
க.பொ.த. (உயர்தரம்)

# E5600TE

ஆசிரியர் அறிவுரைப்பு வழிகாட்டி **தரம் – 13** 

<sup>®</sup> (2010 இலிருந்து நடைமுறைப்படுத்<mark>தப்படு</mark>ம்)







கணிதத் திணைக்களம் விஞ்ஞான தொழினுப்பு பீடம் தேசிய கல்வி நிறுவகழ் மகரகம இலங்கை

அச்சிடலும் விநியேர்குழும் Noolaham.org

### க.பொ.த. (உயர்தரம்)

# கணிதம்

## தரம் 13

ஆசிரியர் அறிவுரைப்பு வழிகாட்டி (2010 ஆம் ஆண்டிலிருந்து நடைமுறைப்படுத்தப்படும்)



கணிதத் திணைக்களம் விஞ்ஞான தொழினுட்ப பீடம் தேசிய கல்வி நிறுவகம் மகரகம

அச்சிடலும் விநியோகமும் - கல்வி வெளியீட்டுத் திணைக்களம்

கணிதம் தரம் 13 - ஆசிரியர் அறிவுரைப்பு வழிகாட்டி முதல் பதிப்பு - 2010

© தேசிய கல்வி நிறுவகம்

கணிதத் திணைக்களம் விஞ்ஞான தொழினுட்ப பீடம் தேசிய கல்வி நிறுவகம்

இணையத்தளம் : www.nie.lk

பதிப்பு : அரசாங்க அச்சகக் கூட்டுத்தாபனம் பானலுவ, பாதுக்க.

#### முகவுரை

தேர்ச்சிகளை அடித்தளமாகக் கொண்ட கலைத்திட்டத்தைப் பாடசாலை முறைமையில் அறிமுகம் செய்யும் பணி 13ஆந் தரத்துக்குரிய ஆசிரியர் அறிவுரைப்பு வழிகாட்டிகளை அறிமுகங் செய்வதுடன் பூர்த்தியடைகின்றது. 12ஆம் 13ஆந் தர மாணவ மாணவியர்கள் பல்கலைக்கழகப் பிரவேசத்துக்காக நிலவும் கடுமையான போட்டிக்கு உள்ளாவதால் நிதமும் கணிசமான அழுத்தத்துக்கு ஆளாகின்றனர். க.பொ.த. உயர் தரத்துக்காக புதிய கலைத்திட்டத்தை முதல் தடவையாகப் பயன்படுத்தும் நிலையில் அவ்வழுத்தம் மேலும் அதிகரிக்கும். அவ்வாறான ஒரு சந்தர்ப்பத்தில் உங்களது கைகளை அடையும் அறிவுரைப்பு வழிகாட்டியானது பாடத்திட்டத்தைப் போன்றே இந்த ஆசிரியர் முக்கியமானதாகும். இங்கு ஆசிரியர் முதன்மை யாகக் கவனத்திலெடுக்க வேண்டிய மூன்று அம்சங்கள் உள்ளன. ஆசிரியர் அறிவுரைப்பு வழிகாட்டிகள் பாடத்திட்டத்துடன் முழுமையாகப் பொருந்தியமைந்திருத்தல், கலைத்திட்டத்தினால் எதிர்பார்க்கப்படும் தேர்ச்சிகளை அடிப்படையாகக்கொண்டு கலைத்திட்டத் தத்துவத்தையும் தூரநோக்கையும் முதன்மையாகக்கொண்டு தயாரிக்கப்பட்டிருத்தல், 12ஆம் 13ஆந் தர மாணவர்களிடத்தே எதிர்பார்க்கப்படும் அடைவு மட்டத்தை மனதிற்கொண்டு தயாரிக்கப்பட்டிருத்தல் ஆகியனவே அவையாகும். எனவே இதனை நன்கு உசாவுதல் ஆசிரியரின் இன்றியமையாத பணியும் பொறுப்புமாகும்.

மேற்குறிப்பிட்ட மூன்று விடயங்களையும் உங்களது கவனத்துக்குக் கொண்டு வருதவற்காகத் தேசிய கல்வி நிறுவகம் 13ஆந் தரத்தில் கற்பிக்கும் சகல ஆசிரிய ஆசிரியைகளுக்கும் உரிய பயிற்சியை வழங்கும் பணிகளையும் செய்து வருகின்றது. தொடர்ச்சியாக நடத்தப்படும் இப்பயிற்சி அமர்வுகளில் ஆசிரியர்கள் பங்குபற்றுவது இன்றியமையாததாகும். இங்கு தரப்பட்டுள்ள கற்றல் - கற்பித்தல் கோட்பாடுகள், செயன்முறைகளை விளங்கிக்கொள்வதற்கு அப்பயிற்சி பெரிதும் துணையாக அமையுமென்பதே அதற்கான காரணமாகும். குறிப்பாக பாடசாலை மட்ட மதிப்பீட்டுச் செயற்பாடுகளை தேர்ச்சி விருத்திக்குத் துணையாகக்கொள்ள எதிர்பார்க்கப்படுகின்றது. கற்பித்தலை பாட விடங்களுக்கு மாத்திரம் மட்டுப்படுத்திவிடாது மாணவ மாணவியரது திறன்களுக்கு மெருகூட்டுதல் எனும் எதிர்பார்ப்பை நிறைவேற்றுவதற்கு இவ்வெல்லாத் தலையீடுகளும் இன்றியமையாதவையாகும் என்பதை கல்வி மற்றும் மதிப்பீட்டுப் பணிகளில் ஈடுபடும் நாம் அனைவரும் நன்கு விளங்கிக்கொள்ள வேண்டும்.

ஆசிரியர் அறிவுரைப்பு வழிகாட்டியைத் தயாரிக்கும் சிரமமிக்க பணியை நிறைவு செய்வதில் பங்களிப்புச் செய்ய தேசிய கல்வி நிறுவக கல்விசார் பணியணியினர் உட்பட ஏனைய சகல பணியணியினருக்கும் வெளிவாரியாகப் பங்களிப்புச் செய்த கல்விமான்கள் அனைவருக்கும் எனது மனமார்ந்த நன்றி உரித்தாகும்.

கலாநிதி உபாலி எம். சேதர பணிப்பாளர் நாயகம் தேசிய கல்வி நிறுவகம்

#### முன்னுரை

இந்த ஆசிரியர் அறிவுரைப்பு வழிகாட்டி 2010ஆம் ஆண்டு தொடக்கம் 13ஆம் தரத்திற்குரிய கற்றல்-கற்பித்தல் செயன்முறையை ஒழுங்குபடுத்திக் கொள்வதற்கு உங்களுக்குத் துணையாக அமையும். இந்த வழிகாட்டி நூலைத் தயாரிப்பதற்கு அடிப்படையாகக் கொள்ளப்பட்ட பாடத்திட்டம் இதுவரையில் நடைமுறையிலிருந்த பாடத்திட்டங்களிலிருந்து வேறுபட்டது. இது தேர்ச்சிகளை அடிப்படையாகக் கொண்ட பாடத்திட்டமாக அமைந்திருப்பதே அவ்வேறுபாடாகும். இங்கு தரப்பட்டுள்ள தேர்ச்சிகளை இத்தரத்திலேயே அடைய முடியாமற் போக இடமுண்டு. சிலவேளை, அதற்காக நீண்டகாலம் எடுக்கலாம். எனினும், தேர்ச்சி மட்டங்களையும் அந்தத் தேர்ச்சி மட்டத்தின் கீழ் தரப்பட்டுப்பட்டுள்ள கற்றற் பேறுகளையும் இத்தரம் முடிவடைவதற்குள் அடைதல் அவசியமாகும். எனவே, இத்தரத்திற்குரிய பாடங்களைத் திட்டமிட்டுக் கொள்வதற்கு அத்தேர்ச்சி மட்டங்களும் கற்றற்பேறுகளும் துணையாகும்.

இக்கற்றற்பேறுகளை கற்றல்-கற்பித்தல் செயன்முறையின் குறிக்கோள்களை வகுத்துக் கொள்வதற்கும் வகுப்பறை மதிப்பீட்டுக் கருவிகளை தயாரித்துக் கொள்வதற்குமான நியதிகளாகப் பயன்படுத்துவது குறித்து கவனம் செலுத்துவீர்கள் என எதிர்பார்க்கப்படுகிறது. மேலும் இப்பாடத்தைப் பயிலும்போது உசாவுவதற்குரிய மேலதிக நூல்கள் இணைய வலை கடப்பிடங்கள் முதலானவை குறித்து மாணவர்களுக்கு அறிவூட்டம் செய்வதற்கு இந்த ஆசிரியர் அறிவுரைப்பு வழிகாட்டி துணையாக அமையும்.

நீங்கள் ஆக்கபூர்வமான ஓர் ஆசிரியராகச் செயற்படுவீர்கள் எனும் எதிர்பார்ப்புடனே உத்தேச செயற்பாடுகள் இங்கு மாதிரிகளாகத் தரப்பட்டுள்ளன என்பதை கருத்திற் கொள்ளுங்கள். குறிப்பாக ஆசிரியர் மைய வகுப்பறைச் செயன்முறையை மாணவர் மையச் செயன்முறையாக மாற்றியமைத்தல் வேண்டும் என எதிர்பார்க்கப்படுகிறது. எனவே, மாணவரை நூல் உசாவுகை, இணைய பயன்பாடு முதலான தேடல்கள் பால் இட்டுச்செல்ல தக்கவாறு கற்றல் வாய்ப்புக்களை உருவாக்குவது குறித்து மிகவும் கவனம் செலுத்துதல் வேண்டும்.

கற்பித்தலின்போது மரபு ரீதியான முறையில் குறிப்பு வழங்குவதற்குப் பதிலான கவர்ச்சிகரமான வகையில் புத்தறிவு, கோட்பாடுகள் முதலானவற்றை முன்வைத்தல் வேண்டும். அதற்காக இப்புதிய வகுப்பறையில் தொழில்நுட்பத்தை உச்சளவில் உபயோகப்படுத்தும் தொடர்பாடல் முறைகளைப் பயன்படுத்துவது குறித்து கவனம் செலுத்த வேண்டும். எனவே, புதிய தொழில்நுட்பச் சாதனங்களை இயன்றளவுக்கு ஆக்கபூர்வமாகப் பயன்படுத்துவது அவசியமாகும்.

13ஆம் தரத்தில் இப்பாடத்தைக் கற்கத் தொடங்கும் உங்கள் மாணவர்களுக்கு இப்பாடத்திட்டம் குறித்து தெளிவுபடுத்துவது பயனுடையதாகும். வருடத்துள் நடைமுறைப்படுத்த எதிர்பார்க்கும் உங்களது கற்றல்-கற்பித்தல் திட்டத்தை அறிமுகஞ் செய்வதால் கற்றலின்பால் அம்மாணவர்களின் ஆர்வத்தைத் தூண்டலாம். மேலும் முழுப் பாடத்தையும் கற்பதற்காக மாணவர்களை பாடசாலையின்பால் ஈர்ப்பதற்கும் அது துணையாகும். புதிய கலைத்திட்ட மறுசீரமைப்பினூடாக வகுப்பறை கற்றல் கற்பித்தல் செயன்முறையில் தெள்ளத் தெளிவாக மாற்றத்தை ஏற்படுத்துவதற்காக இப்பாடத்திட்டத்தையும் ஆசிரியர் அறிவுரைப்பு வழிகாட்டியையும் பயன்படுத்தி உங்களது ஆக்கத் திறனை விருத்தி செய்துகொள்ளுமாறு வேண்டுகிறேன்.

இந்த ஆசிரியர் அறிவுரைப்பு வழிகாட்டியைத் தயாரிப்பதில் பங்களிப்புச் செய்த கல்விமான் களுக்கும், ஆசிரியர்களுக்கும் தேசிய கல்வி நிறுவக அதிகாரிகளுக்கும் எனது விஷேட நன்றியைத் தெரிவிக்கின்றேன். இப்பணியில் வழிகாட்டல் வழங்கிய பணிப்பாளர் நாயகம் கலாநிதி உபாலி எம். சேதர அவர்களுக்கும் அச்சிட்டு பாடசாலைகளுக்கு விநியோகிக்கும் பொறுப்பை ஏற்றுள்ள கல்வி வெளியீட்டு ஆணையாளர் உட்பட ஏனைய பணியாளர்களுக்கும் எனது நன்றியைத் தெரிவிக்கின்றேன். இதில் அடங்கியுள்ள விடயங்கள் தொடர்பாக உங்களது ஆக்கபூர்வமான கருத்துக்களை எனக்கு அனுப்பி வைப்பீர்களாயின் நன்றியுடையவனாவேன்.

**விமல் சியம்பலாகொட** உதவிப் பணிப்பாளர் நாயகம் மொழிகள், மானுடவியல் சமூக விஞ்ஞான பீடம். தேசிய கல்வி நிறுவகம்

#### கல்வி வெளியீட்டு ஆணையாளரின் செய்தி

அரசினால் சகல பாடசாலை மாணவர்களுக்கும் பாடநூல்கள் இலவசமாக வழங்கப்படுவதுடன் ஆசிரியர்களுக்கு ஆசிரியர் அறிவுரைப்பு வழிகாட்டிகளும் வழங்கப்படுவதானது கற்றல் - கற்பித்தல் நடவடிக்கைகளை உச்சப் பயன்மிக்கதாக ஆக்குவதைக் குறிக்கோளாகக் கொண்டதாகும்.

பாடத்திட்டத்தில் குறிப்பிடப்பட்டுள்ள தேர்ச்சிகளை மாணவர்கள் அடையும் பொருட்டு வினைத்திறன் மிக்க கற்றல் - கற்பித்தல் செயற்பாடுகளினூடாக மாணவர்களை வழிநடத்தும் நபர் ஆசிரியரேயாவார். எனவே, உங்கள் பொறுப்பை மிகத் தெளிவாக விளங்கி, இவ் ஆசிரியர் அறிவரைப்பு வழிகாட்டியை உச்சப் பயனைப் பெறும் வகையாகப் பயன்படுத்துங்கள். அதன் மூலம் கற்பித்தல் செயற்பாடு தொடர்பில் நல்லறிவு பெறுவதனூடாக கற்றல் செயற்பாட்டிலிருந்து மாணவர்கள் உச்சப் பயனைப் பெற்றுத் தேர்ச்சி மட்டங்களை அடையும் பொருட்டு அவர்களுக்கு அறிவூட்டும் பொறுப்பு உங்களைச் சார்ந்ததே.

தற்கால உலகின் சவால்களை வெற்றிகொள்ளும் மாணவர் பரம்பரையொன்றை உருவாக்கும் பாரிய பணியில் ஈடுபட்டுள்ள உங்களுக்கு இதன் மூலம் கற்றல் - கற்பித்தல் செயற்பாடுகளில் பண்புத் தர மேம்பாட்டை ஏற்படுத்த முடியும் என நம்புகிறேன்.

> டபிள்யூ.எம்.என்.ஜே. புஷ்பகுமார கல்வி வெளியீட்டு ஆணையாளர் நாயகம்

கல்வி வெளியீட்டுத் திணைக்களம் `இசுருபாய' பத்தரமுல்ல 2010.07.21

#### எழுத்தாளர் குழு

வழிகாட்டல்

: கலாநிதி உபாலி எம் சேதர பணிப்பாளர் நாயகம் தேசிய கல்வி நிறுவகம்

திரு. விமல் சியம்பலாகொட உதவிப் பணிப்பாளர் நாயகம் மொழிகள், சமூகவியல் மற்றும் சமூக விஞ்ஞான பீடம் தேசிய கல்வி நிறுவகம்.

நெறிப்படுத்தல்

திரு. லால். எச். விஜேசிங்ஹ பணிப்பாளர் (கணிதத் திணைக்களம்) விஞ்ஞான தொழில் நுட்பப் பீடம் தேசிய கல்வி நிறுவகம்.

இணைப்பாக்கம்

: **திரு. கே. கணேசலிங்கம்** பிரதம செயற்றிட்ட அதிகாரி தரம் 12 - 13 கணித செயற்றிட்டக் குழுத் தலைவர்

கலைத்திட்டக் குழு:

தரம் 12 - 13 கணித பாட செயற்றிட்டக் குழு

திரு. கே. கணேசலிங்கம் - பிரதம செயற்றிட்ட அதிகாரி திரு. எஸ். இராஜேந்திரம் - செயற்றிட்ட அதிகாரி திருமதி. டபிள்யூ.ஐ.ஜீ. ரத்னாயக - செயற்றிட்ட அதிகாரி திரு. ஜீ.பீ.எச்.ஜே. குமார - செயற்றிட்ட அதிகாரி திருமதி. எம்.என்.ஆர். பீரிஸ் - செயற்றிட்ட அதிகாரி திரு. ஜீ.எல். கருணாரத்ன - செயற்றிட்ட அதிகாரி

மீள்பார்வை:

**திரு. பி. டயஸ்** கணிதத்துறை, ஸ்ரீ ஜயவர்தனபுர பல்கலைக்கழகம்

**திரு. கபில த. சில்வா** கணிதத்துறை, ஸ்ரீ ஜயவர்தனபுர பல்கலைக்கழகம்

**திரு. சரத்குமார** கணிதத்துறை, ஸ்ரீ ஜயவர்தனபுர பல்கலைக்கழகம்

**கலாநிதி. எஸ்.என்.எப். யாப்பா** முகாமைத்துவ பீடம், ஸ்ரீ ஜயவர்தனபுர பல்கலைக்கழகம்

**கணினி பதிப்பும் வடிவமைப்பும் : எப்.ஏ.எப். நிஸ்மியா** தொழிநுட்ப உதவியாளர் தேசிய கல்வி நிறுவகம்

#### உள்ளடக்கம்

|                                        | பக்கம்  |
|----------------------------------------|---------|
| முகவுரை                                | iii     |
| முன்னுரை                               | iv      |
| கல்வி வெளியீட்டு ஆணையாளரின் செய்தி     | v       |
| எழுத்தாளர் குழு                        | vi      |
| 1. தரம் 13 - முதலாம் தவணை              | 1 - 15  |
| 2. தரம் 13 - இரண்டாம் தவணை             | 17 - 35 |
| 3. தரம் 13 - மூன்றாம் தவணை             | 37 - 61 |
| 4. கணித பாடத்திற்கான திருத்திய பாடவேளை | 62 - 64 |
| 5. வினாக்கள், பாடசாலை மட்டக் கணிப்பீடு | 65 - 90 |
| 6. உசாக்கணை நால்கள்                    | 91      |

# கணிதம்

தரம் 13

ஆசிரியர் அறிவுரைப்பு வழிகாட்டி

முதலாம் தவணை

#### கணிதம் I

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                   | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                             | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 5.1                | 1. எண்ணுவதற்கான அடிப்<br>படைக் கோட்பாட்டை<br>விளக்குவார்.                        | வரிசை மாற்றமும் சேர்மானமும்<br>எண்ணுவதற்கான அடிப்படைக்<br>கோட்பாடு:<br>முதலாவது செய்கை $m$ வித்தியாசமான<br>முறைகளில் செய்யப்படலாம் என்க.<br>முதலாவது செய்கையின் ஒவ்வொரு<br>முறையையும் தொடர்ந்து இரண்டாவது<br>செய்கை, $n$ வித்தியாசமான முறை<br>களில் செய்யப்படலாம் என்க. இப்போது<br>இரு செய்கைகளையும் அடுத்தடுத்து<br>செய் யக்கூடிய வித்தியாசமான<br>முறைகளின் எண்ணிக்கை $m \times n$<br>ஆகும். | 12                            |
|                    | 2. காரணியத்தை<br>வரையறுப்பார்.                                                   | துதை உதுர்கள்கள் முல்ல வள்க்கும். $n$ ஒரு மறையற்ற நிறையெண்ணாக இருக்க, காரணியம் $n$ பின்வருமாறு வரையறுக்கப்படும்.  போதுவான வடிவம்: $0! = 1$ $n! = 1.2.3n, n ≥ 1$ மடங்கு வடிவம்: $F(0) = 1$ $F(n) = n F(n-1)$                                                                                                                                                                                   |                               |
|                    | 3. <sup>7</sup> p <sub>n</sub> ஐ வரையறுத்து<br>அதற்கு சூத்திரத்தைப்<br>பெறுவார். | ஒன்றுக்கொன்று வித்தியாசமான $n$ பொருட்களிலிருந்து ஒரே தடவையில் எல்லாவற்றையும் ஒருமித்து எடுத்துப் பெறப்படும் வரிசை மாற்றங்களின் எண்ணிக்கை $^{n}p_{n}$ என வரையறுக்க. $^{n}p_{n} = n!$ எனப் பெறுக. இங்கு $^{n}$ ஒரு நேர் நிறையெண்.                                                                                                                                                               |                               |
|                    | 3. "p, ஐ வரையறுத்து<br>அதற்கு சூத்திரத்தைப்<br>பெறுவார்.                         | ஒன்றுக்கொன்று வித்தியாசமான $n$ பொருட்களிலிருந்து தடவைக்கு $r$ ( $0 \le r \le n$ ) பொருட்களை எடுத்துப் பெறும் வரிசை மாற்றங்களின் எண்ணிக்கை $^n p_r$ என வரையறுக்க. $^n p_r = \frac{n!}{(n-r)!}$ எனப் பெறுக.                                                                                                                                                                                     |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                               | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | உள்ளதெனின் வரிசை                                                                                             | மறிதரலுக்கு சந்தர்ப்பம் உள்ளபோது,<br>ஒன்றுக்கொன்று வித்தியாசமான $n$<br>பொருட்களிலிருந்து $r$ ( $0 \le r \le n$ )<br>பொருட்களின் வரிசை மாற்றங்களின்<br>(ஒவ்வொன்றும் எத்தனை தடவையும்<br>தோன்றலாம் எனின்) எண்ணிக்கை $n'$<br>எனக் காட்டுக.                                                              |                               |
|                    | பொருட்களின் வரிசை                                                                                            | n பொருட்களில் $r$ பொருட்கள் ஒரே மாதிரியானவையாகவும், மீதி எல்லாம் ஒன்றுக்கொன்று வித்தியாசமானவை யாகவும் இருப்பின் $n$ பொருட்களினதும் வரிசை மாற்றங்களின் எண்ணிக்கை $\frac{n!}{r!}$ எனக் காட்டுக.                                                                                                       |                               |
|                    | 7. சக்கர (வட்ட) வரிசை<br>மாற்றங்களை விளக்குவார்.                                                             | ஒன்றுக்கொன்று வித்தியாசமான $n$<br>பொருட்கள் யாவற்றையும் கொண்டு<br>ஆக்கும் சக்கர (வட்ட) வரிசை<br>மாற்றங்களின் எண்ணிக்கை ( $n-1$ )!<br>எனக் காட்டுக. $n \ge 1$                                                                                                                                        | 1                             |
| 5.2                | 1. சேர்மானத்தை<br>வரையறுப்பார்.                                                                              | ஒன்றுக்கொன்று வித்தியாசமான $n$ பொருட்களிலிருந்து தடவைக்கு $r$ (o $\leq$ r $\leq$ n) பொருட்கள் வீதமான சேர்மானங் களின் எண்ணிக்கை $^nC_r$ என                                                                                                                                                           | 7650-                         |
|                    | <ol> <li>வரிசை மாற்றம்,</li> <li>சேர்மானம் என்பவற்றிற்<br/>கிடையேயோன வேறு<br/>பாட்டை விளக்குவார்.</li> </ol> | வரையறுக்க. ${}^{n}C_{r}=\frac{n!}{(n-r)!r!}$ எனப் பெறுக. பின்வருவனவற்றை நிறுவுக. $(i)  {}^{n}C_{r}={}^{n}C_{n-r}$ $(ii)  {}^{n}C_{r}+{}^{n}C_{r-1}={}^{n+1}C_{r}$ வரிசை மாற்றங்களில் ஒழுங்கு (வரிசை) முக்கியம் என்பதையும், சேர்மானங்களில் ஒழுங்கு கவனத்தில் கொள்ளப்படுவ தில்லை என்பதையும் விளக்குக. |                               |
|                    | കിடையேயோன வேறு                                                                                               | ஒழுங்கு கவனத்தில் கொள்ளப்படுவ                                                                                                                                                                                                                                                                       |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                       | பாடக் குறிப்புகள்                                                                                                                                            | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                      | ஒன்றுக்கொன்று வித்தியாசமான<br>பொருட்களிலிருந்து தடவைக்கு எத்தனை<br>பொருட்கள் வீதமும் எடுக்கக்கூடிய<br>சேர்மானங்களின் மொத்த எண்ணிக்கை<br>2" – 1 எனக் காட்டுக. |                               |
|                    |                                                                                      | மாணவர்கள் வரிசை மாற்றம், சேர்மானம்<br>என்பவற்றில் பிரசினங்களைத் தீர்ப்பதற்கு<br>வழிப்படுத்துக.                                                               |                               |
|                    |                                                                                      | நுண் கணிதம்                                                                                                                                                  |                               |
| 13.6               | <ol> <li>அதிகரிக்கும் சார்புகள்<br/>குறையும் சார்புகள்<br/>என்பவற்றை இனங்</li> </ol> | சார்பு $f$ , ஆயிடை $(a, b)$ இல்<br>வரையறுக்கப்பட்டுள்ளது என்க.                                                                                               | 06                            |
|                    | காண்பார்.                                                                            | அதிகரிக்கும் சார்பை வரையறுத்தல்                                                                                                                              |                               |
|                    |                                                                                      | $(\mathrm{i})$ எல்லா $x_1$ $x_2 \in (a,b)$ இற்கும்                                                                                                           |                               |
|                    |                                                                                      | $x_1 {<} x_2 \implies f(x_1) {\le} f(x_2)$ எனின்,                                                                                                            |                               |
|                    |                                                                                      | f ஆனது (a,b) இல் <b>ஓரியல்பான</b>                                                                                                                            |                               |
|                    |                                                                                      | <b>அதிகரிக்கும் சார்பு</b> எனப்படும்.                                                                                                                        |                               |
|                    |                                                                                      | $(	ext{ii})$ எல்லா $x_1$ $x_2 \in (a,b)$ இற்கும்                                                                                                             |                               |
|                    |                                                                                      | $x_1 {<} x_2 \Rightarrow f(x_1) {<} f(x_2)$ எனின்,                                                                                                           |                               |
|                    |                                                                                      | fஆனது $(a,b)$ இல்                                                                                                                                            |                               |
|                    |                                                                                      | திட்டமாய் அதிகரிக்கும்                                                                                                                                       |                               |
|                    |                                                                                      | <b>சார்பு</b> எனப்படும்.                                                                                                                                     |                               |
|                    |                                                                                      | குறையும் சார்பை வரையறுத்தல்                                                                                                                                  |                               |
|                    |                                                                                      | (i) எல்லா $x_1$ , $x_2 \in (a,b)$ இற்கும்                                                                                                                    |                               |
|                    |                                                                                      | $x_1 {<} x_2 \implies f(x_1) {\geq} f(x_2)$ எனின்,                                                                                                           |                               |
|                    |                                                                                      | f ஆனது (a,b) இல் <b>ஓரியல்பான</b>                                                                                                                            |                               |
|                    |                                                                                      | <b>குறையும் சார்பு</b> எனப்படும்.                                                                                                                            |                               |
|                    |                                                                                      | $(ii)$ எல்லா $x_1$ , $x_2 \in (a,b)$ இற்கும்                                                                                                                 |                               |
|                    |                                                                                      | $x_1 < x_2 \implies f(x_1) > f(x_2)$ எனின்,                                                                                                                  |                               |
|                    |                                                                                      | fஆனது $(a,b)$ இல்                                                                                                                                            |                               |
|                    |                                                                                      | <b>திட்டமாய் குறையும் சார்பு</b><br>எனப்படும்.                                                                                                               |                               |
|                    |                                                                                      | (குறிப்பு: ஒருமைச் சார்பு ஓரியல்பான<br>சார்பாகும்.)                                                                                                          |                               |

| தேர்ச்சி<br>மட்டம் | المعلق المعلق                                                                                                         | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                            | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | <ol> <li>பெறுதிகளை உபயோகித்து<br/>அதிகரிக்கும் சார்புகளை<br/>யும் குறையும் சார்புகளை<br/>யும் விளக்குவார்.</li> </ol> | [6100)കഥിലക്കാകക്കൂ ഒരിക.                                                                                                                                                                                                                                                                    |                               |
|                    | 3. நிலையான புள்ளிகளை<br>விளக்குவார்.                                                                                  | சார்பு $f$ , ஆயிடை $(a,b)$ இல் வரையறுக்கப்பட்டுள்ளது என்க. $f'(c) = 0$ ஆகுமாறு $x \in (a,b)$ உள்ளது எனின், $x = c$ இல் $f$ இற்கு ஒரு நிலையான புள்ளி உண்டு. இந்நிலையான பெறுமானம் $f(c)$ ஆகும்.                                                                                                |                               |
| 9                  | <ol> <li>சார்பு ஒன்றின் ஓரிட<br/>உயர்வு/ ஓரிட இழிவு<br/>என்பவற்றை<br/>வரையறுப்பார்.</li> </ol>                        | (i) சார்பு $f$ இற்கு $x = a$ இல் நிலையான புள்ளி உண்டு என்க. $x = a$ யிலும் அதன் அயலிலும் $f$ வரையறுக்கப்பட்டுள்ளது என்க. $\delta > 0$ ஆக இருக்க எல்லா $x \in (a - \delta, a + \delta) - \{a\}$ இற்கும் $f(x) < f(a)$ எனின், $f$ ஆனது $x = a$ இல் <b>ஓரிட உயர்வைக்</b> கொண்டுள்ளது எனப்படும். |                               |
|                    |                                                                                                                       | (ii) சார்பு $f$ ஆனது $x=a$ இலும் அதன் அயலிலும் வரையறுக்கப் பட்டுள்ளது என்க. $\delta > 0$ ஆக இருக்க எல்லா $x \in (a-\delta, a+\delta) - \{a\}$ இற்கும் $f(x) > f(a)$ எனின், $f$ ஆனது $x=a$ இல் <b>ஓரிட இழிவைக்</b> கொண்டுள்ளது எனப்படும்.                                                     |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                          | பாடக் குறிப்புகள்                                                                       | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                         | சார்பு $f$ ஆனது $x=a$ இன் அயலில் வகையிடதக்க சார்பு என்க. $\delta>0$ ஆயிருக்க.           |                               |
|                    | одина (Боли).                                                           | $(i)$ $f'(a)=0$ ஆயும், அத்துடன் $(ii)$ எல்லா $x\in (a-\delta,a)$ இற்கும்                |                               |
|                    |                                                                         | f'(x)>0 ஆயும் அத்துடன்                                                                  |                               |
|                    |                                                                         | (iii) எல்லா $x \in (a, a + \delta)$ இற்கும்                                             |                               |
|                    |                                                                         | $f'(x)\!<\!0$ என இருப்பின்                                                              |                               |
|                    |                                                                         | x=a இல் $f$ இற்கு ஓரிட உயர்வு உண்டு<br>என விளக்குக.<br>மேலும்,                          |                               |
|                    |                                                                         | (i) $f'(a)=0$ ஆயும், அத்துடன்                                                           |                               |
|                    |                                                                         | $(ii)$ எல்லா $x \in (a-\delta,a)$ இற்கும்                                               |                               |
|                    |                                                                         | f'(x) < 0 ஆயும் அத்துடன்                                                                |                               |
|                    |                                                                         | (iii) எல்லா $x \in (a, a + \delta)$ இற்கும்                                             |                               |
|                    |                                                                         | f'(x)>0 என இருப்பின் $x=a$ இல் $f$ இற்கு ஓரிட இழிவு உண்டு என விளக்குக.                  |                               |
|                    | <ol> <li>சார்பு ஒன்றின் விபத்திப்<br/>புள்ளியை வரையறுப்பார்.</li> </ol> | சார்பு $f$ ஆனது புள்ளி $a$ இன் அயலில் வகையிடதக்கது என்க.                                |                               |
|                    |                                                                         | $(i)$ $f'(a) = 0$ ஆயும், அத்துடன் $(ii)$ எல்லா $x \in (a - \delta, a + \delta) - \{a\}$ |                               |
| υ.                 |                                                                         | இற்கும் $f'(x) > 0$<br>அல்லது                                                           |                               |
|                    |                                                                         | எல்லா $x \in (a-\delta,a+\delta)-\{a\}$                                                 |                               |
|                    |                                                                         | இற்கும் $f'(x) < 0$ ஆகுமாறு $\delta > 0$ இருப்பின்                                      |                               |
|                    |                                                                         | x=a இல் $f$ இற்கு விபத்திப் புள்ளி உண்டு என விளக்குக.                                   | - 1                           |

| தேர்ச்சி<br>மட்டம் | கற்றற் (                                                                  | 8பறுகள்             | பாடக் குறிப்புகள்                                                                                                                                                     | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|---------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | 7. ஓரிட உய<br>இழிவைச்<br>இரண்டாம்<br>உபயோகி                               | சோதிக்க<br>பெறுதியை | f'(a) = 0 ஆகவும், $f''(a) > 0$ ஆகவும் இருப்பின் $x = a$ இல் $f$ இற்கு <b>ஓரிட இழிவு</b> உ <b>ண்டு</b> என விளக்குக.                                                    | 9                             |
|                    |                                                                           |                     | <ul> <li>(i) f'(a) = 0 ஆகவும்,</li> <li>f"(a) &lt; 0 ஆகவும் இருப்பின்</li> <li>x = a இல் f இற்கு ஓரிட உயர்வு</li> <li>உண்டு என விளக்குக.</li> </ul>                   |                               |
|                    | 8. பிரசினங்க<br>பெறுதிகை<br>உபயோகி                                        |                     | நாளாந்த செயற்பாடுகளில் ஓரிட<br>உயர்வு, இழிவு தொடர்பான பிரசினங்<br>களைத் தீர்ப்பதற்கான வழிமுறைகளைக்<br>கலந்துரையாடுக.                                                  |                               |
| 13.7               | 1. சார்புகளின்<br>வரைவார்.                                                | ா வரைபினை           | மேலே உள்ள கோட்பாடுகளைப்<br>பயன்படுத்தி சார்புகளின் வரைபுகளை<br>பரும்படியாக வரைய மாணவரை<br>வழிப்படுத்துக.<br>கிடை, நிலைக்குத்து அணுகுகோடுகளும்<br>உள்ளடக்கப்பட்டுள்ளன. |                               |
| 13.8               | <ol> <li>தொகையீட்டில<br/>வகையீட்டில<br/>செய்கை எ<br/>வரையறுப்ப</li> </ol> | ர் நேர்மாறு<br>ன    | சார்பு $f(x)$ தரப்பட்டிருக்க $rac{d}{dx}\{F(x)\}=f(x)$ ஆகுமாறு சார்பு $F(x)$ இருப்பின் $F(x)$ என்பது, $f(x)$ இன் பெறுதி முரண் எனப்படும்.                             |                               |
|                    | 2. எதேச்சை<br>விளக்குவார்                                                 |                     |                                                                                                                                                                       |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                  | பாடக் குறிப்புகள்                                                                                                                                                                                                                      | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                 | மேலே தரப்பட்ட வடிவம் <b>வரையறாத</b><br>தொகையீடு எனப்படும்.<br>குறிப்பு: பிரசினங்களைத் தீர்க்கும்போது<br>எதேச்சை மாறிலி C ஐக் குறிப்பிடுக.                                                                                              |                               |
|                    | 3. தொகையீட்டின் அடிப்<br>படைத் தேற்றங்களைக்<br>கூறுவார்.                        | பின்வரும் தேற்றங்களை விளக்குக. $(i)\int \big\{f(x)+g(x)\big\}dx = \int f(x)dx + \int g(x)dx$ $(ii)\int \lambda f(x)dx = \lambda \int f(x)dx$ இங்கு $f(x)$ , $g(x)$ என்பன $x$ இன் சார்புகளும் $\lambda$ ஒரு மாறிலியும் ஆகும்.           |                               |
| 13.                | <ol> <li>நியம சார்புகளின் வரை<br/>யறாத தொகையீடுகளை<br/>இனங்காண்பார்.</li> </ol> |                                                                                                                                                                                                                                        | 07                            |
|                    |                                                                                 | (b) $\int \frac{1}{x} dx = \ln x  + C \qquad (x \neq 0)$ (c) $\int e^x dx = e^x + C$ 2. $\int \sin x  dx = -\cos x + C$                                                                                                                |                               |
|                    |                                                                                 | 2. $\int \sin x  dx = -\cos x + C$ 3. $\int \cos x  dx = \sin x + C$ 4. $\int \sec^2 x  dx = \tan x + C$ 5. $\int \cos ec^2 x  dx = -\cot x + C$ 6. $\int \sec x \tan x  dx = \sec x + C$ 7. $\int \cos ec x \cot x  dx = -\csc x + C$ |                               |
|                    | 3                                                                               | $f(x)$ இன் பெறுமதி முரண் $g(x)$ என்க. எனவே $\displaystyle \frac{d}{dx}g(x)=f(x)$ ஆகும். $g(x)$ இல் $x$ இற்கு $px+q(p\neq 0)$ எனப் பிரதியிட்டு $x$ ஐக் குறித்து வகையிட,                                                                 |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                                    | பாடக் குறிப்புகள்                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| ,                  |                                                                                                                                   | $\left  \frac{d}{dx} \left( \frac{1}{p} g(px+q) \right) \right  = \frac{d}{d(px+q)} g(px+q)$ $= f(px+q)$ $\Rightarrow \int f(px+q) dx = \frac{1}{p} g(px+q) + C$    |                               |
|                    | <ol> <li>விகிதமுறு சார்பு ஒன்றின்<br/>தொகுதி, பகுதியின் வகை<br/>யீடாக இருக்க, அதனைத்<br/>தொகையிடுவார்.</li> </ol>                 | $\int \frac{f(x)}{f(x)} dx = \ln  f(x)  + C$                                                                                                                        |                               |
|                    | <ol> <li>பகு திப் பின் னங் களைப்<br/>பயன்படுத்தி விகிதமுறு<br/>சார்புகளைத் தொகையிடு<br/>வார்.</li> </ol>                          | 2()                                                                                                                                                                 |                               |
|                    | <ol> <li>திரிகோண கணித சார்பு<br/>களைத் தொகையிடுவார்.</li> </ol>                                                                   | பின்வரும் தொகையீடுகளைக் காண்<br>பதற்கு திரிகோண கணித வாய்ப்பாடு<br>களையும் நியம தொகையீட்டையும்<br>பயன்படுத்துக.<br>$\int \tan x dx, \int \cot x dx, \int \sec x dx.$ |                               |
|                    |                                                                                                                                   | $\int \cos ec \ x dx, \int \sin^2 x dx, \int \cos^2 x dx.$                                                                                                          |                               |
|                    |                                                                                                                                   | $\int \sin mx \cos nx  dx, \int \cos mx \cos nx  dx$ $\int \sin mx \sin nx  dx$                                                                                     | - 7.                          |
| 13.10              | <ol> <li>தொகையீட்டு நுண்கணித<br/>அடிப்படைத் தேற்றத்தைப்<br/>பயன்படுத்தி வரையறுத்த<br/>தொகையீட்டைத்<br/>தீர்மானிப்பார்.</li> </ol> | $a = \frac{1}{a} (a) \frac{1}{a} (a) \frac{1}{a} (b) \frac{1}{a} (a)$                                                                                               | 06                            |
|                    |                                                                                                                                   |                                                                                                                                                                     |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                               | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                      | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                              | பின் வரும் தேற்றங்கள் பற்றிக்<br>கலந்துரையாடுக.<br>(i) $\int_a^b \{f(x) + g(x)\} dx = \int_a^b f(x) + \int_a^b g(x) dx$<br>(ii) $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$ $\lambda$ மாறிலி<br>(iii) $\int_a^b f(x) dx = -\int_a^a f(x) dx$<br>(iv) $f(x)$ ஆயிடை $[a,c]$ , $[c,b]$ இல்<br>தொகையிடத்தக்க தெனின்,                                             |                               |
| 13.11              | தொகையீட்டுக்குரிய     பல்வேறு முறைகளைப்     பயன்படுத்துவார். | பின் வரு ம் தொகையீடுகளைக்<br>கலந்துரையாடுக. $I = \int f'(x) \{f(x)\}^r dx$ $t = f(x) \text{ என்க.}$ $\frac{dt}{dx} = f'(x)$ இப்பொழுது $I = \int t^r dt = \frac{1}{r+1} t^{r+1} \qquad r \neq -1 \text{ எனில்,}$ $=  \ln t  \qquad r = 1 \text{ எனில்,}$ $\int \cos^m x  dx$ $\int \sin^m x  \cos^n x  dx$ இங்கு $m, n$ நேர்நிறை யெண்கள்<br>$\int \sqrt{a^2 - x^2}  dx$ | 06                            |

#### கணிதம் II

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                  | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                         | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 5.1                | <ol> <li>எழுமாற்றுப்<br/>பரிசோதனையை<br/>விவரிப்பார்.</li> </ol> | நிகழ்தகவு<br>எழுமாற்றுப் பரிசோதனை பற்றிக்<br>கலந்துரையாடுக.<br>எழுமாற்றுப் பரிசோதனைக்கான<br>உதாரணங்கள் சிலவற்றைக் கூறுக.                                                                                                                                                                                                                                  | 05                            |
|                    | 2. மாதிரிவெளியை<br>வரையறுப்பார்.                                | பரிசோதனையொன்றின் எல்லா இயல்<br>தகு பேறுகளையும் கொண்ட தொடை<br>அப்பரிசோதனைக்கான மாதிரிவெளி<br>எனப்படும்.                                                                                                                                                                                                                                                    |                               |
|                    | 3. நிகழ்ச்சியை<br>வரையறுப்பார்.                                 | மாதிரிவெளியொன்றின் தொடைப் பிரிவு<br>(முறைமை அல்லது முறைமையற்ற)<br>நிகழ்ச்சி எனப்படும்.                                                                                                                                                                                                                                                                    |                               |
|                    |                                                                 | (அ-து) பரிசோதனையொன்றின் ஒன்று<br>அல்லது ஒன்றுக்குமேற்பட்ட பேறுகளின்<br>சேர்க்கை நிகழ்ச்சி எனப்படும்.                                                                                                                                                                                                                                                      |                               |
|                    | 4. நிகழ்ச்சி வெளியை<br>விளக்குவார்.                             | எழுமாற்றுப் பரிசோதனையொன்றின்<br>எல்லா நிகழ்ச்சிகளையும் கொண்ட<br>தொடை நிகழ்ச்சி வெளி எனப்படும்.                                                                                                                                                                                                                                                            |                               |
|                    |                                                                 | <i>குறிப்பு:</i> சூனியத்தொடையும், மாதிரி<br>வெளியும் நிகழ்ச்சிவெளியின் இரு<br>மூலகங்கள் என்பதனை கவனத்திற்<br>கொள்க.                                                                                                                                                                                                                                       |                               |
|                    | 5. எளிய நிகழ்ச்சி, கூட்<br>நிகழ்ச்சி என்பனவற்ல<br>விளக்குவார்.  | டு பரிசோதனையொன்றில் ஒரு பேற்றினை<br>றை மாத்திரம் கொண்ட நிகழ்ச்சி எளிய<br>நிகழ்ச்சி எனப்படும்.                                                                                                                                                                                                                                                             |                               |
|                    |                                                                 | பரிசோதனையொன்றின் ஒன்றிற்கு<br>மேற்பட்ட பேறுகளின் சேர்க்கையானது<br>கூட்டு நிகழ்ச்சி எனப்படும்.<br>(i) இரு நிகழ்ச்சிகளின் ஒன்றிப்பு<br>(ii) இருநிகழ்ச்சிகளின் இடைவெட்டு<br>(iii) தம்முட் புறநீங்கும் நிகழ்ச்சிகள்<br>(iv) ஒன்றுவிடாமல் யாவுமளவிய<br>நிகழ்ச்சிகள் (Collectively Exhaustic)<br>(v) நிகழ்ச்சியொன்றின் நிரப்பி நிகழ்ச்சி<br>என்பவற்றை விளக்குக. |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                        | பாடக் குறிப்புகள்                                                                                                       | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 5.2                | 1. நிகழ் தகவின் பூர்வகால<br>வரை விலக்கணத் தினை<br>குறிப்பிடுவார்.                     | To Eding Davidon Ett Ti Diappoolation in a                                                                              | 10                            |
|                    | <ol> <li>நிகழ்தகவினர் பரிசோதனை<br/>முறை வரைவிலக்கணத்தை<br/>குறிப்பிடுவார்.</li> </ol> | (ii) மாதிரி வெளியானது முடிவில்லாத தாக இருக்கும்போது மேலுள்ள சூத்திரம் பொருத்தமற்றதாகும்.                                |                               |
|                    | 3. அடிப்படை உண்மைகளா<br>லான வரைவிலக்கணத்<br>தைக் குறிப்பிடுவார்.                      | மீடிறன் அணுகுமுறையாகும். எழுமாற்றுப் பரிசோதனையொன்றின்<br>மாதிரிவெளி Ω இற்கு ஒத்த நிகழ்ச்சி<br>வெளி ε என்க. P:ε ——>[0,1] |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                         | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                         | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                        | (i) $P(\phi) = 0$<br>(ii) $P(A') = 1 - P(A)$<br>(iii) $P(A) = P(A \cap B) + P(A \cap B')$<br>(iv) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$                                                                                                                                                               | l                             |
| 5.3                | 1. நிபந்தனை நிகழ்தகவை<br>வரையறுப்பார். | எழுமாற்றுப் பரிசோதனையொன்றின் மாதிரிவெளி $\Omega$ இல் $A$ , $B$ என்பன இரு நிகழ்ச்சிகள் என்க. இங்கு $P(A) > 0$ . நிகழ்ச்சி $A$ நடைபெற்றது எனத்தரப்படும் போது நிகழ்ச்சி $B$ நடப்பதற்கான நிகழ்தகவு நிபந்தனை நிகழ்தகவு எனப்படும். இது $P(B/A)$ எனக் குறிக்கப்படும். $P(B/A) = \frac{P(A \cap B)}{P(A)}$ ஆகும். |                               |

| தேர்ச்சி<br>மட்டம் |                                                                                                                                         | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                         | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | 2. நிபந்தனை நிகழ்தகவு<br>தொடர்பான தேற்றங்களை<br>நிறுவுவார்.                                                                             |                                                                                                                                                                                                                                                                           |                               |
|                    | <ol> <li>நிகழ்தகவிற்கான பெருக்கல்<br/>விதியைக் குறிப்பிடுவார்.</li> </ol>                                                               | பாரிசோதனையொன்றின் ஏதாவது இரு நிகழ்ச்சிகள் $A_1,A_2$ என்க. $P(A_1)>0$ $P(A_1\cap A_2)=P(A_1)\cdot P(A_2/A_1)$ ஆகும். மூன்று நிகழ்ச்சிகளுக்கான பெருக்கல் விதியைக் கூறுக. $(அ-து) \qquad P(A_1\cap A_2\cap A_3)$ $= P(A_1)\cdot P(A_2/A_1) P(A_3/A_1\cap A_2)$               |                               |
| 5.4                | 1. சாரா நிகழ்ச்சிகளை<br>வரையறுப்பார்.                                                                                                   | $\mathbf{A}_1, \mathbf{A}_2$ என்பன நிகழ்ச்சிவெளி $m{\mathcal{E}}$ இலுள்ள இரு நிகழ்ச்சிகள் என்க. $\mathbf{A}_1, \mathbf{A}_2$ என்பன சாரா நிகழ்ச்சிகள் எனின் மட்டும் $\mathbf{P}(\mathbf{A}_1 \cap \mathbf{A}_2) = \mathbf{P}(\mathbf{A}_1) \cdot \mathbf{P}(\mathbf{A}_2)$ | 07                            |
|                    | <ol> <li>சாரா நிகழ்ச்சிகள் தொடர்<br/>பான தேற்றங்களை நிறுவி<br/>அவற்றைப் பிரசினங்கள்<br/>தீர்ப்பதற்குப் பயன்படுத்து<br/>வார்.</li> </ol> | (i) A உம் B′ உம்                                                                                                                                                                                                                                                          |                               |
|                    | <ol> <li>மூன்று நிகழ்ச்சிகளுக்கான<br/>சாராமையை விளக்குவார்.</li> </ol>                                                                  | ஒரு எழுமாற்றுப் பரிசோதனையின்<br>மாதிரிவெளி Ω தொடர்பான அமைந்த<br>ஒரு நிகழ்ச்சி வெளி ε ஆகும். இந்<br>நிகழ்ச்சி வெளியில் A, B, C மூன்று<br>நிகழ்ச்சிகள் என்க.                                                                                                                |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                                                                              | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                                                                                                             | <ul> <li>(i) P(A ∩ B) = P(A) · P(B)</li> <li>(ii) P(B ∩ C) = P(B) · P(C)</li> <li>(iii) P(A ∩ C) = P(A) · P(C)</li> <li>P(A ∩ B ∩ C) = P(A) · P(B) · P(C)</li> <li>ஆயின், ஒவ்வொன்றும் மற்றயதுடன் சாரா நிகழ்ச்சிகள் ஆகும்.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
| 5.5                | <ol> <li>மாதிரிவெளியின் பிரிப்பு<br/>களை வரையறுப்பார்.</li> <li>மோத்த நிகழ்தகவுத்<br/>தேற்றத்தைக் கூறுவார்.<br/>பிரசினங்களைத் தீர்ப்பதற்<br/>குப் பிரயோகிப்பார்.</li> </ol> | ஒரு எழுமாற்றுப் பரிசோதனையின் மாதிரிவெளி $\Omega$ ஆகும். $\Omega$ இற்கு ஒத்த நிகழ்ச்சிவெளி $\mathcal{E}$ இல் $B_1$ , $B_2$ , $B_3$ $B_n$ என்பன நிகழ்ச்சித் தொடரி என்க. (i) $B_i \cap B_j = \phi$ எல்லா $i \neq j$ இற்கும் (ii) $\bigcup_{i=1}^n B_i = \Omega$ ஆகவும் இருப்பின், $\{B_1^-, B_2^-, \dots, B_n^-\}$ ஆனது மாதிரிவெளி $\Omega$ இன் ஒரு பிரிப்பு எனப்படும். ஒரு எழுமாற்றுப் பரிசோதனையின் மாதிரிவெளி $\Omega$ ஆகும். $\Omega$ இற்கு ஒத்த நிகழ்ச்சிவெளி $\mathcal{E}$ இல், $\{B_1^-, B_2^-, \dots, B_n^-\}$ ஆனது மாதிரிவெளி $\Omega$ ஆன் ஒரு பிரிப்பு என்க. $P(B_1^-) > 0$ ஆகும்போது, நிகழ்ச்சிவெளியி லுள்ள எந்த ஒரு நிகழ்ச்சி $A$ இற்கும், | 06                            |
|                    | 3. 'பேயசின்' தேற்றத்தைக்<br>கூறுவார்.<br>பிரசினங்களைத் தீர்ப்பதற்<br>குப் பிரயோகிப்பார்.                                                                                    | $P(A) = \sum\limits_{i=1}^n P(A/B_i) \cdot P(B_i)$ ஆகும்.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |

இரண்டாந் தவணை

#### கணிதம் I

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                         | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                           | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 6.0                | 1. பஸ் <mark>கா</mark> லின் முக்கோணியை<br>விளக்குவார்.                 | <b>ஈருறுப்பு விரிவு</b><br>1<br>1 2 1<br>1 3 3 1<br>1 4 6 4 1                                                                                                                                                                                                               | 12                            |
|                    |                                                                        | மேலேயுள்ள எண் ஒழுங்கை அவதானிக்க. வரிசையின் அந்தங்களி லுள்ள எண்களைத் தவிர ஏனைய எண்கள், மேலே உள்ள வரிசையின் இருபக்கத்திலும் உள்ள எண்களின் கூட்டுத்தொகைக்குச் சமமாகும். இவ்வொழுங்கு பஸ்காலின் முக்கோணி ஆகும். பின்வருவனவற்றை விளக்குக. $(1+x)^1 = 1+x$ $= {}^1C_0 + {}^1C_1.x$ |                               |
|                    |                                                                        | $(1+x)^2 = 1 + 2x + x^2$ $= {}^{2}C_0 + {}^{2}C_1 \cdot x + {}^{2}C_2 x^2$ $(1+x)^3 = 1 + 3x + 3x^2 + x^3$                                                                                                                                                                  | :                             |
|                    |                                                                        | $=$ ${}^3\mathrm{C}_0 + {}^3\mathrm{C}_1.x + {}^3\mathrm{C}_2x^2 + {}^3\mathrm{C}_3x^3$ $(1+x)^4$ , $(1+x)^5$ என்பவற்றின் விரிவு களைக் கலந்துரையாடுக.                                                                                                                       |                               |
|                    | 2. நேர் நிறையெண் சுட்டிக்<br>கான ஈருறுப்புத் தேற்றத்<br>தைக் கூறுவார். | நேர் நிறையெண் சுட்டிக்கான ஈருறுப்புத்<br>தேற்றத்தைக் கூறுக. $(a+x)^n = {}^n\mathbf{C}_0 a^n + {}^n\mathbf{C}_1 a^{n-1} x + {}^n\mathbf{C}_2 a^{n-2} x^n + \dots + {}^n\mathbf{C}_n x^n$ $= \sum_{r=0}^n {}^n\mathbf{C}_r a^{n-r} x^r$                                       |                               |
|                    |                                                                        | இங்கு ${}^{n}C_{r} = \frac{n!}{(n-r)!r!} (0 \le r \le n)$ இவ்விரிவில், (i) ${}^{n}C_{0}$ , ${}^{n}C_{1}$ , ${}^{n}C_{2}$ ${}^{n}C_{n}$ என்பன ஈருறுப்புக் குணகங்கள் எனப்படும்.                                                                                               |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                        | பாடக் குறிப்புகள்                                                                                                                                                                                                          | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | я                                                                                                     | $(ii)$ ${}^n C_0 a^n, {}^n C_1 a^{n-1}, {}^n C_n$ என் பன விரிவின் குணகங்கள் எனப்படும்.                                                                                                                                     |                               |
|                    |                                                                                                       | <ul><li>(iii) விரிவில் உறுப்புக்களின்<br/>எண்ணிக்கை n+1 ஆகும்.</li></ul>                                                                                                                                                   |                               |
|                    |                                                                                                       | $(iv)$ பொது உறுப்பு $T_{r+1}$ ஆனது $T_{r+1} = {}^n C_r a^{n-r}.x^r$ ஆகும்.                                                                                                                                                 |                               |
|                    | 1.7                                                                                                   | குறிப்பு: இங்கு விரிவு $x$ இன் ஏறடுக்கு<br>களில் உள்ளது.                                                                                                                                                                   |                               |
|                    | <ol> <li>பிரசினங்கள் தீர்ப்பதற்கு<br/>ஈருறுப்பு விரிவைப்<br/>பயன்படுத்துவார்.</li> </ol>              | $(1+x)^n$ இற்கான விரிவைப் பெறுக.<br>ஈருறுப்பு விரிவைப் பயன்படுத்தி எளிய<br>பிரயோகங்கள்.                                                                                                                                    |                               |
| 4.2                | <ol> <li>மெய்யெண் ஒன்றின் மட்டுப்<br/>(தனிப் பெறுமானம்)<br/>பெறுமானத்தை வரையறுப்<br/>பார்.</li> </ol> | $x \in \mathbb{R}$ blooms.                                                                                                                                                                                                 | 08                            |
|                    | 2. மட்டுச் சார்வை<br>வரையறுப்பார்.                                                                    | $f:\mathbb{R} 	o \mathbb{R}$ ஒரு சார்பு என்க. $ f $ பின்வருமாறு வரையறுக்கப்படும். $ f :\mathbb{R} 	o \mathbb{R}$ $ f (x) =  f(x) $ $ f (x) = f(x), \ f(x) \ge 0$ எனின் $= -f(x), \ f(x) < 0$ எனின் உதாரணங்களுடன் விளக்குக. |                               |
|                    | 3. மட்டுச் சார்புகளின் வரைபு<br>களை வரைவார்.                                                          | $y =  ax ,  y =  x - a ,  y =  ax  + b$ $y =  ax + b  + c$ $y = c -  ax + b $ $y =  ax + b  \pm  cx + d $                                                                                                                  |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                   | பாடக் குறிப்புகள்                                                                                                                                  | பாடவேளை<br>களின் |
|--------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                    |                                                                  | $y =  ax^2 + b + c $                                                                                                                               | எண்ணிக்கை        |
|                    |                                                                  | பான்ற சார்புகளின் வரைபு.                                                                                                                           |                  |
|                    |                                                                  | இங்கு $a,b,c,d\in\mathbb{R}$                                                                                                                       |                  |
|                    | 4. மட்டுடன் தொடர்பான<br>சமனிலிகளைத் தீர்ப்பார்.                  | $ ax+b  \ge  cx+d $ $ ax+b  \ge cx+d$                                                                                                              |                  |
|                    |                                                                  | $ x+a  +  x+b  \ge  x+c $                                                                                                                          |                  |
|                    |                                                                  | போன்ற சமனிலிகளின் தீர்வுத்                                                                                                                         |                  |
|                    |                                                                  | தொடையை<br>(i) அட்சரகணித முறையால்                                                                                                                   |                  |
|                    |                                                                  | (ii) வரைபு முறையால் தீர்த்தல்.                                                                                                                     |                  |
| 10.10              |                                                                  | நுண் கணிதம்                                                                                                                                        |                  |
| 13.12              | <ol> <li>பகுதிகளாகத் தொகை<br/>யிடும் முறையை உப</li> </ol>        | u, v என்பன வகையிடத்தக்க சார்புகள்<br>என்க.                                                                                                         | 06               |
|                    | யரும் முறையை உப<br>யோகித்துத் தொகையிடு<br>வார்.                  | $\int \left( u \frac{dv}{dx} \right) dx = uv - \int \left( v \frac{du}{dx} \right) dx $ 61601 ds                                                   | =                |
|                    |                                                                  | காட்டுக.                                                                                                                                           |                  |
| 13.13              | <ol> <li>வளையி ஒன்றின் கீழான<br/>பரப்பளவைக் காண்பார்.</li> </ol> | y = f(x) வளையி ஒன்றின் கீழ் உள்ள<br>பரப்பளவை வரையறுத்த தொகையீடாக<br>வரையறுப்பார்.                                                                  | 04               |
|                    |                                                                  | $y=f\left( x ight)$ என்பது தொடர்ச்சியான சார்பு                                                                                                     |                  |
|                    |                                                                  | ஆகுக; $x \in [a,b]$ இற்கு $f(x) \geq 0$ ஆகுக. $y = f(x)$ என்ற வளையியாலும் $x$ அச்சாலும் $x = a$ , $x = b$ என்ற கோடுகளாலும் வரைப்புற்ற பிரதேசத்தின் |                  |
|                    |                                                                  | பரப்பளவு $\int\limits_a^b f(x)dx$ என்பதால் தரப்படும்.                                                                                              |                  |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                  | பாடக் குறிப்புகள்                                                                                                                                                                           | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                 | இது $x=a$ இலிருந்து $x=b$ வரை $y=f(x)$ என்ற வளையின் கீழான பரப்பளவு $\int\limits_a^b f(x)dx$ எனப்படும்.                                                                                      | 81 0001 00011 00 007 00       |
|                    | <ol> <li>இருவளையிகளுக்கு         இடைப்பட்ட பரப்பளவைக்</li></ol> | $y = f(x)$ , $y = g(x)$ என்பன $[a, b]$ எனும் ஆயிடையில் $f(x) \ge g(x)$ ஆகுமாறுள்ள இரு வளையிகள் என்க. $x = a$ , $x = b$ என்ற கோடுகளுக்கிடையில் இவ்விரு வளையிகளாலும் உள்ளடக்கப் பட்ட பரப்பளவு |                               |
| 13.14              | 1. பிரசினங்களைத் தீர்ப்பதற்கு                                   | $\left \int\limits_a^b \left\{f(x)-g(x)dx\right\} ight $ பொதுவாக, $\int\limits_a^b \left f(x)-g(x)\right dx$ வரையறுத்த தொகையீட்டின் பெறுமானத்                                               | 04                            |
|                    | அண்ணளவாக்கல் முறை<br>யைப் பயன்படுத்துவார்.                      | தைக் கணிப்பதற்குப் பின்வரும் அண்ணள<br>வாக்கல் முறைகளைக் கலந்துரையாடுக.<br>(i). சரிவகப் போலி விதி                                                                                            |                               |
|                    |                                                                 | $y_0$ $y_1$ $y_2$ $y_n$                                                                                                                                                                     | 8                             |
|                    |                                                                 | $a$ $b$ $x$ $\int_a^b f(x)dx$ என்பதால் தரப்படும் பரப்பளவு, ஒவ் வொன்றும் $h$ அகலமான $n$ கீலங்களாகப் பிரிக்கப்படுகிறது என்க.                                                                  |                               |
|                    |                                                                 |                                                                                                                                                                                             |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் <mark>பேறுக</mark> ள்   | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                | $\int_{a}^{b} f(x)dx = \frac{1}{2}h(y_{0} + y_{1}) + \frac{h}{2}(y_{1} + y_{2})$ $+ \dots + \frac{h}{2}(y_{n-1} + y_{n})$ $= \frac{h}{2}\Big[(y_{0} + y_{n}) + 2(y_{1} + y_{2} + \dots + y_{n-1})\Big]$ இங்கு $h = \frac{b - a}{n}$ ஆகும்.  2. சிம்சனின் விதி $\int_{a}^{b} f(x)dx$ ஆல் தரப்படும் பரப்பளவு ஒவ்வொன்றும் $h$ அகலமுடைய $2n$ கீலங்களாகப் பிரிக்கப்படுகிறது என்க.  சிம்சனினி விதி. $\int_{a}^{b} f(x)dx \approx \frac{h}{3}[(y_{0} + y_{2n}) + 4(y_{1} + y_{3} + \dots + y_{2n-2})]$ கூறிப்பு: சிம்சன் விதியைப் பிரயோகிக்கும் போது கீலங்களின் எண்ணிக்கை இரட்டையாக இருத்தல் வேண்டும். (அல்லது நிலைக்குத்து ஆள்கூறுகளின் | <b>ब</b> ळ्ळां ळ्ळाी कं क्र क |
|                    |                                | எண்ணிக்கை ஒற்றையாக இருத்தல்<br>வேண்டும்.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| 7.1 1              | . தொடரி ஒன்றை<br>வரையறுப்பார். | <b>தொடர்</b> குறித்த ஓர் ஒழுங்கிலமைந்ததும்,<br>உறுப்புக்களைப் பெற்றுக்கொள்வதற்கு<br>ஒரு விதிக்கு அமைவதுமான ஒரு<br>தொடையாக தொடரியை வரையறுத்தல்.<br>தொடரி ஒன்றின் $n$ ஆம் உறுப்பு $a_n$<br>எனின் தொடரியை $\{a_n\}$ எனக் குறிப்பிட<br>லாம்.                                                                                                                                                                                                                                                                                                                                                                                          | 05                            |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                             | பாடக் குறிப்புகள்                                                                                                                                    | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                            | $\lim_{n 	o \infty} a_n$ உள்ளது(முடிவுள்ள எண்) எனின் $\{a_n\}$ ஒருங் குகிறது எனப்படும் . அவ்வாறல்லாத போது $\{a_n\}$ விரிகின்றது எனப்படும் .          |                               |
| 7.4                | <ol> <li>தொடரி ஒன்றின்<br/>எல்லையை விளக்குவார்.</li> </ol> | $1)$ பின்வரும் எல்லைகள் பற்றிக் கலந்துரையாடுக. $\lim_{n 	o \infty} \left( rac{1}{n}  ight)$                                                         | 05                            |
|                    |                                                            | $\lim_{n\to\infty} \left(\frac{1}{n^2}\right)$ $\lim_{n\to\infty} \left(\frac{1}{2^n}\right),  \lim_{n\to\infty} \left(\frac{1}{r^n}\right)$         |                               |
|                    |                                                            | $\lim_{n\to\infty} \left(\frac{2^n}{2^n}\right),  \lim_{n\to\infty} \left(\frac{r^n}{r^n}\right)$ $\lim_{n\to\infty} \left(\frac{an+b}{cn+d}\right)$ |                               |
|                    |                                                            | $\lim_{n \to \infty} \left( \frac{an+b}{pn^2 + qn + r} \right)$ $\lim_{n \to \infty} \left( \frac{an^2 + bn + c}{pn + a} \right)$                    |                               |
|                    |                                                            | 2) தொடரியொன்றின் எல்லை பற்றிக்<br>கலந்துரையாடுக.                                                                                                     |                               |
| 7.1                | 2. தொடர் ஒன்றை<br>வரையறுப்பார்.                            | தொடரி, தொடர் என்பவற்றிற்கிடைப்பட்ட<br>தொடர்பு.<br>தொடரி ஒன்றின் உறுப்புக்களுக்கிடையே<br>யான பகுதிக் கூட்டுத் தொகை தொடர்<br>ஆகும்.                    |                               |
|                    |                                                            | உதாரணம்: $\mathbf{S}_n = \sum_{r=1}^n \mathbf{U}_r$<br>தொடர் ஒன்றின் பொது உறுப்பை $\mathbf{U}r$<br>எனவும் $n$ உறுப்புக்களின் கூட்டுத்தொகை            |                               |
|                    |                                                            | $\sum_{r=1}^n \mathbf{U}_r$ , $n=1,2,3,$ எனவும் குறிப்பிடுக.                                                                                         |                               |

| தேர்ச்சி<br>மட்டம் |    | கற்றற் | பேறுகள்                   | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----|--------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | 3. | பற்றிய | அடிப்படைக்                | பின்வருவனவற்றை நிறுவுக. $ (i)  \sum_{r=1}^n \left( \mathbf{U}_r + \mathbf{V}_r \right) = \sum_{r=1}^n \ \mathbf{U}_r + \sum_{r=1}^n \ \mathbf{V}_r $ $ (ii)  \sum_{r=1}^n k \mathbf{U}_r = k \sum_{r=1}^n \mathbf{U}_r $ இங்கு $k$ என்பது ஒரு மாறிலி. $ \mathbf{Gungains} $ $ \sum_{r=1}^n \mathbf{U}_r \mathbf{V}_r \neq \left( \sum_{r=1}^n \mathbf{U}_r \right) \left( \sum_{r=1}^n \mathbf{V}_r \right) $                                       |                               |
|                    | 4. |        | தொடர் ஒன்றின்<br>தொகையைக் | கூட்டற்தொடர் ஒன்றின்<br>வரைவிலக்கணம்:<br>தொடரி ஒன்றின் முதலாம் உறுப்பைத்<br>தவிர்த்து யாதுமிரு அடுத்துள்ள உறுப்பு<br>களில் பிந்திய உறுப்பிற்கும், முந்திய<br>உறுப்பிற்குமிடைப்பட்ட வித்தியாசம்<br>ஒருமையாக இருப்பின் அத்தொடர்<br>கூட்டல் தொடர் அல்லது கூட்டல்<br>விருத்தி என அழைக்கப்படும்.<br>(1) $a$ ஐ முதல் உறுப்பாகவும் பொது<br>வித்தியாசம் $d$ ஐக் கொண்டது<br>மான கூட்டல் தொடர் ஒன்றின்<br>பொது உறுப்பு $T_r = a + (r - 1) d$<br>எனக் காட்டுக. |                               |
|                    |    |        |                           | (2) முதல் $n$ உறுப்புக்களின் கூட்டுத் தொகை $S_n$ ஆயும், தொடரின் கடைசி உறுப்பு $I$ ஆயும் இருப்பின் $S_n = \frac{n}{2} [2a + (n-1)d]$ எனவும்,                                                                                                                                                                                                                                                                                                         |                               |
|                    |    |        |                           | $S_n=rac{n}{2}ig[a+Iig]$ எனவும் நிறுவுக. மேலுள்ள சூத்திரங்களின் பிரயோகம்.                                                                                                                                                                                                                                                                                                                                                                          |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                             | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                 | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | 5. பெருக்கற்தொடர் ஒன்றின்<br>கூட்டுத்தொகையைக்<br>காண்பார். | பெருக்கற் தொடர் ஒன்றின் வரைவிலக்கணம் தொடர் ஒன்றில் முதலாம் உறுப்பு தவிர்ந்த யாதுமிரு அடுத்துள்ள உறுப்புக் களில் பிந்திய உறுப்பிற்கும் முந்திய உறுப்பிற்கு முற்றிலி எனின், தொடர் பெருக்கற் தொடர் எனப்படும்.  (i) $a$ ஐ முதலுறுப்பாகவும் $r$ ஐ பொதுவிகிதமாகவும் கொண்ட பெருக்கற் தொடரின் பொது உறுப்பு $T_p = ar^{p-1}$ எனக் காட்டுக. |                               |
|                    |                                                            | $S_n=rac{a\left(1-r^n ight)}{1-r} \qquad (r  eq 1)$ $=na \qquad (r=1)$ மேலுள்ள சூத்திரங்களின் பிரயோகம்.                                                                                                                                                                                                                          |                               |
| 7.2                | 1. தொடர் ஒன்றின் கூட்டுத்<br>தொகையைக் காண்பார்.            | (1) $\sum_{r=1}^{n} r$ , $\sum_{r=1}^{n} r^2 \sum_{r=1}^{n} r^3$<br>என்பவற்றின் பெறுமானங்களைத்<br>துணிதல்.<br>மேற்குறிப்பிடப்பட்ட முடிவுகளையும்,<br>அடிப்படைத் தேற்றங்களையும்<br>தொடர்களின் கூட்டுத்தொகை<br>காணும்போது பயன்படுத்துதல்.                                                                                            | 08                            |
|                    |                                                            | (2) தொடர்களின் கூட்டுத்தொகை<br>காணும்போது பின்வரும் முறை<br>களைப் பயன்படுத்துதல்.<br>(i) வித்தியாசமுறை<br>(ii) பகுதிப்பின்ன முறை                                                                                                                                                                                                  |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                                                              | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | கற்றற் பேறுகள்  2. கணித்தொகுப்பு விதியின்<br>தத்துவத்தைப் பயன்படுத்து<br>வார்.  (2) தொடர் ஒன்றின் முடிவிலி<br>உறுப்புக்களின் கூட்டுத்<br>தொகையைக் காண்பார். | 1. கணிதத் தொகுத்தறி முறை மூலம் நிறுவல் பற்றி விளக்குக.  பின்வரும் முடிவுகளை நிறுவ கணித் தொகுத்துறி முறையின் பயன் படுத்துக.  (i) $\sum_{r=1}^n r^2 = \frac{1}{6}n(n+1)(2n+1)$ (ii) $\sum_{r=1}^n r(r+1) = \frac{n(n+1)(2n+1)}{3}$ (iii) $\sum_{r=1}^n \frac{1}{r(r+1)} = \frac{n}{n+1}$ (iv) $\sum_{r=1}^n \frac{1}{(2r-1)(2r+1)} = \frac{n}{2n+1}$ $\sum U_r$ என்பது ஒரு தொடர் $S_n = \sum_{r=1}^n U_r$ என்க.  If $\lim_{n \to \infty} S_n = l$ (முடிவுள்ளது) எனின், $\sum_{r=1}^\infty U_r$ ஒருங்குதொடர் எனப்படும். முடிவிலி உறுப்புகளின் கூட்டுத்தொகை $l$ ஆகும்.  (அ-து) $\sum_{n=1}^\infty U_n = l$ அவ்வாறல்லாதபோது தொடர் விரி தொடர் எனப்படும். முதலாம் உறுப்பு $a$ ஆகவும் பொது தொடர் எனப்படும். | களின்                         |
|                    |                                                                                                                                                             | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                               | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| IDL'LIÓ            | (3) வித்தியாசச் சமன்பாடு<br>களை விளக்குவார். | வித்தியாசச் சமன்பாடுகள் $\left\{x_n\right\}_{n=0}^\infty$ என்னும் தொடரி என இனங்காண்பார். தொடரியின் $n$ ஆம் உறுப்பு $x_n = f(n)$ $(n \ge 1$ போது) உம் ஆரம்ப நிபந்தனை/ நிபந்தனைகள் தரப்பட்டுள்ளனவுமாகும். உதாரணம் 1: $t$ வருடங்களின் பின்னர் உயிர்வாழ் இனம் ஒன்றின் குடித்தொகை $x_i$ என்க. ஆரம்பக் குடித்தொகை $x_i$ வன்க. ஆரம்பக் குடித்தொகை $x_i$ வுயும் வளர்ச்சி வீதம் ஆண்டொன்றிற்கு $2\%$ உம் என்க. குடித்தொகையிற்கான வித்தியாசச்சமன்பாடு $x_{i+1} = x_i + \frac{2}{100}x_i$ ஆகும். இங்கு $x_0$ தரப்பட்டுள்ளது. உதாரணம் 2: ஒவ்வொரு 25 வருடங்களுக்கொரு முறை இரேடியமானது $1\%$ தேய்வடைகின்றது எனத் தரப்பட்டுள்ளது. $25n$ வருடங்களின் பின் இரேடியத்தின் அளவு $x_n$ என்க. வித்தியாசச் சமன்பாடு $x_{n+1} = x_n - \frac{1}{100}x_n$ ஆகும். இங்கு $x_0$ தரப்பட்டுள்ளது. உதாரணம் 3: கூட்டுவட்டி தொடர்பான முதலீட்டில் ஆரம்ப முதலீடு $P$ எனவும் வட்டி வீதம் ஆண்டொன்றிற்கு $P\%$ எனவும் கொள்க $t$ வருடங்களின் பின்னர் முதலீட்டில் ஆரம்ப முதலீட் $P$ எனவும் கொள்க $t$ வருடங்களின் பின்னர் முதலீட்டுத் தொகை $x_i$ எனின் வித்தியாசச் சமன்பாடு $x_{i+1} = x_i + rx_i$ ஆகும். | 05                            |
|                    |                                              | இங்கு $x_0 = \mathbf{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                   | பாடக் குறிப்புகள்                                                                                                                                                                                                                                 | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | வித்தியாசச் சமன்பாடுகளை<br>வகைப்படுத்துவார்.     | $a \neq 0$ ஆயும் $a$ , $b$ என்பன மெய்யெண் களாயும் இருப்பின் $x_{n+1} = ax_n + b$ என்ற வித்தியாசச் சமன்பாடு <b>முதலாம் வரிசை</b> எளிய வித்தியாசச் சமன்பாடு எனப்படும். $b = 0$ எனின் சமன்பாடு <b>ஏகவினமான</b> வித்தியாசச்சமன்பாடு என அழைக்கப்படும். |                               |
|                    | வித்தியாசச்சமன்பாடுகளின்<br>தீர்வினைப் பெறுவார். | $x_n = ax_{n-1} + b$ என்ற வித்தியாசச் சமன்<br>பாட்டின் தீர்வு. $x_n = ax_{n-1} + b$ $= a \left[ ax_{n-2} + b \right] + b$ $= a^2 x_{n-2} + b(1+a)$ $\therefore x_n = a^2 \left[ ax_{n-3} + b \right] + b(1+a)$                                    |                               |
|                    |                                                  | $=a^3x_{n-3}+b(1+a+a^2)$<br>மேலுள்ளவாறு தொடர்ந்து எழுதும்போது $x_n=a^nx_0+b(1+a+a^2+a^{n-1})$ $a=1$ ஆகும் போது $x_n=x_0+nb$ அவ்வாறல்லாதபோது,                                                                                                      |                               |
|                    |                                                  | $x_n = a^n x_0 + rac{1-a^n}{1-a}b$ . ஏகவினமான வித்தியாசச் சமன்பாட்டில் $a=1$ ஆகும்போது சமன்பாட்டின் தீர்வு $x_n = x_0$                                                                                                                           |                               |
|                    |                                                  |                                                                                                                                                                                                                                                   |                               |

புள்ளிவிபரவியல் - கணிதம் II

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                         | பாடக் குறிப்புகள்                                                     | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|
|                    |                                                        | புள்ளிவிபரவியல்                                                       |                               |
| 5.6                | <ol> <li>எழுமாற்று மாறிகளை<br/>விளக்குவார்.</li> </ol> | Ω என்பது எழுமாற்று பரிசோதனை<br>ஒன்றின் மாதிரிவெளி என்க.               | 25                            |
|                    |                                                        | எழுமாற்று மாறி என்பது மாதிரி வெளி<br>Ω இலிருந்து மெய்யெண் கோட்டிற்கான |                               |
|                    |                                                        | ஒரு சார்பு ஆகும்.                                                     |                               |
|                    |                                                        | இது X, Y, Z என்பவற்றினால்                                             |                               |
|                    |                                                        | குறிக்கப்படும்.                                                       |                               |
|                    |                                                        | $X\!:\!\Omega\!	o\!\mathbb{R}$ ஒரு சார்பாகும்.                        |                               |
|                    |                                                        | $X(\omega) = x,  \omega \in \Omega,  x \in \mathbb{R}$                |                               |
|                    | 2. பின்னக எழுமாற்று                                    | X என்பது ஒரு எழுமாற்று மாறி என்க.                                     |                               |
|                    | மாறியை வரையறுப்பார்.                                   | $(-oldsymbol{A}-oldsymbol{B})$ $X:\Omega  ightarrow R$ என்பது ஒரு     |                               |
|                    |                                                        | சார்பாகும்.                                                           |                               |
|                    |                                                        | X இன் பெறுமானங்களைக் கொண்ட                                            | 4                             |
|                    |                                                        | தொடை (X இன் வீச்சு) முடிவுள்ள                                         |                               |
|                    |                                                        | தாகவோ அல்லது எண்ணத்தக்க                                               |                               |
|                    |                                                        | முடிவுள்ளதாகவோ இருப்பின், எழுமாற்று                                   |                               |
|                    |                                                        | மாறி பின்னக எழுமாற்று மாறி எனப்படும்.                                 |                               |
|                    | 3. தொடர் எழுமாற்று<br>மாறியை வரையறுப்பார்.             | X என்பது ஒரு எழுமாற்று மாறி என்க.                                     |                               |
|                    |                                                        | (அ-து) X∶Ω→ℝஎன்பது ஒரு                                                |                               |
|                    |                                                        | சார்பாகும்.                                                           |                               |
|                    |                                                        | X இன் பெறுமானங்கள் ஒன்று அல்லது                                       |                               |
|                    |                                                        | ஒன்றுக்கு மேற்பட்ட ஆயிடையில்                                          |                               |
|                    |                                                        | அமைந்திருப்பின் X என்பது தொடர்                                        |                               |
|                    |                                                        | எழுமாற்றுமாறி எனப்படும்.                                              |                               |
| 5.7                | 1. பின்னக எழுமாற்று மாறி                               | Ω என்பது எழுமாற்றுச் சோதனை                                            | 06                            |
|                    | யொன்றின் நிகழ்தகவுத்                                   | யொன்றின் மாதிரிவெளியும் $X$ என்பது                                    |                               |
|                    | திணிவுச் சார்பினை<br>வரையறுப்பார்.                     | மாதிரிவெளி Ω இன் மீது வரையறுக்கப்                                     |                               |
|                    |                                                        | பட்ட எழுமாற்று மாறியும் என்க.                                         |                               |
|                    |                                                        | $X:\Omega \to \mathbb{R}$                                             |                               |
|                    |                                                        | X இன் பெறுமானங்கள்                                                    |                               |
|                    |                                                        | $\{x_{1}, x_{2}, x_{3}, \dots x_{n}\}$ என்க.                          |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                       | பாடக் குறிப்புகள் ்                                                                                                                                                                                                                         | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                      | $p$ என்னும் சார்பானது $\{x_1, x_2, \dots x_n\}$ $\Omega$ இன் மீது பின்வருமாறு வரையறுக்கப் படுகின்றது. $p(x) = \begin{cases} P(X=x), \ x=x_i, i=1,2,n \\ 0 & 																																	$                                              |                               |
|                    | 2. தொடர் எழுமாற்று மாறி<br>யொன்றின் நிகழ்தகவு<br>அடர்த்திச் சார்பினை<br>விளக்குவார். | f(x) நிகழ்தகவு அடர்த்திச்சார்பு ஆனது<br>'ஒப்பமாக்கப்பட்ட' சார்பு மீடிறன்<br>வலையுரு வரையத்திற்கு ஒத்திருக்கை<br>யானதாகும்.<br>இச்சார்பின் கீழ் உள்ள பரப்பு<br>நிகழ்தகவிற்குச் சமமாகும். இவ்வாறாக<br>மொத்தப் பரப்பளவு 1 இற்குச்<br>சமமாகும். |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                 | பாடக் குறிப்புகள்                                                                                                                                               | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                                                | $f(x)$ இன் இயல்புகள் (i) $f(x) \ge 0$ எல்லா $x$ இற்கும். (ii) $\int_{-\infty}^{+\infty} f(x) dx = 1$ (iii) $\left[ P(a < X < b) = \int_{a}^{b} f(x) dx \right]$ |                               |
| 5.8                | 1. பின்னக எழுமாற்று மாறி<br>யொன்றிற்கான கணித<br>எதிர்வு, மாறற்றிறன், நியம<br>விலகல் என்பவற்றை<br>வரையறுப்பார். |                                                                                                                                                                 |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                                                              | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                          | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | <ol> <li>தொடர் எழுமாற்று மாறி         X இன் எதிர்பார்த்த             பெறுமானம், மாறற்றிறன்             என்பனவற்றை             வரையறுப்பார்.     </li> </ol> | $X$ என்ற தொடர் எழுமாற்று மாறியொன்றின் நிகழ்தகவு அடர்த்திச் சார்பு $f(x)$ என்க. $X$ இன் இடை அல்லது எதிர்வுப் பெறுமானம் $E(X)$ இனால் குறிக்கப்படும். இங்கு $E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx$ ஆகும். $X$ இன் மாறற்றிறன் $Var(X)$ இனால் குறிக்கப்படும். $Var(x) = E[X - E(X)]^2$ ஆகும். $E[X - E(X)]^2 = E(X^2) - [E(X)]^2$ எனக் காட்டுக. $\left(E(X^2) = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx\right)$ $X$ இன் நியமவிலகல் $\sigma = \sqrt{Var(X)}$ ஆகும். |                               |
| 5.9                | <ol> <li>பின்னக எழுமாற்று மாறி         X இன் திரள் பரம்பல்         சார்பை விளக்குவார்.</li> </ol>                                                           | ஒரு நிகழ்தகவுப் பரம்பலில் $X$ இன் குறித்த பெறுமானம் $x$ வரையிலான நிகழ்தகவுகளின் கூட்டுத்தொகை திரள் நிகழ்தகவினைத் தரும் திரள் நிகழ்தகவுச் சார்பானது $F(x)$ என எழுதப்படும். ஒரு பின்னக எழுமாற்று மாறி $X$ இன் நிகழ் தக வுச் சார் பு பின் வரு மாறு வரையறுக்கப்பட்டுள்ளது. $p(X) = \begin{cases} P(X=x), \ x=x_i, x_2, x_n \\ O & _{2} $ அவ் வாறல் லாதபோது இதற்கான திரள் பரம்பல் சார்பு $F(t)$ இனால் தரப்படும். இங்கு . $F(t) = P(X \le t) $ $= \sum_{x=x_i}^t P(X=x_i)$       | 02                            |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                               | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                             | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                              | தொடர் எழுமாற்று மாறி $X$ இற்கான நிகழ்தகவு அடர்ச்சிச்சார்பு $f(x)$ என்க. இதற்கான திரள் பரம்பல் சார்பு $F(t)$ ஆல் தரப்படுகின்றது. $F(t) = P(X \le t)$ $= \int_{-\infty}^{t} f(x) dx$                                                                                            |                               |
| 6.1                | <ol> <li>ஏகபரிமாண திட்டமிடுதலை<br/>விவரிப்பார்.</li> </ol>   | ஏகபரிமாணத்திட்டமிடல் ஏகபரிமான திட்டமிடுதல் என்பது உத்தமப்படுத்தலில் கணித ரீதியான ஒரு நுட்பமுறையாகும். (1) சில குறிப்பிட்ட வரையறைகளின் கீழ் (certain constraints ) குறித்த இலக்கு ஒன்றினை உயர்வு அல்லது இழிவாக்கும் முறை உதாரணம்: இலாபத்தினை உயர்வாக்குதல் செலவினை இழிவாக்கல். | 12                            |
|                    | <ol> <li>பிரசினங்களின் வகைகளை<br/>குறிப்பிடுவார்.</li> </ol> | பின்வரும் வகைகள் பற்றி கலந்துரை<br>யாடுக.<br>(i) விடை இல்லாத பிரச்சினைங்கள்<br>(ii) தனி ஒரு விடையையுடைய<br>பிரசினங்கள்.<br>(iii) பல விடைகளைக் கொண்ட<br>பிரசினங்கள்.                                                                                                           |                               |
|                    | 3. ஏகபரிமாண திட்டமிடுதல்<br>மாதிரிகளை அமைப்பார்.             | ஏகபரிமாண திட்டமிடுதல் மாதிரிகளை<br>உருவாக்கும்போது (உதாரணங்களுடன்)<br>பின்வரும் விடயங்களை விளக்குக.<br>• தீர்மானமாறி (Decision variable)<br>• நோக்கற் சார்பு (Objective function)<br>• வரையறகைள் (Constraints)<br>• எதிர்மறை அல்லாத நிபந்தனைகள்<br>(Non-negative conditions.) |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                       | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                  | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                                                      | பல்வேறு ஏகபரிமாண திட்டப்படுத்தல் மாதிரிகள் பற்றிக் கலந்துரையாடுக. $\mathbf{z} = \mathbf{g} \mathbf{x} + \mathbf{b} \mathbf{y}$ என்பதனை $\mathbf{c} \mathbf{x} + \mathbf{d} \mathbf{y} \leq \mathbf{k}_1$ $\mathbf{e} \mathbf{x} + \mathbf{f} \mathbf{y} \geq \mathbf{k}_2$ $\mathbf{x} \geq 0, \mathbf{y} \geq 0$ என்ற நிபந்தனைகளுக்கமைய உயர்வு அல்லது இழிவாக்குக. |                               |
| 6.2                | <ol> <li>ஏகபரிமாண திட்டமிடுதல்<br/>பிரசினங்களை வரைபுமறை<br/>கொண்டு தீர்க்கும் முறை<br/>பற்றி விபரிப்பார்.</li> </ol> | இரு தீர்மான மாறிகளைக் கொண்ட<br>ஏகபரிமாண திட்டப்படுத்தல் பிரசினங்<br>களை வரைபு முறையில் தீர்க்கும்<br>முறையை விளக்குக.<br>பொருத்தமான உதாரணங்களைப் பயன்<br>படுத்துக.                                                                                                                                                                                                 | 06                            |
|                    | 2. சாத்தியமான பிரதேசத்தி<br>னை (Feasible region) இனங்<br>காண்பார்.                                                   | ஒரு ஏகபரிமாணத் திட்டப்படுத்தலில் (1) சாத்தியமான தீர்வுகள். feasible solutions (2) சாத்தியமான பிரதேசம் feasible region என்பனவற்றை விளக்குக. பின்வருவன பற்றிக் கலந்துரையாடுக. (1) உயர்வாக்கல் மாதிரி (உதாரணம்: இலாபம்) (2) இழிவாக்கல் மாதிரி உதாரணம்: செலவு                                                                                                          |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                | பாடக் குறிப்புகள்                                                                                                                                                                                                    | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | 3. உத்தமப்படுத்தல் தீர்வுகளை<br>இனங்காண்பார். | ஏகபரிமாண திட்டப்படுத்தலின்போது<br>உத்தமப்படுத்தல் தீர்வு இருப்பின்<br>அதனை விளக்குக.<br>பின்வருவன பற்றி கலந்துரையாடுக.<br>(1) தீர்வுகள் இல்லாதபோது<br>(2) ஒரேயொரு தீர்வு உள்ளபோது<br>(3) முடிவற்ற தீர்வுகள் உள்ளபோது |                               |
|                    |                                               | குறிப்பு: இரண்டிற்கு மேற்பட்ட<br>மாறிகளைக் கொண்ட பிரசினங்களை<br>தீர்ப்பதற்கு எளிவு முறை (Simplex<br>method) எனப்படும் முறையை பயன்<br>படுத்தலாம் எனக் குறிப்பிடுக.                                                    |                               |
|                    |                                               | கணினிகளின் அபிவிருத்தி அடிப்படையில்<br>தீர்வு முறைகள் எளிதாக்கப்பட்டுள்ளன.<br>MS, Excel பிரசினங்களின் தீர்விற்குப்<br>பயன்படுத்தப்படுகின்றன.                                                                         |                               |
|                    |                                               | தீர்வுமுறை பற்றிக் கலந்துரையாடப்பட<br>வேண்டிய அவசியம் இல்லை.                                                                                                                                                         |                               |
|                    |                                               | இரண்டிற்கு மேற்பட்ட மாறிகளைக்<br>கொண்ட பிரசினங்கள் தீர்ப்பதற்கு வேறு<br>முறைகளும் உண்டு என மாணவர்கள்<br>அறிய வேண்டியது அவசியமாகும்.                                                                                  |                               |
|                    |                                               |                                                                                                                                                                                                                      |                               |
|                    |                                               |                                                                                                                                                                                                                      |                               |

மூன்றாந் தவணை

## கணிதம் I

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                           | பாடக் குறிப்புகள்                                                                                                                                                                                                                 | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 9.1                | 1. தாயம் ஒன்றை வரையறுப்<br>பார்.         | <b>தாயங்கள்</b><br>தாயம் என்பது எண்களின் செவ்வக<br>ஒழுங்கு (அல்லது பத்தி) எனப்படும்<br>தாயங்கள் ஆங்கில எழுத்துக்கள் A,<br>B, C, என்பவற்றால் குறிக்கப்படும்.                                                                       | 05                            |
|                    |                                          | $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$                                                 |                               |
| *                  | 2. தாயம் ஒன்றின் வரிசை<br>யைக் கூறுவார். | தாயம் $A$ , $m$ நிரைகளையும், $n$ நிரல் களையும் உடையது. தாயம் $A$ இன் பருமன் (அல்லது வரிசை) $m \times n$ ஆகும். தாயம் $A$ , $(a_{ij})_{m \times n}$ என எழுதப்படும். <b>தாயம் ஒன்றின் மூலகம்:</b> தாயம் $A$ இல் $i$ ஆவது நிரையிலும் | .8                            |
|                    |                                          | ர ஆவது நிரலிலும் உள்ள மூலகம்<br>a <sub>்ர</sub> ஆகும். நிரைத்தாயம்:<br>தாயம் ஒன்றிற்கு ஒரு நிரை மட்டும்<br>இருபபின் அத்தாயம் நிரைத்தாயம்<br>அல்லது நிரைக்காவி எனப்படும்.                                                          |                               |
|                    |                                          | <b>நிரல் தாயம்:</b><br>தாயம் ஒன்றிற்கு ஒரு நிரல் மட்டும்<br>இருப்பின் அத்தாயம் நிரல் தாயம்<br>அல்லது நிரல் காவி எனப்படும்.                                                                                                        | **                            |
|                    |                                          | <b>பூச்சியத்தாயம்:</b><br>தாயம் ஒன்றின் ஒவ்வொரு மூலகமும்<br>பூச்சியம் எனின் அத்தாயம் பூச்சியத்<br>தாயம் எனப்படும்.                                                                                                                |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                        | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | 3. தாயங்களின் சமத்தை<br>வரையறுப்பார்.                 | த $A, B$ என்பன ஒரே வரிசையையுடைய இரு தாயங்கள். $A = (a_{ij})_{m \times n}, \ B = (b_{ij})_{m \times n}$ எல்லா $i, j$ இற்கும் $a_{ij} = b_{ij}$ எனின், $A = B$ எனப்படும்.                                                                                                                                                                                                                                                             |                               |
|                    | 4. தாயங்களின் கூட்ட<br>வரையறுப்பார்.                  | _லை இரு தாயங்களைக் கூட்டுவதற்கான நிபந்தனை, இரு தாயங்களம் ஒரே வரிசையை உடையதாக இருத்தல் வேண்டும். $\mathbf{A} = \begin{pmatrix} a_{ij} \end{pmatrix}_{\mathbf{m} \times \mathbf{n}} \ , \ \mathbf{B} = \begin{pmatrix} b_{ij} \end{pmatrix}_{\mathbf{m} \times \mathbf{n}} \ \text{என்க}.$                                                                                                                                            |                               |
|                    |                                                       | இப்போது $A + B = \left(a_{ij}\right)_{m \times n} + \left(b_{ij}\right)_{m \times n}$ $= \left(a_{ij} + b_{ij}\right)_{m \times n}  \text{ஆகும்.}$ <b>குறிப்பு:</b> (i) கூட்டல் செய்கை மூடப்பட்டது. (ii) கூட்டல் பரிவர்த்தனையானது. $A + B = B + A$ (iii) கூட்டல் சேர்த்தி விதிக்கு அமைவானது. $(A + B) + C = A + (B + C)$                                                                                                            |                               |
|                    | 5. தாயம் ஒன்றை என<br>யால் பெருக்குதலை எ<br>யறுப்பார். | ன்ணி $\mathbf{A} = \left(a_{ij}\right)_{m \times n}$ , $\lambda \in \mathbb{R}$ என்க. $\lambda \mathbf{A} = \left(\lambda a_{ij}\right)_{m \times n}$ எல்லா $i, j$ இற்கும் என வரையறுக்கப்படும். $\lambda = -1$ ஆக, $(-1)\mathbf{A} = -\mathbf{A}$ எனப்படும். இது தாயம் $\mathbf{A}$ இன் மறை எனப்படும். $\mathbf{A}, \mathbf{B}$ என்பன இரு ஒரே வரிசைத் தாயங்கள் என்க. $\mathbf{A} - \mathbf{B} = \mathbf{A} + (-1)\mathbf{B}$ ஆகும். |                               |
|                    | 6. தாயங்களின் பெருக்க<br>வரையறுப்பார்.                | கலை $\mathbf{A} = \left(a_{ij}\right)_{\mathbf{m} 	imes p}$ , $\mathbf{B} = \left(b_{ij}\right)_{q 	imes n}$ என்க. $p = q$ ஆகும்போது தாயப் பெருக்கம் $\mathbf{A}\mathbf{B}$ வரையறுக்கப்படும்.                                                                                                                                                                                                                                       |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பே <mark>றுகள்</mark>                                  | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                       | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                               | $A = \left(a_{ij}\right)_{m \times p}$ , $B = \left(b_{ij}\right)_{p \times n}$ எனின், $AB = \left(\sum_{k=1}^{p} (a_{ik}b_{kj})\right)_{m \times n}$ என வரையறுக்கப்படும். $AB$ யின் வரிசை $m \times n$ ஆகும். $(i) \ AB \ am gung $ ் ககப்பட் டிருப்பினும் $BA$ வரையறுக்கப்பட் டிருப்பினும் $BA$ வரையறுக்கப்பட் டிருக்க வேண்டிய தில்லை. $(ii) \ Gung $ |                               |
| 9.2                | <ol> <li>தாயங்களின் விசேட வகை<br/>களை விளக்குவார்.</li> </ol> | கலந்துரையாடுக. $m \times n$ வரிசையுடைய தாயம் $A$ இல் $m=n$ ஆகும்போது $A$ ஆனது $n$ வரிசையுடைய தாயம் என வரையறுக்கப்படும். $A$ என்பது $n$ வரிசையுடைய தாயம் என்க $ \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \end{bmatrix} $                      | 07                            |
|                    |                                                               | $egin{align*} & (a_{11},a_{22},a_{33},a_{nn}) & \text{пой Land pond purpsym} \\ & \text{முலை விட்டம் எனப்படும்.} \\ * & \text{வரிசை } n & \text{ஐக் கொண்ட சதுரத்} \\ & & & & & & & & & & \\ & & & & & & & $                                                                                                                                             |                               |

| கற்                                                                    | றற் பேறுகள்                                                                                                            | பாடக் குறிப்புகள்                                                                                                                                             | பாடவேளை<br>களின்<br>எண்ணிக்கை                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| தேற்ற                                                                  | ங்களைப் பயன்படு                                                                                                        | A(DC) = (AD)C                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                        | குறிப்பு: $AB = 0$ எனின் தாயம் $A$ அல்லது $B$ 0 (பூச்சியத்தாயமாக) இருக்க வேண்டிய<br>தில்லை.                                                                   |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                        | f(x) என்பது $x$ இன் ஒரு பல்லுறுப்பியாக<br>இருக்க $f(A)$ ஐக் கணித்தல். இங்கு $A$<br>ஒரு சதுரத்தாயம்.                                                           |                                                                                                                                                                                                                                                                                                                                                        |
| <ol> <li>தாயம் ஒன்றின் நிலை<br/>மாற்றினை வரையறுப்<br/>பார்.</li> </ol> | $\mathbf{A}$ என்பது $m \times n$ வரிசையுடைய தாயம்<br>என்க. $\mathbf{A} = \left(a_{ij}\right)_{m \in \mathbb{N}}$ என்க. |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                        | $\mathbf{A}$ இன் நிலைமாற்று, $\mathbf{A}^{\mathrm{T}}$ எனக் குறிப்பிடப்<br>படும். மேலும் $\mathbf{A}^{\mathrm{T}} = \left(b_{ii}\right)$ என வரையறுக்கப்படும்; |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                        | இங்கு எல்லா $i$ , $j$ இற்கும் $b_{ij}=a_{ji}$ ஆகும்.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | நிலைமாற்றுத் தாயத்தின் பண்புகள் $(A+B)^T=A^T+B^T$ $(KA)^T=K.A^T$ , $k\in\mathbb{R}$                                    |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        |                                                                                                                        | $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$ $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}$           |                                                                                                                                                                                                                                                                                                                                                        |
| மூலக                                                                   | த்தின் சீறியை                                                                                                          | $\mathbf{A}=egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$ என்க.                                 |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | 2. பிரசின்<br>தேற்ற<br>துவார்<br>பார்.<br>4. 3 × 3<br>மூலக                                                             | <ol> <li>பிரசினங்களைத் தீர்ப்பதி<br/>தேற்றங்களைப் பயன்படு<br/>துவார்.</li> <li>தாயம் ஒன்றின் நிலை<br/>மாற்றினை வரையறுப்</li> </ol>                            | 2. பிரசினங்களைத் தீர்ப்பதில் தேற்றங்களைப் பயன்படுத் துவார்.  2. பிரசினங்களைத் தீர்ப்பதில் தேற்றங்களைப் பயன்படுத் துவார்.  2. பிரசினங்களைத் தீர்ப்பதில் தேற்றங்களைப் பயன்படுத் துவார்.  4. 3 x 3 தாயமொன்றின் வேல் விறி குர் குர் திறி குர் குர் திறி குர் குர் திறி குர் குர் திறி கிறி குர் குர் திறி கிறி குர் கடி கிறி கிறி கிறி கிறி கிறி கிறி கிறி |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                    | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                  | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                   | $i$ ஆவது நிரையில் $j$ ஆவது நிரலில் உள்ள மூலகம் $a_{ij}$ இன் சீறி, $i$ ஆவது நிரைலையும் ஆவது $j$ நிரலையும் நீக்கு வதால் பெறப்படும் $2\times 2$ துணிகோவை ஆகும். இது $M_{ij}$ ஆல் குறிக்கப்படும். உதாரணம்: மேலே தாயம் இல் $a_{12}$ இன் சீறி $M_{12}=\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$ $= a_{21}\cdot a_{33}-a_{31}\cdot a_{23}$ ஆகும். |                               |
|                    | 5.3 × 3 தாயம் ஒன்றின்<br>மூலகத்தின் இணை<br>காரணியை வரையறுப்பார்.  |                                                                                                                                                                                                                                                                                                                                                                    |                               |
| 9.3                | 1. தாயம் ஒன்றின் நேர் மறை<br>வரையறுப்பார்.                        | சதுரத்தாயம் A என்க.<br>தாயம் B ஆனது AB = I = BA ஆகுமாறு<br>உள்ளது எனின், B, A இன் நேர்மாறு<br>எனப்படும். இது A <sup>-1</sup> எனக் குறிக்கப்படும்.<br>AA <sup>-1</sup> = I = A <sup>-1</sup> A.<br><b>குறிப்பு:</b> சதுரத்தாயங்களுக்கு மட்டும்<br>நேர்மாறைக் காண முடியும். (எல்லாச்                                                                                 | 05                            |
|                    |                                                                   | சதுரத் தாயங்களுக்கும் அல்ல) நேர்மாறின் பண்புகள் $(A^{-1})^{-1} = A$ $(AB)^{-1} = B^{-1} A^{-1}$ $(A^{-1})^{T} = (A^{T})^{-1}$                                                                                                                                                                                                                                      |                               |
|                    | <ol> <li>2 × 2 தாயம் ஒன்றின் நேர்<br/>மாறைக் காண்பார்.</li> </ol> | தாயம் $\mathbf{A}=egin{pmatrix} a,b \ c,d \end{pmatrix}$ என்க.                                                                                                                                                                                                                                                                                                     |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                          | பாடக் குறிப்புகள்                                                                                                                                    | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                         | $egin{aligned} A$ யின் துணிகோவை $(A) = ig  A ig  = ad$ - $bc$ ஆகும்.                                                                                 | 20                            |
|                    |                                                                         | $\left \mathbf{A} ight   eq 0$ ஆக, $\mathbf{A}^{-1} = rac{1}{\left \mathbf{A} ight } egin{pmatrix} d & -b \ -c & a \end{pmatrix}$ எனப் பெறுக.       |                               |
|                    | <ol> <li>தாயங்களைப் பயன்படுத்தி</li> <li>இருமாறிகளிலான ஒருங்</li> </ol> | $a_1x + b_1y = c_1 (i)$                                                                                                                              |                               |
| 47 mm.             | தஞ்சாற்களின் ஒருவ<br>கமை சமன்பாடுகளைத்<br>தீர்ப்பார்.                   | $a_2 x + b_2 y = c_2$ (ii)<br>இரு சமன்பாடுகள் என்க.                                                                                                  |                               |
|                    |                                                                         | மேலே தரப்பட்ட இரு சமன்பாடுகளை<br>யும் $AX = C$ எனும் வடிவில் எழுதலாம்.<br>இங்கு                                                                      |                               |
|                    |                                                                         | $A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix},  X = \begin{pmatrix} x \\ y \end{pmatrix},  C = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ |                               |
|                    |                                                                         | $\mathbf{A}^{\text{-1}}$ உள்ளதெனின், $\mathbf{A}\mathbf{X}=\mathbf{C}$ என்பதில்                                                                      |                               |
|                    |                                                                         | $A^{-1}AX = A^{-1}C$<br>$X = A^{-1}C$ ஆகும்.                                                                                                         |                               |
|                    |                                                                         | சமன்பாட்டின் தீர்வுகள் பற்றி கலந்துரை<br>யாடுக.                                                                                                      |                               |
|                    |                                                                         | (i) தனியான தீர்வு<br>(ii) முடிவிலி எண்ணிக்கையான தீர்வு<br>(iii) தீர்வு இல்லை                                                                         |                               |
| 8.1                | <ol> <li>துணிகோவைகளை<br/>விரித்து எழுதுவார்.</li> </ol>                 | துணிகோவை  (a) $2 \times 2$ , $3 \times 3$ துணிகோவைகளின் வகைகளைக் கூறுக. $2 \times 2$ துணிகோவையின் விரிவு.                                            | 10                            |
|                    |                                                                         | $\Delta = egin{array}{c c} a_1 & b_1 \ a_2 & b_2 \ \end{array}$ எனின்,                                                                               |                               |
|                    |                                                                         | $\Delta = a_1 b_2 - a_2 b_1$ ஆகும்.<br>இங்கு $a_1, a_2, b_1, b_2$ என்பன மெய்யெண்கள் ஆகும்.                                                           |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                 | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                | $\Delta = egin{array}{c c} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \ \end{array}$ என்க.                                                                                                                                                                                 |                               |
|                    |                                                | இப்பொழுது $\Delta = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$ $= a_1 (b_2 c_3 - b_3 c_2) - b_1 (a_2 c_3 - a_3 c_2) + c_1 (a_2 b_3 - a_3 b_2)$ |                               |
|                    |                                                | இங்கு $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$<br>என்பன மெய்யெண்கள் ஆகும்.<br><b>குறிப்பு:</b> துணிகோவையை விரித்து<br>எழுதும்போது, எந்த ஒரு நிரையின்<br>வழியேயும். எந்த ஒரு நிரலின் வழியே<br>யும் விரித்து எழுதலாம். இதன் மூலமும்<br>ஒரே முடிவைப் பெறலாம்.                     |                               |
|                    | 2. துணிகோவையின் பண்பு<br>களைக் குறிப்பிடுவார். | $2 \times 2$ , $3 \times 3$ துணிகோவைகளுக்கான பின்வரும் பண்புகளைக் கலந்துரை யாடுக. $1. \ \Delta_2 \ \text{ என்பது} \ \Delta_1 \ \text{இன் இரு நிரைகளை} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                        | 05                            |
|                    |                                                | <ol> <li>துணிகோவை ஒன்றின் இரு நிரைகள்<br/>(நிரல்கள்) சமம் எனின், அத்துணிக்<br/>கோவை பூச்சியம் ஆகும்.</li> <li>துணிகோவை ஒன்றின் ஒரு நிரைக்கு<br/>(நிரலுக்கு) இன்னொரு நிரையின்<br/>(நிரலின்) மடங்கு ஒன்றைக் கூட்டுவ<br/>தால் துணிகோவையின் பெறுமானம்<br/>மாறாது.</li> </ol>            |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                        | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                       | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                                       | <ol> <li>துணிகோவை (Δ) ஒன்றின் நிரையை (நிரலின்) λ என்னும் எண்ணியால் பெருக்குவதால் பெறப்படும் துணி கோவையின் பெறுமானம் λ Δ இற்கு சமமாகும்.</li> <li>துணிகோவை ஒன்றின் ஒரு நிரையின் (நிரலின்) எல்லா மூலகங்களும் பூச்சியம் எனின், அத்துணி கோவை யின் பெறுமானம் பூச்சியமாகும்.</li> <li>Δ =</li></ol>                                                                                                           | 61 9001 90011 25 907 25       |
| 8.2                | <ol> <li>ஒருங்கமை சமன்பாடுக<br/>ளைத் தீர்ப்பதற்கு துணி<br/>கோவைகளைப் பயன்<br/>படுத்துவார்.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                         | 06                            |
|                    |                                                                                                       | சமன்பாடுகளைத் தீர்ப்பதற்கு, கிராமரின் விதியைப் பயன்படுத்துக. $\frac{x}{\begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}} = \frac{-y}{\begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}} = \frac{1}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$ 3 மாறிகளிலான சமன்பாடுகளைக் கலந்துரையாடுக. $a_1x + b_1y + c_1z + d_1 = 0$ $a_2x + b_2y + c_2z + d_2 = 0$ $a_3x + b_3y + c_3z + d_3 = 0$ |                               |

| தேர்ச்சி<br>மட்டம் | கற <mark>்ற</mark> ற் பே <mark>றுகள்</mark>                           | பாடக் குறிப்புகள்                                                                                                                                                                                        | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                       | சமன்பாடுகளைத் தீர்ப்பதற்கு கிராமரின் விதியைப் பயன்படுத்துக.                                                                                                                                              |                               |
| 12.1               | 1. வட்டம் ஓர் ஒழுக்கு ஆகும்<br>என வரையறுப்பார்.                       | வட்டம் தளம் ஒன்றில், நிலையான புள்ளி<br>ஒன்றிலிருந்து எப்போதும் அதன் தூரம்<br>மாறாதிருக்குமாறு அசையும் புள்ளியின்<br>ஒழுக்கு வட்டம் என வரையறுக்கப்படும்.<br>நிலையான புள்ளி வட்டத்தின் மையம்<br>எனப்படும். | 02                            |
|                    |                                                                       | மாறாத்தூரம் வட்டதத்தின் ஆரை எனப்<br>படும்.                                                                                                                                                               |                               |
|                    | 2. வட்டம் ஒன்றின் சமன்<br>பாட்டைப் பெறுவார்.                          | உற்பத்தியை $(0, 0)$ மையமாகவும் ஆரை $r$ ஆகவுமுள்ள வட்டத்தின் சமன்பாடு $x^2+y^2=r^2$ மையம் $(a,b)$ ஆகவும் $r$ ஆரை ஆகவுமுள்ள வட்டத்தின் சமன்பாடு $(x-a)^2+(y-b)^2=r^2$                                      |                               |
|                    | <ol> <li>வட்டம் ஒன்றின் பொதுச்<br/>சமன்பாட்டை விபரிப்பார்.</li> </ol> | வட்டம் ஒன்றின் சமன்பாட்டின் பொது வ டி வ ம் $x^2+y^2+2gx+2fy+c=0$ என்பதிலிருந்து மையம் $(-g,-f)$ ஆரை $\sqrt{g^2+f^2-c}$ எனப் பெறுக.                                                                       |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                    | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | <ol> <li>விட்டம் ஒன்றின் முனைப்<br/>புள்ளிகள் தரப்படுமிடத்து<br/>வட்டத்தின் சமன்பாட்டைக்<br/>காண்பார்.</li> </ol> | $(x_1,y_1), (x_2,y_2)$ என்பன விட்டமொன்றின் முனைப் புள்ளிகளாகவுள்ள வட்டத்தின் சமன்பாடு $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$ எனப் பெறுக.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| 12.2               | <ol> <li>வட்டம் ஒன்றைக் குறித்து<br/>புள்ளி ஒன்றின் நிலையை<br/>இனங்காண்பார்.</li> </ol>                           | $\mathbf{p}=\left(x_{0},y_{0} ight)$ என்ற புள்ளியும் $\mathbf{S}\equiv x^{2}+y^{2}+2gx+2fy+c=0  \mathbf{a}$ $\mathbf{a}$ $\mathbf{m}$ வட்டமும் தரப்படுமிடத்து $x_{0}^{2}+y_{0}^{2}+2gx_{0}+2fy_{0}+c\lessgtr 0$ $\mathbf{a}$ $\mathbf{m}$ | 01                            |
| 12.3               | <ol> <li>வட்டம் ஒன்றைக் குறித்து<br/>நேர்கோடு ஒன்றின்<br/>நிலையை விளக்குவார்.</li> </ol>                          | 10 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                                   | பாடக் குறிப்புகள்                                                                                                                                                        | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | <ol> <li>வட்டத்தின் புள்ளி ஒன்றில்<br/>தொடலியின் சமன்பாட்டைப்<br/>பெறுவார்.</li> </ol>                           | $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ எனும் வட்டத்திற்கு, வட்டத்தில் $P(x_0, y_0)$ இல் தொடலியின் சமன்பாடு $xx_0 + yy_0 + g(x + x_0) + f(y + y_0) + c = 0$ எனப் பெறுக. |                               |
| 12.4               | <ol> <li>வெளிப்புள்ளி ஒன்றிலிருந்த<br/>வட்டத்திற்கு வரையப்பட்ட<br/>தொடலியின் நீளத்தைக்<br/>காண்பார்.</li> </ol>  | LOUI (1010 DIV 1) OUT FERMAN                                                                                                                                             | 05                            |
|                    | <ol> <li>வெளிப்புள்ளி ஒன்றிலிருந்த<br/>வட்டத்திற்கு வரைடயும்<br/>தொடலியின் சமன்பாட்டைக்<br/>காண்பார்.</li> </ol> |                                                                                                                                                                          |                               |
|                    | <ol> <li>தொடலிகளின் தொடுகை<br/>நாணின் சமன்பாட்டைப்<br/>பெறுவார்.</li> </ol>                                      | $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ வட்டத்தின் சமன்பாடும், வட்டத்திற்கு வெளியேயுள்ள புள்ளி $P(x_0, y_0)$ உம் என்க.                                                  |                               |
|                    |                                                                                                                  | தொடுகை நாணின் சமன்பாடு $xx_0+yy_0+g(x+x_0)+f(y+y_0)+c=0$ எனப் பெறுக.                                                                                                     |                               |

## கணிதம் II

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                         | பாடக் குறிப்புகள்                                                                                      | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                        | புள்ளிவிபரவியல்                                                                                        | 15                            |
| 5.10               | <ol> <li>எழுமாற்று மாறிகளை<br/>விளக்குவார்.</li> </ol> | எழுமாற்றுமாறி $X,\;(1-\theta)\;,\;\;\theta$ எனும்<br>நிகழ்தகவுகளுடன் $(0 \le \theta \le 1)\;\;$ முறையே |                               |
|                    |                                                        | 0, 1 எனும் பெறுமானங்களை எடுக்கிறது<br>என்க.                                                            |                               |
|                    |                                                        | அப்பொழுது $X$ ஆனது பரமானம் $	heta$                                                                     |                               |
|                    |                                                        | உடைய பேணூலிப் பரம்பலையுடையது                                                                           |                               |
|                    |                                                        | எனப்படும்.                                                                                             |                               |
|                    |                                                        | நிகழ்த்தகவுத் திணிவுச்சார்பு $p(x)$ ஆனது,                                                              |                               |
|                    |                                                        | $p(x) = \theta^{x} (1-\theta)^{1-x}$ $x = 0, 1$ எனின்,                                                 |                               |
|                    |                                                        | = 0 ; அவ்வாறல்லாதபோது                                                                                  |                               |
|                    |                                                        | என்பதால் தரப்படும்.                                                                                    |                               |
|                    |                                                        | பரம்பலானது அட்டவணையில்                                                                                 |                               |
|                    |                                                        | பின்வருமாறு தரப்படும்.                                                                                 |                               |
|                    |                                                        | x 0 1                                                                                                  |                               |
|                    |                                                        | $p(x)$ 1- $\theta$ $\theta$                                                                            |                               |
|                    |                                                        | குறிப்பு:                                                                                              |                               |
|                    |                                                        | பேணூலிப்பரம்பலானது, ஈருறுப்புப்                                                                        |                               |
|                    |                                                        | பரம்பல் போன்றவற்றை விளக்குவதற்கு                                                                       |                               |
|                    | ŷ/                                                     | அடிப்படையானது ஆகும்.                                                                                   |                               |
|                    |                                                        | உதாரணம்:                                                                                               |                               |
|                    |                                                        | பை ஒன்றினுள் ஒரே மாதிரியான 6                                                                           |                               |
|                    |                                                        | வெள்ளைப் பந்துகளும் 3 சிவப்புப்                                                                        | +                             |
|                    |                                                        | பந்துகளும் உள்ளன. பையிலிருந்து ஒரு                                                                     |                               |
|                    |                                                        | பந்து எழுமாற்றாக எடுக்கப்படுகிறது.                                                                     |                               |
|                    |                                                        | சிவப்புப் பந்துகளின் எண்ணிக்கையை                                                                       |                               |
|                    |                                                        | எழுமாற்றுமாறி X குறிக்கிறது. என்க.                                                                     |                               |
|                    |                                                        | இங்கு X எடுக்கக்கூடிய பெறுமானங்கள்                                                                     |                               |
|                    |                                                        | 0, 1 ஆகும்.                                                                                            |                               |
|                    |                                                        |                                                                                                        |                               |
|                    |                                                        |                                                                                                        |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                              | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                             | இப்பொழுது $p(x) = \left(\frac{2}{3}\right)^x \left(1 - \frac{2}{3}\right)^{1-x}; x = 0, 1 \text{ எனின்,}$ $= 0; \text{ அவ்வாறல்லாதபோது}$ பேணூலிப் பரம்பலொன்றிற்கான $x = 0 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
|                    | 2. பின்னக ஒரு சீர்ப்பரம்பலை<br>விளக்குவார். | $E(X) = \theta$ , $Var(X) = \theta(1 - \theta)$ எனப் பெறுக. எல்லாம் சமநேர்தகவுள்ளனவும் $n$ வித்தியாசமான பெறுமானங்கள் $x_1, x_2$ , $x_3, x_n$ என்பவற்றின் மீது வரையறுக்கப் பட்டதுமான எழுமாற்று மாறி $X$ என்க. இப்பொழுது $X$ பின்னக ஒரு சீர்ப் பரம்பலை உடையது எனப்படும். நிகழ்தகவு திணிவுச்சார்பு $p(x)$ , $p(x) = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                    |                                             | $p(x) = \frac{1}{n}$ , $x = x_1, x_2,, x_n$ இற்கு $= 0$ , அவ்வாறல்லாதபோது என்பதால் தரப்படும். <b>உதாரணம்:</b> தாயக்கட்டை ஒன்று ஒரு தரம் எறியப்படும் பரிசோதனையைக் கருதுக. எழுமாற்றுமாறி $X$ , தாயக்கட்டையின் மேன்முகத்தில் தோன்றும் எண் என்க. இப்பொழுது, $p(x) = \frac{1}{6}$ , $x = 1, 2, 3, 4, 5, 6$ எனின், $= 0$ , அவ்வாறல்லாதபோது $x = 0$ , அவ்வாறல்லாதபோது $x = 0$ , அவ்வாறல்லாதபோது $x = 0$ , $x = 0$ |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                     | பாடக் குறிப்புகள்   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------------------|---------------------|-------------------------------|
| υς Γρ              | 3. நிகழ்தகவைக் கணிப்பதற்கு<br>ஈருறுப்புப் பரம்பலை விளக்<br>குவார். | , , , , , , ,       | எண்ணிக்கை                     |
|                    |                                                                    | என்பதால் தரப்படும். |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                    | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                           | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                   | $E(X) = np$ , $Var(X) = npq$ இங்கு $q = 1 - p$ <b>உதாரணம்:</b> தாயக்கட்டை ஒன்று 10 தடவைகள் எறியப்படுகிறது என்க. எழுமாற்றுமாறி $X$ தாயக்கட்டையின் மேன்முகத்தில் "6" தோன்றும் தடவைகளின் எண்ணிக்கை. $X \sim Bin\left(10, \frac{1}{6}\right)$ ஆகும். $p(x) = {}^{10}C_x\left(\frac{1}{6}\right)^x\left(\frac{5}{6}\right)^{10-x}$ , $x = 0, 1, 2, 3, 4, 5, 6, \dots 10$ $y = 0$ அவ்வாறல்லாதபோது |                               |
|                    | <ol> <li>நிகழ்தகவைக் கணிப்பதற்கு<br/>புவசோன் பரம்பலை விளக்<br/>குவார்.</li> </ol> | <ol> <li>தரப்பட்ட நேர ஆயிடையில்/வெளி<br/>ஆயிடையில், நிகழ்ச்சிகள் தனியாக<br/>வும் எழுமாற்றாகவும் நடைபெறு<br/>கின்றன என்க.</li> </ol>                                                                                                                                                                                                                                                         |                               |
|                    |                                                                                   | <ol> <li>தரப்பட்ட நேர ஆயிடையில் நேர்கை<br/>களின் எண்ணிக்கையின் இடை λ<br/>தரப்பட்டுள்ளதெனவும் முடிவுள்ள<br/>தெனவும் கொள்க.<br/>எழுமாற்றுமாறி X, தரப்பட்ட நேர<br/>ஆயிடையில் நேர்கைகளின்<br/>எண்ணிக்கை என்க.</li> </ol>                                                                                                                                                                        |                               |
|                    |                                                                                   | மேலேயுள்ள நிபந்தனைகள் திருப்தி செய்யப்பட்டால் $X$ புவசோன் பரம்பலை உடையது எனப்படும். இது $X \sim P_0(\lambda)  \text{என எழுதப்படும்.}$ $P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}, x=0,1,2,3,$                                                                                                                                                                                        |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                            | பாடக் குறிப்புகள்                                                                                                                                                                                                                                     | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                                                                                                           | <b>医別山</b> : $P(X = 0) = e^{-\lambda}, P(X = 1) = \lambda \cdot e^{-\lambda}$ $E(X) = \lambda, \text{ Var } (X) = \lambda$                                                                                                                            |                               |
|                    |                                                                                                           | உதாரணங்கள்  1. விபத்துச் சேவைக் கட்டுபாட்டாளருக்கு  1 மணித்தியாலத்தில் கிடைத்த அவசர அழைப்புக்களின் எண்ணிக்கை.                                                                                                                                         |                               |
|                    |                                                                                                           | <ol> <li>குறித்த நுழைவாயில் ஒன்றில் 10<br/>நிமிட ஆயிடையில், உட்புகும்<br/>வாகனங்களின் எண்ணிக்கை.</li> </ol>                                                                                                                                           | 9                             |
|                    | <ol> <li>சருறுப்பு விரிவிற்கு ஓர்<br/>அண்ணளவாக்கமாக<br/>புவசோன் பரம்பலைப்<br/>பயன்படுத்துவார்.</li> </ol> | $n$ பெரிதாகவும் $(n > 50)$ , $p$ சிறிதாகவும் உள்ளபோது $(p < 0.1)$ ஈருறுப்புப் பரம்பல் $X \sim \mathrm{Bin}\;(n,p)$ ஆனது புவசோன் பரம் பலைப் பயன்படுத்தி அதே இடையுடன் $X \sim \mathrm{P}_{_0}(np)$ ஆகவுள்ள புவசோன் பரம்ப லுக்கு அண்ணளவாக்கம் செய்யலாம். |                               |
| 5.11               | <ol> <li>தொடர்ச்சியான<br/>ஒருசீர்ப்பரம்பலை<br/>(செவ்வக) விளக்குவார்.</li> </ol>                           | ஆயிடை $[a, b]$ இன் மேல் தொடர்ச்சி யான ஒரு சீர்ப்பரம்பலின் நிகழ்தகவு அடர்த்திச் சார்பு $f(x) = \frac{1}{b-a} \;,\; a \leq x \leq b \;\; \text{ எனின்},$ $= 0 \;\; $ அவ்வாறல்லாதபோது ஆகும்.                                                             | 15                            |
|                    |                                                                                                           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                |                               |

| <mark>தேர்ச்சி</mark> கற்றற் பேறுகள்<br>மட்டம் | பாடக் குறிப்புகள்                                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 2. அடுக்குக் குறிப்பரம்பலை<br>விளக்குவார்.     | இப்பரம்பல் $X \sim U$ $(a, b)$ அல்லது $R(a,b)$ என எழுதப்படும். $a,b$ என்பன பரம்பலின் பரமானங்கள் ஆகும். $E(X) = \frac{1}{2}(a+b)$ Var $(X) = \frac{1}{12}(b-a)^2$ என்பவற்றைப் பேறுக. |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                     | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | கற்றற் பேறுகள்  3. செவ்வன் பரம்பலை<br>விளக்குவார். | $P(X>a)=e^{-\lambda a}$ $P(X>a+b   X>a)=e^{-\lambda b}$ $=P(X>b)$ என்பவற்றைப் பெறுக. $X$ என்பது ஒரு தொடர் எழுமாற்று மாறி என்க. $X$ , இடை $\mu$ , நியமவிலகல் $\sigma$ கொண்ட செவ்வன் பரம்பல் எனின், $X$ இன் நிகழ்தகவு அடர்த்திச்சார்பு $f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$ என்பதால் தரப்படும். இதனை $X\sim N(\mu,\sigma^2)$ என எழுதுவோம். செவ்வன் பரம்பல் வளையி பின்வரும் இயல்புகளைக் கொண்டுள்ளது.  (ii) இது மணி வடிவம் உடையது. (iii) $-\infty$ இலிருந்து $+\infty$ வரை செல்லும் (iv) $f(x)$ இன் உயர்வுப் பெறுமானம் $\frac{1}{\sigma\sqrt{2\pi}}$ (v) வளையியின் கீழ் உள்ள மொத்தப் பரப்பளவு $1$ க்கு சமமாகும். $X\sim N\left(\mu,\sigma^2\right)$ எனின், * அண்ணளவாக பரம்பலின் 95% | களின்                         |
|                    |                                                    | இடையிலிருந்து 2 நியமவிலகல்<br>தூரத்துள் இருக்கும்.<br>* அண்ணளவாக பரம்பலின் 99.75%<br>இடையிலிருந்து 3 நியமவிலகல்<br>தூரத்துள் இருக்கும்.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                                         | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                    | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | <ol> <li>நிகழ்தகவுகளைக் கணிப்<br/>பதற்கு நியம செவ்வன்<br/>அட்டவணையைப் பயன்<br/>படுத்துவார்.</li> </ol> | $P(Z < a) = \phi(a)$                                                                                                                                                                                                                                                 |                               |
|                    |                                                                                                        | $P(Z > a) = 1 - \phi(a)$                                                                                                                                                                                                                                             |                               |
|                    | **                                                                                                     | $\phi(z)$ தரப்படுமிடத்து நியம செவ்வன்<br>அட்டவணையைப் புறமாற்றாகப் பயன்<br>படுத்தி $Z$ இன் பெறுமானத்தைக்<br>காண்பார்.                                                                                                                                                 |                               |
|                    | <ol> <li>ஈருறுப்புப் பரம்பலுக்கு<br/>செவ்வன் அண்ணளவாக்கத்<br/>தைப் பயன்படுத்துவார்.</li> </ol>         | பின்வருமாறு விதி பாவிக்கப்படும். $X \sim \operatorname{Bin}(n,p)$ ஆகவும் $n$ , $p$ என்பன $np > 5$ , $nq > 5$ ( $q = 1$ - $p$ ) ஆகவும் இருப்பின் $X \sim \operatorname{N}(np,npq)$ எனக் கொள்ளலாம்.                                                                    |                               |
|                    | 7. தொடர்ச்சித் திருத்தத்தினை<br>மேற்கொள்வது பற்றி<br>விளக்குவார்.                                      | பின்னகமாறி (ஈருறுப்புப் பரம்பல்)<br>ஒன்றின் அண்ணளவாக்கமாக தொடர்<br>மாறி (செவ்வன் பரம்பல்) பயன்படுத்தப்<br>படும்போது தொடர்ச்சித்திருத்தம்<br>மேற்கொள்ள வேண்டும். இதனை<br>உதாரணங்களுடன் விளக்குக.<br>P(3 <x<5) p(3.5<x<4.5)="" ஆக<br="" என்பது="">மாற்றப்படும்.</x<5)> |                               |
|                    |                                                                                                        | $P(X \le 3)$ என்பது $P(X \le 2.5)$ ஆக மாற்றப்படும்.                                                                                                                                                                                                                  |                               |
|                    |                                                                                                        | $P(X \ge 5)$ என்பது $P(X \ge 5.5)$ ஆக மாற்றப்படும்.                                                                                                                                                                                                                  |                               |
|                    |                                                                                                        | P(X=4) என்பது P(3.5 < X < 4.5) ஆக<br>மாற்றப்படும்.                                                                                                                                                                                                                   |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                                                   | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 7.0                | <ol> <li>வலை வேலை என்பதை<br/>விளக்குவார்.</li> </ol>                             | வலைவேலை வலை வேலையான்றை வரைபோன்றி னாலோ அல்லது கணுக்களையும் விற்களையும் கொண்ட வரிப்படம் ஒன்றி னாலோ காட்சிப்படுத்தலாம். பின்வரும் சொற்றொகுதிகளைப் பற்றி கலந்துரை யாடுக.  வில் கணுக்கள் வலை வேலை                                                                                                                                                                                                                                                                                                                   | 20                            |
|                    |                                                                                  | வலை வேலை நுட்பத்தின் பயன்பாடுகள்  விநியோகித்தல்  உய்ப்பித்தல்  நிதி முகாமைத்துவம்  செயற்றிட்டம் ஒன்றை திட்டமிடல் முதலியன.                                                                                                                                                                                                                                                                                                                                                                                      |                               |
|                    | <ol> <li>வலை வேலை ஒன்றை<br/>உபயோகித்து பிரசினங்க<br/>ளைத் தீர்ப்பார்.</li> </ol> | திட்ட முகாமைத்துவம்  திட்டம் என்பது யாது? திட்டமிடல், கட்டமைத்தல், அமுலாக்கல் அகியவற்றின் மூலமாக இலக் கொன்றை அடைவதற்காக ஆற்ற வேண்டிய செயல் ஒழுங்கை திட்டம் ஒன்று கொண்டிருக்கும்.) உதாரணம்: வீடொன்றைக் கட்டி முடித்தல், சந்திரனுக்கான பயணம். சிறியதான திட்டம் ஒன்றை பற்றிக் கலந்துரையாடுக. (வீடொன்றைக் கட்டுதல் போன்ற) மேற்கொள்ள வேண்டிய செயற் பாடுகளையும் அவை ஆற்றப்பட வேண்டிய ஒழுங்குகளையும் இனங் காண்க. (செயல் ஒன்று தொடங்கப் படுவதற்கு முன்பாக நிறைவேற்றி யிருக்கப்பட்டிருக்க வேண்டிய செயற்பாடுகள் போன்றவை. |                               |
|                    |                                                                                  | <ul> <li>வலை வேலை வகைக்குறிப்பு சிறிய திட்டம் ஒன்றை எவ்வாறு வலை வேலை ஒன்றால் வகைக் குறிக்கலாம் எனக் கலந்துரை யாடுக. இதற்கான அடிப்படை விதிகள் பற்றி கலந்துரையாடுக.</li> </ul>                                                                                                                                                                                                                                                                                                                                   |                               |

| b இற்குமிடையிலிருப்பதற்<br>கேவு $\mathbf{P}(a < x < b)$ என $=a$ இற்கும் $b$ இற்குமிடை<br>ள் வளையியின் கீழ் உள்ள | எண்ணிக்கை                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ள் வளையியின் கீழ் உள்ள                                                                                          |                                                                                                                                                                                                                  |
| 9.000 0 <b>-</b> 0.01                                                                                           |                                                                                                                                                                                                                  |
| டை $\mu$ , நியமவிலகல் $\sigma$                                                                                  |                                                                                                                                                                                                                  |
| செவ்வன் பரம்பல் என்க.                                                                                           |                                                                                                                                                                                                                  |
| $(\sigma^2)$                                                                                                    |                                                                                                                                                                                                                  |
| சியம் (0) ஆகவும்,<br>1 ஆகவும் இருக்குமாறு<br>த்தப்படுகின்றது.                                                   | -                                                                                                                                                                                                                |
| $rac{\mu}{a}$ என வரையறுக்குக.                                                                                  |                                                                                                                                                                                                                  |
| Z ~ N (0,1) ஆகும்.                                                                                              |                                                                                                                                                                                                                  |
| ழ்தகவு அடர்த்திச்சார்பு<br>_ <sup>1</sup> z²                                                                    |                                                                                                                                                                                                                  |
| $e^{-e^{-2}}$ என்பதால் தரப்படும். $\phi(z)$                                                                     |                                                                                                                                                                                                                  |
| $\phi(a)$                                                                                                       |                                                                                                                                                                                                                  |
|                                                                                                                 |                                                                                                                                                                                                                  |
|                                                                                                                 | $(x,\sigma^2)$ சியம் $(0)$ ஆகவும், $(0,1)$ ஆகவும், $(0,1)$ ஆகவும் இருக்குமாறு த்தப்படுகின்றது. $(0,1)$ என வரையறுக்குக. $(0,1)$ ஆகும். $(0,1)$ ஆகும். $(0,1)$ ஆகும். $(0,1)$ ஆகும். $(0,1)$ ஆகும். $(0,1)$ ஆகும். |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள் | பாடக் குறிப்புகள்                                                                                                                                                                                                                                                 | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |                | <ul> <li>பின்வரும் எண்ணக்கருக்கள் பற்றிக்<br/>கலந்துரையாடுக.</li> <li>அதி முந்திய தொடக்க நேரம்</li> <li>அதி முந்திய முடிவு நேரம்</li> <li>அதி பிந்திய தொடக்க நேரம்</li> <li>அதி பிந்திய முடிவு நேரம்</li> <li>அதி பிந்திய முடிவு நேரம்</li> <li>தளர்வு</li> </ul> |                               |
|                    |                | <ul> <li>மாறுநிலைப் பாதையை இனங்<br/>காண்பது பற்றி கலந்துரையாடுக.</li> </ul>                                                                                                                                                                                       | 8                             |
|                    |                | உயர்வுப் பாய்ச்சல் பிரசினங்கள்                                                                                                                                                                                                                                    |                               |
|                    |                | உயர்வுப் பாய்ச்சல் பற்றிக் கலந்துரை<br>யாடுக. வலை வேலை ஒன்றில் வில்                                                                                                                                                                                               |                               |
|                    |                | ஒன்றில் பாய்ச்சலுறத் தக்க உற்பத்தி<br>யினூடு அளவின் எல்லைகளைக்                                                                                                                                                                                                    |                               |
|                    |                | குறிக்கப்பட முடியுமாதலால் பல்வேறு                                                                                                                                                                                                                                 | 1                             |
|                    |                | சந்தர்ப்பங்களை வலை வேலை மூல<br>மாக மாதிரிப்படுத்தலாம். இவ்வாறான                                                                                                                                                                                                   | 1                             |
|                    |                | சந்தர்ப்பங்களில் பெரும்பாலும்                                                                                                                                                                                                                                     |                               |
|                    |                | தொடக்கப்புள்ளி (ஊற்று) இலிருந்து<br>முடிவுப்புள்ளி (உறிஞ்சி) வரை                                                                                                                                                                                                  | 1                             |
|                    |                | உய்ப்பிக்கக் கூடிய பாய்ச்சலின் அளவு<br>உயர்வாக அமைவது விரும்பத்தக்கது.                                                                                                                                                                                            |                               |
|                    |                | இவை தொடர்பான பிரசினங்கள்                                                                                                                                                                                                                                          | i                             |
|                    |                | உயர்வுப் பாய்ச்சல் பிரசினங்கள்<br>எனப்படும்.                                                                                                                                                                                                                      |                               |
|                    |                | தீர்வு அலுகோரிதம் பற்றிக் கலந்துரை                                                                                                                                                                                                                                |                               |
|                    |                | யாடுக.                                                                                                                                                                                                                                                            |                               |
|                    |                | இழியல் மரப் பாவுகை பிரசினங்கள்<br>வலை வேலை ஒன்றில், ஒவ்வொரு                                                                                                                                                                                                       |                               |
|                    |                | சோடிக்கணுக்களிடையேயான தூரங்கள்                                                                                                                                                                                                                                    | 1                             |
|                    |                | தரப்பட்டுள்ளபோது, மொத்த சதுரம்                                                                                                                                                                                                                                    |                               |
|                    |                | இழியல் ஆகுமாறு கிளைகளைத்                                                                                                                                                                                                                                          |                               |
|                    |                | தெரிதல் தொடர்பான பிரசினங்கள்                                                                                                                                                                                                                                      |                               |
|                    |                | இவ்வகையில் உள்ளடங்கும்.                                                                                                                                                                                                                                           |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுகள்                                            | பாடக் குறிப்புகள்                                                                                                                                                         | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    | 4                                                         | இவ்வகையான பிரசினங்கள் எழும்<br>சந்தர்ப்பங்கள் பற்றி விபரிக்க.     உதாரணமாக தொலைத் தொடர்வு<br>வலை அமைப்பு, நீர்ப்பாசன<br>விநோயாகத் தொகுதி.                                 |                               |
|                    |                                                           | <ul> <li>தீர்வுகாண மேற்கொள்ள வேண்டிய<br/>படிமுறைகள் பற்றிக் கலந்துரை<br/>யாடுக.</li> </ul>                                                                                |                               |
| 5.12               | <ol> <li>மாக்கோவின் சங்கிலியை<br/>விளக்குவார்.</li> </ol> | <b>நிகழ்தகவு</b> • காவி $u = (u, u_2,, u_n)$ என்பதன் ஒவ்வொரு மூலகமும் மறையற்ற தாகவும், அவற்றின் கூட்டுத்தொகை                                                              | 10                            |
|                    |                                                           | $1$ ஆகவுமிருப்பின் $u=(u,u_2,,u_n)$ <b>நிகழ்தகவுக் காவி</b> எனப்படும். $u=\left(\frac{1}{3},0,\frac{2}{3}\right)$                                                         |                               |
|                    |                                                           | <ul> <li>சதுரத் தாயம் P = (p<sub>ij</sub>) இன்<br/>ஒவ்வொரு நிரையும், நிகழ்தகவுக்<br/>காவியாக இருப்பின் P உத்தேசத்<br/>தாயம் எனப்படும்.</li> </ul>                         |                               |
|                    |                                                           | உதாரணம்: $P = \begin{pmatrix} \frac{1}{4} & \frac{3}{4} \\ 0 & 1 \end{pmatrix}$ <b>குறிப்பு:</b> $A, B$ என்பன ஒரே வரிசை யையுடைய உத்தேசத் தாயங்கள்                         |                               |
|                    |                                                           | எனின் $AB$ உத்தேசத் தாயம் ஆகும்.  • $P$ என்பது உத்தேசத்தாயம் என்க. $m$ ஒரு நேர்நிறையெண்ணாக இருக்க $P^m$ இன் எல்லா மூலகங்களும் நேராக இருப்பின் $P$ ஒழுங்கான உத்தேசத் தாயம் |                               |
|                    |                                                           | உதாரணம்: $P = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ என்க.                                                                                     |                               |

| தேர்ச்சி<br>மட்டம் | கற்றற் பேறுக | கள் பாடக் குறிப்புகள்                                                                                                                                                                              | பாடவேளை<br>களின்<br>எண்ணிக்கை |
|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                    |              | $P^2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$                                                                                                       |                               |
|                    |              | நிலையான புள்ளிகளும் ஒழுங்கான<br>உத்தேசத் தாயங்களும் (2×2)                                                                                                                                          |                               |
|                    |              | <ul> <li>P என்பது ஒழுங்கான உத்தேசத்தாயம் என்க.</li> <li>இப்பொழுது</li> <li>(i) P, ஒரு தனித்த ஒரு நிலையான நிகழ்தகவுக் காவி f யைக் கொண்டுள் ளதுடன், f இன் ஒவ்வொரு மூலகமும் நேரானது ஆகும்.</li> </ul> |                               |
|                    |              | (ii) P இன் வலுக்களிலான தொடரி P, P <sup>2</sup> , P <sup>3</sup> , நிலையான தாயம் T ஐ அணுகுகிறது. இதன் ஒவ்வொரு நிரையும் நிலைத்த புள்ளி 1 ஆக அமையும்.                                                 |                               |
|                    |              | (iii) $p$ என்பது ஒரு நிகழ்தகவு காவியாக<br>இருக்க $p, p^2, p^3,$ நிலை<br>யான புள்ளி $t$ ஐ அணுகும்<br>பிரசினங்களைத் தீர்க்க<br>மாணவரை வழிப்படுத்துக.                                                 |                               |
|                    |              |                                                                                                                                                                                                    |                               |
|                    |              |                                                                                                                                                                                                    |                               |

## க.பொ.த. (உயர்தரம்) - கணிதம் (2009 ஆகஸ்ட் மாதத்திலிருந்து நடைமுறைப்படுத்தப்படுகின்றது)

## இப்பாடத்திட்டத்தின் கீழ் முதலாவது பரீட்சை 2011 இல் நடைபெறும்.

பாடத்திட்டத்தில் பின்வரும் மாற்றங்கள் செய்யப்பட்டுள்ளன.

- 1. ஒதுக்கப்பட்ட பாடவேளைகளில் மாற்றங்கள் செய்யப்பட்டுள்ளன.
- 2. பகுதி 2.3 (தர்க்கவியல்) பாடத்திட்டத்திலிருந்து நீக்கப்பட்டுள்ளது.
- 3. பகுதி 5.12 புதிதாகச் சேர்க்கப்பட்டுள்ளது. (கணிதம் II)

ஆசிரியர்கள் இம்மாற்றங்களைப் பின்பற்றுமாறு அன்புடன் கேட்கப்படுகின்றீர்கள்.

கணிதம் I

| பகுதி                    | உள்ளடக்கம்                                     | A STATE OF THE PARTY OF THE PAR | .வேளை<br>ய புதிய          | குறிப்பு |
|--------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| 1.1, 1.2, 1.3            | மெய்யெண்கள்                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                        |          |
| 2.1, 2.2, 2.4            | 20                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3 நீக்கப்<br>பட்டுள்ளது |          |
| 2.5, 2.6                 | தொடர்புகள்                                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                        |          |
| 3.1, 3.2                 | ஒருமாறியிலான சார்புகள்                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                        |          |
| 3.3, 3.4                 | பல்லுறுப்பிகள்                                 | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07                        |          |
| 3.5, 3.6                 | இருபடிச்சார்புகள், இருபடிச்<br>சமன்பாடுகள்     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                        |          |
| 3.7                      | விகிதமுறு சார்புகள்                            | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05                        |          |
| 3.8                      | அடுக்குச் சார்புகள்                            | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                        |          |
| 4.1                      | எளிய அட்சரகணிதச் சமனிலிகள்                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07                        |          |
| 4.2                      | மட்டு சம்பந்தமான சமனிலிகள்                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08                        |          |
| 5.1, 5.2                 | வரிசைமாற்றமும் சேர்மானமும்<br>ஈருறுப்பு விரிவு | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                        |          |
| 6.0                      | தொடர்கள்                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                        |          |
| 7.1, 7.2, 7.3, 7.4       | துணிகோவைகள்                                    | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                        |          |
| 8.1, 8.2                 | தாயங்கள்                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                        |          |
| 9.1, 9.2, 9.3            | திரிகோண கணித விகிதங்கள்                        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                        |          |
| 10.1                     | திரிகோண கணித சார்புகள்                         | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08                        |          |
| 10.2, 10.3, 10.4         | சர்வ சமன்பாடுகள், சூத்திரங்கள்                 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                        |          |
| 10.5                     | சைன், கோசைன்விதி                               | 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08                        |          |
| 11.1                     | தெக்காட்டின் ஆள்கூறு                           | 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06                        |          |
| 11.2, 11.3, 11.4, 11.5,  | நேர்கோடு                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                        |          |
| 11.6, 11.7               |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| 12.1, 12.2, 12.3, 12.4   | வட்டங்கள்                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                        |          |
| 13.1, 13.2, 13.3, 13.4,  | பெறுதி I                                       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                        |          |
| 13.5, 13.6, 13.7         | பெறுதி II                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                        |          |
| 13.8, 13.9, 13.10, 13.11 | தொகையீடு                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                        |          |
| 13.12, 13.13, 13.14      | தொகையீடு                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                        |          |
|                          | மெத்தம்                                        | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 355                       |          |

கணிதம் II

| பகுதி                   | உள்ளடக்கம்                                | பாடவேளை<br>பழைய புதிய |     | குறிப்பு    |
|-------------------------|-------------------------------------------|-----------------------|-----|-------------|
| 1.1, 1.2                | புள்ளிவிபரவியலின் அடிப்படை                | 10                    | 03  |             |
| 2.1, 2.2, 2.3, 2.4      | தரவுகளைக் காட்டலும்<br>தகவல்களும்         | 42                    | 22  |             |
| 3.1, 3.2, 3.3, 3.4, 3.5 | மைய நாட்ட அளவைகள், 46 22<br>சிதறல்கள்     |                       |     |             |
| 3.6, 3.7                | ஓராயம்                                    | 18                    | 03  |             |
| 4.0                     | சுட்டிகள்                                 | 15                    | 15  |             |
| 5.1, 5.2, 5.3, 5.4, 5.5 | நிகழ்தவு                                  | 50                    | 35  |             |
| 5.6, 5.7, 5.8, 5.9      | எழுமாற்றுமாறிகளும் அவற்றின்<br>பண்புகளும் | 30                    | 15  |             |
| 5.10                    | நிகழ்தகவுப் பரம்பல் (பின்னக)              | 20                    | 15  |             |
| 5.11                    | நிகழ்தகவுப்பரம்பல்<br>(தொடர்ச்சியான)      | 20                    | 15  |             |
| 5.12                    | மாக்கோவின் சங்கிலி                        | _                     | 10  | புதிய பகுதி |
| 6.1, 6.2                | ஏகபரிமாணத்திட்டமிடல்                      | 18                    | 18  |             |
| 7.0                     | ഖതலնഖതல                                   | 24                    | 20  |             |
| GF 14                   | மெத்தம்                                   | 293                   | 193 |             |

கணித பாடத்திற்கான வினாத்தாள் அமைப்பு பரீட்சை திணைக்களத்தால் வெளியிடப்படும்.

பாடசாலை மட்டக் கணிப்பீடு

#### அறிமுகம்

கற்றல் - கற்பித்தல் மதிப்பீடு ஆகியன கல்விச் செயன்முறைகளின் முக்கிய மூன்று கூறுகளாகும் என்பதும், கற்றல் கற்பித்தலின் முன்னேற்றத்தை அறிய கணிப்பீடு மதிப்பீட்டை பயன்படுத்த வேண்டும் என்பதும் எல்லா ஆசிரியாகளும் தெளிவாக அறிந்திருக்க வேண்டிய ஒரு விடயமாகும். அவை ஒன்றன் மீது ஒன்று செல்வாக்குச் செலுத்தும் அதேவேளை ஒவ்வொன்றும் மற்றையவற்றின் முன்னேற்றத்திலும் செல்வாக்குச் செலுத்துகின்றன என்பது ஆசிரியாகள் யாவரும் அறிந்த உண்மையாகும். தொடர் (நிதமும் நிகழும்) மதிப்பீட்டு கோட்பாடுகளுக்கிணங்க கற்றல் நடைபெறும் போதே மதிப்பீடும் இடம்பெற வேண்டும். இது கற்றல் கற்பித்தல் செயன்முறையின் ஆரம்பப்பகுதி, இடைப்பகுதி, இறுதிப்பகுதி ஆகிய எந்த ஒரு சமயத்திலும் இடம் பெறலாம் என்பதை ஆசிரியாகள் விளங்கிக் கொள்வது அவசியமாகும். தமது மாணவரை மதிப்பிட எதிர்பார்க்கும் ஓர் ஆசிரியர் கற்றல் கற்பித்தல் மதிப்பீடு ஆகியன தொடர்பான ஒழுங்கான திட்டமொன்றைப் பயன்படுத்தல் அவசியம்.

பாடசாலையை அடிப்படையாக கொண்ட கணிப்பீட்டு வேலைத்திட்டமானது ஒரு பரீட்சை முறையோ சோதனை நடாத்துவதோ அல்ல. அது மாணவர்களது கற்றலையும், ஆசிரியர்களது கற்பித்தலையும் மேம்படுத்துவதற்காகப் பயன்படுத்தப்படும் ஒரு தலையீடாகும். ஆதலால் மாணவர்களுக்கு அருகில் இருந்து அவர்களுடைய பலங்களையும் பலவீனங்களையும் இனங்கண்டு அவற்றிற்கு பரிகாரம் கண்டவாறு மாணவர்களை அவர்களது உச்ச வளர்ச்சி மட்டத்தை அடையச் செய்வதற்காகப் பயன்படுத்தக்கூடிய ஒரு வேலைத் திட்டமாகும்.

கற்றல்- கற்பித்தல் செயன்மூலம் தேடல் செயன்முறையின் பால் மாணவர்கள் வழிப்படுத்தப் படுகின்றனர். பாடசாலையை அடிப்படையாகக் கொண்ட கணிப்பீட்டு வேலைத்திட்டத்தை செயற்படுத்தும்போது மாணவர்களிடையே ஆசிரியர் சஞ்சரித்து அவர்கள் செய்யும் வேலைகளை அவதானித்து வழிகாட்டலை வழங்கிச் செயற்படல் வேண்டும் என எதிர் பார்க்கப்படுகின்றது. இங்கு மாணவர்கள் தொடர்ச்சியாக மதிப்பீட்டுக்கு உள்ளாக்கப்படுவ தோடு மாணவர் ஆற்றல் அபிவிருத்தி எதிர்பார்த்தவாறு நடைபெறுகின்றதா என்பதை ஆசிரியர் உறுதிப்படுத்திக் கொள்ளல் வேண்டும்.

மாணவருக்கு தக்க அனுபவங்களைப் பெற்றுக்கொடுத்து அவற்றை மாணவர்கள் சரியாகப் பெற்றுக்கொண்டார்களா என உறுதிப்படுத்தல் கற்றல்-கற்பித்தல் ஊடாகத் நிகழ வேண்டும். அத்தோடு அதற்கு தக்க வழிகாட்டல் வழங்கப்பட வேண்டும். மதிப்பீட்டில் (கணிப்பீட்டில்) ஈடுபட்டுள்ள ஆசிரியர்கள் தமது மாணவர்களுக்கு இரண்டு வகையான வழிகாட்டல்களை வழங்க முடியும். அவை பொதுவாக பின்னூட்டல் / முன்னூட்டல் எனப்படும்.

மாணவாகளின் பலவீனங்களையும் இயலாமைகளையும் கண்டறிந்தபோது அவாகளது கற்றல் பிரச்சினைகளை நிவர்த்திப்பதற்காகப் பின்னூட்டலையும் மாணவர்களின் திறமைகளையும் ஆற்றல்களையும் இனம்காணும்போது அவற்றை மேன்படுத்த, முன்னூட்டலையும் வழங்குவது ஆசிரியரின் கடமையாகும்.

கற்றல்- கற்பித்தல் செயன்முறையின் வெற்றிக்காக பாடநெறியின் நோக்கங்களுள் எந்த நோக்கத்தை எந்த மட்டத்தில் நிறைவேற்ற முடிந்தது என்பதை இனங்காணல், மாணவர்களுக்கு அவசியமாகின்றது. மதிப்பீடுகள் மூலம் மாணவர்கள் அடைந்துள்ள தேர்ச்சி மட்டங்களைத் தீர்மானித்தல் சம்பந்தப்பட்ட ஆசிரியரிடமிருந்து எதிர்பார்க்கப்படு கின்றது. மாணவர்கள், ஆசிரியர்கள், வேறு பிரிவினர்களுக்கு மாணவர்களின் முன்னேற்றம் பற்றிய தகவல்களை அறிவிப்பதற்கு ஆசிரியர் முனைய வேண்டும். இதற்குப் பயன்படுத்தக்கூடிய மிகவும் பொருத்தமான முறை, தொடர்ச்சியாக மாணவரை மதிப்பீட்டுக்கு உட்படுத்த வாய்ப்பளிக்கும் பாடசாலை மட்ட மதிப்பீட்டு முறையாகும்.

மேற்படி நோக்கத்துடன் செயற்படும் ஆசிரியா்கள் தமது கற்பித்தல் செயன்முறையையும் மாணவா்களின் கற்றல் செயன்முறையையும் மேலும் வினைத்திறன் மிக்கதாக்குவதற்கு வினைத்திறன் மிக்க கற்றல் -கற்பித்தல் மதிப்பிடல் முறைகளைப் பயன்படுத்த வேண்டும். இது தொடர்பாக ஆசிரியர்களுக்கும் மாணவா்களுக்கும் பயன்படுத்தத் தக்க அணுகுமுறைப் பேதங்கள் (வகைகள்) சில கீழே தரப்பட்டுள்ளன. இவை நீண்டகாலமாக ஆசிரியர்களுக்கு தேசிய கல்வி நிறுவனத்தினாலும், பரீட்சை திணைக்களத்தினாலும் விளக்கமளிக்கப்பட்ட முறைகளாகும். எனவே அவை தொடர்பாக பாடசாலைத் தொகுதியைச் சேர்ந்த ஆசிரியர்கள் போதிய அறிவூட்டம் பெற்றிருப்பா் என எதிா்பார்க்கப்படுகின்றது. இம்முறைகள் வருமாறு.

- 1. ஒப்படைகள்
- 3. ஆய்வு
- 5. அவதானிப்புக்கள்
- 7. களச் சுற்றுலாக்கள்
- 9. அமைப்புக் கட்டுரைகள்
- 11. ஆக்கச் செயற்பாடுகள்
- 13. செய்முறைச் செயற்பாடுகள்
- 15. சுய ஆக்கங்கள்
- 17. எண்ணக்கரு படங்கள்
- 19. சுவர்ப் பத்திரிகைகள்
- 21. வினா-விடைப் புத்தகங்கள்
- 23. குழுக் கலந்துரையாடல்கள்
- 25. உடனடிச் சொற்பொழிவு

- 2. செயற்றிட்டங்கள்
- 4. நுணுகி ஆராய்தல்
- 6. கண்காட்சி / முன்வைத்தல்கள்
- 8. குறுகிய எழுத்துப் பரீட்சைகள்
- 10. திறந்த நூல் சோதனைகள்
- 12. செவிமடுத்தல் சோதனைகள்
- 14. பேச்சுக்கள்
- 16. குழுச் செயற்பாடுகள்
- 18. இரட்டைக் குறிப்பு நாளேடு
- 20. வினா-விடை நிகழ்ச்சிகள்
- 22. விவாதங்கள்
- 24. கருத்தரங்குகள்.
- 26. பாத்திரமேற்று நடித்தல்

அறிமுகம் செய்யப்பட்டுள்ள மேற்படி கற்றல் கற்பித்தல் மதிப்பீட்டு முறைகள் அனைத்தையும், எல்லாப் பாடங்களினது எல்லா அலகுகளுக்காகவும் பயன்படுத்த முடிவு என எதிர்பார்கப்படவில்லை. தமது பாடத்திற்கும் குறித்த பாட அலகிற்கும் பொருத்தமான முறைகளைத் தெரிவு செய்துகொள்வதற்கு அறிவூட்டம் பெற வேண்டும்.

மேற்படி ஆசிரியர் அறிவுரைப்படி வழிகாட்டிய தமது மாணவர்களின் கற்றல் முன்னேற்றத்தை கணிப்பிடப் பயன்படுத்தக்கூடிய கற்றல் கற்பித்தல் மற்றும் மதிப்பீட்டு பேதங்கள் பற்றிக் குறிப்பிடப்பட்டுள்ளது. ஆசிரியர்கள் தமது மாணவர்களின் முன்னேற்றத்திற்காக அவற்றை தக்கவாறு பயன்படுத்தல் வேண்டும். இவற்றைப் பயன்படுத்தாது தவிர்த்தல் மாணவர் தமது அறிவாற்றல் மற்றும் உள எழுச்சி, உள இயக்க திறன்களை வளர்த்துக் கொள்வதற்கும் அவற்றை வெளிப்படுத்துவதற்கும் தடையாக அமையும்.

### தரம் 13 - முதலாம் தவணை ஒப்படை இல - 1

**மாணவர் செயற்பாட்டின் தன்மை** : கண்டறிதல்

**தேர்ச்சி மட்டம்** : எண்ணுவதற்குப் பல்வேறு முறைகளைப் பயன்படுத்துவர்.

**கண்டறிதல்** : ஒழுங்குத் தொகைக்கும் கூட்டுத்தொகைக்கும் உரிய அடிப்படைக் கருதுகோளைக் கண்டறிவார்.

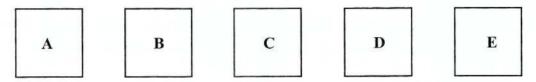
#### ஆசிரியர்களுக்கான ஆலோசனை :

- வரிசைமாற்றமும் சேர்மானமும் என்ற பாடத்தை ஆரம்பிப்பதற்கு ஒரு கிழமைக்கு முன்னர் கண்டறிதலில் மாணவர்களை ஈடுபடுத்தவும்.
- பாடத்தை ஆரம்பிப்பதற்கு உத்தேசித்துள்ள தினத்திற்கு இரண்டு நாட்களுக்கு முன்னர் கண்டறிதலின் முடிவுகளை சமர்ப்பிப்பதற்கு ஆலோசனை வழங்கவும்.
- 3. கண்டறிதலின் முடிவுகளைப் பாராட்டவும்.
- வரிசை மாற்றம் தொடர்பாக மாணவர்களின் அடைவுமட்டத்திலிருந்து
   உரிய தினத்திலே வரிசைமாற்றச் சேர்மானமும் என்ற பாடத்தை
   ஆரம்பிக்கவும்.

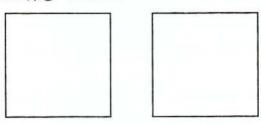
**குறிப்பு:** ஒழுங்குத்தொகைக்கும் கூட்டுத்தொகைக்கும் உரிய அடிப்படைக் கருதுகோளும். வரிசை மாற்றமும் சேர்மானத்திலும் உள்ள காரணியக் குறியீடும் பாடத்தை ஆரம்பித்த பின்னரே மாணவர்களுக்கு சொல்லிக் கொடுத்தல் வேண்டும்.

#### செயலட்டை:

பின்வரும் நிகழ்ச்சியைக் கவனிக்க.


இது இற்றைக்கு சுமார் 100 ஆண்டுகளுக்கு முன்னர் நிகழ்ந்த ஒரு விடயமாகும்.

பாடசாலை ஒன்றின் 10 மாணவர்களைக் கொண்ட ஒரே குழு பாடசாலை ஓய்வு நேரத்தில் தேனீர் குடிப்பதற்காக எந்நாளும் ஒரே சிற்றுண்டிச்சாலைக்குப் போய் ஒரே வரிசையில் உள்ள அதே கதிரையில் அமர்வார்கள். ஒரு நாள் சிற்றுண்டிச்சாலையின் உரிமையாளர் பின்வரும் யோசனையை முன்வைத்தார்.


''நீங்கள் 10 பேரும் இன்று அமர்ந்த ஒழுங்கில் அல்லாமல் வேறொரு ஒழுங்கில் நாளைக்கும் இன்னுமொரு ஒழுங்கில் நாளை மறுதினமும் என்றவாறு வெவ்வேறு ஒழுங்குகளில் கதிரைகளில் இனிமேல் உட்காருதல் வேண்டும். அவ்வாறு நீங்கள் அமரும் எல்லா ஒழுங்குகளும் முடிவுற்ற தினத்தில் உங்களுக்கு இலவசமாக போதியளவு சிற்றுண்டிகள் தரப்படும்."

சிற்றுண்டி உரிமையாளரின் இக்கூற்று தொடர்பாக கணித ரீதியாக ஆராய்வதற்கு கீழேயுள்ள செயற்பாட்டில் ஈடுபடவும்.

(1) கீழேயுள்ளவாறு சமனான சதுரவடிவ 5 காகித அட்டைகளைப் பெற்று அவற்றை A,B,C,D,E எனப் பெயரிடுக.



(i) மேலேயுள்ள சதுர வடிவங்களைவிட பெரிய சதுரங்கள் இரண்டை கடதாசி ஒன்றில் ஒரே வரிசையில் வரைந்து கொள்க.



மேலே A, B என பெயரிடப்பட்டுள்ள காகித அட்டைகளை கடதாசியில் வரைந்துள்ள சதுரங்களில் வைக்கக்கூடிய வெவ்வேறு ஒழுங்குகள் எத்தனை எனக் கண்டறிக.

- (ii) கடதாசியின் மேல் ஒரே வரிசையில் மேலுள்ளவாறு மூன்று சதுரங்களை வரைந்து A, B, C எனப் பெயரிடடப்பட்ட மூன்று காகித அட்டைகளைப் பயன்படுத்தி;
- (iii) நான்கு சதுரங்களை வரைந்து A, B, C, D எனப் பெயரிடப்பட்டுள்ள 4 காகித அட்டைகளைப் பயன்படுத்தி;
- (iii) ஐந்து சதுரங்களை வரைந்து A, B, C, D, E எனப் பெயரிடப்பட்டுள்ள 5 காகித அட்டைகளைப் பயன்படுத்தி

ஒரு சதுரத்தில் ஒன்று வீதம் அவற்றை வைக்கக்கூடிய வெவ்வேறு ஒழுங்குகளின் எண்ணிக்கையைக் காண்க.

மேலே ஒவ்வொரு சந்தர்ப்பத்திலும் பெற்ற பேறுகளை கடதாசி ஒன்றில் குறித்துக் கொள்ளவும். (2) O என்னும் நகரத்தை A, B, C, D, E எனும் ஐந்து நகரங்களுடன் தொடர்புபடுத்தும் பாதைத் தொகுதி ஒன்றின் வலையை கீழே காணலாம்.



- (a) O விலிருந்து;
  - (i) A இற்க (ii) B இற்க (iii) C இற்க (iv) D இற்க
  - (v) E இற்கு செல்லக்கூடிய வெவ்வேறான முறைகள் எத்தனை உண்டு.
- (b) பேறுகளை இலகுவாகப் பெறும் முறையை விளக்குக.
- (c) இப்பேறுகளுக்கும் மேலே செயற்பாடு (1) இல் கிடைத்த பேறுகளுக்கும் இடையே ஏதும் தொடர்புகள் உண்டா? தொடர்புகள் இருப்பின் அதனை விளக்குக.
- (3) வெவ்வேறான பொருட்கள்
- (a) 10ஐ ஒரே வரிசையில் வைக்கக்கூடிய வெவ்வேறு ஒழுங்குகளின் எண்ணிக்கையைப் பெற்றுத்தரும் கோவை ஒன்றை நிறையெண்களின் பெருக்கமாகத் தருக. அக்கோவையைச் சுருக்குக. அதிலிருந்து ஆரம்பத்தில் குறிப்பிடப்பட்ட சிற்றுண்டிச் சாலை உரிமையாளரின் கூற்றுத் தொடர்பாக உமது முடிவை எழுதிக் காட்டுக.
- (b) வெவ்வேறான n பொருட்களை ஒரே வரிசையில் ஒழுங்குபடுத்தக்கூடிய வெவ்வேறான முறைகளின் எண்ணிக்கையைக் குறிக்கும் கோவை ஒன்றை பெருக்கமாகத் தருக.

#### மதிப்பீட்டு நியதிகள்

- 1. தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு ஏற்ப செயற்பாட்டில் ஈடுபடுதல்.
- 2. கணித ரீதியான தொடர்புகளைக் கண்டறிதல்.
- 3. கணித ரீதியான மாதிரிகளை உருவாக்குதல்.
- 4. முடிவுகளைப் பெறுதல்.
- 5. தர்க்க ரீதியான கருத்துக்களை முன்வைத்தல்.

### ஒப்படை இல - 2

**மாணவர் செயற்பாட்டின் தன்மை** : திறந்த நூல் பரீட்சை

**தேர்ச்சி மட்டங்கள் :** 4.1 எழுமாற்றுப் பரிசோதனை ஒன்றில் நிகழ்ச்சியை விபரிப்பார்.

> 4.2 எழுமாற்று நிகழ்ச்சிகள் தொடர்பான பிரச்சினைகளைத் தீர்ப்பதற்கு நிகழ்தகவு தொடர்பான மாதிரிகளைப் பயன் படுத்துவார்.

**திறந்த நூல் பரீட்சை :** தொடைகளும் நிகழ்தகவும் தொடர்பான முன்னறிவை புத்தகங்களினூடாக மீட்டுதல்.

#### ஆசிரியர்களுக்கான ஆலோசனை :

- நிகழ்தகவு பாடத்தை ஆரம்பிப்பதற்கு இரண்டு வாரங்களுக்கு முன்னர் பாடப்புத்தகங்களிலிருந்து தொடையும் நிகழ்தகவும் என்ற பாடத்தை கற்பதற்கு ஆலோசனை வழங்கவும். தரப்பட்டுள்ள ஒப்படையை மாணவர்களுக்கு வழங்கவும்.
- நிகழ்தகவுப் பாடத்தை ஆரம்பிப்பதற்கு ஒரு வாரத்திற்கு முன்னர் விடைகளைச் சமர்ப்பிப்பதற்கு ஆலோசனை வழங்கவும்.
- 3. மாணவர்களின் துலங்கள்களைப் பாராட்டி தேவையான பின்னூட்டல்களை வழங்கியதன் பிறகு பாடத்தை ஆரம்பிக்கவும்.

#### ஒப்படை:

- (1) i.  $A = \{1, 2, 3, 4, 5\}$  தொடையின் எல்லா தொடைப் பிரிவுகளையும் எழுதுக. அதற்கு எத்தனை தொடைப் பிரிவுகள் உண்டு?
  - ii.  $B = \{x \mid x \in z^+, x < 10\}$  எனின், கீழே காணப்படும் தொடைகளில் B இன் தொடைப் பிரிவுகளைத் தெரிவு செய்க.

$$P = \{1, 4, 9, 16\}, \quad Q = \{2, 3, 5, 7\}$$

R = {10 இற்குக் குறைந்த முதன்மை எண்கள்}

 $S = \{10 \ இற்குக் குறைந்த எண்ணும் எண்கள்\}$ 

 $T = \{2, 4, 6, 8\}$ 

நீர் தெரிவுசெய்த தொடைப்பிரிவுகளில்  $_A$  இன் முறைமையான தொடைப் பிரிவு காணப்பட்டால் அதனைக் குறிப்பிடுக.

(2)  $A = \{1, 2, 3, 4, 5\}$  உம்  $B = \{1, 3, 5, 7, 9\}$  உம்  $\xi = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$  உம் எனின், எனும் தொடைகளின் மூலகங்களை எழுதிக்காட்டுக.

(i)  $A \cap B$  (ii)  $A \cup B$  (iii) A' (iv) B' (v)  $A' \cap B'$ 

(vi)  $A \cap B'$  (vii)  $(A \cap B)'$  (viii)  $A \cap B'$  (ix)  $(A \cup B)'$  (x)  $A' \cap B$  எனும் தொடைகளின் மூலகங்களை எழுதிக்காட்டுக.

- (3) தொடை அட்சரகணிதம் தொடர்பாக பின்வரும் விதிகளைக்கூறி படங்கள் மூலம் விளக்குக.
  - 1. பரிவர்த்தனை விதி
  - 2. சேர்த்தி விதி
  - 3. பரம்பல் விதி
  - 4. த மோகன் விதி
- (4) பின்வரும் பேறுகளில் சரியான பேறுகளின் கீழ்க் கோடிடுக.
  - (i)  $A \cap \phi = A$  (ii)  $A \cup \phi = A$  (iii)  $A \cap A = A$  (i)  $A' \cap A = \phi$
- (5) I. எழுமாற்றுப் பரிசோதனைக்கு வரைவிலக்கணம் கூறுக.
  - II. பின்வரும் பரிசோதனைகளிலிருந்து எழுமாற்றுப் பரிசோதனைகளைத் தெரிவு செய்க.
    - நாணயம் ஒன்றை மேலே எறிந்து கிடைக்கும் பேறைப் பரிசோதித்தல்.
    - b. முகங்களில் 1 தொடக்கம் 6 வரை இலக்கமிடப்பட்ட தாயக்கட்டை ஒன்றை மேலே எறிந்து மேல் பக்கமாக விழும் முகங்களில் கிடைக்கும் பேறை பரிசோதித்தல்.
    - பாடசாலை நேரத்தில் சுகவீனமுற்று வீடு செல்லும் பிள்ளைகளைப் பரிசோதித்தல்.
    - d. மின் குமிழ் ஒன்றின் ஆயுட்காலத்தைக் கணக்கிடல்.
    - e. சிவப்பு நிற 3 பந்துகளும் நீலநிற பந்தொன்றும் உள்ள உறையொன்றி லிருந்து பந்தொன்றை எழுமாறாக எடுத்தல்.
  - III. நீர் மேலே தெரிவுசெய்த எழுமாற்றுப் பரிசோதனைகளின் மாதிரி வெளியை எழுதுக.
- (6) இரண்டு நாணயங்களை ஒரே தடவையில் மேலே எறிந்து மேல் பக்கமாக விழும் முகத்தை அவதானிக்கும் எழுமாற்றுப் பரிசோதனை ஒன்றின்.
  - (i) மாதிரி வெளியை எழுதுக.
  - (ii) மாதிரி வெளியிலுள்ள இரண்டு எளிய நிகழ்ச்சிகளை எழுதுக.
  - (iii) கூட்டு நிகழ்ச்சிகள் இரண்டை எழுதுக.

- (7) ஒன்றை ஒன்று தம்முள் புற நீக்கமுள்ள நிகழ்ச்சிகளிலிருந்து நீர் விளங்குவது யாது? உதாரணம் தந்து விளக்குக.
- (8) நாணயம் ஒன்று 50 தடவைகள் மேலே எறியப்பட்டு விழும் பக்கத்தை அவதானித்து கீழே உள்ள அட்டவணையை நிரப்புக.

| தடவை | கிடைத்த | முகம் | (தலை | அல்லது | រូ ( |
|------|---------|-------|------|--------|------|
| 1    |         |       |      |        |      |
| 2    |         |       | 83   |        |      |
| 3    |         |       |      |        |      |
| 4    |         |       |      |        |      |
| 5    |         |       |      |        |      |
| *    |         |       |      |        |      |
| *    |         |       |      |        |      |
|      |         |       |      |        |      |
| 25   |         |       |      |        |      |

- (i) நாணயம் ஒன்று 25 தடவைகள் மேலே எறியப்பட்டால் தலை கிடைப்பதன் வெற்றிப் பின்னம் யாது?
- (ii) 50, 100 தடவைகள் இப்பரிசோதனையை செய்வதன் மூலம் தலை விழுவதன் வெற்றிப் பின்னங்களைக் காண்க.
- (iii) நிகழ்தகவின் ஒரு அளவீடாக வெற்றிப் பின்னத்தைக் கருதுவதற்கு பரிசோத னையை நிகழ்த்தவேண்டிய தடவைகளின் எண்ணிக்கை பற்றி யாது கூறலாம்?
- (9) சம இயல்தகவுள்ள நிகழ்ச்சி என்றால் என்ன? கீழே காணப்படும் எழுமாற்றுப் பரிசோதனைகளில் சம இயல்தகவுள்ள நிகழ்ச்சிகளைத் தெரிவு செய்க.
  - (i) நாணயம் ஒன்றை மேலே எறிந்து மேல்பக்கமாக விழும் முகத்தை அவதானித்தல்.
  - (ii) 1 தொடக்கம் 6 வரை இலக்கமிடப்பட்ட சாதாரண தாயக்கட்டை ஒன்றை மேலே எறிந்து மேல் பக்கமாக விழும் முகத்திலுள்ள இலக்கத்தை அவதானித்தல்.
  - (iii) நீல நிறப்பந்துகள் இரண்டும் சிவப்பு நிற பந்துகள் மூன்று உள்ள உறை ஒன்றிலிருந்து எழுமாறாகப் பந்தொன்றை எடுத்து அதன் நிறத்தை சோதித்தல்.
  - (iv) 1 தொடக்கம் 9 வரை இலக்கமிடப்பட்டுள்ள சர்வசமனான காகித அட்டைகளிலிருந்து எழுமாறாக ஒரு அட்டையை எடுத்து அதன் இலக்கத்தைப் பதிவு செய்தல்.

- (10) மேலே வினா 9(ii) இற்குரிய எழுமாற்றுப் பரிசோதனையின்
  - (i) மாதிரி வெளியை எழுதுக.

 $A = \{ ( இரட்டை எண் ஒன்று கிடைத்தல் ) <math>$ 

 $B = \{ (ழதன்மை எண் ஒன்று கிடைத்தல் \}$ 

 $C = \{$ சதுர எண் ஒன்று கிடைத்தல் $\}$ 

 $D = \{ g \vec{s} \vec{s} \vec{s} \vec{s} \vec{s} \vec{s}$  என் ஒன்று கிடைத்தல் $\}$ 

எனக்கொண்டு

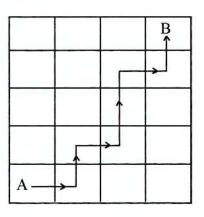
- (ii) (a) P(A)
- (f)  $P(B \cap C)$
- (b)  $P(B \cap C)$
- (g)  $P(C \cap A)$
- (c) P(C)
- (h)  $P(A \cup B)$
- (d) P(D)
- (i)  $P(A \cup B \cup C)$
- (e)  $P(A \cap B)$
- (j)  $P(A \cap B \cap C)$  என்பனவற்றைக் காண்க.
- (iii)  $P(A \cup B) = P(A) + P(B) P(A \cap B)$  எனவும்  $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(B \cap C) P(C \cap A) + P(A \cap B \cap C)$  எனவும் நிறுவுக.
- (iv) (a) ஒன்றை ஒன்று தம்முள் புறநீக்கமுள்ள இரண்டு நிகழ்ச்சிகளைத் தெரிவு செய்க.
  - (b)  $P(A \cup D)$  ஐக் காண்க.

#### மதிப்பீட்டு நியதிகள்

- 1. தேவையான தகவல்களைப் பெறுவதற்கு புத்தகங்களை பரிசீலனை செய்தல்.
- 2. தொடை அட்சரகணிதம் பற்றி மாணவர் பெற்றுக் கொண்ட விளக்கம்.
- 3. நிகழ்தகவின் ஆரம்ப எண்ணக்கரு பற்றிய விளக்கம்.
- 4. தரப்பட்டுள்ள அறிவுறுத்தல்களை சரியாகப் பின்பற்றுதல்.
- சிக்கலற்ற விதமாக கருத்துக்களை முன்வைத்தல்.

# எழுத்துச் சோதனைக்குப் பின்வரும் வினாக்களிலிருந்து ஆசிரியர் வினாவைத் தெரிவு செய்யலாம். அல்லது

வினாவை ஆசிரியர் தயாரிக்கலாம்.


### வரிசை மாற்றமும் சேர்மானங்களும்

- (a) 3 சிறுவர்களும் 3 சிறுமிகளும் வரிசை ஒன்றிலுள்ள ஆறு ஆசனங்களில் அமர வேண்டும்.
  - (i) அவர்கள் உட்காரக்கூடிய வழிகளின் எண்ணிக்கை.
  - (ii) 3 சிறுமிகளும் ஒருங்கே இருக்கத்தக்கவாறான,
  - (iii) 3 சிறுமிகளும் 3 சிறுவர்களும் ஒன்றுவிட்டு ஒரு ஆசனத்தில் உட்காரக்கூடிய, வழிகளின் எண்ணிக்கையைக் காண்க.
  - (b) குறித்த ஒரு சோதனை ஒன்றில் 9 வினாக்களில் 6 வினாக்களுக்கு விடையளிக்க வேண்டியுள்ளது.
    - 6 வினாக்களைத் தெரிவு செய்யக்கூடிய வழிகளின் எண்ணிக்கையைக் காண்க. அதோடு,
    - (i) முதல் மூன்று வினாக்களும் கட்டாயம் எனின்,
    - (ii) முதல் 5 வினாக்களில் குறைந்தபட்சம் 4 வினாக்களுக்கு விடையளிக்க வேண்டும் எனின்,
    - தெரிவு செய்யப்படக்கூடிய வழிகளின் எண்ணிக்கையைக் காண்க.
- 2. (a) குழு ஒன்றில் 3 கணித ஆசிரியர்களும் 4 உயிரியல் ஆசிரியர்களும் உள்ளனர்.
  - (i) எந்த ஒழுங்கிலும் அமரலாம் எனின்,
  - (ii) ஒரே பாட ஆசிரியர்கள் அருகருகே அமர வேண்டும் எனின்,
  - (iii) ஒரே பாட ஆசிரியர்கள், ஒருவருக்கு அருகில் மற்றவர் அமரக்கூடாது எனின்,
  - (iv) குறித்த ஒரு கணித ஆசிரியரும், அவருடைய மனைவி உயிரியல் ஆசிரியை எப்போதும் ஒன்றாகவும் இருக்குமாறும், ஒரே பாட ஆசிரியர்கள் அருகருகே அமருமாறும் வரிசை ஒன்றில் அமரக்கூடிய வழிகளின் எண்ணிக்கையைக் காண்க.
  - (b) *n* பக்கங்களையுடைய ஒழுங்கான பல்கோணி ஒன்றைக் கருதுக.
    - (i) பல்கோணியின் மூலை விட்டங்களின் எண்ணிக்கையைக் காண்க. பக்கங்களின் எண்ணிக்கை, மூலை விட்டங்களின் எண்ணிக்கையின் இரு மடங்கெனின் n இன் பெறுமானம் யாது?

- (ii) முக்கோணியின் உச்சிகள், பல்கோணியின் உச்சிகளாக அமையும் வண்ணம் எத்தனை முக்கோணிகள் உள்ளன.
- (iii) மேலே (ii) இல் தரப்பட்ட முக்கோணிகளில், சரியாக ஒரு பக்கம் மட்டும் பல்கோணியின் பக்கத்துடன் பொருந்தும் முக்கோணிகளின் எண்ணிக்கை யாது?
- (iv) மேலே (ii) இல் தரப்பட்ட முக்கோணிகளில், இருபக்கங்கள், பல்கோணியின் இருபக்கங்களுடன் பொருந்தும் முக்கோணிகளின் எண்ணிக்கை யாது?

n>3 எனின், உச்சிகள், பல்கோணியின் உச்சிகளுடனும், பக்கங்கள் பல்கோணியின் மூலைவிட்டங்களுடன் அமையும் முக்கோணிகளின் எண்ணிக்கை  $\frac{n}{6}(n-4)(n-5)$  என உய்த்தறிக.

3. (a) ஒரு செவ்வக வடிவ நடை பாதை ஒன்று 20 ஓடுகளால் அமைக்கப்பட்டுள்ளது. இதனை அருகில் உள்ள படம் காட்டுகிறது. ஒரு சிறுமி ஓடு A யில் ஆரம்பித்து அடுத்துள்ள ஓட்டிற்கு வலது பக்கமாக அல்லது முன்னால் உள்ள ஓட்டிற்குத் தாவிச் செல்கிறது. (அவ்வாறான ஒருமுறை படத்தில் காட்டப்பட்டுள்ளது.) எத்தனை வழிகளில் சிறுமி A யிலிருந்து B யிற்குச் செல்லாம் எனக் காண்க.



(b) முதலாவது குழுவில் 3 சிறுமிகளும் 2 சிறுவர்களும் உள்ளனர். இரண்டாவது குழுவில் 2 சிறுமிகளும் 3 சிறுவர்களும் உள்ளனர். மூன்றாவது குழுவில் 1 சிறுமியும் 4 சிறுவர்களும் உள்ளனர்.

குழு ஒன்றிலிருந்து ஆகக்கூடியது 2 பேரை எழுமாற்றாகத் தெரிவுசெய்து 3 பேரைக்கொண்ட அணி ஒன்று தெரிவுசெய்ய வேண்டியுள்ளது. அணியில் எப்போதும் 1 சிறுமியும் 2 சிறுவர்களும் இருக்கத்தக்கதாக அணியைத் தெரிவு செய்யக்கூடிய வழிகளின் எண்ணிக்கையைக் காண்க.

### பெறுதி II

- 1. (a) நீர்த்தாங்கி ஒன்று செவ்வட்ட கூம்பு ஒன்றின் துண்டம் (Frustum) வடிவில் உள்ளது. தாங்கியின் உயரம் 5 மீற்றர்; மேற்பக்கத்தினதும், அடியினதும் ஆரைகள் முறையே 2 மீற்றர், 1 மீற்றர் ஆகும். ஆரம்பத்தில் வெறுமையாக இருந்த இத்தாங்கியினுள் நிமிடத்துக்கு 0.7 கனமீற்றர் வீதத்தில் நீர் உட்செலுத்தப்படகின்றது. அடியிலிருந்து நீரின் மட்டம் x(0 < x < 5) மீற்றர் உயரமாக இருக்கும்போது தாங்கியிலுள்ள நீரின் கனவளவு  $\frac{\pi}{75}(x^3 + 15x^2 + 75x)$  கனமீற்றர் எனக் காட்டுக. x = 2 ஆக இருக்க நீர்மட்டத்தின் உயரம் அதிகரிக்கும் வீதத்தைக் காண்க.
  - (b)  $f(x) = x^3 2x^2 + cx + d$  எனக் கொள்க; இங்கு c,d ஆகியன மாறிலிகள். y = f(x) இன் வரைபு புள்ளி (1, 4) இனூடாகச் செல்லும் அதேவேளை இப்புள்ளியில் வளையிக்கு வரையப்பட்டுள்ள தொடலி x அச்சிற்கு சமாந்தர மாகும். c,d ஆகியவற்றின் பெறுமானங்களைக் காண்க. அதோடு
    - (i) y அதிகரிக்கும் x இன் பெறுமான வீச்சு,
    - (ii) y குறையும் x இன் பெறுமான வீச்சு,
    - (iii) வரைபின் உயர்வுப் புள்ளியினதும் இழிவுப்புள்ளியினதும் ஆள்கூறுகள், ஆகியவற்றைக் காண்க.
    - y=f(x) இன் வரைபைப் பரும்படியாக வரைக.
- 2. (a) யன்னல் ஒன்று அரைவட்டம் ஏற்பட்டுள்ள செவ்வக வடிவத்தை உடையது. யன்னிலின் மொத்தச் சுற்றளவு 20m ஆகும். யன்னலின் மொத்தப் பரப்பளவு உயர்ந்த பட்சமாக இருக்கத் தக்கதாக யன்னலின் பரிமாணங்களைக் காண்க.
  - (b)  $y = \frac{3x^2 3}{6x 10}$  என்ற சார்பின் உயர்வு, இழிவுப் புள்ளிகளைக் காண்க.

$$y = \frac{3x^2 - 3}{6x - 10}$$
 இன் வரைபைப் பரும்படியாக வரைக.

அதே வரிப்படத்தில் xy=1 இன் வரைபை வரைக. இதிலிருந்து  $3x^3-9x+10=0$  எனும் சமன்பாடு ஒரேயொரு மெய்மூலத்தை மட்டும் கொண்டிருக்கும் எனவும் இம்மூலம் - 1 இலும் குறைவானது எனவும் உய்த்தறிக.

# தொகையீடு

- 1. (a)  $\frac{1}{x(2x-1)^2} = \frac{A}{x} + \frac{B}{2x-1} + \frac{C}{(2x-1)^2}$  ஆகுமாறு ஒருமைகள் A,B,C ஐக் காண்க. இதிலிருந்து,  $\int \frac{1}{x(2x-1)^2} dx$  ஐக் காண்க.
  - (b) பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி  $\int_{-\infty}^{2} x(2-x)^8 dx$  ஐக் காண்க.  $(2-x)^8 dx$  ஐக் காண்க.  $(2-x)^8 dx$  ஐக் காண்க.
  - (c)  $\sin 3x.\sin x$  ஐ  $k(\cos C \cos D)$  எனும் வடிவில் எழுதுக. இங்கு k ஒரு மாறிலி இதிலிருந்து,  $\int \sin 3x.\sin x dx$  ஐக் காண்க.
  - (d) பெறுமானங் காண்க.  $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{3 + 5\cos x} dx \quad [\cos x = u \text{ என்க.}]$
- 2. (a)  $\frac{1+x^2}{x(1-x)} = A + \frac{B}{x} + \frac{C}{1-x}$  ஆகுமாறு ஒருமைகள் A,B,C ஐக் காண்க. இதிலிருந்து  $\int\limits_2^3 \frac{1+x^2}{x(1-x)} = \ell n \frac{3}{8} 1$  எனக் காட்டுக.
  - (b) பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி தொகையிடுக.  $\int \cos^{10} x. \sin^3 x dx \;\; \text{ஐக் காண்க}. \qquad \qquad (2\_தவி: \; \cos x = u \;\; \text{ என இடுக}.)$
  - (c)  $\cos 4x = 8\cos^4 x 8\cos^2 x + 1$  எனக் காட்டுக. இதிலிருந்தோ அல்லது வேறு வழியாகவோ  $\int \cos^4 x \ dx$  ஐக் காண்க.
- 3. (a)  $f(x) = \frac{1}{x^4 1}$  ஆகுக.  $\frac{1}{x^4 1} = \frac{A}{x 1} + \frac{B}{x + 1} + \frac{C}{x^2 + 1}$  ஆகுமாறு ஒருமைகள் ABCD ஐக் காண்க. இதிலிருந்து,  $\int f(x) dx$  ஐக் காண்க.

(b) 
$$\cos x = 2\cos^2\frac{x}{2}-1$$
 எனும் சர்வசமன்பாட்டைப் பயன்படுத்தி  $I=\int\limits_0^{\frac{\pi}{2}}\frac{1}{1+\cos x}dx$  ஐக் காண்க.

$$x=rac{\pi}{2}-y$$
 எனும் பிரதியீட்டைப் பயன்படுத்தி  $J=\int\limits_0^{rac{\pi}{2}}rac{1}{1+\sin x}dx=I$  எனக்காட்டுக.  $J$  இன் பெறுமானமத்தை உய்த்தறிக.

$$\int_{0}^{\frac{\pi}{2}} \frac{1-\sin x}{\left(x+\cos x\right)^{2}}$$
ஐக் காண்க. (உதவி:  $x+\cos x=u$  என இடுக.)

### தரம் 13 - இரண்டாந்தவணை கணிப்பீட்டுக் கருவி - 01

- 1.1 **தேர்ச்சி மட்டம் :** 13.12 பகுதியாகத் தொகையிடல் முறையை உபயோகித்து தொகையீடு தொடர்பான பிரசினங்களைத் தீர்ப்பார்.
- 1.2 கணிப்பீட்டுக் கருவியின் தன்மை : பகுதியாயத் தொகையிடும் வாய்ப்பாட்டைப் பெற்று அதனைப் பயன்படுத்தக்கூடிய தனியாள் ஒப்படையாகும்.
- 1.3 கணிப்பீட்டுக் கருவியைச் உபயோகிப்பது தொடர்பான ஆசிரியருக்கு அறிவுறுத்தல்கள் :
  - தரப்பட்டுள்ள செயலட்டையை மாணவர்களுக்குப் பெற்றுக் கொடுத்து மாணவர்களை செயற்பாட்டில் ஈடுபடுத்துக.
  - குத்திரத்தை மீண்டும் மீண்டும் பிரயோகிப்பதால் அல்லது நுட்பமுறைகள் மூலம் பிரசினத்தின் இறுதி முடிவை பெற்றுக் கொள்வதற்கு மாணவர்களை நெறிப் படுத்துக.
  - ஒப்படையை பாராட்டியதன் பிறகு தேவையான பின்னூட்டல்களைப் பெற்றுக் கொடுக்கவும்.
- 1.4 தர உள்ளீடுகள் :

செயலட்டைப் பிரதிகள்

1.5 செயலட்டை

கீழே அறிவுறுத்தல்களுக்கேற்ப செயற்பாட்டில் ஈடுபடுவது உமது பணியாகும்.

 $1. \ u,v$  என்பன வகையிடத்தக்க சார்புகளாயின்  $\dfrac{d}{dx}(uv)=u.\dfrac{dv}{dx}+v.\dfrac{du}{dx}$  என அறிவோம்.

சார்போன்றின் பெறுதி முரண் முறைமையிலிருந்து  $\int \left(u \frac{dv}{dx} + v \frac{du}{dx}\right)$  ஐக் காண்க.

தொகையீடு தொடர்பான விதிகளைப் பயன்படுத்தி

:

$$\int u \left( \frac{dv}{dx} \right) dx = uv - \int v \left( \frac{du}{dx} \right) dx + c$$
 signification.

2. மேலே நீர் பெற்ற முடிவுகளைப் பயன்படுத்தி கீழேயுள்ள தொகையீடுகளைக் காண்க.

(i) 
$$\int x \sin x dx$$
; இங்கு  $u = x$ ,  $\left(\frac{dv}{dx}\right) = \sin x$  எனக் கொள்க.

(ii) 
$$\int x^2 \cos x dx$$
, இங்கு  $u = x^2$ ,  $\left(\frac{dv}{dx}\right) = \cos x$  எனக் கொள்க.

(iii) 
$$\int e^x \sin x dx$$
, இங்கு  $u = e^x$ ,  $\left(\frac{dv}{dx}\right) = \sin x$  எனக் கொள்க.

அல்லது இங்கு 
$$u=\sin x$$
,  $\frac{dv}{dx}=e^x$  எனக் கொள்க.

(iv) 
$$\int e^x \ell \, \mathbf{n} \, x dx$$
, இங்கு  $u = \ell n x$ ,  $\frac{dv}{dx} = 1$  எனக் கொள்க.

## 1.6 கணிப்பீட்டுக்கான நியதிகள்

- 1. பகுதியாய்த் தொகையிடுவதற்குரிய சூத்திரத்தைப் பெறுதல்.
- 2. அச்சூத்திரத்தைப் பயன்படுத்துதல்.
- பெறுதி முரண் முறைமையிலிருந்து உரிய சார்புகளின் தொகையீடுகளைக் காணுதல்.
- 4. இறுதிப் பேறைப் பெறல்.
- 5. தரப்பட்டுள்ள அறிவுறுத்தல்களைப் பின்பற்றுதல்.

## 1.7 நியதிகளுக்கு புள்ளிகளை வழங்குதல் :

- 1. மிகவும் நன்று
- 4 புள்ளிகள்

2. நன்று

- 3 புள்ளிகள்
- 3. ஓரளவு நன்று
- 2 புள்ளிகள்
- 4. சாதாரணம்
- 1 புள்ளி
- **1.8** இக்கருவியின் மூலம் பெற்றுக்கொள்ளக்கூடிய மிகக்கூடிய புள்ளிகள்  $4 \times 5 = 20$  புள்ளிகள்

### கணிப்பீட்டுக் கருவி - 02

- 2.1 **தேர்ச்சி மட்டம் :** 5.7 தொடர், பின்னக எழுமாற்று மாறி ஒன்றின் நிகழ்தகவுப் பரம்பலின் இயல்புகளை விபரிப்பார்.
  - 5.8 எழுமாற்று மாறி ஒன்றின் நிகழ்தகவுப் பரம்பலின் மூலம் கணித எதிர்வைக் கணிப்பார்.

### 2.2 கணிப்பீட்டுக் கருவியின் தன்மை :

எழுமாற்று மாறி ஒன்றின்; நிகழ்தகவுப் பரம்பல், இடை, மாறற்றிறன் திருப்பம் என்பனவற்றைக் காணக்கூடிய தனியாள் ஒப்படையாகும்.

# 2.3 கணிப்பீட்டுக் கருவியைச் உபயோகிப்பது தொடர்பான ஆசிரியருக்கு அறிவுறுத்தல்கள் :

- நிகழ்தகவுப் பரம்பல் எனும் பாடத்திற்குப் பிறகு அவ் வெண்ணக்கருவை விளங்கிக் கொண்டனரா எனச் சோதித்தறிவதற்கு இவ்வொப்படையை மாணவர் களுக்கு வழங்கி, செயற்பாட்டில் ஈடுபடுத்தவும்.
- ஒப்படையைப் பாராட்டியதன் பிறகு தேவையான பின்னூட்டல்களைப் பெற்றுக் கொடுக்கவும்.

2.4 தர உள்ளீடுகள் :

செயலட்டையின் பிரதிகள்

#### 2.5 செயலட்டை

கீழே அறிவுறுத்தல்களுக்கேற்ப செயற்பாட்டில் ஈடுபடுவது உமது பணியாகும்.

- (i) X எனும் பின்னக எழுமாற்றுமாறி ஒன்றின் நிகழ்தகவுப் பரம்பலை வரைவிலக்கணப்படுத்தி, அதன் விசேட இயல்புகளைக் குறிப்பிடுக.
  - (ii) X இன் இடை  $\mu$  [எதிர்வுப்பெறுமானம் E(X)] என்பதை வரைவிலக்கணப் படுத்துக.
  - (iii) X எனும் பின்னக எழுமாற்றுமாறி ஒன்றின் நிகழ்தகவுப் பரம்பல் கீழே தரப்பட்டுள்ளது. k இன் பெறுமானத்தைக் காண்க.

| X   | -1    | 0    | 1   |
|-----|-------|------|-----|
| (X) | $L^2$ | -k/2 | 1/2 |

- (iv) E(X) ஐக் காண்க.
- (V) 2X+1 எனும் நிகழ்தகவுப் பரம்பலை எழுதிக்காட்டுக.
- (vi) மேலே (v) இலுள்ள பரம்பலைப் பயன்படுத்தி  $E(X^2)$  ஐக் காண்க.
- (vii) E(2X+1) = 2E(X)+1 எனக் காட்டுக.
- (viii)  $\chi^2$  இன் நிகழ்தகவுப் பரம்பலை எழுதிக்காட்டுக.
- (ix) மேலே (viii) இன் பரம்பலைப் பயன்படுத்தி  $E(X^2)$  ஐக் காண்க.
- (x) Var(X) ஐ வரையறுக்க.
- (xi) அவ்வரைவிலக்கணத்தைப் பயன்படுத்தி Var(X) ஐக் காண்க.
- (xii)  $Var(X) = E(X^2) [E(X)]^2$  எனக் காட்டுக.
- (xiii) எழுமாற்று மாறி ஒன்றின் உற்பத்தி பற்றிய முதலாம் திருப்பம் என்றால் என்ன என்பதை அறிமுகஞ் செய்க.
- (xiv) எழுமாற்று மாறி ஒன்றின் இடை பற்றிய இரண்டாம் திருப்பம் எனப்படுவது யாது?
- (i) X எனும் தொடர் எழுமாற்றுமாறி ஒன்றின் நிகழ்தகவு அடர்த்திச் சார்பை வரையறுக்க. அதன் விசேட இயல்புகளைக் குறிப்பிடுக.
  - (ii) X இன் இடை  $\mu$  [எதிர்வுப்பெறுமானம் E(X)] என்பதை வரைவிலக்கணப் படுத்துக.
  - (iii) X எனும் தொடர் எழுமாற்றுமாறி ஒன்றின் நிகழ்தகவு அடர்த்திச் சார்பு கீழே காட்டப்பட்டுள்ளது.

$$f(x) = \begin{cases} kx & ; \\ 0 & ; \end{cases}$$
  $1 \le x \le 3$  ஆகும்போது,

ஏனைய பெறுமானங்களுக்கு இன் இயல்தகு பெறுமானங்களைக் காண்க.

- (iv) E(X) ஐக் காண்க.
- (v) 2X+1 இன் நிகழ்தகவு அடர்த்திச் சார்பை எழுதிக்காட்டுக.

- (vi) மேலே (v) இலுள்ள சார்பைப் பயன்படுத்தி E(2X+1) ஐக் காண்க.
- (vii) E(2X+1)=2E(X)+1 எனக் காட்டுக.
- (viii)  $\chi^2$  இன் நிகழ்தகவு அடர்த்திச் சார்பை எழுதிக்காட்டுக.
- (ix) மேலே (viii) இன் சார்பைப் பயன்படுத்தி  $E(X^2)$  ஐக் காண்க.
- (x) Var(X) ஐ வரையறுக்க.
- (xi) அவ்வரைவிலக்கணத்தைப் பயன்படுத்தி Var(X) ஐக் காண்க.
- (Xii)  $Var(X) = E(X^2) [E(X)]^2$  எனக் காட்டுக.
- (xiii) எழுமாற்று மாறி ஒன்றின் உற்பத்தி பற்றிய முதலாம் திருப்பம் என்றால் என்ன என்பதை அறிமுகஞ் செய்க.
- (xiv) எழுமாற்று மாறி ஒன்றின் இடை பற்றிய இரண்டாம் திருப்பம் எனப்படுவது யாது?

### 2.6 கணிப்பீட்டுக்கான நியதிகள்

- 1. வலைவிலக்கணத்தைக் கூறுதல்.
- நிகழ்தகவுப் பரம்பல் ஒன்றின் இயல்புகளைப் பயன்படுத்துதல்.
- எழுமாற்று மாறி ஒன்றின் எதிர்வினதும் மாறற்றிறனினதும் வரைவிலக்கணத் தினைப் பயன்படுத்துதல்.
- எழுமாற்று மாறி ஒன்றின் மீது வரையறை செய்யப்பட்ட சார்பு ஒன்றின் எதிர்வைக் காணல்.
- தரப்பட்டுள்ள முடிவைப் பெறுதல்.

### 2.7 நியதிகளுக்கு புள்ளிகளை வழங்குதல் :

- 1. மிகவும் நன்று 4 புள்ளிகள்
- 2. நன்று 3 புள்ளிகள்
- 3. ஓரளவு நன்று 2 புள்ளிகள்
- 4. சாதாரணம் 1 புள்ளி
- 2.8 இக்கருவியின் மூலம் பெற்றுக்கொள்ளக்கூடிய மிகக்கூடிய புள்ளிகள்  $4 \times 5 = 20$  புள்ளிகள்

## ஈருறுப்பு விரிவு

- 1. (a)  $\left(x^4 \frac{1}{x^2}\right)^{15}$  இன் விரிவில்  $x^{32}$  இனதும்,  $x^{-17}$  இனதும் குணகங்களைக் காண்க.
  - (b) n ஒரு நேர்நிறையெண்ணாக இருக்க,  $\left(1+\frac{x}{n}\right)^n$  இனது x இன் ஏறடுக்குகளிலான விரிவில்  $x^2$  இன் குணகம்  $\frac{1}{16}$  ஆகும்.
    - (i) n இன் பெறுமானம் யாது?
    - (ii) விரிவில் <sub>Y</sub><sup>3</sup> இன் குணகத்தைக் காண்க.
- 2. (a)  $(1+ax)^8$  இன் விரிவை, x இன் ஏறடுக்குகளில்  $x^2$  வரை எழுதுக.  $(1+bx)(1+ax)^8$  இன் விரிவில்  $x,x^2$  இன் குணங்களை முறையே 0, -36 ஆகும். a>0,b<0 எனத்தரப்பட்டிருக்க a,b இன் பெறுமானங்களைக் காண்க.
  - (b)  $(1+x+2x^3)\left(\frac{3x^3}{2}-\frac{1}{3x}\right)^9$  இன் விரிவில் x ஐச் சாராத உறுப்பைக் காண்க.
- 3. (a)  $x^3$  உம் x இன் அதற்கு மேற்பட்ட உயர் வலுக்களும் புறக்கணிக்கத்தக்கதாக x மிகவும் சிறியதாக இருப்பின்,  $(3+2x)\bigg(3-\frac{x}{3}\bigg)^9\cong 3^8(9-3x-2x^2)$  எனக்காட்டுக.
  - (b)  $(1+ax)^5$  இன் விரிவில் x இன் குணகம்  $\left(9+\frac{3}{x}\right)^6$  இன் விரிவில்  $x^4$  இன் குணகத்திற்குச் சமம் எனின், a இன் பெறுமானத்தைக் காண்க.

## தொகையீடு

- 1. (a) பகுதிகளாகத் தொகையிடுவதன் மூலம்  $\int\limits_0^{\frac{\pi}{2}}x\sin 2x.dx$  ஐக் காண்க.
  - (b)  $y = -(12 8x + x^2)$  என்ற வளையியாலும் y = x என்ற நேர்கோட்டினாலும் உள்ளடக்கப்பட்ட பரப்பளவைக் காண்க.
  - (c) பின்வரும் அட்டவணை சார்பு ஒன்றின் பெறுமானங்களைத் தருகிறது.

| x    | 1   | 1.5 | 2   | 2.5 | 3   |
|------|-----|-----|-----|-----|-----|
| f(x) | 0.8 | 1.2 | 1.7 | 2.3 | 3.0 |

 $\int\limits_{-\infty}^{3}f(x)dx$  இன் அண்ணளவுப் பெறுமானத்தை,

- (i) 4 ஆயிடைகளுக்கு சரிவகப்போலி விதியைப் பயன்படுத்தி
- (ii) 4 ஆயிடைகளுக்கு சிம்சன் விதியப் பயன்படுத்திக் காண்க.
- 2. (a) பகுதிகளாகத் தொகையிடும் முறையைப் பயன்படுத்தி  $\int\limits_{1}^{2}x^{2}.\ell nx.dx=rac{8}{3}\ell$  n  $2-rac{7}{9}$  எனக் காட்டுக.
  - (b)  $y^2 = 3x$ ,  $x^2 = 3y$  ஆகிய இருவளையிகளும் (3, 3) என்ற புள்ளியினூடு செல்லும் என வாய்ப்புப் பார்க்க. இவ்விரு வளையிகளாலும் அடைக்கப்பட்டுள்ள முடிவுள்ள பிரதேசத்தின் பரப்பளவைக் காண்க.
  - (c) (i)  $\int_{1}^{5} \frac{1}{x^2} dx$  ஐக் காண்க.
    - (ii) சிம்சன் விதியைப் பயன்படுத்தி 4 ஆயிடைகளுக்கு  $\int\limits_{1}^{5} \frac{1}{x^2} dx$  இன் அண்ணளவுப் பெறுமானத்தைக் காண்க.

- 3. (a) பகுதிகளாகத் தொகையிடுவதன் மூலம்  $\int x.e^{3x}dx$  ஐக் காண்க.
  - (b) y = x(4-3x) என்ற வளையியாலும் y = x என்ற நேர்கோட்டினாலும் வரைப்புற்றுள்ள முடிவுள்ள பிரதேசத்தின் பரப்பளவைக் காண்க.
  - (c) [0,4] ஆயிடையில் 8 சம இடை வெளிகளுக்கு சிம்சன் விதியைப் பயன்படுத்தி தொகையீடு  $I=\int\limits_0^4 \frac{1}{1+x^2}dx$  இன் அண்ணளவுப் பெறுமானத்தைக் காண்க.  $I=\tan^{-1}4$  எனத்தரப்படின்  $I=\tan^{-1}(4)$  இற்கான அண்ணளவுப் பெறுமானம் ஒன்றைக் காண்க.

# மட்டு சம்பந்தமான சமனிலிகள்

|x| < a எனின், எனின் மட்டுமே -a < x < a|x|>a எனின், எனின் மட்டுமே x<-a அல்லது x>a இங்கு a>0

மேலேயுள்ள முடிவுகளைப் பயன்படுத்தியோ அல்லது வேறு விதமாகவோ பின்வரும் சமனிலிகளைத் திருப்தியாக்கும் x இன் பெறுமான வீச்சுக்களைக் காண்க.

- (a) |3-2x|<5
- (b) |2x+3| > 1 (c) |x-4| > 3x-2
- 2. (a) |x-2|-2|2x-1|>0
  - (b) x>|3x-8| மேலே தரப்பட்ட சமனிலிகள் ஒவ்வொன்றையும் தீர்க்கும் x இன் பெறுமானங்களின் தொடையைக் காண்க.
- x+2|x-1|>2|x+1|-3 எனும் சமனிலியைத் திருப்தியாக்கும் x இன் பெறுமானத் தொடையைக் காண்க.
  - (b) (i)  $y = x^2 x 6$ 
    - (ii)  $y = |x^2 x 6|$  ஆகியவற்றின் வரைபுகளை ஒரே வரிப்படத்தில் வரைக.
- 4.  $y = |x^2 4x + 3|$ , y = |x 1| என்பவற்றின் வரைபுகளை ஒரே வரிப்படத்தில் வரைக. இதிலிருந்து  $|x^2-4x+3| > |x-1|$  எனும் சமனிலியைத் தீர்க்க.

## தொடர்கள்

- 1. (a)  $\sum_{r=1}^{n} \log 2^{r}$  ஐக் காண்க.
  - $Sn = 1 + 2x + 3x^2 + ... + nx^{n-1}$  என்க. (1-x)Sn ஐக் கருதி, Sn ஐக் காண்க. |x| < 1 எனின்,  $\sum_{n=1}^{\alpha} nx^{n-1}$  ஐ உய்த்தறிக.
  - $f(r) = \frac{1}{r^2}, \quad Ur = \frac{2r+1}{r^2(r+1)^2}$  Ur = f(r) f(r+1) எனக் காட்டுக.

இதிலிருந்து  $\sum_{r=1}^n Ur$  ஐக் காண்க,  $\sum_{r=1}^{lpha} Ur$  ஒருங்கும் எனக் காட்டுக.

 $Sn=\sum_{r=1}^{\alpha}Ur$  என்க.  $Sn>rac{9999}{10000}$  ஆகுமாறு n இன் மிகச் சிறிய பெறுமானத்தைக் காண்க.

### புள்ளிவிபரவியல்

 (a) இரு சீர்க் கோடாத தாயக்கட்டைகள் ஒருங்கே எறியப்படுகின்றன. இரு ஈட்டுக்களிலும் உயர்வானதற்கு (இரண்டு சமமெனில் பொதுவானதற்கு) நிகழ்தகவுப் பரம்பல் ஒன்றைப் பெறுக.

| X = x  | 1 | 2 | 3 | 4 | 5 | 6 |
|--------|---|---|---|---|---|---|
| P(X=x) |   |   |   |   |   |   |

 $\sum_{x=1}^{6} P(X=x) = 1$  என்பதை வாய்ப்புப் பார்க்க.

- (i) ஆகாரம்
- (ii) இடை
- (iii) மாறற்றிறன்

- (iv) P(X < 3)
- (v)  $P(X \ge 3)$  என்பவற்றைக் காண்க.
- (b) எழுமாற்றி மாறி  $\chi$  இன் நிகழ்தகவு அடர்த்திச் சார்புஎனத் தரப்பட்டுள்ளது.

$$f(x) = kx^2(2-x)$$

$$0 \le x < 2$$

=0

அவ்வாறல்லாதபோது

- (i) k இன் பெறுமானம்.
- (ii) E(X)
- (ii) Var(X)
- (iv) ஆகாரம்
- (v) P(1 < X < 2) என்பவற்றைக் காண்க.

#### உசாத்துணை நூல்கள்

- Bostock, L and chandler. L; Pure Mathematics I Stanley Thrones(Publishers) Ltd. 1993
- Bostock, L and chandler. L; Pure Mathematics II Stanley Thrones(Publishers) Ltd. 1993
- Crawshaw, J and Chambers, J, A concise Course in A Level Statistics.
   ELBS, Stanley Thrones (Publishers) Ltd. 1992

தேசிய கல்வி நிறுவக வெளியீடுகள் (பின்வருவன)

- தொகையீடு
- பெறுதிகளின் பிரயோகம்
- வட்டம்
- நேர்கோடு
- வரிசை மாற்றமும் சேர்மானமும்
- சிக்கல் எண்கள்
- வகையீடு
- புள்ளி விபரவியல்

ගණිතය – 13 ලෝණය (දෙ) ගුරු මාර්ගෝපදේශ සංගුතය

Districted by Disposition Touristans
Touristans the agreement of the