} - \left(\frac{n_{1} \overline{x}_{1} + n_{2} \overline{x}_{2}}{n_{1} + n_{2}}\right)^{2}$$

$$= \frac{n_{1} \sigma_{1}^{2} + n_{2} \sigma_{2}^{2} + n_{1} \overline{x}_{1}^{2} + n_{2} \overline{x}_{2}^{2}}{n_{1} + n_{2}} - \frac{(n_{1} \overline{x}_{1} + n_{2} \overline{x}_{2})^{2}}{(n_{1} + n_{2})^{2}}$$

$$(n_1 + n_2) \sigma^2 = n_1 \sigma_1^2 + n_2 \sigma_2^2 + \frac{(n_1 + n_2) (n_1 \overline{x}_1^2 + n_2 \overline{x}_2^2) - (n_1 \overline{x}_1 + n_2 \overline{x}_2)^2}{(n_1 + n_2)}$$

$$= n_1 \sigma_1^2 + n_2 \sigma_2^2 + \frac{n_1 n_2 (\overline{x}_1 - \overline{x}_2)^2}{(n_1 + n_2)}$$

உதாரணம் 19

(a) முன்று மாத காலத்தில் நிறுவனம் ஒன்றிலிருந்து பெறப்பட்ட தொலைபேசி அழைப்புக்களும், அவற்றின் காலங்களும் பின்வரும் திரள் மீடிறன் அட்டவணையில் தரப்பட்டுள்ளன.

தொலைபேசி அழைப்புக்களின் காலம் (நிமிடங்கள்)	அழைப்புக்களின் எண்ணிக்கை
≤ 1	20
≤ 2	67
$\leq 2\frac{1}{2}$	118
≤ 3	177
≤ 5	315
≤ 10	400

- இதற்கு ஒத்த மீடிறன் பரம்பல் அட்டவணை ஒன்று தயாரிக்குக.
- (ii) இடையத்தை மதிப்பிடுக.
- (b) பின்வரும் மீடிறன் பரம்பலின் நியம விலகலைக் காண்க.

x	25	26	27	28
f	2	0	15	11

(a)

அழைப்புக்களின் காலம்	அழைப்புக்களின் எண்ணிக்கை
01	20
1 2	47
22 ½	51
2 ½ 3	59
3 5	138
4 ———10	85

இங்கு 1—2 என்பது $1 < t \le 2$ ஆகும்.

இடையம் 200 ஆவது ஈட்டுக்குரிய பெறுமானம்

$$= 3 + \frac{2}{138} \times 23$$

 $= 3\frac{1}{3}$ நிகிடங்கள்.

х	f	d	fd	$\int d^2$
25	2	-2	-4	8
26	0	-1	0	0
27	15 .	0	0	O O
28	11	1	11	11

$$\sum f d^2 = 19$$

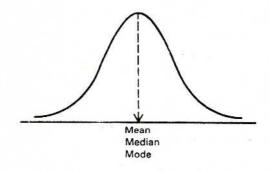
$$\sum f d = 7$$

$$\sum f = 28$$

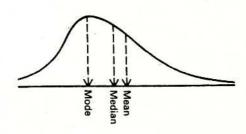
உத்தேசித்த இடை 27 என்க.

$$\sigma = \sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2}$$

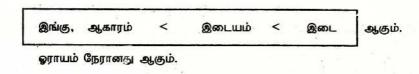
$$= \sqrt{\frac{19}{28} - \left(\frac{7}{28}\right)^2}$$


$$= \sqrt{\frac{19}{28} - \frac{1}{16}} = \sqrt{\frac{69}{112}} = \sqrt{0.616} = 0.785$$

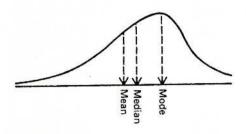
பரம்பலின் வடிவங்கள் (shapes of distributions)


1. மணிவடிவ சமச்சீர்ப்பரம்பல் (symmetrical bell shaped distributions)

சமச்சீர்ப் பரம்பல்களில் இடை, இடையம், ஆகாரம் மூன்றும் ஒரே பெறுமானங்களைக் கொண்டிருக்கும். இவ்வகையான பரம்பவ்கள் செவ்வன் பரம்பல்கள் எனவும் அழைக்கப்படும்.


உ + ம். வகுப்போன்றிலுள்ள மாணவாகள் பெற்ற புள்ளிகள், உயரம், நிறை என்பன இப்பரம்பலில் அமைந்திருப்பதை அவதானிக்கலாம்.

2. நேரான ஓராயமான பரம்பல்கள் (Positively skewed distributions) இப்பரம்பலில், அதீத பெறுமானங்கள் (extreme values) பரம்பலின் நேர்த்திசையின் முடிவில் காணப்படும். இதனால் பரம்பலின் இடையானது, வலது பக்கத்திற்குத் தள்ளப்படும். நேரான ஓராய பரம்பலொன்றின், இடை, நேர்த்திசையை நோக்கி (→) இழுக்கப்பட்டிருப்பதைக் காணலாம். பரம்பல் மீடிறன் வளையி பின்வருமாறு அமைந்திருக்கும்.

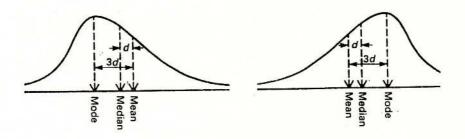


- இப் பரம்பலுக்கு உதாரணங்கள்
- (i) குடும்பம் ஒன்றிலுள்ள பிள்ளைகளின் எண்ணிக்கை.
- (ii) நிறுவனம் ஒன்றிலுள்ள ஊழியர்களின் சம்பளம்.

3. மறையான ஓராயமான பரம்பல் (Negatively skewed distribution)

மறையான ஓராயா பரம்பலொண்றில், இடையானது மறைத்திசையில் தள்ளப்பட்டு (←) இருக்கும் மீடிறன் வளையி பின்வருமாறு அமைந்திருக்கும்.

இங்கு இடை < இடையம் < ஆகாரம் ஆகும்.

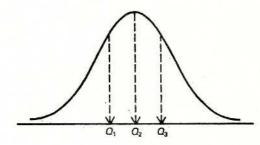

பியர்சனின் ஓராயக் குணகம் (Pearson's coefficient of skewness)

ஓராயத்தின் அளவை அளப்பதற்கு பியர்சனின் ஓராயக் குணகம் பயன்படுத்தப்படுகிறது.

- (i) இடை > ஆகாரம் எனின், ஓராயம் நேரானது
- (ii) இடை < ஆகாரம் எனின் ஓராயம் மறையானது
- (iii) இடை = ஆகாரம் எனின் ஓராயம் பூச்சியம். ஆதாவது பரம்பல் சமச்சீரானது.

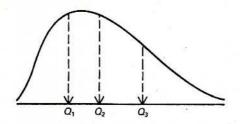
பொதுவாக ஓராயக் குணகம் - 3 க்கும் + 3 க்குமிடையிலுள்ள எந்த பெறுமானத்தையும் எடுக்கும்.

இடை - ஆகாரம்
$$\approx 3$$
 (இடை - இடையம்) என்பதால், பியர்சனின் ஓராயக்குணகம் $\approx \frac{3 \, (\text{இடை - இடையம்})}{\text{நியமவிலகல்}}$ ஆகும்.


காலணை ஓராயக்குணகம் (Quartile coefficient of skewness) பீயர்சனின் ஓராயக் குணகம், இடை, ஆகாரம், நியமவிலகல் என்னும் அளவீடுகளால் தொடர்புபடுத்தப்பட்டுள்ளது. இது தவிர இன்னொரு வகையான குணகம், முதலாம் காலணை (Q_1) , இரண்டாம் காலணை (Q_2) , மூன்றாம் காலணை (Q_3) என்பவற்றால் தொடர்புபடுத்தப்பட்டுள்ளது.

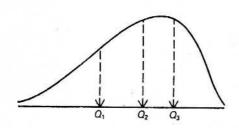
காலணை ஓராயக்குணகம்
$$=\frac{(Q_3-Q_2)-(Q_2-Q_1)}{Q_3-Q_1}$$

$$=\frac{Q_3-2\,Q_2+Q_1}{Q_3-Q_1}$$


சமச்சீரான பரம்பல்

இங்கு
$$Q_3 - Q_2 = Q_2 - Q_1$$

 \therefore குணகம் = 0


நேரான ஓராயமான பரம்பல்

இங்கு
$$Q_3 - Q_2 > Q_2 - Q_1$$

 \therefore குணகம் > 0

மறையான ஓராயமான பரம்பல்

இங்கு
$$Q_3 - Q_2 < Q_2 - Q_1$$

 \therefore குணகம் < 0

தண்டு - இலை வரைபடம் (Stem and leaf diagrams)

தரவுகளைத் தண்டு - இலை வடிவில் குறித்தல் மிகவும் பயனுள்ளதாகும். பின்வரும் உதாரணத்தில் 35 மாணவர்கள் பெற்ற புள்ளிகள் தரப்பட்டுள்ளன.

45	69	84	17	38	45	30	12	47
53	76	54	75	22	54	25	27	36
66	65	18	89	66	65	55	61	54
51	33	39	19	54	72	70	74	

இப்பரம்பலில் மிகவும் குறைந்த புள்ளி 12 உம், அதி உயர் புள்ளி 89 உம் ஆகும். 10 - 19, 20 - 29, 30 - 39 என்ற வகுப்பா<mark>யி</mark>டையை எடுத்து நோக்குவோம்.

இங்கு பத்தினிடத்து இலக்கத்தைத் தண்டு (stem) ஆகவும், ஒன்றினிடத்து இலக்கத்தை இலை (leaf) ஆகவும் கொண்டு, தரப்பட்ட ஈட்டுக்களைக் குறிக்கும் முறையைப் பார்ப்போம்.

தண்டு	இலை
1	7
2	
3	8
4	5 5
5. 6 7 8	
6	9
7	1
8	4

இவ்வாறு குறிக்கப்பட்ட பூரணப்படுத்தப்பட்ட வரைபடம்

தண்டு	200	തസ					
1	7	2	8	9	_		
2	2	5	7				
3	8	0	6	3	9		
4	5	5	7				
5	3	4	4	5	4	1	4
6	9	6	5	6	5	1	
7	6	5	2	0	4		
8	4	9					

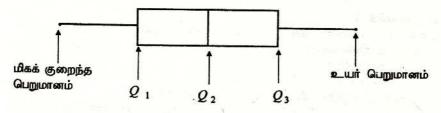
இதன் பின்னர் இலையின் ஒவ்வொரு நிரலிலுமுள்ள பெறுமானங்களை வரிசைப்படி எழுதும்போது வரைபடம் பின்வருமாறு அமையும்.

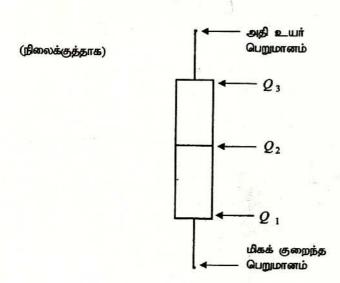
2						
	7	8	9			
2	5	7				
0	3	6	8	9		
5	5	7				
1	3	4	4	4	4	5
1	5	5	6	6	9	
0	2	4	5	6		
4	9				1/	/2 என்பது 12
	0 5 1 1 0 4	5 5 1 3 1 5 0 2	5 5 7 1 3 4 1 5 5 0 2 4	5 5 7 1 3 4 4 1 5 5 6 0 2 4 5	5 5 7 1 3 4 4 4 1 5 5 6 6 0 2 4 5 6	5 5 7 1 3 4 4 4 4 1 5 5 6 6 9 0 2 4 5 6

பரம்பலின் ஆகாரம் 54 ஆகும். இப் பரம்பலின் வீச்சு 89 – 12 = 77

இடையம்
$$(Q_2) = \frac{1}{2}(35+1)$$
 ஆவது ஈட்டு = 18 ஆவது ஈட்டு = 54

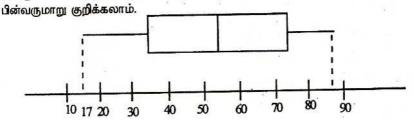
முதலாம் காலணை
$$(Q_1) = \frac{1}{4} (35 + 1)$$
 ஆவது ஈட்டு $= 9$ ஆவது ஈட்டு $= 33$


மூன்றாம் காலணை (
$$Q_3$$
) = $\frac{3}{4}$ (35 + 1) ஆவது ஈட்டு = 27 ஆவது ஈட்டு = 66


பெட்டி வரைபடம் (box and whisker diagram / box plot)

இவ் வரைபடம் பரம்பலின் விலகலை விளக்குகிறது. இப் படத்தினை வரைய பின்வரும் அளவீடுகள் பயன்படுத்தப்படுகின்றன. பரம்பலின்

- (i) மிகக் குறைந்த பெறுமானம் .
- (ii) அதி கூடிய பெறுமானம்
- (iii)முதலாம் காலணை (Q_1)
- (iv)இரண்டாம் காலணை / இடையம் (Q_2)
- (v) முன்றாம் காலணை (Q_i)


இவ்வரைபடம் கிடையாக அல்லது நிலைக்குத்தாக வரையலாம் (கிடையாக)

இங்கு Q_1 இலிருந்து Q_3 வரையுள்ள பெட்டியினுள் பரம்பலின், 50% தரவுகள் அடங்கியுள்ளன. Q_1 இற்கு இடது பக்கத்தில் / கீழ் பரம்பலின் முதல் 25% தரவுகளும் Q_3 இற்கு வலது பக்கத்தில் / மேல் பரம்பலின் உயர் 25% தரவுகளும் அடங்கியுள்ளன.

இங்குள்ள உதாரணத்தில் தரப்பட்டுள்ள தரவுகளை பெட்டி வரைபொன்றில்

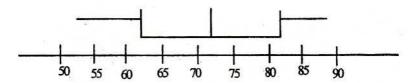
உதாரணம் 1 பின்வரும் தரவுகளைத் தண்டு - இலை வரைபில் குறித்துக் காட்டுக. பரம்பலின் இடையம் காலணைகள் எள்பவற்றைக் காண்க. தரவுகளை வகைகுறிக்கப் பெட்டி வரைபு ஒன்று வரைக.

30 மனிதர்களின் நிறை கிட்டிய Kg இல் தரப்பட்டுள்ளன. (50 – 54, 55 – 59, 60 – 64,என்றவாறு வகுப்பாயிடையை எடுக்க)

74	52	67	68	71	76	86	81
73	68	64	75	71	57	67	57
59	72	79	64	70	74	77	79
65	68	76	83	61	63		

தண்டு	இலை
5	2
5	779
6	4 4 1 3
6	7 8 8 7 5 8.
7	4 1 3 1 2 0 4
7	6 5 9 7 9 6
8	1 3
8	⁶ 94

வரிசைப்படி	ஒழுங்கு ^{தண்டு}		ப മെல	வம	தவ	ف				
	5	2								
	5	7	7	9						
	6	1	3	4	4					
	6	5	7	7	8	8	8			
	7	0	1	1	2	3	4	4		
	7	5	6	6	7	9	9			
	8	1	3							
	8	6				5/	2 6	eiu ia	ы 52	7


இப் பரம்பவின் ஆகாரம் 68

$$=15.5$$
 ஆவது ஈட்டு
$$=70+\frac{1}{2}(71-70)=70.5$$
 $Q_1=\frac{1}{4}(30+1)$ ஆவது ஈட்டு
$$=7\frac{3}{4}$$
 ஆவது ஈட்டு
$$=64+\frac{3}{4}\times 0=64$$
 $Q_3=\frac{3}{4}(30+1)$ ஆவது ஈட்டு
$$=23\frac{1}{4}$$
 ஆவது ஈட்டு

இடையம் = $\frac{1}{2}$ (30 + 1) ஆவது ஈட்டு

பரம்பலின் மிகக் குறைந்த பெறுமானம் 52. பரம்பலின் அதி கூடிய பெறுமானம் 86.

 $= 76 + \frac{1}{4} (77 - 76) = 76.25$

மேலே தரப்பட்ட தரவுகளை தண்டு இலை வரைபில் வேறொரு முறையிலும் குறிக்கலாம். இங்கு வகுப்பாயிடையை கருத்திற் கொண்டு 50, 55, 60, 65 என்பவற்றைத் தண்டுகளாக உபயோகிக்கலாம். இப்பொழுது 52 என்பதை 50+2 என எடுத்து 2 ஐ இலையின் கீழ் எழுத வேண்டும்.

தண்டு	200	തസ					
50	2				_		
55	2	2	4				
55 60	4	4	1	3			
65	2	3	3	2	0	3	
70	4	1	3	1	2	0	4
75	1	0	4	2	4	1	
80	1	3					
85	1						

வரிசைப்படி	ஒழுங்கு தண்டு	படுத்திய இணை		வட	ழவ	ம்		
	50	2						
	55	2 2	2	4				
	60	1 3	3	4	4			
	65	0 :	2	2	3	3	3	
	70	0	1	1.	2	3	4	4
	75	0	1	1	2	4	4	
	80	1 3	3					
	25	1						

50/2 என்பது 52 55/4 என்பது 59

உதாரணம் 2

மிகக் குறைந்த பெறுமானம்

A, B என்னும் இரு பாடசாலைகளில் கற்பிக்கும் ஆசிரியர்களின் வயதுகள் கீழே தரப்பட்டுள்ளன. இரு தரவுகளுக்குமான தண்டு - இலை வரைபுகளை பின்-முன்னாக (back to back) வரைக. (20-29, 30-39, 40-49, வகுப்பாயிடையை எடுக்க)

UITL	சாலை	A :						
51	45	33	37	37	27	28	54	54
61	34	31	39	23	53	59	40	46
48	48	39	33	25	31	48	40	53
51	46	45	45	48	39	29	23	37
பாட	சாலை	В:						
59	56	40	43	46	38	29	52	54
34	23	41	42	52	50	58	60	45
45	56	59	49	44	36	38	25	56
36	42	47	50	54	59	47	58	57

u	ав	i d)Din			Ψ,				61				60							
						பாடசாலை В							ШΠ	டச	п өө.) ຄ	A							
													2										- 30	
								6	8	6	4	8	3	3	7	7	4	1	9	9	3	1	9	7
	7	7	2	ó	1	5	5	2	1	6	3	0	4	5	0	6	8	8	8	0	6	5	5	8
8	9	4	0	6	9	6	8	0 2	2 4	2	6		5											
												0	6	1										

A இல்

23

B இல்

23

97

						U	пL	₹∏6	ซด) B	1						ı	UITL	_ & F	തെ	N A	ſ			
	-									9	5		3	2	3	3	5	7	8	9	-			- 9	•
								8	8	. 6	•	5	4	3	1	1	3	3	4	7	7	7	9	9	9
ç	9	7	7	6	5	5	4	3	3	2	2	1	0	4	0	0	5	5	5	6	6	8	8	8	8
.9 9	9	9	8	8	7	6	6	6	4	4	2	2	۰,0	5	1	1	3	3	4	4	9				
		Ī				லை ன்ப		23					0	6	1						ை எப்பத		3		

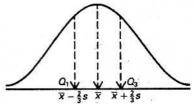
குறிப்பு :

- (1) தண்டு இலை வரைபு வரைவதற்கு வகுப்பாயிடைகள் எல்லாம் சமமாக இருத்தல் வேண்டும்.
- (2) தண்டு இலை வரைபிற்கு வழிகாட்டும் குறிப்பு (key) கொடுக்கப்பட வேண்டும்.

வெளிக்கிடக்கைகளை இனம்காணல் (Identitying "outliers")

சில சந்தர்ப்பங்களில் தரப்பட்ட தரவுகளில் மிகப்பெரிய அல்லது மிகச் சிறிய பெறுமானங்கள் காணப்படும்.

செவ்வன் பரம்பலொன்றில், Q_1 , Q_3 என்பன இடையிலிருந்து, 2/3 நியம விலகல் தூரத்திலிருக்கும். (அண்ணளவாக)

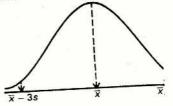

அதாவது
$$Q_1 = \overline{x} - \frac{2}{3} s$$

$$Q_3 = \overline{x} + \frac{2}{3} s$$

செவ்வன் பரம்பலில் $Q_2=\overline{x}$

$$(\bar{x}-$$
இடை, S - நியம விலகல்)

காலணை இடைவீச்சு = $Q_3 - Q_1$



$$= \left(\overline{x} + \frac{2}{3} s\right) - \left(\overline{x} - \frac{2}{3} s\right)$$
$$= \frac{4}{3} S$$

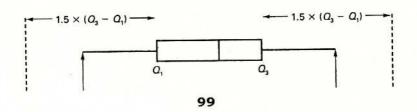
மேலும் செவ்வன் பரம்பலொன்றில் $\overline{x} - 3s$ இற்கும் $\overline{x} + 3s$ இற்குமிடையும் அநேகமாக எல்லாப் பெறுமானங்களும் உள்ளன.

இப்பொழுது $1\cdot 5 imes (Q_3 - Q_1)$ ஐக் கருதுக.

$$1.5 \times (Q_3 - Q_1) = \frac{3}{2} \times \frac{4}{3}s = 2s$$

Q₃ இலிருந்து வலதுபக்கமாக 2s தூரம்

 $=\overline{x}$ இலிருந்து வலதுபக்கமாக $2\frac{2}{3}S$ தூரம்


 $\overline{x}-2\frac{2}{3}s$ \overline{x} $\overline{x}+2\frac{2}{5}s$

இவ்வாறே Q_1 இலிருந்து இடதுபக்கமாக 2s $\overline{x}-2\frac{2}{3}$ தூர $\dot{\mathbf{p}}=\overline{x}$ இலிருந்து இடதுபக்கமாக $2^2\sqrt{3}$ தூர $\dot{\mathbf{p}}$

$$\bar{x} - 2\frac{2}{3}S$$
 இற்குக் கீழே அல்லது $\bar{x} + 2\frac{2}{3}S$ இற்கு

மேலே உள்ள பெறுமானங்கள் இருப்பதற்கான நிதழ்தகவு மிகக் குறைவாகையால் இப் பெறுமானங்களைப் புறக்கணிக்கலாம். இப்பெறுமானங்கள் "வெளிக்கிடக்கைகள்" (outliers) எனப்படும்.

 Q_3 இற்கு மேலே 1.5 (Q_3-Q_1) இற்கு வெளியில் இருக்கும் புள்ளிகளும் Q_1 இற்கு கீழே 1.5 (Q_3-Q_1) இற்கு வெளியில் இருக்கும் புள்ளிகளும் வெளிக்கிடக்கைகள் எனப்படும்.

பயிற்சி 1

- (a) 4 எண்களின் இடை 5 ஆகும். வேறு 3 எண்களின் இடை 12 ஆகும். 7 எண்களினதும் இடையைக் காண்க.
 - (b) n எண்களின் இடை 5. இவ்வெண்களுடன் 13 என்ற எண் சேர்க்கப்படும் போது புதிய இடை 6 எனின், n இன் பெறுமானத்தைக் காண்க.
- 2. பை ஒன்றினுள் 5 பந்துகள் உள்ளன. ஒவ்வொன்றிலும் 1, 2, 3, 4, 5 ஆகிய எண்களுள் ஒரு எண் குறிக்கப்பட்டுள்ளது. பையிலிருந்து பந்தொன்று எழுமாற்றாக எடுக்கப்பட்டு பந்தில் காணப்படும் எண் குறிக்கப்பட்ட பின் பந்து மீண்டும் பையினுள் போடப்படுகிறது. இவ்வாறு 50 தடவைகள் செய்யப்பட்டுப் பேறப்பட்ட முடிவு பின்வரும் மீள்திறன் பரம்பலில் தரப்பட்டுள்ளது.

எண்	1	2	3	4	5
மீடிறன்	x	11	у	8	9

இப்பரம்பலின் இடை 2.7 எனின் x, y ஐக் காண்க.

பின்வரும் பரம்பல் ஒவ்வொன்றினதும் இடையைக் காண்க.
 (உத்தேசித்த இடையை உபயோகித்துக் காண்பது இலகுவானது)

х	27	28	29	30	31	32
f	30	43	51	49	32	35

(ii)	x	121	122	123	124	125
	74					
	f	14	25	32	23	6

(i	ii)

1		
	ஆயிடை	f
322	5-9	4
	10 - 14	6
	15 - 19	12
	20 - 24	10
	25 - 29	7
	30 – 34	1

(iv)

ஆயிடை	f
101 – 104	13
105 108	18
109 - 112	21
113 – 116	12
117 - 120	6

- 4. 2, 3, 6, 9 ஆகிய நான்கு எண்களினதும் இடையையும் நியம விலகலையும் காண்க. a, b எனும் இரு எண்கள் சேர்க்கப்பட்ட இடை 1 இனாலும் மாறற்றிறன் 2.5 ஆலும் அதிகரித்தது. a,b ஐக் காண்க.
- 5. ஏக பரிமாண சார்பு f(x) = ax + b, $X = \{1, 2, 3, 5, 8, 11\}$ என்ற தொடையிலுள்ள மூலகங்களை தொடை Y இற்கு மாற்றுகிறது. f(5) = 13, f(1) = 5 எனின்
- (a) f ஐக் காண்க.
- (b) X இன் இடையையும், மாறற்றிறனையும் காண்க.
- (c) இதிலிருந்து Y இன் இடையையும், மாறற்றிறனையும் காண்க. இப்பொழுது X இலுள்ள மூலகங்களுடன் k என்ற மூலகம் சேர்க்கப்படப் பெறப்படும் புதிய தொடை Z இன் இடை, X இன் இடையிலும் 3 கூடியதெனின்
- (d) k இன் பெறுமானத்தைக் காண்க.
- (e) Z இன் மாறற்றிறனைக் காண்க.
- 1, 2, 3, 4, 5, 6, 7 ஆகிய நிறை எண்களின் நியம விலகல் 2 எனக்காட்டுக. இம்முடியினை உபயோகித்து தரப்பட்டுள்ள எண்களின் நியம விலகலைக் காண்க.
- (a) 101, 102, 103, 104, 105, 106, 107.
- (b) 100, 200, 300, 400, 500, 600, 700.
- (c) 2.01, 3.02, 4.03, 5.04, 6.05, 7.06.
- (d) இடை 5 ஆகவும் நியம விலகல் 6 ஆகவும் கொண்ட ஏழு எண்களை எழுதுக.
- 7. (a) ஒரு தொடை எண்களின் இடை 22 உம் நியமவிலகல் 6 உம் ஆகும். ஒவ்வொரு எண்ணுடனும் 3 கூட்டப்பட்டு பெறப்படும் எண் இரட்டிக்கப்படுகிறது. பெறப்பட்ட புதிய எண்களின் இடை, நியம விலகல் என்பவற்றைக் காண்க.
 - (b) 20 போ விளையாட்டு ஒன்றில் பங்குபற்றினர். அவர்கள் பெற்ற புள்ளிகள் கீழே தரப்பட்டுள்ளன.

புள்ளிகள்	1	2	4	ж
பங்குபற்றினோர் எண்ணிக்கை	2	5	7	6

அவர்கள் பெற்ற புள்ளிகளின் இடை 5 எனின்

- (i) x இன் பெறுமானத்தையும்
- (ii) பரம்பலின் மாறற்றிறனையும் காண்க.
- (c) பரீட்சை ஒன்றில் மாணவர்கள் பெற்ற புள்ளிகளின் இடை 45 ஆகும். இப்புள்ளிகள் இடை 50 உம், நியமவிலகல் 15 உம் கொண்ட அளவுத் திட்டத்திற்கு மாற்றப்பட்டது. ஆரம்பப் புள்ளி 70 எடுத்த மாணவன், புதிய அளவுத் திட்டத்தில் 80 பெற்றான் எனின்
 - (i) ஆரம்பப் புள்ளிகளின் நியமவிலகல்
 - (ii) இவ்வளவுத்திட்டத்தினால் மாற்றமடையாத புள்ளி ஆகியவற்றைக் கணிக்க.

புதிய அளவுத் திட்டத்தில் உயர் பெறுமானம் 92 உம், இழிவுப் பெறுமானம் 2 உம் எனின், அவற்றிற்கொத்த ஆரம்பப் புள்ளிகளைக் காண்க.

- ஒரு தொடை எண்களின் இடை μ உம், நியமவிலகல் σ உம் ஆகும். பின்வரும் ஒவ்வொரு வகையிலும், இடையினதும், நியம விலகலினதும் புதிய பெறுமானங்களை எழுதுக.
 - ஒவ்வொரு எண்ணும் с யினால் அதிகரிக்கப்படுகிறது.
 - (ii) ஒவ்வொரு எண்ணும் மாறிலி k இனால் பெருக்கப்படுகிறது.

ஒரு தொகுதி மாணவர்கள் கணிதம், இரசாயனம் ஆகிய இரு பரீட்சைகளுக்குத் தோற்றினர். அவர்களின் புள்ளிகளை ஒப்பிடுவதற்காக. கணிதபாடப் புள்ளிகள், இரசாயன பாடப் புள்ளிகளின் இடையையும், நியம விலகலையும் கொண்டிருக்கத்தக்கதாக ஏகபரிமாண அளவத் திட்டத்தினால் $(x \to ax + b; a, b$ ஒருமைகள்) மாற்றப்படுகிறது.

ஆரம்பப்புள்ளிகளின் இடை , நியமவிலகல் கீழே தூப்பட்டுள்ளன.

	கணிதம்	இரசாயனம்
இடை	48	62
ந <mark>ிய</mark> மவிலகல்	12	10

a, b என்பவற்றைக் காண்க.

கணிதம், இரசாயனம் ஆகிய பாடங்களில் மாணவன் ஒருவன் பெற்ற ஆரம்பப்புள்ளிகள் முறையே 36, 48 எனின் அவன் கணிதத்திலும் பார்க்க இரசாயனத்தில் திறமையானவன் எனக் கூறலாமா? காரணம் தருக

- 9. (a) 12 எண்களைக் கொண்ட தொடை ஒன்றின் இடை 6 உம், நியமவிலகல் 2 உம் ஆகும். வேறொரு 8 எண்களைக் கொண்ட தொடை ஒன்றின் இடை 10 உம், நியமவிலகல் 3 உம் ஆகும். இரு தொடை எண்களும் ஒருமித்து எடுக்கப்படின் இடை, நியமவிலகல் ஆகியவற்றைக் காண்க.
 - (b) வகுப்பொன்றிலுள்ள 40 மாணவர்கள் முறையே 12,15,13 மாணவர்கள் கொண்ட A , B , C ஆகிய 3 குழுக்களாகப் பிரிக்கப்பட்டனர். ஒவ்வொரு குழுவிலுமுள்ள மாணவர்கள் தனித் தனியாகப் பரிசோதனையொன்றினைச் செய்கின்றனர். பின்னர் அப் பரிசோதனையின் அளவீடுகளின் இடையும், நியமவிலகலும் பெறப்பட்டன. முடிவுகள் வருமாறு :

குழு A :
$$n_1 = 12$$
 $\overline{x}_1 = 15$ $S_1 = 2.7$

σω B :
$$n_2 = 15$$
 $\overline{x}_2 = 14$ $S_2 = 3.1$

GU C:
$$n_3 = 13$$
 $\overline{x}_3 = 12$ $S_3 = 2.4$

இதிலிருந்து 40 மாணவர்களினதும் இடை $\frac{1}{X}$ நியமவிலகல் $\frac{1}{X}$ என்பவற்றைக் கர்ண்க.

- 10. புல்கலைக்கழகமொன்றிலுள்ள மாணவர்களில் 384 பேரின் வயதின் இடை 24.8 வருடங்களாகவும், நியமவிலகல் 2.2 வருடங்களாகவும் உள்ளது. இவர்களில் 165 மாணவர்களின் வயதின் இடை 23.4 வருடங்களாகவும், நியமவிலகல் 1.6 வருடங்களாகவும் இருப்பின், மிகுதி 219 மாணவர்களின் வயதின் இடையையும் நியம விலகலையும் காண்க.
- 11. பாடசாலைகள் A, B என்பவற்றிலிருந்து முறையே 20, 30 மாணவர்கள் பரீட்சை ஒன்றிற்குத் தோற்றினர். அவர்கள் பெற்ற புள்ளிகளின் இடை, மாறற்றிறன் என்பன கீழே தரப்பட்டுள்ளன.

	பரீட்சார்த்திகளின் எண்ணிக்கை	புள்ளிகளின் இடை	மாறற்றிறன்
பாடசாலை <i>A</i>	20	66	9
பாடசாலை <i>B</i>	30	51	39

50 மாணவர்களினதும் புள்ளிகளின் இடையைக் கண்டு நியம விலகல் 9 எனக் காட்டுக.

A யிலுள்ள மாணவர்களின் ஆரம்பப் புள்ளிகள் (மூலப்புள்ளிகள்) 50 மாணவர்களின் இடையையும், 9 ஐ நியமவிலகலாகவும் கொண்ட அளவிடைக்கு ஏகபரிமாணமாக மாற்றப்படுகிறது. A யிலுள்ள மாணவனொருவன் 60 புள்ளி பெற்றிருப்பின், புதிய அளவுத் திட்டத்தில் அவன் பெறும் புள்ளி யாது?

- 12. (a) பின்வரும் ஒவ்வொரு எண் தொடையினதும் இடையத்தைக் காண்க.
 - (i) 52, 61, 78, 49, 47, 79, 54, 58, 62, 73, 72
 - (ii) 192, 217, 189, 210, 214, 204
 - (iii) 1267, 1896, 895, 3457, 2164
- (b) பின்வரும் மீடிறன் பரம்பல்கள் ஒவ்வொன்றினதும், இடையத்தையும் காலணை இடை வீச்சையும் காண்க.

х	5	6	7	8	9	10
f	6	11	15	18	6	- 5

(ii) x 12 13 14 15 16 f 3 9 11 15 7

(iii)சோதனையொன்றில் 63 மாணவா்கள் பெற்ற புள்ளி<mark>களின் மீடிறன் பரம்பல்</mark>

புள்ளிகள்	0	1	2	3	4	5	6	7	8	9	10
மீடிறன்	2	2	3	4	6	11	15	10	6	3	1

13.52 மாணவர்களின் நிறை அளக்கப்பட்டு (கிட்டிய Kg இல்) அந்நிறைகளின் கூட்டமாக்கப்பட்ட மீடிறன் பரம்பல் தரப்பட்டுள்ளது.

நிறை (kg)	மீடிறன்
40 – 44	3
45 – 49	2
50 - 54	7
55 - 59	18
60 - 64	18
65 - 69	3
70 - 74	1

பரம்பலின்

- (i) இடையத்தையும்
- (ii) காலணை இடை வீச்சையும் காண்க.

- **14.** (a) 3, 5, 12, 1, 6, 3, 12 ஆகிய எண்களின் இடையம், இடை , நியமவிலகல் என்பவற்றைக் காண்க.
 - (b) தரப்பட்ட ஒரு தொகுதி தரவுகள் 0, 1 ஆகிய எண்களை மட்டும் கொண்டுள்ளன. பூச்சியங்களின் எண்ணிக்கை m ஆகவும், ஒன்றுகளின் எண்ணிக்கை n ஆகவுமிருப்பின், தரப்பட்ட தரவுகளின் இடை, நியமவிலகல் என்பவற்றைக் கண்டு, மாறற்குணகம் √m/n எனக் காட்டுக.
- 15.3, 1, 7, 2, 1, 1, 7, x, y ஆகிய எண்களின் இடை 4 ஆகும். இங்கு x, y 10 இலும் குறைவான நேர் நிறை எண்களாகும். x + y = 14 எனக் காட்டுக. இதிலிருந்து (i) x = y ஆக, $x \neq y$ ஆக தொகுதியின் ஆகாரத்தைக் காண்க தொகுதியின் நியமவிலகல் $\frac{1}{3}\sqrt{76}$ எனின் $x \leq y$ எனக் கொண்டு x, y இன் பெறுமானங்களை காண்க.
- 16. மாறி X இன் பெறுமானங்கள்

 $8\cdot 2$, $8\cdot 0$, $8\cdot 1$, $8\cdot 2$, $8\cdot 4$, $7\cdot 9$, $8\cdot 0$, $8\cdot 3$, $7\cdot 8$, $8\cdot 1$ ஆகும். ஒவ்வொரு பெறுமானத்தையும் $8+0\cdot 1y$ எனும் வடிவில் எழுதுக. y இனது பத்துப் பெறுமானங்களினதும் இடையையும், மாறற்றிறனையும் காண்க. இதிலிருந்து x இன் இடையையும் மாறற்றிறனையும் உய்த்தறிக.

இதிலிருந்து கீழே தரப்பட்டுள்ள பத்து எண்களினதும் இடை, மாறற்றிறன் என்பவற்றைக் காண்க.

824, 804, 814, 824, 844, 794, 804, 834, 784, 814.

z = a x + b எனும் உருமாற்றம் முதலில் தரப்பட்ட x இன் பத்துப் பெறுமானங்களுக்கும் பாவிக்கப்பட, பெறப்பட்ட z பெறுமானங்களின் இடை 0.9 ஆலும், நியம விலகல் 2 மடங்காலும் அதிகரிப்பின் a ஐயும், b ஐயும் காண்க. இங்கு b > 0.

17. ஒரு வகுப்பிலுள்ள 12 மாணவர்கள் கட்டடம் ஒன்றின் நீளத்தை மதிப்பிடுகின்றனர். அவர்கள் மதிப்பிட்ட நீளங்கள் (மீற்றரில்) வருமாறு .

47, 52, 52, 54, 52, 50, 51, 50, 48, 53, 54, 49

- a) இவற்றின் இடை 😾 ஐக் காண்க.
- b) இடையத்தைக் காண்க.
- c) ஆகாரம் *m* இன் பெறுமானத்தைக் காண்க.
- d) புதிதாக இரண்டு மாணவர்கள் தனித்தனியாக நீளத்தை மதிப்பிடுகின்றனர். 14 அளவுகளின் ஆகாரம் m இல் இருந்து வேறுபட்ட தனியான ஒரு பெறுமானமாக அமையுமெனின், இரு புதிய மாணவர்களினதும் மதிப்பிட்ட நீளங்கள் யாதாக இருக்கலாம்.
- e) இப்பொழுது வகுப்பு ஆசிரியர் கட்டடத்தின் நீளத்தை மதிப்பிடுகினறார். ஆரம்பத்தில் உள்ள 12 மாணவரின் அளவீட்டுடன் ஆசிரியரின் அளவீட்டையும் சேர்த்துப் பெறப்பட்ட இடை \overline{x} + 0 · 5 எனின், ஆசிரியர் மதிப்பிட்ட பெறுமானம் யாது?
- 18. n எண்கள் x_1 , x_2 , x_n என்பவற்றின் மாறற்றிறன் 36 ஆகும்.

$$\sum_{i=1}^{n} x_{i}^{2} = 1620$$
 , $\sum_{i=1}^{n} x_{i} = 108$ எனவும் தரப்படின் n ஐக் காண்க.

19. ஒவ்வொன்றும் n ஈட்டுக்களைக் கொண்ட இரு தொகுதிப் பெறுமானங்களின் இடை \overline{x}_1 , \overline{x}_2 ஆகவும், அவற்றின் நியம விலகல்கள் முறையே σ_1 , σ_2 ஆகவும் இருப்பின், இரண்டு தொகுதியும் சேர்ந்த 2n ஈட்டுக்களினதும் நியம விலகல்

$$\frac{1}{2}\sqrt{\left[2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)+\left(\overline{x}_{1}-\overline{x}_{2}\right)^{2}\right]}$$
 எனக் காட்டுக.

20. ஒரு தொகுதி எண்களின் இடை µ உம், நியம விலகல் උ உம் ஆகும். ஒவ்வொரு எண்ணிலிருந்தும் இடை µ கழிக்கப்பட்டு பெறப்படும் எண் උ ஆல் பீரிக்கப்படுகிறது. புதிய தொகுதி எண்களின் இடையையும், நியம விலகலையும் எழுதுக. புள்ளி விபரவியல் பரீட்சையொன்றில் 120 மாணவர்கள் பெற்ற புள்ளிகளின் இடை 68 உம், நியமவிலகல் 6 உம் ஆகும். இவர்கள் கணித பாடத்தில் பெற்ற புள்ளிகளின் இடை 62 உம், நியம விலகல் 5 உம் ஆகும். மாணவன் ஒருவன் புள்ளி விபரவியலில் 76 புள்ளிகளும், கணிதத்தில் 70 புள்ளிகளும்

பெற்றார். இரு பாடத்திற்கும் உரிய புள்ளிகளை ஒரே இடையும் நியமவிலகலும் கொண்ட அளவுத்திட்டத்திற்கு மாற்றுவதால் மாணவனின் இரு பாடங்களிற்கும் உரிய ஆற்றலை ஒப்பிடுக.

- 21.150 மாணவர்கள் குறித்த ஒரு கணித வினாவிற்கு விடை அளிப்பதற்கு எடுத்த நேரத்தின் திரள் மீள்திறன் பரம்பல் கீழே தரப்பட்டுள்ளது.
 - (i) இடை நேரம்
 - (ii) 32 செக்கன்களுக்குள் கணித வினாவை தீர்க்கும் மாணவர்களின் நூற்று வீதம் யாது?

எடுத்த நேரம்(s)	திரள்மீடிறன்			
≤9.5	0			
≤ 19 ⋅ 5	4			
≤ 29 ⋅ 5	15			
≤ 39 · 5	51			
≤ 49 ⋅ 5	111			
≤ 59 ⋅ 5	139			
≤ 69 ⋅ 5	147			
≤ 79 ⋅ 5	150			

 அலுவலகம் ஒன்றிற்கு வந்த தொலைபேசி அழைப்புக்களின் காலத்தைப் பின்வரும் அட்டவணை தருகிறது.

காலம் (நிமிடங்களில்)	அழைப்புக்களின் எண்ணிக்கை
< 1	6
1 – 2	10
2 – 3	15
3 – 5	5
5 – 10	4
≥ 10	0

இப்பரம்பலின் இடையையும், நியமவிலகலையும் காண்க. இடையம், முதலாம் காலணை, முன்றாம் காலணை ஆகியவற்றையும் மதிப்பிடுக. 23. மீடிறன் பரம்பலொன்று கீழே தரப்பட்டுள்ளது.

х	1	2	3	4	5	6	7	8	9
f	1	3	7	9	13	9	5	2	1

- (a) x ஒரு பின்னக மாறியாக இருக்க
- (b) x ஒரு தொடர் மாறியாக இருக்க (மாறியின் பெறுமானங்கள் கிட்டிய நிறை எண்ணில் தரப்பட்டுள்ளது) இடையம், அரைக்காலணை இடைவீச்சு எனபவற்றைக் காண்க.
- (c) தரப்பட்ட பரம்பலின் இடையையும் மாறற்றிறனையும் காண்க.
- 24. n அவதானிப்புகள் x_1, x_2, \ldots, x_n என்பவற்றின் இடை, மாறற்றிறன் ஆகியவை முறையே \overline{X}_n , σ_n^2 ஆகும் பின்னர் மேலும் ஒரு அவதானிப்பு x_{n+1} பெறப்பட்டது. (n+1) அவதானிப்புகளினதும் மாறற்றிறன் σ_{n+1}^2 ஆனது,

$$\sigma_{n+1}^2 = \frac{n}{n+1} \, \sigma_n^2 + \frac{n}{(n+1)^2} \, (x_{n+1} - x_n)^2$$
 என்பதால் தரப்படுமெனக்
காட்டுக.

 x_{n+1} மாறும்பொழுது, σ_{n+1} இன் இழிவுப் பெறுமானத்தைக் கூறுக.

25. n_1 , n_2 பருமன்களைக் கொண்ட இரு தொடை எண்களின் இடைகள், மாறற்றிறன் என்பன முறையே \overline{x}_1 , \overline{x}_2 உம், σ_1^2 , σ_2^2 உம் ஆகும். (n_1+n_2) பருமனுடைய இரு தொடைகளினதும் எண்களின் இடை \overline{x} எனின் மாறற்றிறன் σ^2 ஆனது , $\sigma^2 = \frac{n_1\sigma_1^2 + n_2\ \sigma_2^2 + n_1(\overline{x}_1 - \overline{x})^2 + n_2(\overline{x}_2 - \overline{x})^2}{n_1 + n_2}$ என்பதால்

தரப்படுமெனக் காட்டுக.

பீன்வரும் தரவுகளை தண்டு இலை வரைபடத்தில் குறிக்குக.
 இதிலிருந்து இத்தரவுகளின் பரம்பலை பெட்டி வரைபொன்றில் காட்டுக

(i) 20 மாணவர்கள் நீச்சல் பயிற்சியொன்றின் போது குறித்த ஒரு தூரத்தைக் கடக்க எடுத்த ோ ்டிகள் (கிட்டிய செக்கனில்)

32	31	26	27	27	32	29	26	25	25	
29	31	32	26	30	24	32	27	26	31	
(24	25	26 -	27.	ត	ങ്ന ഖര	sin mus	டையை	ப உப	யோகிக்கு	ь.)

(ii) 30 மாணவர்கள் ஒரு கோட்டின் நீளத்தைக கிட்டிய mm க்குச் சரியாக மதிப்பிட்டனர் அவர்கள் மதிப்பிட்ட பெறுமானம் (cm இல்)

7.0 9.2 7.3 6.5 5.4 5.3 10.1 8.4 8.8 7.1

7.6 7.9 6.7 9.6 5.5 7.4 7.0 8.2 5.5 7.8

8.2 7.5 6.1 6.1 3.9 6.8 7.6 8.1 8.0 10.0

(3.0-3.9, 4.0-4.9, என்ற வகுப்பாயிடையை உபயோகிக்க)

 பின்வரும் தரவுகளுக்கான வரைபுகளை பின்-முன்னாகத் தண்டு இலை வரைபில் குறித்துக் காட்டுக.

(i) கணிதம், தமிழ் ஆகிய பாடங்களில் 20 மாணவர்கள் பெற்ற புள்ளிகள்

பின்வருமாறு

	75	69	58	58	46	44	32	50	53	78
கணிதம்		61	61	45	31	44	53	66	47	57
	52	58	68	77	38	85	43	44	56	65
தமிழ்	65	79	44	71	84	72	63	69	72	79

(ii) மாணவர்களும் மாணவிகளும் பரிசோதனை ஒன்றை மேற்கொண்ட போது அப் பரிசோதனையின் தாக்க நேரம் செக்கனில் 1/100 க்கு அளக்கப்பட்டது. விபரம் பின்வருமாறு

- designation -	0.22	0.21	0.18	0.16	0.19	0.25	0.22
ஆண்கள்	0.17	0.19	0.16	0.21	0.24	0.22	0.19
ஆண்கள	0.22	0.25	0.22	0.17	0.22	0.18	
	0.14	0.20	0.22	0.16	0.19	0.16	0.15
	0.23	0.23	0.19	0.16	0.15	0.09	0.23
பெண்கள்	0.11	0.21	0.22	0.18	0.18	0.16	

புள்ளி விபரவியல் II

அலகு 1

பின்னக எழுமாற்றுமாறிகள் (Discrete Random Variables)

 $X(\omega)=x;\ \omega\in\Omega,\ x\in R;$ என வரையறுக்கப்படுகிறது.

இங்கு X ஓர் எழுமாற்று மாறியாகும்.

Xஒரு சார்பு ஆதலால்,

Xஇன் ஆட்சி $D(X) = \Omega$

X இன் இணை ஆட்சி R ஆகும்.

பின்னக எழுமாற்றுமாறி (Discrete Random Variable)

எழுமாற்றுமாறி X ஆனது, பெறக்கூடிய பெறுமானங்களின் தொடையானது, முடிவுற்றது. அல்லது எண்ணுதற்கு இயலுமாறு முடிவற்றதெனின் எழுமாற்றுமாறி X, பின்னக எழுமாற்றுமாறி எனப்படும்.

தொடர் எழுமாற்றுமாறி (Continuous Random Variable) எழுமாற்றுமாறி X ஆனது, பெறக்கூடிய பெறுமானங்கள் ஒரு ஆயிடையை அல்லது ஒன்றுக்கு மேற்பட்ட ஆயிடையைக் கொண்டிருப்பின், எழுமாற்றுமாறி X, தொடர் எழுமாற்றுமாறி எனப்படும்.

பின்னக எழுமாற்றுமாறியொன்றின் பரம்பல் அல்லது நிகழ்தகவு அடர்த்திச்சார்பு (Distribution or Probability Density Function)

மாதிரிவெளி Ω என்க.

X : Ω — R பின்னக எழுமாற்றுமாறி

X இன்வீச்சு = $\{x_1, x_2, \dots, x_n, \}$ என்க. (இங்கு n முடிவுள்ளதாகவோ அல்லது முடிவற்றதாகவோ இருக்கலாம்) சார்பு p(x) ஆனது,

$$p(x) = \begin{cases} P(X = x); x = x_i, i = 1, 2,n \\ 0$$
 அவ்வாறல்லாதபோது

என வரையறுக்கப்படுகிறது.

p(x) ஆனது நிகழ்தகவு அடர்த்திச் சார்பு எனப்படும்.

p(x) இன் இயல்புகள்

- (i) எல்லா $x \in R$ இற்கும் $p(x) \ge 0$
- (ii) $\sum_{i=1}^{n} p(x_i) = 1$ ஆகம்.

எதிர்வுப் பெறுமானம் / இடை (Expectation / Mean) எழுமாற்றுமாறி ஒன்றின் எதிர்வு அல்லது இடை E(X), μ என்பதால் குறிக்கப்படும்.

x	x_1	x_2	x_n
$P(X=x) \\ p(x)$	$p(x_1)$	$p(x_2)$	$p(x_n)$

$$E(X) = \sum_{i=1}^{n} x_i p(x_i)$$
 என வரையறுக்கப்படும்.

உதாரணம் 1

நாணயம் ஒன்று மூன்று முறை சுண்டப்படுகிறது. எழுமாற்றுமாறி X, தோன்றும் தலைகளின் எண்ணிக்கை என வரையறுக்கப்படுகிறது. X இன் நிகழ்தகவுப் பரம்பலை எழுதி E(X) ஐக் காண்க.

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

$$X(\Omega) = \{0,1,2,3\}$$
 ஆகும்

$$[X(TTT) = 0, X(HTT) = 1, X(THT) = 1, X(TTH) = 1, X(HHT) = 2,$$

$$X(HTH) = 2, X(THH) = 2, X(HHH) = 3$$

$$p(0) = P(TTT) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

$$p(1) = P(\{HTT, THT, TTH\}) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$p(2) = (\{HHT, HTH, THH\}) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8}$$

$$p(3) = (\{HHH\}) = \frac{1}{8}$$

$$[p(0) + p(1) + p(2) + p(3) = 1]$$

x	0	1	2	3
p(x)	1/8	3/8	3/8	1/8

$$E(X) = \sum x_i \ p(x_i)$$
$$= \left(0 \times \frac{1}{8}\right) + \left(1 \times \frac{3}{8}\right) + \left(2 \times \frac{3}{8}\right) + \left(3 \times \frac{1}{8}\right) = 1.5$$

உதாரணம் 2

இரண்டு தாயக்கட்டைகள் ஒருங்கே எறியப்படுகின்றன. X என்னும் எழுமாற்றுமாறி, மாதிரிவெளி Ω இல், X(a,b)=a+b என வரையறுக்கப்படுகிறது. X இன் இடையைக் காண்க.

மாதிரிவெளி Ω, 36 முலகங்களைக் கொண்டுள்ளது.

$$p(3) = P(\{(1,3), (2,2), (3,1)\}) = \frac{3}{36}$$

$$p(12) = P(\{(6,6)\}) = \frac{1}{36}$$

x	2	3	4	5	6	7	8	9	10	11	12
P(X=x)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	4 36	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36} + 8 \times \frac{7}{36}$$
$$+ 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36}$$
$$= \frac{1}{36} \left[2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12 \right]$$

உதாரணம் 3

A, B என்னும் இரு குழுக்கள் பங்குபற்றும் ஆட்டம் ஒன்றில், A வெல்வதற்கான நிகழ்தகவு 2/3 உம், B வெல்வதற்கான நிகழ்தகவு 1/3 உம், ஆகும்.

இவ்விரு குழுக்களும் பங்குபற்றும் தொடர் ஆட்டங்களில், தொடர்ச்சியாக (அடுத்தடுத்து) 2 ஆட்டங்களில் அல்லது மொத்தம் மூன்று ஆட்டங்களில் முதலில் வெற்றி பெறும் குழு போட்டியில் வென்றதாகக் கொள்ளப்படும். இப்போட்டியில் எதிர்பார்க்கும் ஆட்டங்களின் எண்ணிக்கையைக் காண்க.

A வெற்றி பெறும் நிகழ்ச்சியை A எனவும், B வெற்றி பெறும் நிகழ்ச்சியை B எனவும் கொள்க.

$$\Omega = \{AA, BB, ABB, BAA, ABAA, BABB$$

$$ABABA, BABAB, ABABB, BABAA\}$$

ஆட்டங்களின் எண்ணிக்கையை X என்க.

x	2	3	4	5
p(x)	5/9	6/27	10/81	24/243

$$E(X) = 2 \times \frac{5}{9} + 3 \times \frac{6}{27} + 4 \times \frac{10}{81} + 5 \times \frac{24}{243}$$
$$= \frac{270 + 162 + 120 + 120}{243}$$
$$= \frac{672}{243} = \frac{224}{81} = 2.7$$

மாறற்றிறனும் நியமவிலகலும் (Variance and Standard Deviation)

$$X$$
இன் மாறற்றிறன், $Var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot p(x_i)$

என வரையறுக்கப்படுகிறது. இங்கு $\mu = E(X)$ ஆகும்.

$$Var(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot p(x_i) = E\{(X - \mu)^2\}$$

$$Var(X) = \sum_{i=1}^{n} (x_{i} - \mu)^{2} p(x_{i})$$

$$= \sum_{i=1}^{n} (x_{i}^{2} - 2\mu x_{i} + \mu^{2}) p(x_{i})$$

$$= \sum_{i=1}^{n} (x_{i}^{2} \cdot p(x_{i}) - \sum_{i=1}^{n} (2\mu x_{i} p(x_{i}) + \sum_{i=1}^{n} (\mu^{2} \cdot p(x_{i})))$$

$$= \sum_{i=1}^{n} (x_{i}^{2} \cdot p(x_{i}) - 2\mu \sum_{i=1}^{n} x_{i} p(x_{i}) + \mu^{2} \sum_{i=1}^{n} p(x_{i}))$$

$$= E(X^{2}) - 2\mu^{2} + \mu^{2}$$

$$= E(X^{2}) - \mu^{2}$$

$$= E(X^{2}) - [E(X)]^{2}$$

$$\sum_{i=1}^{n} x_{i} p(x_{i}) = E(X) = \mu$$

$$\sum_{i=1}^{n} \mu p(x_{i}) = 1$$

114

எழுமாற்றுமாறி X இன் நியமவிலகல், σ_X ஆனது $\sigma_X = \sqrt{Var(X)}$ என வரையறுக்கப்படுகிறது.

1. a, b என்பன ஒருமைகளாக இருக்க, E(aX+b)=aE(X)+b எனக் காட்டுக.

$$E(aX+b) = \sum_{i=1}^{n} (a x_i + b) \cdot p(x_i)$$

$$= a \sum_{i=1}^{n} x_i \cdot p(x_i) + b \sum_{i=1}^{n} p(x_i)$$

$$= a E(X) + b$$

2. a, b என்பன ஒருமைகளாக இருக்க, $Var(a X + b) = a^2 Var(X)$ எனக் காட்டுக. Y = a X + b என்க.

$$Var(aX + b) = Var(Y) = E\{(Y - \mu_Y)^2\}$$

$$= E[\{(ax + b) - (a\mu_X + b)^2\}]$$

$$= E[a^2(X - \mu_X)^2]$$

$$= a^2 E\{(X - \mu_X)^2\} = a^2 Var(X)$$

உதாரணம் 4

2 கறுப்பாகவும், 3 வெள்ளையாகவும் எஞ்சியவை சிவப்பாகவும் உள்ள 9 மாபிள்களைக் கொண்டுள்ளது ஒரு பெட்டி. இப்பெட்டியிலிருந்து ஒரு மாபிள் எழுமாற்றாக எடுக்கப்படுகிறது. எடுக்கப்பட்ட மாபிள், கறுப்பாகவோ, வெள்ளையாகவோ, சிவப்பாகவோ இருப்பதற்கேற்ப X=-1, 0 அல்லது 1 ஆக உள்ளது, X என்னும் ஒரு எழுமாற்றுமாறி. Y என்னும் ஒரு எழுமாற்றுமாறியானது Y=X+1 என்பதால் வரையறுக்கப்படுகிறது. X, Y என்பவற்றின் நிகழ்தகவுப் பரம்பலைக் காண்க. X, Y என்பவற்றின் எதிர்வுகள் முறையே $\frac{2}{9}$, $1\frac{2}{9}$ ஆகுமெனக் காட்டுக. அவற்றிற்கு $\frac{50}{81}$ என்னும் பொது மாறற்றிறன் உண்டெனவும் காட்டுக.

மாபின் கறுப்பாக இருப்பதற்குரிய நிகழ்தகவு $P(B) = \frac{2}{9}$ மாபின் வெள்ளையாக இருப்பதற்குரிய நிகழ்தகவு $P(W) = \frac{3}{9}$ மாபின் சிவப்பாக இருப்பதற்குரிய நிகழ்தகவு $P(R) = \frac{4}{9}$

x	-1	0	1
P(X=x)	2/9	3/9	4/9

$$Y = X + 1$$

у	0	1	2	x = -1, y = 0
P(Y=y)	2/9	3/9	4/9	x = 0, y = 1 x = 1, y = 2

$$E(X) = \left(-1 \times \frac{2}{9}\right) + \left(0 \times \frac{3}{9}\right) + \left(1 \times \frac{4}{9}\right)$$

$$= \frac{-2}{9} + 0 + \frac{4}{9} = \frac{2}{9}$$

$$E(Y) = \left(0 \times \frac{2}{9}\right) + \left(1 \times \frac{3}{9}\right) + \left(2 \times \frac{4}{9}\right)$$

$$= 1\frac{2}{9}$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$Var(X) = (-1)^{2} \times \frac{2}{9} + \left(0 \times \frac{3}{9}\right) + 1^{2} \times \frac{4}{9} - \left(\frac{2}{9}\right)^{2}$$

$$= \frac{6}{9} - \frac{4}{81} = \frac{50}{81}$$

$$Var(Y) = 0 + \left(1^2 \times \frac{3}{9}\right) + \left(2^2 \times \frac{4}{9}\right) - \left(\frac{11}{9}\right)^2$$
$$= \frac{3}{9} + \frac{16}{9} - \frac{121}{81}$$
$$= \frac{50}{81}$$

உதாரணம் 5

A யும் B யும் ஒருவரோடொருவர் மூன்று தொடர் சதுரங்க ஆட்டங்களை விளையாடுகின்றனர். A ஒரு ஆட்டத்தில் வெற்றி பெறும் நிகழ்தகவு $\frac{1}{2}$ B ஒரு ஆட்டத்தில் வெற்றி பெறும் நிகழ்தகவு $\frac{1}{3}$. A யோ B யோ வெற்றி பெறாது முடியும் ஆட்டத்திற்குரிய நிகழ்தகவைக் காண்க. பின்வருவனவற்றின் நிகழ்தகவுகளைக் காண்க.

(i) எல்லா ஆட்டங்களிலும் A வெற்றிபெறுதல்

(ii) இரண்டு ஆட்டங்கள் வெற்றிதோல்வியின்றி முடிவது

(iii) A உம் B உம் ஒன்றுவிட்டு ஒன்றில் வெற்றிபெறுதல்

(iv)குறைந்தது ஒரு ஆட்டத்திலாவது B வெல்வது

B வெற்றி பெறும் ஆட்டங்களின் எண்ணிக்கையை X குறித்தால், X இன் இடையையும், மாறற்றிறனையும் காண்க.

"A வெற்றி பெறும் நிகழ்ச்சி" — A எனவும் "B வெற்றி பெறும் நிகழ்ச்சி" — B எனவும் "வெற்றி தோல்வியின்றி முடியும் நிகழ்ச்சி" —D எனவும் குறிப்போம்

$$P(D) = 1 - \left(\frac{1}{2} + \frac{1}{3}\right) = \frac{1}{6}$$
 AGE.

(i)
$$P(AAA) = \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{27}$$

(ii) இரு ஆட்டங்கள் வெற்றி தோல்வியின்றி முடிதல்.

இங்கு எஞ்சிய ஆட்டத்தில் A வெல்லலாம் அல்லது B வெல்லலாம். DDA - 3 வழிகளில் நடைபெறலாம் [DDA, DAD, ADD] DDB - 3 வழிகளில் நடைபெறலாம்

P (இரு ஆட்டங்கள் வெற்றி தோல்வியின்றி முடிதல்)

$$= 3 \times \left(\frac{1}{6} \times \frac{1}{6} \times \frac{1}{2}\right) + 3 + \left(\frac{1}{6} \times \frac{1}{6} \times \frac{1}{3}\right)$$

$$= 3 \times \frac{1}{6} \times \frac{1}{6} \left(\frac{1}{2} + \frac{1}{3}\right)$$

$$= 3 \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} = \frac{5}{72}$$

(iii) A யும் B யும் ஒன்றுவிட்டு ஒன்றில் வெற்றிபெறல்.

இது இரு வழிகளில் நடைபெறலாம். ABA அல்லது BAB $P(ABA \cup BAB) = P(ABA) + P(BAB)$ $= \left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3}\right)$

$$=\frac{1}{12}\times\frac{1}{18}=\frac{5}{36}$$

(iv)குறைந்தது ஒரு ஆட்டத்திலாவது B வெல்வது

B ஆட்டம் ஒன்றில் வெல்வதற்குரிய நிகழ்தகவு $P\left(B
ight)=rac{1}{3}$

 $P\left(B'\right)=\frac{2}{3}\left[B'-B$ வெல்லாதிருத்தல். அதாவது A வெல்வது அல்லது வெற்றி தோல்வியின்றி முடிவது.]

P (குறைந்தது ஒரு ஆட்டத்திலாவது B வெல்வது) = 1 - P(B' B' B') 2 2 2 19

$$=1-\frac{2}{3}\times\frac{2}{3}\times\frac{2}{3}=\frac{19}{27}$$

B வெற்றி பெறும் ஆட்டங்களின் எண்ணிக்கை X

$$P(X=0) = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{8}{27}$$

$$P(X=1) = 3C_1 \left(\frac{1}{3}\right) \times \left(\frac{2}{3}\right)^2 = \frac{12}{27}$$

$$P(X=2) = 3C_2 \left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right) = \frac{6}{27}$$

$$P(X=3) = 3C_3 \left(\frac{1}{3}\right)^3 = \frac{1}{27}$$

x	0	1	2	.3
P(X=x)	8/27	12/27	6/27	1/27

$$E'(X) = \left(0 \times \frac{8}{27}\right) + \left(1 \times \frac{12}{27}\right) + \left(2 \times \frac{6}{27}\right) + \left(3 \times \frac{1}{27}\right) = 1$$

$$Var(X) = E(X^2) - \left[E(X)\right]^2$$

$$= \left(0 \times \frac{8}{27}\right) + \left(1^2 \times \frac{12}{27}\right) + \left(2^2 \times \frac{6}{27}\right) + \left(3^2 \times \frac{1}{27}\right) - 1^2$$

$$= \frac{12}{27} + \frac{24}{27} + \frac{9}{27} - 1$$

$$= \frac{45}{27} - 1 = \frac{2}{3}$$

உதூணம் 6

"காப்பு" என்னும் தீக்குச்சிகள் நிறைந்த பெட்டியிலே பயன்படுத்த முடியாத தீக் குச்சிகளின் எண்ணிக்கை X இருப்பதற்கான நிகழ்தகவு பின்வரும் பரம்பலினால் தரப்பட்டுள்ளது.

x	0	1	2	3
P(X=x)	8 <i>K</i>	5 <i>K</i>	K	K

அத்துடன் $P(X \ge 4) = 0$. இங்கு K - ஒரு மாறிலி K, X இன் எதிர்வு ஆகியவற்றைத் துணிக.

$$Var(X) = \frac{34}{35}$$
 எனக் காட்டுக.

"காப்பு" என்னும் தீக்குச்சிகள் நிறைந்த இருபெட்டிகள் எழுமாற்றாகத் தெரிவு செய்யப்படுகின்றன. இரு பெட்டிகளிலுமுள்ள பயன்படுத்தமுடியாத தீக்குச்சிகளின் மொத்த எண்ணிக்கை Y என்க. Y இன் நிகழ்தகவுப் பரம்பலைக் காண்க.

$$P(Y > 4) = \frac{1}{75}$$
 எனக் காட்டுக.

$$E(Y) = 2E(X);$$

Var(Y) = 2Var(X) ஆகியவற்றை வாய்ப்புப் பார்க்க.

$$8K + 5K + K + K = 1$$

$$K=\frac{1}{15}$$

$$E(X) = (0 \times 8K) + (1 \times 5K) + (2 \times K) + (3 \times K)$$
$$= 10K = \frac{10}{15} = \frac{2}{3}$$

$$Var(X) = E(X^{2}) - [(E(X)]^{2}]$$

$$= (0 \times 8K) + (1^2 \times 5K) + (2^2 \times K) + (3^2 \times K) - \left(\frac{2}{3}\right)^2$$
18 4 34

$$=\frac{18}{15}-\frac{4}{9}=\frac{34}{45}$$

Y எடுக்கக்கூடிய மிகக் குறைந்த பெறுமானம் 0. உயர் பெறுமானம் 6 ஆகும்.

$$P(Y=0) = P(X=0) \cdot P(X=0) = 8K \times 8K = 64K^{2}$$

$$P(Y=1) = [P(X=0) \cdot P(X=1)] + [P(X=1) \cdot P(X=0)]$$

= $2X \times 8K \times 5K = 80K^2$

$$-2\Lambda \times 6\Lambda \times 3\Lambda = 80\Lambda$$

$$P(Y=2) = [P(X=0) . P(X=2)] + [P(X=1) . P(X=1)] + [P(X=2) . P(X=0)]$$

$$= 8K^2 + 25K^2 + 8K^2 = 41K^2$$

$$P(Y=3) = [P(X=0) \cdot P(X=3)] + [P(X=1) \cdot P(X=2)] + [P(X=2) \cdot P(X=1)]$$

$$+ [P(X=3) \cdot P(X=0)]$$

$$= 8K^{2} + 5K^{2} + 5K^{2} + 8K^{2} = 26K^{2}$$

$$P(Y=4) = [P(X=1) \cdot P(X=3)] + [P(X=2) \cdot P(X=2)] + [P(X=3) \cdot P(X=1)]$$

$$= 5K^{2} + K^{2} + 5K^{2} = 11K^{2}$$

$$P(Y=5) = [P(X=2) \cdot P(X=3)] + [P(X=3) \cdot P(X=2)]$$

$$P(Y=5) = [P(X=2) \cdot P(X=3)] + [P(X=3) \cdot P(X=2)]$$
$$= K^{2} + K^{2} = 2K^{2}$$

$$P(Y=6) = [P(X=3) . P(X=3)] = K^2$$

у	0	1	2	3	4	5	6
P(Y=y)	64 K ²	80K ²	41 <i>K</i> ²	26K ²	11 <i>K</i> ²	2 <i>K</i> ²	K ²

குறிப் பு:
$$\sum_{y=0}^{6} P(Y=y) = 225K^2 = 1$$

$$E(Y) = (1 \times 80K^2) + (2 \times 41K^2) + (3 \times 26K^2) + (4 \times 11K^2) + (5 \times 2K^2) + (6 \times K^2)$$
$$= 300K^2 = \frac{300}{225} = \frac{4}{3} = 2 \times \frac{2}{3} = 2E(X)$$

$$Var(Y) = E(Y^{2}) - [E(Y)]^{2}$$

$$= (1^{2} \times 80K^{2}) + (2^{2} \times 41K^{2}) + (3^{2} \times 26K^{2}) + (4^{2} \times 11K^{2}) + (5^{2} \times 2K^{2})$$

$$+ (6^{2} \times K^{2}) - (300K^{2})^{2}$$

$$= 740K^{2}) - \left(\frac{4}{3}\right)^{2}$$

$$= \frac{740}{225} - \frac{16}{9} = \frac{340}{225} = \frac{68}{45} = 2 \times \frac{34}{45}$$

$$= 2. Var(X)$$

உதாரணம் 7

இரு பைகள் ஒவ்வொன்றும் கீழேயுள்ள அட்டவணையிற் காட்டப்பட்டுள்ளவாறு நிறப்பந்துகள் பத்தினைக் கொண்டுள்ளது.

	fவப்பு (R)	பச்சை(<i>G</i>)	நீலம்(<i>B</i>)
பை 1	4	3	3
பை 2	5	3	2

- (a) ஒவ்வொரு பையிலிருந்தும் ஒரு பந்தாக இரு பந்துகளை எடுக்கும் சிறப்புரிமைக்கென, குறித்த ஒரு தொகைப் பணத்தை விளையாடுநர் ஒருவர் பணயம் வைக்கிறார். எடுக்கப்பட்ட இரு பந்துகளும் ஒரே நிறமுடையனவாயின், அவரது பணயமானது, பின்வருமாறு கணிக்கப்படும் பரிசுப்பணத்துடன் மீளளிக்கப்படுகிறது.
 - இரு சிவப்பு நிறப்பந்துகளுக்கு 10 ரூபா
 - இரு பச்சை நிறப்பந்துகளுக்கு 20 ருபா
 - இரு நீலநிறப்பந்துகளுக்கு 25 ரூபா

எடுக்கப்பட்ட இருபந்துகளும் வெவ்வேறு நிறமுடையனவாயின் அவர் பணயப் பணத்தை இழக்கிறார். அவரது பணயம் 8 ரூபா ஆக இருப்பின் தொடர்ந்து விளையாடும்போது ஆதாயமொன்றினை அவர் எதிர்பார்க்கலாமெனவும், ஆனால் பணயம் 8 ரூபா 20 சதம் ஆயின், அவர் தோல்வியை எதிர்பார்க்க வேண்டுமெனவும் காட்டுக.

(b) விளையாட்டின் விதிகள் பின்வருமாறு மாற்றப்படுகின்றன. இப்பொழுது எந்தப் பையிலிருந்து பந்து தெரிவு செய்யப்பட வேண்டுமென்பதைத் தீர்மானிப்பதற்கு விளையாடுநர் நாணயமொன்றைச் சுண்டுகிறார். அவர் தலையைச் சுண்டினால் பை 1 ஐயும், பூ எனில் பை 2 ஐயும் தெரிவு செய்கிறார். பின்னர் தெரிவு செய்யப்பட்ட பையிலிருந்து எழுமாற்றாக ஒரு பந்தை எடுத்து அதன் நிறத்தைக் குறித்துக்கொண்டு, பந்தை மீள வைத்தபின் இன்னொரு பந்தை அதே பையிலிருந்து எடுக்கிறார். வகை (a) யிலுள்ளவாறு அவருக்குப் பரிசுகள் கொடுக்கப்படுகின்றன. புதிய விளையாட்டில் பணயம் 8 ரூபா 50 சதம் ஆக இருப்பினும் தொடர்ந்து விளையாடும்போது, விளையாடுநர் ஆதாயம் பெற இடமுண்டு எனக் காட்டுக.

(a)
$$P(RR) = \frac{4}{10} \times \frac{5}{10} = \frac{20}{100}$$

$$P(GG) = \frac{3}{10} \times \frac{3}{10} = \frac{9}{100}$$

$$P(BB) = \frac{3}{10} \times \frac{2}{10} = \frac{6}{100}$$

$$P$$
 (ஏனையவை) = $1 - \left[\frac{20}{100} + \frac{9}{100} + \frac{6}{100} \right] = \frac{65}{100}$

பணயத் தொகை *a* ரூபா விளையாடுநர் பெறும் பரிசுப்பணம் ரூபா *X* என்க.

	RR	GG	BB	ஏனையவை
x	10	20	25	-а
P(X=x)	20/100	%100	%100	65/100

$$E(X) = \left(10 \times \frac{20}{100}\right) + \left(20 \times \frac{9}{100}\right) + \left(25 \times \frac{6}{100}\right) + \left(-a \times \frac{65}{100}\right)$$
$$= \frac{530 - 65a}{100}$$

$$a = 8$$
 எனின், $E(X) = \frac{530 - 65 \times 8}{100} = \frac{10}{100} > 0$

எனவே அவர் தொடர்ந்து விளையாடும் போது ஆதாயமொன்றை எ**திர்பார்க்க**லாம்.

$$a = 8 \frac{1}{5}$$
 ரூபா எனில்,

$$E(X) = \frac{530 - 65 \times 41/5}{100}$$
$$= \frac{530 - 533}{100} = \frac{-3}{100} < 0$$

ஆகவே, அவர் தோல்வியை எதிர்பார்க்க வேண்டியிருக்கும.

(b)
$$P(RR) = \frac{1}{2} \times \frac{4}{10} \times \frac{4}{10} + \frac{1}{2} \times \frac{5}{10} \times \frac{5}{10} = \frac{41}{200}$$

$$P(GG) = \frac{1}{2} \times \frac{3}{10} \times \frac{3}{10} + \frac{1}{2} \times \frac{3}{10} \times \frac{3}{10} = \frac{18}{200}$$

$$P(BB) = \frac{1}{2} \times \frac{3}{10} \times \frac{3}{10} + \frac{1}{2} \times \frac{2}{10} \times \frac{2}{10} = \frac{13}{200}$$

$$P(GG) = \frac{1}{2} \times \frac{3}{10} \times \frac{3}{10} + \frac{1}{2} \times \frac{2}{10} \times \frac{2}{10} = \frac{13}{200}$$

$$P(GG) = \frac{1}{2} \times \frac{3}{10} \times \frac{3}{10} + \frac{1}{2} \times \frac{2}{10} \times \frac{2}{10} = \frac{13}{200}$$

	RR	GG	BB	ஏனையவை
x	10	20	25	-a
P(X=x)	41/200	18/200	13/200	128/200

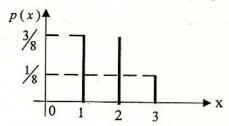
$$E(X) = 10 \times \frac{41}{200} + 20 \times \frac{18}{200} + \frac{25 \times 13}{200} - a \times \frac{128}{200}$$
$$= \frac{1095 - 128a}{200}$$

.
$$a=8\frac{1}{2}$$
 எனின், $E(X)=\frac{1095-1088}{200}=\frac{7}{200}>0$
எனவே ஆதாயம் பெற முடியும்.

எழுமாற்றுமாறி ஒன்றின் திர**ள் நிகழ்தகவுப் பரம்பல் சார்பு** (Cumulative Probability Distribution Function) எழுமாற்றுப் பரிசோதனை ஒன்றின் மாதிரிவெளி Ω மீது வரையறுக்கப்பட்ட எழுமாற்றுமாறி X என்க.

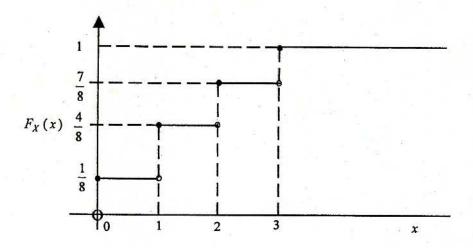
X இன் திரள் நிகழ்தகவுப் பரம்பல் சார்பு $F_X\left(x
ight)$ ஆனது,

$$F_X(x) = P(X \le x) \quad (-\infty < x < \infty)$$
 என வரையறுக்கப்படும்.


நாணயம் ஒன்று மூன்று முறை சுண்டப்படுகிறது என்க. தோன்றும் தலைகளின் எண்ணிக்கையை எழுமாற்றுமாறி X, குறிக்கிறது என்க. (உதாரணம் 1ஐப் பார்க்கவும்) $\Omega = \{HHH, HHT, HTH, HTT, THH, TTH, THT, TTT\}$

x	0	1	. 2	3
P(X=x)	1/8	3/8	3/8	1/8

நிகழ்தகவு அடர்த்திச் சார்பு p(x),


$$p(x) = \begin{cases} \frac{1}{8}, & x = 0, \text{ ஆயின்} \\ \frac{3}{8}, & x = 1,2 \text{ ஆயின்} \\ 0 & x \neq 0,1,2,3 \end{cases}$$

வரைபு முறையில் இதனைப் பின்வருமாறு காட்டலாம்.

திரள் பரம்பல் சார்பு

வரைபு முறையில் பின்வருமாறு காட்டலாம்.

பீன்னக எழுமாற்றுமாறி X ஆனது, எடுக்கக்கூடிய பெறுமானங்கள் முடிவுள்ளதாகவோ அல்லது முடிவற்றதாகவோ இருக்கலாம். முடிவற்றதாக (Countably infinite) இருக்கும்போது,

$$E(X) = \sum_{i=1}^{\alpha} x_i \cdot p(x_i)$$
 எனவும்,

$$Var(x) = \sum_{i=1}^{a} (x_i - \mu)^2 \cdot p(x_i)$$
 எனவும் கொள்ளப்படும்.

பயிற்சி 1

(a) 3 நாணயங்கள் சுண்டப்படும் ஒரு விளையாட்டில் விளையாடுநர் 5
ருபாவை பணயமாகச் செலுத்துகிறார். அவர் நாணயங்களைச் சுண்டும்போது,
பெறும் தலைகளின் எண்ணிக்கைக்கு ஏற்ப அவர் பெறும் பணத்தொகை
கீழே உள்ள அட்டவணையில் தரப்பட்டுள்ளது.

தலைகளின் எண்ணிக்கை	3	2	1	0
பணம் (ருபாவில்)	10	6	3	1

12 விளையாட்டுக்களில், விளையாடுநர் எதிர்பார்க்கும் இலாபம் அல்லது நட்டத்தைக் காண்க.

(b) எழுமாற்றுமாறி X, பின்வரும் நிகழ்தகவுப் பரம்பலைக் கொண்டுள்ளது.

X இன் பெறுமானம்	1	2	5	10
நிகழ்தகவு	0.5	0.3	р	q

X ஆனது $1,\ 2,\ 5,\ 10$ ஆகிய பெறுமானங்களை மட்டும் எடுக்கும் எனவும் $E(X)=2\cdot 5$ எனவும் தரப்படின்,

- (i) p, q என்பனவற்றின் பெறுமானங்களையும்
- (ii) Var (X) ஐயும் கணிக்க.

ஒப்பமான தரையொன்றில் நான்கு சதுரவடிவமான கட்டங்கள் உள்ளன. 1, 2, 5, 10 ஆகியவற்றுள் ஒரு இலக்கத்தை ஒவ்வொரு சதுரமும் கொண்டுள்ளது. தட்டு ஒன்று உருட்டப்படும்போது, தட்டானது சதுரக்கட்டத்தினுள் பூரணமாக விழுந்தால் எறிபவருக்கு அக்கட்டத்திலுள்ள தொகை ரூபாவில் வழங்கப்படுகிறது: அவ்வாறில்லாவிடின் அவருக்கு பணம் எதுவும் வழங்கப்படமாட்டாது. தட்டானது ஒரு தடவை உருட்டப்படும்போது விளையாடுநா பணத்தைப் பெறுவதற்கான நிகழ்தகவு $\frac{1}{4}$ ஆகும். அவ்வாறு அவர் பணத்தைப் பேறும் போது, ரூபா 1, 2, 5, 10 என்பவற்றைப் பெறுவதற்கான நிகழ்தகவு மேலேயுள்ள அட்டவணையிலுள்ளவாறாகும். விளையாட்டு பக்கச்சார்பற்றதாயின், அவர் 5 ரூபாவைப் பெற விளையாடுநர் எத்தனை தட்டுக்களை உருட்ட வேண்டும்?

 (a) சிறுவன் ஒருவன் தாயக்கட்டைகள் இரண்டினை எறியும் விளையாட்டு ஒன்றில் பங்கு பற்றுகிறான். இரண்டிலும் தோன்றும் எண்களின் கூட்டுத்தொகையும், அகற்கான வெகுமசிப் பணமும் கீழே உள்ள அட்டவனையில் தரப்பட்டுள்ளது.

яĿБ	12	10	7	5	ஏனையவை
வெகுமதி (ரூபா)	16	6	3	5	0

ஒரு முறை இரு தாயக்கட்டைகளும் எறியப்படும் போது, எதிர்பார்க்கப்படும் வேகுமதியைக் காண்க.

(b) பை ஒன்றினுள் ஒரே மாதிரியான 5 தட்டுக்கள் உள்ளன. அவற்றுள் இரண்டில் A என்ற எழுத்தும், மற்றைய மூன்றில் B என்ற எழுத்தும் பொறிக்கப்பட்டுள்ளது. A என்ற எழுத்துப் பொறிக்கப்பட்ட இரு தட்டுக்களும் பெறப்படும்வரை ஒன்றன்பின் ஒன்றாக மீள்வைப்பின்றி தட்டுக்கள் எடுக்கப்படுகின்றன. 3 தடவைகள் தேவைப்படுவதற்கான நிகழ்த்கவு ²/10 எனக் காட்டுக.

A பொறிக்கப்பட்ட தட்டுக்கள் இரண்டையும் பெற, எடுக்கப்படவேண்டிய தடவைகளின் எண்ணிக்கையை X குறிப்பின், பின்வரும் அட்டவணையைப் பிரதி செய்து பூரணப்படுத்துக.

X இன் பெறுமானம்	2	3	4	5
X இன் நிகழ்தகவு		2/10		

E(X), Var(X) என்பவற்றைக் காண்க.

3. பின்னக எழுமாற்று மாறி Xஇற்கான திரள் பரம்பல் சார்பு F(x) தரப்பட்டுள்ளது.

x	3	4	5	6	7
F(x)	0.01	0.23	0.64	0.86	1

X இன் நிகழ்தகவுப் பரம்பலை எழுதி Var(X) ஐக் காண்க.

4. பின்னக எழுமாற்றுமாறி X இன் திரள் பரம்பல் சார்பு F(x) ஆனது

$$x = 1,2,3$$
 ஆக, $F(x) = \frac{x^2}{9}$ என்பதால் தரப்படுகிறது.

- (a) F(2), (b) P(X=2) என்பவற்றைக் காண்க.
- (c) X இன் நிகழ்தகவுப் பரம்பலை எழுதுக.
- (d) E(2X-3) ஐக் காண்க.
- 5. முகங்களில் 1 இலிருந்து 6 வரை இலக்கமிடப்பட்ட தாயக்கட்டை ஒன்றை விளையாட்டில் பங்கு கொள்ளும் ஒருவர் எறிகிறார். அவர் 6 ஐப் பெறுவார் எனின் தாயக்கட்டையை இரண்டாம் தடவையும் எறிகிறார். அவர் பெற்ற ஈட்டு, 6 உடன் இரண்டாம் தடவை பெற்ற எண்ணையும் கூட்டிப் பெற்ற தொகையாகும். முதல் தடவை 6 ஐப் பெறவில்லை எனில் முதலாவது தடவையில் பெற்ற எண் அவரது ஈட்டு ஆகும். இரு தடவைகளுக்கு மேல் எறிய முடியாது. விளையாடுபவர் பெற்ற ஈட்டினை, எமுமாற்று மாறி X குறிக்கிறதேன்க X இன் விளையாடுபவர் பெற்ற ஈட்டினை.

விளையாடுபவர் பெற்ற ஈட்டினை, எழுமாற்று மாறி X குறிக்கிறதென்க. X இன் நிகழ்தகவுப் பரம்பலை எழுதி X இன் இடையைக் காண்க.

இரு அடுத்தடுத்த ஈட்டக்களின் கூட்டுத்தொகை 8 அல்லது அதனிலும் கூடியதாக இருப்பதற்கான நிகழ்தகவு $17/3_6$ எனக் காட்டுக.

அடுத்தடுத்த இரு ஈட்டுக்களின் கூட்டுத்தொகை 8 அல்லது அதனிலும் கூட எனத் தரப்படின், முதலாவது ஈட்டு 7 அல்லது அதனிலும் கூடவாக இருப்பதற்கான நிகழ்தகவைக் காண்க.

6. A, B என்னுமிருவர், ஒவ்வொருநாளும் போட்டி ஒன்றில் ஈடுபடுகின்றனர். குறிப்பலகை ஒன்றின் மீது A என்பவர் 3 அம்புகளை எறிகின்றார். குறிப்பலகையைத் தாக்கும் ஒவ்வொரு அம்புக்கும், B, A இற்கு 1 ரூபாவைக் கொடுக்கின்றார். அவ்வாறு குறிப்பலகையைத் தாக்காத ஒவ்வொரு அம்புக்கும், A, B இற்கு 2 ரூபாவைக் கொடுக்கிறார். அம்பு ஒன்று பலகையை அடிப்பதற்கான நிகழ்தகவு p ஆகும். மூன்று முறை எறியும்போது நடைபெறக்கூடிய எல்லாப் பேறுகளையும் கருதி, ஒவ்வொரு நாளும் B பெறக்கூடிய பணத்திற்கான நிகழ்தகவுப் பரம்பலைக் காண்க. (நேராக அல்லது மறை)

 $p = \frac{1}{3}$ எனின் இடை 3 எனவும், மாறற்றிறன் 6 எனவும் காட்டுக.

இப் போட்டியானது 150 நாட்களுக்கு இடம் பெறுகிறது. $p=\frac{1}{3}$ எனின், B யின் மொத்த வெற்றியின் இடையையும், நியம விலகலையும் காண்க.

7. வயல் ஒன்றில் ஒருவகையான மரங்கள் வளர்கின்றன. ஒருவருடத்தில் வயலில் உள்ள ஒவ்வொரு மரமும், அடுத்த வருடத்தில் X எண்ணிக்கையான புதிய மரங்களை உருவாக்குகின்றன. ஆரம்பத்தில் இருந்த மரங்கள் எல்லாம் அழிந்து விடுகின்றன. X இன் நிகழ்தகவுப் பரம்பல் வருமாறு.

$$P(X=0) = P(X=2) = 0.3$$
, $P(X=1) = 0.4$ ஆகும்.

கடந்த வருடம் 2 மரங்கள் இருந்திருப்பின், இவ் வருடம் இருக்கக் கூடிய மரங்களின் எண்ணிக்கை Y இற்கான நிகழ்தகவுப் பரம்பலைக் காண்க. Y இன் மாறற்றிறன் $1 \cdot 2$ எனக் காட்டுக. இதிலிருந்தோ அல்லது வேறு வழியாகவோ, முதலாம் வருடத்தில் 1 மரம் மட்டுமே இருந்ததெனில், மூன்றாவது வருடத்திலுள்ள மரங்களின் எண்ணிக்கை Z இற்கு நிகழ்தகவுப் பரம்பலைக் கண்டு, Z இன் இடை, மாறற்றிறன் என்பவற்றைக் காண்க.

- 8. எழுமாற்றுமாறி R ஆனது, நிறைஎண் பெறுமானங்கள் 1, 2, 3,.....n என்பவற்றை நிகழ்தகவு $\frac{1}{n}$ உடன் எடுக்கின்றது. R இன் இடை, மாறற்றிறன் என்பவற்றைக் காண்க.
 - 15 அட்டைகளில் 1முதல் 15 வரை இலக்கமிடப்பட்டுள்ளது. அட்டைகள் கலைக்கப்பட்டன (Shaffled). மேலேயுள்ள அட்டையின் இலக்கம், அடியிலுள்ள அட்டையின் இலக்கத்திலும் பெரிதாக இருப்பதற்கான நிகழ்தகவு யாது? இவ்விரு இலக்கங்களினதும் கூட்டுதொகை S எனின்,
 - (a) S ≤ 4 ஆக இருப்பதற்கான நிகழ்தகவு யாது?
 - (b) S இன் எதிர்வுப் பெறுமானத்தைக் காண்க.
- பின்னக எழுமாற்றுமாறி X. ஆனது எடுக்கக்கூடிய பெறுமானங்கள் 0,1,2,3,4,5 என்பன மட்டுமே ஆகும். X இன் நிகழ்தகவுப் பரம்பல் பின்வருமாறு தரப்படுகின்றது.

$$P(X=0) = P(X=1) = P(X=2) = a$$

$$P(X=3) = P(X=4) = P(X=5) = b$$

$$P(X \ge 2) = 3P(X < 2)$$

இங்கு a, b என்பன ஒருமைகள்.

- (i) a யினதும் b யினதும் பெறுமானங்களைக் காண்க.
- (ii) X இன் எதிர்வுப் பெறுமானம் 23 $_{8}$ எனக் காட்டி X இன் மாறற்றிறனைத் துணிக.
- (iii) இப் பரம்பலிலிருந்து இரு சாராத அவதானிப்புகளின் கூட்டுத்தொகை 7 இலும் அதிகமாக இருப்பதற்கான நிகழ்தகவைக் காண்க.
- 10. விளையாட்டு ஒன்றில் 3 நாணயங்கள் ஒவ்வொன்றாகச் சுண்டப்படுகின்றன. நாணயம் ஒன்று சுண்டப்படும் போது பூ விழும் சந்தர்ப்பத்தில் மீண்டும் ஒரு முறை சுண்டப்படுகின்றது. எந்த ஒரு நாணயமும் இரு முறைக்கு மேல்

சுண்டப்படுவதில்லை. இறுதியில், விழுந்த தலைகளின் எண்ணிக்கை ஈட்டாகப் பெறப்படுகிறது. ஈட்டின் பெறுமானம் 0, 1, 2, 3, ஆக இருப்பதற்கான நிகழ்தகவுகளைக் காண்க.

பல தடவை எறியப்படும்போது, ... சராசரி ஈட்டு $\frac{9}{4}$ ஆகுமெனக் காட்டுக.

11. நான்கு கோல்களின் நீளங்கள் 1, 2, 3, 4 அலகுகள் ஆகும். இக் கோல்கள் பை ஒன்றினுள் உள்ளன. இப் பையிலிருந்து ஒரு கோல் எழுமாற்றாக எடுக்கப்படுகின்றது. 1 நீளமுடைய கோல் ஒன்றைத் தெரிவு செய்வதற்கான நிகழ்தகவு k \(\) ஆகும்.

k இன் பெறுமானம் யாது?

எடுக்கப்பட்ட கோலின் நீளம் X இன் எதிர்வுப் பெறுமானம் 3 அலகுகள் ஆகுமெனக்காட்டி, X இன் மாறற்றிறனைக் காண்க.

கோல் ஒன்று எடுக்கப்பட்ட பின் அது மீள் வைப்புச் செய்யப்படுவதில்லை. எஞ்சியிருக்கும் மூன்று கோல்கள் ஒவ்வொன்றையும் தெரிவு செய்வதற்கான நிகழ்தகவு, முதலாவது தெரிவிலிருந்த அதே விகிதத்திலேயுள்ளன. பையிலிருந்து இரண்டாவது கோல் ஒன்று தெரிவு செய்யப்படுகின்றது. இரண்டாவதாகத் தெரிவு செய்யப்பட்ட கோலின் நீளம் Y என்க.

$$p_1 = P(Y=1|X=2)., p_2 = P(Y=2|X=1)$$
 எனின்,

 $16p_1 = 9p_2$ எனக் காட்டுக.

$$P(X+Y=3)=17/360$$
 எனவும் காட்டுக.

12. ஒரு எழுமாற்றுப் பரிசோதனையின் இயல்தகு பேறுகள் S_1, S_2, S_3 என்பவை மட்டுமேயாகும். S_1 இனது நிகழ்விற்கான நிகழ்தகவு, S_2 அல்லது S_3 இன் நிகழ்தகவின் இரு மடங்காகும். S_2 உம் S_3 உம் சம நிகழ்தகவுடையன. $P\left(S_1\right), P\left(S_2\right), P\left(S_3\right)$ என்பவற்றைக் காண்க.

கோடாத நாணயமொன்று இரு தடவைகள் சுண்டப்படுகின்றது. தோன்றும் தலைகளின் எண்ணிக்கை X பதியப்படுகிறது. இவ்வெழுமாற்றுப் பரிசோதனையின் இயல்தகு பேறுகளைக் காண்க. X இன் நிகழ்தகவுப் பரம்பலைக் காண மேற்படி முடிபைப் பயன்படுத்துக. மாற்றுமுறையொன்றால் உமது விடையை வாய்ப்புப் பார்க்க.

எழுமாற்றுமாறி
$$Y$$
 ஆனது $Y = \begin{cases} 2X+3, & X=0 &$ எனின் $X+2, & X=1, \ 2 &$ எனின்

என வரையறுக்கப்படுமெனின், Y இன் நிகழ்தகவுப் பரம்பலைக் காண்க. இதிலிருந்து Y இன் எதிர்வையும் மாறற்றிறனையும் காண்க.

13.(i) ஒரு கூடை ω வெள்ளைப் பந்துகளையும் (γ΄), சிவப்புப் பந்துகளையும் கொண்டுள்ளது. கூடையிலிருந்து ஒரு பந்து எழுமாறாக எடுக்கப்படுகின்றது. அப்பந்து வெள்ளையாயிருப்பதற்கான நிகழ்தகவு யாது? ஒரு கூடை ω₁ வெள்ளைப் பந்துகளையும் γ₁ சிவப்புப் பந்துகளையும் கொண்டுள்ளது. இரண்டாவது கூடை ω₂ வெள்ளைப்பந்துகளையும் γ₂ சிவப்புப் பந்துகளையும் கொண்டுள்ளது. முதலாம் கூடையிலிருந்து ஒரு பந்து எழுமாற்றாகத் தெரியப்பட்டு, இரண்டாம் கூடையில் வைக்கப்படுகிறது.

$$\frac{\omega_1 + \omega_2 + (\omega_1 + \gamma_1)}{(\omega_1 + \gamma_1)(\omega_2 + \gamma_2 + 1)}$$
 எனக் காட்டுக.

(ii) ஒரு மனிதனிடமுள்ள 5 வேறுபட்ட சாவிகளிலொன்று மட்டுமே ஒரு குறித்த கதவைத் திறக்கும். அவன் திறக்கச் சாவிகளை எழுமாற்றாக எத்தனிக்கிறான். சித்தியில்லாத திறப்புக்களை நீக்குகின்றான் எனின், அவனது எத்தனிப்புகளின் எண்ணிக்கையின் இடையையும் மாறற்றிறனையும் காண்க.

இப்போது இரண்டாம் கூடையிலிருந்து ஒரு பந்து எழுமாற்றாக எடுக்கப்படுமெனின், இப்பந்து வெள்ளையாக இருப்பதற்கான நிகழ்தகவு

14. ஆண், பெண் இருபாலாருக்குமான பாடசாலையொன்றில் உயிரியல் விஞ்ஞானம் (B), பௌதீக விஞ்ஞானம் (P) இரண்டிலும் 100 மாணவர்கள் உள்ளனர். ஒவ்வொருவருக்கும் T₁, T₂ எனும் இருவகைப் பரீட்சை வினாத்தாள்களுள் ஒன்று வழங்கப்படுகின்றது. செப்பமான வகுப்பாக்கமானது பின்வரும் அட்டவணையில் தரப்படுள்ளது.

பரீட்சை வினாத்தாள் வகை	பால்	உயிரியல்	விஞ்ஞானம் (B	பௌதீக	விஞ்ஞானம் (P)
T_1	பெண் (F)		30		10
	ஆண் (M)		15		5
T_2	பெண் (F)		20		5
	ஆண்(<i>M</i>)		10		5

மாணவர் ஒருவர் எழுமாற்றாகத் தெரிவு செய்யப்பட்டுள்ளார்.

- (a) மாணவர் ஒரு பெண்ணாக
- (b) மாணவர் உயிரியல் விஞ்ஞானத்தைப் பயில்கிறார்
- (c) அவர் T₁ இற்கான பரீட்சை வினாத்தாள் பெற்றவர்
- (d) மாணவர் பெண் என ஏற்றுக் கொணடு, அம்மாணவி உயிரியல் விஞ்ஞானத்தை பயில்கின்றனர்.

ஆகியவற்றிற்கான நிகழ்தகவுகளைக் காண்க.

(ii) தெரிவு செய்யப்பட்ட மாணவரின் வினாத்தாள், பால், பிரிவு ஆகியவற்றிற்கு அமைய X எனும் எழுமாற்றுமாறிக்குப் பெறுமானங்கள் கொடுக்கப்படுகின்றன. எழுமாற்றுமாறி X இன் பெறுமானங்கள் கீழ்வரும் அட்டவணையில் தரப்பட்டுள்ளது. X இற்கான நிகழ்த்கவுப் பரம்பலைக் கண்டு, அதிலிருந்து அதன் இடையையும், மாறற்றிறனையும் காண்க.

தாள்	T_1	T_1	T_1	T_1	<i>T</i> ₂	<i>T</i> ₂	<i>T</i> ₂	<i>T</i> ₂
பால்	F	M	F	М	F	М	F	М
விஞ்ஞானப்பிரிவு	В	В	P	P	В	В	P	P
X இன் பெறுமானம்	-4	-3	-2	-1	1	2	3	4

- 15. B₁, B₂, B₃, B₄, B₅, W₁, W₂, W₃ எனக் குறிக்கப்பட்ட 5 கறுப்புப் பந்துகளையும், 3 வெள்ளைப் பந்துகளையும் ஒரு பெட்டி கொண்டுள்ளது. பதிலீடு செய்யப்படாமல் பெட்டியிலிருந்து இரு பந்துகள் (அடுத்தடுத்து) எடுக்கப்படுகின்றன.
 - (a) இரு பந்துகளும் ஒரே நிறத்தைக் கொண்டனவாய் இருப்பதற்கான
 - (b) குறைந்த பட்சம் ஒரு பந்து கறுப்பாய் இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - இரு பந்துகள் மீதும் உள்ள எண்களின் கூட்டுத்தொகையைக் குறிக்கும் எழுமாற்று மாறியை X என்க. X இன் இடை, மாறற்றிறன் ஆகியவற்றின் பெறுமானங்களையும் காண்க.
- 16. டெனிஸ் விளையாட்டுப் போட்டி ஒன்றிலே பங்கு பற்றும் A, B என்னும் இரு விளையாட்டு வீரர்களுள் ஒருவர் இரு ஆட்டத் தொகுதிகளை வெல்லும் வரை அவர்கள் விளையாட வேண்டும். ஆட்டத் தொகுதிகளுள் ஏதாவது ஒன்றை A வெல்வதற்கான நிகழ்தகவு 0.4 ஆகும்.
 - (a) (i) போட்டியில் A வெல்வதற்கான
 - (ii) அடுத்துவரும் இரு ஆட்டத் தொகுதிகளிலும் B யைத் தோற்கடிப்பதன் மூலம் போட்டியில் A வெல்வதற்கான நிகழ்தகவைக் காண்க.
 - (b) போட்டியில் விளையாடப்பட்ட ஆட்டத்தொகுதிகளின் எண்ணிக்கையை எழுமாற்றுமாறி X குறிப்பின், X இன் நிகழ்தகவுப் பரம்பலைக் கண்டு, இதிலிருந்து போட்டியில் அவர்கள் விளையாடவேண்டிய ஆட்டத் தொகுதிகளின் எதிர்பார்த்த பெறுமானத்தைக் (X இன் இடையை) காண்க.

- (c) எதாவதொரு ஆட்டத்தொகுதிக்கு ஒன்றரை மணித்தியாலம் எடுக்கின்றது. விளையாட்டுக் கழகம் வழங்குகின்ற வசதிகளுக்கு ஒழுங்கு செய்யும் குழு ஒரு மணித்தியாலத்திற்கு 1000 ரூபா செலுத்த வேண்டியுள்ளது. போட்டிக்கான கிரயத்தை (cost) எழுமாற்றுமாறி Y குறிப்பின், Y இன் நிகழ்தகவுப் பரம்பலைக் கண்டு, இதிலிருந்து போட்டிக்கான எதிர் பார்த்த கிரயத்தைக் (Y இன் இடையை) காண்க.
- 17. A, B என்னும் இரு நிகழ்ச்சிகள் சாரா நிகழ்ச்சிகள் எனக் கூறப்படுவது $P(A \cap B) = P(A) \cdot P(B)$ என இருந்தால் மாத்திரமே ஆகும். A, B என்பன சாரா நிகழ்ச்சிகளேனின், அவற்றின் நிரப்பு நிகழ்ச்சிகளும் சாராதவை எனக் காட்டுக.
 குறித்த ஒரு வகையின் எந்த ஒரு விளையாட்டையும் A என்ற விளையாட்டு

குறித்த ஒரு வகையின் எந்த ஒரு விளையாட்டையும் A என்ற விளையாட்டு வீரர் வெல்வதற்கான நிகழ்த்கவு 0.7 ஆகும் அத்தகைய 3 விளையாட்டுக்களைக் கொண்ட ஓர் ஆட்டத் தொகுதியில் A பங்கு பற்றுகிறார். இவ் ஆட்டத்தொகுதியில் குறைந்த பட்சம் ஒரு விளையாட்டையேனும் A வெல்வதற்கான நிகழ்தகவைக் காண்க.

(b) குறித்த ஒரு வகையான எந்த ஒரு கலமும், குறித்த ஒரு பர்சோதனைக்கு உட்படுத்தப்படும் போது ஒன்றில் a என்னும் நிகழ்தகவுடன் இறக்க நேரிடும். அல்லது 0.25 என்னும் நிகழ்தகவுடன் தொடர்ந்து உயிர் வாழும் அல்லது b என்னும் நிகழ்தகவுடன் இயல்போத்த இரு கலங்களாகப் பிரியும். அம் மாதிரியான கலமொன்று இப்பரிசோதனைக்கு உட்படுத்தப்பட்டபோது உயிர்க்கலங்களின் எண்ணிக்கையை X குறிக்கின்றது. உயிருள்ள கலங்களின் இடை எண்ணிக்கை E(X) ஆனது 1.05 எனின் a, b ஆகியவற்றின் பெறுமானங்கள் முறையே 0.35, 0.45 எனக் காட்டுக.

இத்தகைய இரு கலங்கள் அதே பரிசோதனைக்கு உட்படுத்தப்பட்ட போது, எஞ்சியிருக்கும் கலங்களின் எண்ணிக்கையை Y குறிக்கின்றதெனின், Y இன் நிகழ்தகவுப் பரம்பல்

Y=y	0	1	2	3	4
P(Y=y)	0-1225	0.175	0.3425	0.25	0.16

எனக் காட்டுக.

Y இன் இடையையும், மாறற்றிறனையும் காண்க.

18. X என்னும் பின்னக எழுமாற்றுமாறி ஒன்றிற்கு கீழே கொடுக்கப்பட்டுள்ளபடி நிகழ்தகவுப் பரம்பல் ஒன்று உண்டு. இங்கு a துணியப்படவேண்டிய மாறிலியாகும்.

X = x	-2	-1	0	1	2
P(X=x)	0.05	à	0.06	$(1-a)^2$	0.10

X இற்கு சாத்தியமான நிகழ்தகவுப் பரம்பல்கள் இரண்டு உண்டு எனக் காட்டி அவற்றைக் காண்க.

X இன் இந் நிகழ்தகவுப் பரம்பல்கள் ஒவ்வொன்றிற்கும் X இன் இடை, மாறற்றிறன் ஆகியவற்றைக் காண்க. $Y=X^2$ என எடுத்து, X இற்கு நிகழ்தகவுப் பரம்பல்கள் இரண்டு இருப்பினும் Y இற்கு ஒரு நிகழ்தகவு பரம்பல் மாத்திரம் உண்டு எனக் காட்டுக.

Y இன் இடை, மாறற்றிறன் ஆகியவற்றைக் காண்க.

- 19. (a) குறித்த ஒரு நகரத்திலே A, B, C ஆகிய மூன்று புதினப்பத்திரிகைகள் வெளியிடப்படுகின்றன. குடிமக்களில் 20% மானோர் A யையும், 15% மானோர் B யையும், 14% மானோர் C யையும், 8% மானோர் A யையும் B யையும், 6% மானோர் A யையும் C யையும், 4% மானோர் B யையும் C யையும், 2% மானோர் முன்று பத்திரிகைகளையும் வாசிக்கின்றனர் என கணிப்பொன்றிலிருந்து மதிப்பிடப்பட்டுள்ளது. எழுமாறாகத் தெரிவுசெய்யப்பட்ட ஒருவர்
 - (i) எந்த ஒரு பத்திரிகையையும் வாசிக்காதவராக
 - (ii) C யை வாசிக்காதவராக
 - (iii) A யை வாசிப்பவராக B யை வாசிக்காதவராக
 - (iv) குறைந்த பட்சம் இரு பத்திரிகைகளையேனும் வாசிப்பவராக இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - (b) குறித்த ஒரு வகையான தாவரம் ஒன்றிலுள்ள பூச்சிகளின் எண்ணிக்கைகளை குறிக்கின்ற X என்னும் எழுமாற்று மாறி பின்வரும் நிகழ்தகவு பரம்பலையுடையது.

X = x	0	1	2	3	4	5
P(X=x)	0.10	1·8a	0.20	0.20	a 2.	0.1

- (i) வேறெந்தப் பெறுமானத்தையும் X எடுக்காதெனக் கொண்டு a இன் அனுமதிக்கத்தக்க பெறுமானத்தைக் காண்க.
- (ii) X இன் இடையையும் மாறற்றிறனையும் காண்க.
- (iii) மேலே குறிப்பிட்ட வகையிலிருந்து எழுமாற்றாக எடுக்கப்பட்ட

கூறொன்றிலிருந்து பூச்சிகள் இல்லாத தாவரங்களின் **எண்ணிக்கையை** Y என்னும் எழுமாற்றுமாறி குறிக்கின்றது.

Y இன் நிகழ்தகவுப் பரம்பலைக் காண்க.

இதிலிருந்து Y இன் இடையையும் மாறற்றிறனையும் காண்க.

20. X என்னும் ஒரு பின்னக எழுமாற்றுமாறியின் கணித எதிர்வு E(X), மாறற்றிறன் Var(X) ஆகியவற்றை வரையறுக்க.

$$Var(X) = E[X(X-1)] + E(X) - [E(X)]^2$$
 எனக் காட்டுக.

K ஒரு மாறிலியாக இருக்க, X என்னும் பின்னக எழுமாற்று மாறியானது

$$P(X=x)=rac{K2^x}{x!}$$
 என்னும் நிகழ்தகவுகளையுடைய நேரான எல்லா நிறையெண் பெறுமானங்களையும் எடுக்கிறது. K இன் பெறுமானத்தைக் காண்க. $E(X)=2.3$ எனக் காட்டுக. இதிலிருந்து $Var(X)$ இன் பெறுமானத்தை முதலாவது தசமதானம் வரை உய்த்தறிக. $\left[e^2=7.4\,$ எனக் தொள் க $\right]$

- 21. (a) பின்னக நிகழ்தகவுப் பரம்பலொன்றில் X எனும் எழுமாற்று மாறியானது $^{120}/_r$ எனும் பெறுமானத்தை $^{r}/_{45}$ நிகழ்தகவுடன் எடுக்கின்றது. இங்கு r ஆனது 1 முதல் n வரையான எல்லா நேர் முழு எண் பெறுமானங்களையும் குறிக்கின்றது.
 - (i) n = 9 என்பதை வாய்ப்புப் பார்க்க.
 - (ii) X ஆனது 30 என்னும் பெறுமானத்தை எடுப்பதற்கான நிகழ்த்கவைக் காண்க.
 - (iii) X ஆனது 14 இற்கும் 41 இற்குமிடையே இருப்பதற்கான நிகழ்தகவைக் காண்க.
 - (iv)X இன் எதிர்பார்த்த இடையைக் காண்க.
 - (b) கோடாத சாதாரண தாயக்கட்டைகள் மூன்று எறியப்படுபிடத்து ஆறுகள் (6) கிடைக்கும் எதிர்பார்த்த எண்ணிக்கையைக் காண்க.
- 22. வினாத்தாள் ஒன்று 40 பல் தேர்வு வினாக்களைக் கொண்டுள்ளது. ஒவ்வொரு வினாவிலும் சாத்தியமான விடைகள் ஐந்து உள்ளன. இவற்றுள் ஒன்று சரியானது. பரீட்சார்த்தி ஒருவர் எந்தவொரு வினாவிற்கும் சரியான விடையைத் தெரிந்திருப்பதற்கான நிகழ்தகவு P ஐக் கொண்டுள்ளார். அவருக்குச் சரியான விடை தெரியாவிடின், கொடுக்கப்பட்டுள்ள 5 தெரிவுகளிலிருந்து எழுமாற்றான ஊகம் ஒன்றை அவர் செய்கின்றார்.

- (a) எழுமாற்றாகத் தெரிவு செய்யப்பட்ட வினாவொன்றிற்குச் சரியான விடையைப் பரீட்சார்த்தி தெரிவு செய்வதற்கான நிகழ்தகவைக் காண்க.
- (b) சரியான விடையைப் பரீட்சார்த்தி தெரிவு செய்கின்றார் எனத் தரப்படுமிடத்து, அவர் ஊகித்துள்ளார் என்பதற்கான நிபந்தனை நிகழ்தகவைக் காண்க.
- (c) சரியான விடை ஒன்றிற்கு ஒரு புள்ளியும், பிழையான விடை ஒன்றிற்கு பூச்சியமும் வழங்கப்படின், அவரது எதிர்பார்த்த புள்ளியைக் காண்க.
- (d) முற்றாக அறிவற்ற பரீச்சார்த்தியொருவரின் எதிர்பார்த்த புள்ளி பூச்சியமாகுமாறு புள்ளி வழங்கும் திட்டத்தைப் பரீட்சகர் பின்வருமாறு மேற்கொள்ளத் தீர்மானிக்கின்றார். சரியான விடையொன்றிற்கு n புள்ளிகளும், பிழையான விடையொன்றிற்கு -1 புள்ளியும் வழங்குதல் வேண்டும். அவர் n இற்காகத் தெரிவு செய்ய வேண்டிய பெறுமானத்தைக் காண்க.
- 23. தாயக்கட்டை ஒன்று அதன் எதிர் முகங்களிலுள்ள எண்களின் கூட்டுத்தொகை 7 ஆகுமாறு அதன் முகங்களில் 1, 2, 3, 4, 5, 6 என்னும் எண்கள் இடப்பட்டுள்ளன. அதன் யாதுமொரு முகம் நிலத்தைத் தொட்டுக் கொண்டிருக்குமாறு வீழுவதற்கான நிகழ்தகவு அம் முகத்திலுள்ள எண்ணிற்கு விகித சமமாக இருக்குமாறு அத் தாயக்கட்டை வடிவமைக்கப்பட்டுள்ளது. தாயக்கட்டையின் ஈட்டானது குறிக்கும் எழுமாற்றுமாறி X இன் நிகழ்தகவுப் பரம்பலை அட்டவணை வடிவில் தருக. (ஈட்டு என்பது தாயக்கட்டை நிலத்தில் விழுந்த பின் மேன்முகத்திலுள்ள எண்ணைக் குறிக்கும்)

இடை
$$E(X)$$
 ஐயும் $E(X^2)$ ஐயும் காண்க. இதிலிருந்து $Var=(X)=rac{20}{9}$

எனவும், நியமவிலுகல்
$$\frac{2\sqrt{5}}{3}$$
 எனவும் காட்டுக. ஈட்டு X ஆனது, எல்லா

- x = 1, 2, 3, 4, 5, 6 இற்கும் $(-1)^x$ என்ற குறி வழங்கப்பட்டால் எந்தவொரு தனி எறிவும் ஒரு சீரான ஆட்டத்தைத் தருமெனக் காட்டுக.
- 24. இயந்திரம் ஒன்றில் 5 பெட்டிகள் உள்ளன. ஒவ்வொன்றும் நீலம், சிவப்பு, ஊதா, மஞ்சள், பச்சை ஆகிய ஐந்து நிறங்களில் ஒரு நிறத்தைக் கொண்டுள்ளது. இவ் விளையாட்டில் பங்கு பற்றுபவர் ஒரு ரூபா நாணயம் ஒன்றினை இவ்வைந்து பெட்டிகளுள் ஒன்றைத் தெரிவு செய்து அதனுள் இடுகின்றார். நாணயம் உள்ளே செலுத்தப்பட்டதும் மேலே தரப்பட்டுள்ள ஐந்து நிறங்களில் ஒரு நிறத்தையுடைய மின் குமிழ் எரியும். எரிகின்ற மின் குமிழும், அவர் தெரிவு செய்த நிறமும் ஒரே நிறமாக இருந்தால், விளையாடுபவர், இயந்திரத்திலிருந்து R ரூபாவைப் பெறுகிறார். இங்கு

$$P(R=2) = \frac{1}{2}, P(R=4) = \frac{1}{4}, P(R=6) = \frac{3}{20}$$

$$P(R=8) = P(R=10) = \frac{1}{20}$$
 ஆகும்.

எரிகின்ற பின்குபிழின் நிறமும், அவர் தெரிவு செய்த பெட்டியின் நிறமும் வேறுவேறாக இருந்தால் இயந்திரத்திலிருந்து எப்பணமும் அவர் பெற மாட்டார். எந்தவொரு வகையிலும் அவர் இயந்திரத்திற்குள் இடப்பட்ட பணம் திரும்பப்பெற முடியாது. எந்தவொரு மின்குமிழும் எரிவதற்கான நிகழ்தகவு நேர்தகவுடையது எனவும், இயந்திரம் பின்குமிழை எழுமாற்றாகத் தெரிகிறது எனவும் கொண்டு

- (a) விளையாடுபவர், இயந்திரத்திலிருந்து பணத்தைப் பெறாதிருப்பதற்கான நிகழ்தகவு
- (b) ஒரு தடவை முயற்சி செய்கையில் விளையாடுபவர் எதிர்பார்க்கும் இலாபப் பணத் தொகை.
- (c) இலாபப் பணத் தொகையின் எதிர்வுப் பெறுமானம் என்பவற்றைக் காண்க.
- 25. (a) மாறி X எடுக்கும் பெறுமானங்கள் x இன் நிகழ்தகவு

$$P = (X = x) = K \left(\frac{2}{3}\right)^x$$
, $x = 0,1,2,3...$ என்பதால் தரப்படுகிறது.

X ஒரு எழுமாற்று மாறியாக இருக்கத்தக்கதாக K இன் பெறுமானத்தைத் `துணிக.

 $P(X \ge 6)$ spá assolása.

(b) ச எண்ணிக்கையானோருக்கு தடுப்பூசி ஏற்றப்பட்டபோது ஒவ்வொருவரும் இதற்கு எதிரான கருத்தைக் கொண்டிருக்கலாம். எதிரான கருத்தைக் கொண்டவர்களின் எண்ணிக்கையை X ஆல் குறிக்க. X இன் நிகழ்தகவுப்

பரம்பல்
$$P(X=r) = \frac{K}{2^r} (r=0,1,2,....n)$$

இங்கு K ஒரு நேர் ஒருமை எனக் கொண்டு K இன் பெறுமானத்தை n இல் காண்க.

குறைந்தது *m* எண்ணிக்கையானோர் இதற்கு எதிரான கருத்தைக் கொண்டிருப்பதற்கான நிகழ்தகவை *n, m* இல் காண்க.

n = 5 ஆகும்போது குறைந்தது ஒருவரேனும் எதிரான கருத்தைக்

கொண்டிருப்பதற்கான நிகழ்தகவு $\frac{31}{63}$ எனக் காட்டுக.

- 26.X பின்னக எழுமாற்றுமாறியாகவும் a ஓர் ஒருமையாகவுமிருக்க
 - (i) E(aX) = aE(X)
 - (ii) $Var(aX) = a^2 Var(X)$ எனவும் காட்டுக.

A,B ஆகிய இருவர் கலந்து கொள்ளும் விளையாட்டு ஒன்றில், A கோடாத அறுமுகித் தாயக்கட்டையையும், B கோடாத நான்முகித் தாயக்கட்டையையும் உபயோகிக்கின்றனர். A யின் தாயக்கட்டைக்கு மேன்முகத்தில் தோன்றும் இலக்கத்தின் இருமடங்கு புள்ளியும், B யின் தாயக்கட்டைக்கு நிலத்தின் மீதுபடும் முகத்தில் உள்ள இலக்கத்தின் மூன்றுமடங்கு புள்ளியும் வழங்கப்படுகின்றது. ஒவ்வொருவரும் எதிர்பார்க்கும் புள்ளியைக் கணித்து, யாருக்கு இது அனுகூலமானது என்பதைத் தீர்மானிக்க.

அலகு 2

விசேட பின்னக நிகழ்தகவுச் சார்புகள்

(1) சீரான பரம்பல் (Uniform Distribution)

பின்னக எழுமாற்றுமாறி X ஆனது, N எண்ணிக்கையான (முடிவுற்ற)

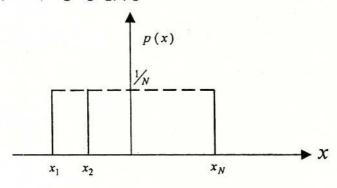
$$x_1, x_2, x_3, \ldots, x_N$$
 என்னும் பெறுமானங்களை எடுக்குமெனவும்

$$P\left(X=x_{i}\right)=k$$
 $(i=1,2,.....N;$ K – ஒருமை) ஆகுமாறும் இருக்குமெனின், X இற்கு சீரானபரம்பல் உள்ளது எனப்படும்.

$$P(X = x_i) = k$$
 (ஒருமை) $i = 1, 2,N$

$$\sum_{i=1}^{N} P(X = x_i) = 1$$

$$kN=1$$
 ஆகவே $k=\frac{1}{N}$


$$P(X = x_i) = \frac{1}{N}$$
 (i=1,2,3,.....N)

X இன் நிகழ்தகவு அடர்த்திச் சார்பு $p\left(x
ight)$ எனின்,

$$p(x) = \frac{1}{N}$$
 , $x = x_i$, $i = 1, 2, 3,N$ $= 0$, அவ்வாறல்லாதபோது ஆகும்.

x	x_{l}	x ₂	<i>x</i> _N
p(x)	$\frac{1}{N}$	1 N	$\frac{1}{N}$

வரைபில் பின்வருமாறு குறித்துக் காட்டலாம்.

உதாரணம்

கோடாத அறுமுகித் தாயக்கட்டை ஒன்று எறியப்படின் தோன்றும் இலக்கத்தை X என்னும் எழுமாற்றுமாறி குறிப்பின், X இன் நிகழ்தகவுப் பரம்பல்,

$$p(x) = 1/6$$
 , $x = 1, 2, 3, 4, 5, 6$
= 0 , அவ்வாறல்லாதபோது, ஆகும்.

சீரான பரம்பல் ஒன்றில் N=n எனவும், $x_i=i$ (i=1,2,.....n) எனவும் கொள்க.

x	1	2	3	n
-(-) 1	1	1_	1	11
p(x)	n	n	$\frac{1}{n}$	n

X இன் எதிர்வுப்பெறுமானம் $E\left(X
ight)$

$$E(X) = 1 \times \frac{1}{n} + 2 \times \frac{1}{n} + 3 \times \frac{1}{n} + \dots + n \times \frac{1}{n}$$
$$= \frac{1}{n} [1 + 2 + \dots + n]$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

X இன் மாறற்றிறன் Var(X)

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= 1^{2} \times \frac{1}{n} + 2^{2} \times \frac{1}{n} + \dots + n^{2} \times \frac{1}{n} - \left(\frac{n+1}{2}\right)^{2}$$

$$= \frac{1}{n} [1^{2} + 2^{2} \dots + n^{2}] - \left(\frac{n+1}{2}\right)^{2}$$

$$= \frac{1}{n} \cdot \frac{n(n+1)(2n+1)}{6} - \left(\frac{n+1}{2}\right)^{2}$$

$$= \frac{(n+1)}{12} [2(2n+1) - 3(n+1)]$$

$$= \frac{(n+1)(n-1)}{12} = \frac{n^{2} - 1}{12}$$

2. பேணூலிப் பரம்பல்

X என்னும் எழுமாற்றுமாறி ஒன்று முறையே $(1-\theta)$, θ $(0<\theta<1)$ நிகழ்தகவுகளைக் கொண்ட 0,1 என்னும் பெறுமானங்களை எடுக்குமெனின், அப்பொழுது X இற்கு பரமானம் θ ஐக் கொண்ட பேணூலிப் பரம்பல் ஒன்று உண்டு எனப்படும்.

நிகழ்தகவு அடர்த்திச்சார்பு p(x) ஆனது

$$p(x) = \theta^x (1-\theta)^{1-x} \quad x = 0, 1$$
 எனின்
= 0 அவ்வாறல்லாதபோது, ஆகும்.

x	0	1		
p(x)	(1-θ)	θ		

$$E(X) = O \times (1-\theta) + 1 \times \theta$$
$$= \theta$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

= $1 \times \theta - \theta^{2} = \theta(1-\theta)$

உதாரணம்

பை ஒன்றினுள் ஒரே மாதிரியான 10 சிவப்பு நிறப் பந்துகளும், 15 கறுப்பு நிறப்பந்துகளும் 25 வெள்ளை நிறப் பந்துகளும் உள்ளன. பையிலிருந்து ஒரு பந்து எழுமாற்றாக எடுக்கப்படுகின்றது. எடுக்கப்பட்ட சிவப்பு நிறப்பந்தின் எண்ணிக்கையை X என்க. இங்கு X எடுக்கக்கூடிய பெறுமானங்கள் 0 உம் 1 உம் ஆகும். அதாவது X=0 எனின், எடுக்கப்பட்ட பந்து சிவப்புநிறமானது அல்ல என்பதாகும். X=1 எனின் எடுக்கப்பட்ட பந்து சிவப்பு நிறமானது என்பதாகும்.

$$P(X=0) = \frac{4}{5}, P(X=1) = \frac{1}{5}$$
 ஆகும்.

X இன் நிகழ்தகவுப் பரம்பல்

$$p(x) = \left(\frac{1}{5}\right)^x \cdot \left(\frac{4}{5}\right)^{1-x}$$
 ; $x = 0, 1$ $= 0$; அவ்வாறல்லாதபோது என வரையறுக்கப்படும்.

x	0	1	
p(x)	4 5	1 5	

3. ஈருறுப்புப்பரம்பல் (Binomial distribution) பின்னக எழுமாற்றுமாறி Xஇற்கு, $0 < \theta < 1$ ஆயிருக்க,

$$p\left(x\right) = \begin{cases} nc_x \, \theta^x \, \left(\, 1 - \theta\, \right)^{n-x}, \, x = 0, 1, 2,n \\ 0 , அவ்வாறல்லாத போது. \end{cases}$$

என்ற வடிவில் $p\left(x
ight)$ என்னும் பின்னக நிகழ்தகவு அடர்த்திச்சார்பு ஒன்று இருக்குமெனின், X இற்கு ஈருறுப்புப்பரம்பல் உண்டு எனப்படும். n, θ என்பன பரம்பலின் பரமானங்கள் எனப்படும். இங்கு n - ஒன்றையொன்று சாராத பரிசோதனைகளின் எண்ணிக்கை.

θ - ஒரு பரிசோதனையில், வெற்றிக்கான பேறின் நிகழ்த்கவு.

$$X \sim Bin(n, \theta)$$
 என எழுதப்படும்.

உதாரணம்

இலக்கொன்றினைச் சுடும் ஒருவர், இலக்கினை அடிப்பதற்குரிய நிகழ்தகவு 2/3 ஆகும். அவர் 5 முறை சுடுகின்றார் எனின், இலக்கினை அடிக்கும் தடவைகளின் எண்ணிக்கையை X எனக்கொள்வோம். இங்கு X இன் பரம்பலை அவதானிப்போம்.

X- பின்னக எழுமாற்றுமாறி, மேலும் n=5, $\theta=2/3$

X- எடுக்கக்கூடிய பெறுமானங்கள் 0, 1, 2, 3, 4, 5 ஆகும்.

ஒரு முறை சுடும் போது இலக்கை அடிக்கும் நிகழ்தகவு p=2/3

ஒரு முறை சுடும் போது இலக்கை அடிக்காமலிருக்கும் நிகழ்தகவு q=1/3 ஆகும்.

$$P(X=0) = 5C_0 \left(\frac{2}{3}\right)^0 \cdot \left(\frac{1}{3}\right)^5 = \left(\frac{1}{3}\right)^5 = \frac{1}{243}$$

$$P(X=1) = 5C_1 \left(\frac{2}{3}\right)^1 \cdot \left(\frac{1}{3}\right)^4 = \frac{10}{243}$$

$$P(X=2) = 5C_2 \left(\frac{2}{3}\right)^2 \cdot \left(\frac{1}{3}\right)^3 = \frac{40}{243}$$

$$P(X=3) = 5C_3 \left(\frac{2}{3}\right)^3 \cdot \left(\frac{1}{3}\right)^2 = \frac{80}{243}$$

$$P(X=4) = 5C_4 \left(\frac{2}{3}\right)^4 \cdot \left(\frac{1}{3}\right) = \frac{80}{243}$$

$$P(X=5) = 5C_5 \left(\frac{2}{3}\right)^5 \cdot \left(\frac{1}{3}\right)^0 = \frac{32}{243}$$

பொதுவாக $P(X=r)=5C_r\,p^r\,(1-p)^{5-r}$ ஆகும். $r=0,\ 1,\ 2,\ 3,\ 4,\ 5$ $(q+p)^5$ இன் ஈருறுப்பு விரிவை எடுத்து நோக்குவோம்.

$$(q+p)^5 = 5C_0 q^5 + 5C_1 q^7 p + 5C_2 q^3 p^2 + 5C_3 q^2 p^3 + 5C_4 q p^4 + 5C_5 p^5$$

இங்கு விரிவின் முதலாம் உறுப்பு $P(X=0)$

இரண்டாம் உறுப்பு P(X=1)

முன்றாம் உறுப்பு P(X=2)

144

இவ்வாறே ஆறாம் உறுப்பு P(X=5) ஆகும்.

மேலும்
$$q+p=1$$
 என்பதால், $\left(q+p\right)^5=1$

ஆகவே P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) = 1 என்பதுவும் பெறப்படுகிறது.

$$X \sim Bin(n, p)$$
 எனின்,

$$E(X) = np$$
 உம், $Var(X) = np(1-p)$ உம் ஆகும்.

$$P(X=x = nC_x p^x (1-p)^{n-x}$$
 ஆகும்.

$$E(X) = \sum_{x=0}^{n} x \cdot P(X=x)$$

$$= \sum_{x=0}^{n} x \cdot n c_{x} p^{x} (1-p)^{n-x} \qquad [1-p=q \text{ similar}]$$

$$= o \cdot q^n + 1 \cdot n c_1 \cdot p \cdot q^{n-1} + 2 \cdot n c_2 P^2 q^{n-2} + \dots + n p^n$$

$$= n p q^{n-1} + n (n-1) p^2 q^{n-2} + \frac{n (n-1) (n-2)}{2!} p^3 q^{n-3} + \dots + n \cdot p^n$$

$$= n p \left[q^{n-1} + (n-1) q^{n-2} p + \frac{(n-1)(n-2)}{2!} q^{n-3} p^2 + \dots + p^{n-1} \right]$$

$$= n p (q + p)^{n-1} = n p [q + p = 1]$$
 ஆத்லால்]

$$Var(X) = E(X^2) - [E(X)]^2$$

நாம் $E(X^2)$ ஐக் கணிக்க வேண்டும்.

$$E(X^2) = \sum_{X=0}^{n} x^2 P(X=x)$$

$$= \sum_{x=0}^{n} x^2 n c_x p^x q^{n-x} [q = 1-p]$$

$$= 0 \cdot q^{n} + 1^{2} n p q^{n-1} + 2^{2} \frac{n (n-1)}{2!} p^{2} q^{n-2}$$

$$+ 3^{2} \frac{n (n-1) (n-2)}{3!} p^{3} q^{n-3} + \dots + n^{2} \cdot p^{n}$$

$$= n p \left[q^{n-1} + 2(n-1) q^{n-2} p + \frac{3 (n-1) (n-2)}{2!} q^{n-3} p^{2} + \dots + p^{n-1} \right]$$

$$= n p \left[\left\{ q^{n-1} + (n-1) q^{n-2} \cdot p + \frac{3 (n-1) (n-2)}{2!} q^{n-3} p^{2} + \dots + p^{n-1} \right\} + \left\{ (n-1) q^{n-2} p + \frac{2}{2!} (n-1) (n-2) q^{n-3} p^{2} + \dots + (n-1) p^{n-1} \right\}$$

$$= n p \left[(q+p)^{n-1} + (n-1) p \left\{ q^{n-2} + (n-2) q^{n-3} p + \dots + p^{n-2} \right\} \right]$$

$$= n p \left[(q+p)^{n-1} + (n-1) p (q+p)^{n-2} \right]$$

$$= n p \left[1 + (n-1) p \right]$$

$$= n p \left[1 - p + n p \right]$$

$$= n p (1-p) + n^{2} p^{2}$$

$$Var(X) = E(X^{2}) - \left[E(X) \right]^{2} = n p (1-p)$$

உதாரணம் 1

- (a) $X \sim Bin\left(6, \frac{1}{3}\right)$ எனின், P(X=4), $P(X \le 2)$ ஐக் காண்க.
- (b) ஆணிகள் உற்பத்தி செய்யும் நிறுவனமொன்றில் உற்பத்தி செய்யப்படும் ஆணிகளில் 5% பழுதானவை. ஆணிகள் எழுமாற்றாக தெரிவுசெய்யப்பட்டு, ஒவ்வொன்றும் 10 ஆணிகள் கொண்ட பைக்கற்றுகளாக்கப்படுகின்றன.
 - (i) எழுமாற்றாக தெரிவுசெய்யப்பட்ட பைக்கற்றொன்றில்
 - 3 ஆணிகள் பழுதடைந்திருப்பதற்கான,
 - 3இலும் குறைவான ஆணிகள் பழுதடைந்திருப்பதற்கான நிகழ்தகவு யாது?

(ii) இரு பைக்கற்றுகள் எழுமாற்றாக எடுக்கப்படுகின்றன. இரு பைக்கற்றுகளிலும் ஆணிகள் பழுதானவை எதுவும் இல்லாமல் இருப்பதற்கான நிகழ்தகவு பாது?

(a)
$$n = 6$$
, $p = \frac{1}{3}$ $P(X=4) = 6C_4 \left(\frac{1}{3}\right)^4 \cdot \left(\frac{2}{3}\right)^2 = \frac{15 \times 4}{729} = \frac{20}{243} = 0.0823$
 $P(X \le 2) = P(X=0) + P(X=1) + P(X=2)$
 $= 6C_0 \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^5 + 6C_1 \left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right)^5 + 6C_2 \left(\frac{1}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^4$
 $= \frac{32}{729} + \frac{192}{729} + \frac{240}{729} = \frac{464}{729} = 0.680$

(b) $p = \frac{5}{100} = \frac{1}{20}$, n = 10

பழுதான ஆணிகளின் எண்ணிக்கை X என்க.

$$P(X=3) = 10C_3 \left(\frac{1}{20}\right)^3 \cdot \left(\frac{19}{20}\right)^7 = 0.0105$$

$$P(X<3) = P(X=0) + P(X=1) + P(X=2)$$

$$=10C_0 \left(\frac{19}{20}\right)^{10} + 10C_1 \left(\frac{1}{20}\right) \left(\frac{19}{20}\right)^9 + 10C_2 \left(\frac{1}{20}\right)^2 \times \left(\frac{19}{20}\right)^8 = 0.988$$

(ii) இரு பைக்கற்றுகளிலும் பழுதான ஆணிகள் இல்லாமலிருப்பதற்கான நிகழ்த்கவு

$$P(X=0) \cdot P(X=0) = 10C_0 \left(\frac{19}{20}\right)^{10} \times 10C_0 \left(\frac{19}{20}\right)^{10}$$

= 0.358

உதாரணம் 2

- (a) $X \sim Bin(n, 0.3)$ எனின், $P(X \ge 1) > 0.8$ ஆகுமாறு n இன் இயல்தகு மிகக் குறைந்த பெறுமானத்தைக் காண்க.
- (b) X என்னும் ஒரு எழுமாற்றுமாறி $X \sim Bin\ (n,p)$ ஆயும், E(X) = 2, $Var\ (X) = 24/13$ ஆகுமாறும் உள்ளது. n,p இன் பெறுமானத்தைக் காண்க.

(a)
$$P[X \ge 1] = 1 - P[X = 0] = 1 - nc_0 (0.7)^n$$

 $= 1 - (0.7)^n > 0.8$
 $(0.7)^n < 0.2$
 $n \log_{10} 0.7 < \log_{10} 0.2$
 $n > \frac{\log_{10} 0.2}{\log_{10} 0.7}$ $[\log 0.7, \text{ bospic assimulial}]$
 $n > \frac{T \cdot 3010}{T \cdot 8451}$
 $n > \frac{-0.6990}{-0.1549} = \frac{6990}{1549} = 4.6$

். n இன் இழிவுப் பெறுமானம் 5.

(b)
$$E(X) = np = 2$$
 (1) $Var(X) = np(1-p) = \frac{24}{13}$ (2) \div (1) $\Rightarrow 1-p = \frac{12}{13}$ $p = \frac{1}{13}$ (1) Reducing $n = 26$ $\therefore X \sim Bin\left(26, \frac{1}{13}\right)$

உதாரணம் 3

பாடசாலையில் உள்ள ஒரு மாணவன் எழுமாற்றாகத் தெரியப்படின், அவனுடைய பிறந்தநாள் சனிக்கிழமை அல்லது ஞாயிற்றுக்கிழமையாக இருப்பதற்குரிய நிகழ்தகவு 2/7 ஆகும். எழுமாற்றாகத் தெரிவு செய்யப்பட்ட 10 மாணவர்கள் கொண்ட ஒரு குழுவில்

(a) (i) சனி, ஞாயிறு பிறந்த நாளையுடையவர்கள் எவருமில்லாமல் இருப்பதற்கான

(ii) ஒருவர் மட்டும் சனி அல்லது ஞாயிறு பிறந்தநாளையுடையவராக இருப்பதற்குரிய நிகழ்தகவு யாது? (b) ஒவ்வொன்றும் 10 பேர் கொண்ட 100 குழுக்களில் ஒரு மாணவனிலும் கூடுதலானோர் சனி அல்லது ஞாயிறு பிறந்த நாளையுடையவராக இருக்கும் எத்தனை குழுக்களை நீர் எதிர்பார்க்கலாம்.

10 மாணவர் கொண்ட குழு ஒன்றில் சனி அல்லது ஞாயிறு பிறந்தநாளையுடைய மாணவர் எண்ணிக்கையை X என்க.

X எடுக்கக்கூடிய பெறுமானம் 0, 1, 2,10 ஆகும்.

$$n = 10, p = \frac{2}{7}, X \sim Bin\left(10, \frac{2}{7}\right)$$

(a) (i)
$$P(X=0) = 10C_0 \left(\frac{5}{7}\right)^{10} = \left(\frac{5}{7}\right)^{10} = 0.0346$$

(ii)
$$P(X=1) = 10C_1 \left(\frac{2}{7}\right) \left(\frac{5}{7}\right)^9 = \left(\frac{5}{7}\right)^{10} \times 4 = 0.1384$$

(b)
$$P(X>1) = P(X \ge 2) = 1 - P(X<2)$$

= $1 - [P(X=0) + P(X=1)]$
= $1 - [0.0346 + 0.1384] = 0.827$

ஒரு மாணவனிலும் கூடுதலானோர், சனி அல்லது ஞாயிறு பிறந்தநாளைக் கொண்டிருக்கும் குழுக்களின் எண்ணிக்கை Y என்க.

இங்கு
$$n = 100$$
, $p = 0.827$
 $Y \sim Bin (100, 0.827)$
 $E(Y) = np = 100 \times 0.827$
 $= 82.7$

எதிர் பார்க்கப்படும் குடும்பங்களின் எண்ணிக்கை = 82 · 7

எழுமாற்றுமாறி X, ஈருறுப்புப் பரம்பலை உடையது எனத் தரப்பட்டிருக்க நடை பெறக்கூடிய மிசுவும் சாத்தியமான Xஇன் பெறுமானத்தைக் காணல்.

பரம்பலில் மிக உயர்ந்த நிகழ்தகவைக் கொண்ட X இன் பெறுமானம், மிகவும் சாத்தியமான பெறுமானம் ஆகும். இதனைக் கணிப்பதற்கு X எடுக்கக்கூடிய எல்லாப் பெறுமானங்களின் நிகழ்தகவுகளை கணித்தல் வேண்டும். இது மிகவும் சிரமமானது. வழக்கமாக X இன் இடைக்கு அயலில் உள்ள பெறுமானங்களின் நிகழ்தகவுகளைக்

கணித்து சாத்தியமான பெறுமானத்தினைக் காணலாம். இப் பெறுமானம் ஆகாரம் (mode) எனவும் கூறப்படும்.

உதாரணம் 4

எழுமாற்றுமாறி $X, X \sim Bin(n,p)$ ஆகுமாறு உள்ளது.

 $n=12,\; p=0\cdot 8$ எனின் X இன் மிகவும் சாத்தியமான பெறுமானத்தைக் காண்க.

$$E(X) = 12 \times 0.8 = 9.6$$
, 9.6 இடை ஆகும்.

இப்பொழுது
$$P(X=8) = 12C_8 (0.8)^8 (0.2)^4 = 0.1328$$

$$P(X=9) = 12C_9 (0.8)^9 \cdot (0.2)^3 = 0.2362$$

$$P(X=10) = 12C_{10} (0.8)^{10} (0.2)^2 = 0.2834$$

$$P(X=11) = 12C_{11}(0.8)^{11}(0.2) = 0.2061$$

ஆகவே மிகவும் சாத்தியமான X இன் பெறுமானம் 10 ஆகும்.

உதாரணம் 5

உற்பத்தி செய்யப்பட்ட பொருளொன்றின் பெரும் தொகுதி ஒன்றில் இருந்து 20 பொருட்களைக் கொண்ட மாதிரி ஒன்று எடுக்கப்பட்டு, பழுதான பொருட்களின் எண்ணிக்கை குறிக்கப்படுகிறது. இவ் எண்ணிக்கை 2 இலும் பெரிதாக இருப்பின், அத்தோகுதி நிராகரிக்கப்படுகிறது. 2 இலும் குறைவாக இருப்பின், தொகுதி ஏற்றுக்கொள்ளப்படுகிறது. பழுதான பொருட்களின் எண்ணிக்கை 2 எனின், 10 பொருட்களைக் கொண்ட மேலும் ஒரு மாதிரி எடுக்கப்பட்டு, இம் மாதிரியில் ஏதேனும் பழுதான பொருட்கள் இருப்பின் தொகுதி நிராகரிக்கப்படுகிறது. இல்லையெனில் தொகுதி ஏற்றுக்கொள்ளப்படுகிறது. குறித்த தொகுதி ஒன்றில் 2% பழுதான பொருட்கள் உள்ளன எனக்கொண்டு,

- (a) முதலாவது மாதிரியின் சோதனையின் முடிவாகத் தொகுதி ஏற்றுக் கொள்ளப்படுவதற்கு
- (b) இரண்டாவது மாதிரி எடுக்கப்பட்டு அச் சோதனையின் முடிவாக தொகுதி ஏற்றுக் கொள்ளப்படுவதற்கு
- (c) தொகுதி நிராகரிக்கப்படுவதற்கு நிகழ்தகவைக் காண்க.
- (a) இங்கு n = 20, p = 0.02

பழுதான பொருட்களின் எண்ணிக்கை X என்க.

முதலாவது மாதிரி எடுக்கப்பட்டு, பரிசோதிக்கப்பட்ட பின் தொகுதி ஏற்றுக்கொள்ளப்பட்டதெனின் X<2 ஆகவேண்டும்.

$$P(X<2) = P(X=0) + P(X=1)$$

$$= 20C_0 (0.02)^0 (0.98)^{20} + 20C_1 (0.02)^1 (0.98)^{19}$$

$$= (0.98)^{20} + 20 (0.02) (0.98)^{19}$$

$$= 0.6670 + 0.2722$$

$$= 0.940$$

(b)
$$X=2$$
 steeless $P(X=2) = 20C_2 (0.02)^2 (0.98)^{18}$
= $190 \times 0.0004 \times 0.6943$
= 0.5277

இரண்டாவது மாதிரியில் பழுதான பொருட்களின் எண்ணிக்கை Y என்க. இங்கு $n=10, \quad p=0\cdot 02$

$$P\left(Y=0\right)=10C_0\left(0.02\right)^0\left(0.98\right)^{10}=(0.98)^{10}=0.817$$
 இரண்டாவது மாதிரியின் சோதனையின் முடிவாக ஏற்றுக்கொள்ளப்படுவதற்கு நிகழ்தகவு $=P\left(X=2\right)\cdot P\left(Y=0\right)$ $=0.5277\times0.817$ $=0.0432$

(c) தொகுதி நிராகரிக்கப்படுவதற்கு நிகழ்தகவு.

$$1-[0.940 + 0.0432]$$
$$= 1-0.9832$$
$$= 0.0168$$

4. பெருக்கல் பரம்பல் (Geometic Distribution)

பின்னக எழுமாற்றுமாறி X இற்கு $0 ஆயிருக்க <math>P(X=x) = q^{x-1} p$ என்ற வடிவில் பரம்பல் உண்டெனில் இங்கு $x=1, 2, 3, \ldots, X$ ற்கு பரமானம் p கொண்ட பெருக்கல் பரம்பல் உண்டு எனப்படும். இங்கு q=1-p

$$p(x) = q^{x-1} p: x = 1, 2, \dots$$
 ஆயின் $(p+q=1)$ $= 0$: அவ்வாறல்லாத போது $X \sim Geo(p)$ என்பதால் குறிக்கப்படும்.

உதாரணம்

கோடிய நாணயம் ஒன்று சுண்டப்படுகிறது. இங்கு தலை விழுவதற்கான நிகழ்தகவு 0.6 ஆகும். தலை விழும் வரை நாணயம் சுண்டப்படுகிறது. எழுமாற்றுமாறி X முதலாவதாக தலை விழும் வரை சுண்டப்படும் தடவைகளின் எண்ணிக்கை.

இங்கு
$$p = 0.6$$

 $P(X=1) = p$
 $P(X=2) = qp$
 $P(X=3) = q^2p$
 $P(X=n) = q^{n-1}p = (0.4)^{n-1}(0.6)$ ஆகும்.

$$X \sim Geo\left(p\right)$$
 எனின், $P\left(X > r\right) = (1 - p)^r$ எனக் காட்டுக. $1 - p = q$ என்க.

$$P(X>r) = 1 - P(X \le r)$$

$$= 1 - [P(X=1) + P(X=2) + P(X=3) + \dots + P(X=r)]$$

$$= 1 - [p + qp + q^{2}p + \dots + q^{r-1}p]$$

$$= 1 - p(1 + q + q^{2} + \dots + q^{r-1})$$

$$= 1 - \frac{p(1 - q^{r})}{1 - q} \quad (p = 1 - q)$$

$$= 1 - [1 - q^{r}]$$

$$= q^{r}$$

$$= (1 - p)^{r}$$

$$X \sim G \, e \, o \, (p)$$
 எனின், $P \, [\, X > a + b \, / \, \times > a \,] = P \, [\, X > b \,]$ எனக் காட்டுக. $P \, [\, X > a + b \, / \, X > a \,] = rac{P \, (\, X > a + b \,)}{P \, (\, X > a \,)} = rac{q^{\, a + b}}{q^{\, a}}$ $= q^{\, b} = P \, (\, X > b \,)$

எதிர்வும் மாறற்றிறனும்

$$X \sim Geo(p)$$
 எனின், $E(X) = 1/p$, $Var(X) = q/p^2$ ஆகும்.

$$E \cdot (X) = \sum_{x=1}^{\infty} x \cdot P \quad (X = x)$$

$$= \sum_{x=1}^{\infty} x \cdot q^{x-1} \cdot p$$

$$= p + 2q p + 3q^{2} p + \dots + nq^{n-1} p + \dots$$

$$= p \left[1 + 2q + 3q^{2} p + \dots \right]$$

$$= p \left(1 - q \right)^{-2} \quad (0 < q < 1)$$

$$= \frac{p}{(1 - q)^{2}}$$

$$= \frac{p}{p^{2}} = \frac{1}{p}$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$E(X^{2}) = \sum_{x=1}^{\infty} x^{2} \cdot P(X = x)$$
$$= \sum_{x=1}^{\infty} x^{2} \cdot q^{|X|-1} p$$

$$= p + 4qp + 9q^2p + 16q^3p + 25q^4p + \dots$$

$$= p \left[1 + 4q + 9q^2 + 16q^3 + 25q^4 + \dots \right]$$

$$= p \left[(1 + 2q + 3q^2 + 4q^3 + 5q^4 +) + (2q + 6q^2 + 12q^3 + 20q^4 +) \right]$$

$$= p \left[(1 + 2q + 3q^2 + 4q^3 + 5q^4 +) + 2q (1 + 3q + 6q^2 + 10q^3 +) \right]$$

$$= p \left[(1-q)^{-2} + 2q (1-q)^{-3} \right]$$

$$= p \left[\frac{1}{(1-q)^2} + \frac{2q}{(1-q)^3} \right]$$

$$= p \left[\frac{1}{p^2} + \frac{2q}{p^3} \right]$$

$$= \frac{1}{p} + \frac{2q}{p^2}$$

$$Var(X) = E(X^2) - \left[E(X) \right]^2$$

$$= \frac{1}{p} + \frac{2q}{p^2} - \frac{1}{p^2}$$

$$= \frac{p + 2q - 1}{p^2}$$

$$= \frac{q}{p^2} \qquad (p-1 = -q)$$

உ தாரணம் 1

 $X \sim Geo~(0.5)$ எனின், X இன் (a) இடை (b) நியமவில்கல் (c) ஆகாரம் என்பவற்றைக் காண்க.

(a)
$$E(X) = \frac{1}{p} = \frac{1}{0.5} = 2$$

 X இன் இடை = 2 ஆகும்.

$$Var(X) = \frac{q}{n^2} = \frac{1 - 0.5}{(0.5)^2} = 2$$

(b) நியமவிலகல் =
$$\sqrt{Var(X)} = \sqrt{2} = 1.414$$

(c)
$$P(X=1) = p$$

 $P(X=2) = qp$
 $P(X=3) = q^2p$
 $p > q p > q^2 p >$ $(0$

எனவே ஆகாரம் 1. ஆகும்.

உதாரணம் 2

கோடிய நாணயம் ஒன்று சுண்டப்படும் போது தலை விழுவதற்கான நிகழ்தகவு (). 6 ஆகும். (a) பூ ஒன்றினைப் பெறுவதற்கு நாணயம் சுண்டப்படவேண்டிய எண்ணிக்கையின் எதிர்வுப்பெறுமானம் (b) பூ. ஒன்றினைப் கண்டப்பட வேண்டிய எண்ணிக்கையின் சாத்தியமான பெறுமானம் (most hicely number) என்பவற்றைக் காண்க.

(a)
$$P(H) = 0.6$$
, $P(T) = 0.4 = p$
பூ விழும் வரை நாணயம் சுண்டப்படுகிறது. நாணயம் சுண்டப்படும்
 j litfs pd v vz z pf i f X என்க.

$$X \sim Geo(p)$$
 $E(X) = \frac{1}{p} = \frac{1}{0.4} = 2.5$

். எதிர்வுப் பெறுமானம் = 2 · 5

$$P(X=1) = 0.4 = p$$

$$P(X=2) = (0.4)(0.6) = 0.24$$

$$P(X=3) = (0.4)^{2}(0.6) = 0.096$$

$$P(X=1) > P(X=2) > P(X=3)....$$

X இன் சாத்தியமான பெறுமானம் 1 ஆகும்.

உதாரணம் 3

நவம்பர் மாதத்தில் எந்த ஒரு நாளிலும் மழை பெய்வதற்கான நிகழ்தகவு 0.55 ஆகும்.

- (a) நவம்பர் மாதத்தில் முதல் மழை நாள் 6 ஆம் திகதியாக இருப்பதற்கான நிகழ்தகவைக் காண்க.
- (b) நவம்பர் மாதத்தில் முதல் 10 நாட்களும் மழை பெய்யவில்லை எனத் தரப்படின் முதலாவதாக 14ம் திகதி மழை பெய்வதற்கான நிகழ்தகவு யாது?
- (c) நவம்பர் 8ம் திகதிக்கு முன் மழை பெய்யாதிருப்பதற்கான நிகழ்கதவு யாது?

நவம்பர் மாதம் முதலாவதாக மழை பெய்யும் நாளின் திகதியை X என்க.

(a)
$$P(X=6) = (0.45)^5 (0.55)$$

= 0.01015

(b)
$$P(X=14/X > 10) = \frac{P(X > 10 \text{ g.ib } X = 14 \text{ g.ib})}{P(X > 10)}$$

$$= \frac{P(X=14)}{P(X > 10)} = \frac{(0.45)^{13} (0.55)}{(0.45)^{10}}$$

$$= (0.45)^3 (0.55)$$

$$= 0.05015$$

(c)
$$P(X \ge 8) = P(X > 7) = (0.45)^7 = 0.003736$$

உதாரணம் 4

- (a) இரு தாயக்கட்டைகள் ஒருமித்து எறியப்படும் போது இரு தாயக்கட்டைகளிலும் ஒரே எண் தோன்றினால் "இரட்டை" பெறப்பட்டது எனப்படும்.
 - (i) இரு தாயக்கட்டைகளும் இரு தடவைகள் எறியப்படும் போது முதலாவது தடவையில் "இரட்டையினைப் பெறவும் இரண்டாவது தடவையில் பெறாமலிருப்பதற்குமான நிகழ்தகவு யாது?
 - (ii) இரு தாயக்கட்டைகளும், மூன்று தடவைகள் எறியப்படும் போது முதலிரு தடவைகள் "இரட்டை" பினைப் பெறவும், மூன்றாம் தடவை இரட்டையினைப் பெறாதிருப்பதற்குமான நிகழ்தகவு யாது?
- (b) இரு தாயக்கட்டைகள் "இரட்டை" ஒன்று பெறாதிருக்கும் வரை எறியப்படுகிறது. எறியப்படும் தடவைகளின் எதிர்பார்த்த எண்ணிக்கை யாது?
- (a) இரட்டை பெறப்படும் நிகழ்ச்சியை D என்க.

(i)
$$P(DD') = \frac{1}{6} \times \frac{5}{6} = \frac{5}{36} \quad \left[\frac{6}{36} \times \frac{30}{36} \right]$$

(ii)
$$P(DDD') = \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} = \frac{5}{216}$$

(b) எறியப்படும் தடவைகளின் எண்ணிக்கை X என்க. $X \sim Geo\left(p\right)$

$$P\left(D'\right)=p=\frac{5}{6}$$

$$E(X) = \frac{1}{p} = \frac{1}{5/6} = 1\frac{1}{5}$$

உதாரணம் 5

- (a) X என்னும் எழுமாற்றுமாறியொன்று p=0.3 என்னும் நிகழ்தகவுடன் கூடிய பெருக்கற் பரம்பலொன்றிலுள்ளது. P(X=4) ஐக் காண்க.
- (b) சிறுவன் ஒருவன் நகரம் ஒன்றிற்குச் செல்வதற்காகப் பேருந்து நிலையம் ஒன்றில் பேருந்திற்காகக் காத்து நிற்கிறான். அவன் தான் செல்லும் நகருக்குரிய பேருந்து வரும் வரை அப்பேருந்து உட்பட, பாதையின் அவனது பக்கத்தினால் செல்லும் எல்லாப் பேருந்துகளையும் எண்ணுகிறான். பாதையில் அவனது பக்கத்தினாற் செல்லும் பேருந்துகளில் 30% ஆனவை அந்த நகருக்குச் செல்லுகின்றன எனின்,
 - அவன் நகருக்குச் செல்லக்கூடிய பேருந்தின் எண்ணிக்கையின் சாத்தியமான பெறுமானம்.
 - (ii) அவன் அதிகூடிய எண்ணிக்கையாக 4 பேருந்துகளை எண்ணுவதற்கு நிகழ்தகவு என்பவற்றைக் காண்க.
- (a) $X \sim Geo(0.3)$

$$P(X=4) = (0.7)^3 (0.3)$$

= 0.1029

(b) பேருந்துகளின் எண்ணிக்கையை Y என்க.

$$P(Y=1) = 0.3$$

$$P(Y=2) = (0.7)(0.3)$$

$$P(Y=3) = (0.7)^{2}(0.3)$$

$$P(Y=4) = (0.7)^{3}(0.3)$$

$$P(Y=1) > P(Y=2) > P(Y=3) > P(Y=4)...$$

எனவே சாத்தியமான பெறுமானம் 1.

(ii)
$$P(Y \le 4) = P(Y=1) + P(Y=2) + P(Y=3) + P(Y=4)$$

 $= (0.3) + (0.7) (0.3) + (0.7)^2 (0.3) + (0.7)^3 (0.3)$
 $= (0.3) \left[1 + (0.7) + (0.7)^2 + (0.7)^3 \right]$
 $= (0.3) \left[\frac{1 - (0.7)^4}{1 - 0.7} \right] = 1 - (0.7)^4$
 $= 1 - 0.2401 = 0.7599$

5. புவசோன் பரம்பல் (Poisson Distribution)

பின்னக எழுமாற்றுமாறி Xஇற்கு, $\lambda > 0$ ஆயிருக்க

$$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
, $x = 0, 1, 2, 3,$

என்னும் வடிவிலான நிகழ்தகவு அடர்த்திச்சார்பு ஒன்று இருப்பின், X இற்கு புவசோன்பரம்பல் உண்டு எனப்படும். இங்கு λ பரம்பலின் பரமானம் (Paramerter of the destribution) எனப்படும்.

$$p\left(x
ight) = \begin{cases} \dfrac{e^{-\lambda \ \lambda^X}}{x \,!} \ , & x=0,\,1,\,2,..... \\ & & & \\ 0 & & & \\ X \sim P_o\left(\lambda\right) &$$
 என எழுதப்படும்.

உதாரணம் 1

விற்பனை முகவர் ஒருவர், கிழமை நாட்களில் மு.பகல் 10.00 மணிக்கும் 11.00 மணிக்குமிடையில் சராசரியாக 6 தொலைபேசி அழைப்புக்களைப் பெறுகிறார்.

- (a) குறித்த ஒரு கிழமைநாளில் அவர் மு.பகல் 10 மணிக்கும் 11.00 மணிக்கும் இடையில் 2 அல்லது அதற்கு மேற்பட்ட தொலைபேசி அழைப்புக்களைப் பெறுவதற்கான நிகழ்தகவு யாது?
- (b) குறித்த ஒரு கிழமை நாளில் மு.பகல் 10.00 மணிக்கும் 10.10 மணிக்கும் இடையில் சரியாக 2 தொலைபேசி அழைப்புக்களைப் பெறுவதற்கான நிகழ்தகவு யாது?

- (c) 5 வேலை நாட்களைக் கொண்ட கிழமையொன்றில், சரியாக 3 நாட்களில் மு.பகல் 10.00 மணிக்கும் 10.10 க்குமிடையில் எந்தவொரு தொலைபேசி அழைப்பையும் பெறாதிருப்பதற்குரிய நிகழ்தகவு யாது?
- (a) மு.பகல் 10மணிக்கும் 11 மணிக்குமிடையில் சராசரியாக 6 தொலைபேசி அழைப்புக்கள் பெறப்படுகின்றன. 1மணித்தியால இடைவேளையில் தொலைபேசி அழைப்புக்களின் எண்ணிக்கை X என்க.

$$X \sim P_o$$
 (6) Quesign $\lambda = 6$

$$P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}; \qquad P(X=x) = \frac{e^{-6} \cdot 6^x}{x!}$$

$$P(X \ge 2) = 1 - [P(X=0) + P(X=1)]$$

$$= 1 - [e^{-6} + e^{-6} \times 6]$$

$$= 1 - 7 \cdot e^{-6}$$

$$= 1 - 7 \times 0.0025$$

$$= 1 - 0.0175 = 0.9825$$

(b) 1மணித்தியால இடைவேளையில் தொலைபேசி அழைப்புக்கள் 6 ஆகும். எனவே 10 நிமிடங்களில் தொலைபேசி அழைப்புக்களின் சராசரி எண்ணிக்கை 1 ஆகும். அதாவது λ = 1 மு.ப 10.00 மணி முதல் 10.10 வரை தொலைபேசி அழைப்புகளின் எண்ணிக்கை У என்க.

$$Y \sim P_o(\lambda); \ \lambda = 1 \qquad P(Y=y) = \frac{e^{-\lambda} \lambda^y}{y!}$$

$$P(Y=2) = \frac{e^{-1} 1^2}{2!} = \frac{0.3679}{2} = 0.184$$

(c)
$$P(Y=0) = e^{-1} = 0.3679$$

 $P(Y > 0) = 1 - P(Y=0) = 0.6321$

5 வேலை நாட்களில், 3 நாட்களில், குறித்த அக்காலப்பகுதியில் எந்த ஒரு தொலைபேசி அழைப்பையும் பெறாதிருப்பதற்குரிய

நிகழ்தகவு =
$$5C_3 (0.3679)^3 (0.6321)^2$$

= $10 \times (0.3679)^3 \times (0.6321)^2$
= 0.199

எழுமாற்றுமாறி X , $X\sim P_o\left(\lambda\right)$ ஆகுமாறு உள்ளது. $E\left(X\right)=\lambda$, $Var\left(X\right)=\lambda$ எனக் காட்டுக.

$$E(X) = \sum_{x=0}^{\infty} x \ P(X=x)$$

$$= \sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}$$

$$= 0 + 1 \cdot e^{-\lambda} \cdot \lambda + \frac{2e^{-\lambda} \lambda^{2}}{2!} + \frac{3e^{-\lambda} \lambda^{3}}{3!} + \cdots$$

$$= \lambda \cdot e^{-\lambda} \left[1 + \lambda + \frac{\lambda^{2}}{2!} + \frac{\lambda^{3}}{3!} + \cdots \right]$$

$$= \lambda \cdot e^{-\lambda} \cdot e^{\lambda}$$

$$= \lambda$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$E(X^{2}) = \sum_{x=0}^{\infty} x^{2} \cdot P(X=x)$$

$$= \sum_{x=0}^{\infty} x^{2} \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}$$

 $\therefore E(X) = \lambda$ ஆகும்.

$$= \sum_{x=1}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^{x}}{(x-1)!} = e^{-\lambda} \sum_{x=1}^{\infty} \frac{\left[(x-1)+1 \right] \lambda^{x}}{(x-1)!}$$

$$= e^{-\lambda} \sum_{x=1}^{\infty} \frac{(x-1)\lambda^{x}}{(x-1)!} + e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x}}{(x-1)!}$$

$$= e^{-\lambda} \cdot \lambda^{2} \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} + e^{-\lambda} \cdot \lambda \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}$$

$$= e^{-\lambda} \cdot \lambda^{2} \cdot e^{\lambda} + e^{-\lambda} \cdot \lambda + e^{\lambda}$$

$$= \lambda^{2} + \lambda$$

$$Var(X) = E(X^{2}) - \left[E(X) \right]^{2}$$

$$= \lambda + \lambda^{2} - \lambda^{2} = \lambda$$

$$\therefore Var(X) = \lambda \quad \text{Seg.ib.}$$

உதாரணம் 2.

பாடசாலை அலுவலகம் ஒன்றிற்கு 5 நிமிட இடை வெளியில் வரும் தொலைபேசி அழைப்புக்களின் எண்ணிக்கை () 5 ஐ இடையாகக் கொண்ட புவசோன்பரம்பல் ஒன்றில் அமைந்துள்ளன.

- (a) 10.05 க்கும் 10.10 க்குமிடையில் தொலைபேசி அழைப்புக்களைப் பெறாதிருப்பதற்கு
- (b) குறித்த 30 நிமிட இடைவெளியில் 4 இலும் மேற்பட்ட தொலைபேசி அழைப்புக்களைப் பெறுவதற்கு, நிகழ்தகவு யாது?
- (a) 10.05 க்கும் 10.10 க்குமிடையில் தொலைபேசி அழைப்புகளின் எண்ணிக்கை X என்க.

$$X \sim P_o\left(\lambda\right)$$
 , $E\left(X\right) = \lambda$
$$E\left(X\right) = 0.5 \qquad \text{significant} \qquad \lambda = 0.5$$

$$P\left(X = x\right) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$$

$$P(X=0) = e^{-0.5} = 0.6065$$

(b) 30 நிமிட இடைவெளியில் வரும் தொலைபேசி அழைப்புக்களின் எண்ணிக்கை Y என்க.

$$Y \sim P_o(\lambda) = \lambda = 6 \times 0.5 = 3 \qquad P(Y=y) = \frac{e^{-3} 3^y}{y!}$$

$$P(Y>4) = 1 - P(Y \le 4)$$

$$= 1 - [P(Y=0) + P(Y=1) + P(Y=2) + P(Y=3) + P(Y=4)]$$

$$= 1 - \left[e^{-3} + 3e^{-3} + \frac{9}{2}e^{-3} + \frac{9}{2}e^{-3} + \frac{27}{8}e^{-3}\right]$$

$$= 1 - e^{-3} \times \frac{131}{8}$$

$$= 1 - \frac{131}{8} \times 0.0498$$

$$= 1 - 0.815 = 0.185$$

உதாரணம் 3

தொழிற்சாலை ஒன்றில் ஒரு கிழமையில் நடைபெறும் விபத்துக்களின் எண்ணிக்கை, 3.2 மாறற்றிறனுடைய புவசோன் பரம்பல் ஒன்றிலுள்ளது.

- (a) குறித்த ஒரு கிழமையில் விபத்து எதுவும் நடைபெறாதிருக்க
- (b) குறித்த ஒரு கிழமையில் 4 இலும் மேற்பட்ட விபத்துக்கள் நடைபெற
- (c) குறித்த இரு கிழமைகளில் 3 இலும் குறைந்த விபத்துக்கள் நடைபெற நிகழ்தகவைக் காண்க.

குறித்த 1 கிழமையில் நடைபெறும் விபத்துக்களின் எண்ணிக்கையை X என்க.

$$X \sim P_o(\lambda) \qquad Var(X) = \lambda$$

$$\therefore \quad \lambda = 3.2$$

$$P(X=x) = \frac{e^{-3.2} \cdot 3.2^x}{x!}$$

$$P(X=0) = e^{-3.2} = 0.0408$$

(a) குறித்த ஒரு கிழமையில் விபத்து நடைபெறாதிருக்கும் நிகழ்தகவு 0.0408 162

(b)
$$P(X > 4) = 1 - P(X \le 4)$$

 $= 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)]$
 $= 1 - [e^{-3 \cdot 2} + e^{-3 \cdot 2} \times 3 \cdot 2 + \frac{e^{-3 \cdot 2} \times 3 \cdot 2^{2}}{2!} + \frac{e^{-3 \cdot 2} \times 3 \cdot 2^{3}}{3!} + \frac{e^{-3 \cdot 2} \times 3 \cdot 2^{4}}{4!}]$
 $= 0.219$

(c) இரு கிழமைகளில் நடை பெறும் விபத்துக்களின் எண்ணிக்கை Y என்க. $\lambda = 3 \cdot 2 \times 2 = 6 \cdot 4$

$$Y \sim P_o(\lambda) \qquad P(Y=y) = \frac{e^{-\lambda} \cdot \lambda^y}{y!}$$

$$P(Y<3) = P(Y=0) + P(Y=1) + P(Y=2)$$

$$= e^{-6\cdot4} + e^{-6\cdot4} \times 6\cdot4 + e^{-6\cdot4} \times \frac{6\cdot4^2}{2!}$$

$$= e^{-6\cdot4} \left[1 + 6\cdot4 + 20\cdot48 \right] = 0.0463$$

புவசோன்பரம்பலை, ஈருறுப்புப் பரம்பலுக்கு ஓர் அண்ணளவாக் கமாகப் பயன்படுத்தல்.

X என்னும் பின்னக எழுமாற்றுமாறி, n,p பரமானங்களைக் கொண்ட ஈருறுப்புப் பரம்பல் ஒன்றில் அமைந்துள்ளது என்க.

$$X \sim Bin(n, p)$$

n பெரிதாகவும், (n > 50), p சிறிதாகவும் (p < 0.1) இருக்கும் போது X ஆனது $\lambda = np$ ஐப் பரமானமாகக் கொண்ட புவசோன்பரம்பல் ஒன்றில் அமைந்துள்ளது எனக் கொள்ளலாம்.

$$X \sim P_o(\lambda)$$
 Quis $\lambda = np$ $(n > 50, p < 0.1)$

 $n \to \infty$ ஆகவும், $p \to 0$ ஆகவும், இருக்கும் போது இவ் அண்ணளவாக்கம் மிகவும் பொருத்தமானதாக இருக்கும்.

உதாரணம் 4

நேரிய நீண்ட தெருவொன்றில் செல்லும் வாகனங்களில் நாளொன்றுக்கு 200 க்கு 1 என்ற சராசரியில் வாகனங்கள் பழுதடைகின்றன. குறித்த ஒரு நாளில்,

- (a) 250 வாகனங்களைக் கொண்ட மாதிரியொன்றில், எந்த ஒரு வாகனமும் பழுதடையாதிருப்பதற்கு,
- (b) 300 வாகனங்களைக் கொண்ட மாதிரியொன்றில் இரண்டிற்கு மேற்பட்ட வாகனங்கள் பழுதடைவதற்கு, நிகழ்தகவு யாது?
- (a) வாகனம் ஒன்று, பழுதடைவதற்கான நிகழ்தகவு = $\frac{1}{200}$

$$p = \frac{1}{200}, \quad n = 250$$

பழுதடையும் வாகனங்களின் எண்ணிக்கை X என்க.

$$X \sim Bin (250, \frac{1}{200}) ; P(X=x) = nC_x p^x \cdot (1-p)^{n-x}$$

$$P(X=0) = 250C_o (0.005)^o (0.995)^{250}$$

$$= (0.995)^{250} =$$

அல் லது

இங்கு n = 250, p = 0.005

எனவே புவசோன் பரம்பலிற்கு அண்ணளவாக்கமாகப் பாவிக்கலாம்.

$$\lambda = np = 250 \times 0.005 = 1.25$$

$$X \sim P_O(1.25)$$
; $P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$

$$P(X=0) = e^{-1.25} = 0.287$$

(b) பழுதடையும் வாகனங்களின் எண்ணிக்கை Y என்க.

இங்கு
$$n = 300$$
, $p = \frac{1}{200}$

$$Y \sim Bin\left(300, \frac{1}{200}\right)$$

$$P(Y > 2) = 1 - [P(Y=0) + P(Y=1) + P(Y=2)]$$

$$=1-\left[300C_{O}\left(0.005\right)^{O}\left(0.995\right)^{300}+300C_{1}\left(0.005\right)\left(0.995\right)^{299}\right.$$

$$+300C_2(0.005)^2(0.995)^{298}$$

$$= 1 - \left[(0.995)^{300} + 300 \times (0.005) (0.995)^{299} + 150 \times 299 (0.005)^{2} (0.995)^{298} \right]$$

$$= 1 - \left[(0.995)^{300} + 300 \times (0.005) (0.995)^{298} \right]$$

$$= 1 - \left[(0.995)^{200} + (0.995)^{298} \right]$$

$$= 1 - \left[(0.995)^{200} + (0.995)^{298} \right]$$

$$= 1 - \left[(0.995)^{200} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{299} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{298} + (0.995)^{299} + ($$

உதாரணம் 5

விமானம் ஒன்றில் 116 ஆசனங்கள் உள்ளன. விமானப் பயணமொன்றிற்கு, பயண ரிக்கெற்றுக்களைப் பெறுபவர்களில், 2·5% ஆனோர் குறித்த அப் பயணத்திற்கு வருவதில்லை என அவ்விமான நிறுவனம், தங்களின் நீண்டகால அனுபவத்திலிருந்து அறிந்துள்ளது. அவ்விமான நிறுவனம் குறித்த ஒரு பயணத்திற்கு 120 ரிக்கெற்றுக்களை விற்பனை செய்கிறது. பொருத்தமான அண்ணளவாக்கம் ஒன்றினைப் பயன்படுத்தி 116 இற்கு மேற்பட்ட பயணிகள் அப் பயணத்திற்கு வருவதற்கான நிகழ்தகவு யாது?

அவ் விமானத்தில் ஆசனங்கள் காலியாக இருப்பதற்குரிய நிகழ்தகவு யாது?

பயணி ஒருவர் குறித்த பயணத்திற்கு வராதிருப்பதற்கான நிகழ்தகவு = 25/1000 = 0.025

விற்கப்பட்ட ரிக் கெற்றுக்களின் எண்ணிக்கை = 120 பிரயாணத்திற்கு வராதிருக்கும் பயணிகளின் எண்ணிக்கை X என்க.

$$X \sim Bin (120, 0.025)$$
; $n = 120, p = 0.025$
 $\lambda = np = 3$

$$X \sim P_o(3)$$
; $P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$

116 க்கு மேற்பட்டோர் அப்பயணத்திற்கு வருவார்களெனின், X எடுக்கக்கூடிய பெறுமானங்கள் 0,1,2,3

$$P(X \le 3) = P(X=0) + P(X=1) + P(X=2) + P(X=3)$$

$$= e^{-3} + e^{-3} \cdot 3 + e^{-3} \cdot \frac{9}{2} + e^{-3} \cdot \frac{9}{2}$$

$$= 13 \times e^{-3} = 13 \times 0.0498 = 0.6474$$

விமானத்தில் ஆசனங்கள் காலியாக இருக்க X>4 ஆதல் வேண்டும்.

$$P(X > 4) = 1 - P(X \le 4)$$

$$= 1 - [P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4)]$$

$$= 1 - \left[e^{-3} + e^{-3} \cdot 3 + e^{-3} \cdot \frac{9}{2} + e^{-3} \cdot \frac{9}{2} + e^{-3} \cdot \frac{27}{8}\right]$$

$$= 1 - \frac{131}{8} \cdot e^{-3} = 0.185$$

பயிற்சி

2(a) ஈருறுப்புப்பரம்பல்

- 1. பின்னக எழுமாற்றுமாறி X, $X \sim Bin\left(8,\ 2/5\right)$ எனின், $P\left(X=2\right), \quad P\left(X=0\right), \quad P\left(X>6\right)$ என்பவற்றைக் காண்க.
- 2. செப்ரெம்பர் மாதத்தில் தரப்பட்ட எந்த ஒரு நாளிலும் மழை பெய்வதற்கான நிகழ்தகவு 0.3 ஆகும். செப்ரெம்பர் மாதத்தின் கிழமை ஒன்றில்
 - (a) சரியாக இரண்டு நாட்கள் மட்டும்
 - (b) குறைந்தது இரண்டு நாட்கள்
 - (c) சரியாக 3 நாட்கள் அடுத்தடுத்து மழை பெய்வதற்கான நிகழ்தகவைக் காண்க.

- 3. கோடிய தாயக்கட்டை ஒன்று எறியப்படும்போது 6 விழுவதற்கான நிகழ்தகவு p (< 1/6) ஆகும். பரிசோதனையொன்றில் தாயக்கட்டை 25 தடவைகள் எறியப்பட்டு, முடிவுகள் பெறப்படுகின்றன. பெரும் எண்ணிக்கையான பரிசோதனைகளில் 6 இன் எண்ணிக்கைகளின் இடைவிலகல் 1.5 ஆகும். இதிலிருந்து p இன் பெறுமானத்தையும் ஒரு குறித்த பரிசோதனையில் 3 தடவைகள் மட்டும் 6 விழுந்திருப்பதற்கான நிகழ்தகவையும் காண்க.
- 4. (a) பெரும் எண்ணிக்கையில் உற்பத்தி செய்யப்படும் பொருள் கூறொன்றில் 5 % பழுதானவை. எழுமாற்றாகத் தெரியப்பட்டு ஒவ்வொன்றும் 10 கூறுகள் கொண்ட பொதிகளாக இவை பொதி செய்யப்பட்டுள்ளன. பொதி ஒன்று எழுமாற்றாகத் தெரிவு செய்யப்படுகிறது. பொதியில்,
 - (i) இரு கூறுகள் மட்டும் பழுதாக இருப்பதற்கு
 - (ii) ஒன்றிலும் கூடிய கூறுகள் பழுதாக இருப்பதற்கு நிகழ்தகவைக் காண்க. 2 பொதிகள் எழுமாற்றாகத் தெரிவு செய்யப்படுகின்றன. 20 கூறுகளிலும், சரியாக 1 மட்டுமே பழுதாக இருப்பதற்கான நிகழ்தகவு யாது? 150 பொதிகள் தெரிவு செய்யப்படின் பழுதான கூறுகள் எதுவும் இல்லாத பெட்டிகளின் எண்ணிக்கையின் எதிர்வுப் பெறுமானத்தைக் காண்க.
 - (b) இலக்கொன்றினை நோக்கி 12 தடவைகள் சுடப்படுகின்றது. இலக்கை அடிக்கும் தடவைகளின் எண்ணிக்கை அவதானிக்கப்படுகின்றது. இப்பரிசோதனை பல தடவைகள் செய்யப்பட்ட போது இலக்கை அடிக்கும் தடவைகளின் எண்ணிக்கையின் இடை 3 எனக் காணப்பட்டது.
 - (i) ஒரு தடவை சுடப்படும் போது இலக்கை அடிப்பதற்கான நிகழ்தகவு யாது?
 - (ii) பரிசோதனையொன்றின் அடிக்கும் தடவைகளின் எண்ணிக்கையின் நியமவிலகலைக் காண்க.
- 5. பரிசோதனையொன்றின் போது ஒரு குறித்த எண்ணிக்கையான தாயக்கட்டைகள் எறியப்பட்டு, பெற்ற "6" களின் எண்ணிக்கை அவதானிக்கப்பட்டது. தாயக்கட்டைகள் எல்லாம் கோடியவை. தாயக்கட்டை ஒன்றில் 6 விழுவதற்கான நிகழ்தகவு p ஆகும். மொத்தம் நடைபெற்ற 60 பரிசோதனைகளின் முடிபுகள் கீழே கரப்பட்டுள்ளன.

பரிசோதனை ஒன்றில் தோன்றும் 6 இன் எண்ணிக்கை	0	1	2	3	4	>4
மீள்திறன்	19	26	12	2	1	0

இத்தரவின் இடையையும், நியமவிலகலையும் காண்க.

இவ் விடைகளை ஈருறுப்புப்பரம்பல் ஒன்றின் இடை, நியமவிலகலுடன் ஒப்பிடுவதன் மூலம்

- (a) ஒவ்வொரு பரிசோதனையிலும் எறியப்பட்ட தாயக்கட்டைகளின் எண்ணிக்கையையும்
- (b) p இன் பெறுமானத்தையும் காண்க.
- நகரம் ஒன்றிலுள்ள 5 பேரில் ஒருவர் இடது கைப்பழக்கம் உடையவர்.
 - (a) பத்துப்பேரைக் கொண்ட எழுமாற்று மாதிரியொன்றில்
 - (i) சரியாக 3 பேர் இடது கைப்பழக்கம் உடையவர்களாக இருக்க
 - (ii) அரைவாசிப்பேரிலும் கூடியோர் இடது கைப்பழக்கம் உடையவர்களாக இருக்க நிகழ்தகவு யாது?
 - (b) 12 பேரைக்கொண்ட எழுமாற்று மாதிரி ஒன்றில் இடது கைப்பழக்கம் உள்ளவர்களின் மிகவும் சாத்தியமான எண்ணிக்கையைக் காண்க.
 - (c) 25 பேரைக் கொண்ட எழுமாற்று மாதிரியொன்றின் இடை, நியமவிலகல் என்பவற்றைக் காண்க.
 - (d) குறைந்தது இடது கைப்பக்கம் பழக்கம் கொண்ட ஒருவராவது இருப்பதற்கான நிகழ்தகவு (0.95 இலும் அதிகமாக இருக்க எழுமாற்று மாதிரியின் பருமனைக் காண்க.
- 7. பத்திரிகையொன்றில் ஞாயிற்றுக்கிழமை தவிர்ந்த ஏனைய நாட்களில் "குறுக்கெழுத்துப்போட்டி" வெளிவருகிறது குறிப்பிட்ட ஒருவர் சராசரியாக 10 குறுக்கெழுத்துப் போட்டிகளில் 8 இனைப் பூர்த்தியாக்குகிறார்.
 - (a) கிழமை ஒன்றில் அவர் பூர்த்தி செய்யும் குறுக்கெழுத்துப் போட்டிகளின் எண்ணிக்கையின் எதிர்வுப்பெறுமானத்தையும், நியமவிலகலையும் காண்க.
 - (b) கிழமையொன்றில் அவர் 5 போட்டிகளைப் பூர்த்தி செய்வதற்கான நிகழ்தகவு 0 655 எனக் காட்டுக.
 - (c) திங்கட்கிழமை அவர் குறுக்கெழுத்துப் போட்டியினை பூர்த்தி செய்கிறார் எனத் தரப்படின், அக் கிழமையின் மீதி நாட்களில் குறைந்தது நான்கினைப் பூர்த்தி செய்வதற்கான நிகழ்தகவு யாது?
 - (d) நான்கு கிழமைகளில், ஒரு கிழமையில் மட்டும், 5 இலும் குறைவான போட்டிகளை அவர் பூர்த்தி செய்வதற்கான நிகழ்தகவு யாது?
- ஒவ்வொன்றும் 8 பொருட்களைக் கொண்ட மாதிரிகள், பெரிய தொகுதி ஒன்றில் இருந்து எழுமாற்றாக எடுக்கப்படுகின்றன. தொகுதியிலுள்ள பொருட்களில் 20% பழுதானவை.
 - மாதிரியொன்றில் காணக்கூடிய, பழுதான பொருட்களின் மிகவும் சாத்தியமான பெறுமானம் யாது? இப் பெறுமானத்தைப் பெறுவதற்கான நிகழ்தகவு யாது? 8 பொருட்களைக் கொண்ட 100 மாதிரிகளுள், 3 அல்லது அதற்கு மேற்பட்ட பழுதான பொருட்களைக் கொண்டுள்ள மாதிரிகளின் எதிர்பார்க்கும் எண்ணிக்கையைக் கணிக்க.

- 9. A, B ஆகிய இருவர் சதுரங்க (Chess) ஆட்டத்தில் ஈடுபடுகின்றனர். ஆட்டம் ஒன்றில் A வெல்வதற்கான நிகழ்தகவு 2/5 உம், A வெற்றி பேறாதபோது B வெல்வதற்கான நிகழ்தகவும், வெற்றி தோல்வியின்றி முடிவதற்கான நிகழ்தகவும் சமமாகும். அவர்கள் குறித்த ஒரு நாளில் நான்கு ஆட்டங்களில் ஈடுபடுகின்றனர்.
 - (a) A ஒரு ஆட்டத்திலும் வெற்றி பெறாதிருப்பதற்கான
 - (b) A இரண்டிற்கு மேற்பட்ட ஆட்டங்களில் வெற்றி பெறுவதற்கான நிகழ்தகவு யாது?

நான்கு ஆட்டங்களில் A சரியாக இரண்டு ஆட்டங்களில் வெற்றி பெற்றார் எனத் தரப்படின், B வெற்றி பெறும் ஆட்டங்களின் எண்ணிக்கைக்கான நிகழ்தகவுப் பரம்பலைக் காண்க.

நான்கு ஆட்டங்கள் வீளையாடும்போது A,B யிலும் கூடுதலான் ஆட்டங்களில் வெற்றி பெறுவதற்கான நிகழ்தகவு யாது?

10. பிள்ளை ஒன்று தன்னுடைய தந்தையுடன் விளையாட்டூ ஒன்றில் ஈடுபடுகிறது. தந்தை தன்னுடைய கையில் இனிப்பு ஒன்றினை மற்றத்து வைத்திருக்கிறார். பிள்ளை, இனிப்பு இடது கையில் உள்ளதா அல்லது வலது கையில் உள்ளதா என்று ஊகித்துக் கூறுகிறது. பிள்ளை முதலாவதாக இடது கையைத் தெரிகிறது. அடுத்த 3 முறைகளில், அதற்கு முதன்முறை தெரிவு செய்த கையைத் தெரிவு செய்வதற்கான நிகழ்தகவு S உம் மற்றைய கையைத் தெரிவு செய்வதற்கான நிகழ்தகவு d உம் ஆகும்.

இங்க s+d=1

பிள்ளை இறுதியில் (நான்காம் தடவை) இடது கையைத் தெரிவு தெரிவு செய்வதற்கான நிகழ்தகவு யாது?

 $(s+d)^3,\ (s-d)^3$ என்பவற்றின் விரிவுகளைக் கருதி மேலே நீங்கள் பெற்ற $1/2\left[1+(s-d)^3\right]$ என்ற வடிவில் எழுதலாமெனக் காட்டுக.

2 (b) பெருக்கற்பரம்பல்

- 1. எழுமாற்றுமாறி X, $X \sim Geo~(0.3)$ எனின்,
 - (a) P(X=4) (b) P(X>4) (c) $P(X\leq 2)$ (d) P(X>8/X>3) என்பவற்றைக் காண்க.

- 2. குறிபார்த்துச் சுடும் போட்டி ஒன்றில், ஒவ்வொரு முறை சுடும்போதும் போட்டியாளர் ஒருவர் இலக்கினை அடிப்பதற்குரிய நிகழ்தகவு 0.2 ஆகும். அவர் இலக்கினை முதலில் அடிப்பது உட்பட, இலக்கினை முதலில் அடிக்கும் வரை சுடும் தடவைகளின் எண்ணிக்கை X என்க.
 - (a) அவர் முன்றாவது தடவை சுடும்போது முதலில் இலக்கினை அடிப்பதற்கான நிகழ்தகவு யாது?
 - (b) X இன் பரம்பலை எழுதி இப்பரம்பல் எவ்வகையான பரம்பல் எனக்கூறுக.
 - (c) போட்டியாளர் முதலாவது தடவை இலக்கை அடிப்பதற்கு முன் குறைந்தது முன்று தடவையாவது அடிக்கத் தவறியிருப்பதற்கான நிகழ்தகவு யாது?
 - (d) X இன் இடை யாது?

இன்னொரு சந்தர்ப்பத்தில், இரு தடவைகள் இலக்கினை அடிக்கும் வ**ரை அவ**ர் சுடுகின்றார். இரண்டாவது தடவை உட்பட, அவர் சுடும் தடவைகளின் எண்ணிக்கை Y எனின் P(Y=4) ஐக் காண்க.

 ஓர் எழுமாற்று மாறி R இன் நிகழ் தகவுப் பரம்பல் பின் வருமாறு வரையறுக்கப்பட்டுள்ளது.

$$P(R=r) = \frac{4}{5} \cdot \left(\frac{1}{5}\right)^{r-1}, \quad r = 1, 2, 3,$$

$$\sum_{n=1}^{\infty} n \cdot p^n = \frac{p}{\left(1 - p\right)^2}$$
 எனத் தரப்படின் $E(R)$ ஐக் காண்க.

$$Var(R) = \frac{5}{16}$$
 எனின், $S = 3R - 2$ ஆக இருக்க

 $E\left(S\right)$, $Var\left(S\right)$ என்பவற்றைக் காண்க.

தொலைபேசி அழைப்புப் பெட்டிகளில் ஒன்று உபயோகித்துக் கொண்டிருப்பதற்கான நிகழ்தகவு 1/5 ஆகும். தொலைபேசி அழைப்பினை எடுக்கச் செல்லும் ஒருவர், ஆறாவது பெட்டியை முயற்சித்த போது மட்டும் அவருக்கு அழைப்புக் கிடைத்தது எனின், பாவிக்காத தொலைபேசியினைக் கண்டுபிடிக்கும்வரை, அவர் முயற்சித்து கிடைக்காத பெட்டிகளின் எண்ணிக்கையின் இடையைக் காண்க.

4. (a) விளையாட்டு வீரர் ஒருவர் தன்னுடைய ஆட்டத்தைத் தொடங்க முன்னர், நாயக்கட்டை ஒன்றினை எறிந்து 6 ஐப் பெற வேண்டும். அவர்

- (i) அவருடைய முதலாவது எத்தனத்திலேயே விளையாட்டைத் தொடங்க
- (ii) மூன்றாவது எத்தனிப்பு வரை விளையாட்டைத் தொடங்காமலிருக்க
- (iii) விளையாட்டைத் தொடங்க மூன்று எத்தனிப்புக்களிலும் கூடுதலாக தேவைப்படுவதற்கு நிகழ்த்கவைக் காண்க.
- (iv) 6 ஐப் பெறுவதற்கு எறிய வேண்டிய தடவைகளின் எண்ணிக்கையின் மிகச் சாக்கியமான பெறுமானம் யாது?
- (v) 6 ஐப் பெறுவதற்கு எறிய வேண்டிய தடவைகளின் எண்ணிக்கையின் இடை யாது?
- (b) n ஆவது தடவை அல்லது அதற்கு முன்பாக விளையாட்டைத் தொடங்க ஆகக் குறைந்தது 95% நிகழ்தகவைக் கொண்டிருப்பதற்கான n இன் மிகக் குறைந்த பெறுமானம் யாது?
- 5. எழுமாற்று மாறி X ஆனது, $X\sim Geo\left(p\right)$ ஆகுமாறு உள்ளது.

$$P(X \le r) = 1 - (1 - p)^r$$
 எனக் காட்டுக.

இதிலிருந்து s , t என்பன இரு நேர்நிறை எண்களாக இருக்க

$$P(X > s + t / X > s) = P(X > t)$$
 என நிறுவி,

இதன் கருத்தினை சொற்களில் விளக்குக.

மாரிகாலத்தில் கிராமம் ஒன்றில் எந்த ஒரு நாளிலும், அங்குள்ள ஆற்றில் வெள்ளப்பெருக்கு ஏற்படுவதற்கான நிகழ்தகவு 0·1 ஆகும். மாரிகாலத்தின் முதல்நாளை நவம்பர் முதலாம் திகதியாகக் கொண்டு, முதலாவதாக, நவம்பர் 30 ஆம் திகதி ஆற்றில் வெள்ளப்பெருக்கு ஏற்படுவதற்கான நிகழ்தகவைக் காண்க.

நவம்பர் மாதம் முழுவதும் ஆற்றில் வெள்ளப்பெருக்கு ஏற்படவில்லையெனத் தரப்படின், அவ்வாற்றில் படகினை ஓட்டும் ஒருவர், அவர் படகினை ஓட்டும் தினத்தன்று அல்லது அதற்குமுன் ஆறு பெருக்கெடுப்பதற்கான நிகழ்தகவு, ஆகக் குறைந்தது 0.9 ஆக இருக்கத்தக்கதாக தனது படகு ஓட்டும் திகதியை நிர்ணயிக்கிறார் எனின், அவர் நிர்ணயம் செய்த திகதி யாது?

6. விற்பனையை ஊக்குவிப்பதற்காக, விற்பனை நிறுவனம் ஒன்று, தன்னிடம் பொருட்களைக் கொள்வனவு செய்யவர்கள் ஒவ்வொருவருக்கும் சினிமா நட்சத்திரம் ஒருவரின் படத்தினைக் கொண்ட அட்டை ஒன்றை வழங்குகிறது. இவ்வாறான 10 வித்தியாசமான அட்டைகள் உள்ளன. ஓவ்வொன்றிலும் வேறுவேறான 10 சினிமா நட்சத்திரங்களின் படங்கள் உள்ளன. வாடிக்கையாளர் ஒருவர் எல்லாப் பத்துப் படங்களையும் கொண்ட அட்டைகளைப் பெற்றிருப்பாரெனில் அவருக்கு வெகுமதி ஒன்று வழங்கப்படும். வாடிக்கையாளர் பொருட்களைக் கொள்வனவு

செய்யும்போது, அவர் பெறுகின்ற அட்டையானது பத்துப்பேரில் ஒருவருடைய படத்தைக் கொண்டிருப்பதற்கான நிகழ்தகவு சமவாய்ப்புடையதாகும்.

- (a) வாடிக்கையாளர் முதலில் பெறும் நான்கு அட்டைகளிலுமுள்ள படங்கள் எல்லாம் வித்தியாசமானவையாக இருப்பதற்குரிய நிகழ்தகவு யாது?
- (b) வாடிக்கையாளர் முதலில் பெறும் நான்கு அட்டைகளிலுமுள்ள படங்களில், முன்று மட்டும் வித்தியாசமானவையாக இருப்பதற்குரிய நிகழ்தகவு யாது?
- (c) 10 பேரில் இருவர் X, Y எனின் வாடிக்கையாளர் முதலில் பெற்ற நான்கு அட்டைகளில் X அல்லது Y(அல்லது இருவரும்) யினுடைய படங்கள் இருப்பதற்குரிய நிகழ்தகவு யாது?
- (d) குறித்த ஒரு சந்தர்ப்பத்தில், வாடிக்கையாளர் 10 வித்தியாசமான படங்களில் ஒன்பதினை வைத்திருக்கின்றார்.
 P (படங்களைப் பூர்த்திசெய்வதற்கு மேலும் தேவையான அட்டைகளின் அதியுயர் எண்ணிக்கை n) > 0.99 ஆகுமாறுள்ள n இன் இழிவுப்

பெறுமானத்தைக் காண்க.

2 (C) புவசோன் பரம் பல்

- 1. 1 மில்லிலீற்றர் திரவத்திலுள்ள பக்ரீறியாக்களின் எண்ணிக்கையின் இடை 4 என அறியப்படுகின்றது. பக்ரீறியாக்களின் எண்ணிக்கை புவசோன்பரம்பல் ஒன்றில் அமைகின்றதெனக் கொண்டு 1 மில்லிலீற்றர் திரவத்தில்
 - (a) பக்ரீறியா எதுவும் இல்லாதிருக்க
 - (b) 4 பக்ரீறியாக்கள் இருக்க
 - (c) 3 பக்ரீறியாவிலும் குறைவாக இருக்க நிகழ்தகவைக் காண்க.
 - (d) 3 மில்லிலீற்றர் திரவத்தில் 2 பக்ரீறியாவிலும் குறைவாக இருக்க
 - (e) 1/2 மில்லிலீற்றர் திரவத்தில் 2 பக்ரீறியாவிலும் கூடுதலாக இருக்க நிகழ்த்கவைக் காண்க.
- 2 500 பக்கங்களைக் கொண்ட புத்தகம் ஒன்றில் 750 அச்சு வழுக்கள் உள்ளன.
 - (a) ஒரு பக்கத்தில் சராசரியாக எத்தனை அச்சு வழுக்கள் உள்ளன.
 - (b) பக்கம் 427 இல்
 - (i) அச்சு வழுக்கள் இல்லாதிருக்க
 - (ii) சரியாக 4 அச்சு வழுக்கள் இருக்க
 - (iii) சராசரியிலும் கூடிய அச்சு வழுக்கள் இருக்க நிகழ்தகவைக் காண்க.
 - (c) பக்கம் 427 இலும் 428 இலும் எந்த ஒரு அச்சு வழுவும் இல்லா<mark>திருப்பதற்கான</mark> நிகழ்தகவு யாது?

- 3. தொழிற்சாலை ஒன்றில் வானொலியின் உதிரிப்பாகம் ஒன்று தயாரிக்கப்படுகிறது. இந்த உதிரிப்பாகம், ஒவ்வொன்றும் 500 கொண்டதாக பெட்டிகளில் பொதி செய்யப்படுகிறது. ஒரு உதிரிப்பாகம் பழுதானதாக இருப்பதற்குரிய நிகழ்தகவு 0.002 ஆகும். எனின், பெட்டி ஒன்று பழுதான உதிரிப்பாகம் 2 ஐக் கொண்டிருப்பதற்கான நிகழ்தகவு யாது?
- 4. இரு தாயக்கட்டைகள் 90 தடவைகள் எறியப்படுகின்றன. குறைந்தது இரு தடவைகளாவது "இரண்டிலும் 6 விழுவதற்கான" நிகழ்தகவு யாது?
- 5. வானொலிப்பெட்டிகள் விற்பனை செய்யும் நிலையம் ஒன்றில் குறித்த ஒரு வகையினைச் சேர்ந்த வானொலிகள் கிழமை ஒன்றிற்கு சராசரியாக 4 விற்பனையாகின்றன. கிழமை ஒன்றில் விற்பனை செய்யப்படும் வானொலிப்பெட்டிகளின் எண்ணிக்கை புவசோன் பரம்பலில் அமைந்துள்ளது எனக்கொண்டு,
 - (a) கிழமை ஒன்றில் குறைந்தது 2 வானொலிப்பெட்டிகளை விற்பனை செய்வதற்கு நிகழ்த்கவு யாது?
 - (b) ஒரு கிழமையின் விற்பனைத் தேவையைப் பூர்த்தி செய்வதற்கு 99% நிகழ்தகவுடன் கிழமையின் தொடக்கத்தில் கையிருப்பில் வை த் திரு க் க வேண்டிய வானொலிப்பெட்டிகளின் எண்ணிக்கைகளைக் காண்க.
- 6. உற்பத்தியாளர் ஒருவர் இணைந்த எலெக்றோனிக் அலகுகளை உற்பத்தி செய்கிறார். ஒவ்வொரு அலகிலும் 36 தனித்தனியான கருவிகள் உள்ளன. உற்பத்தியிலுள்ள சில காரணங்களால் அலகிலுள்ள எல்லா கருவிகளும் இயங்குவதில்லை. 100 அலகுகளைக் கொண்ட மாதிரியொன்று சோதனையிடப்பட்டது. சோதனையின் போது சரியாக தொழிற்படும் கருவிகள் N ஐக் கொண்ட அலகுகள் பற்றிய அட்டவணை கீழே தரப்பட்டுள்ளது.

N	36	35	34	33	32	31	30	29	28-	<28
அலகுகளின் எண்ணிக்கை	5	15	22	22	17	11	5	2	1	0

பிழையான கருவிகளின் எண்ணிக்கையின் இடையைக் காண்க.
(கிட்டிய முழு எண்ணில்) 36 கருவிகளில் குறைந்தது 32 கருவிகளாவது தொழிற்படும் அலகுகளையே அவ் உற்பத்தியாளர் விற்பனை செய்கிறார். புவசோன் பரம்பலைப் பயன்படுத்தி அவர் உற்பத்தி செய்த அலகுகளில் சந்தைப்படுத்தாத அலகுகளின் நூற்று வீதத்தைக் காண்க. 7- அடுத்தடுத்துள்ள ஒரே அளவான பரப்பளவுடைய பத்து காணித்துண்டுகளில் குறித்த ஒரு இனத்தைச் சேர்ந்த எத்தனை தாவரங்கள் உள்ளன என ஆய்வு ஒன்று நடத்தப்பட்டது. r தாவரங்களைக் கொண்ட காணித்துண்டுகளின் எண்ணிக்கை f, பின்வரும் அட்டவணையில் தரப்பட்டுள்ளது.

r	0	1	2	3	4	5
f_r	3	1	1	2	1	2

காணித்துண்டு ஒன்றிற்கான தாவரங்களின் இடை எண்ணிக்கையைக் காண்க. காணித்துண்டு ஒன்றில் இதே இடை எண்ணிக்கையையுடைய தாவரங்கள் எழுமாற்றாக உள்ளன எனக் கொண்டு

- (a) தரப்பட்ட ஒரு காணித்துண்டில் தாவரங்கள் இல்லாமலிருப்பதற்கான நிகழ்தகவு யாது?
- (b) குறைந்தது 3 காணித்துண்டுகளிலாவது தாவரங்கள் இல்லாமலிருப்பதற்கான நிகழ்தகவு யாது?

$$\left[e^{-2\cdot3}pprox 0\cdot1$$
 எனக் கொள் க $\right]$

- 8. தொலைபேசிப் பரிவர்த்தனை நிலையமொன்றில், வெளித் தொலைபேசி இணைப்புகளில் சராசரியாக 3 இணைப்புக்கள் எந்நேரமும் பாவனையிலிருக்கும். எக்கணத்திலும் பாவனையிலுள்ள தொலைபேசி இணைப்புக்களின் எண்ணிக்கை ஒரு புவசோன் பரம்பலில் அமையும் எனக்கொண்டு,
 - (a) எக் கணத்திலும் மூன்றிலும் மேற்பட்ட தொலைபேசி இணைப்புக்கள் பாவனையில் இல்லாமலிருப்பதற்குரிய நிகழ்தகவு
 - (b) எந்த ஒரு கணத்திலும் ஒரு தொலைபேசி இணைப்பாவது பாவிக்காது இருக்க, 0.9 இலும் பெரிதான நிகழ்தகவுடன், தேவையான தொலைபேசி இணைப்புக்களின் மிகக் குறைந்த எண்ணிக்கையைக் காண்க.
- 1961 ஆம் ஆண்டில் பிறந்த 500 பேரினைக் கொண்ட மாதிரி ஒன்று ஆய்வு செய்யப்பட்டது. பிறந்த நாள் அவ்வருடம் முழுவதும் சீராகப் பரம்பியுள்ளது எனக் கொண்டு

- (a) புவசோன் பரம்பலைப் பயன்படுத்தி, (i) சரியாக இரண்டுபேர் (ii) இரண்டு பேருக்கு மேற்படாமல், தைமாதம் 1 ஆம் திகதி பிறந்திருப்பதற்கான நிகழ்தகவு யாது?
- (b) இம் மாதிரியிலிருந்து இருவர் எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்டால் அவர்கள் ஒரே மாதத்தில் பிறந்த நாளைக் கொண்டிருப்பதற்கான நிகழ்தகவு யாது? [1961 இல் 7 மாதங்கள் 31 நாட்களையும், 4 மாதங்கள் 30 நாட்களையும், 1 மாதம் 28 நாட்களையும் கொண்டுள்ளது.]
- 10. சோதனையொன்றில் 60% மாணவர்கள் சித்தியடைந்துள்ளனர், ஆனால் 4% ஆனோர் மட்டும் விசேட சித்தியைப் பெற்றுள்ளனர். எழுமாற்றாகத் தெரிவு செய்யப்பட்ட 10 பரீட்சார்த் திகளில் ஆகக் கூடியது 2 பேர் சித்தியடையாமலிருப்பதற்கான நிகழ்தகவைக் கணிப்பதற்கு ஈருறுப்புப் பரம்பலைப் பயன்படுத்துக. புவசோன் பரம்பலைப் பயன்படுத்தி 50 பேரைக்கொண்ட மாதிரியொன்றில் ஒன்றிற்கு மேற்பட்ட உயர் சித்தியடைந்தோர் இருப்பதற்கான நிகழ்தகவைக் கணிக்க.
- 11. 30,000 மக்களைக் கொண்ட நகரமொன்றில் வருடம் ஒன்றிற்கு 1000 பேருக்கு பிறப்புக்களின் சராசரி எண்ணிக்கை 18.25 ஆகும். அந் நகரத்தின் நாளொன்றிற்கான பிறப்புக்களின் சராசரி எண்ணிக்கையைக் காண்க. நாளொன்றிற்கான பிறப்புக்களின் எண்ணிக்கை புவசோன் பரம்பலில் அமைகின்றது எனக் கொண்டு நாளொன்றில் 6 அல்லது அதற்கு மேற்பட்ட குழந்தைகள் பிறப்பதற்கான நிகழ்தகவைக் காண்க.
- 12. P(X=r)=p(r) எனவும், X ஆனது μ ஐ இடையாகக் கொண்ட புவசோன்பரம்பலைக் கொண்டுள்ளது எனவும் தரப்படின்,

$$P(r+1) = \frac{\mu p(r)}{(r+1)}$$
 எனக் காட்டுக.

p=m+h , இங்கு m நேர் நிறை எண்னும் 0< h< 1 உடம் ஆகும் எனத் தரப்படின் X இன் மிகவும் சாத்தியமான பெறுமானம் m எனக் காட்டுக.

h=0 ஆகும் போது X இற்கு மிகவும் சாத்தியமான பெறுமானங்கள் இரண்டு உண்டெனக் காட்டி அவற்றைக் காண்க.

தீயணை நிலையத்துக்கு வந்த தொலைபேசிகளின் அழைப்புக்களின் பதிவேட்டிலிருந்து கிழமையொன்றிற்கு அங்கு பெற்ற பிழையான தொலைபேசி அழைப்புக்கள் 3 ஐ இடையாகக் கொண்ட புவசோன் பரம்பலொன்றில் அமைந்துள்ளது.

 எதிர்வரும் கிழமையில் பிழையான தொலைபேசி அழைப்பினைப் பெறாதிருப்பதற்குரிய நிகழ்த்கவைக் கணிக்க.

- (ii) எதிர்வரும் கிழமையில் பெறப்படும் பிழையான அழைப்புக்களின் எண்ணிக்கை n ஆகவோ, அல்லது குறைவாகவோ இருப்பதற்கான நிகழ்தகவு ஆகக் குறைந்தது 0.8 ஆக இருப்பதற்கான n இன் மிகச்சிறிய நிறை எண் பெறுமானத்தைக் கணிக்க.
- (iii) அடுத்து வரும் m கிழமைகளில் பிழையான அழைப்புக்களைப் பெறா திருப்பதற்கான நிகழ்தகவு 0.8 இலும் கூடுதலாக இருப்பதற்கான m இன் மிகப்பெரிய நிறை எண்ணைக் காண்க.
- 13. சீட்டிழுப்பு ஒன்றிற்காக பெரும் எண்ணிக்கையிலான ரிக்கற்றுகள் அச்சிடப்பட்டுள்ளன. விற்பனையாகும் 500 ரிக்கற்றுகளில் ஒன்றிற்கு பரிசு கிடைப்பதற்கு சாத்தியம் உண்டு. விற்பனை முகவர் ஒருவர் 1000 ரிக்கற்றுகளை விற்பனை செய்கிறார். புவசோன் பரம்பலைப் பயன்படுத்தி முகவரால் விற்பனை செய்யப்பட்ட ரிக்கற்றுக்களில் (a) முன்றிலும் குறைந்தவற்றிற்கு (b)ஐந்திலும் கூடியவற்றிற்கு பரிசு கிடைப்பதற்கான நிகழ்தகவைக் காண்க. விற்பனை செய்யும் ரிக்கற்றுகளில் குறைந்தது ஒன்றிற்காவது பரிசு கிடைப்பதற்குரிய சாத்தியம் 95% மாக இருப்பதற்கு, விற்கப்படவேண்டிய மிகக்குறைந்த ரிக்கெற்றுக்களின் எண்ணிக்கையைக் காண்க.
- 14. புவசோன் பரம்பலை வரையறுத்து, இடை, மாறற்றிறன் ஆகியவற்றைக் காண்க. எந்த ஒரு T நிமிட நேர ஆயிடையிலும் தொலைபேசி இணைப்பகத்திற்கு வரும் தொலைபேசி அழைப்புக்களின் எண்ணிக்கை $1\frac{1}{2}T$ ஐ இடையாகக் கொண்ட புவசோன் பரம்பலொன்றில் அமைந்துள்ளது. தொலைபேசி இயக்குனர் (telephone operator) ஐந்து நிமிடங்கள் வெளியே சென்றதால், தொலைபேசி அழைப்புக்களுக்குப் பதில் கூற அங்கு எவரும் இருக்கவில்லை. அவர் அங்கு இல்லாதபோது
 - (a) தொலைபேசி அழைப்புக்கள் வராமலிருப்பதற்கான
 - (b) நான்கு அல்லது அதற்கு மேற்பட்ட அழைப்புக்கள் வருவதற்கான நிகழ்தகவைக் காண்க.
 95% நிகழ்தகவுடன் எந்த ஒரு அழைப்பையும் தவறவிடாது, அவர் வெளியே செல்லக்கூடிய நேர ஆயிடையின் உயர்பெறுமானத்தை செக்கனில் தருக.
- 15.(a) X என்னும் எழுமாற்றுமாறி, பரமானம் λ ஐ உடைய புவசோன்பரம்பல் ஒன்றிலுள்ளது. E $(X) = \lambda$ என நிறுவுக.

 $P\left(X=k\right)=\lambda=P\left(X=k+1\right)$ (இங்கு k ஒரு நிறை எண் ஆகும்.) எனின், λ உடம் ஒரு நிறையெண் எனக் காட்டுக.

 λ ஒரு நிறை எண் அல்ல எனின் பரம்பலின் ஆகாரம், m ஆனது, $\lambda-1 < m < \lambda$ ஆகுமாறு அமைந்திருக்குமெனக் காட்டுக.

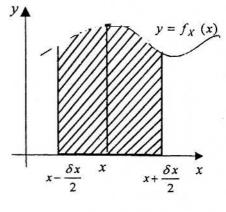
(b) இயந்திரமொன்றின் ஆயட்காலத்தின் முதல் வருடத்தில், அதில் பிழைகள் ஏற்படும் தடவைகளின் எண்ணிக்கை 4 ஐ இடையாகக் கொண்ட புவசோன் பரம்பலொன்றில் அமைந்துள்ளது. 4 இற்கு மேற்பட்ட தடவைகள் பிழைகள் ஏற்படுவதற்கான நிகழ்தகவு யாது?

முதற்தடவை பிழை ஏற்படும் போது அதனை திருத்துவதற்கான கட்டணம் செலுத்த வேண்டியதில்லை. அடுத்த ஒவ்வொரு தடவையும் 2000 ரூபா திருத்துவதற்கான கட்டணமாகச் செலுத்த வேண்டும். முதல் வருடத்தில், திருத்தச் செலவுகளின் இடையைக் காண்க.

அலகு 3

தொடர் எழுமாற்றுமாறி (Continuous Random Variable)

தொடர் எழுமாற்றுமாறி : ஓர் எழுமாற்றுமாறியின் பெறுமானங்கள் ஒன்று அல்லது ஒன்றுக்கு மேற்பட்ட ஆயிடைகளைக் கொண்டிருக்குமெனின், அவ்வெழுமாற்றுமாறி தொடர் எழுமாற்றுமாறி எனப்படும்.


தொடர் எழுமாற்றுமாறியொன்றின் நிகழ்தகவு அடர்த்திச்சார்பு (Probability lensity function of a coninuous random variable)

எழுமாற்றுப்பரிசோதனை ஒன்றின் மாதிரி வெளி Ω என்க. Ω இன் மீது Xஎன்னும் தொடர் எழுமாற்றுமாறி வரையறுக்கப்பட்டுள்ளது. தொடர் எழுமாற்றுமாறி X இன் பரம்பல் $f_X(x)$ என்பதால் தரப்படுகிறது.

$$x - \frac{\delta x}{2}$$
 இற்கும் $x + \frac{\delta x}{2}$ இற்குமிடை

யிலான வளையியின்கீழான பரப்பளவு,

$$P\left[x - \frac{\delta x}{2} \le X \le x + \frac{\delta x}{2}\right] \quad \text{61 601}$$

வரையறுக்கப்படும்.அதாவது
$$P\left[x-rac{\delta\,x}{2}\leq X\leq x+rac{\delta\,x}{2}
ight]pprox f_X\left(x
ight)\cdot\delta\,x$$

நிகழ்தகவு அடர்த்திச்சார்பு f(x) இன் பண்புகள்

(i) எல்லா $x \in R$ இற்கும் $f_X(x) \ge 0$

(ii)
$$\int_{-\infty}^{+\infty} f_{\chi}(x) dx = 1$$

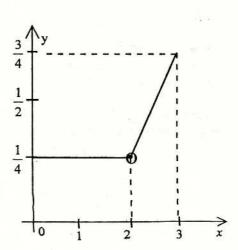
(iii)
$$\int_{a}^{b} f_{X}(x) dx = P[a < X \le b]$$

(iv)
$$\int_{-\infty}^{x} f_X(x) dx = F_X(x) = P[X \le x]$$

(v)
$$\frac{d}{dx} F_X(x) = f_X(x)$$

X என்னும் தொடர் எழுமாற்றுமாறியின் நிகழ்தகவு அடர்த்திச்சார்பு f(x) ஆனது

$$f(x) = k$$
 $0 \le x < 2$ $(k$ -மாறிலி) $= k (2x - 3)$ $2 \le x \le 3$ அவ்வாறல்லாதபோது,


- (a) k இன் பெறுமானத்தைக் காண்க.
- (b) y = f(x) இன் வரைபை வரைக.
- (c) P(X ≤ 1) ஐக் காண்க.
- (d) P (X>2·5) ஐக் காண்க.
- (e) P (1 ≤ X ≤ 2 · 3) ஜக் காண்க.

$$\int_{-\infty}^{\infty} f(x) dx = 1$$
(a) $\int_{0}^{2} k dx + \int_{0}^{3} k(2x-3) dx = 1$

$$k[x]_0^2 + k[x^2 - 3x]_2^3 = 1$$

$$2k + k [0-(4-6)] = 1$$

$$4k=1, \quad k=\frac{1}{4}$$

$$f(x) = \frac{1}{4}$$
 $0 \le x < 2$ $= \frac{1}{4}(2x - 3)$ $2 \le x \le 3$ $= 0$ அவ்வாறல்லாத போது

(c)
$$P(X \le 1) = \int_{0}^{1} \frac{1}{4} dx$$
 (அல் லது வரைபிலிருந்து) $= \frac{1}{4} \times 1 = \frac{1}{4}$

(d)
$$P(X \ge 2.5)$$

$$\int_{2.5}^{3} \frac{1}{4} (2x-3) dx = \frac{1}{4} \left[x^2 - 3x \right]_{2.5}^{3} = \frac{5}{16}$$

(e)
$$P(1 \le X \le 2 \cdot 3) = \int_{1}^{2} \frac{1}{4} dx + \int_{2}^{2 \cdot 3} \frac{1}{4} (2x - 3) dx = \frac{1}{4} \left[x \right]_{1}^{2} + \frac{1}{4} \left[x^{2} - 3x \right]_{2}^{2 \cdot 3}$$

= 0.3475

இடையம்(Median)

X என்னும் எழுமாற்றுமாறி $a \le X \le b$ என்ற வீச்சில் பெறுமானங்களை எடுக்கின்றதென்க. இடையம் M ஆனது P ($a \le X < x$) = 1/2 ஆகுமாறுள்ள

x இன் பெறுமானம் ஆகும். அதாவது $\int\limits_a^M f\left(x\right)\,d\,x=1/2$ ஆகுமாறுள்ள M

ஆகும்.

ஆகாரம் (Mode)

X என்னும் எழுமாற்றுமாறியின் நிகழ்தகவு அடர்த்திச்சார்பு f(x) அதன் உயர் பெறுமானத்தைக் கொண்டிருக்கும் x இன் பெறுமானம் ஆகாரம் எனப்படும்.

உதாரணம் 2

எழுமாற்றுமாறி x இன் நிகழ்தகவு அடர்த்திச்சார்பு f(x) ஆனது

$$f(x) = Ax (1 - x^2)$$
 $0 \le x < 1$ அவ்வாறல்லாத போது, என வரையறுக்கப்படுகிறது.

180

A யின் பெறுமானத்தைக் காண்க. (A ஒரு மாறிலி) X இன் இடையம் M எனின், 2 M 4 - 4 M 2 + 1 = 0 எனக் காட்டுக. X இன் ஆகாரத்தைக் காண்க.

$$\int_{0}^{1} Ax(1-x^{2}) dx = 1 \qquad A\left[\frac{x^{2}}{2} - \frac{x^{4}}{4}\right]_{0}^{1} = 1; \therefore A = 4$$

$$f(x) = 4x (1-x^2)$$
 $0 \le x < 1$
= 0 அவ்வாறல்லாதபோது,

இடையம் M எனின்

$$\int_{0}^{M} 4x(1-x^{2}) dx = \frac{1}{2}$$

$$\left[2x^{2} - x^{4}\right]_{0}^{M} = \frac{1}{2}$$

$$2 M^{2} - M^{4} = \frac{1}{2}$$

$$2 M^{4} - 4 M^{2} + 1 = 0 \text{ தூகும்.}$$

$$f'(x) = 4x(1-x^{2})$$

$$f'(x) = 4 - 12x^{2}$$

$$= 4(1-3x^{2})$$

$$= 4\left(1-\sqrt{3x}\right)\left(1+\sqrt{3x}\right)$$

$$f'(x) = 0 \text{ எனின், } x = \frac{1}{\sqrt{3}} A \otimes B = -\frac{1}{\sqrt{3}}$$

$$0 \le x < 1 \text{ தூகலால், } x = \frac{1}{\sqrt{3}} B \stackrel{\text{def}}{=} B \stackrel$$

எனவே
$$x = \frac{1}{\sqrt{3}}$$
 இல் $f(x)$ ற்கு உயர்வு உண்டு.

$$\therefore$$
 ஆகாரம் $x = \frac{1}{\sqrt{3}}$ ஆகும்.

சில சந்தாப்பங்களில் வரைபு வரைதல் மூலம் ஆகாரத்தைக் காணுதல் இலகுவானது.

எதிர்வு (Expectation)

தொடர் எழுமாற்றுமாறி X இன் எதிர்வு $E\left(X\right)$ ஆனது,

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$
 என வரையறுக்கப்படும்.

 $E\left(X\right)$ என்பது μ என்பதால் குறிக்கப்படும். $E\left(X\right)$ ஆனது X இன் இடை(mean) எனவும் அழைக்கப்படும்.

மாறற்றிறன் (Variance)

X எனும் எழுமாற்றுமாறியின் மாறற்றிறன் Var (X) ஆனது,

$$Var(X) = E(X - \mu)^2$$
 ஆகும்; இங்கு $\mu = E(X)$ ஆகும். $Var(X) = E(X^2) - \mu^2$ என இதிலிருந்து பெறலாம்.

நியம விலகல் (Standard deviation)

X இன் நியமவிலகல் σ ஆனது $\sigma = \sqrt{Var(X)}$ ஆகும்.

இடை விலகல் (Mean deviation)

$$X$$
 இன் இடைவிலகல் $\int\limits_{-\infty}^{+\infty} \left|x-\mu\right| f(x)dx$ ஆகும்.

திரள்பரம்பல் சார்பு (Cumulative Distribution Function)

X என்னும் தொடர் எழுமாற்றுமாறியொன்றின் நிகழ்தகவு அடர்த்திச்சார்பு f(x) என்க. அப்பொழுது திரன் பரம்பல் சார்பு $F(t) = P(X \le t)$ என்பதால் தரப்படும்.

அதாவது,
$$F(t) = \int_{-\infty}^{t} f(x) dx$$

ஒரு தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு f(x),

$$f(x) = k x$$
 $0 \le x < 1$
= $k(2-x)$ $1 \le x \le 2$
= 0 அவ்வாறல்லாத போது

என வரையறுக்கப்பட்டுள்ளது. k ஒரு மாறிலி

- (a) k இன் பெறுமானத்தைக் காண்க
- (b) E(X) ஐக் காண்க
- (c) Var (X) ஐக் காண்க
- (d) $P(\frac{3}{4} \le X \le 1, \frac{1}{2})$ ஐக் காண்க.

(a) $\int_{0}^{1} k x dx + \int_{0}^{2} k (2-x) dx = 1$

(e) ஆகாரத்தைக் காண்க.

$$k \left[\frac{x^2}{2} \right]_0^1 + k \left[2x - \frac{x^2}{2} \right]_1^2 = 1$$

$$\frac{1}{2}k + \frac{1}{2}k = 1, \quad k = 1$$

$$= 2 - x \quad 1 \le x \le 2$$

$$(b) E(X) = \int_0^1 x^2 dx + \int_1^2 (2 - x) x \cdot dx$$

$$= \left[\frac{x^3}{3} \right]_0^1 + \left[x^2 - \frac{x^3}{3} \right]_1^2$$

$$= \frac{1}{3} + \left[\left(4 - \frac{8}{3} \right) - \left(1 - \frac{1}{3} \right) \right]$$

$$=\frac{1}{3}+\frac{2}{3}=1$$

(c)
$$Var(X) = E(X^2) - [E(X)]^2$$

$$= \int_0^1 x^3 dx + \int_1^2 x^2 (2-x) dx - 1^2$$

$$= \left[\frac{x^4}{4}\right]_0^1 + \left[\frac{2x^3}{3} - \frac{x^4}{4}\right]_1^2 - 1$$

$$= \frac{1}{4} + \left[\left(\frac{16}{3} - \frac{16}{4}\right) - \left(\frac{2}{3} - \frac{1}{4}\right)\right] - 1$$

$$= \frac{1}{4} + \left[\frac{16}{2} - \frac{5}{12}\right] - 1$$

$$= \frac{1}{4} + \frac{11}{12} - 1 = \frac{1}{6}$$

(d)
$$P\left(\frac{3}{4} \le X \le 1\frac{1}{2}\right) = \int_{3/4}^{1} x \, dx + \int_{1}^{1\frac{1}{2}} (2-x) \, dx$$

$$= \left[\frac{x^2}{2}\right]_{\frac{3}{4}}^{1} + \left[2x - \frac{x^2}{2}\right]_{1}^{1\frac{1}{2}}$$

$$= \left(\frac{1}{2} - \frac{9}{32}\right) + \left[\left(3 - \frac{9}{8}\right) - \left(2 - \frac{1}{2}\right)\right]$$

$$= \frac{7}{32} + \frac{3}{8} = \frac{19}{32}$$

(e) x = 1 ஆகும் போது f(x) இற்கு உயர்வு. எனவே ஆகாரம் 1.

தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு f(x) ஆனது,

$$f(x) = \frac{k}{x}$$
 $1 \le x \le 9$ அவ்வாறல்லாதபோது

எனத் தரப்படுகிறது.

- (a) k இன் பெறுமானம்
- (b) இடையம்
- (c) E (X), Var (X)
- (d) X இன் திரள்பரம்பல் சார்பு F ஆகியவற்றைக் காண்க.

(a)
$$\int_{1}^{9} \frac{k}{x} dx = 1$$
$$k \left[\ell x \right]_{1}^{9} = 1 \implies k \left[\ell n 9 - \ell n 1 \right] = 1$$
$$\implies k = \frac{1}{\ell n 9}$$

(b)
$$\int_{1}^{m} \frac{k}{x} dx = \frac{1}{2} \implies k \left[\ell nm - \ell n1 \right] = \frac{1}{2}$$
$$\Rightarrow \frac{\ell nm}{\ell n9} = \frac{1}{2} \implies \ell nm = \frac{1}{2} \ell n9$$

 $\ell nm = \ell n3$

∴ m = 3 இடையம் 3 ஆகும்.

(c)
$$E(x) = \int_{1}^{9} x f(x) dx = \int_{1}^{9} k dx = k [x]_{1}^{9} = 8k = 8 \ln 9$$

= $8 \times 0.455 = 3.64$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \int_{1}^{9} k x \cdot dx - (3 \cdot 64)^{2}$$

$$\frac{k}{2} \times 80 - (3 \cdot 64)^{2}$$

$$= 40 \times 0.455 - (3 \cdot 64)^{2} = 4.95$$
(d)
$$F(t) = P(1 \le X \le t) = \int_{1}^{t} f(x) dx = k \int_{1}^{t} \frac{1}{x} dx \quad (t \le 9)$$

$$= \frac{1}{\ell n 9} \ell nt$$

$$F(x) = \frac{\ell n x}{\ell n 9} \quad 1 \le x \le 9$$

$$= 1 \qquad x \ge 9$$

ஒரு தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு, $f(\mathbf{x})$ ஆனது

$$f(x) = kx$$
 $0 \le x \le 1$
= k $1 < x \le 2$
= 0 அவ்வாறல்லாதபோது

என வரையறுக்கப்படுகிறது. இங்கு k ஒரு மாறிலி

(a)
$$k = \frac{2}{3}$$
 எனக் காட்டுக

- (b) E(X) , $E(X)^2$ என்பவற்றைக் காண்க
- (c) X இன் இடையம் $1\cdot 25$ எனக் காட்டி $P\left(\left(\left|X_{\cdot}-m\right|>\frac{1}{2}\right)$ ஐக் காண்க
- (d) y = f(x), y = F(x) என்பவற்றை வரைக

$$\frac{1}{2} \times 1 \times k + 1 \times k = 1$$

$$\frac{3k}{2}=1$$

$$k = \frac{2}{3} \qquad f(x)$$

(b)
$$E(x) = \int_{0}^{1} k x^{2} dx + \int_{1}^{2} k x dx$$

$$= k \left[\frac{x^{3}}{3} \right]^{1} + k \left[\frac{x^{2}}{2} \right]^{2}$$

$$= k \left[\frac{1}{3} + \frac{3}{2} \right] = \frac{2}{3} \times \frac{11}{6} = \frac{11}{9}$$

$$E(X^{2}) = \int_{0}^{1} k x^{3} dx + \int_{1}^{2} k x^{2} dx$$

$$k\left[\frac{1}{4}\right] + k\left[\frac{x^3}{3}\right]_1^2$$

$$= k \left[\frac{1}{4} + \frac{8}{3} - \frac{1}{3} \right] = \frac{31}{18}$$

$$P(X \le m) = \left(\frac{1}{2} \times 1 \times k\right) + k(m-1)$$
$$= k\left(m - \frac{1}{2}\right) = \frac{1}{2}$$

m

$$\frac{2}{3}\left(m - \frac{1}{2}\right) = \frac{1}{2}$$

$$m = \frac{5}{4} = 1.25$$

(d)
$$P\left(\left|X-m\right| > \frac{1}{2}\right)$$

= $P\left(\left|X-1 \cdot 25\right| > \frac{1}{2}\right)$

$$\Rightarrow P(X < 0.75$$
 அல் லது $X > 1.75)$
= $P(X < 0.75) + P(X > 1.75)$

$$= \frac{1}{2} \times 0.75 \times \frac{2}{3} \times 0.75 + 0.25 \times \frac{2}{3}$$

$$= \frac{1}{2} \times \frac{3}{4} \times \frac{2}{3} \times \frac{3}{4} + \frac{1}{4} \times \frac{2}{3}$$

$$=\frac{17}{48}$$

$$F(t) = \int_0^t k x dx \qquad 0 \le t \le 1$$

$$= k \left[\frac{x^2}{2} \right]_0^t \qquad 0 \le t \le 1$$

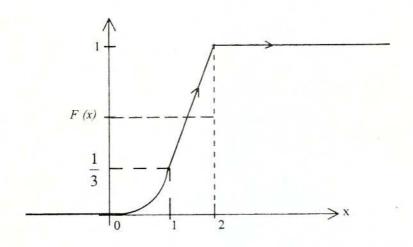
$$= \frac{2}{3} \frac{t^2}{2} = \frac{1}{3} t^2 \qquad 0 \le t \le 1$$

$$F(1)=\frac{1}{3}$$

$$F(t) = F(1) + \int_{1}^{t} k \, dx \qquad (1 < t \le 2)$$

$$= \frac{1}{3} + \frac{2}{3} [x]_{1}^{t}$$

$$= \frac{1}{3} + \frac{2}{3} (t - 1) = \frac{1}{3} (2t + 1) \qquad (1 < t \le 2)$$


எனவே திரள் பரம்பல் சார்பு $F\left(x\right)$ ஆனது

$$F(x) = \frac{1}{3}x^{2} \qquad 0 \le x \le 1$$

$$= \frac{1}{3}(2x - 1) \qquad 1 < x \le 2$$

$$= 1 \qquad x > 2 \quad \text{Asg.} \dot{\omega}.$$

இங்கு F(0) = 0; $F(2) = \frac{1}{3}(4-1) = 1$ ஆகும்.

எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு f,

$$f(x) = cx(5-x)$$
 $0 \le x \le 5$ அவ்வாறல்லாதபோது எனத் தரப்பட்டுள்ளது.

$$C=rac{6}{125}$$
 எனக் காட்டி, X இன் இடையைக் காண்க

மின்கு மிழொன்றின் ஆயுட்காலம் வருடங்களில் X இனால் தரப்படுகிறது. X மேலே தரப்பட்டுள்ள பரம்பலைக் கொண்டுள்ளது. இவ்வாறான இரு புதிய மின் குமிழ்கள் விளக்கொன்றில் பொருத்தப்பட்டுள்ளது. அவை பழுதடைவது ஒன்றையொன்று சாராதது ஆகும்.

- (a) எந்த ஒரு மின்குமிழும் முதல் வருடத்தில் பழுதடையாதிருப்பதற்கான நிகழ்தகவு யாது?
- (b) ஒரு மின்குமிழ் மட்டும் இரு வருடங்களில் பழுதடைவதற்கான நிகழ்தகவு யாது?

$$\int_{0}^{5} f(x) dx = 1 \qquad \int_{0}^{5} c x (5 - x) dx = 1$$

$$C \left[\frac{5x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{5} = 1$$

$$C \left[\frac{125}{2} - \frac{125}{3} \right] = 1$$

$$C = \frac{6}{125}$$

$$X$$
 இன் இடை $E(X) = \int_0^5 x \cdot f(x) dx$

$$= \frac{6}{125} \int_0^5 (5x^2 - x^3) dx$$

$$= \frac{6}{125} \left[\frac{5x^3}{3} - \frac{x^4}{4} \right]_0^5$$

$$= \frac{6}{125} \left[\frac{625}{3} - \frac{625}{4} \right]$$
$$= \frac{6}{125} \times \frac{625}{12} = \frac{5}{2}$$

மின்குமிழ் ஒன்றின் ஆயுட்காலம் 1 வருடத்திலும் கூடுதலாக இருப்பதற்கு, X>1

$$P(X > 1) = \int_{1}^{3} f(x) dx$$
 அல் லது $1 - P(X \le 1)$

$$1 - P(X \le 1) = 1 - \frac{6}{125} \int_{0}^{1} (5x - x^{2}) dx$$

$$= 1 - \frac{6}{25} \left[\frac{5x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1}$$

$$= 1 - \frac{6}{125} \left(\frac{5}{2} - \frac{1}{3} \right) = 1 - \frac{6}{125} \times \frac{13}{6}$$

$$= \frac{112}{125} = 0.896$$

ஆகவே இரு மின்குமிழ்களும் 1 வருடத்தில் பழுதடையாமலிருக்க நிகழ்தகவு $0.896 \times 0.896 = 0.8023$

(b)
$$P(X \le 2) = \frac{6}{125} \int_0^2 (5x - x^2) dx$$

$$= \frac{6}{125} \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^2$$

$$= \frac{6}{125} \left[10 - \frac{8}{3} \right] = \frac{44}{125} = 0.352$$
Substitute $P(X > 2) = 1 - \frac{44}{125} = \frac{81}{125} = 0.648$

எனவே ஒரு மின்குமிழ் மட்டும் 2 வருடங்களில் பழுதடைவதற்கான நிகழ்தகவு 2 C_1 $(0\cdot 352)$ $(0\cdot 648)$

$$= 2 \times 0.352 \times 0.648 = 0.4562$$

உதாரணம் 7

ஓர் எழுமாற்றுமாறி X இன் நிகழ்தகவுப் பரம்பல் f,

$$f(x) = \frac{3}{2}(1 - x^2) \qquad 0 \le x \ 1$$

= 0 அவ்வாறல்லாதபோது என வரையறுக்கப்பட்டுள்ளது.

X இன் இடை μ நியமவிலகல் σ என்பவற்றைக் காண்க

$$P\left(\left|X-\mu\right|\leq\sigma\right)pprox0.66$$
 எனக் காட்டுக.

$$\mu = E(X) = \int_{0}^{1} \frac{3x}{2} (1 - x^{2}) dx$$

$$= \left[\frac{3}{4} x^{2} - \frac{3x^{4}}{8} \right]_{0}^{1}$$

$$= \frac{3}{4} - \frac{3}{8} = \frac{3}{8} = 0 \cdot 375$$

$$Var(X) = E(X^{2}) - \left[E(X) \right]^{2}$$

$$= \int_{0}^{1} x^{2} \frac{3}{2} (1 - x^{2}) dx - \left(\frac{3}{8} \right)^{2}$$

$$\left[\frac{3}{2} \cdot \frac{x^{3}}{3} - \frac{3}{2} \cdot \frac{x^{5}}{5} \right]_{0}^{1} - \left(\frac{3}{8} \right)^{2}$$

$$\left(\frac{1}{2} - \frac{10}{3} \right) - \frac{9}{64}$$

192

$$\frac{1}{5} - \frac{9}{64} = \frac{19}{320} = 0.05937$$

நியமவிலகல் $\sigma x = \sqrt{Var(X)} = \sqrt{0.0593} = 0.244$

$$|X - \mu| \le \sigma$$

$$-\sigma < X - \mu < \sigma$$

$$\mu - \sigma \le X \le \mu + \sigma$$

$$0 \cdot 375 - 0 \cdot 244 \le X \le 0 \cdot 375 + 0 \cdot 244$$

$$0.131 \le X \le 0.619$$

$$P(|X - \mu| \le \sigma) = P(0.131 \le X \le 0.619)$$

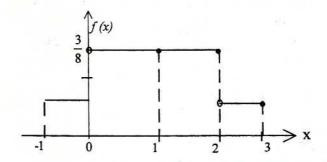
$$= \frac{3}{2} \int_{0.131}^{0.619} x (1 - x^2) dx = \left[\frac{3x^2}{4} - \frac{3x^4}{8} \right]_{0.131}^{0.615}$$

உதாரணம் 8

தொடர் எழுமாற்றுமாறி X இன் திரள்பரம்பல் சார்பு F,

$$F(x) = \begin{cases} \frac{1}{8}(1+x) & -1 \le x \le 0\\ \frac{1}{8}(1+3x) & 0 < x \le 2\\ \frac{1}{8}(5+x) & 2 < X \le 3 \end{cases}$$

அத்துடன் x < -1 எனின் F(x) = 0 உம், x > 3 எனின் F(x) = 3 உம் ஆகும்.


- (a) நிகழ்தகவு அடர்த்திச்சார்பு f ஐக் கண்டு, அதன் வரைபை வரைக.
- (b) X இன் இடையையும், நியமவிலகலையும் காண்க.
- (c) $P(3 \le 2X \le 5)$ ஐக் காண்க

$$f(x) = \frac{d}{dx} \left(F(x) \right)$$

$$\frac{d}{dx} \left[\frac{1}{8} (1+x) \right] = \frac{1}{8}, \ \frac{d}{dx} \left[\frac{1}{8} (1+3x) \right] = \frac{3}{8}, \ \frac{d}{dx} \left[\frac{1}{8} (5+x) \right] = \frac{1}{8}$$

ஆகவே நிகழ்தகவு அடர்த்திச்சார்பு f(x) ஆனது,

$$f(x) = \frac{1}{8}$$
 $-1 \le x \le 0$ $= \frac{3}{8}$ $0 < x \le 2$ $= \frac{1}{8}$ $2 < x \le 3$ $= 0$ அவ்வாறல்லாதபோது

$$E(X) = \int_{-1}^{0} \frac{1}{8} x \, dx + \int_{0}^{2} \frac{3}{8} x \, dx + \int_{2}^{3} \frac{1}{8} x \, dx$$
$$= \frac{1}{8} \left\{ \left[\frac{x^{2}}{2} \right]_{-1}^{0} + \left[\frac{3x^{2}}{2} \right]_{0}^{2} + \left[\frac{x^{2}}{2} \right]_{2}^{3} \right\}$$
$$= \frac{1}{8} \left\{ -\frac{1}{2} + 6 + \frac{5}{2} \right\} = 1$$

(c)
$$P(3 \le 2 \mid X \le 5) = P(\frac{3}{2} \le X \le \frac{5}{2})$$

$$=\left(rac{3}{8} imesrac{1}{2}
ight)+\left(rac{1}{8} imesrac{1}{2}
ight)$$
 (வரைபிலிருந்து) $=rac{1}{4}$

(a) ஒரு தொடர் எழுமாற்றுமாறி X, [0,3] என்ற ஆயிடையில் பெறுமானங்களை எடுக்கிறது.

$$P(X>x)=a+bx^3$$
 , $0\leq x\leq 3$ எனத் தரப்படின்,

- (i) மாறிலிகள் a, b இன் பெறுமானங்களைக் காண்க.
- (ii) திரள்பரம்பல் சார்பு F(x) ஐக் காண்க.
- (iii) நிகழ்தகவு அடர்த்திச் சார்பு f(x) ஐக் காண்க.
- (b) நாளொன்றில் ஒருவர் தொலைக்காட்சி பார்க்கும் நேரத்தின் அளவு மணித்தியாலங்களில் அளக்கப்படுகிறது. தொலைக்காட்சி பார்க்கும் நேரத்தின் அளவு எழுமாற்றுமாறி T இன் திரள்பரம்பல் சார்பு F(t) ஆனது,

$$F(t) = 0 , t < 0$$

$$= 1 - k (15 - t)^{2}, 0 \le t \le 15$$

$$= 1 t > 15$$

எனத் தரப்படுகிறது. இங்கு k – ஒரு மாறிலி,

- (i) $k = \frac{1}{125}$ எனக் காட்டி $P(5 \le T \le 10)$ ஐக் காண்க.
- (ii) Tஇன் நிகழ்த்கவு அடர்த்திச்சார்பு $f(t) = \frac{2}{15} \frac{2t}{225}$, $0 \le t \le 15$ எனக் காட்டுக.

(a)
$$P(X > x) = a + bx^3$$
, $0 \le x \le 3$
 $P(X \le x) = 1 - (a + bx^3)$, $0 \le x \le 3$
 $x = 0$, and $P(X \le 0) = 1 - a = 0 \implies a = 1$
 $x = 3$, and $P(X \le 0) = 1 - (a + 27b) = 1$
 $P(X \le 0) = 1 - (a + 27b) = 1$

$$a=1$$
 , $b=-rac{1}{27}$
 $F(x)=P\left(X\leq x
ight)=-b\,x^3=rac{1}{27}\,x^3$ $0\leq x\leq 3$
ஆகவே $F\left(x
ight)=\left\{egin{array}{ll} 0\,, & x<0\ & rac{1}{27}x^3 & 0\leq x\leq 3\ & =& 1 & x>3 \end{array}
ight.$
 $f\left(x
ight)=rac{1}{9}x^2\,; & 0\leq x\leq 3\ & =& 0\,,$ அவ்வாறல்லாதபோது.

(b)
$$F(t) = 1 - k (15 - t)^2$$

 $F(O) = 0 = 1 - k (15 - 0)^2$
 $225k = 1$
 $k = \frac{1}{225}$
 $P(5 \le T \le 10) = F(10) - F(5)$
 $= \begin{bmatrix} 1 - k (15 - 10)^2 \end{bmatrix} - \begin{bmatrix} 1 - k (15 - 5)^2 \end{bmatrix}$
 $= k \begin{bmatrix} 100 - 25 \end{bmatrix} = \frac{1}{225} \times 75 = \frac{1}{3}$
 $\frac{d}{dt} F(t) = f(t) = 2k (15 - t)$ $0 \le t \le 15$
 $= \frac{2}{225} (15 - t)$
 $= \frac{2}{15} - \frac{2t}{225}$ $0 \le t \le 15$
 $\therefore f(t) = \frac{2}{15} - \frac{2t}{225}$, $0 \le t \le 15$
 $= 0$ Susiant poisons Guingsi

பயிற்சி 3

1. தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு f.

$$f\left(x\right) = \begin{cases} kx\left(1-x^2\right) &, & 0 \le x \le 1 \\ 0 &$$
 அவ்வாறல்லாத போது

என வரையறுக்கப்படுகிறது. இங்கு k – ஒரு மாறிலி k இன் பெறுமானத்தையும், பரம்பலின் இடை, மாறற்றிறன் என்பவற்றையும் காண்க. பரம்பலின் இடையத்தையும் காண்க.

2. எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு f,

$$f(x) = \begin{cases} 0 & x < 0 \\ \frac{\lambda}{2} & 0 \le x \le 1 \\ 0 & 1 < x < 2 \\ \frac{3\lambda}{2} - \frac{3\lambda (x-3)^2}{4} & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$$

எனத் தரப்படின் 2 ஐத் துணிக.

f(x) இன் வரைபை வரைக. E(X) ஐயும், $P(X \le 3.5)$ ஐயும் காண்க.

 $oldsymbol{3}$. எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு

$$f(x) = \begin{cases} k(ax - x^2) & 0 \le x \le 2\\ 0 & x < 0, x \ge 2 \end{cases}$$

எனத் தரப்படுகின்றது. இங்கு k, a என்பன நேர் ஒருமைகள். $a \ge 2$ எனவும்,

$$k = \frac{3}{6a - 8}$$
 எனவும் காட்டுக.

X இன் இடை 1 எனின், a யினதும் k யினதும் பெறுமானங்களைக் காண்க. a,k யின் இப் பெறுமானங்களுக்கு $y=f\left(x\right)$ இன் வரைபினை வரைக. X இன் மாறற்றிறனைக் காண்க.

197

தொடர் எழுமாற்று X இன் நிகழ்தகவு அடர்த்திச் சார்பு

$$f(x) = \begin{cases} 12(x^2 - x^3) & 0 \le x \le 1 \\ 0 &$$
அவ்வாறல்லாதபோது

எனத் தரப்படுகின்றது.

X இன் இடையையும், நியமவிலகலையும் காண்க $^{\circ}$ X இன் இடை விலகலையும் காண்க.

5. இரு கம்பங்களுக்கிடையில் இறுக்கமாகக் கட்டப்பட்டிருக்கும் இழையொன்றின் மீது நடக்கும் ஒருவர், இழையிலிருந்து விழுமுன், அவர் இழையின் மீது நடந்து செல்லும் தூரம், மீற்றரில் X ஆகும். எழுமாற்றுமாறி X ஆனது

$$P\left(X>x\right)=1-rac{x^{3}}{64}\,,\quad 0\leq x\leq 4$$
 எனத் தரப்படுகிறது.

- (a) E(X) = 3 எனக் காட்டுக்
- (b) X இன் நியமவிலகல் σ ஐக் காண்க.

(c)
$$P(|X-3| < \sigma) = \frac{69}{80} \sqrt{\frac{3}{5}}$$
 static astricts.

 தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு பின்வருமாறு வரையறுக்கப்பட்டுள்ளது.

$$f(x) = \begin{cases} \frac{c}{x^4} & x < -1 \\ c(2-x^2) & -1 \le x \le 1 \\ \frac{c}{x^4} & x < 1 \end{cases}$$

(a)
$$c = \frac{1}{4}$$
 எனக் காட்டுக

- (b) f(x) இன் வரைபினை வரைக
- (c) திரள் பரம்பல் சார்பு F(x) ஐக் காண்க.
- (d) X இன் எதிர்வுப் பெறுமானத்தையும், மாறற்றிறனையும் காண்க.
- தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு

$$f(x) = egin{cases} kx & 0 \le x \le 1 \\ kx^2 & 1 \le x \le 2 \\ 0 &$$
 அவ்வாறல்லாதபோது

- (i) $k = \frac{6}{17}$ எனக் காட்டுக
- (ii) X இன் திரள் பரம்பல் சார்பைக் காண்க
- (iii) X இன் இடையம் m ஐக் காண்க
- (iv) P(|X m| < 0.75) ஐக் காண்க
- 8. எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு

$$f\left(x
ight)=egin{cases} kx^{ heta-1}&(1-x)^2&,&0\leq x\leq 1\ 0&,&$$
 அவ்வாறல்லாதபோது

எனத் தரப்பட்டுள்ளது .

(i)
$$k = \frac{1}{2} \theta (\theta + 1) (\theta + 2)$$
 எனக் காட்டுக

- (ii) E(X) , $E(X^2)$ ஐக் காண்க
- (iii) Var (X) ஐ உய்த்தறிக
- (iv) $\theta = 3/2$ ஆக, ஆகாரத்தைக் கண்டு வரைபை வரைக.

தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு,

$$f(x) = egin{cases} c\,x^2 & 0 \le x < 2 \ & 2\,c\,(4-x) & 2 \le x \le 4 \ & 0 &$$
அவ்வாறல்லாத போது

என வரையறுக்கப்பட்டுள்ளது.

- (i) c = 0.15 எனக் காட்டுக
- (ii) X இன் இடையைக் காண்க
- (iii) X இன் முதலாம் காலணை Q_1 ஐக் காண்க
- (iv)X இன் ஒரு அவதானிப்பு முதலாம் காலணைக்கும், இடைக்கும் இடைக்கும் இருப்பதற்கான நிகழ்தகவு யாது?
- (v) ஒன்றையொன்று சாராத மூன்று அவதானிப்புக்கள் எடுக்கப்பட்டன. அவற்றுள் ஒன்று இடையிலும் பெரிதாகவும், மற்றைய இரண்டும் இடையத்திலும் குறைவாகவுமிருப்பதற்கான நிகழ்தகவு யாது?
- 10. விற்பனை நிலையமொன்றில் ஆணிகள் விற்பனை செய்யப்படும்போது, சில்லறையாக சிறிய பைக்கற்றுக்கள் ஒவ்வொன்றும் 10 ரூபாவாகவோ, அல்லது 1 kg ஆணி 60 ரூபாவாகவோ விற்கப்படுகிறது. விற்பனை நாளொன்றில் விற்பனை செய்யும் பைக்கற்றுக்களின் எண்ணிக்கை ஆனது, எழுமாற்றுமாறி X இனால் தரப்படுகிறது. இங்கு $X \sim Bin$ (8, 0.6) சில்லறையாக விற்பனை செய்யப்படும் ஆணிகளின் நிறை, Ykg, f என்னும் தொடர் எழுமாற்றுமாறியினால் தரப்படுகிறது,

$$f(y) = \frac{2(y-1)}{25}$$
 , $1 \le y \le 6$ அவ்வாறல்லாதபோது

நாளொன்றில் விற்பனை செய்யப்படும் பைக்கற்றுக்களின் எண்ணிக்கை

- (a) ஒன்றிலும் கூடுதலாக இருக்க
- (b) ஏழு அல்லது ஏழிலும் குறைவாக இருக்க நிகழ்தகவு யாது?

- (c) நாளொன்றில், சில்லறையாக விற்பனை செய்யப்படும் ஆணிகளின் நிறை 4 kg இற்கும் 5 kg இற்குமிடையில் இருப்பதற்கான நிகழ்தகவு யாது?
- (d) நாளொன்றில் விற்பனை செய்யப்படும் பைக்கற்றுக்களின் எண்ணிக்கை சரியாக 2 ஆகவும், சில்லறையாக விற்கப்படும். ஆணிகளின் எண்ணிக்கை 2 kg இலும் குறைவாகவுமிருப்பதற்கான நிகழ்தகவு யாது?

(e) ஒரு நாளில் ஆணி விற்பனையால் பெறப்படும் எதிர்பார்த்த பணத்தைக்

காண்க.

 மின்கலமொன்றின் ஆயுட்காலம் X (10 மணித்தியாலங்களில்) தொடர் எழுமாற்றுமாறி ஆகும். இதன் நிகழ்தகவு அடர்த்திச்சார்பு

X இன் இடையைக் காண்க.

விளையாட்டுக்கார் ஒன்று இரு மின்கலங்களில் இயங்குகிறது. இரு புதிய மின்கலங்கள் அக் காருக்கு இணைக்கப்பட்டுள்ளன. கார் இயங்குவதற்கு இரு மின்கலங்களும் வேலை செய்ய வேண்டும். மின் கலங்களின் ஆயுட்காலம் ஒன்றையொன்று சாராதது எனக்கொண்டு, கார் குறைந்தது 22 மணித்தியாலங்கள் இயங்குவதற்கு நிகழ்தகவு யாது?

 குறித்த ஒரு வேலையைச் செய்து முடிக்க எடுக்கும் காலம், t மணித்தியாலங்களில், பின்வரும் நிகழ்தகவு அடர்த்திச் சார்பினைக் கொண்டுள்ளது.

$$f\left(t
ight) = egin{cases} 10\,c\,t^2 & , & 0 \le t < 0.6 \ 9\,c\,\left(1-t
ight) & , & 0.6 \le t \le 1.0 \ 0 & , &$$
அவ்வாறல்லாத போது

இங்கு *c* – ஒரு மாறிலி

- c இன் பெறுமானத்தைக் கண்டு, பரம்பலின் வரைபினை வரைக
- (ii) மிகவும் சாத்தியமான காலத்தைக் காண்க
- (iii) எதிர்பார்க்கும் காலத்தைக் காண்க
- (iv)வேலையைச் செய்து முடிக்க எடுக்கும் காலம்
 - (a) 48 நிமிடங்களிலும் கூடுதலாக இருக்க
 - (b) 24 நிடங்களுக்கும், 48 நிமிடங்களுக்குமிடையிலிருக்க நிகழ்தகவு யாது?

13. தொழிற்சாலை ஒன்றிற்கு ஒரு கிழமைக்குத் தேவையான மாவின் அளவு X ஆயிரம் தொன்கள் ஆகும். தொடர் எழுமாற்றுமாறி X இன், நிகழ்தகவு அடர்த்திச்

சார்பு
$$f(x) = k(1-x)^4$$
 $0 \le x \le 1$ = 0 அவ்வாறல்லாதபோது

- (a) k இன் பெறுமானம் யாது?
- (b) X இன் இடையைக் காண்க.
- (c) X இன் மாறற்றிறனைக் காண்க.

நிகழ்தகவு அடர்த்திச் சார்பின் வரைபினை வரைக.

தொழிற்சாலை கிழமையொன்றிற்குத் தேவையான அளவு மாவினை, கிழமைத் தொடக்கத்தில் கையிருப்பில் வைத்திருக்க வேண்டும். தேவையைப் பூர்த்தி செய்வதற்குரிய நிகழ்த்கவு 0.98 ஆக இருக்க, வைத்திருக்க வேண்டிய மாவின் அளவை கிட்டிய தொன்னில் காண்க.

14. தொடர் எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு f,

$$f(x) = k (1 + \cos x)$$
 $0 \le x \le \pi$
= 0 அவ்வாறல்லாதபோது

- (i) $k = \frac{1}{\pi}$ எனக் கோட்டுக
- (ii) இடை μ ஐக் காண்க
- (iii) X இன் திரள்பரம்பல் சார்பு F(x) ஐக் காண்க.

இதிலிருந்து $P\left(X \leq \mu\right)$ ஐக் காண்க. μ ஆனது 55 ஆம், 56ஆம் சதமணைகளுக்கிடையிலுள்ளது என வாய்ப்புப் பார்க்க.

15. தொடர் எழுமாற்றுமாறி X இன் திரள்பரம்பல்சார்பு F,

$$F(x) = \begin{cases} 0 & x < -1 \\ \alpha x + \alpha & -1 \le x < 0 \\ 2 \alpha x + \alpha & 0 \le x < 1 \\ 3 \alpha & x \ge 1 \end{cases}$$

(а) α இன் பெறுமானம் யாது?

(b) X இன் நிகழ்தகவு அடர்த்திச் சார்பு f(x)

(c) X இன் எதிர்வுப் பெறுமானம் μ

(d) X இன் நியமவிலகல் σ

(e)
$$P\left(|X-\mu| > \frac{1}{3}\right)$$

ஆகியவற்றைக் காண்க

அலகு 4

தொடர் நிகழ்தகவுப் பரம்பல்கள் விசேட

1. சீரான பரம்பல் அல்லது செவ்வகப் பரம்பல் (uniform distribution / rectangular distribution)

தொடர் எழுமாற்றுமாறி X இற்கு, $-\infty < a < b < \infty$ ஆகவுள்ள

$$f\left(x
ight) egin{cases} \dfrac{1}{b-a} &, & a \leq x \leq b \ 0 &, & ext{அவ்வாறல்லாதபோது} \end{cases}$$

நிகழ்தகவு அடர்த்திச் சார்பு ஒன்று உண்டெனின் X இற்கு சீரான பரம்பல் உண்டு எனப்படும்.

இப்பரம்பலின் பரமானங்கள் a, b ஆகும்.

X இவ்வாறு பரம்பலைக் கொண்டிருப்பின் $X \sim U\left(a,b\right)$ என எழுதப்படும்.

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{a}^{b} \frac{1}{b-a} dx = \frac{1}{b-a} [x]_{a}^{b} = 1$$

அல்லது வளையியின் கீழான பரப்பு = 1 ஆகும்

 $X \sim U(a,b)$ எனின், $E(X) = \frac{1}{2}(a+b)$ $Var(X) = \frac{1}{12} (b-a)^2$ ஆகும்.

$$E(X) = \int_{a}^{b} x f(x) dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{1}{2} (a+b)$$

அல்லது வரைபிலிருந்து, சமச்சீரின் படி, $E(X) = \frac{1}{2}(a+b)$

$$Var(X) = E(X^2) - [E(X)]^2$$

$$E(X^{2}) = \int_{a}^{b} x^{2} f(x) dx = \frac{1}{b-a} \left[\frac{x^{3}}{3} \right]_{a}^{b}$$

$$= \frac{1}{3} \frac{\left(b^3 - a^3\right)}{b - a} = \frac{1}{3} \left(b^2 + ab + a^2\right)$$

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= \frac{b^{2} + ab + a^{2}}{3} - \frac{(a+b)^{2}}{4}$$

$$= \frac{1}{12}(b-a)^{2}$$

Y எனும் எழுமாற்றுமாறி ஒன்றின் நிகழ்தகவு அடர்த்திச் சார்பு

$$f(y) = \begin{cases} \frac{1}{5} & 32 \le y \le 37 \\ 0 &$$
அவ்வாறல்லாதபோது

எனத் தரப்பட்டுள்ளது. Y ஆனது இடையிலிருந்து ஒரு நியம விலகலுக்குள் இருப்பதற்கான நிகழ்தகவு யாது?

$$E(Y) = \frac{1}{5} \int_{32}^{37} y \, dy$$

$$= \frac{1}{5} \left[\frac{y^2}{2} \right]_{37}^{32}$$

$$= \frac{1}{10} \left(37^2 - 32^2 \right)$$

$$= \frac{1}{10} \left(37 - 32 \right) \left(37 + 32 \right)$$

$$= \frac{69}{2}$$

$$Var(Y) = \frac{1}{5} \int_{32}^{37} y^2 \, dy - \left(\frac{69}{2} \right)^2$$

37

$$= \frac{1}{5 \times 3} \left[37^3 - 32^3 \right] - \left(\frac{69}{2} \right)^2$$

$$= \frac{25}{12}$$

$$\sigma_y = \sqrt{\frac{25}{12}} = \frac{5}{2\sqrt{3}}$$

$$P(|Y - \mu| < \sigma)$$

$$= P(\mu - \sigma < Y < \mu + \sigma)$$

$$= P\left(\frac{69}{2} - \frac{5}{2\sqrt{3}} < Y < \frac{69}{2} + \frac{5}{2\sqrt{3}} \right) = \frac{1}{5} \times 2\sigma = \frac{1}{\sqrt{3}}$$

2. அடுக்குக் குறிப்பரம்பல் (Exponential Distribution)

தொடர்எழுமாற்றுமாறி X இற்கு $, \lambda > 0$ ஆகவுள்ள

$$f(x) = \begin{cases} \lambda \cdot e^{-\lambda x} &, x \ge 0 \\ 0 &, x < 0 \end{cases}$$

எனும் வடிவிலான நிகழ்தகவு அடர்த்திச்சார்பு உண்டெனின், X இற்கு அடுக்குக்குறிப்பரம்பல் உண்டு எனப்படும்.

இப்பரம்பலின் பரமானம் λ ஆகும்.

$$X\sim\exp{(\lambda)}$$
 எனவும் எழுதப்படும

இப்பரம்பல் மறை அடுக்குக் குறிச்சார்பு (negative exponential function) எனவும் அழைக்கப்படும்.

(i)
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{\infty} \lambda \cdot e^{-\lambda x} dx \qquad \lambda$$

$$\left[\lambda \frac{e^{-\lambda x}}{-\lambda}\right]_{0}^{\infty}$$

$$=-\left[e^{-\lambda x}\right]_0^{\infty}=-(0-1)=1$$

(ii) a > 0 ஆக இருக்க
$$P\left(X \le a\right) = \int\limits_0^a \lambda e^{-\lambda x} \ dx$$

$$= \left[-e^{-\lambda x}\right]_0^a$$

$$= -e^{\lambda - x} + e^{\lambda}$$

$$= 1 - e^{-\lambda a}$$

(iii) திரள் பரம்பல் சார்பு
$$F(x)=P\left(X\leq x\right)=1-e^{-\lambda x}$$
 ஆகும் $(x\geq 0)$

(iv)
$$P(X > a) = 1 - P(X \le a) = e^{-\lambda a}$$
 ஆகும்.

(v)
$$P(X > a + b | X > a) = P(X > b)$$
 ஆகும்.

$$P\left(X>a+b\left|X>a
ight)=rac{P\left[\left(X>a+b
ight)\cap\left(X>a
ight)
ight]}{P\left(X>a
ight)}$$
[நிபந்தனை நிகழ்தகவு $e^{-\lambda a}$ வரைவிலக்கனம்]
$$=rac{P\left(X>a+b
ight)}{P\left(X>a
ight)}=rac{e^{-\lambda\left(a+b
ight)}}{e^{-\lambda a}}$$
 $=e^{-\lambda b}=P\left(X>b
ight)$

$$X \sim \exp(\lambda)$$
) στοσθού, $E(x) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$ ஆகும்.

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{\infty} x \cdot \lambda \cdot e^{-\lambda x} dx$$

$$= \left[x\left(-e^{-\lambda x}\right)\right]_0^{\infty} - \int_0^{\infty} \left(-e^{-\lambda x}\right) dx$$

$$= 0 + \int_{0}^{\infty} e^{-\lambda x} dx \quad \left[\lim_{x \to \infty} x \cdot e^{-\lambda x} = 0 \right]$$

$$= -\frac{1}{\lambda} \left[e^{-\lambda x} \right]_{0}^{\infty} = -\frac{1}{\lambda} \left[0 - 1 \right] = \frac{1}{\lambda}$$

$$\therefore E\langle X \rangle - \frac{1}{\lambda} \Rightarrow_{\Theta \circlearrowleft \omega}.$$
இப்பொழுது $E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx$

$$= \int_{0}^{+\infty} x^2 \left(\lambda \cdot e^{-\lambda x} \right) dx$$

$$= \left[x^2 \left(-e^{-\lambda x} \right) \right]_{0}^{\infty} - \int_{0}^{\infty} 2x (e^{-\lambda x}) dx$$

$$= 0 + 2 \int_{0}^{\infty} x \cdot e^{-\lambda x} dx \left[\lim_{x \to \infty} x^2 e^{-\lambda x} = 0 \right]$$

$$= \frac{2}{\lambda^2}$$

$$Var(X) = E(X^2) - \left[E(X) \right]^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

$$\therefore Var(X) = \frac{1}{\lambda^2} \Rightarrow_{\Theta \circlearrowleft \omega}.$$

மின்குமிழ்களின் ஆயுட்காலம், ஆயிரம் மணித்தியாலங்களில் X என்னும் எழுமாற்று மாறியினால் தரப்படுகிறது. எழுமாற்றுமாறியின் நிகழ்தகவு அடர்த்திச் சார்பு $f(x) = 0 \cdot 5e^{-0.5x}$ என்பதால் தரப்படுகிறது.

(a) ஆயுட்காலத்தின் இடையைக் காண்க.

(b) மின்குமிழ் ஒன்று எழுமாற்றாகத் தெரிவு செய்யப்படுகிறது. அந்த மின்குமிழ்

- (i) 2500 மணிக்கியாலங்களிலும் கூடுதலாக எரிவதற்கு
- (ii) 1800 மணித்தியாலங்களிலும் குறைவாக எரிவதற்கு நிகழ்த்கவைக் காண்க.
- (c) இரு மின்குமிழ்கள் எழுமாற்றாகத் தெரியப்படுகின்றன. அவற்றுள் ஒன்று இடை ஆயுட் காலத்திலும் கூடுதலாகவும், மற்றையது இடை ஆயுட் காலத்திலும் குறைவாகவும் எரிவதற்கு நிகழ்தகவு யாது?
- (d) 6 மின்குமிழ்களைக் கொண்ட எழுமாற்று மாதிரி ஒன்றில் சரியாக 4 மின் குமிழ்கள், 2500 மணித்தியாலங்களிலும் கூடுதலாக எரிவதற்கான நிகம்ககவ யாது?
- (a) $f(x) = 0.5e^{-0.5x}$, $x \ge 0$

$$\int_{0}^{\infty} x \cdot \left(0 \cdot 5e^{-0.5x}\right) dx = \left[x\left(-e^{-0.5x}\right)\right]_{0}^{\infty} - \int \left(-e^{-0.5x}\right) dx$$

$$= \int_{0}^{\infty} e^{-0.5x} dx = \left[\frac{e^{-0.5x}}{-0.5} \right]_{0}^{\infty}$$

(b)
$$P(X > 2.5) = e^{-0.5 \times 2.5} = e^{-1.25}$$

$$= 0.287$$

$$P(X < 1.8) = 1 - e^{-0.5 \times 1.8} = 1 - e^{-0.9} = 1 - 0.407 = 0.593$$

(c)
$$P(X > 2) = e^{-0.5 \times 2} = e^{-1} = 0.3679$$

$$P(X \le 2) = 1 - P(X > 2) = 1 - 0.3679 = 0.6321$$

2 மின்குமிழ்கள் ஒன்று 2000 மணித்தியாலங்களிலும் கூடுதலாகவும் மற்றையது 2000 மணித்தியாலங்களிலும் குறைவாகவும் எரிவதற்கான நிகழ்தகவு

$$= 2 C_1 \times (0.3679) \times (0.6321)$$
$$= 0.465$$

(d) 6 மின்குமிழ்களில் 4 மின்குமிழ்கள் 2500 மணித்தியாலத்திலும் கூடுதலாக எரிவதற்கான நிகழ்தகவு = 6 $C_4 \ (0.287)^4 \ (0.713)^2$

மின்குமிழ்களின் ஒரு தொகுதி, அவற்றுள் எந்த ஒரு மின்குமிழும் தொடர்ச்சியாக X மணித்தியாலங்கள் எரிவதற்கு முன் பழுதடைவதற்கான நிகழ்தகவு

$$1 - e^{-x/10}$$
 , $x \ge 0$ ஆகுமாறு உள்ளது.

- (i) பழுதடைவதற்கான காலத்தின் இடையம்
- (ii) பழுதடைவதற்கான காலத்தின் பரம்பலின் நிகழ்தகவு அடர்த்திச் சார்பு
- (iii) பரம்பலின் இடை, மாறற்றிறன்
- (iv) மின்குமிழ் ஒன்று 5 மணித்தியாலங்களுக்கும் 10 மணித்தியாலங்களுக்குமிடையில் பழுதடைவதற்கான நிகழ்த்கவு ஆகியவற்றைக் காண்க.

பழுதடைவதற்கான காலம் X மணித்தியாலங்கள் என்க.

$$P(X \le x) = 1 - e^{-x/10}$$
 $x \ge 0$

$$P(X \le x) = F(x) = 1 - e^{-x/10}$$

இடையம் *m* மணித்தியாலங்கள் எ**னின்**,

$$F(m) = \frac{1}{2}; 1 - e^{-m/10} = \frac{1}{2}$$

$$e^{-m/10} = 0.500$$

$$-\frac{m}{10}\log e = \log 0.5000$$

$$-\frac{m}{10} = \frac{\log 0.5000}{\log 2.73} = \frac{\overline{1.6990}}{0.4362} = \frac{-0.3010}{0.4362}$$

$$m = 10 \times \frac{0.3010}{0.4362} = 6.93$$
 மணித்தியாலங்கள்

$$f(x) = \frac{d}{dx} F(x) = \frac{1}{10} e^{-\frac{x}{10}}$$

$$\therefore f(x) = \frac{1}{10}e^{-\frac{x}{10}} \qquad x \ge 0$$

$$0 \qquad x < 0$$

$$P(X \le 2) = F(2) = 1 - e^{-\frac{2}{10}} = 1 - 0.8187$$

$$= 0.1813$$

$$P(2 < x \le 5) = F(5) - F(2) = e^{-0.2} - e^{-0.5}$$

$$= 0.8187 - 0.6065$$

$$= 0.2122$$

$$P(5 < x \le 15) = F(15) - F(5) = e^{-0.5} - e^{-1.5}$$

$$= 0.6065 - 0.2231$$

$$= 0.3834$$
• $P(X > 15) = 1 - P(X \le 15)$

ஒருமுறை சுடும்போது புள்ளிகளின் எண்ணிக்கை Y என்க.

 $= 1 - (1 - e^{-1.5}) = e^{-1.5} = 0.2231$

Y	8	5	1	0
P(Y=y)	0.1813	0.2122	0.3834	0.2231

$$E(Y) = \sum y_i p(y_i)$$

= 8 × 0·1813 + 5 × 0·2122 + 1 × 0·3834 + 0 × 0·2231
= 2·8948

எனவே, எதிர்பார்க்கும் புள்ளி 2 . 8948

(iii)
$$E(X) = \int_{0}^{\infty} x f(x) dx = \int_{0}^{\infty} x \frac{1}{10} e^{-x/10} dx = 10$$

(iv)
$$Var(X) = E(X^2) - [E(X)]^2$$

இதிலிருந்து $Var(X) = 100$ எனப் பெற்றுக்கொள்ளலாம்.

(v)
$$P(5 \le X \le 10) = F(10) - F(5)$$

= $(1 - e^{-1}) - (1 - e^{-\frac{1}{2}})$
= $e^{-\frac{1}{2}} - e^{-1}$
= $0.6065 - 0.3679$
= 0.2386

உதாரணம் 3

பயிற்சியாளர் ஒருவர் இலக்கினைச் சுடும் போட்டியில் கலந்து கொள்கிறார். இலக்கின் மையத்திலிருந்து X cm தூரத்தில் குண்டு இலக்கினை அடிப்பதற்குரிய நிகழ்தகவு அடர்த்திச் சார்பு f ஆனது,

$$f(x) = \frac{1}{10} e^{-x/10}$$
 $x \ge 0$
= 0 $x < 0$ எனத் தரப்பட்டுள்ளது.

பயிற்சியாளர் இலக்கினை ஒருமுறை சுடுகின்றார்.

 $X \leq 2$ எனின் 8 புள்ளிகளும், $2 < X \leq 5$ எனின் 5 புள்ளிகளும்,

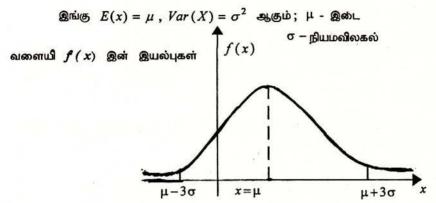
 $5 < X \le 15$ எனின் 1 புள்ளியும், வழங்கப்படுகிறது. மற்றைய சந்தர்ப்பங்களில் புள்ளி வழங்கப்படுவதில்லை.

அவர் இலக்கினை ஒரு முறை சுடும்போது எதிர்பார்க்கும் புள்ளியைக் காண்க.

$$f(x) = \frac{1}{10} e^{-x/10} \qquad x \ge 0$$

$$P(X \le x) = \int_0^x \frac{1}{10} e^{-x/10} dx = \left[-e^{-x/10} \right]_0^x = 1 - e^{-x/10}$$

$$P(X \le x) = F(x)$$
 ஆகும்.


211

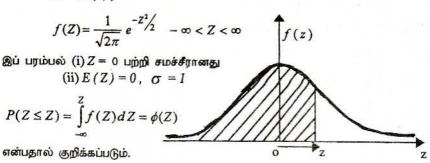
(a) செவ்வன் பரம்பல் (Normal Distribution)
 தொடர் எழுமாற்றுமாறி X இற்கு -∞ < μ < ∞ , σ > 0 ஆகவுள்ள ,

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{-1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} - \infty < x < \infty$$

வடிவிலான நிகழ்தகவு அடர்த்திச் சார்பு உண்டெனின் X இற்கு இடை μ உம், மாறற்றிறன் σ^2 உம் கொண்ட செவ்வன் பரம்பல் உண்டு எனப்படும்.

இது, $X \sim N \ (\mu, \sigma^2)$ என்பதால் குறிக்கப்படும்.

- (i) இவ்வரைபு மணிவடிவமுடையதாய், $x = \mu$ பற்றி சமச்சீராக அமைந்திருக்கும்.
- (ii) $x = \mu$ இல் f(x) இற்கு உயர்வு உண்டு. இவ்வுயர்வுப் பெறுமானம் $\int_{\sigma\sqrt{2\pi}}^{1}$
- (iii) இடையிலிருந்து 2σ தூரத்தினுள் பரம்பலின் 95% அடங்கியிருக்கும். $P(\mu 2\sigma \le X \le \mu + 2\sigma) = 0.95$


இடையிலிருந்து 3σ தூரத்தினுள் பரம்பலின் 99.8% அடங்கியிருக்கும். $P\left(\mu - 3\sigma \leq X \leq \mu + 3\sigma\right) = 0.998$

- (iv) $x \to \pm \infty$ ஆக, $f(x) \to 0$ ஆகும்.
- (vii) பரம்பலின் இடை, இடையம், ஆகாரம் ஆகிய அளவைகள் மூன்றும் ஒரே பெறுமானமாகும்.

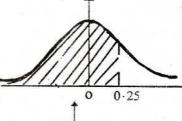
$$\left[\int_{-\infty}^{+\infty} f(x) \, dx = 1\right]$$

(b) நியம செவ்வன் பரம்பல் (Standard Normal distribution) எழுமாற்றுமாறி, இடை μ = 0 ஆகவும், நியமவிலகல் σ = 1 ஆகவும் உள்ள செவ்வன் பரம்பலில் அமைந்திருப்பின், அது நியமசெவ்வன் எழுமாற்று மாறி எனப்படும்.

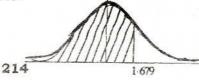
Z இன் நிகழ்தகவுப் பரம்பல் f(Z) $Z \sim N(0,1)$

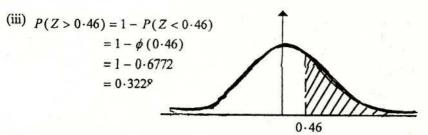
நியம் செவ்வன் அட்டவணையை உபயோகித்து ϕ (Z) ஐக் காணலாம். (அட்டவணை புத்தகத்தின் இறுதியில் உள்ளது.)

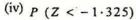
உதாரணம் 1

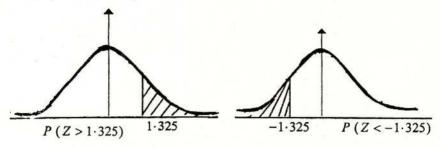

 $Z \sim N(0,1)$ எனின், பின்வருவனவற்றைக் காண்க.

(i)
$$P(Z<0.25)$$
 (ii) $P(Z<1.679)$ (iii) $P(Z>0.46)$

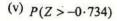

(iv)
$$P(Z < -1.325)$$
 (v) $P(Z > -0.734)$ (vi) $P(0.24 < Z < 1.24)$

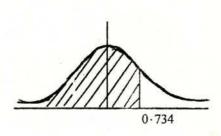

 $(vii)\,P\;(-2\cdot 6 < Z < -0\cdot 6) \quad (viii)\,P\;(-1\cdot 5 < Z < 2)$

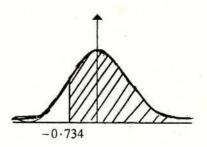

(i)
$$P(Z < 0.25) = \phi(0.25) = 0.5987$$



(ii) $P(Z < 1.679) = \phi(1.679) = 0.9534$

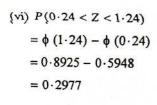


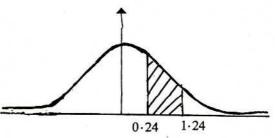




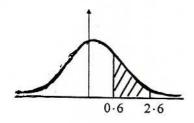
$$P(Z < -1.325) = P(Z > 1.325)$$

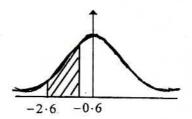
= $1 - \phi(1.325) = 1 - 0.9074 = 0.0926$



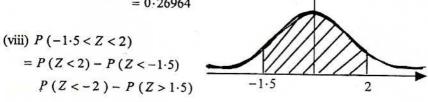


$$P(Z > -0.734)$$

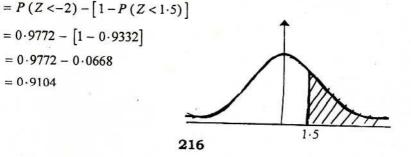

$$P(Z > -0.734) = P(Z < 0.734) = 0.7685$$


215

(vii)
$$P(-2.6 < Z < -0.6)$$



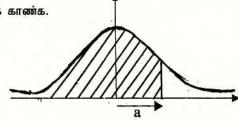
$$P(-2 \cdot 6 < Z < -0 \cdot 6) = P(0 \cdot 6 < Z < 2 \cdot 6)$$


$$= \phi(2 \cdot 6) - \phi(0 \cdot 6)$$

$$= 0.99534 - 0.7257$$

$$= 0.26964$$

$$= 0.9772 - [1 - 0.9332]$$
$$= 0.9772 - 0.0668$$
$$= 0.9104$$

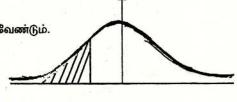

உதாரணம் 2

 $Z \sim N(0,1)$ எனின்,

- (i) P(Z < a) = 0.9024
- (ii) P(Z < a) = 0.3192
- (iii) P(Z < a) = 0.3802
- (iv) P(Z < a) = 0.7524
- (v) P(|Z| < a) = 0.6000

ஆகுமாறு *a* இன் பெறுமானத்தைக் காண்க.

(i) P(Z < a) = 0.9024 $\phi(a) = 0.9024$


(ii) P(Z < a) = 0.3192

இங்கு *a* மறையாக அமைதல் வேண்டும்.

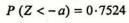
ஆகவே
$$\phi$$
 ($-a$) = 1 -0.3192
= 0.6808

a = 1.295

-a = 0.47a = -0.47

(iii) P(Z > a) = 0.3802

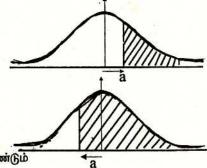
$$P(Z < a) = 1 - 0.3802$$

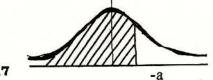

= 0.6198

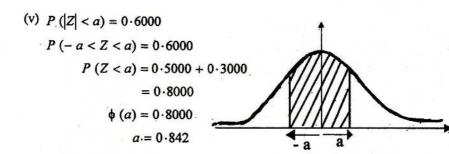
 $\phi(a) = 0.6198$

a = 0.305

(iv) P(Z > a) = 0.7524


இங்கு a மறையாக அமைதல் வேண்டும்




$$\phi(-a) = 0.7524$$

-a = 0.682

a = -0.682

செவ்வன் பரம்பலை நியம செவ்வனுக்கு மாற்றுதல் எழுமாற்றுமாறி $X \sim N \; (\; \mu \; , \; \sigma^2 \;)$ என்க. (செவ்வன் பரம்பல்)

$$Z=rac{X-\mu}{\sigma}$$
 என்ற பிரதியீடு மூலம் $Z\sim N\ (0\ ,1)$ எனப் பெறப்படும் (நியம செவ்வன் பரம்பல்)

உதாரணம் 3

 $X \sim N$ (50, 20) எனின்

(i)
$$P(X > 60.3)$$

(ii)
$$P(X < 47.3)$$

(ii)
$$P(X < 47.3)$$
 (iii) $P(X > 48.9)$

(iv) P(X < 59.8) என்பவற்றைக் காண்க.

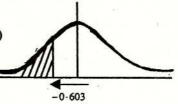
@riage
$$\mu = 50$$
 , $\sigma = \sqrt{20} = 4.472$

(i) $P(X > 60.3) = P\left(Z > \frac{60.3 - 50}{4.472}\right)$

$$= P(Z > 2.3)$$

$$= 1 - P(Z < 2.3)$$

$$= 1 - \phi(2.3) = 1 - 0.9893 = 0.0107$$


(ii)
$$P(X < 47 \cdot 3) = P\left(Z < \frac{47 \cdot 3 - 50}{4 \cdot 472}\right)$$

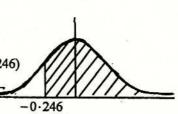
= $P(Z < -0.603)$

218

$$= P(Z > 0.603)$$

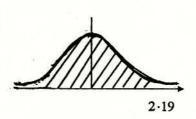
$$= 1 - P(Z < 0.603) = 1 - \phi(0.603)$$

$$= 1 - 0.7267 = 0.2733$$



(iii)
$$P(X > 48.9) = P\left(Z > \frac{48.9 - 50}{4.472}\right)$$

= $P(Z > -0.246)$


$$= P(Z > -0.246)$$

$$= P(Z < 0.246) = \phi(0.246)$$

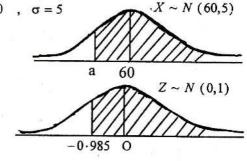
$$= 0.5971$$

(iv)
$$P(X < 59.8) = P\left(Z < \frac{59.8 - 50}{4.472}\right)$$

= $P(Z < 2.19)$
= $\phi(2.19) = 0.9857$

உதாரணம் 4

- (i) X ~ N (60, 25) ஆகும்.
 - P(X > a) = 0.837 எனின் a ஐக் காண்க.
 - P(X > b) = 0.2324 எனின் "b ஐக் காண்க.
- (ii) X ~ N (45, 16) ஆகும்.
 - P(X < c) = 0.895 steelsi *c* ஐக் காண்க
 - P(X < d) = 0.0456 எனின் d ஐக் காண்க
- (iii) X ~ N (80,36) ஆகம்.


 $P\left|X-80
ight| < C$ ஆகுமாறு C ஐக் காண்க. இதிலிருந்து பரம்பலின் 90% எல்லையைக் காண்க.

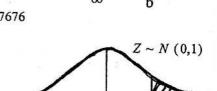
(i)
$$X \sim N(60, 25)$$
 , $\mu = 60$, $\sigma = 5$
 $P(X > a) = 0.837$

$$P\left(Z > \frac{a - 60}{5}\right) = 0.837$$

$$\frac{a-60}{5} = -0.985$$

$$a = 60 - 4.925 = 55.075$$

$$P(X > b) = 0.2324$$


$$P\left(Z > \frac{b - 60}{5}\right) = 0.2324$$

$$P\left(Z < \frac{b-60}{5}\right) = 1 - 0.2324 = 0.7676$$

$$P\left(Z < \frac{5}{5}\right) = 1 - 0.2324 = 0.767$$

$$\frac{b - 60}{5} = 0.733$$

$$b = 60 + 3.665 = 63.665$$

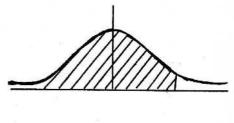
 $X \sim N(60,5)$

0.733

(ii)
$$X \sim N$$
 (45, 16), $\mu = 45$, $\sigma = 4$

$$P(X < c) = 0.895$$

$$P\left(Z < \frac{c - 45}{4}\right) = 0.895$$


$$\frac{c-45}{4}=1.256$$

$$c = 45 + 5 \cdot 024 = 50 \cdot 024$$

$$P(X < d) = 0.0456$$

$$P\left(Z < \frac{d - 45}{4}\right) = 0.0456$$

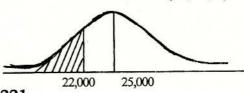
$$\frac{d - 45}{4} = -1.69$$

$$d = 45 - 6.76 = 38.24$$

Fii)
$$X \sim N (80,36)$$
, $\mu = 80$, $\sigma = 6$
 $P(|X - 80| < c) = 0.9$
 $P(-C < X - 80 < c) = 0.9$
 $P\left(-\frac{c}{6} < \frac{X - 80}{6} < \frac{c}{6}\right) = 0.9$
 $P\left(-\frac{c}{6} < Z < \frac{c}{6}\right) = 0.9$

P(-0.167c < Z < 0.167c) = 0.9

சமச்சீரின்படி, 2 P(Z < 0.167c) - 1 = 0.9


$$P(Z < 0.167c) = \frac{1.9}{2} = 0.95$$
$$0.167c = 1.645$$
$$c = 9.85$$

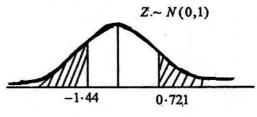
70.15 < X < 89.85

உதாரணம் 5

ஒரு நிறுவனம் உற்பத்தி செய்யும் கார் ரயர்கள் சராசரியாக 25000 Km வரை பயணம் செய்யப் பாதுகாப்பானவை. 22000 km இலும் குறைவாக ரயர்கள் பாவிப்பின் உற்பத்தியாளர்கள் அந்த வாடிக்கையாளர்களுக்கு நட்டஈடு வழங்க **உத்தரவாதமளித்துள்**ளார்கள். நிறுவனம், விற்கப்பட்ட மொத்தரயர்களில் 7·5% ஆனவற்றிற்கு நட்டஈடு வழங்க வேண்டியிருக்குமென எதிர்பார்க்கிறார்கள். ரயர் ஒன்று பழுதடையுமுன் அது பயணம் செய்யும் தூரம் X (கிலோமீற்றர்) செவ்வன் பரம்பலில் உள்ளதெனக் கொண்டு, பரம்பலின் நியமவிலகலைக் காண்க. 1000 ரயர்களில் எத்தனை ரயர்கள், 26500 km பயணம் செய்தபின்னும், பழுதடையாமலிருக்கும் என்பதை மதிப்பிடுக.

$$X \sim N (25000, \sigma^2)$$

 $P (X < 22000) = 0.075$


 $X \sim N$ (25,000, σ)

221

$$P\left(Z < \frac{-3000}{\sigma}\right) = 0.075$$

$$\frac{-3000}{\sigma} = -1.44$$

$$\sigma = \frac{3000}{1.44} = 2083$$

$$P(X > 26500) = P\left(Z > \frac{26500 - 25000}{2083}\right)$$
$$= P(Z > 0.721)$$
$$= 1 - 0.7645$$
$$= 0.236$$

எனவே 1000 ரயர்களில், 236 ரயர்கள் பழுதடையாமலிருக்கும் என மதிப்பிடமுடியும்.

உதாரணம் 6

இயந்திரம் ஒன்றினால் உருக்குக் கோல்கள் வெட்டப்படுகின்றன. கோலின் நீளம் 100 cm இலும் கூடுதலாக இருக்கக்கூடாது. வெட்டப்பட்ட பெருந் தொகையான ஒரு தொகுதி கோல்களின் இடை நீளம் 99.80 cm ஆகவும் நியம விலகல் 0.15 cm ஆகவும் காணப்பட்டது. கோல்களின் நீளங்கள் செவ்வன் பரம்பலில் உள்ளன எனக் கொண்டு

- நீளம் மிகவும் கூடுதலாகவுள்ள கோல்களின் நூற்று வீதத்தைக் காண்க.
- (ii) 100 cm இலும் கூடுதலாக இருப்பதால் 2% இலும் மேற்படாத கோல்கள் ஏற்கப்படாமலிருப்பதற்கு, நியம விலகலில் மாற்றமில்லையெனக் கொண்டு புதிய இடையைக் காண்க.
- (iii) நீளத்தின் இடை 99.80 ஆக இருக்க, 100 cm இலும் கூடுதலாக இருப்பதால் ஏற்கப்படாத கோல்கள் 4% ஆக இருப்பதற்கு நியமவிலகல் எவ்வளவால் குறைக்கப்பட வேண்டும் என்பதைக் கிட்டிய மில்லி மீற்றரில் காண்க.

கோலின் நீளமXcm என்க.

(i)
$$P(X > 100)$$

= $P(Z > \frac{100 - 99.80}{0.15})$

$$= P (Z > 1.33) = 1 - 0.9802 = 0.0912$$
$$= 9.12\%$$

(ii)
$$P(X < 100) = 0.98$$

$$P\left(Z<\frac{100-\mu}{0.15}\right)=0.98$$

$$\frac{100 - \mu}{0.15} = 2.054$$

$$\mu = 100 - 2.054 \times 0.15$$

= 100 - 0.30810

= 99.69 cm

(iii)
$$P(X < 100) = 0.96$$

$$P\left(Z < \frac{100 - 99 \cdot 80}{\sigma}\right) = 0.96$$

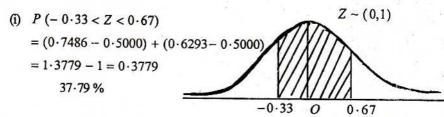
$$\frac{0.20}{\sigma} = 1.75$$

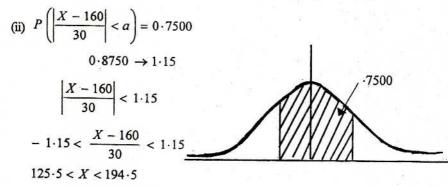
$$\sigma = 0.114 \text{ cm}$$

= 1.14 mm

.. குறைக்கப்படவேண்டிய அளவு $1 \cdot 50 - 1 \cdot 14 = 0 \cdot 36 \approx 0 \cdot 4 \ mm$

உதாரணம் 7


ரான்சிஸ்ரர் வானொலி பற்றரிகளின் ஆயுட்காலம் 160 மணித்தியாலங்களை இடையாகவும், 30 மணித்தியாலங்களை நியம விலகலாகவும் கொண்ட செவ்வன் பாம்பலொன்றில் உள்ளன.


- (i) ஆயுட்காலம் 150 மணித்தியாலங்களுக்கும் 180 மணித்தியாலங்களுக்கு மிடையிலுள்ள பற்றரிகளின் நூற்றுவீதம் யாது?
- (ii) இடைபற்றி சமச்சீராக, ஆயுட்காலம் 75 % கொண்டிருக்கும் ஆயுட்கால வீச்சினைக் காண்க
- (iii) வானொலி ஒன்று இயங்குவதற்கு இவ்வகையான 4 பற்றரிகள் தேவைப்படுகிறதெனவும், அவை நான்கும் வேலை செய்ய வேண்டுமெனவும் கொண்டு, வானொலி குறைந்தது 135 மணித்தியாலங்கள் இயங்குவதற்கான நிகழ்தகவு யாது? பற்றரிகளின் ஆயட்காலம் X மணி, ஒன்க.

$$X \sim N (160, 30)$$

$$P (150 < X < 180)$$

$$P \left(\frac{150 - 160}{30} < Z < \frac{180 - 160}{30}\right)$$

(iii)
$$P(X > 135) = P\left(Z > \frac{135 - 160}{30}\right)$$

= $P\left(Z > -\frac{25}{30}\right)$
= $P(Z > -0.833)$
= $P(Z < 0.833) = 0.7975$

ஆகவே 4 பற்றரிகளையுடைய வானொலி குறைந்தது 135 மணித்தியாலங்கள் இயங்குவதற்கான நிகழ்தகவு = $(0.7975)^4$ = 0.4047

உதாரணம் 8

துப்பாக்கி ஒன்றிலிருந்து, கிடையான 50 cm நீளமான இலக்கினை நோக்கி 600 ரவைகள் சுடப்படுகின்றன. இலக்கின் மிகக் கிட்டிய புள்ளி துப்பாக்கியிலிருந்து 950 m தூரத்திலும், அதி தூரத்திலுள்ள புள்ளி 1000 m இலும் உள்ளன. ரவைகளின் பாதைகள் எல்லாம் துப்பாக்கியினதும் இலக்கினதும் ஊடாகச் செல்லும் நிலைக் குத்துத் தளத்திலுள்ளன. சுடப்பட்ட ரவைகளில் 27 ரவைகள் இலக்கிற்கு முன்னேயும், 69 ரவைகள் இலக்கைத் தாண்டியும் விமுந்துள்ளன. ரவைகளின் வீச்சின் இடையையும் பரம்பலில் அமைந்துள்ளன எனக் கொண்டு ரவைகளின் வீச்சின் இடையையும் நியம விலகலையும் காண்க.

இலக்கின் மத்தியிலிருந்து 5m தூரத்தினுள் விழும் ரவைகளின் எண்ணிக்கையை மதிப்பிடுக.

ரவைகளின் வீச்சு X (மீற்றர்) என்க. $P\left(X>1000\right)=\frac{69}{600}=0\cdot115$ $P\left(X<950\right)=\frac{27}{600}=0\cdot045$

்பரம்பலின் இடை μ , நியமவிலகல் σ என்க.

$$P(X > 1000) = P\left(Z > \frac{1000 - \mu}{\sigma}\right) = 0.115$$

$$\frac{1000 - \mu}{\sigma} = 1.20$$

$$\mu + 1.20 \sigma = 1000 \qquad (1)$$

$$P(X < 950) = P\left(Z < \frac{950 - \mu}{\sigma}\right) = 0.045$$

$$\frac{950 - \mu}{\sigma} = -1.7$$

$$\mu - 1.7 \sigma = 950 \qquad (2)$$

$$(1) - (2), \qquad 2.9 \sigma = 50$$

$$\sigma = \frac{50}{2.9} = 17.24 \text{ which is }$$

$$\mu = 979.31 \text{ which is }$$

$$P(970 < X < 980) = P\left(\frac{970 - 979 \cdot 31}{17 \cdot 24} < Z < \frac{980 - 979 \cdot 31}{17 \cdot 24}\right)$$
$$= P(-0.5284 < Z < 0.0400)$$
$$= 0.7012 + 0.5160 - 1$$
$$= 0.2172$$

ரவைகளின் எண்ணிக்கை = 0.2172 imes 600

$$= 130$$

உதாரணம் 9

இயந்திரம் ஒன்று உற்பத்தி செய்யும் பொருட்களின் ஒவ்வொரு தொகுதியிலும் 20000 பொருட்கள் உள்ளன. பொருட்களின் நீளங்கள் சேவ்வன் பரம்பலொன்றில் அமைந்துள்ளன. உற்பத்தியின் தொடக்கத்தில் பொருட்களின் நீளத்தின் இடை 15 mm ஆக இருக்குமாறு இயந்திரம் சீர்படுத்தப்பட்டுள்ளது. அதன்பின்னர் பின்வரும் மூன்று நியம விலகல்களுள் ஒன்று பெறத்தக்கவாறு இரண்டாம் முறை அதனை சீர் செய்ய முடியும்.

நியம விலகல்கள் : 0.06mm, 0.075mm, 0.09mm

இம் மூன்று விலகல்கள் ஒவ்வொன்றையும் சீர் செய்வதற்கான செலவுகள் முறையே ருபா 8,500 ருபா 5,500 ரூபா 1,000 ஆகும்.

உற்பத்தி செய்யப்படும் பொருளின் நீளம் 14.82 mm இலிருந்து 15.18 mm இற்கு இடையிலிருத்தல் வேண்டும். அவ்வாறில்லையெனின், அது பழுதானதாகக் கருதப்படும். இதனால் உற்பத்தியாளருக்கு 10 ரூபா நட்டம் ஏற்படும். இயந்திரத்தை சீர் செய்வதற்கு ஏற்படும் செலவையும் பொருள் பழுதாவதால் ஏற்படும் செலவையும் கருதி எந்த நியம விலகலுக்கு இயந்திரத்தை சீர் செய்ய வேண்டுமெனக் காண்க.

 $\mu = 15 \, mm$ பொருட்களின் நீளம் $X \, mm$ என்க.
(a) $\sigma = 0.06$ சானின் $\frac{15.18 - 15}{0.06} = 3$, $\frac{14.82 - 15}{0.06} = -3$ 14.82 15 15.18

$$\left| \frac{X - \mu}{\sigma} \right| > 3$$
ஆகவுள்ளவை பழுதானதானதாகக் கருதப்படும்.

$$P(|Z| > 3) = 1 - 2(0.99865 - 0.5000) = 0.0027$$

எனவே 20,000 பொருட்களில் 54 பழுதானவையாகக் கருதப்படும். .். மொத்தச்செலவு = 8500 + 540 = ரூபா 9040

(b)
$$\sigma = 0.075$$
 எனின்,

$$\frac{15 \cdot 18 - 15}{0 \cdot 075} = 2 \cdot 4 \quad , \quad \frac{14 \cdot 82 - 15}{0 \cdot 075} = -2 \cdot 4$$

$$\left| rac{X - \mu}{\sigma}
ight| > 2 \cdot 4$$
 ஆகவுள்ள பொருட்கள் பழுதானவையாகும்

$$P(|Z| > 2.4) = 1 - 2(0.99180 - 0.5000)$$

= 0.01164

பழுதான பொருட்கள் = 0 · 01164 × 2000 = 232

(c) $\sigma = 0.09$ எனின்

$$\frac{15 \cdot 18 - 15}{0 \cdot 09} = 2 \qquad \frac{14 \cdot 82 - 15}{0 \cdot 09} = -2$$

$$\left| \frac{X - \mu}{\sigma} \right| > 2$$
 ஆகவுள்ளவை பழுதானவை

$$P\left(\left|\frac{X-\mu}{\sigma}\right| > 2\right) = P\left(Z > 2\right) = 1 - 2\left(0.9772 - 0.5000\right)$$
$$= 0.0446$$

பழுதானவை = 892 மொத்தச்செலவு = 1000 + 8920 = ரூபா 9920 எனவே 0.075 நியமவிலகலில் சீர் செய்வது இலாபகரமானது.

3 (c) ஈருறுப்புப்பரம்பலிற்கான செவ்வன் அண்ணளவாக்கம் (The Normal Approximation to the Binomial Distribution)

சில நிபந்தனைகளின் கீழ் ஈருறுப்புப் பரம்பலின் ஓர் அண்ணளவாக்கமாக செவ்வன் பரம்பலை உபயோகப்படுத்தலாம். எழுமாற்றுமாறி $X \sim Bin$ (n, p) என்க. n பெரிதாக இருக்கும்போது (>30) $X \sim N(np, npq)$ எனக் கொள்ளலாம்.

அதாவது X ஆனது $\mu = np$ ஆகவும், $\sigma^2 = npq$ ஆகவும் கொண்ட (q=1-p) ஒரு செவ்வன் பரம்பலை ஒத்தது எனக் கொள்ளலாம்.

உதாரணம் 10

கோடாத நாணயம் ஒன்று 500 தடவைகள் சுண்டப்படுகின்றன. 270 க்கு மேற்பட்ட தடவைகள் தலை விழுவதற்குரிய நிகழ்தகவு யாது? கோன்றும் எண்ணிக்கை X என்க.

இப்பொழுது
$$X \sim Bin\left(500, \frac{1}{2}\right)$$
 $P\left(X > 270\right) = 500 C_{271} \left(\frac{1}{2}\right)^{271} \left(\frac{1}{2}\right)^{229} + 500 C_{272} \left(\frac{1}{2}\right)^{272} \left(\frac{1}{2}\right)^{228} + \cdots + \cdots + 500 C_{499} \left(\frac{1}{2}\right)^{499} \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^{500}$ $= \sum_{r=271}^{500} 500 C_r \left(\frac{1}{2}\right)^r \left(\frac{1}{2}\right)^{500-r}$

இப்பெறுமானத்தைக் கணிப்பது மிகவும் கடினமானதாகும். இதனை செவ்வன் பரம்பலிற்கு அண்ணளவாக்கலாம்.

$$X \sim Bin \left(500, \frac{1}{2}\right)$$
 $\mu = np = 500 \times \frac{1}{2} = 250$
 $\sigma^2 = npq = 500 \times \frac{1}{2} \times \frac{1}{2} = 125$
 $\sigma = \sqrt{125} = 11\cdot18$
இப்பொழுது $X \sim N (250, 11\cdot18)$

P(X>270) ஐக் காண வேண்டும்.

இங்கு X தோன்றும் தலைகளின் எண்ணிக்கை. தலைகளின் எண்ணிக்கை ஒரு பின்னகமாறியாகும். இதனைத் தொடர்மாறியாக மாற்றவேண்டும்.

தொடர்ச்சித் திருத்தம் (Continuity Correction)

தொடர்ச்சித் திருத்தம் பின்வருமாறு செய்யப்படும். மேலேயுள்ள உதாரணத்தில் X > 270 ஆகும்.

X எடுக்கக்கூடிய பெறுமானங்கள் 271, 272, 273,.......500 ஆகும். எனவே தொடர்ச்சித் திருத்தம் X > 270.5 ஆகும்.

 $X \ge 270$ எனின், தொடர்ச்சித் திருத்தம் X > 269.5 ஆகும்.

$$X \sim N$$
 (250, 11.18)

$$P(X > 270.5) = P\left(Z > \frac{270.5 - 250}{11.8}\right)$$

$$= P\left(Z > \frac{20.5 - 250}{11.8}\right)$$

$$= P(Z > 1.74)$$

$$= 1 - 0.9591 = 0.0409$$

எனவே 270 க்கு மேற்பட்ட தடவைகள் தலைகளைப் பெறுவதற்கான நிகழ்தகவு = 0.0409 ஆகும்.

உதாரணம் 11

குறித்த ஒரு வகைப் பூ ஒன்றின் விதைகள் பைக்கற்றுக்களில் விற்கப்படுகின்றன. ஒவ்வொரு பைக்கற்றிலும் 1000 விதைகள் உள்ளன. இவற்றுள் 40 % மானவை வெள்ளை நிறப்பூக்களின் விதைகளும் 60 % மானவை சிவப்பு நிறப்பூக்களின் விதைகளுமாகும்.

ஐந்து விதைகள் நடப்பட்டால்,

- (i) சரியாக 3 மட்டும் வெள்ளை நிறப்பூ விதையாக இருப்பதற்கு
- (ii) குறைந்தது ஒன்றாவது வெள்ளை நிறப்பூ விதையாக இருப்பதற்கு நிகழ்த்கவு யாது?

100 விதைகள் நடப்பட்டால், செவ்வன் அண்ணளவாக்கத்தினை உபயோகித்து வெள்ளை நிறப்பூ விதைகளின் எண்ணிக்கை 30 இற்கும் 45 இற்குமிடையில் இருப்பதற்கான நிகழ்தகவு யாது?

வெள்ளை நிறப்பூ விதையாக இருப்பதற்குரிய நிகழ்தகவு $P(W)=rac{40}{100}=rac{2}{5}=p$

சிவப்பு நிறப்பூ விதையாக இருப்பதற்குரிய நிகழ்தகவு $P(R) = \frac{60}{100} = \frac{3}{5} = q$ வெள்ளை நிறப்பூ விதைகளின் எண்ணிக்கை X என்க.

இங்கு
$$1 \le X \le 5$$

 $X \sim Bin(5, \frac{2}{5})$

$$P(X = 3) = 5C_3 \left(\frac{2}{5}\right)^3 \left(\frac{3}{5}\right)^2$$
$$= 10 \times (0.4)^3 (0.6)^2$$
$$= 0.2304$$

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{3}{5}\right)^5$$
229

$$= 1 - (0.6)^5$$
$$= 0.92224$$

வெள்ளை நிறப்பூ விதைகளின் எண்ணிக்கை X என்க.

$$X \sim Bin(100, \frac{2}{5})$$

செவ்வன் அண்ணளவாக்கத்தைப் பயன்படுத்த

$$\mu = np = 100 \times \frac{2}{5} = 40$$

$$\sigma^2 = npq = 100 \times \frac{2}{5} \times \frac{3}{5} = 24$$

$$\sigma = 2\sqrt{6} = 4.88$$

$$X \sim N (40, 24)$$

$$P (30 \le X \le 45)$$
 \longrightarrow $P (29.5 < X < 45.5) [தொடர்ச்சித் திருத்தம்]$

$$P(29.5 < X < 45.5) = P\left(\frac{29.5 - 40}{4.88} < Z < \frac{45.5 - 40}{4.88}\right)$$
$$= P(-2.15 < Z < 1.13)$$
$$= 0.9842 + 0.8708 - 1 = 0.8850$$

 $P\left(30 < Z < 45
ight)$ என எடுத்திருப்பின், $P\left(30 \cdot 5 < Z < 44 \cdot 5
ight)$ ஐக் கணிக்க வேண்டும்.

3 (d) புவசோன் பரம்பலிற்கான செவ்வன் அண்ணளவாக்கம் (The Normal Approximation to the Poisson Distribution)

$$X \sim P_o(\lambda)$$
 எனின், $P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$ ஆகும்.

இங்கு
$$E(X) = \lambda$$
, $Var(X) = \lambda$

 λ பெரிதாகும் போது ($\lambda > 20$)

$$X \sim N(\lambda, \lambda)$$
 ஆகும்.

உதாரணம் 12.

குறித்த ஒரு புகையிரதப் பாதையில் சராசரியாக 2 மாதத்திற்கு ஒரு விபத்து என்ற வீதத்தில் நடைபெறுகின்றது.

- (a) 4 வருடங்களில் நடைபெறும் விபத்துக்களின் எண்ணிக்கை 25 அல்லது அதிலும் கூடுதலாக இருக்க
- (b) 5 வருடங்களில் நடைபெறும் விபத்துக்களின் எண்ணிக்கை 30 அல்லது அதிலும் குறைவாக இருக்க நிகழ்தகவைக் கணிக்க.
 - 2 மாதத்திற்கு 1விபத்து என்பதால்
 - 4 வருடங்களில் சராசரியாக நிகழக்கூடிய விபத்துக்களின் எண்ணிக்கை 24
- (a) 4 வருடங்களில் நிகழும் விபத்துக்களின் எண்ணிக்கை X என்க.

$$X \sim P_o$$
 (24)
 $\lambda > 20$
 $X \sim N$ (24, 24)
 $\mu = 24$, $\sigma = \sqrt{24} = 4.88$
 $P(X \ge 25) \longrightarrow P(X > 24.5)$ [தொடர்ச்சித் திருத்தம்]
 $P(X > 24.5) = P\left(Z > \frac{24.5 - 24}{4.88}\right)$
 $P(Z > 0.102) = 1 - 0.5406$
 $= 0.4594$

 (b) 5 வருடங்களில் நிகழும் விபத்துக்களின் எண்ணிக்கை Υ என்க சராசரி விபத்துக்களின் எண்ணிக்கை λ = 30

$$Y \sim P_o$$
 (30) $\lambda = 30$, $Y \sim N$ (30,30) $\mu = 30$, $\sigma = \sqrt{30} = 5.48$ $P(Y \le 30) \longrightarrow P(Y < 30.5)$ [தொடர்ச்சித் திருத்தம்] $P(Y < 30.5) = P(Z < \left(\frac{30.5 - 30}{5.48}\right)$ $= P(Z < 0.91)$ $= 0.5363$

	X இன் பரம்பல்.	பரமானங்கள்	அண்ணளவாக்கம்
1.	$X \sim Bin(n,p)$	n > 50 p < 0.1	$X \sim P_o(\lambda)$ $\lambda = n p$
2.	$X \sim Bin(n,p)$	n > 10 ஆகவும்; p,1/2 இற்கு அண்மையிலுமிருக்க அல்லது n > 20 உம் 0.2 < p < 0.8	$X \sim N (np, npq)$
3.	$X \sim P_o(\lambda)$	λ > 20	$X \sim N(\lambda, \lambda)$

பயிற்சி 4(a)

சீரான பரம்பல் / அடுக்குக்குறிப் பரம்பல்

- 1. எழுமாற்றுமாறி X ஆனது, $0 < x \le 4$ என்ற ஆயிடையில் செவ்வகப் பரம்பலைக் கொண்டுள்ளது. $Y = X^2$ என்றவாறுள்ள எழுமாற்றுமாறி Y இன் நிகழ்தகவு அடர்த்திச் சார்பைக் காண்க.

$$f(x) = \begin{cases} \frac{1}{6} & , & -2 \le x \le 4 \\ 0 & ,$$
 அவ்வாறல்லாத போது

X இன் நிகழ்தகவு அடர்த்திச்சார்பின் வரைபினை வரைக. இதிலிருந்தோ அல்லது வேறு விதமாகவோ பின்வரும் நிகழ்தகவுகளைக் காண்க. (a) $X \le 2$

(b)
$$|X| \leq 2$$

(c)
$$|X| \le x$$
, $0 \le x \le 2$

$$(d)|x| \le x \qquad , \quad 2 < x \le 4$$

(e)
$$|x| \le x$$
, $x > 4$

இதிலிருந்து $\left|X\right|$ இன் நிகழ்தகவு அடர்த்திச்சார்பின் வரைபினை வரைக.

X இன் இடையைக் காண்க.

எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச்சார்பு பின்வருமாறு தரப்பட்டுள்ளது.

$$f(x) = \begin{cases} \frac{1}{b-a} & ; & a \le x \le b \ (b > a) \\ 0 &$$
அவ்வாறல்லாத போது

இடை
$$\frac{b+a}{2}$$
 எனவும், மாறற்றிறன் $\frac{(b-a)^2}{12}$ எனவும் காட்டுக.

இடை 1 எனவும், மாறற்றிறன் $\frac{4}{3}$ எனவும் தரப்படின்

(i) P(X<0) ஐக் காண்க.

 $P\left(X>Z+\sigma
ight)=rac{1}{4}$ ஆகுமாறு Z இன் பெறுமானத்தைக் காண்க. இங்கு σ , X இன் நியமவிலகல்.

4. எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு f ,

$$f(x) = ce^{-2x}$$
 $x \ge 0$
= o $x < 0$ என வரையறுக்கப்பட்டுள்ளது.

C இன் பெறுமானத்தையும் X இன் இடை, மாறற்றிறன் என்பவற்றையும் காண்க.

$$\left[\int\limits_{0}^{\infty}x^{2}\cdot e^{-2x}\ dx=\frac{1}{4}\text{ என் பதைப் பாவிக் கலாம்}\right]$$

X இன் திரள் பரம்பல் சார்பைக் காண்க.

குறித்த இன மின்குமிழொன்றின் தொடர்ச்சியான பாவனையின் ஆயுட் காலம் X வருடங்களாகும். இவ்வாறான இரு மின்குமிழ்கள் தொடர்ச்சியாக முறையே 3 மாதங்கள், 4 மாதங்கள் எரிகின்றன எனின், அவை இன்னும் 3 மாதங்கள் எரிவதற்கான நிகழ்தகவு யாது? X என்னும் எழுமாற்று மாறி ஒன்றின் நிகழ்தகவு அடர்த்திச்சார்பு f,

$$f(x) = \frac{A}{a} e^{-\frac{x}{a}} \qquad 0 \le x \le a$$

= 0 x < 0; x > a எனத் தரப்பட்டுள்ளது.

இங்கு A ஒரு நேர் மாறிலியாகும். A=1.582 எ**னத் தொகையிடுதல்** முலம் காட்டுக.

- (i) $P(X < \frac{1}{2}a)$ gs. s. s. s.
- (ii) $P\left(X<\lambda\,a\,\right)=\frac{1}{2}$ ஆகுமாறுள்ள λ இன் பெறுமானத்தைக் காண்க.
- 6. எழுமாற்றுமாறி X இன் நிகழ்தகவு அடர்த்திச் சார்பு f,

$$f(x) = \lambda e^{-\lambda x}$$
 $x \ge 0$
= 0 $x < 0$ எனத் தரப்பட்டுள்ளது.

ஒருவகை மன நோயால் பாதிக்கப்பட்டவாகளுக்கு சிகிச்சையளித்த பின் சிகிச்சை முடிந்து மீண்டும் அதற்கான அறிகுறிகள் தென்படும் காலம் நாட்களில்

 λ ஐப் பரமானமாகக் கொண்ட $(\lambda>0)$ அடுக்குக்குறி எழுமாற்றுமாறி ஆகும்.

எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்ட, சிகிச்சை பெற்ற இருவரில் எவருக்கேனும், சிகிச்சை நடந்து முடிந்து t நாட்களில் இந் நோய்க்கான அறிகுறிகள் தோன்றாமலிருப்பதற்கான நிகழ்தகவினை λ,t இல் காண்க.

இருவருக்கும் சிகிச்சையின் பின் t நாட்களுக்கு நோய்க்கான அறிகுறிகள் தோன்றவில்லையெனின், இன்னும் t நாட்களுக்கு நோய்க்கான அறிகுறிகள் தோன்றாமலிருப்பதற்கான நிகழ்தக்வினை λ, t இல் காண்க.

சிகிச்சையின் பின் t நாட்களில் நடைபெறும் வழமையான சோதனையின் போது இன்னொரு நோயாளிக்கு நோய்க்கான புதிய அறிகுறிகள் தென்பட்டன. நோய்க்கான புதிய அறிகுறிகள் சோதனை செய்யப்பட்ட தினத்திற்கு $k\,t$ நாட்களுக்கு முன் தோன்றியிருப்பதற்கான நிகழ்தகவு யாது? இங்கு $0 \le k \le 1$ எழுமாற்றுமாறி X பின்வரும் நிகழ்தகவு அடர்த்திச் சார்பையுடையது.

$$f\left(x\right)=rac{1}{\lambda}\,e^{-rac{x}{\lambda}}$$
 $x\geq0$, இங்கு $\lambda>0$ = 0 அவ்வாறல்லாத போது

இப் பரம்பலின் இடை 2 எனக் காட்டுக.

இயந்திரமொன்றின் உற்பத்தியாளர் ஒருவர் அதற்கு வேண்டிய உதிரிப்பாகம் ஒன்றினை வேறொரு நிறுவனத்திடமொன்று கொள்வனவு செய்கிறார். உதிரிப்பாகம் ஒவ்வொன்றும் 50 ரூபா வீதம் கொள்வனவு செய்கிறார். இவ் உதிரிப்பாகம் பழுதடைவதற்கான காலம் மேலே தரப்பட்ட நிகழ்தகவு அடர்த்திச் சார்பையும், இடை 700 மணித்தியாலங்களையும் கொண்ட எழுமாற்றுமாறியாகக் கொள்ளலாம். 400 மணித்தியாலங்கள் அல்லது அதற்கு முன் இவ் உதிரிப்பாகம் பழுதடைந்தால், வாடிக்கையாளருக்கு அளிக்கப்பட்ட உத்தரவாதத்தின் படி, உற்பத்தியாளர் இதனை திருத்தி அமைக்க 150 ரூபா செலவாகும். இவ்வாறான உதிரிப்பாகம் ஒன்றை பாவிப்பதற்கான எதிர்பார்க்கப்பட்ட செலவினைக் காண்க. (உத்தரவாத காலத்தில் ஒரு முறை மட்டும் திருத்திக் கொடுக்கப்படும் எனக் கொள்க)

இவ்வுதிரிப்பாகத்தினை உற்பத்தியாளருக்கு விற்பனை செய்ய இன்னொரு நிறுவனம் முன் வருகிறது. இங்கு உதிரிப்பாகம் பழுதடைவதற்கான காலம் 400 மணித்தியாலங்களை இடையாகக் கொண்ட மேலே தரப்பட்ட நிகழ்தகவு சார்பையுடைய எழுமாற்று மாறியிலமைந்துள்ளது. எதிர்வுப் பெறுமானத்தை பெறுவதன் மூலம் முன்னையதிலும் பார்க்க இலாபகரமாக இருக்க உதிரிப்பாகம் ஒன்று கொள்வனவு செய்ய வேண்டிய விலையைக் காண்க.

8. நேரம் *t* இல் உதிரிப்பாகம் ஒன்று பமுதடையும் நிகழ்தகவு, நிகழ்தகவு அடர்த்திச்சார்பு

$$f(t) = \frac{1}{a}e^{-at}$$
 ; $t \ge 0$ $(a < 0)$ என்பதால் தரப்படுகிறது.

பழுதடைவதற்கான காலத்தின் இடை a எனக் காட்டுக.

இயந்திரம் ஒன்றின் இரு உதிரிப்பாகங்கள் பழுதடைவதற்கான காலத்தின் இடை முறையே a, 2a ஆகும். உதிரிப்பாகங்கள் பழுதடைவது ஒன்றிலொன்று சாராதவையாகும். இரண்டில் எந்தவொரு உதிரிப் பாகம் பழுதடைந்தாலும் இயந்திரம் இயங்காது. இயந்திரம் இயங்கத் தொடங்கியதிலிருந்து a நேரத்திற்கு

தொடர்ந்து இயங்குவதற்கான நிகழ்தகவு $e^{-\frac{3}{2}}$ எனக் காட்டுக.

9. குறித்த உதிரிப்பாகம் ஒன்றின் ஆயுட்காலம், மணித்தியாலங்களில்,

$$f(t) = k e^{-kt} \qquad t \ge 0$$

t < 0 என்னும் நிகழ்தகவு அடர்த்திச் சார்பினால் தரப்படுகிறது. இங்கு k - ஒரு மாறிலி, இப் பரம்பலின் இடை, நியமவிலகல் என்பவற்றைக் காண்க.

ஆய்கருவி ஒன்று இவ்வகையான 3 உதிரிப்பாகங்களைக் கொண்டுள்ளது. ஒன்று பழுதடைவது, மற்றயதைச் சாராதது ஆகும்.

(i) T மணித்தியாலங்களில் ஒன்றும் பழுதடையாமல் இருப்பதற்கு

(ii) முதல் T மணித்தியாலங்களில் சரியாக ஒன்றும், அடுத்த T மணித்தியாலங்களில் இன்னொன்றும், மூன்றாவது 2T மணித்தியாலங்களின் பின்னும் பழுதடைவதற்கு நிகழ்தகவு யாது?

4 (b) - செவ்வன் பரம்பல் / செவ்வன் அண்ணளவாக்கம்

- X என்னும் மாறி இடை 2.4, மாறற்றிறன் 1.44 உடன் செவ்வன் பரம்பல் ஒன்றில் உள்ளது. பின்வருவனவற்றைக் காண்க.
 - (i) P(X < 0) (i) P(-0.6 < X < 4.2) (ii) P(-1.2 < X < 1.8) பின்வரும் வகைகளில் y இன் பெறுமானத்தைக் காண்க.
 - (a) P(2.592 < X < y) = 0.011
 - (b) P(0.3 < X < y) = 0.44
- மின்குமிழ்களின் ஆயுட்காலம் மணித்தியாலங்களில் 2040 ஐ இடையாகவும்,
 ஐ நியம விலகலாகவும் கொண்ட செவ்வன் பரம்பலொன்றில் அமைந்துள்ளது எனத் தரப்பட்டுள்ளது. 1960 மணித்தியாலத்திலும் கூடிய ஆயுட் காலத்தைக் கொண்டிருக்கும் மின்குமிழ்களின் விகிதத்தைக் காண்க.
- 3. a) சோதனை ஒன்றில் மாணவர்கள் பெற்ற புள்ளிகள் 60 ஐ இடையாகவும், 15 ஐ நியம விலகலாகவும் கொண்ட செவ்வன் பரம்பலொன்றில் அமைந்துள்ளன. அதி உயர் 10% மாணவர்களுக்கு A சித்தியும், மிகக் குறைந்த 12% மாணவர்களுக்கு சித்தியின்மையும்(F) வழங்கப்படவுள்ளது.
 - (i) தரம் *A* யைப் பெறுவதற்கு பெற வேண்டிய மிகக்குறைந்த புள்ளியை
 - (ii) சித்தியின்மையை பெற்ற ஒருவர் பெறக்கூடிய மிகக்கூடிய புள்ளியைக் காண்க

- (b) இராணுவ வீரர்களின் உயரங்கள் இடை 181cm ஐயும் நியம விலகல் 5 cm ஐயும் கொண்ட செவ்வன் பரம்பல் ஒன்றில் அமைந்துள்ளது. 1000 ராணுவ வீரர்களைக் கொண்ட எழுமாற்று மாதிரி ஒன்றில் அவர்களின் உயரங்கள் கிட்டிய சென்ரிமீற்றரில் அளக்கப்பட்டன. இம் மாதிரியில்
 - i) 187 cm அல்லது அதனிலும் கூடிய
 - ii) 172 cm க்கும் 180 cm க்குமிடைப்பட்ட (இரண்டும் உட்பட)
 உயரத்தைக் கொண்டதாக எதிர்பார்க்கும் இராணுவ வீரர்களின் எண்ணிக்கையை காண்க.
- 4. பெரும் எண்ணிக்கையான மாணவர்கள் பரீட்சை ஒன்றுக்கு தோற்றினார்கள். அவர்கள் பெற்ற புள்ளிகள் ஒரு தொடர் மாறியாகவும் செவ்வன் பரம்பலில் அமைந்துள்ளதாகவும் கொள்ளப்படலாம். 14% மாணவர்கள் 30 இலும் குறைவான புள்ளிகளையும் 24 1/2 % மாணவர்கள் 50 இலும் கூடிய புள்ளிகளையும் பெற்றுள்ளனர். இப்பரம்பலின் இடையையும் மாறற்றிறனையும் காண்க.
- 5. (a) 10 000 இலக்கங்கள், ஒவ்வொன்றும் 0 இலிருந்து 9 வரையுள்ள இலக்கங்களிலி ருந்து எழுமாற்றாகத் தெரிவு செய்யப்பட்டுள்ளது. (i) இலக்கம் 7, ஆகக்கூடியது 1030 தடவைகள் தோன்றுவதற்கு (ii) இலக்கம் 7, ஆகக்கூடியது 980 தடவைகள் தோன்றுவதற்குரிய நிகழ்தகவு யாது?
 - (b) X ~ Bin (25, 0·4), Y ~ Bin (100, 0·02) செவ்வன் பரம்பல் அல்லது புவசோன் பரம்பல் அண்ணளவாக்கத்தில் பொருத்தமானதைப் பயன்படுத்தி ஒவ்வொரு வகையிலும் இரண்டிலும் கூடிய வெற்றிகளை பெறுவதற்கான நிகழ்தகவை காண்க.
- 6. பல்தேர்வு வினாப்பத்திரம் ஒன்று 20 வினாக்களை கொண்டுள்ளது. பரீட்சார்த்தி தரப்பட்ட 3 விடைகளிலிருந்து சரியான ஒன்றை தெரிவு செய்து புள்ளியிட வேண்டும். ஒவ்வொரு வினாவுக்கும் ஒரு விடை மட்டுமே சரியானது. ஒரு சரியான விடைக்கு ஒரு புள்ளியும், ஒரு பிழையான விடைக்கு 0 புள்ளியும் வழங்கப்படுகிறது. வினாக்களைப் பற்றி எந்த அறிவும் இல்லாத பரீட்சார்த்தி ஒருவர் எழுமாற்றாக புள்ளியிடுகிறார். அவர் குறித்த ஒரு வினாவிற்கு சரியான விடையை தெரிவு செய்வதற்கான நிகழ்தகவு யாது?
 அவர் சரியாக விடையளிக்கும் வினாக்களின் எண்ணிக்கையின் இடையையும்.

மாற்றிறனையும் கணிக்க.

முற்றாக எதுவும் தெரியாத பரீட்சார்த்திகளில் 1% க்கு மேற்படாதோரே இப்பரீட்சையில் சித்தியெய்துவதை உறுதிப்படுத்த ஈருறுப்புப் பரம்பலிற்கு செவ்வன் அண்ணளவாக்கத்தை உபயோகித்து சித்திப்புள்ளி யாதாக இருக்க வேண்டுமெனக் காண்க.

- 7. (a) எழுமாற்றுமாறி X, இடை μ உம், மாறற்றிறன் σ^2 உம் உடைய செவ்வன் பரம்பல் ஒன்றில் உள்ளது.
 - (a) P(X > 58.37) = 0.02 2. $\dot{\omega}$,
 - (b) P(X < 40.85) = 0.01 உம் எனின், μ, σ ஆகியவற்றை காண்க.
 - (b) பைக்கற்றுக்களில் அடைக்கப்பட்டுள்ள சீனியின் நிறை செவ்வன் பரம்பலில் அமைந்துள்ளது. அவற்றுள் 5% ஆனவற்றின் நிறை 510 g இலும் கூடியதாகவும், 2% ஆனவற்றின் நிறை 515 g இலும் கூடியதாகவும் உள்ளது. இப்பரம்பலின் இடையையும், நியம விலகலையும் காண்க.
- 8. விசேட ஒரு வகைத் தேயிலை, பொதுவாக 226 g நிறையுடையதாகப் பைக்கற்றுக்களில் பொதி செய்யப்படுகிறது. அவற்றின் உண்மையான நிறைகள் μ = 230 ·00g, σ = 1 ·50g உம் உடைய செவ்வன் பரம்பல் ஒன்றில் அமைந்துள்ளன. பைக்கற் ஒன்று நிறை குறைவானதாயிருப்பதற்கான நிகழ்தகவு யாது? பைக்கற் ஒன்று நிறை குறைவாக இருப்பதற்கான நிகழ்தகவு 0 ·001 இலும் அதிகரிக்கக் கூடாதெனத் தீர்மானிக்கப்படுகின்றது. தேயிலைப் பைக்கற்றுகளின் நிறைகளின் பரம்பலை மாற்றுவதற்கு இரு வழிகள் ஆலோசனை செய்யப்படுகிறன.
 - (a) σ மாறாதிருக்க, μ இனை அதிகரித்தல்
 - (b) μ மாறாதிருக்க σ இனைக் குறைத்தல் ஒவ்வொரு முறையிலும் முறையே புதிய μ , புதிய σ என்பவற்றைக் காண்க. நியம செவ்வன் பரம்பலொன்றில், $P\left(Z>3\cdot0902\right)=0\cdot0010$ எனத் தரப்பட்டுள்ளது.
- 9. எழுமாற்றுமாறி X செவ்வன் பரம்பலொன்றில் உள்ளது. அதன் இடை μ , நியம விலகல் σ ஆகும்.
 - (i) $P(X-\mu>2\sigma)$
 - (ii) $P(X \mu > 2\sigma | X \mu > \sigma)$ என்பவற்றைக் காண்க.
- 10. பெட்டி ஒன்றிலுள்ள 100 மாபிள்களுள் 4 சிவப்பு நிறமானவை. ஏனையவை வெள்ளை நிறமானவை. பெட்டியிலிருது ஒரு மாபிள் எடுக்கப்பட்டு அதன் நிறம் குறிக்கப்பட்ட பின் அது மீண்டும் பெட்டியினுள் போடப்படுகிறது. இவ்வாறு 10 தடவைகள் செய்யப்பட்டால் ஒரு தடவை மட்டும் சிவப்பு பந்து எடுப்பதற்கான நிகழ்தகவிற்கு ஒரு கோவையைப் பெறுக.

பொருத்தமான அண்ணளவாக்கத்தை பயன்படுத்துவதன் மூலம்

- (a) 100 தடவைகளின் போது, 4 தடவைகள் மட்டும் சிவப்பு பந்தினைப் பெறுவதற்கு
- (b) இவ்வாறான, மொத்தம் 9600 தடவைகளின் போது சிவப்பு பந்து ஒன்று 350 ற்கும் 450 ற்குமிடைப்பட்ட (இரண்டு உட்பட) தடவைகள் எடுக்கப்படுவதற்கான நிகழ்தகவு யாது?
- 11. தரப்பட்ட மக்கள் தொகையில் ஐந்தில் ஒரு பங்கினருக்கு கண்ணில் குறைபாடு இருப்பதாக காணப்படுகின்றது. ஈருறுப்புப் பரம்பலுக்கு செவ்வன் அண்ணளவாக்கத்தைப் பயன்படுத்தி,
 - (i) எழுமாற்றாகத் தெரியப்பட்ட 100 பேரில் 20 இலும் கூடியோருக்கு கண்ணில் குறைபாடு இருப்பதற்கு
 - (ii) எழுமாற்றாக தெரியப்பட்ட 100 பேரில் சரியாக 20 பேருக்கு குறைபாடு இருப்பதற்கு
 - (iii) 1000 பேரைக் கொண்ட மாதிரி ஒன்றில் 200 இலும் கூடியோருக்கு குறைபாடு இருப்பதற்கு நிகழ்தகவு யாது?
- 12. உற்பத்தியாளர் ஒருவர் உற்புத்தி செய்யும் பலூன்களில் 40 % நீள வடிவையும், 60% வட்ட வடிவையும் உடையவை. உற்பத்தியில் 5% பலூன்கள் நீல நிறமானவை. உற்பத்தி செய்யப்படும் பலூன்கள் 20 பலூன்கள் கொண்ட பைக்கற்றுகளாகப் பொதி செய்யப்படுகின்றன. பைக்கற் ஒன்றில்
 - (a) நீளவடிவமான பலூன்களின் எண்ணிக்கையும், வட்ட வடிவ பலூன்களின் எண்ணிக்கையும் சமமாக இருப்பதற்கு
 - (b) நீளமான பலூன்களின் எண்ணிக்கை, வட்ட வடிவ பலூன்களில் எண்ணிக்கையிலும் கூடுதலாக இருப்பதற்கு நிகழ்த்கவு யாது?
 - பெட்டி ஒன்றில் 150 பலூன்கள் உள்ளன. பொருத்தமான அண்ணளவாக்கத்தைப் பயன்படுத்தி, (ஒவ்வொது வகையிலும்)
 - (c) சரியாக 10 நீலநிற பலூன்கள் இருப்பதற்கு
 - (d) நீளவடிவ பலூன்களின் எண்ணிக்கை 72 இற்கும் 78 இற்குமிடையில் (இரண்டு உட்பட) இருப்பதற்கு நிகழ்தகவைக் காண்க.
- 13. கண்ணன் தன்னுடைய வீட்டிலிருந்து தனது அலுவலகத்திற்குத் தினமும் பேருந்தில் சென்று வருகிறார். அவர் பேருந்து நிலையத்திலிருந்து காலை 8.05 க்குப் புறப்படும் பேருந்தில் செல்வதை வழக்கமாகக் கொண்டிருக்கிறார். அவர் வீட்டிலிருந்து பேருந்து நிலையத்திற்கு நடந்து செல்கிறார். அவர் பேருந்து நிலையத்திற்கு நடந்து செல்கிறார். அவர் பேருந்து நிலையத்தை சென்றடையும் நேரங்கள் 08.00 மணியை இடையாகவும் 6 நிமிடங்களை நியமவிலகலாகவும் கொண்ட செவ்வன் பரம்பலொன்றில் அமைந்துள்ளன.

- (a) பேருந்து எப்போதும் குறித்த நேரத்திற்குப் புறப்படுகிறதெனக் கொண்டு கண்ணன் தரப்பட்ட ஒரு நாளில் பேருந்தை தவறவிடுவதற்கான நிகழ்தகவு யாது?
- (b) கிழமை ஒன்றில் 5 வேலை நாட்களில் அவர் ஒரு நாளில் மட்டும் பேருந்தைத் தவறவிடுவதற்கான நிகழ்தகவு யாது?
- (c) அவர் வருடமொன்றில் 46 கிழமைகள் வேலைக்குச் செல்கிறார். இக் காலத்தில் அவர் ஒவ்வொரு நாளும் வேலைக்குச் செல்கிறார் எனக் கொண்டு அவர் அவ்வருடத்தில் 35 இலும் குறைவான தடவைகள் பேருந்தை தவறவிடுவதற்கான நிகழ்தகவு யாது?
- 14. குளிர்பானம் தயாரிக்கும் நிறுவனம் ஒன்று போத்தல்களில் அடைக்கும் குளிர் பானத்தின் அளவு 1.036 லீற்றரை இடையாகவும், 0.014 லீற்றரை நியம விலகலாகவுமுடைய செவ்வன் பரம்பலொன்றில் அமைந்துள்ளது. எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்ட போத்தல் ஒன்றிலுள்ள குளிர் பானத்தின் அளவு 1 லீற்றரிலும் குறைவாக இருப்பதற்கு நிகழ்தகவு அண்ணளவாக 0.5% எனக் காட்டுக

பெட்டி ஒன்றில் 24 போத்தல்கள் உள்ளன.

- (i) எந்த ஒரு போத்தலிலும் 1லீற்றரிலும் குறைவாக பானம் இல்லாதிருக்க.
- (ii) ஆகக் கூடியது 1போத்தல் 1 லீற்றரிலும் குறைவாகப் பானத்தைக் கொண்டிருக்க நிகழ்தகவு யாது?

லொறி ஒன்றில் இவ்வாறான 150 பெட்டிகளில் குளிர் பானம் உள்ளது. 1 லீற்றரிலும் குறைவான குளிர் பானத்தைக் கொண்டிருக்கும் போத்தல்களின் எதிர்பார்த்த எண்ணிக்கையை காண்க.

பொருத்தமான அண்ணளவாக்கத்தை பயன்படுத்தி, 20 போத்தல்களில் 1 லீற்றாிலும் குறைவான பானம் இருப்பதற்கான நிகழ்கவை காண்க.

- 15. குடித்தொகை ஒன்றில் உள்ள அங்கத்தினர் A, B, C என்ற மூன்று வகையில் ஒரு வகையைச் சேர்ந்தோராவர். அவ்வகையினுள்ளோரின் விகிதங்கள் முறையே 1 : 5 : 14 ஆகும்.
 - (a) குடித்தொகையிலிருந்து 3 அங்கத்தினர் எழுமாற்றாக தெரிவு செய்யப்பட்டனர்.
 - (i) மூவரும் வெவ்வேறு வகையைச் சேர்ந்தோராயிருப்பதற்கான நிகழ்தகவு யாது?
 - (ii) மூவரும் ஒரே வகையைச் சேர்ந்தோராயிருப்பதற்கான நிகழ்தகவு யாது?(b) குடித்தொகையிலிருந்து 40 அங்கத்தினர் எழுமாற்றாக தெரிவு செய்யப்பட்டனர்.
 - (i) 4 அல்லது அதற்கு மேற்பட்டோர் வகை A ஐச் சேர்ந்தவர்களாக இருப்பதற்கான நிகழ்தகவின் அண்ணளவுப் பெறுமானம் யாது?
 - (ii) சரியாக 10 பேர் வகை *B* ஐச் சேர்ந்தவர்களாக இருப்பதற்கான நிகழ்தகவின் அண்ணளவுப் பெறுமானம் யாது?

- 16. பரிசோதனை ஒன்றின் ஒன்றையொன்று சாரா n தடவைகள் ஒவ்வொன்றின் போதும் நிகழ்ச்சி A நடைபெறுவதற்கான நிகழ்தகவு 0.05 ஆகும்.
 - (a) n=10 ஆகும் போது A சரியாக ஒரு தடவை மட்டும் நடைபெறுவதற்கான நிகழ்தகவை காண்க.
 - (b) n = 200 ஆகும் போது பொருத்தமான அண்ணளவாக்கத்தை பயன்படுத்தி நிகழ்ச்சி A 10 தடவைகளுக்கு மேல் நடை பெறாதிருப்பதற்கான நிகழ்தகவை காண்க.
- 17. உற்பத்தி செய்யப்பட்ட பொருட்கள் 200 கொண்டதாக பெட்டிகளில் பொதி செய்யப்படுகின்றன. உற்பத்தி செய்யப்பட்ட பொருட்களில் சராசரியாக 1.5% பழுதானவை. பெட்டி ஒன்றில் 4 அல்லது 4 ற்கு மேற்பட்ட பழுதான பொருட்கள் இருப்பின், அப்பெட்டி தரக் குறைவானதெனப்படும். எழுமாற்றாகத் தெரியப்பட்ட பெட்டி ஒன்று தரக் குறைவானதாக இருப்பதற்குரிய நிகழ்தகவு 0.353 எனக் காட்டுக.

லொறி ஒன்றில் எழுமாற்றாக தெரிந்தெடுக்கப்பட்ட 16 பெட்டிகள் உள்ளன. இவற்றுள் தரக்குறைவான பெட்டிகளின் எண்ணிக்கை ஆகக் கூடியது 2 ஆக இருப்பதற்கான நிகழ்தகவு யாது?

- 18.கார் பற்றரியின் ஆயுட் காலம் வருடங்களில் இடை 2 ஐயும், நியம விலகல் 0·4 ஐயும் கொண்ட செவ்வன் பரம்பல் ஒன்றில் அமைந்துள்ளது. எழுமாற்றாக தெரிந்தெடுக்கப்பட்ட பற்றரி ஒன்று ஒரு வருடத்திலும் குறைவான ஆயுட்காலத்தை கொண்டிருப்பதற்கான நிகழ்தகவு 0·00621 எனக் காட்டுக.
 - (i) ஒருவர் இரு பற்றரிகளை வாங்குகிறார். ஒவ்வொன்றும் 1 வருடத்திலும் கூடிய ஆயுட் காலத்தை கொண்டிருப்பதற்கான நிகழ்தகவு யாது?
 - (ii) மொத்த விற்பனையாளர் ஒருவர் 500 பற்றரிகளை வாங்குகிறார். பொருத்தமான அண்ணளவாக்கம் ஒன்றை பயன்படுத்தி ஆகக்கூடியது 3 பற்றரிகள் 1 வருடத்திலும் குறைந்த ஆயுட் காலத்தை கொண்டிருப்பதற்கான நிகழ்தகவைக் காண்க.
 - (iii) சில்லறை வியாபாரி ஒருவர் எழுமாற்றாக 10 பற்றிகளை தெரிவு செய்கிறார். ஆகக் குறைந்தது 4 பற்றரிகள் 2 வருடத்திலும் கூடிய ஆயுட் காலத்தைக் கொண்டிருப்பதற்கான நிகழ்தகவை காண்க.
- 19. குறித்த ஒரு இன அவரை விதையினை விதைக்கும் போது 95% ஆனவை முளைக்கின்றது. ஒவ்வொன்றும் 10 விதைகள் கொண்ட பைக்கற்றுக்களாக இவ் விதைகள் பொதி செய்யப்பட்டுள்ளன. எழுமாற்றாக தெரிவுசெய்யப்பட்ட பைக்கற்று ஒன்றின் விதைகள் விதைக்கப்படுகின்றன.
 - (i) 10 விதைகளும் முளைப்பதற்கான
 - (ii) 9 இலும் குறைந்த விதைகள் முளைப்பதற்கான நிகழ்த்கவைக் காண்க.

இவ்வாறான 200 பைக்கற்றுகளில் ஆகக் குறைந்தது 125 பைக்கற்றில் உள்ள எல்லா விதைகளும் முளைப்பதற்கான நிகழ்தகவைக் காண்பதற்கு செவ்வன் அண்ணளவாக்கத்தைப் பயன்படுத்துக.

பெரும் எண்ணிக்கையான பாத்திகள் ஒவ்வொன்றிலும் 80 விதைகள் விதைக்கப்பட்டுள்ளன. எழுமாற்றாகத் தெரிந்தெடுக்கப்பட்ட பாத்தி ஒன்றில் 75 இலும் குறைவான விதைகள் முளைப்பதற்கான நிகழ்தகவைக் காண்பதற்கு புவசோன் அண்ணளவாக்கத்தைப் பயன்படுத்துக.

- 20. பெரிய பை ஒன்றில் தாவரம் ஒன்றின் 3 இன விதைகள் 4 : 2 : 1 என்ற விகிதத்தில் உள்ளன. அவைகள் முளைக்கும் வீதங்கள் முறையே 50%, 60%, 80% ஆகும்.
 - பையிலிருந்து விதையொன்று எழுமாற்றாக எடுக்கப்பட்டால், அது முளைக்கக்

கூடியதாய் இருப்பதற்கான நிகழ்தகவு $\frac{4}{7}$ எனக் காட்டுக. 4 விதைகள் பையிலிருந்து எழுமாற்றாக எடுக்கப்பட்டால் அவற்றுள் சரியாக 2 முளைக்கக் கூடியதாய் இருப்பதற்கான நிகழ்தகவு யாது?

பையிலிருந்து 150 விதைகள் எழுமாற்றாக எடுக்கப்பட்டால் 90 இலும் குறைவான விதைகள் முளைக்கக்கூடியதாக இருப்பதற்கான நிகழ்தகவு யாது?

- பின்வரும் ஒவ்வொரு வகையிலும் பொருத்தமான அண்ணளவாக்கத்தை பயன்படுத்துக.
 - (a) பெரிய நிறுவனம் ஒன்றின் ஊழியர்களின் மாத வருமானத்தின் இடை ரூ12500 உம், நியமவிலகள் 2200 ரூபாவும் ஆகும். எழுமாற்றாகத் தெரிவு செய்யப்பட்ட 100 ஊழியர்களின் வருமானத்தின் இடை 12000 ரூபாவிற்கும், 13000 ரூபாவிற்கும் இடையில் இருப்பதற்கான நிகழ்தகவு யாது?
 - (b) தொழில்நுட்பவியளாளர் ஒருவர் வேலை செய்யும் நிறுவனத்தில் உள்ள இயந்திரங்களில் அடிக்கடி ஏற்படும் சிறு பழுதுகளை திருத்த வேண்டியுள்ளது. மணித்தியாலம் ஒன்றிற்கு அவர் சராசரியாக 8 பழுதுகளை திருத்த வேண்டியுள்ளது.
 - (i) குறித்த ஒரு மணித்தியாலத்தில் 5 அல்லது அதனிலும் குறைந்த பழுதுகளை திருத்துவதற்கு
 - (ii) 8 மணித்தியால வேலை நாள் ஒன்றில் 70 அல்லது அதற்கு மேற்பட்ட பழுதுகளைத் திருத்துவதற்கு நிகழ்தகவு யாது?
 - (c) பெரும் தொகையான விதைகளில் 15% மானவை விதைக்கும் போது முளைப்பதில்<mark>லை</mark>. 20 விதைகள் நடப்பட்ட போது
 - (i) 5 அல்லது அதனிலும் கூடிய விதைகள் முளைக்காமல் இருக்க
 - (ii) ஆகக் குறைந்தது 17 விதைகளாவது முளைப்பதற்கு நிகழ்தகவு யாது?

நிகழ்தகவு விடைகள் பயிற்சி 1

1.
$$\frac{2}{3}$$

2.
$$\frac{5}{1296}$$

1.
$$\frac{2}{3}$$
 2. $\frac{5}{1296}$ 3. $\frac{5}{12}$, $\frac{7}{12}$, $\frac{1}{12}$

4.
$$\frac{1}{2}$$

5.
$$\frac{1}{2}$$
, $\frac{5}{6}$

5.
$$\frac{1}{2}$$
, $\frac{5}{6}$ 6. $\frac{3}{5}$, $\frac{3}{10}$, $\frac{9}{10}$ 7. $\frac{1}{35}$, $\frac{22}{35}$

7.
$$\frac{1}{35}$$
, $\frac{22}{35}$

8.
$$\frac{2}{5}$$

9.
$$\frac{1}{18}$$
, $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{3}$, $\frac{3}{4}$ 10. $\frac{1}{4}$, $\frac{3}{8}$, $\frac{1}{2}$ 11. $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{4}$, $\frac{1}{8}$

10.
$$\frac{1}{4}$$
, $\frac{3}{8}$, $\frac{1}{2}$

11.
$$\frac{1}{12}$$
, $\frac{1}{12}$, $\frac{1}{4}$, $\frac{1}{8}$

12.
$$\frac{1}{36}$$
, $\frac{1}{12}$, 0, $\frac{1}{3}$ 6 அல்லது 12 13. $\frac{4}{15}$

13.
$$\frac{4}{15}$$

14.
$$\frac{\Pi}{\varsigma}$$

15.
$$\frac{\Pi}{4}$$

பயிற்சி 2

1.
$$C$$
 ແμό D μιό $\frac{3}{4}$, $\frac{7}{8}$, $\frac{1}{8}$

2.
$$\frac{11}{36}$$
, $\frac{11}{36}$, $\frac{5}{9}$ 3. $\frac{11}{30}$

3.
$$\frac{11}{30}$$

4.
$$\frac{1}{2}$$
, $\frac{3}{32}$

5.
$$\frac{3}{5}$$

6.
$$\frac{3}{29}$$
, $\frac{11}{58}$, $\frac{6}{29}$

6.
$$\frac{3}{29}$$
, $\frac{11}{58}$, $\frac{6}{29}$ 7. $\frac{5}{8}$, $\frac{3}{8}$, $\frac{3}{4}$, $\frac{1}{8}$, $\frac{1}{4}$

8.
$$\frac{2}{3}$$
, $\frac{1}{12}$

9.
$$\frac{4}{7}$$
, $\frac{10}{21}$, $\frac{3}{7}$

8.
$$\frac{2}{3}$$
, $\frac{1}{12}$ 9. $\frac{4}{7}$, $\frac{10}{21}$, $\frac{3}{7}$ 10. $\frac{24}{91}$, $\frac{45}{91}$, $\frac{67}{91}$

11.
$$\frac{3}{8}$$
, $\frac{1}{64}$

பயிற்சி 3

1.
$$\frac{41}{72}$$
, $\frac{13}{36}$, $\frac{20}{41}$, $\frac{3}{13}$ 2. $\frac{61}{216}$, $\frac{371}{1296}$

3.
$$\frac{7}{16}$$
, $\frac{55}{784}$ 4. $\frac{3}{4}$, $\frac{2}{5}$, 5 5. 0.3456, 0.8704

4.
$$\frac{3}{4}$$
, $\frac{2}{5}$, 5

6.
$$\frac{3}{4}$$
 7. 0.92 8. $\frac{1}{4}$

8.
$$\frac{1}{4}$$

9.
$$\frac{80}{81}$$
 10. $\frac{1}{8}$

10.
$$\frac{1}{9}$$

13.
$$\frac{7}{36}$$

11.
$$0.678$$
 13. $\frac{7}{36}$ 14. $\frac{3}{4}$, $1 - \left(\frac{1}{2}\right)^n$

16.
$$\frac{30}{49}$$
, 0.00612

17.
$$\frac{1}{3}$$

19.
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{2}{3}$

22.
$$\frac{30}{91}$$

26.
$$\frac{3}{10}$$
, $\frac{2}{3}$

26.
$$\frac{3}{10}$$
, $\frac{2}{3}$ **27.** $\frac{31}{72}$, $\frac{6}{31}$

28.
$$\frac{1}{12}$$
, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$

29.
$$\frac{7}{12}$$
, $\frac{5}{8}$, $\frac{15}{28}$

29.
$$\frac{7}{12}$$
, $\frac{5}{8}$, $\frac{15}{28}$ **30.** 6 , $\frac{2}{5}$, $\frac{1}{3}$, $\frac{28}{75}$, $\frac{38}{75}$

31.
$$\frac{32}{59}$$

32.
$$\frac{2}{5}$$
, p^3 , $p^3 + q^3$, $3p^2q$, $3p^3q + 3pq^3$, $\frac{64}{81}$

33.
$$5p^4 - 4p^5$$
, $1 - np(1-p)^{n-1} - (1-p)^n$, $\frac{1}{21}$, $\frac{32}{147}$

34.
$$\frac{1}{3}$$
, ab, $a(1-b)$, $(1-a)(1-b)$, $(1-a)^n(1-b)^n$

35.
$$\frac{89}{91}$$

36.
$$\frac{1}{2}$$
, $\frac{1}{6}$

39.
$$\frac{1}{22}$$
, $\frac{41}{55}$, $\frac{3}{11}$, $\frac{3}{44}$

40.
$$\frac{1}{4}$$
, $\frac{1}{4}$, $\frac{1}{16}$, $\frac{3}{4}$

41.
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{3}{4}$, $\frac{1}{15}$

42.
$$\frac{1}{36}$$
, $\frac{5}{12}$, $\frac{73}{648}$, $\frac{25}{81}$

44.
$$\frac{1}{27}$$
, $\frac{2}{9}$, $\frac{4}{9}$, $\frac{8}{27}$, $\frac{43}{144}$, $\frac{65}{72}$, $\frac{64}{195}$

47.
$$\frac{1}{8}, \frac{5}{32}$$
, 0.325, 0.025, $\frac{10}{13}$

48.
$$\frac{25}{216}$$
, $\frac{27}{216}$, 0.5177, 0.4914, 0.6651, 0.6186

49.
$$\frac{5}{33}$$
, $\frac{5}{33}$, $\frac{1}{792}$, $\frac{41}{132}$

50. 120, 12600,
$$\frac{4}{35}$$
, $\frac{18}{35}$, $\frac{12}{35}$, $\frac{1}{35}$, $\frac{11}{24}$

51.
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{6}{7}$, $\frac{1}{8}$, $\frac{5}{21}$, $\frac{3}{14}$

52.
$$\frac{12(n-3)}{n(n-1)(n-2)}$$
, $\frac{18(n-4)}{n(n-1)(n-2)}$

புள்ளி விபரவியல் I பயிற்சி 1

விடைகள்

- (a) 8, (b) 7 1.
- 2. 15.7
- (i) 29.54, (ii) 122.82 (iii) 18.625 (iv) 109.4 3.
- 4. 5, $\sqrt{7.5}$, 5, 11
- 5. (a) f(x) = 2x + 3; (b) 5, 12 $\frac{1}{3}$ (c) 13, 49 $\frac{1}{3}$ (d) 26 (e) 64 $\frac{4}{3}$
- (a) 2 (b) 200 (c) 2.02 (d) .-4, -1, 2, 5, 8, 11, 14 (a) 50, 12 (b) 10, 11.7 (c) 12.5, 20, 80, 5 6.
- 7.
- 8. $\mu + c$, σ ; $k\mu$, $k\sigma$, $a = \frac{5}{6}$, b = 22
- 9. (a) 7.6, 3.14 (b) 13.65, 3.02
- 10. 25.9 வருடங்கள் , 1.99 வருடங்கள்
- 11. 57. 39
- 12. (a) 61, 207, 1896
 - (b) (i) 7,2 (ii) 14,3 (iii) 6,3
- 13. 58.4 Kg, 7.2 Kg
- 14. 5, 6, 4.07
- 15. 7, 1, x = 5, y = 9
- 16. 1, 3, 8.1, 0.03; 814, 300 a = -7.2, b=2
- 17. (a) 51 (b) 51.5 (c) 52 (d) 50 அல்லது 54 (e) 57.5
- 20. 1,0
- 21. (a) 43.5, 16%
- 2 நிமிடம் 38 செக் , 1 நிமிடம் 54 செக் , 2 நிமிடம் 16 செக் , 22. 1 நிமிடம் 24 செக் , 2 நிமிடம் 56 செக் .
- 23. (a) 5, 1 (b) 4.88, 1.156 (c) 4.86, 2.84

```
26. (i)
                            (ii)
        2
            4 5
                 5
                                    3
                                           9
        2
            6 6 6 6 7 7 7
                                    4
                                           4
        2
            9
              9
                                           3
                                                      5
                                    5
                                                   5
        3
                                    6
                                                   5
            0
              1
                                           1
                                               1
                                                      7
                                                          8
        3
            2
              2
                2 2
                                    7
                                           0
                                                             5 6 6 8 9
                                               0
                                                   1
                                                      3
                                                          4
                                    8
                                           0
                                                  2
                                                      2
                                           2
                                    9
                                               6
                                           0
                                    10
         2 / 5 என்பது 25
                                                    6/1 என்பது 6·1cm
   வேறு முறைகளிலும் குறிக்கலாம் )
27.
                         கணிதம்
                                                  தமிழ்
(i)
                               2
                                      3
                                          8
                                  1
                            5
                               4
                                  4
                                      4
                                          3 4 4
                           7
                             3 3
                                      5
                                          2
                                             6
                                               8
                    8
                        8
                                 0
                           961
                                  1
                                      6
                                          3
                                            5
                                               5
                                                  8
                               5
                                  8
                                      7
                                          1
                                             2
                                                27
                                                     9
                                      8
                                             5
                                          4
                                                           தமிழ்
         கணிதம்
                                                      7/1 என்பது 71
      1/6 என்பது 61
                         கணிதம்
                                                  தமிழ்
(ii)
                                  9
                                      0
                                      1
                                  1
                                      1
                                  4
                                      1
                          6666
                                      1
                                          6 6 7
                          998
                                             8
                                  8
                                      1
                                               9 9 9
                                      2
                                          1
                               1
                                  0
                                      2
                                          222222
                        3 3 3 2
                                      2
                                            5
                                              5
          கணிதும்
                                                           கணிதம்
      6/1 என்பது 0.16
                                                       1/6 என்பது 0.16
```

புள்ளி விபரவியல் II பயிந்சி 1

1. 3 ரூபா நட்டம், 0.12, 0.12, 0.08, 6.45, 8

2. 2 ஞபா, 4, 1

3.

x	3	4	5	6	7
P(X=x)	0.01	0.22	0 · 41	0.22	0.14

0.9724

4.
$$\frac{4}{9}$$
, $\frac{1}{3}$ $P(X = x) = \frac{2x-1}{9}$, $x = 1, 2, 3$; $\frac{17}{9}$

5.
$$P(X = x) = \frac{1}{6}$$
; $x = 1, 2, 3, 4, 5$
= 0; $x = 6$
= $\frac{1}{36}$; $x = 7, 8, 9, 10, 11, 12$

$$4\frac{1}{12}, \frac{6}{17}$$

6.

x	- 3	0	3	6
P(X=x)	p^3	$3p^2(1-p)$	$3p(1-p)^2$	$(1-p)^3$

450 ரூபா , 30 ரூபா

7.

` y	0	1	2	3	4
P(Y=y)	0.09	0.24	0.34	0.24	0.09

y	0	1	2	3	4
P(Z=z)	0 - 447	0 · 232	0 · 222	0.072	0.072

8.
$$\frac{1}{2}(n+1)$$
, $\frac{1}{12}(n^2-1)$, $\frac{1}{2}$, $\frac{2}{105}$, 16

9.
$$\frac{1}{8}$$
, $\frac{5}{24}$, 2.78, 0.260

10.
$$\frac{1}{64}$$
, $\frac{9}{64}$, $\frac{27}{64}$, $\frac{27}{64}$

11.
$$\frac{1}{10}$$
, 1

15.
$$\frac{13}{28}$$
, $\frac{25}{28}$, 5.25, 3.36

18.
$$a = 0.3, 0.7$$
 $E(y) = 1.39$
 $E(X) = 0.29, -0.51$ $Var(y) = 1.2599$
 $Var(y) = 1.3059, 1.1299$

19.
$$a = 0.2$$
, $E(X) = 2.02$, $Var(X) = 2.0196$ $E(y) = 1$
 $Var(y) = 0.9$

24.
$$\frac{4}{5}$$
, -0.24 Gian 3.34

விடைகள் 2(a)

(d) 0.388.

- 1. 0.209, 0.0168, 0.00852
- 2. 0.318, 0.671, 0.0324
- 3. 0.1, 0.23
- 4. (a) 0.0746, 0.0861, 0.377, 90 (b) 0.25, 1.5
- 5. 1, 0.894; 5, $\frac{1}{5}$
- 6. (a) (i) 0.201 (ii) 0.00637 (b) 2 (c) 5,2 (d) 14
- 7. (a) 4.8, 0.98 (c) 0.737
- **8.** 1, 0.336, 20 **9.** 0.1296, 0.1792

x	0	1	2
P(X=x)	1/4	1/2	1/4

10.
$$S^3 + 3Sd^2$$

2(b)

- 1. (a) 0.1029 (b) 0.2401 (c) 0.51 (d) 0.1681
- 2. (a) 0.128 (b) $P(X=x) = (0.8)^{x-1} (0.2)$ (c) 0.512 (d) 5, 0.0768
- 3. $\frac{5}{4}$, $\frac{7}{4}$, $\frac{213}{16}$, 0.00026, $\frac{1}{4}$
- 4. (i) $\frac{1}{6}$ (ii) $\frac{25}{216}$ (iii) $\frac{125}{216}$ (iv) 1 (v) 6 (vi) 17
- 5. 0.0047 , டிசம்பர் 22
- 6. (a) 0.504 (b) 0.432 (c) 0.5904 (d) 44

250

(a) 0.0183 (b) 0.195 (c) 0.238 (d) $13 \times e^{-12}$ (e) 0.323 1.

(a) 0.0183 (b) 0.195 (c) 0.238 (d) 0.0497 2.

3. 0.184

4. 0.713

5. 0.908, 9

6. 3, 18.5

7. 0.1, 0.0702

8. 0.647, 6

9. 0.238, 0.841, 0.083

13. 0.677, 0.017, 1498

14. 0.082, 0.242, 6.15

15. 0.371, mur 6037

பயிற்சி 3

1. 4,
$$\frac{8}{15}$$
, $\frac{11}{225}$, 0.541

2.
$$\frac{1}{3}$$
, $\frac{31}{12}$, $\frac{79}{96}$

3.
$$a=2, k=\frac{3}{4}, 0.2$$

5.
$$\sqrt{\frac{3}{5}}$$

5.
$$\sqrt{\frac{3}{5}}$$

6. $F(x) = \begin{cases} \frac{1}{12x^3} & x \le -1 \\ \frac{1}{2} + \frac{x}{2} - \frac{x^3}{12} & -1 \le x \le 1 \\ 1 - \frac{1}{12x^3} & x \ge 1 \end{cases}$

$$0, \frac{11}{15}$$

251

7.
$$F(x) = \begin{cases} \frac{3}{17}x^2 & 0 \le x < 1 \\ \frac{1}{17}(1+2x^2) & 1 \le x \le 2 \\ 1 & x > 1 \end{cases}$$

1.55, 0.89

8.
$$\frac{\theta}{\theta+3}$$
, $\frac{\theta(\theta+1)}{(\theta+)(\theta+4)}$, $\frac{3\theta}{(+3)^2(\theta+4)}$,

- 9. 2.2, 1.71, 0.246, 0.3645
- 10. 0.991, 0.983, 0.28, 0.0017, ആur 308
- 11. 2, 0.124
- **12.** $\frac{25}{36}$, 36 நிமிடங்கள், 35.5 நிமிடங்கள், 0.125, 0.727

13. 5,
$$\frac{1}{6}$$
, $\frac{5}{252}$, 543

14.
$$0.9342$$
, $F(x) = \frac{1}{\prod}(x + \sin x)$ $0 \le x \le \prod$ = 0 அவ்வாறல்லாத போது

15.
$$\frac{1}{3}$$

$$f(x) = \begin{cases} 0, & x < -1 \\ \alpha & -1 \le x < 0 \\ 2\alpha & 0 \le x < 1 \\ 0 & 0 \ge 1, \frac{1}{6}, 0.553, \frac{11}{18} \end{cases}$$

2.
$$(a) \frac{2}{3} (b) \frac{2}{3} (c) \frac{x}{3} (d) \frac{1}{3} + \frac{x}{6} (e) 1$$

$$f(y) = \frac{1}{3} \qquad 0 \le y \le 2$$

$$\frac{1}{6} \qquad 2 \le y \le 4$$

3. 0·25, 0·845

4.
$$2, \frac{1}{2}, \frac{1}{4}, 1-e^{-2x}, 0.368$$

5. 0.62, 0.38

6.
$$e^{-2\lambda t}$$
, $e^{-2\lambda c}$, $\frac{1-e^{-\lambda(1-k)t}}{1-e^{-\lambda t}}$

7. 115 ரூபா, 20 ரூபா,

4 (b)

2. 0.91

4. 42.2, 127.7

6.
$$\frac{1}{3}$$
, $\frac{20}{3}$, $\frac{40}{9}$, 12

7.
$$\mu = 50.154$$
, $\sigma = 4$; $\mu = 490 g$, $\sigma = 12.2 g$

- 8. 0.0038, 230.65 g, 1.29 g
- 9. 0.0228, 0.044
- 10. $10C_1(0.04)(0.96)^9$, 0.20, 0.77.
- 11. 0.4502, 0.0996, 0.484
- 12. 0.117, 0.1275, 0.0858, 0.0264
- 13. 0.2025, 0.410, 0.0238
- 14. 0.887, 0.994, 18, 0.28
- **15.** 0.0525, 0.35875, 0.143, 0.145
- 16. 0.315, 0.5644
- 17. 0.043,
- 18. 0.988, 0.624, 0.828
- 19. 0.599, 0.086, 0.25, 0.215
- 20. 0.360, 0.734
- **21.** 0.977 (செவ்வன்), 0.91 (புவசோன்), 0.246 (செவ்வென் அன்னளவாக்கம்) 0.170 (ஈருறுப்பு), 0.648 (ஈருறுப்பு)

தொடைகளின் அட்சரகணித விதிகள் (Laws of the algebra of sets)

1. அதேவலு விதி (Idempotent law)

$$A \cup A = A$$
 ; $A \cap A = A$

2. சேர்த்திவிதி (Associative Law)

$$(A \cup B) \cup C = A \cup (B \cup C)$$
; $(A \cap B) \cap C = A \cap (B \cap C)$

3. பரிவர்த்தனைவிதி (Commutative Law)

$$A \cup B = B \cup A$$
 ; $A \cap B = B \cap A$

4. பரம்பல்விதி (Distributive Law)

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
; $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

5. சர்வசமன்பாட்டுவிதி (Identity Law)

$$A \cup \phi = A$$
 $A \cap \phi = \phi$

$$A \cup \varepsilon = \varepsilon$$
 $A \cap \varepsilon = A$

6. நிரப்பிவிதி (Complement Law)

$$A \cup A' = \mathcal{E}$$
 $A \cap A' = \phi$
 $(A')' = A$; $\mathcal{E}' = \phi$ $\phi' = \mathcal{E}$

7. தமோகன் விதி (De Morgan's Law)
$$(A \cup B)' = A' \cap B' \qquad ; \qquad (A \cap B)' = A' \cup B'$$

மடக்கை

1	0	1	2	3	14	5	6	7		9	123	4 5 6	7 8 9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	5 9 13 4 8 12	17 21 26 16 20 24	30 34 38 28 32 36
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4 8 12 4 7 11	16 20 23 15 18 22	27 31 35 26 29 33
12	0792	0828	0864	0899	0934	0969		1038	_	1106	3711	14 18 21 14 17 20	25 28 32 24 27 31
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3 7 10	13 16 19 13 16 19	23 26 29 22 25 29
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	369	12 15 19	22 25 28 20 23 26
15	1761	1790	1818	1847	1875	-	-	1959	1	-	369	11 14 17	20 23 26
16	2041	2068	2095	2122	2148	-	-	2227	-	_	368	11 14 16	19 22 24 18 21 23
17	2304	2330	2355	2380	2405	-	-	2480	-	_	3 5 8	10 13 15	18 20 23 17 20 22
18	2553	2577	2601	2625	2648	-		2718	-		25 7 24 7	9 12 14	17 19 21 16 18 21
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	247	9 11 13	16 18 20 15 17 19
20 21					3096 3304	3118	3139	3160	3181	3201	24 6	8 II 13 2 IO 12	15 17 19
22 23	3617	3636	3655	3674	3502 3692	3711	3729	3747	3766	3784	24 6	8 10 12 7 9 11	14 15 17 13 15 17
24 25	11	1			3874 4048	\$	1		1		2 4 5	7 9 11	12 14 16
26 27	4314	4330	4346	4362	4216	4393	4409	4425	4440	4456	235	7 8 10 6 8 9	11 13 15 11 13 14
28 29	4624	4639	4654	4669	4533 4683	4698	4713	4728	4742	4757	23 5	6 8 9 6 7 9	10 12 14
30 31 32	4914	4928	4942	4955	4829 4969 5105	4983	4997	5011	5024	5038	134	678	10 11 13 10 11 12 9 11 12
33 34	5185	3198	5211	5224	5237 5366	5250	5263	5276	5289	5302	13 4	5 6 8	9 10 12
35 36	5441 5563				5490 5611					5551 5670	124	5 6 7 5 6 7	9 10 11 8 10 11
37 38 39	5798	5809	5821	5832	5729 5843 5955	5855	5866	5877	5888	5899		5 6 7 5 6 7 4 5 7	8 9 10 8 9 10 8 9 10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	123	4 5 6	8 9 10 7 8 9
42 43	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	123	4 5 6	7 8 9
44 45	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	123	4 5 6	7 8 9
46 47 45	6628	6637	6739	6656	6665	6675 6767	6684	6693 6785	6702 6794	6712	123	4 5 6 4 5 5	7 7 8
49	6903	6911	6920	6839 6928	6848 6937	6857 6946	6866 6935	6875 6964	6884 6972	6893 6981	123	4 4 5	6 7 8

மடக்கை

	0	1	2	3	4	5	6	7	8	9	1	2	3	4 :	5 (5 7	8	9
50 51 52 53 54	6990 7076 7160 7243 7324	6998 7084 7168 7251 7332	7007 7093 7177 7259 7340	7016 7101 7185 7267 7348	7024 7110 7193 7275 7356	7202	7042 7126 7210 7292 7372	7050 7135 7218 7300 7380	7059 7143 7226 7308 7388	7067 7152 7235 7316 7396	1 1 1 1 1	22222	3	3 4	4 :	5656	6	88777
55 56 57 58 59	7404 7482 7559	7412 7490 7566 7642	7419 7497 7574 7649 7723	7427 7505	7435 7513 7589 7664 7738	7443 7520 7597	7451 7528 7604 7679	7459 7536 7612 7686	7466 7543 7619	7474 7551 7627 7701 7774	111111	22211	2	3 . 3 . 3	4 :	5 5 5 5 5 4 5	666	77777
60 61 62 63	7782 7853 7924 7993	7789 7860 7931 8000	7796 7868 7938 8007	7803 7875 7945 8014	7810 7882 7952 8021	7818 7889 7959 8028	7825 7896 7966 8035	7832 7903 7973 8041	7839 7910 7980 8048	7846 7917 7987 8055	11111	111111	2222	3 3 3 3	4 .	4 5 4 5 4 5 4 5	6 6 5	***
64 65 66 67 68 69	8325	8069 8136 8202 8267 8331 8395	8142 8209 8274 8338	8149 8215 8280 8344	8287 8351	8162 8228 8293 8357	8235	8176 8241 8306 8370	8182 8248 8312 8376	8189 8254 8319 8382	1111111	111111	2 2 2 2 2 2 2	3333	3 . 3 . 3	454444	5 5 5	
70 71 72 73 74	8451 8513 8573 8633 8692	8457 8519 8579 8639	8463 8525 8585	8470 8531 8591 8651	8476 8537 8597	8482 8543 8603 8663	8488 8549 8609 8669	8494 8555 8615	8500 8561 8621 8681	8506 8567 8627 8686	111111		22222	2 2 2 2	3 3 3 3	4 4 4 4 4 4 4 4	5 5 5 5	
75 76 77 78 79	8751 8808 8865 8921	8756 8814 8871	8762 8820 8876 8932	8768 8825 8882 8938	8774 8831 8887 8943	8779 8837 8893 8949	1	8791 8848 8904 8960	8797 8854 8910 8965	8802 8859 8915 8971	1111111	11111	22222	-	3	34343434	5 4 4	
80 81 82 83 84	9031 9085 9138	9036 9090 9143 9196	9042 9096 9149	9047 9101 9154 9206	9053 9106 9159 9212	9058 9112 9163 9217	9063 9117 9170 9222 9274	9069 9122 9175 9227	9074 9128 9180 9232	9079 9133 9186 9238	1	of the bas and better	22222	22222	33333	344344344344	4 4	
85 86 87 88 89	9294 9345 9395 9445	9299 9350 9400	9304 9355 9405 9455	9309 9360 9410 9460	9315 9365 9415	9320 9370 9420 9469	9323 9375 9423 9474	9330 9380 9430	9335 9385 9435 9484	9340 9390 9440 9489	100	1111	2 2 1 1	2 2 2 2 2 2	33222	343333333333333333333333333333333333333	4 4 4 4 4 4	
90 91 92 93	9542 9590 9638 9685	9547 9595 9643 9689	9552 9600 9647 9694	9557 9605 9657 9657	9562 9609 9657 9703	9566 9614 966 9708	9571 9619 1 9666 9713	9576 9624 9671 9717	9581 9628 9673 9722	9586 9633 9680 9727	0000	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2	2 2 2 2	3 3 3 3 3 3 3	3 4 4 3 4	
94 95 96 97 98 99	9868	9782 9827 9872	9832 9877 9921	9791 9836 988 9926	9795 9841 9886 9930	9800 9843 9890 9893	9805 9850 9894 9939	9809 9854 9899 9943	9814 9859 9903	9818 9863 9908	000	1	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 4 4 3 4	

எண்களின் வலுவும் மூலமும் நிகர்மாற்றும்

Ħ	n*	n4	Vn	Vā	√10n	∜ 10/2	∜100n	1 n	$\frac{1}{\sqrt{n}}$	<u>1</u> √10n
1 2 3 4 5	1 4 9 16 25	1 8 27 64 125	1.000 1.414 1.732 2.000 2.236	1.000 1.260 1.442 1.587 1.710	3·162 4·472 5·477 6·325 7·071	2·154 2·714 3·107 3·420 3·684	4·642 5·848 6·694 7·368 7·937	1 ·5000 ·3333 ·2500 ·2000	1-00000 0-70711 0-57735 0-50000 0-44721	
6	36	216	2·449	1-817	7·746	3·915	8-434	-1667	0-40825	0-12910
7	49	343	2·646	1-913	8·367	4·121	8-879	-1429	0-37796	0-11952
8	64	512	2·828	2-000	8·944	4·309	9-283	-1250	0-35355	0-11180
9	81	729	3·000	2-080	9·487	4·481	9-655	-1111	0-33333	0-10541
10	100	1000	3·162	2-154	10·000	4·642	10-000	-1000	0-31623	0-10000
11 12 13 14 15	121 144 169 196 225	1331 1728 2197 2744 3375	3·317 3·464 3·606 3·742 3·873	2·224 2·289 2·351 2·410 2·466	10·488 10·954 11·402 11·832 12·247	4·791 4·932 5·066 5·192 5·313	10-323 10-627 10-914 11-187 11-447	-09091 -08333 -07692 -07143 -06667	0-30151 0-28868 0-27735 0-26726 0-25820	0-09535 0-09129 0-08771 0-08452
16	256	4096	4-000	2-520	12·649	5·429	11-696	-06250	0-25000	0-07906
17	289	4913	4-123	2-571	13·038	5·540	11-935	-05882	0-24254	0-07670
18	324	5832	4-243	2-621	13·416	5·646	12-164	-05556	0-23570	0-07454
19	361	6859	4-359	2-668	13·784	5·749	12-386	-05263	0-22942	0-07255
20	400	8000	4-472	2-714	14·142	5·848	12-599	-05000	0-22361	0-07071
21	441	9261	4-583	2·759	14-491	5-944	12-806	-04762	0-21822	0-06901
22	484	10648	4-690	2·802	14-832	6-037	13-006	-04545	0-21320	0-06742
23	529	12167	4-796	2·844	15-166	6-127	13-200	-04348	0-20851	0-06594
24	576	13824	4-899	2·884	15-492	6-214	13-389	-04167	0-20412	0-06455
25	625	15625	5-000	2·924	15-811	6-300	13-572	-04000	0-20000	0-06325
26	676	17576	5·099	2-962	16-125	6·383	13.751	-03846	0-19612	0-06202
27	729	19683	5·196	3-000	16-432	6·463	13.925	-03704	0-19245	0-06086
28	784	21952	5·292	3-037	16-733	6·542	14.095	-03571	0-18898	0-05976
29	841	24389	5·385	3-072	17-029	6·619	14.260	-03448	0-18570	0-05872
30	900	27000	5·477	3-107	17-321	6·694	14.422	-03333	0-18257	0-05774
31	961	29791	5.568	3·141	17-607	6.768	14-581	-03226	0·17961	0.05680
32	1024	32768	5.657	3·175	17-889	6.840	14-736	-03125	0·17678	0.05590
33	1089	35937	5.745	3·208	18-166	6.910	14-888	-03030	0·17408	0.05505
34	1156	39304	5.831	3·240	18-439	6.980	15-037	-02941	0·17150	0.05423
35	1225	42875	5.916	3·271	18-708	7.047	15-183	-02857	0·16903	0.05345
36	1296	46656	6-000	3·102	18-974	7·114	15-326	-02778	0-16667	0-05270
37	1369	50653	6-083	3·332	19-235	7·179	15-457	-02703	0-16440	0-05199
38	1444	54872	6-164	3·362	19-494	7·243	15-605	-02632	0-16222	0-05130
39	1521	59319	6-245	3·391	19-748	7·306	15-741	-02564	0-16013	0-05064
40	1600	64000	6-325	3·420	20-000	7·368	15-874	-02500	0-15811	0-05000
41	1681	68921	6.403	3·448	20-248	7-429	16-005	-02439	0-15617	0-04939
42	1764	74088	6.481	3·476	20-494	7-489	16-134	-02381	0-15430	0-04880
43	1849	79507	6.557	3·503	20-736	7-548	16-261	-02326	0-15250	0-04822
44	1936	85184	6.633	3·530	20-976	7-606	16-386	-02273	0-15076	0-04767
45	2025	91125	6.708	3·557	21-213	7-663	16-510	-02222	0-14907	0-04714
45 47 48 49 50	2304	97336 103823 110592 117649 125000	6.782 6.856 6.928 7-000	3.583 3.609 3.634	21-448 21-679 21-909 22-136 22-361	7·719 7·775 7·830	16-631 16-751 16-869 16-985	-02174 -02128 -02083 -02041	0-14744 0-14587 0-14434 0-14286 0-14142	0-04663 0-04613 0-04564 0-04518

எண்களின் வலுவும் மூலமும் நிகர்மாற்றும்

n	n³	n ³	√n	₹ 7	√10m	∜ 10 <i>n</i>	₹100n	1	$\frac{1}{\sqrt{n}}$	1
								n	√n	√10n
51	2601	132651	7-141	3.708	22-583	7-990	17-213	-01961 -01923	0-14003	0-04428
52 53	2704 2809	140608 148877	7·211 7·280	3.733 3.756	22·804 23·022	8.041	17·325 17·435	-01887	0·13868 0·13736	0-04385
54	2916	157464	7.348	3.780	23-238	8-143	17-544	-01852	0-13608	0.04303
55	3025	166375	7.416	3.803	23-452	8-193	17-652	-01818	0-13484	0-04264
56 57	3136 3249	175616 185193	7·483 7·550	3-826 3-849	23·664 23·875	8-243 8-291	17-758 17-863	-01786 -01754	0·13363 0·13245	0-04226
58	3364	195112	7.616	3.871	24-083	8.340	17:967	-01724	0-13131	0-04152
59	3481	205379	7.681	3.893	24·290 24·495	8·387 8·434	18·070 18·171	-01695 -01667		0-04117
60	3600 3721	216000	7.746	3.936	24-698	8.481	18-272	-01639	0-12804	0-04049
62	3844	238328	7.874	3-958	24-900	8.527	18-371	-01613		0-04016
63	3969	250047	7.937	3-979	25-100	8-573	18-469	-01587		0-03984
64	4096 4225	262144	8.000	4-000	25·298 25·495	8-618 8-662	18·566 18·663	-01563 -01538	0-12500	0-03922
66	4356	287496	8-124	4.041	25-690	8.707	18-758	-01515	0-12309	0-03892
67	4489	300763	8-185	4:062	25.884	8.750	18-852	-01493		0-03863 0-03835
68	4624	314432 328509	8·246 8·307	4-082	26·077 26·268	8·794 8·837	18-945 19-038	01471	0-12127	0-03807
70	4900	343000	8.367	4-121	26-458	8.879	19-129	-01429	0-11952	0-03780
71	5041	357911	8-426	4141	26-646	8-921	19-220	-01408	011868	0-03753
72 73	5184	373248 389017	8-485 8-544	4-160	26·833 27·019	8·963 9·004	19-310	-01389 -01370		0-03701
74	5476	405224	8-602	4-198	27-203	9.045	19-487	-01351	0-11625	0-03676
75	5525	421875	8.660	4-217	27-386	9-086	19-574	-01333	0-11547	0-03651
76	5776 5929	438976 456533	8·718 8·775	4-236	27.568	9-126		-01316 -01299	0-11471	0-03604
78	6084	474552	8.832	4.273	27-928	9-205	19-832	.01282	0-11323	0-03581
79 80	6241	493039 512000	8.888	4·291 4·309	28-107	9-244	19-916			0-03558
81	6561	531441	9.000	4-327				-01235	0-11111	0-03514
82	6724	551368	9-055	4-344	28-636	9-360	20-165	01220		0-03492
83 84	6889 7056	571787 592704	9·110 9·165	4-362 4-380	28.810			-01205 -01190	0-10976	0-03450
85	7225	614125	9.220	4.397	29-155					0-03430
86	7396	636056	9-274	4-414					0-10783	0-03410
87 88	7569 7744	658503	9-327	4-431						0-03371
89	7921	704969	9-434	4-465	29-833	9.619	20-724	-01124	0-10600	0-03352
90	8100	729000	9.487	4-481						0-03333
91	8281 8464	753571 778688	9·539 9·592							0-03297
93	8649	804357	9.644	4-531	30-496	9.761	21-029	-01075	0-10370	0-03279
94	8836 9025	830584	9-695							0-03262
96	9216	857375 884736	9-798	1	1				1	0-03227
1 97	9409	912673	9-849	4-595	31-145	9.899	21-327	-01031	0-10153	0-03211
98	9604 9801		9-899							0-03178
100		1000000	10.000	4-642	31-623				0-10000	0-03162

CUMULATIVE POISSON PROBABILITIES

The tabulated value is $P(X \le r)$ where $X \sim Po(\lambda)$

λ =	0.2	0.4	0.5	0.6	0.8	1.0	1.2	1.4	1.5
= 0	0.8187	0.6703	0.6065	0.5488	0.4493	0.3679	0.3012	0.2466	0.2231
1	0.9825	0.9384	0.9098	0.8781	0.8088	0.7358	0.6626	0.5918	0.5578
2	0.9989	0.9921	0.9856	0.9769	0.9526	0.9197	0.8795	0.8335	0.8088
3	0.9999	0.9992	0.9982	0.9966	0.9909	0.9810	0.9662	0.9463	0.9344
4	1.0000	0.9999	0.9998	0.9,996	0.9986	0.9963	0.9923	0.9857	0.9814
5		1.0000	1.0000	1.0000	0.9998	0.9994	0.9985	0.9968	0.9955
6				-	1.0000	0.9999	0.9997	0.9994	0.9991
7						1.0000	1.0000	0.9999	0.9998
. 8				`				1.0000	1.0000
λ =	1.6	1.8	2.0	2.2	2.4	2.5	2.6	2.8	3.0
r = 0	0.2019	0.1653		0.1108	0.0907	0.0821	0.0743	0.0608	0.049
1	0.5249	0.4628		0.3546		0.2873	0.2674	0.2311	0.199
2	0.7834	0.7806	0.6767	0.6227	0.5697	0.5438	0.5184	0.4695	0.423
3	0.9212	0.8913	0.8571	0.8194	0.7787	0.7576	0.7360	0.6919	0.647
4	0.9763	0.9636	0.9473	0.9275	0.9041	0.8912	0.8774	0.8477	0.815
5	0.9940	0.9896	0.9834	0.9751	0.9643	0.9580	0.9510	0.9349	0.916
6	0.9987	0.9974	0.9955	0.9925	0.9884	0.9858	0.9828	0.9756	0.966
7	0.9997	0.9994	0.9989	0.9980	0.9967	0.9958	0.9947	0.9919	0.988
8	1.0000	0.9999	0.9998	0.9995	0.9991	0.9989	0.9985	0.9976	0.996
9		1.0000	1.0000	0.9999	0.9998	0.9997	0.9996	0.9993	0.998
10		1		1.0000	1.0000	0.9999	0.9999	0.9998	0.999
11 12						1.0000	1.0000	1.0000	0.999
12								150000000000000000000000000000000000000	1.000
λ =	3.2	3,4	0.5						
r = 0			3.5	3.6	3.8	4.0	4.5	5.0	5.5
1	0.0408	0.0334	0.0302	0.0273	0.0224	0.0183	0.0111	0.0067	0.004
2	0.1712	0.1468	0.1359	0.1257	0.1074	0.0916	0.0611	0.0404	0.026
3	0.6025	0.3397	0.3208	0.3027	0.2689	0.2381	0.1736	0.1247	0.088
4	0.7806	0.5584	0.5366	0.5152	0.4735	0.4335	0.3423	0.2650	0.201
5	0.8946	0.7442	0.7254	0.7064	0.6678	0.6288	0.5321	0.4405	0.357
6	0.9554	0.8705	0.8576	0.8441	0.8156	0.7851	0.7029	0.6160	0.528
7	0.9832	0.9421	0.9347	0.9267	0.9091	0.8893	0.8311	0.7622	0.686
8		0.9769	0.9733	0.9692	0.9599	0.9489	0.9134	0.8666	0.809
9	0.9943	0.9917	0.9901	0.9883	0.9840	0.9786	0.9597	0.9319	0.894
10	0.9982	0.9973	0.9967	0.9960	0.9942	0.9919	0.9829	0.9682	0.946
11	0.9995	0.9992	0.9990	0.9987	0.9981	0.9972	0.9933	0.9863	0.974

0.9994

0.9998

1.0000

0.9991

0.9997

0.9999

1.0000

0.9976

0.9992

0.9997

0.9999

1.0000

0.9945

0.9980

0.9993

0.9998

0.9999

1.0000

0.9747

0.9890

0.9955

0.9983

0.9994

0.9998

0.9999

1.0000

0.9996

0.9999

1.0000

11

12

13

14

15

16

17

18

0.9999

1.0000

0.9998

0.9999

1.0000

0.9997

0.9999

1.0000

CUMULATIVE POISSON PROBABILITIES

The tabulated value is $P(X \le r)$ where $X \sim Po(\lambda)$

λ =	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
	0.0025	0.0015	0.0009	0.0006	0.0003	0.0002	0.0001	0.0001	0.0000
r = 0	0.0023	0.0013	0.0073	0.0047	0.0030	0.0019	0.0012	0.0008	0.0005
1	0.0620	0.0113	0.0296	0.0203	0.0138	0.0093	0.0062	0.0042	0.0028
2	0.1512	110010000000000000000000000000000000000	0.0230	0.0591	0.0424	0.0301	0.0212	0.0149	0.0103
3	0.1312	0.1118	0.1730	0.1321	0.0996	0.0744	0.0550	0.0403	0.0293
4		0.2237		0.2414	0.1912	0.1496	0.1157	0.0885	0.0671
5	0.4457	0.3690	0.3007	0.2414	0.3134	0.2562	0.2068	0.1649	0.1301
6	0.6063	0.5265	0.4497		0.4530	0.3856	0.3239	0.2687	0.2202
7	0.7440	0.6728	0.5987	0.5246		0.5231	0.4557	0.3918	0.3328
8	0.8472	0.7916	0.7291	0.6620	0.5925		0.5874	0.5218	0.4579
9	0.9161	0.8774	0.8305	0.7764	0.7166	0.6530		0.6453	0.5830
10	0.9574	0.9332	0.9015	0.8622	0.8159	0.7634	0.7060		
11	0.9799	0.9661	0.9467	0.9208	0.8881	0.8487	0.8030	0.7520	0.6968
12	0.9912	1	0.9730		0.9362	0.9091	0.8758	0.8364	0.7916
13	0.9964	0.9929	0.9872		0.9658	0.9486	0.9261	0.8981	0.8645
14	0.9986	0.9970	0.9943	0.9897	0.9827	0.9726	0.9585	0.9400	0.9165
15	0.9995	0.9988	0.9976	0.9954	0.9918	0.9862	0.9780	0.9665	0.9513
16	0.9998	0.9996	0.9990	0.9980	0.9963	0.9934	0.9889	0.9823	0.9730
17	0.9999	0.9998	0.9996	0.9992	0.9984	0.9970	0.9947	0.9911	0.9857
18	1.0000	0.9999	0.9999	0.9997	0.9993	0.9987	0.9976	0.9957	0.9928
19		1.0000	1.0000	0.9999	0.9997	0.9995	0.9989	0.9980	0.9965
20	1			1.0000	0.9999	0.9998	0.9996	0.9991	0.9984
21	1	1			1.0000	0.9999	0.9998		0.9993
22	1		1	1		1.0000		0.9999	0.9997
23	1		1	1	1	1	1.0000	0.9999	0.9999
24								1.0000	1.0000

•(x) N(0, 1)

THE DISTRIBUTION FUNCTION $\Phi(z)$ OF THE NORMAL DISTRIBUTION N(0,1)

1			2000	120				7	8	ا و	1	2	3				7	8	9
2	0	1	2	3	4	5	6	,		1				-	DI) —			
	.5000	5040	5080	.5120	5160	5199	.5239	.5279	.5319	.5859	4	8					28		
0.0	.5398	.5488		.5517		.5596	.5636		.5714	.5753	4	8			20		28		0.77
0.1	.5793		5871	.5910	.5948		.6026	.6064	.6103	.6141	4	8					27		
0.3	.6179			.6298		.6368	.6406	.6448	.6480	.6517	4	7			19		26		
0.4	.6554		.6628	.6664		.6736	.6772	.6808	.6844	.6879	4	7	11	14	18	22	25	29	32
0.5	.6915	.6950	6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	3	7					24		
	.7257		7324	.7857	.7889	.7422	.7454	.7486	.7517	.7549	8	7	-	-			23	7.75	0.75000
	.7580		.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	3	6	9	12	15	18	21	24	27
0.8	.7881			.7967	.7995	.8023	.8051	.8078	.8106	B133	3	5	8	11	14	16	19	22	25
0.9	8159		8212	.8238	.8264	.8289	.8815	.8340	.8365	.8389	3	5	8	10	13	15	18	20	23
1.0	8413	8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	2	5	7	9	12	14	16	19	21
1.1	.8643	8665	.8686	8708	.8729	8749	.8770	.8790	.8810	.8830	2	4	6	8	10	12	14	16	18
1.2		.8869	8888	.8907	8925	8944	8962	.8980	.8997	.9015	2	4	6	7	9	11	13	15	17
	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	2	8	5	6	8	10	11	13	14
1.4	.9192		.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319	1	3	4	6	7	8	10	11	13
1.5	.9332	.9345	9357	.9370	.9382	.9394	,9406	.9418	.9429	.9441	1	2	4	5	6	7	8	10	11
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	1	2	3	4	5	6	7	8	
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	1	2	3	4	4	5	6	7	8
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	1	1	2	3	4	4	5	6	6
1.9	9713	.9719	.9726	.9782	.9738	.9744	.9750	.9756	.9761	.9767	1	1	2	2	3	4	4	5	5
2.0	.9772	9778	.9783	.9788	.9793	.9798	.9808	.9808	.9812	.9817	0	1	1	2	2	3	8	4	4
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	0	1	1	2	2	2	3	3	4
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	0	1	1	1	2	2	2	3	3
2,3	.9898	.9896	.9898								0	1	1	1	1	2	2	2	2
	-	Control of		.9901	.99036	.99061	.99086			TOTAL CATTORNOON	3	5	8	10	13	15	18	20	23
	1							.99111	.99134	99158	2	5	7	9	12	14	16	18	21
2.4	.99180	.99202	.99224	.99245	.99266					THE RESIDENCE OF THE PARTY OF	2	4	6	8			15		
	1	0.00		4					.99343		2	4	6	7	9	11	13	15	17
2.5	.99379	99396	.99418	.99430	.99446	.99461	.99477	.99492	.99506	.99520	2	3	5	6	8	9	11	12	14
2.6		.99547	.99560	.99673	.99585	.99598	.99609	.99621	.99632	.99643	1	2	3	5	6	7	8	9	10
2.7				.99683							1	2	3	4	5	6	7	8	9
2.8				.99767							1	1	2	3	4	4	5	6	6
2.9	.99813	.99819	.99825	.99881	.99836	.99841	.99846	.99851	.99856	.99861	0	1	1	2	2	3	3	4	4
3.0				.99878	.99882	.99886	.99889	.99893	.99896	.99900	0	1	1	2	2	2	3	8	4
3.1	.91082	.93065	.93096		8						3	6	9	13	16	19	22	25	28
				.93126	.93155	.93184	.93211				3	6	8	11	14	17	20	22	25
	1			- 4				.93238	.93264	.93289	2	5	7	10	12	15	17	20	22
3.2	.93818	.93336	.9 ³ 359	.93881	.93402				-1		2	4	7	9	11		15		
		2401	olees	03-0-		.9'423	.9*448	9'452	.93481	.9'499	2	4	6	8	9	72-50-51	18	100	
3.3	.9517	97834	.9-950	.9.200	.9-581						2	3	5	6	8		11		
3.4	93663	93675	93687	93698	93709	9770	9730	9740	.9 ³ 638	97651	1	3	8	5	7	8	9	10	12
	93767		-											0.000	000		8	000	
3.5	.93841		.93853	03050	0300	100.6	9.010	9.822	.93828	060°E.	0	1	2	8	4	4	5	6	7
	93892	93896		9'04	.9408		.9*874		.9 ³ 883		U	1	1	Z	2	3	3	4	5
3.7	.9428	9431	.9483	.9*36	.9438	.9412		.9418	.9*48	.9*250									
8.8	.9 28	9454	.9456	.9458	9459	.941 .941	.9*43 .9*63	.9446 .9464	.9466	.94500 .94670									
3.0	.5 02	.0 04	.00 6.	.8 00	.2.03	10.6	. TO 3	.V 04	.8 00	9010	Second								

For negative values of z use $\Phi(z) = 1 - \Phi(-z)$

262

சாயி கல்வி வெளியீடுகள்

க.பொ.த உயர்தரம்

புதிய பாடத்திட்டத்திற்குரியவை (ஆண்டு 2000 உம் அதற்குப் பின்னரும்)

- 1. உயிரியல் பகுதி
 - . உயாயல் பகுது
- 2. உயிரியல் பகுதி
- 2(A) தொழிற்படும் விலங்கு
- 3. உயிரியல் பகுதி
- 2(B) தொழிற்படும் விலங்கு
- 4. உயிரியல் பகுதி
- 3(A) தொழிற்படும் தாவரம் பகுதி l
- 5. உயிரியல் பகுதி
- 3(B) தொழிற்படும் தாவரம் பகுதி II
- 6. உயிரியல் பகுதி
- 4(A) உயிரின் தொடர்ச்சி
- 7. சேதன இரசாயனம்
- பாீட்சை வழிகாட்டி
- 8. பிரயோக கணிதம்
- நிலையியல் பயிற்சிகள்
- 9. பிரயோக கணிதம்
- இயக்கவியல் பயிற்சிகள் பகுதி |
- 10. பிரயோக கணிதம்
- இயக்கவியல் பயிற்சிகள் பகுதி 🛚
- 11. பிரயோக கணிதம்
- நிகழ்தகவும் புள்ளிவிபரவியலும்
- 12. இணைந்த கணிதம்
- நுண்கணிதம்
- 13. இணைந்த கணிதம்
- அட்சர கணிதம்
- 14. இணைந்த கணிதம்
- திரிகோணகணிதம்
- ் ஆள்கூற்று கேத்திரகணிதம் (அச்சில்)

SAI EDUCATIONAL PUBLICATION

36/4B, PAMANKADA ROAD, COLOMBO - 06. SRILANKA.