GCE - A/L CHEMISTRY SERIES

REVISED & UPDATED

120

n,

பொது இரசாயனம்

180

120

.06

S. Thillainathan

109.5

noolaham.org | aavanaham.org

UCLEAR FORSCOS DIFOR 1234 LLSO: JIDI Sillor distant Curry

க.6பா.த. உயர்தரம் – இரசாயனத் துணைநூல் வரிசை – 1

வாது இரசாயனம்

ஆசிரியர்

(sTn)

எஸ். தீல்லைநாதன்

BSc, Dip. in Edu.

பொது இரசாயனம்

(துணைநூல் வரிசை : 1)

ஆசிரியர்

எஸ். தில்லைநாதன்

பதிப்பு

மூன்றாம் பதிப்பு மே 2004 இரண்டாம் பதிப்பு ஏப்ரல் 2000 முதற்பதிப்பு ஜூன் 1998

பதிப்புரிமை

மனோ தில்லைநாதன்

அமைப்பும் அச்சும் **கிறிப்ஸ்**

ഖിலை **ரூபா. 150.00**

Pothu Irasayanam (Genaral Chemistry) by S. Thillainathan BSc, Dip. in Edu. Copyrights

Mano Thillainathan

ISBN 955-1019-00-8

Edition

Third Edition : May 2004 Second Edition : April 2000 First Edition : June 1998

Layout & Printing KRIBS

Price 150.00

Sasko Publication

நூன்முகம்

''ஒரு கருமம் செய்தால் தவறு ஏற்படும் என அஞ்சி செய்யாதிருப்பதைவிட சிறிதாவது செய்வதுவே சிறந்தது.....''

"Finar"

இந்நூலின் முதற்பதிப்பு 1998 - June இல் வந்தது. மாணவர்கள், ஆசிரியர்கள் வேண்டுகோளுக்கிணங்க இந்நூலின் திருத்திய அமைக்கப்பட்ட மூன்றாம் பதிப்பு வெளிவந்துள்ளது. இம்முறை ஒட்சியேற்ற எண்கள் புகுத்தப்பட்டுள்ளன.

ஆயினும் முதற்பதிப்பில் குறிப்பிட்டதுபோல வசனங்களில் எழுவாய் - பயனிலை பற்றி கருத்திற் கொள்ளாமல் செயற்படு பொருளே கருத்திற் கொள்ளப்படுகிறது.

மாணவர் நலன் கருதி சுருக்கமாக, பரீட்சை நோக்கில் பொது இரசாயனத்தில் தொடர்பு பற்றிய நோக்கோடுதான் இந்நூல் அமைகிறது.

மாணவர் தேவையின் கடுகளவாவது இந்நூல் மூலம் திருப்தி செய்யப்படின் அதுவே எனது நோக்கத்தின் திருப்திக்குரிய விடய மாகும்.

கூடியளவு சொற் பிழை, கருத்துப் பிழைகளை தவிர்க்க முயன்றுள் ளேன்.

வழமைபோல் நண்பர் திரு. சு. கிருஷ்ணமூர்த்தியும், திருமதி. பவானி கிருஷ்ணமூர்த்தியுமே இந்நூலையும் மீள் பதித்துள்ளார்கள்.

அன்படன் S. Thellainelle.

எஸ். தில்லைநாதன்

கொழும்பு 2004. 05. 10

பொருளடக்கம்

- டை 1. அலகு 2 - அணுக்கட்டமைப்பு
 - A. i. இலத்திரன்
 - ii. கதோட்டுக்குழாய்
 - iii. நேர்த்துணிக்கைகள்
 - iv. அல்பாத்துணிக்கைச் சோதனை
 - v. அணுவெண்
 - v. நியூத்திரன்
 - B. திணிவுத்திருசியம்
 - C. இலத்திரனிலையமைப்பு
 - i. அணுநிறமாலை
 - ii. அயனாக்கசக்தித் தரவுகள்
 - iii. Bohr இன் கொள்கை
 - iv. அலைக்கொள்கை
 - iii. சக்திச்சொட்டெண்கள்
 - iv. இலத்திரனிலையமைப்புகள்
 - 2. அலகு 3 ஆவர்த்தனப் பாகுபாடு
 - i. ஆவர்த்தன அட்டவணை வரலாறு
 - ii. நவீன ஆவர்த்தன அட்டவணை

iii. ஆவர்த்தனஇயல்புகள் அணுவாரை, அயனாக்கசக்தி, மின்னெதிர்த்தன்மை, இலத்திரனாட்டம், மூலர்அணுக்கனவளவு, உருகுநிலை, கொதிநிலை, மறைவெப்பம்

> Digitized by Noolaham Foundation. noolaham.org | aavaalaham.org

37

7

- 3. அலகு 4 பிணைப்புகள்
 - A. அயனிக் பிணைப்பு
 - B. பங்கீட்டுப் பிணைப்பு
 - i. எளிய மூலக்கூற்று வடிவங்கள்
 - ii. அமிலங்கள்
 - iii. இராட்சத பங்கீட்டுப் பிணைப்பு
 - C. மூலக்கூற்றிடை விசைகள்
 - i. முனைவுக்கவர்ச்சி
 - ii. வந்தர்வாலுசு விசைகள்
 - iii. ஐதரசன்பிணைப்பு
 - D. உலோகப்பிணைப்பு

4.	பின்னிணைப்பு	87
5.	ஒட்சியேற்ற எண்கள்	103
6	பல்தோவு வினாக்கள்	107

அணுக்கட்டமைப்பு

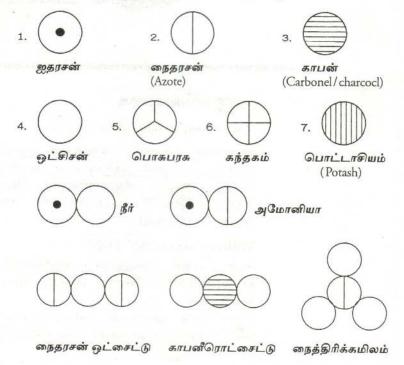
அணுக்கொள்கை

Robert Boyle (1627 - 1691)

மூலகங்கள் (elements) என்பதனை முதலில் ஓரளவு தெளிவாகக் குறிப்பிட்டவர் றொபேட் பொயில், என்னும் விஞ்ஞானியாவர். இவரது கருத்து 1661இல் "The Sceptical Chemist" எனும் நூலில் வெளிவந்தது.

William Prout (1785 - 1850)

அணு என்ற கருத்துக்கு கால்கோளிட்ட விஞ்ஞானிகளில் இவரும் ஒருவா். இவரது கருத்துப்படி,


''ஒவ்வொரு மூலகமும் ஒரு அடிப்படைக் கூறான (Material) ஆனவை. இக்கூறு ஐதரசன் ஆக இருக்கலாம். மேலும், ஒரு மூலகத்தின் அணுத்திணிவு ஆனது ஐதரசனின் திணிவின் மடங்குகளாக அமைகின்றது.''

John Dalton (1766 - 1844)

1833இல் இவரது அணுக்கொள்கைகள் பிரேரிக்கப்பட்டன. ஓர்ளவுக்கு சிறந்த வரையறைகளை முன்வைத்தவர் இவரேயாவர்.

- ஒவ்வொரு மூலகமும் அவற்றின் ஏகவின வகையான அணுக்களால் ஆக்கப்பட்டன. ஒரு மூலகத்தின் எல்லா அணுக்களும் ஒரே மாதிரி யானவை.
- ஒரே மூலகத்தின் எல்லா அணுக்களும் ஒரே பருமன், ஒரே திணிவு உடையன.
- அணுக்கள் தமக்குள் சேரும்போது ஒரு மூலகத்தின் அணு மற்றொரு மூலகத்திற்கு மாற்றப்படமாட்டாது.
- மூலகங்கள் தமக்குள் சேரும்போது அவற்றின் அணுக்கள் எளிய முழுவெண்களில் அமையும்.

இவரது அணுக்கள் / சேர்வைகட்கான குறியீடுகள் பின்வருமாறு அமைந் தன. இவற்றில் சில மட்டும் இங்கு காட்டப்பட்டுள்ளது.

Jons Berzelius (1779 - 1848)

மூலகங்களின் அணுத்திணிவுகளை ஆரம்பகாலத்தில் துணிந்தவாகளில் முதன்மையான ஒருவா். இவரே ஒன்று / இரண்டு எழுத்துக்கள் மூலம் மூலகங்களின் குறியீடுகளை அறிமுகப்படுத்தியவா் ஆவா்.

இலத்திரன்

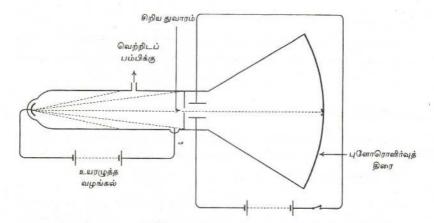
மின்னோட்டம், மின்பகுப்பு, நிலைமின்னேற்றல் போன்றவை ஏற்றமுள்ள துணிக்கைகள் அதாவது, ''மின்னணுக்கள்'' இருக்கவேண்டும் என்ற எண்ணக்கரு விருத்திக்கு உதவின.

1874இல் Johnston Stoney என்பவர் ஒரு பௌதிக விஞ்ஞானி ஆவர். இவர் முதலில் ''இலத்திரன் (Electron)'' என்ற பெயரைப் பயன்படுத்தியவராவர். 19ம் நூற்றாண்டுத் தொடக்கத்தில் Faraday என்பவர் செய்த பரிசோதனை களை அடிப்படையாக வைத்து மின்னைக் காவிச்செல்லும் மிக அற்பத் துணிக்கைகள் இருத்தல் வேண்டும். இதுவே இலத்திரன் ஆகும் என Stoney யினால் முன்மொழியப்பட்டது. இவராலேயே இலத்திரன் ஏற்றம் பற்றியும் முதலில் கூறப்பட்டது.

எனினும், இலத்திரன்கள் இருப்பதனைக் கண்டறிந்தவர், உறுதியான சான்று பகர்ந்தவர் என்பது J. J. Thomson என்பவரையே சாரும். 🚽

இதற்குக் கதோட்டுக் குழாய்ப் பரிசோதனை உதவியது.

கதோட்டுக் குழாய்

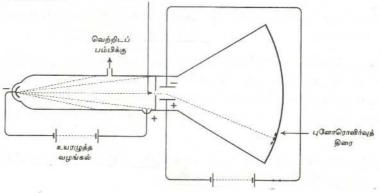

(Cathode Tube)

வாயுக்கள் தாழமுக்கத்தில் (1 × 10³ Nm⁻² அமுக்கத்திற்குக் கீழ்) மிக உயர் அழுத்த மின்னைக் கடத்தும் என அறியப்பட்டது.

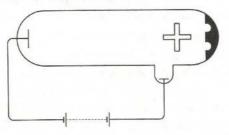
1860 ஆம் ஆண்டுகளிலிருந்து மின்னிறக்கக்குழாய் / கதோட்டுக்குழாய் பயன்படுத்தப்பட்டது. இதனை <u>Crookes Tube</u> எனவும் கூறுவர்.

தாழமுக்கத்தில் அடைக்கப்பட்ட வாயுவொன்றுக்கு உயர் அழுத்தமுள்ள மின் செலுத்தப்பட்டது. இதன்போது கதோட் உயர்மறை ஏற்றமும் அனோட் உயர் நேரேற்றமும் பெற்றன. இவ் ஏற்றங்கள் குறைக்கப்பட ஒரே வழி ஏற்றமுள்ள துணிக்கைகள் ஒன்றிலிருந்து மற்றொன்றுக்கு வாயுவி னூடு பாய்வதே ஆகும்.

இந்நிலையில் ஒரு கதிர்க்கற்றைவீச்சு கதோட்டிலிருந்து அனோட்டுக்குப் பாய்ந்தது. இதுவே கதோட்டுக் கதிர்ப்புகள்.



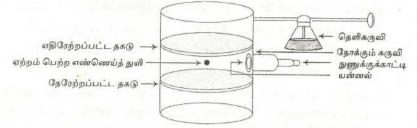
சுமார் 10 000 V - 11 000 V மின்னழுத்தத்தை 1 × 10³ Nm⁻² அமுக்க வாயுவின்மீது செலுத்தியபொழுது நீல-ஊதா நிற ஒளிர்வு அவதானிக்கப் பட்டது. இக்கதிர்கள் கண்ணாடிக் குழாயில் மோதியபோது பச்சையாக ஒளிர்ந்தன.


J. J. Thomson (1856 - 1940), Eugen Gold Stein (1850 - 1931) என்பாரும் இதுபற்றிய ஆய்வுகளில் முக்கியமானவர்கள்.

இவற்றின் இயல்புகள்

- மறை ஏற்றம் உடையன. ஏனெனில், இவற்றை மின்புலம் ஒன்றினூடு செலுத்த நேரேற்றப்பட்ட தகட்டை நோக்கித் திரும்பின. காந்தப் புலத்தினூடு செலுத்தும்போது மறை ஏற்றத்தைக் காட்டும் முறையில் திரும்பின. இதனை பிளெம்மிங்கின் விதியால் விளக்கலாம்.
- ZnS திரை போன்ற புளோரசன் பதார்த்தங்களின் மீது புளோர் ஒளிர்வைக் கொடுத்தன. ஒளிப்படத்தாளை (film) தாக்கும் இயல்பு உடையன. இல்ய துவாரம்

- தமது பாதையில் வைக்கப்பட்ட இலேசான பற்சில்லை சுழற்றும் இயல்புடையன. எனவே உந்தம், அதாவது திணிவுவேகம் உடையன.
 - N.B: திணிவும் ஏற்றமும் உடையவை என்பதால் இவற்றை இனி கதோட்டுத் துணிக்கைகள் எனக் குறிப்பிடுதல் சிறந்தது.
- இவற்றின் பாதையில் ஒரு சிலுவை வடிவான உலோகத் தகடு வைக்கப்படின் அதன் தெளிவான நிழல் ஏற்படுவதைக் காட்டலாம். எனவே, நேர்கோட்டில் செல்வன.


5. இவை காந்த அல்லது மின்புலங்களினுடு செலுத்தப்படும்போது ஒரே அளவால் திசை திரும்பின. Thomson இன் சோதனை முடிவுகளின்படி ஏற்றமுள்ள துணிக்கை ஒன்று அசையும் பாதையில் காந்த அல்லது மின்புலங்களை வைக்குமிடத்து அத்துணிக்கைகள் தத்தமது ஏற்றம்/ திணிவு (e/m) விகிதத்திற்கேற்ப திரும்புவன. அதாவது. ஏற்றம் கூட திரும்பல் கூடும். ஆனால், திணிவு கூட திரும்பல் குறையும்.

கதோட்டுத் துணிக்கைகள் யாவும் ஒரேயளவால் திரும்புவது அவற்றின் e/m ஒரு மாறிலி என்பதைக் காட்ட உதவியது.

எனவே எல்லா மூலகங்கட்கும் பொதுவானதும் மறையேற்றமுடையது மான ஒரு அற்பமான அடிப்படைத் துணிக்கை உண்டு எனவும், இதுவே இலத்திரன் எனவும் Thomson ஆல் கூறப்பட்டது.

- N.B: 🔏 1. ஒரு துணிக்கையின் e/m துணிவதற்கான முறை Thomson ஆல் காட்டப்பட்டது.
 - ஒரு துணிக்கையின் ஏற்றம் அறிவதற்கு வழிகாட்டி யவர் Millikon என்பார் ஆவர்.

மிலிக்கனின் எண்ணெய்த்துளிச் சோதனை

R. A. Millikon என்பவர் ஏறக்குறைய 1913 இல் ஒரு இலத்திரனில் ஏற்றத் தைத் துணிந்தவர் ஆவர். இவரது முறை "Oil drop Method" எனப்பட்டது.

''இரு உலோகத்தகளூடு நுண்ணிய பருமனுடைய நெய்த் துளிகள் வீசப்படும். இந்நெய்த்துளிகள் X - கதிர்களால் மோதப் பட்டு இலத்திரன்களை சிதறடித்து நேர்ஏற்றம் செய்யப் பட்ட அயன்கள் ஆக்கப்படும். உலோகத்தகடுகள் மின் செலுத்தப் பட்டு ஏற்றம் செய்யப்படும். இதன் மூலம் சில துளிகள் கீழே விழும் அதே வேகத்திற்கு ஈடாக மேன்முக வேகம் ஒன்று வழங்கப்பட்டு நிலை நிறுத்தப்படும். இத்தன்மை நெய்த் துளி யின் அடர்த்தியிலும் நிலைமின் புலத்தின் வலிமையிலும் தங்கியுள்ளது ''

இதன்மூலம் ஒரு நெய்த்துளியின் ஆகக்குறைந்த ஏற்றம் 1.59 x 10⁻¹⁹C என அக்காலகட்டத்தில் கருதப்பட்டது. தற்போது அறியப்பட்ட பெறுமானம் 1.602 x 10⁻¹⁹C.

நேர்த் துணிக்கைகள் அல்லது கால்வாய்க் கதிர்கள் 🔧

தொம்சன் தனது கதோட்டுக்குழாய் சோதனையின்போது பிறிதொரு நிகழ்வை அவதானித்தாா். கதோட்டைச் சூழ ஆனால் எதிா்ப்புறமாக ஒரு செந்நிற ஒளிா்வைக் காணக்கூடியதாக இருந்தது. Gold Stein என்பாரும் இது தொடா்பாக ஆராயவிழைந்து துவாரமுள்ள கதோட்டினைப் பயன் படுத்தினாா்.

இதன்போது பச்சைநிற புளோா் ஒளிா்வு போல கதோட்டுக் குழாயில் செந்நிறப் புளோா் ஒளிா்வும் அதற்கு எதிா்த்திசையில் காணப்பட்டது.

இவை மின்புலம் காந்தப்புலத்தில் இலத்திரன் கற்றைகளுக்கு எதிரான திசையில் திரும்பின. மேலும் இவற்றின் திரும்பலுக்கு வலிதான மின்புலம் தேவைப்பட்டதுடன் இவற்றின் திரும்பலின் அளவு கதோட்டுக் குழாயில் அடைக்கப்பட்ட வாயுவில் தங்கியிருந்தது. எனவே இவற்றின் e/m ஒரு மாறிலி அன்று என முடிவு செய்யப்பட்டது.

உதாரணமாக, H₂ வாயுவைப் பயன்படுத்தின் பெறப்பட்ட துணிக்கையின் திணிவு ஐதரசன் அணுவை ஒத்தது. O₂ வாயுவைப் பயன்படுத்தின் அதன் நேர்த்துணிக்கையின் திணிவு ஒட்சிசன் அணுவை ஒத்ததாகக் காணப் பட்டது. மேலும், ஐதரசனை பயன்படுத்தும்போது பெறப்படும் நேர்த் துணிக்கையின் திணிவின் மடங்குகளாக ஏனைய மூலக நேர்த் துணிக்கை கள் அமைந்தன.

எனவே இலத்திரன் கற்றைகள் (கதோட்டுத் துணிக்கைகள்) வாயு மூலக் கூறுகளை மோதி இலத்திரனை அகற்றுவதால் இவை உருவாகின்றன என தொம்சனால் முடிவு செய்யப்பட்டது.

e + H,	\rightarrow e + H ⁺ +	$H^+ + e + e$
விரைவான	மோதிய	ஐதரசனில் இருந்த
	இலத்திரன்	இலத்திரன்கள்

ஐதரசன் வாயுவைப், பயன்படுத்தியபோது பெறப்பட்ட நேர்த் துணிக்கை கள் இவற்றில் அடிப்படையானவை. இவை Rutherford என்பவரால் புரோத்தன்கள் (Protons) எனப் பெயரிடப்பட்டது.

N.B:- "Proto" = முதன்மையானவை

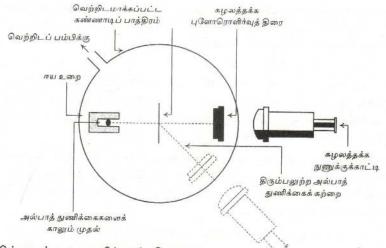
இந்நிலையில் அணுக்கட்டமைப்பை தொம்சன் "Christmas pudding" மாதிரியால் விளக்கினார். நேரேற்றப்பட்ட கோளத்தைச் சூழ இலத்திரன் ஓட்டம் உண்டு என்பது இவர் கருத்தாக அமைந்தது. கோளவடிவ Christmas pudding ஐப் போல் எனக் கூறினார்.

al sort lo

இக்கருத்தின்படி ஒரு ஐதரசன் அணுவானது 1840 இலத்திரன்களைக் கொண்டதாகக் குறிப்பிட்டார். ஏனெனில் ஒரு இலத்திரன் திணிவு H இன் திணிவின் 1/1840 பங்காகும். இவ்வாறு இருப்பதாலேயே அணு நடுநிலை யானது என இவர் குறிப்பிட்டார்.

N.B:- 1890 இல் தொம்சனின் முடிவுகள் முன்வைக்கப்பட் டன. தொடர்ந்து 1909 லேயே தொம்சனின் ஆராய்ச்சி மாணவர்களில் ஒருவரான இரதபோர்ட் கரு மாதிரி உருவைக் குறிப்பிட்டார். இரதபோர்ட்டினுடைய ஆராய்ச்சி மாணவர்களே கைகர், மாஸடன் ஆகிய இருவருமாவர்.

🗘 – துணிக்கைச் சோதனை

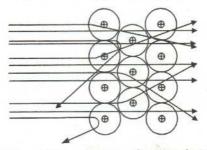

விஞ்ஞானிகள் :-: i. E. Rutherford

- ii. Geiger
- iii. Marsden

இயற்கையில் சில மூலகங்கள் கதிர்வீசல் இயல்புடையன என்பது Bequeral என்பாரினால் அறியப்பட்டிருந்தது.

அல்பா, பீற்றா, காமா என மூவகை கதிர்ப்புகள் உண்டு எனவும் அல்பா என்பது He²⁺ எனவும், பீற்றா என்பது _₁⁰β எனவும் காமா (γ) மின்காந்த அலை எனவும் அறியப்பட்டன. Thomson இன் கீழ் ஆராய்ச்சி மாணவர் களில் ஒருவரான Rutherford என்பவர் α-துணிக்கை பற்றி ஆராய முயன்றவர். இவரது ஆராய்வு மாணவர்களான Geiger, Marsden என்பவர்கள் செய்த சோதனையின் படிமுறைகள் பின்வருமாறு அமைந்தன.

ஈயக்குற்றியில் படத்திலுள்ளவாறு Ra வைக்கப்பட்டது. ஒரு மெல்லிய துவாரமூடு α – துணிக்கைகள் வெற்றிடப் பாத்திரத்தில் வெளிவிட அனுமதிக்கப்பட்டன. புளோரொளிர்வுத் திரையில் அவற்றின் மோதல் நுணுக்குக்காட்டியால் அவதானிக்கப்பட்டது. அவற்றின் பாதையில் மிக மெல்லிய உலோகத்தகடு (thin metal foil) வைக்கப்பட்டது. α –துணிக்கை களின் பாதை தொடர்ந்தும் அவதானிக்கப்பட்டது.



பின்வரும் அவதானிப்புகள் பெறப்பட்டன.

- 1. பெருமளவு அல்பாத் துணிக்கைகள் திசைமாற்றமின்றிச் சென்றன.
- 2. சில சிறுகோணங்களில் விலகின.
- மிகச்சில 90° மேற்படத் திரும்பின.

இதிலிருந்து பின்வரும் முடிவுகள் முன்வைக்கப்பட்டன.

- பெருமளவு α-துணிக்கைகளின் பாதையில் மாற்றமின்மையால் அணுவில் பெரும் பகுதி வெற்றிடமாகும்.
- நேரேற்றமுடைய α-துணிக்கைகளில் சில சிறுகோண விலகலுக்கு உட்பட்டமையால் அணுவின் சிறுபகுதியில் நேரேற்றம் (புரோத்திரன்) குவித்கப்பட்டுள்ளது. இதனருகே சென்ற அல்பாத் துணிக்கைகள் தள்ளப்பட்டுள்ளது.
- நேரேற்றத்துடன் திணிவுமுடைய α-துணிக்கையின் மிகச் சிறுபகுதி தெறிப்புற்றமைக்கு காரணம் அணுவின் சிறுபகுதியில் நேரேற்றத் துடன் திணிவு குவிக்கப்பட்டதாலாகும். இதுவே கரு எனப்பட்டது.

அல்பாத் துணிக்கையின் விலகல் கோணத்திலிருந்து Rutherford இனால் பின்வரும் முடிவுகள் எடுக்கப்பட்டன.

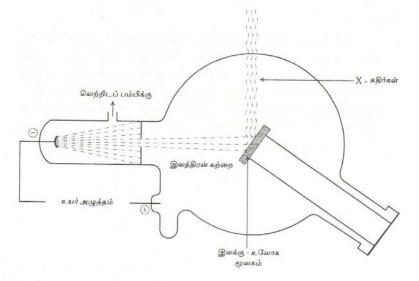
- 1. கருவின் ஆரையின் வரிசை 10⁻¹⁴m 10⁻¹⁵ m வரை
- அணுவின் ஆரையின் வரிசை 10⁻¹⁰m என்பதாகும்.
- அத்துடன்,
- 3. கருவைச் சுற்றிய பெரிய வெளியில் இலத்திரன்கள் அசைகின்றன. (இக் ''கோள் மண்டல இலத்திரன் கொள்கை (Planetory)'' பின் நிராகரிக்கப்பட்டது.) கோள் மண்டலக் கொள்கை என்பது சூரிய னைச் சூழக் கிரகங்கள் குறித்த குறித்த பாதைகளில் அசைவதாகும். இதுபோலவே கருவைச் சூழக் குறித்த குறித்த சக்தி மட்டங்களில் அல்லது ஓடுகளில் இலத்திரன் அசைவதாகும் என்பது Bohr கொள்கையாக அமைந்தது.

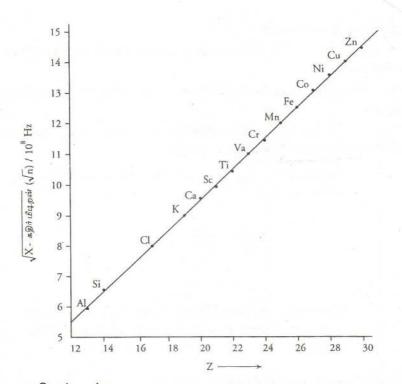
X- கதிர்களும் அணுவெண்ணுக்கான Mosley இன் சோதனைகளும்

உரோஞ்சன் என்பவர் முதலில் X-கதிர்களை உருவாக்கினார். இலத்திரன் கற்றைகளால் உலோகத்தகட்டை மோதும்போது X-கதிர்கள் உருவாவது காட்டப்பட்டது. இவை மின்காந்த அலைகளாகும்.

வெவ்வேறு உலோகங்களிலிருந்து உருவாகும் X-கதிர்கள் பற்றிய ஆய்வு Mosley ஆல் மேற்கொள்ளப்பட்டது.

ஒவ்வொரு மூலகத்தின் மீதும் இலத்திரன் கற்றையால் மோதும்போது உருவாகும் X-கதிர்கள் ஒரே மூலகத்திற்கு ஒரே அதிர்வெண்ணையும் வேறுபட்ட மூலகங்கட்கு வேறுபட்ட அதிர்வெண்ணையும் கொண்டிருப் பது அறியப்பட்டது.


இது X - கதிர் நிறமாலைப் பகுப்பு எனப்பட்டது. ஒரு மூலகத்தின் X -கதிரானது


√v = a(z − b) எனும் தொடர்பைக் காட்டியது.

Z - என்பது ஆவர்த்தன அட்டவணையில் மூலகம் உள்ள நிலையைக் குறிக்கும் எண்ணுடன் தொடர்புபட்டது. இதுவே அணுவெண் என வரை யறுக்கப்பட்டது.

அணுவெண் தொடா்பான விஞ்ஞானிகள் பிராக், மோஸ்லி இருவரும் ஆவா்.

மோஸ்லியின் கருத்துக்கு Van de Broek என்பவரின் கருத்துக்கள் வலுவூட்டின.

அணுவெண் என்பது,

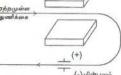
கருவிலுள்ள புரோத்திரன்களின் எண்ணிக்கையாகும்.

- 1. நடுநிலையில் அணுவின் இலத்திரன் எண்ணிக்கை
- 2. ஆவர்த்தன நிலையைக் குறிக்கும் எண் என்பனவும் பொருந்தும்.

அறியப்படாத மூலகங்களின் அணுவெண்கட்கு இங்கு இடைவெளி காணப்பட்டது. இது அவற்றினைப் பின்னர் இனங்காண உதவியது.

உதாரணமாக, Tungsten (W) க்கும், Osmium (Os) க்கும் இடையில் ஒரு இடைவெளி உண்டு. இது எம்மூலகம்? {Re}

அணுவெண் குறிப்பிடப்பட்டதும் துணியப்பட்டதுமான மூலகங்களைத் திட்டமாகத் தனித்து இனங்காண உதவியது.


திணிவுத் திருசியமானி

Frederick Soddy (1877-1956) என்பவர் மூலம் முதலில் சமதானிகள் இனங் காணப்பட்டன.

ஒரு மூலகத்தின் வெவ்வேறு திணிவுடைய துணிக்கைகள் சமதானிகள் ஆகும்.

Thomson ^e/m ஐத் துணிவதற்கான சோதனையை ஒட்டி Aston உடைய திணிவுத் திருசியமானி அமைக்கப்பட்டது.

N.B:- தொம்சனின் ⁶/_m ஐக் காண்பதற்கான வரிப்படம் பின்வருமாறு: ______

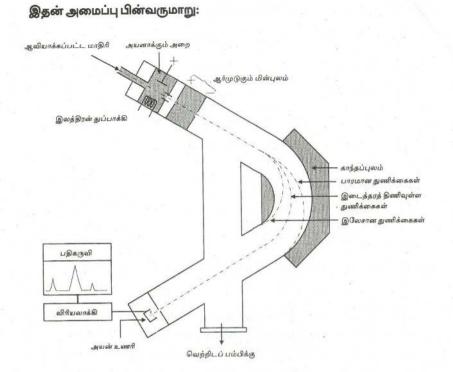
இதனையும் நேர்த்துணிக்கை உருவாக்கப்படுதலையும் அடிப்படையாகக் கொண்டது அஸ்டனின் உபகரணம் ஆகும்.

திணிவுத் திருசியமானியின் முக்கிய பாகங்கள்

அயனாக்க அறையில் (Ionization Chamber) தொடர்பு அணுத்திணிவு காண வேண்டிய மூலகம் தொடர்புமூலக்கூற்றுத்திணிவு காணவேண்டிய சேர்வை இதற்குள் வாயு/ஆவி நிலையில் செலுத்தப்படும்.

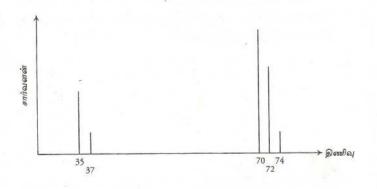
இலத்திரன் கற்றைகள் (Electron gun மூலம்) வீசப்பட்டு இவை நேர்த் துணிக்கைகள் ஆக்கப்படும்.

இந்நோத்துணிக்கைகள் மின்புலத்தால் வேகவளாச்சிக்கு உள்ளாக்கப் படும்.


பின், மாற்றப்படுதலுக்கு உட்படக்கூடிய காந்தப்புலத்தால் இவை விலக லுக்கு உள்ளாக்கப்படும்.

பாரம் குறைந்தன திரும்பல் கூடியன. பாரம் கூடியன திரும்பல் குறைவு.

காந்தப்புல வலிமையை மாற்றி மாற்றி இவை அயன் உணரிமீது (Ion detector) வீழ்த்தப்படும்.


அங்கு தூண்டப்படும் மின்னோட்டம் விரியலாக்கிக்குச் செலுத்தப்பட்டு (Amplifier) பதிகருவிக்கு (Recorder) அனுப்பப்படும்.

பதிகருவியில் திணிவு எதிர் சார்வளன் வரைபு பெறப்படும்.

சமாதானிகளின் எண்ணிக்கை, திணிவு, சார்வளன் (Relative abundance) இங்கு அறியப்படும். இவற்றின் சராசரி மூலம் தொடர்பு அணுத்திணிவு பெறப்படும்.

e.g.:- குளோரீன் வாயு பயன்படுத்தப்படின் Cl₂⁺, Cl⁺ அயன்கள் பெறப் படும்.

இங்கு ³⁵Cl, ³⁷Cl இரு சமதானிகள் உண்டு.

	³⁵ Cl -	³⁵ Cl	}*		9 บธ	ரக	·
1	[Cl ³⁵ - (Cl ³⁷	}+		6 បាន	க	
1	Cl ³⁷ - (Cl ³⁷]	 *		1 பங்	க	
00	³⁵ Čl	:	³⁷ Cl	=	(9 x 2 + 6)'	:	(6 + 1 x 2)
				=	24	:	8
				=	3	:	1
00	³⁵ Cl =	75%	6				
					சார்வ	ണ	i

³⁷Cl = 25%

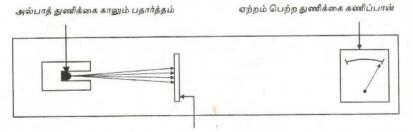
ஃ Cl இன் தொடர்பு அணுத்திணிவு = $\frac{35 \times 75 + 37 \times 25}{100}$ = 35.5

N.B:- திணிவெண் இங்கு பயன்படுத்தப்படுவதால் இது மிகச் செம்மையானதன்று. ஏனெனில் திணிவெண் என்பது புரோத்திரன், நியூத்திரன்களின் கூட்டுத்தொகையாகும். எனவே இது எப்போதும் முழுவெண்களிலேயே அமையும். ஆனால் தொடர்பணுத்திணிவு என்பது C¹² சார்பானது. இது பொதுவாக தசம பின்னங்களிலேயே காணப்படுகின்றது. C¹² இற்கு மட்டுமே திணிவெண் தொடர்பணுத்திணிவாகக் கொள்ளப்பட்டு திட்டமாக 12 0000 ஆக தொடர்பணுத்திணிவு கொள்ளப்படும். ஏனைய மூலகங்களிற்கு வசதி கருதி தொடர்பணுத் திணிவைக் கிட்டிய முழுவெண்ணில் அல்லது எளிய பின்னத்தில் கொள்வதுண்டு.

நியூத்திரன் கண்டுபிடிப்பு

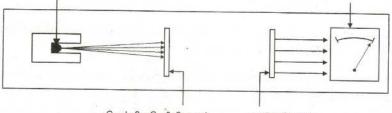
வஞ்ஞானி - Chadwick

Rutherford உம், Mosley உம் அணுக்கட்டமைப்பை விளக்கினார்கள் எனினும் மிகப்பெரிய பிரச்சனைக்கு அவர்கள் விடை தரவில்லை.


உதாரணமாக, ஐதரசன் அணுவில் ஒரு இலத்திரனும் புரோத்தனும் உண்டு. ஆனால் He இல் இரு புரோத்தன்களும் இரு இலத்திரன்களும் உண்டு. ஆகவே ஒரு H அணுத்திணிவிலும் ஓர் He இன் திணிவு இரு மடங்காக வேண்டும். ஆனால் நான்கு மடங்காகவே காணப்படுகிறது. இது ஏன்?

இந்நிலையில் சமதானிகள் காணப்படவேண்டும் என Rutherford பிரேரித் தார். ஆயினும், Rutherford இன் சகபாடியான Chadwick என்பவரே நியூத்திர னைக் கண்டறிந்தவர் (1932). அவரது சோதனையின் முக்கிய விபரங்கள் பின்வருமாறு:

அல்பாத் துணிக்கைகள் ஒரு மின் கணிப்பான் (Electric Counter) மீது வீழ்த்தி உணரப்பட்டன.


பின் இடையில் ஒரு பெரிலியம் தகடு வைக்கப்பட்டது. ஆனால் கணிப்பானில் இப்போது வாசிப்பு பூச்சியம் ஆகியது.

மெல்லிய பெரிலிய தாள்

பின் பெரிலியம் தகட்டுக்கும் கணிப்பானுக்கும் இடையே ஒரு பரபின் மெழுகு வைக்கப்பட்டது.

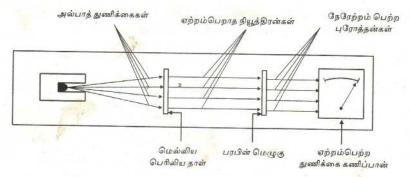
அல்பாத் துணிக்கை காலும் பதார்த்தம்

மெல்லிய பெரிலிய தாள்

பரபின் மெழுகு

மீண்டும் கணிப்பானில் வாசிப்புக் காணப்பட்டது. இவ் அவதானத்தை Chadwick பின்வருமாறு விளக்கினார்.

அல்பாத் துணிக்கைகள் பெரிலியம் தகடு மீது மோதும்போது ஏற்றமற்ற துணிக்கைகள் நியூத்திரன்கள் வெளிவீசப்பட்டன. இவை ஏற்றமற்றதாகை யால் கணிப்பான் இதனை உணரவில்லை.


பின் பரபின் மெழுகு (Paraffon wax) இடையே வைக்கப்பட்டபோது அதன் மீது மோதிய நியூத்திரன்கள் மூலம் அதிலிருந்து நேர் ஏற்றத் துணிக்கை களான புரோத்தன்கள் வெளிப்பட்டன. இவையே கணிப்பானில் வாசிப்பு ஏற்படக் காலாயின.

 ${}^{9}_{4}\text{Be} + {}^{4}_{2}\alpha \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$

பின்

$$^{12}_{6}C + ^{1}_{0}n \rightarrow ^{12}_{5}B + ^{1}_{+1}p$$

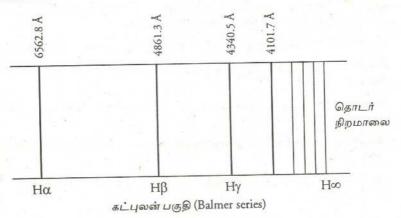
என விளக்கம் அளிக்கப்பட்டது.

N.B: இச்சமன்பாடுகள் கரு இரசாயனச் சமன்பாடுகள் ஆகும். இவற்றில் அணுக்கள் மட்டுமல்ல ஏற்றம், திணிவெண்ணும் சமப்படுத்தப்படும் என்பது முக்கியம்.

துணிக்கை	குறியீடு	திணிவு (kg)	ஏற்றம் (C)	e/m (Ckg ⁻¹)
 இலத்திரன் 	1e	9.1 x 10 ⁻³¹	1.602 x 10 ⁻¹⁹	1.76 x 10 ¹¹
2. பு <mark>ரோத்த</mark> ன்	1 +1p	$1.672 \ge 10^{-27}$	1.602 x 10 ⁻¹⁹	9.6 x 10 ⁷ ′
3. நியூத்திரன்	0 ¹ n	1.675 x 10 ⁻²⁷	0	0

N.B:- 1₀¹ = 1839 × eⁿ திணிவு = 1.0086 a.m.u

1₊₁ p = 1838 × eⁿ திணிவு = 1.0077 a.m.u


1 mol **ஒரலகு ஏ**ற்றம் = 96 490 C ≈ 96 500 C = 1 F

இலத்திரன் நிலையமைப்பு

ஐதரசன் நிறமாலை

தாழமுக்கத்தில் அடைக்கப்பட்ட H₂ வாயுவினூடு மின்னிறக்கம் பிரயோகிக்கப்படும்போது சில 'H' அணுக்கள் உருவாகும். இவை கட்புலனாகு பகுதி கதிர்ப்புகள் சிலவற்றையும் வெளிவிடுவனவாகும். இதனைத் திருசியாமானியூடு செலுத்தின் பெறப்படும் நிறமாலையில் வெவ்வேறு தொடர்கோடுகள், வேறுபட்ட அலைநீளத்தில் அமைந்தன. நாலு தெளிவான கோடுகளை கண்ணால் பார்க்கலாம். புகைப்படத்தில் ஊதாகடந்த பகுதியிலும் செந்நிறப் பகுதியிலும் கோடுகள் அவதானிக்கப் பட்டன.

அதிர்வெண் அதிகரிப்புடன் இக்கோடுகள் நெருங்கிச் செல்வதனைக் காணலாம்.

Balmer (1885) என்பவர் கட்புலன்பகுதி கோடுகளின் அலை எண் ⊽ ஆனது பின்வரும் எளிய தொடர்பால் காட்டலாம் எனக் காட்டினார்.

$$\overline{v} = R_n (\frac{1}{2^2} - \frac{1}{n^2})$$

இங்கு R ...-- Rydberg Constant ஆகும்.

$$= 109 677 \text{ cm}^{-1}$$

n = 3,4,5....
 $\overline{\nu}$ = $\frac{1}{\lambda} \text{ m}^{-1}$

வெளியோடுகளிலிருந்து 2ம் ஓட்டிற்கு இலத்திரன் பாய்வது இக்கோடு களுக்குக் காரணம்.

இதேபோல் Lyman தொடர்

$$\overline{v} = R_n \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$$

 $n = 2, 3, 4....$

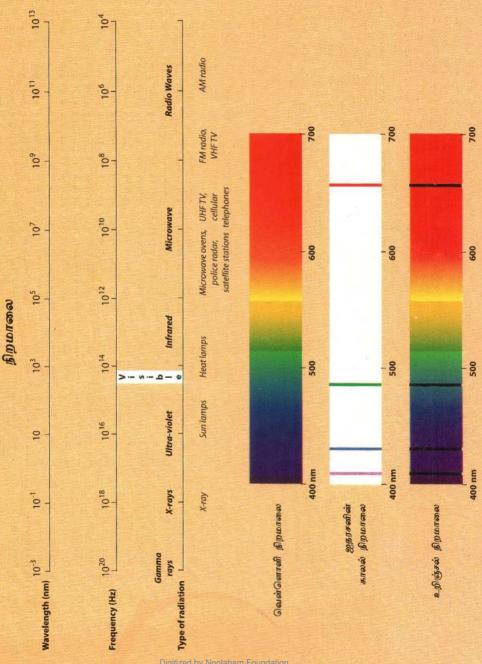
வெளியோடுகளிலிருந்து 1ம் ஒட்டிற்கு இலத்திரன் பாய்வதைக் குறிப்பதாகும். இவை ultra violet பகுதியில் காணப்படுகின்றன.

இதேபோல் Paschen தொடர்

$$\overline{v} = R_n \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$$

 $n = 4.5.6$

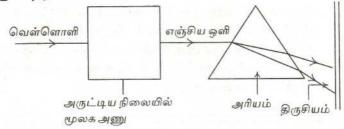
இது கீழ்ச்செந்நிற பகுதி கோடுகளாகும். வெளியோட்டிலிருந்து 3ம் ஓட்டிற்கு இலத்திரன் பாய்வதலைக் குறிப்பதாகும்.


இவ்வாறே, கீழ்ச்செந்நிறப் பகுதியில் காணப்படும் ஏனைய தொடர்கள்,

வெளியோட்டிலிருந்து 4ம் ஓட்டிற்கு பாய்வதனைக் குறிப்பது Brackett தொடர்

வெளியோட்டிலிருந்து 5ம் ஓட்டிற்கு பாய்வதனைக் குறிப்பது Pfund தொடர்

வெளியோட்டிலிருந்து 6ம் ஒட்டிற்கு பாய்வதனைக் குறிப்பது Humpherie's தொடர்


இவற்றை அடிப்படையாக வைத்து Niels Bohr தனது கொள்கையை 1913 இல் வெளியிட்டார்.

1

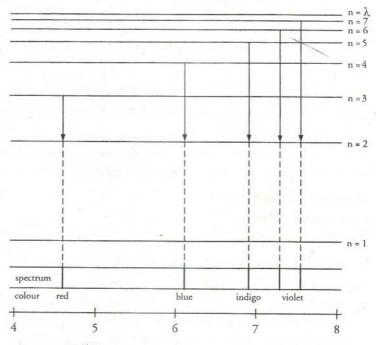
Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

உறிஞ்சல் நிறமாலை

அருட்டிய நிலையிலுள்ள மூலக அணுவினுடு வெள்ளொளியைச் செலுத் துக.

வெளிப்படும் எஞ்சிய ஒளியை அரியமூடு செலுத்துக.

பெறப்படுவது உறிஞ்சன் நிறமாலை (Absorbtion Spectrum) எனப்படும். உதாரணம்: ஐதரசன் வாயு


இவை ஒன்றுக்கொன்று மிகை நிரப்பிகளாகக் காணப்படுகின்றன. ஒவ்வொரு கோடும் ஒரு குறித்த அதிர்வெண்ணுக்கு உரியன.

- இவ்வாறான நிறமாலைகளை
- i. நீர் எவ்வாறு விளக்குவீர்?
- ii. கோடுகளுக்கு இடைப்பட்ட தூரங்களை எவ்வாறு விளக்கலாம்?
- விவொரு மூலகமும் ஏன் குறித்த கோடுகளையுடைய நிறமாலை யைத் தருகின்றன?

சாதாரணமாக ஒரு மூலகத்தில் குறைந்த சக்தி மட்டத்திலேயே இலத்திரன்கள் காணப்படும். இவை சக்தியைப் பெறும்போது உயர் சக்தி நிலைக்கு அருட்டப் படுகின்றன. இந்நிலை உறுதியற்ற நிலை யாகும். இதற்குச் செல்லும்போது சில குறிப்பிட்ட சக்திக் கதிர்ப்புகளை உறிஞ்சுவதே உறிஞ்சல் நிறமாலைக்குக் காரணமாகும்.

அக்குறிப்பிட்ட சக்திக் கதிர்ப்புகளை வெளிவிட்டு ஆரம்ப நிலைக்கு இலத்திரன் செல்லும்போது பெறப்படுவதே காலல் நிறமாலையாகும்.

N.B: பாமர் என்பவர் காலத்தில் H_α, H_β, H_γ மூன்று கோடுகள் மட்டும் ஆரம்பத்தில் இனங்காணப்பட்டன. எனினும் விஞ்ஞான வளர்ச்சியானது கட்புலன்பகுதியில் மேலும் சில கோடுகள் அமைவதைப் பின்னர் இனங்காண உதவியது. பொதுவாக வெளியோடு 8ம் நிலையில் இருந்து முதலாம் ஓட்டிற்கு இலத்திரன் பாயும் கோடுகள் வரை அறியப்பட்டுள்ளன. எனினும் இதற்கு மேல் சக்தி பெற்ற இலத்திரன் கருக்கவர்ச்சியிலிருந்து தப்பி விடுகின்றன. இதனால் தொடர்ந்து கோடுகள் சாத்தியமல்ல. எனினும், சக்தி கூட கோடுகள் நெருங்கு வதால் ஏறக்குறைய தொடர் நிறமாலை போல் இப் பகுதி காணப்படல் கூடும்.

frequency n/10¹⁴ Hz

N.B: ஐதரசன் நிறமாலையிலிருந்து அறியக்கூடிய வேறு விடயங்கள்

- சக்தி அல்லது அதிர்வெண் கூடும்போது கோடுகள் நெருங்கிச் செல்லுதல் அணுவில் ஓடுகள் ஒருங்கு வதற்குச் சான்றாகும்.
- 2. அயனாக்கற்சக்தியினைக் கணிக்கலாம்.

அயனாக்கற்சக்தித் தரவுகள்

முதலாம் அயனாக்கசக்தி ($\Delta H_{I_i}^{\Theta}$)

வாயு அல்லது ஆவி நிலையிலுள்ள மூலகமொன்றின் ஒரு மூல் அணுக்கள் ஒவ்வொன்றிலிருந்தும் மிகத் தளர்வாகப் பிணைக்கப்பட்ட / ஆகவும் வெளியிலுள்ள ஒர் இலத்திரனை அகற்றத் தேவையான சக்தியாகும்.

$$M(g) \rightarrow M^{+}(g) + e \qquad \Delta H_{L}^{\Theta}$$

இதேபோன்று n ஆம் அயனாக்கசக்தி

$$M^{(n-1)}(g) \longrightarrow M^{n+}(g) + e \Delta H_{L}^{\Theta}$$

ஒவ்வோா் இலத்திரனை அகற்றும்போதும் ''பயன்படு கருவேற்றம்'' அதிகரிப்பதால் தொடா் அயனாக்கசக்திகள் ஏறுவரிசையில் அமையும்.

$$\Delta H_{I_1}^{\Theta} < \Delta H_{I_2}^{\Theta} < \dots$$

ஆனால் உதாரணமாக நைதரசனின் தொடர் அயனாக்கசக்தி பின்வரு மாறு காணப்படுகின்றது. இடையிடையே ஏற்பட்ட அசாதாரண சக்தி உயர்வுக்குக் காரணம் இலத்திரன்கள் வெவ்வேறு சக்திமட்டங்களில் காணப்படுவது ஆகும்.

அயனாக்கல் எண்

7

- N.B: 1. ஆரம்பகாலத்தில் J. J. Thomson என்பவரால் 'Plum pudding' மாதிரி குறிப்பிடப்பட்டது. ஒரு அணுவில் புரோத்தன்கள் இலத்திரன்கள் ஆங்காங்கே பொறிக் கப்பட்டுள்ளன.
 - 2. Rutherford

அணுமாதிரியுருவை விளக்க முற்பட்ட இவர் இலத்திரனிலை அமைப்புக்கு ''கோள்மண்டல கொள்கையை'' அறிமுகப்படுத்தினார்.

சூரியனைச் சுற்றி கிரகங்கள் ஒரு ஒழுங்கில் அசைவதுபோல் இலத்திரன்கள் கருவைச் சுற்றி அசையும் என்பது இவர் கொள்கை.

இதன் தாக்கம் Bohr இன் கொள்கையிலும் உண்டு. ஆயினும் Bohr இத்துடன் ''சக்திச்சொட்டு'' கொள்கையும் இணைத்தார். இதுபற்றி தொடர்ந்து நீங்கள் வாசித்துணர முடியும்.

Bohr இன்கொள்கை

Bohr இன் கொள்கைக்கு அடிப்படையாக அமைந்தவை.

i ஐதரசன் நிறமாலை

ii. அயனாக்கற்சக்தித் தரவுகள்

மேலும், Quantum Theory - Plank (1901) இன் கொள்கையும் இதற்கு உதவியது.

''காலப்படும் / கதிா்வீசப்படும் சக்தியானது தொடா்ச்சியாக வெளிப்படு வதில்லை. பதிலாக, தொடா்ச்சியற்றதாகவும், பொதிகள் (packets or bundless) ஆகவும் அமையும். இவை சக்திச்சொட்டுகள் (Quanta) ஆகும்.''

இக்கொள்கையை விரிவுபடுத்தியவர், Einstein ஆவர்.

இவரது கொள்கைப்படி சக்தி உறிஞ்சப்படல் / காலப்படுதல் பொதிகள் (bundles) ஆக அமைவது மட்டுமல்ல, ஒரு வெளியில் (space) சக்தியானது பொதிகளாகவே காணப்படும். இப்பொதிகள் "Photons" எனவும் கூறினார்.

ஒரு Photons காவும் சக்தி,

E = hvஆகும். இங்கு h - plank's constant = 6.626 x 10⁻³⁴J s ν = அதிர்வெண் ν - கிரேக்கச்சொல் - "nu" உச்சரிப்படையது

Bohr இன் அணுமாதிரியுரு

- ஒரு குறித்த முக்கிய (சக்திச்சொட்டில்) ஓர் இலத்திரன் கருவைச் சுற்றி வரும். கருவிற்கு அண்மையிலுள்ளது சக்தி குறைவு. கருவிலிருந்து தூரம் கூடும்போது சக்தி கூடும்.
- ஒரு இலத்திரன் ஒரு சக்திமட்டத்திலிருந்து (E₂) இன்னொன்றுக்கு பாயும்போது (E₁) வித்தியாசமான சக்தியை கதிர்ப்பாகக் காலும். இங்கு, (E₂ > E₁)

$$\Delta E = E_2 - E_1 = h_v$$

(a) rises h - plank's constant

v = காலப்பட்ட கதிர்ப்பின் அணுவெண்

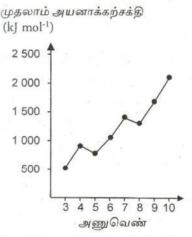
- ஒரு வட்ட ஒழுக்கில் சுழலும் இலத்திரனின் கோண உந்தம் mVr = nh/2π ஆகும்.
 - m இலத்திரன் திணிவு
 - V இலத்திரன் வேகம்
 - r ஆரை
 - n தலைமைச் சக்திச்சொட்டெண்
 - N.B: ஒரு இலத்திரன் காவும் சக்தி = $\frac{kz^2}{n^2}$ இங்கு,

Bohr இன் கொள்கை தவறிய காரணம்

i. ஐதரசன் நிறமாலையிலுள்ள கோடுகளின் நுண்ணிய பிரிவுகளை (fine lines) விளக்கத் தவறியது. இந்நுண்ணிய கோடுகள் வலிமையான திருசியமானிமூலம் பெறப்

- அணுக்களினதும் அணுக்களின் சேர்மானமான மூலக்கூறுகளினதும்
 இலத்திரன் பரம்பலையும் ஒழுங்கமைப்பையும் விளக்கத் தவறியது.
- iii. பல இலத்திரன் உடைய அணுக்களின் நிறமாலைகளை விளக்கத் தவறியது.
- iv. இக்கொள்கை இரு முரண்பாடான கருத்துக்களான, Quantom theory இனதும் Law of classical mechanics இனதும் வெளிப் பாடாகும்.

நிறமாலையின் மெல்லிய கோடுகளை விளக்க Sommerfield என்பவர் வட்ட ஒழுக்குகளைப் போல் நீள் வட்ட ஒழுங்குகளையும் குறிப்பிட்டார். ஆயினும், இவ்விளக்கம் ஒன்றுக்கு மேற்பட்ட இலத்திரன் உடைய அணுக்களின் நிறமாலைக் கோடுகளை திட்டமாக குறிப்பிட்டு விளக்கத் தவறியது.

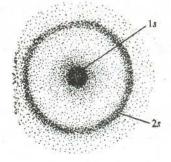

Zeeman's Effect :-

அணுக்கள் காந்தப்புலத்தில் வைக்கப்பட்டிருக்கும்போது நிறமாலைக் கோடுகள் மேலும் பிரிகின்றன.

இதனையும் விளக்க முடியவில்லை.

உபசக்தி மட்டம்

ஒரு ஒட்டில் இலத்திரன் அமையும் மூலகங்கள் உதாரணமாக, Li₃ முதல் Ne₁₀ வரை நோக்கின் இவற்றின் முதலாம் அயனாக்க சக்தியானது கருவேற்றம் அதிகரிக்க கருக்கவாச்சி அதிகரிப்பதனால் ஏறுவரிசையில் அமையும். ஆனால் உண்மையில் பின்வருமாறு வரைபு காணப்பட்டது.


இவ்வாறு இடையிடையே குறைவு ஏற்பட்டதன் காரணம் என்ன?

Li₃ முதல் Ne₁₀ வரையிலான மூலகங்கள் யாவும் முதலாம் ஓட்டில் இரண்டு இலத்திரன்களை உடையன.

எனவே யாவும் இரண்டாம் ஒட்டில் இலத்திரன் நிரப்பப்படுவன. எனவே கருவேற்ற அதிகரிப்புடன் கருக்கவா்ச்சியும் கூடுவதால் முதலாம் அயனாக்க சக்தி ஏறுவரிசையில் அமையவேண்டும்.

ஆனால் இடையிடையே குறைவதற்குக் காரணம் இரண்டாம் ஓட்டில் உபசக்திப் பிரிவுகள் இருப்பதனால் ஆகும். உபசக்திப் பிரிவுகள் ஒழுங்குகள் எனப்படும். இவை s, p, d, f..... எனக் குறிக்கப்படும்.

போரின் கொள்கையானது திட்டமான வட்டப்பாதைகளில் இலத்திரன் அமையும் என்ற எண்ணக்கருவை ஏற்படுத்தியது. ஆனால், Summer Field, Schrödinger போன்றோரின் ஆய்வுகள் இக்கருத்தின் உண்மைத் தன்மை யினை கேள்விக்கு உள்ளாக்கின. இலத்திரன்கள் அலை இயல்புடையன எனக் காட்டப்பட்டது. இதற்கு அவை கோணல் அடைவதும் ஒரு சான்றாகும். மேலும் இலத்திரன்கள் ஒரு குறித்த வடிவப் பிரதேசத்தில் பரம்பும் நிகழ்தகவு அதிகம் எனவும் அறியப் பட்டது.

உதாரணம் : இலிதியம் அனுவின் நுணுக்குக்காட்டிப் படம்

இலத்திரனின் அலை இயல்பு

ஒளியானது துவித இயல்புடையது அதாவது, துணிக்கை இயல்பும் அலை இயல்பும் கொண்டது என்ற கொள்கை Einstein ஆல் குறிப்பிடப்பட்டது.

Louis de Broglie, Schrödinger, Heisenberg என்பாரின் ஆய்வுகள் இலத்திரன் களும் அலை இயல்புடையன என்ற கருத்தை வலியுறுத்தின.

இதிலிருந்து ஒரு இயக்கத்திலுள்ள உப அணுத்துணிக்கைக்கு அலை இயல்பானது பின்வரும் சமன்பாட்டால் தரப்பட்டது.

இதனைத் தொடர்ந்து Heisenberg என்பவரின் "Uncertainty Principle" முன் வைக்கப்பட்டது.

இவரது கொள்கைப்படி,

''ஒரு உப அணுத்துணிக்கையின் நிலையையும் வேகத்தையும் (அல்லது உந்தத்தையும்) ஒரே சமயத்தில் செம்மையாக அறியமுடியாது'' இக்கருத்தானது குறித்த ஒரு ஓட்டில் (orbits) இலத்திரன் அசைகிறது என்ற Bohr இன் கருத்தைப் பொய்ப்பித்தது. இதனைத் தொடர்ந்து "Orbital" என்ற கருத்தை வலியுறுத்தும் வகையில் Schrödinger என்பவரின் கொள்கைகள் அமைந்தன.

Schrödinger's Quantum Mechanical Model

de Broglie, Heisenberg என்பவர்களின் கருத்துக்களின் அடிப்படையில் Schrödinger ஆல் இலத்திரன்கட்கு ஒரு அலைச் சமன்பாடு அறிமுகப் பட்டது. இது ஒரு குறித்த சக்தி நிலையில் ஒரு வெளியில் காணப்படும் இலத்திரன் பரம்பலை எதிர்வு கூற உதவியது.

இங்கு,

''ஓா் இலத்திரன் காணப்படும் உயா்ந்த நிகழ்தகவுடைய வெளி / இலத்திரன் அடா்த்தி கூடிய பிரதேசம் ஒரு ஒபிற்றல் (orbital)'' எனக் குறிப்பிடப்பட்டது.

ஓர் இலத்திரன் நிலையைக் குறிக்க நான்கு சக்திச் சொட்டெண்கள் பயன் படுத்தப்பட்டன.

i. பிரதான சக்திச் சொட்டெண் (n) (Principal Quantum number)

ஒரு கருவிலிருந்து இலத்திரன் காணப்படும் சராசரி தூரத்தையும் இலத்திரனின் தேறிய சக்தி நிலையினையும் குறிக்க உதவும்.

இது முழுவெண் பெறுமானங்கள் உடையது.

n = 1, 2, 3,

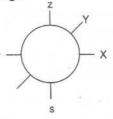
ஒரு பிரதான சக்திச்சொட்டில் $2n^2$ இலத்திரன்களே ஆகக்கூடியது காணப்படும்.

n இன் பெறுமானம் கூடக்கூட சக்தி கூடும்.

ii. உபசக்திச் சொட்டெண் (ℓ)

(Secondary Quantum number / Azimuthal orbital)

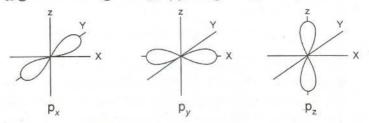
ஒரு பிரதான சக்திப்படியில் உபசக்தி நிலைகளையும் ஒபிற்றலின் வடிவம் அல்லது இலத்திரன் முகிலின் திசை திருப்பிய நிலையையும் (shape of the orbital or Orientation in space) இது குறித்து நிற்கும்.

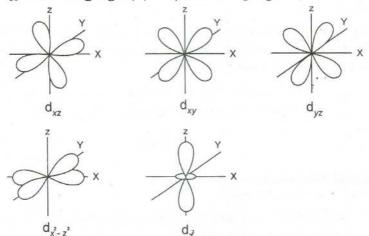

L = 0(n - 1) வரை முழுஎண் பெறுமானங்களைக் கொள்கிறது.

n = 1 ஆயின் **ட** = 0

n = 2 ஆயின் **L** = 0, 1

இவ்வாறி தொடரும்.


 a. L = 0 ஆனது s-orbital எனப்படும். இது கருவை மையமாகக் கொண்ட கோளச் சமச்சீருடையது.


b. L=1 என்பது p-orbital ஆகும்.

x, y, z அச்சுக்கள் வழியே ஒன்றுக்கொன்று செங்குத்தான மூன்று porticals அதாவது, p_x, p_y, p_z என்பன $\ell = 1$ இற்கு உண்டு.

இவை dumb-bell வடிவுடையன. இங்கு கருவில் இருபுறமும் இருகோளச் சமச்சீருடைய இலத்திரன் முகில் அமைப்புடையன.

c. $\boldsymbol{l} = 2$ என்பது d-orbital ஆகும். இங்கு, ஐந்து d- ஒபிற்றல்கள் உண்டு. இவை பின்வருமாறு, xy, yz, xz தளங்களில் மூன்று,

d. டி = 3 என்பது f-orbital ஆகும். இதில் 7 சக்திநிலைகள் உண்டு.

iii. காந்தச்சக்திச் சொட்டெண் (m)

(Magnetic Quantum number)

காந்தப்புலமொன்றில் வைக்கப்படும்போது orbital ஒன்றின் சார்நிலை யைக் குறிப்பது இவ்வெண் ஆகும்.

ஒவ்வொரு உபசக்திமட்டத்தில் உள்ள orbital களின் எண்ணிக்கை யைச் சுட்டிக்காட்டுவது இதுவாகும்.

m = 2l + 1 பெறுமானங்கள் உடையது

m = - l+ L வரை பெறுமானங்கள் உண்டு.

ஒரு வலிய காந்தப்புலத்தில் வைக்கப்பட்ட நிலையில் பெறப்பட்ட மூலகத்தின் அணுநிறமாலைக் கோடுகள் நுண்ணிய உட்பிரிவுகளை கொண்டிருத்தல்மூலம் இது இனங்காணப்பட்டது. இதுவே, Zeeman effect எனப்படும்.

e.g. l=2 ஆயின்,

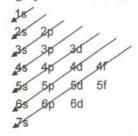
m = -2, -1, 0, +1, +2 இதுவே ஐந்து d - orbitals ஆகும்.

iv. கறங்கற் சக்திச் சொட்டெண் (s) (Spin Quantum number)

ஒருஇலத்திரனின் சுழற்சித் திசையை குறிப்பது இதுவாகும். இரு திசை கள் மட்டுமே சாத்தியமானது. ஒன்று மணிக்கூட்டுத் திசை, மற்றையது முரண் மணிக்கூட்டுத் திசை. +½, -½ ஆல் குறிக்கப்படும். இதனை ၂;↓ ஆல் குறிக்கலாம்.

Hund's Rule

ஒரு ஒபிற்றலிலுள்ள காந்த சக்திச் சொட்டில் இலத்திரன்கள் நிரப்பப்படும் போது முதலில் சமாந்தரத் திசைகளில் கறங்கும் வண்ணம் நிரப்பப்பட்ட பின்பே முரண்திசையில் நிரப்பப்படும்.


eg: p - ஒபிற்றலில் 3 இலத்திரன்கள் நிரப்பப்படும்போது, p_x, p_y, p_z ஒபிற்றல்களில் ஒவ்வோர் இலத்திரன் நிரப்பப்படும்.

பௌலிங்கின் தவிர்க்கைக் கோட்பாடு

(Paulings Exclusion Principle)

ஓரணுவிலுள்ள எந்த இரு இலத்திரன்கட்கும் சக்திச் சொட்டெண்கள் நான்கும் சமமாக அமைய மாட்டாது. இவற்றின் அடிப்படையில் இலத்திரன் நிரப்பப்படும் ஒழுங்குமுறை Aufabau's Principle பின்வருமாறு காட்டப்படும்.

Building up electron configuration

e.g.

N.B:-i. பின்வரும் இலத்திரனிலையமைப்பு உறுதிக்காக மாறியமையும்.

1.	1111	11	இற்குப் பதிலாக	1 1 1 1 1	1
	(n-1)d4	ns ²		(n-1)d ⁵	ns ¹

2. <u>11111111</u> 11 இற்குப் பதிலாக <u>11111111</u> 1 (n-1)d⁹ ns² (n-1)d¹⁰ ns¹

e.g.

Cr ₂₄	:-	1s ²	$2s^22p^6$	3s ² 3p ⁶ 3d ⁵	$4s^1$	
Cu ₂₉			$2s^22p^6$	3s ² 3p ⁶ 3d ¹⁰	$4s^1$	
Mo ₄₂			$2s^22p^6$	$3s^23p^63d^{10}$	$4s^24p^64d^5$	$5s^1$
			2s ² 2p ⁶	$3s^23p^63d^{10}$	$4s^24p^64d^{10}$	5s ¹

N.B:- ii. அணுவெண் 43 முதல் 46 வரை நடைமுறைக்கு முரண்பாடான அமைப்புகள், இவை அவசிய மற்றன.

e.g.

Tc ₄₃	;-	$1s^2$	$2s^22p^6$	3s23p63d5	$4s^14p^64d^6$	5s ¹
Ru ₄₄				3s ² 3p ⁶ 3d ¹⁰	$4s^14p^64d^7$	5s ¹
Rh ₄₅			$2s^22p^6$	3s ² 3p ⁶ 3d ¹⁰	$4s^24p^64d^8$	5s ¹
Pd ₄₆			$2s^22p^6$	3s ² 3p ⁶ 3d ¹⁰	4s ² 4p ⁶ 4d ¹⁰	5s ⁰

Ba₅₆ வரை இலத்திரனிலையமைப்பு போதுமானது.

N.B:- iii. இலத்திரன்கள் இழக்கப்படும்போதும் ஏற்கப்படும் போதும் ஈற்றோட்டில் நடைபெறும். d - தொகுப்பு மூலகங்களின் அயன்களின் இலத்திரனிலை அமைப்பு கருதப்படும்போது ஈற்றோட்டு s உபசக்தி மட்ட இலத்திரன்களே முதலில் அகற்றப்படும்.

e.g.

 $Cr_{24}^{3+} := 1s^2 - 2s^22p^6 - 3s^23p^63d^3$ $Fe_{26}^{2+} := 1s^2 - 2s^22p^6 - 3s^23p^63d^6$

N.B:-iv. La_{57}^{3+} :- $1s^2 2s^22p^6 3s^23p^63d^{10} 4s^24p^64d^{10} 5s^25p^65d^1 6s^2$

La₅₇ இல் 4f¹ இற்குப் பதில் 5d¹ அமையும். ஆனால் Ce₅₈ முதல் பின்பு 4f இல் நிரம்பும்.

இதேபோல் Ac₈₉ இல் 6d¹ அமையும். 5f ¹அல்ல.

இவை ஆவர்த்தனப் பாகுபாட்டில் முக்கியமானவை.

ஆவர்த்தனப் பாகுபாடு

மூலகங்களின் இயல்புகள் பற்றிய கற்றலில் அவற்றினை ஒப்பிட்டும் வேறுபடுத்தியும் கற்றல் இன்றியமையாதது.

இந்நிலையில் ஆரம்பகாலத்தில் உலோகம் / அல்லுலோகம் என்ற பாகுபாடு தொடங்கப் பட்டது. உலோகங்களில்,

- காரஉலோகங்கள் (ஒட்சைட்டுகள் வன்காரங் கள்)
- காரமண் உலோகங்கள் (ஒட்சைட்டுகள் கார மும், மண்ணைப்போல் எரியாத் தன்மை உடையன)
- 3. தாண்டல் உலோகங்கள்
- 4. அருமண் உலோகங்கள்

இவை தவிர நாணய உலோகங்கள் போன்ற பாகுபாடுகள் அமைந்தன.

அல்லுலோகங்களில் அலசன்கள் (உப்புக்களை உருவாக்குவன) போன்ற பாகுபாடுகளும் அமைந்தன.

ஆனால் இவை மூலிக இயல்புகளைக் கற்கப் போதுமானவை அன்று. குறிப்பிடத்தக்க முயற்சியில் ஈடுபட்டவர் இத்தாலிய விஞ்ஞானியான Döbereiner. இவரது முறை ''மூலக மும்மை'' எனப்படும்.

> ''இயல்பொப்பின் அடிப்படையில் மூலகங்களை மும்மூன்றாக வகைப்படுத்தலாம். மும்மையில் தொடர்பணுத்திணிவு மிகக்குறைந்த மூலகத்தினதும் மிகக்கூடிய மூலகத்தினதும் சராசரியாக நடுவிலுள்ள மூலகத்தின் தொடர்பணுத்திணிவு அமையும்''

1	CI 35.5	
	Br	
	79.9	_
	1	
1	126.9	

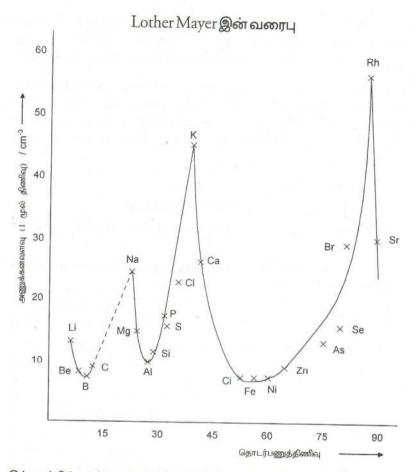
பின்னர், Newland என்பவர் இங்கிலாந்தில் அட்டமசுர விதி முறையை (Octaves) அறிமுகப்படுத்தினார்.

கா்நாடக சுரவரிசை	ஸ்	ſП	க	ы	U	5	நி	സ	
மேல்நாட்டு சங்கீத சுரவரிசை	Do	Ra	Me	Fa	So	La	Te	Do	
இங்கு எட்டாவதான சுரம்	திரும்ப அமைவ			ഖத്വ(^{பதுபோல்} ''தொடா்பணுத்				
திணிவு'' ஏறுவரிசையில்	மூலகங்களை			6	ஒழுங்குபடுத்தும்போது				
இயல்பொத்தவை எட்டாம் இட	_த்தில்	் தி	ரும்ப அ	அமை	யும்.				

Newland's Octaves

Br	Rb	Ce and La	Zr	Diand Mo	Ro and R	lu
Co and Ni	Cu	Zn	Y	In	As	Se
Cl	К	Ca	Cr	Ti	Mn	Fe
F .	Na	Mg	Al	Si	Р	S
Н	Li	Be	В	С	Ν	0

ஆனால் தொடா்பணுத்திணிவு அதிகரிக்கும்போது இது பொருத்தமற்று அமைந்தது. இதனால் இங்கிலாந்தின் விஞ்ஞான உயா்பீடத்தால்


நிராகரிக்கப்பட்டது. எனினும் மூலகங்களின் ஆவா்த்தன இயல்பை முதலில் முன்மொழிந்தவராக இவரே அமைவா். ஆயினும் இவரது முறைமை ஒரு தெளிவான ஆவா்த்தன அட்டவணையைத் தரவில்லை.

சமகாலத்து ருஷ்ய நாட்டவரான Mendeléev என்பவர் ''ஆவர்த்தன விதி'' முறையை அறிமுகப்படுத்தினார். இவரது முறையிலும் தொடர்பணுத் திணிவு ஏறுவரிசையியே பயன்பட்டது. ஆனால் இயல்பொத்த மூலகங்கள் ஒரே நிலைக்குத்து வரிசையில் அமையுமாறு கிடை வரிசைகள் ஒழுங் கமைக்கப்பட்டன.

- * நிலை வரிசைகள் கூட்டங்கள் எனப்பட்டன.
- * கிடை வரிசைகள் ஆவர்த்தனங்கள் எனப்பட்டன.
- * அறியப்படாத மூலகங்களிற்குப் பொருத்தமான இடங்கள் ஒதுக்கப் பட்டன.
- விழுமிய வாயுக்களுக்கு இடம் இருந்தது. ஆனாலும் வாயுக்கள் சரியாக இனங்காணப்படவில்லை.

	கூட்டம் 1	њіці II	கூட்டம் III	கட்டம் IV	κ≟∟ώ V	ən≟∟ıò VI	ani∟ib VII	கட்டம் VIII
ஆவர்த்தனம் 1	н							
ஆவர்த்தனம் 2	Li	Be	В	С	N	0	F	
ஆவர்த்தனம் 3	Na	Mg Al		Si	Si P		Cl	
ஆவர்த்தனம் 1	К Cu	Ca Zn	•	Ti	Va As	Cr Sc	Mn Br	Fe Co Ni
ஆவர்த்தனம் 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	•	Ru Rh Pd

ஐதரசனுக்குப் பொருத்தமான இடம் இல்லை. In போன்ற மூலகங்களிற்குத் திருத்தமான தொடர்பணுத்திணிவு காண உதவியது. Moseley என்பவர் அணுவெண்ணைத் துணியப் பயன்படுத்திய எண்ணக்கரு Z என்பது இங்கிருந்தே உருவானது. Z ஆனது பின்னடும் எண் ஆகும்.

இப்படத்தில் ஒத்தமூலகங்கள் வரைபின் ஒத்த நிலைகளில் அமைவது காணப்படுகிறது.

நவீனஆவர்த்தன அட்டவணையானது பின்வரும் அடிப்படையில் அமைகிறது

- அணுவெண் ஏறுவரிசையில் மூலகங்கள் ஒழுங்குபடுத்தப்படும்.
- பொது இலத்திரனிலையமைப்பு ஒத்த மூலகங்கள் ஒரே கூட்டத்தில் அதாவது நிலை வரிசையில் அமைக்கப்படும்.
- ஒரே ஈற்றோடுடைய மூலகங்கள் ஒரே ஆவர்த்தனத்தில் அதாவது கிடை வரிசையில் அமைக்கப்படும்.

ஆவாத்தன எண் ஆனது ஈற்றோட்டு எண் ஆகும்.

இதன் அடிப்படையில் அமைந்த ஆவர்த்தன அட்டவணையின் மிகநீண்ட வடிவம்

	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6	Period 7
- Croup	s-block Reactive metals	3 00	å t	× ç	Rb 37	Cs 55	μ.
= Group	ock ive	A B	Mg 12	88	5 8	Ba 56	a a
			\downarrow	Sc 21	≻ ĝ	La 57	Ac
						Ce 58	£ 8
						Pr 59	Pa
						PN 09	_ ⊃ 8
						61 6	dy 50
nne ll						Sm 1 62 6	Pu 4
]				Eu 0	Am C
	I -				f-block	64 J	Cm B
					~	15 C	Bk 0
						Dy H 86 8	98 9 98
			Trans			Ho E 61	Es Fr 98 10
			Transition metals			Er Tm 68 69	Fm M 100 10
			netals			Tm Yb 69 70	Md No 101 102
						6 LE	
			11	1 23	\$ \$	u Hf	Lr Ku 103 104
				3 <	A Nb	f Ta 2 73	u Ha
				24 24	5 Mo	74 V	m 0
				Mn 25	43	Re 75	
			d-block	26 26	Ru 44	0s 76	
			×	C0 27	4% 8	14	. 109
				28 28	Pd 46	¥ 8	
				Cu 29	Ag 47	Au 79	
			11	Zn 30	Cd 48	BH 88	
≣ @tonb	↓	e vo	AI 13	3 Ga	ln 49	E 18	*
≤ Group		υø	Si 14	Ge 32	Sn 50	Pb 82	700C-IT
< Group	P-block Non-metals	Z	a. 12	As 33	5 B	8 B	
< Group		0 ∞	s 8	Se Se	52	Po 84	4
duon2 ≧	- ² ³⁸	ய எ	5 5	ы З	- 8	At 85	

குறிப்பு: f ஒழுக்கில் இலத்திரன் நிரம்பும்போது ஒரு சிறு முரண்பாடு உண்டு.

உதாரணம்:

- La₅₇³⁺:- 1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ 4s²4p⁶4d¹⁰4f¹ 5s²5p⁶ 6s² ஆக அமைவதற்குப் பதில் 1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ 4s²4p⁶4d¹⁰ 5s²5p⁶5d¹ 6s² ஆக அமைந்துள்ளது. ஆனால்,
- Ce₅₈:- 1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ 4s²4p⁶4d¹⁰4f² 5s²5p⁶ 6s² ஆக அமையத் தொடங்கி பின் f இல் நிரம்பிச் செல்லும்.
- Lu₇₁:- $1s^2 2s^22p^6 3s^23p^63d^{10} 4s^24p^64d^{10}4f^{14} 5s^25p^65d^1 6s^2$ ஆகும்.

எனவே இவ்வேறுபாடு ஆவர்த்தன அட்டவணையிலும் வெளிப் படும்.

ஆவா்த்தன	அட்டவணையின்	அடிப்	அடிப்படையில்,							
	f ²⁻¹⁴ d ¹		d1-d10	p ¹ -p ⁶						

என்றவாறு கூட்டங்கள் அமைக்கப்படும். ஆகவே,

1s					
2s					2p
3s					3p
4s	<u>3d</u> ¹			<u>3d</u> ²⁻¹⁰	4p
5s	$\underline{4d}^1$			<u>4d</u> ²⁻¹⁰	5p
6s	<u>5d</u> ¹	<u>$4f^{2-14}$</u>	<u>5d</u> ¹	<u>5d</u> ²⁻¹⁰	6p
7s	<u>6d</u> ¹	$5f^{2-14}$	<u>6d</u> 1	<u>6d</u> ²⁻¹⁰	

N.B:- இங்கு 5d¹ இரு தடவைகளும் 6d¹ இரு தடவைகளும் அமைவதைக்காணலாம். f¹ இல் இலத்திரன் அமைவது இல்லை. எனவே ஆவர்த்தன அட்டவணையில் தொகுப்புக்களை அமைக்கும்போது f நிரம்பாத ஒபிற்றல் d¹அமைப்பு d தொகுப்பிலும் f நிரம்பிய d¹அமைப்பு f தொகுப்பிலும் வைக்கப்படும். இதனால் f தொகுப்பில் f²முதல் f¹⁴ வரையிலான 13 மூலகங் களும் f¹⁴d¹ என்ற 14 ஆவது மூலகமும் அமையும்.

சில ஆவர்த்தன அட்டவணைகளில் இதனைக் கருத்திற் கொள்ளாது அட்டவணைக்குப் புறம்பாக கீழே 15 மூலகங்களைக் கொண்ட கிடைவரிசைகள் இரண்டு 4f, 5f ஐக் கொண்டதாக அமைக்கப்படுகிறது.

குறிப்புகள்

- i. ஏழு ஆவர்த்தனங்களில்
 - முதலாவது இரண்டு மூலகங்களையுடைய மிகக் குறுகிய ஆவர்த்தனம்.
 - இரண்டாவது, மூன்றாவது ஒவ்வொன்றும் எட்டெட்டு மூலகங் களை உடைய குற்றாவர்த்தனங்களாகும்.
 - நான்காம், ஐந்தாம் ஆவர்த்தனங்கள் ஒவ்வொன்றும் பதினெட்டு மூலகங்களை உடைய நெட்டாவர்த்தனங்களாகும்.
 - 6^{ம்} ஆவர்த்தனம் 32 மூலகங்களையுடைய மிக நீண்ட ஆவர்த்தனம்.
 - 7^{வத} முற்றுப் பெறாத ஆவர்த்தனம் ஆகும்.

ii. s, p தொகுப்புகளில்,

ஈற்றோட்டு இலத்திரன் எண்ணிக்கை கூட்ட எண்ணாகும். விழுமிய வாயுவிற்கு VIII A கூட்டம் என வகுக்கப்படும்.

ஆகவே, s - தொகுப்பில் கூட்டம் IA, IIA மட்டும்

p-தொகுப்பில் கூட்டம் III A, IV A, VA, VIA, VII A, VIII A

(சிலசமயம் VIII A ஆனது 0) ஆக ஆறு கூட்டங்கள்

• கூட்ட எண்கள் ரோமன் எழுத்தில் குறிக்கப்படவேண்டும்.

iii. d தொகுப்பில்,

d¹ s² முதல் d⁵ s² வரை d இலத்திரனும் சேர்ந்து கூட்ட எண்ணாகும்.

ஆகவே கூட்டம் IIIA முதல் VIA வரை இதில் அமையும்.

d¹⁰s¹,d¹⁰s² அமைப்பில் ஈற்றோட்டு இலத்திரன்கள் மட்டும் கூட்ட எண் ஆகும்.

இவை கூட்டம் IB, IIB ஆகும்.

ஏனைய மூன்றும் d⁶s², d⁷s², d⁸s² மூன்றும் கூட்டம் VIIIB இல் ஒன்றாக வைக்கப்படும்.

iv. f தொகுப்பில்

கூட்டங்கள் வகுக்கப்படுவதில்லை. இவை பெருமளவில் இயல்பொத் தன.

v. ஆவர்த்தன அட்டவணையில் மிக நீண்ட வடிவத்தில்

a. தாக்குதிறன் கூடிய உலோகங்கள் (Reactive metals)

s - தொகுப்பு மூலகங்களைக் குறிக்கும்.

b. தாண்டல் உலோகங்கள் (Transition Elements)

இவை பற்றிய வரையறைகள் காலத்திற்குக்காலம் சிறு வேறுபாடு காட்டுகின்றன. பொதுவாக, d-தொகுப்பு மூலகங்கள் எனக் கூறு கின்றனர்.

தாண்டல் என்பது transit இன் மொழிபெயர்ப்பாகும். transit என்றால் இடைத்தங்கல் எனப் பொருள்படும்.

"Transit visa", "Transit flight" ஐ ஞாபகப்படுத்துக. தாக்குதிறன் கூடிய உலோகங்கட்கும் தாக்குதிறன் குறைந்த p-தொகுப்பு உலோகங் கட்கும் இடைத்தங்கல் ஆகும்.

எனினும்

''ஒரு d - தொகுப்பு மூலகம், ஆனால் அது உருவாக்கும் ஒரு உறுதியான நேரயனாவது d - ஒழுக்கு பகுதி நிரம்பிய இலத்திரனை கொண்டிருத்தல் வேண்டும்.''

எனத் தற்போது குறிப்பிடுகின்றனர்.

உதாரணமாக, Sc₂₁ ஆனது Sc³⁺...... 3s²3p⁶ ஐ மட்டும் உருவாக்குவ தாலும் Zn ஆனது Zn²⁺......1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ ஐ மட்டும் உருவாக்குவதாலும் தாண்டல் மூலகங்களன்று எனக் கருதப்படு கின்றது.

d - தொகுப்பு மூலகங்கள் ஆவா்த்தனம் வழியே பெருமளவு ஒற்றுமையைக் காட்டுகின்றன.

vi. f தொகுப்பு மூலகங்கள்

உட்தாண்டல் மூலகங்கள் / அருமண் உலோகங்கள் எனவும் குறிப்பி டப்படும்.

s - தொகுப்பு கூட்டம் II க்கும் p - தொகுப்பு கூட்டம் III க்கும் இடைப் பட்டவை d- தொகுப்பு மூலகங்கள்.

d - தொகுப்பு கூட்டம் III க்கும் d - தொகுப்பு கூட்டம் IV க்கும் இடைப் பட்டவை f- தொகுப்பு மூலகங்களாக அமைவதைக் காணலாம்.

vii.f தொகுப்பில்

4f இல் நிரம்புவன La₅₇ (d - தொகுப்பு கூட்டம் III) இன் பின் அமைவ தால் இவை 'Lanthanides' மூலகங்களாகும்.

இதேபோன்று 5f - தொடருக்குரியன Ac₈₉ இன் பின் அமைவதால் 'Actinides' மூலகங்கள் ஆகும்.

viii. குறைந்த உலோக இயல்புடையன (Poor metals)

குறிப்பாக p - தொகுப்பில் Sn, Pb, Bi - உள்ளிட்ட தாக்குதிறன் குறைந்த உலோகங்களைக் குறிக்கும்.

ix. ஐதரசனுக்கு ஆவர்த்தன அட்டவணையில் பொருத்தமான இடம் இல்லை. ஈலியம் p - தொகுப்பில் விழுமிய வாயுக்களுடன் கருதப் படும். ஆயினும் IUPAC அட்டவணையில் ஐதரசன் s - தொகுப்பில் கூட்டம் 1 இல் உண்டு.

x. ஒரு மூலகத்தின்

- ஆவர்த்தன எண் ≥ ஈற்றோட்டு இலத்திரன் எண்ணிக்கை எனின் அம்மூலகம் உலோகமாக அமையும்.
- ஆவர்த்தன எண் < ஈற்றோட்டு இலத்திரன் எண்ணிக்கை எனின் அம்மூலகம் அல்லுலோகம் எனப் பொதுவாக வரையறுக்கலாம். அல்லுலோகம் p - தொகுப்பில் மட்டும் உண்டு.

xi. உலோகப்போலிகள் (Metalloids) குறைகடத்திகள்

நன்மின்கடத்திகள் (கடத்தாறு > 10⁻³ohm⁻¹cm⁻⁴) உலோகங்களாகும். இவற்றின் மின் கடத்துதிறன் வெப்பநிலை கூட குறையும்.

அரிதிற்கடத்திகள் / கடத்திலிகள் அல்லுலோகங்களாகும். (கடத்தாறு < 10⁻¹⁰ohm⁻¹cm⁻⁴)

குறைகடத்திகள் இவற்றிற்கு இடைப்பட்டவை.

(10⁻³ க்கும் 10⁻⁵ohm⁻¹cm⁻⁴ க்கும் இடையில்) இவற்றை உலோகப் போலிகள் என்பர். இவற்றின் கடத்துதிறன் வெப்பநிலை கூடும்போது கூடும்.

N.B: அணுவெண் 101க்கு மேல் மூலகங்கட்கு,

IUPAC பெயர்கள் பயன்படும். இது அடிப்படை இரசாயன நூல்களில் உண்டு.

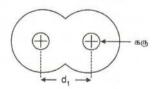
e.g.: Z = 101, Unu un-nil-unium Z = 150, Upn un-pent-nilium

ஆவர்த்தன இயல்புகள்

மூலகங்களின் அணுவெண் சாா்பான ஆவா்த்தன இயல்புகள் ஆறு ஆகும். அவை முதன்மை இறங்குவாிசையில் பின்வருமாறு வைக்கப்படும்.

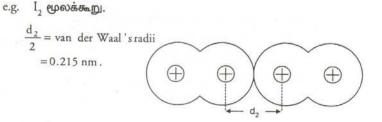
- i. அணுவாரை
- ii. அயனாக்கற்சக்தி
- iii. மின்னெதிர்த்தன்மை (Electro negativity)
- iv. இலத்திரனாட்டம் (Electron affinity)
- v. மூலா் அணுக்கனவளவு
- vi. உருகுநிலை, கொதிநிலை, மறைவெப்பம்

அணுவாரை


'ஒரு மூலக அணுவொன்றின் கருவிற்கும் இறுதி ஓட்டு இலத்திரன் முகிலிற்கும் இடையிலான தூரம் அணுவாரையாகும்.'

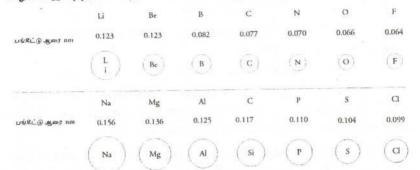
- நடைமுறையில் தனி அணுவாரையினை ஒருபோதும் அளக்க முடியாது. காரணம் கருவை X - கதிர் கோணல் முறையினால் இனம் கண்டாலும் ஈற்றோட்டு இலத்திரன் முகிலை இனங் காண்பது சாத்திய மல்ல. மேலும் இலத்திரன் அசையும் பாதை திட்டமான வட்டப்பாதை அல்ல.
 - 1. பங்கீட்டு ஆரை

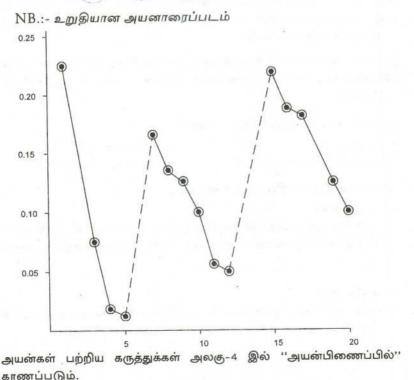
L


e.g. I, மூலக்கூறு.

பங்கீட்டு ஆரை =
$$\frac{d_1}{2}$$
 = 0.128 nm

ஒரு மூலக்கூறின் கரு அச்சுவழியே கருக்களின் இடைத்தூரத்தின் அரைப்பங்கு பங்கீட்டு ஆரையாகும்.


2. வந்தர்வாலுக ஆரை (Van der Waal's radii)



3. 2.Conta ஆரை (Metallic radii)

உலோகமொன்றின் அடுத்துள்ள கருக்களில் இடைத்தூரத்தின் அரைப் பங்காகும்.

பொதுவாக பங்கீட்டு ஆரையே கருதப்படும். ஆவர்த்தனம் வழியே கருவேற்றம் கூட கருக்கவர்ச்சி கூடுவதால் ஆரை குறையும். கூட்டத்தின் வழியே இலத்திரன் சக்திமட்டங்கள் கூடுவதால் அணுவாரை கூடும்.

அயனாக்கசக்தி (Ionization Energy)

''வாயு அல்லது ஆவிநிலையிலுள்ள மூலகமொன்றின் ஒரு மூல் அணுக்கள் ஒவ்வொன்றிலிருந்தும் ஈற்றோட்டின் ஒவ்வோர் இலத்திரனை, நியம நிபந்தனையில் முடிவிலிக்கு அகற்றத் தேவையான சக்தி நியம முதலாம் அயனாக்கச்சக்தி எனப் படும்.''

 $M(g) \rightarrow M^{*}(g) + e \Delta H^{\Theta} = +I_{1} kJ mol^{-1}$

இதேபோல் 2^{ம்}, 3^{ம்}...... தொடரயனாக்கச் சக்திகளை வரையறுக்கலாம். பொதுவாக n^{ம்} அயனாக்கச்சக்தி

 $M^{(n-1)+}(g) \longrightarrow M^{n+}(g) + e \Delta H^{\Theta} = +I_n kJ mol^{-1}$

ஒரு மூலகத்தின் தொடரயனாக்கசக்திகள் எப்போதும் ஏறுவரிசையில் அமையும். ஏனெனில், ஒவ்வோர் இலத்திரனை அகற்றும்போதும் ''பயன் படு கருவேற்றம்'' (Effective nuclear charge) கூடுவதாகும்.

ஒரு 100 W மின்குமிழ் மீது சிறிய தூசி படிந்துள்ளது. எனின், அக்குமிழின் வலு 100 W இலும் குறையுமா? இல்லை. ஆனால் குமிழின் ''பயன்படு வலு'' அதாவது எமக்குக் கிடைக்கும் ஒளி குறையும். தூசினை அகற்ற அகற்ற பயன்படு ஒளி கூடும்.

இதுபோலவே ஒவ்வோர் இலத்திரனை அகற்றும்போதும் கருவைச் சுற்றிய இலத்திரனின் மறைப்பு குறைவதால் கருவின் ''பயன்படு கருவேற்றம்'' கூடுகிறது.

அயனாக்கச்சக்தி தங்கியுள்ள காரணிகள் எவை?

a.	அணுவாரை	b. கருவேற்றம்	
c	Davierate	1 0 0 1 0	

c. இலத்திரனிலையமைப்பு d. திரையிடல் விளைவு

அயனாக்கசக்தி தங்கியுள்ள காரணிகள்

a. அனுவாரை

ஒரே தொகுதி மூலகங்களின் அணுவெண் அதிகரிப்புடன் அணுவாரை கூடுவதால் கருக்கவா்ச்சி குறையும். எனவே அயனாக்கற்சக்தி குறை யும்.

b. கருவேற்றம்

ஒரே ஆவா்த்தன மூலகங்களில் அணுவெண், அதாவது கருவேற்றம் அதிகரிக்க கருக்கவா்ச்சி கூடுவதால் அயனாக்கற்சக்தி கூடும்.

c. இலத்திரன் நிலையமைப்பு

s² ^[], p³ <u>[] 1</u>] அமைப்புகள் உறுதியான இலத்திரனிலை அமைப்பு களாகும். இதனால் II A^{ம்} கூட்டத்தின் (s² அமைப்பு) முதலாம் அயனாக்க சக்தி III A^{ம்} கூட்டத்தின் (s²p¹) இலும் கூடியதாகும்.

இதேபோன்று கூட்டம் V A இன் முதலாம் அயனாக்க சக்தி (s²p³ அமைப்பு) கூட்டம் VI A இன் முதலாம் அயனாக்கசக்தியிலும் (s²p⁴ இலும்) கூடியது.

விழுமிய வாயுக்களில் s²p⁶ []] []] []] []] []] அமைப்பு மிக உறுதியானது. எனவே, கூட்டம் VIII A இன் முதலாம் அயனாக்கசக்தி மிகக் கூட.

எனினும் தாண்டல் ஆவர்த்தனங்களில் கூட்டம் II A ஆனது s² இலத்திரன் அமைப்புடையது. III B ஆனது d¹s² அமைப்புடையது. ஆகவே II A இலும் பார்க்க அடுத்துள்ள III B இற்கு கருவேற்றம் கூடுவதால் முதலாம் அயனாக்க சக்தி கூட.


عانة.
$$Ca_{20}$$
 جستانة IIA $\Delta H_{I_1}^{\Theta} = +590 \text{ kJ mol}^{-1}$
 Sc_{21} جستانة IIIB $\Delta H_{I_2}^{\Theta} = +632 \text{ kJ mol}^{-1}$

இங்கு Ca, Sc இரண்டும் ஈற்றோட்டில் 4s² அமைப்புடையன. இந் நிலையில் Ca இலும் பார்க்க கருவேற்றம் கூட இருப்பதால் Sc இற்குக் கூடிய முதலாம் அயனாக்கற்சக்தியாகும்.

ii. ஒரு மூலகத்தின் தொடர் அயனாக்கற்சக்திகளை கருதும்போது ஈற்றோட்டு இலத்திரன்கள் அகற்றப்பட்ட பின் ஈற்றயலோட்டில் அகற்றப்படும் நிலையில் அசாதாரண உயர்வு ஏற்படும்.

பொதுவாக n^{ம்} கூட்ட மூலகம் எனின் (ஈற்றோட்டில் n இலத்திரன் கள்) (n+1)^{ம்} அயனாக்கற்சக்தி மிக உயர்வாகும்.

விதிவிலக்கு: தாண்டல் மூலகங்களில் VIIIB, IB, IIB கூட்டங் களில் ஏற்படும்.

மின்னெதிர்த்தன்மைகள் (Electro negatives)

ஒரு மூலகஅணு பிணைப்பு இலத்திரன் சோடியைக் கவரும் சார்புத் திறன் (relative tendency) அதன் மின்னெதிர்த்தன்மையாகும்.

பௌலிங் (Pauling) என்பவரால் இதனை அளக்கப் பயன்பட்டமுறை பௌலியின் குணகம் எனத் தரப்படும்.

விழுமிய வாயுக்கட்கு மின்னெதிர்த்தன்மை கருதப்படுவதில்லை. தொடர்பாகக் கருதப்படுவதால் அலகுகள் இல்லை.

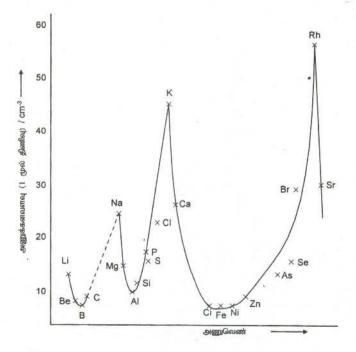
கூட்டத்தின் வழியே அணுவாரை கூடுவதால் கருக்கவர்ச்சி குறையும். எனவே மின்னெதிர்த்தன்மை குறையும். ஆவர்த்தனம் வழியே கூடும்.

					н	He											
Li	Be				2.1							в	С	Ν	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	
Na	Ma											AI	Si	Р	S	CI	Ar
0.9	1.2												1.8	2.1	2.5	3.0	2078
к	Са	Sc	Ti	Va	Cr	Mo	Fe	Co	Ni	Cu	7n	Ga	Ge	As	Sc	Br	Kr
0.8	1.0	1.3			1.6			1.8	1.8		1.6			2.0	2.4		KI
0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1,0	1.0	1.0	1.0	1.0	2.0		2.0	
Rb	Sr	Υ	Zr	Nb	Мо	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
0,8	1.0	1.2	1.4	1.6	1,8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1,9	2.1	2.5	
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Рb	Bi	Po	At	Rn
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	
Fr	Ra	Ac															
0.7	0.9	1.1															
		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
		1.1	1.1	1.2	1.2	1.2	1.1	1.1	1.2	1.1	1.2	1.2	1.2	1.1	1.2		
		Th	Pa	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
		1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3			

இலத்திரனாட்டம் (Electron affinity)

வாயுநிலையில் மூலகமொன்றின் தனித்த அணுவிற்கு ஓர் இலத்திர னைச் சேர்க்கும்போது வெளிப்படும் சக்தி முதலாம் இலத்திரனாட்டம் ஆகும்.

 $X(g) + e \longrightarrow X^{-}(g) \qquad \Delta H_{E_{1}}^{\Theta} = -ve$

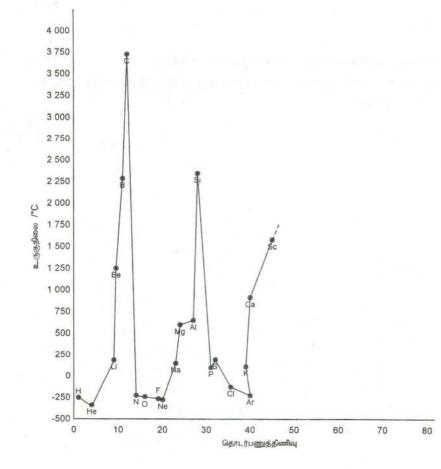

ஆனால், ஏனைய தொடர் இலத்திரனாட்ட சக்திகள் உறிஞ்சப்படும் சக்திகளாகும். ஏனெனில் ஏற்கனவே மறைஏற்றம் பெற்றநிலையில் மேலும் ஒரு இலத்திரனைச் சேர்க்கும்போது சக்தி வழங்கவேண்டும்.

 $X^{(n-1)^-}(g) + e \longrightarrow X^{n^-}(g) \qquad \Delta H^{\Theta}_{E_n} = +ve$

	சில	மூலகங்க	ளின் இல	த் <mark>தி</mark> ரனா	ر kJ	mot ¹)	
	Н						
	-7,2						
Li	22	В	С	N	0		F
-52	ж	-29	-120	-3	-142	0.	-348
Na			Si	Р	S	+844	Cl
-41			-180	-70	-200	S-	-364
						+532	Br
							-342
						-	I
							-314

மூலர் அணுக்கனவளவு (Molaratomicvolume)

திண்மநிலையில் ஒரு மூலகம் ஒன்றின் ஒரு மூல் அணுக்கள் அடைக்கும் கனவளவாகும்.


கீழே தரப்பட்ட இவ்வரைபில்,

- 1. ஒத்த கூட்டங்கள் ஒரே நிலையில் உள்ளன.
- முதலாம் கூட்ட மூலகங்கள் வரைபின் உச்சிகளிலும் மூன்றாம் கூட்டம் வரைபின் தாழ் புள்ளிகளிலும் அமையும்.

உருகுநிலை, கொதிநிலை, மறைவெப்பங்கள்

இவையும் அணுவெண் தொடர்பாக ஆவர்த்தனவியல்புடையன. இவற்றின் மாற்றத்தைக் கீழ்க்கண்ட வரைபில் உருகுநிலைக்குக் காண லாம். இதே போன்று, கொதிநிலை, மறைவெப்ப வரைபுகளும் அமையும்.

இவற்றின் விளக்கங்கள் பிணைப்புகட்கு உரியன.

பொதுவான பௌதிக நடத்தை மாற்றங்கள்

	Na	Mg	Al	Si	Р	S	Cl	Ar
				(வெண்)	6		
உருகுநிலை /°C	98	650	660	1410	44	119	-101	-189
உ ருகலின் வெப்பம் /kJ mole ⁻¹	2.60	8.95	10.75	46.4	0.63	1.41	3.20	1.18
கொதிநிலை /°C	890	1120	2450	2680	280	445	-34	-186
ஆவியாதல் வெப்பம் /kJ mole ⁻¹	89.9	128.7	293.7	376.7	12.4	9.6	10.2	6.5
அடர்த்தி */g cm ³ 25°C இல்	0.97	1.74	2.70	2.33	1.82	1.07	1.57	1.40
மூலர்கனவளவு /cm ³ mole ⁻¹	23.7	14.6	10.0	12.1	16.9	15.6	22.8	28.5
<mark>அணுக்கடத்தாறு</mark> × 1000 /ohm ⁻¹ cm ⁻³	10	16	38	4	10 ⁻¹⁶	10 ⁻²²	-	-
வெப்பக் கடத்தாறு /J cm ⁻¹ s ⁻¹ K ⁻¹ (25°C இல்)	1.34	1.6	2.1	0.84		0.00029	0.0008	0.00017

	Li	Be	В	С	С	Ν	0	F	Ne
				(காரீயம்))(வைர	ui)			
உருகுநிலை /°C	180	1280	2030	3700	3550	-210	-219	-220	-250
உருகலின் வெப்பம் /kJ mole ⁻¹	3.0	11.7	22.2	•	-	0.36	0.22	0.26	0.33
கொதிநிலை /°C	1330	2480	3930	பதங்கமாதல்	4830	-200	-180	-190	-245
ஆவியாதல் வெப்பம் /kJ mole ⁻¹	135	295	539	717	-	2.8	3.4	3.3	1.8
அடர்த்தி */g cm ³ 25°C இல்	0.53	1.85	2.55	2.25	3.53	0.81	1.14	1.11	1.21
மூலர்கனவளவு /cm ³ mole ⁻¹	13.1	4.9	4.6	5.3	3.4	17.3	14.0	17.1	16.7
அணுக்கடத்தாறு × 1000 /ohm ⁻¹ cm ⁻³	8	51	.*	0.14			-		
வெப்பக் கடத்தாறு 0.00042 /J cm ⁻¹ s ⁻¹ K ⁻¹ (25	0.71 °C இல்	1.6 v)	0.01	0.24	•	0.00025	0.00025	5	

அயனிக் பிணைப்பு Ionic Bond

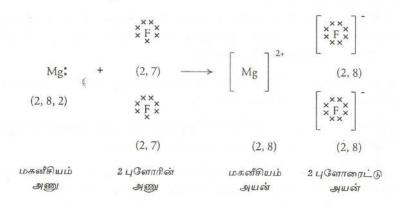
அயன்

ஒரு மின்னேரியல்பு கூடிய மூலகம் அதன் வலுவளவு இலத்திரன் / இலத்திரன்களை முற்றாக இழந்து அதற்கு முன்னைய ஆவர்த் தனத்தில் உள்ள விழுமியவாயு அமைப்பைப் பெற்றுக்கொள்ளும். இது Kossel இனதும் Lewis இனதும் கொள்கையாகும்.

e.g:- K - $1s^2$ $2s^22p^6$ $3s^23p^6$ $4s^1$ K⁺ - $1s^2$ $2s^22p^6$ $3s^23p^6$

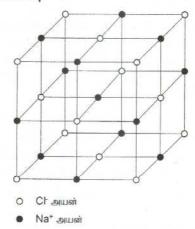
இங்கு அணுவாரையைவிட அயனாரை குறையும். எனினும் மிதமான மின்னேரியல் புடைய மூலகங்கள், குறிப்பாக d-தொகுப்பு மூலகங்கள் விழுமிய வாயு விதிக்கு அமை யாத கற்றயன்களை உருவாக்குவதுண்டு. e.g:- Zn - $1s^2$ $2s^22p^6$ $3s^23p^63d^{10}$ $4s^2$ Zn²⁺ - $1s^2$ $2s^22p^6$ $3s^23p^63d^{10}$

மின்னெதிரியல்புடைய மூலக அணுக்கள் இலத்திரனை முற்றாக ஏற்று இறுதி ஓட்டில் விழுமியவாயு அமைப்பைத் திருப்தி செய்யும்.


e.g:- Cl - $1s^2$ $2s^22p^6$ $3s^23p^5$ Cl⁻ - $1s^2$ $2s^22p^6$ $3s^23p^6$

இங்கு ஆரை கூடும். ஏனெனில் இலத்திரனை சேர்க்கும்போது இடைத் தள்ளுகை கூடுவதாகும். ஆனால் அனயன் எப்போதும் விழுமிய அமைப்பைத் திருப்தி செய்யும்.

ஒரு மின்னெதிரியல்புடைய மூலக அணு வலுவளவு இலத்திரனை / இலத்திரன்களை முற்றாக மின்னெதிரியல்பு கூடிய மூலகஅணுவிற்கு வழங்குவதன் மூலம் அவை இரண்டும் முறையே நேர், மறை ஏற்றமுள்ள அயன்களாகும். இவ்வயன்களுக்கு இடைப்பட்ட வலிமையான இடைக் கவர்ச்சி அயன்பிணைப்பு ஆகும்.


N.B. பிணைப்புகளில் மூலகங்களின் வெளியோட்டு, அதாவது வலுவளவோட்டு இலத்திரன்கள் மட்டும் சுட்டிக் காட்டப்படும். சோடி இலத்திரன்கள், தனி இலத்திரன்கள் தெளிவாகக் காட்டப்படவேண்டும். இது லூயியின் கட்டமைப்பு எனப்படும்.

MgF, இன் லூமியின் கட்டமைப்பு

அயன் சேர்வையின் இயல்புகள்

- 1. கடினத்தன்மையும், நொருங்கும் இயல்பும் உடையன
- 2. இராட்சத சாலக அமைப்புகள்
- உயர் உருகுநிலை, கொதிநிலையுடையன
- உருகுநிலையில் நன் மின்கடத்திகள். ஆனால் திண்மநிலையில் கடத்திலிகள்
- 5. முனைவுள்ள கரைப்பான்களில் கரையக்கூடியன (உதாரணம் :- நீரில்)

NaCl Qoir si Londiu

பங்கீட்டுப்பிணைப்பு

மின்னெதிரியல்புடைய ஒரே அல்லது வெவ்வேறு மூலக அணுக்கள் தமக்கிடையே ஒரு சோடி இலத்திரன்களை பங்கிடுவதன் மூலம் ஒரு பங்கீட்டுப் பிணைப்பை உருவாக்கும்.

ஒரு சாதாரண பங்கீட்டுப் பிணைப்பில் ஒவ்வொரு அணுவும் ஒவ்வோர் இலத்திரனைப் பங்களிப்புச் செய்யும்.

இங்கு பங்கிடப்பட்ட பிணைப்புச் சோடியானது இரு அணுக்களினதும் வெளி ஓட்டு இலத்திரன் கட்டமைப்பை நிரப்ப உதவும்.

பங்கீட்டுப் பிணைப்புகளே அல்லுலோக மூலக்கூற்று கட்டமைப்புக்களி லும் அல்லுலோக சேர்க்கை மூலக்கூறுகளிலும் காணப்படுகின்றன.

இரு அணுக்களிடையே ஒன்றுக்கு மேற்பட்ட இலத்திரன்கள் பங்கிடப்பட் டால் அதன்மூலம் இரட்டை / மும்மைப் பிணைப்புகள் உருவாகமுடியும். ஒரு மூலக அணுவிலுள்ள சோடியற்ற இலத்திரன்கள் பங்கீட்டின்மூலம் சோடி சேர்கின்றன. சில சமயம் பங்கீட்டில் ஈடுபடுவதற்காக சோடி இலத்திரன்கள் சக்தியைப் பெற்று அருட்டப்பட்ட நிலையை அடைந்து (promoted) சோடியற்ற அமைப்பைப் பெற்று பங்கீட்டில் ஈடுபடுகின்றன.

ஒன்றுக்கு மேற்பட்ட இலத்திரன்கள் இரு அணுக்களிடையே பங்கிடப்படு வதால் பன்மைப் பிணைப்புகள் ஏற்படுகின்றன.

வலுவளவோட்டின் இலத்திரன் கட்டமைப்புகள் புள்ளி – புள்ளடி முறை களில் காட்டப்படும்போது பங்கிடப்பட்ட சோடிகள் புள்ளி – புள்ளடியாக வும், தனிச்சோடி (பங்கிடப்படாதன) புள்ளி – புள்ளி அல்லது புள்ளி – புள்ளடியாகவும் குறிக்கப்படும். இவை Lewis கட்டமைப்புகளாகும். அல்லது கோட்டு வடிவமாகவும் குறிப்பிடப்படும். ஆனால் இரண்டையும் ஒன்றாக பயன்படுத்த வேண்டாம்.

ஒற்றைப் பிணைப்புகள்

- 1. H_2 $(\overset{\times}{H})(\overset{\otimes}{H}) \rightarrow (\overset{\times}{H}_{\circ}^{\circ}H)H-H$ 2. HCl $(\overset{\times}{H})(\overset{\otimes}{Cl})_{\circ\circ\circ} \rightarrow (\overset{\otimes}{H}_{\circ\circ\circ}^{\circ\circ\circ})H-Cl$
- CH₄ தரைநிலையில் காபன் 1 1 1 சாடியற்ற இரு இலத்திரன் மட்டும் _{2s²} 2p²
 அருட்டியநிலையில் காபன் 1 1 1 1 நான்கு சோடியற்ற நிலை _{2s¹} 2p³
 இதுவே பங்கீட்டில் ஈடுபடுத்தப்படும்.

 $4 \begin{pmatrix} X \\ H \\ H \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ C \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} H \\ H \\ 0 \\ H \end{pmatrix}$

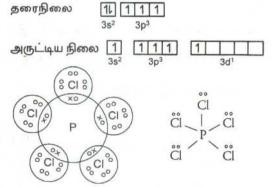
பன்மைப் பிணைப்புகள்

1.
$$N_2$$

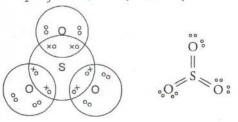
2. CO_2

மைய அணுவில் இலத்திரன் பற்றாக்குறையுடைய பங்கீடுகளும் உண்டு. அதாவது ''அட்டகவிதி'' திருப்தி செய்யப்பட போதிய இலத்திரன்களைப் பங்கிட முடியாத நிலையும் உண்டு.

தரைநிலை


அருட்டப்பட்ட நிலை

Be இல் இரு இலத்திரன்கள் மட்டும் பங்கிட உண்டு.


இந்நிலையில் Be இற்கு இலத்திரன் பற்றாக்குறை நிலையுண்டு. இதே போன்று BF₄, AlCl₄ என்பனவும் அமையும்.

 மையஅணுக்கள் வெற்றிட ஒபிற்றலுக்கு இலத்திரனை அருட்டிய நிலை மூலம் அட்டகத்திற்கு மீறிய இலத்திரன் அமைப்பைப் பெறுவதும் உண்டு.

P

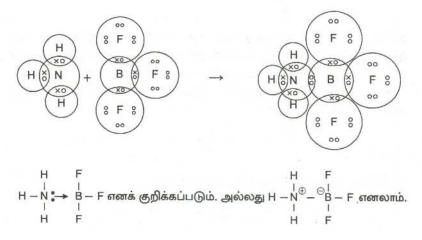
இதேபோன்று SF₆, IF₇, SO₂SO₃ போன்றவையும் அமையும்.

எனினும் வெற்றிட ஒழுங்கு இன்மையால் N, O, F போன்ற அணுக்கள் அட்டக விதியை மீற முடிவதில்லை. அதாவது NCl₅, OF₆, FI₇ போன்றன ஏற்படமுடியாது.

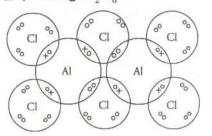
N
$$11^{\circ} 11^{\circ} 11^{\circ}$$

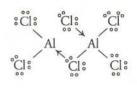
 $2s^2 2p^3$

இங்கு 2ம் ஓட்டில் வேறு வெற்றிட ஒபிற்றல்கள் இல்லை. இதனால் அருட்டிய நிலை சாத்தியமல்ல.


ஈதற்பிணைப்பு (Dative bond or Co-ordination bond)

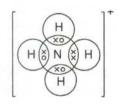
ஈதற்பிணைப்பும் ஒருவகைப் பங்கீட்டுப் பிணைப்பே. ஆயினும் பிணைப்பிலீடுபடும் சோடி இலத்திரன்கள் ஒரு அணுவினாலாயே வழங்கப்படும்.

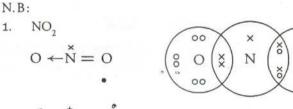

இங்கு 'இலத்திரன் வழங்கி' (donor) அணு நேர்ஏற்றத்தையும், 'இலத்திரன் வாங்கி' (acceptor) அணு மறை ஏற்றத்தையும் பெறுவதாகக் கொள்வது உண்டு.


உ-ம்:- H₃N: உம் BF₃ உம் சிக்கற்சேர்வையாக்கல்.

BF₃ இல் B இற்கு அட்டகத்தைப் பூர்த்திசெய்வதற்கு :NH₃ இன் 'N' அணு தனது தனிச்சோடியை ஈதற்பிணைப்பினால் வழங்கு கின்றது.

ஈதற்பிணைப்புச்சோடி இலத்திரன் ஒரே குறியைக் கொண்டிருத் தல் காணப்படும். இதே போன்று Al, Cl


00


°°

0

$$HN_4^+$$

H₃N ⇒ H⁺

or $\tilde{O} - \tilde{N} = O$

இங்கு N அணு அட்டகத்திற்கு மீறி அமைய முடியாது என்பதே இவ்வாறு அமைவதற்குக் காரணம். இதனை 'ஓரிடப்படாத இலத்திரன் கட்டமைப்பு', அதாவது பரிவமைப்பால் பின்வருமாறும் எழுதலாம். அதாவது ஒட்சிசன் அணுக்கள் இரண்டிற்கும் இடையே சமச்சீர்த் தன்மை பேணப்படும்.

$$\overset{\times}{}_{0} \overset{\times}{}_{-\frac{N}{2}} \overset{\times}{}_{0} \overset{\times}{}_{-\frac{N}{2}} \overset{\times$$

இதேபோன்று O₃ மூலக்கூறும் எழுதப்படும்.

3. CO இல் பின்வருமாறு சிக்கல்நிலை உண்டு.

ΘC

N,O

4

 $N \equiv \overset{\oplus}{N} - \overset{\ominus}{O} \leftrightarrow \overset{\Theta}{N} = \overset{\Theta}{N} = O$

NH₄⁺Cl⁻ இங்கு உலோகங்கள் பங்குபற்றாத அயன் பிணைப்பும் காணப்படுகின்றது.

$$\begin{bmatrix} H \\ \times 0 \\ H \\ \times 0 \\ H \\ \times 0 \\ H \end{bmatrix}^{+} \begin{bmatrix} 0 \\ 0 \\ \times 0 \\ 0 \\ 0 \end{bmatrix}$$

எளிய மூலக்கூறுகளின் வடிவங்கள்

ஒரு மூலக்கூறின் மையஅணுவிலுள்ள இலத்திரன் சோடிகள் தமக்கு இடையே இடைத்தள்ளுகையை குறைக்கப் பொருத்தமான கேத்திரகணித வடிவத்தைப் பெறமுயலும்.

மைய அணுவில் பிணைப்புச்சோடி (b.p.), தனிச்சோடி ($\ell.p$) இலத்திரன்கள் காணப்படும். இவை தமக்கிடையே தள்ளுகையை பின்வரும் ஏறுவரிசை யில் கொண்டிருக்கும்.

$$b.p-b.P < b.p - \ell.p < \ell.p - \ell.p$$

தனிச்சோடியின் தள்ளுகை முக்கியமானது. ஆனால் கேத்திரகணித வடிவம் கருதப்படும்போது பிணைந்துள்ள அணுக்கள் மட்டுமே வடிவத் தைத் தருகின்றன.

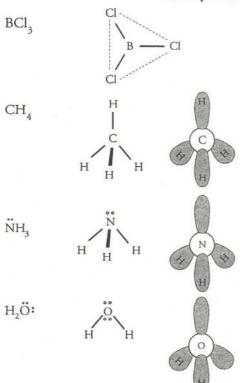
N.B: அட்டமவிதிக்குப் புறநடை அல்லது பற்றாக்குறை ஏற்படுவது எளிய மூலக்கூறுகளில் மையஅணுவில் மட்டும் காணப்படும். மைய அணுவுடன் பிணைப்பில் ஈடுபடும் அணுக்கள் தமது வலுவளவு ஓட்டில் அட்டகத்தினைப் பூர்த்தி செய்யும்.

எனவே பின்வரும் எளிய வழிமுறையினைக் கையாளு வதன் மூலம் மையவணுடன் பிணைந்த மறைமையங் களின் எண்ணிக்கையை அறியமுடியும்.

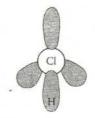
- மையவணுவினதும், அதனுடன் பிணையும் அணுக் களினதும், மொத்த வலுவளவு இலத்திரன் எண்ணிக்கையை அறிதல்.
- மறைஏற்றமெனில் அவ் எண்ணிக்கையைக் கூட்டு தல்.
- iii. நேர் ஏற்றம் எனின் அவ்வெண்ணிக்கையைக் கழித் தல்.
- iv. மொத்த இலத்திரன் எண்ணிக்கையை எட்டால் வகுத்தல்.
- ஈவு பிணைப்புகளின் எண்ணிக்கையைத் தரும்.
- vi. மீதியை இரண்டால் வகுத்தால் தனிச்சோடி இலத்திரன் எண்ணிக்கையைத் தரும்.

vii. 'H' இற்கு சமவலு இலத்திரன் 7 என்க.

e.g:- SO32-

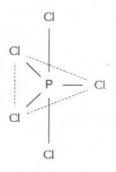

S இன் வலுவளவு இலத்திரன்	=	6
3 × 'O' இன் வலுவளவு இலத்திரன்	=	6
மறை ஏற்ற மூலம்	=	2
	=	8 26
		3-2

ஃ 3 பிணைந்த அணுக்கள் +1 தனிச்சோடி இலத்திரன்


ஃ தள்ளுகை நிலை நான்முகி

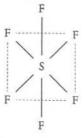
வடிவம் (தனிச்சோடியை விடுத்து) – முக்கோண கூம்பகம் பின்வரும் அட்டவணை இதற்கு உதவும்.

மையஅணுவை சூழவுள்ள மறை மையகோணம் எண்ணிக்கை (தனிச்சோடியும்)	மறைமைய இடை தள்ளுகை நிலை	மறைமையம் தொடர்பான நிலை	உதாரணம்	வடிவம்	தனிச்சோடி எண்ணிக்கை
2	180°	நேர்கோடு	BeCl ₂ , CO ₂	நேர்கோடு	0
3	120°	தளமுக்கோணம்	BeCl ₂ , CO ₂	நேர்கோடு	0
3	120°	தளமுக்கோணம்	SO ₂ , NO ₂	கோணல்	1
4	109.5°	நான்முகி	CH4, NH4*BH	நான்முகி	0
4	109.5°	நான்முகி	NH ₃ , H ₃ O [*] ,PCl ₃	பிரமிட்	1
4	109.5°	நான்முகி	H ₂ O, H ₂ S	கோணல்	2
5	90°, 120°	முக்கோண இருகூம்பகம்	PCI ₅	முக்கோண இருகூம்பகம்	0
6	90°	எண்முகி	SF ₆ , PCI ₆	எண்முகி	0
7	72°, 90°	ஐங்கோண இருகூம்பகம்	IF ₇	ஐங்கோண இருகூம்பகம்	0


சில வடிவங்கள்

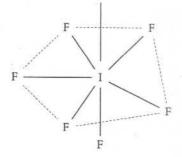
HÇI:

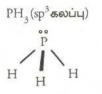
PCl₅


: Ĉl:

Н

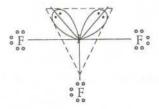
≈₀


o s

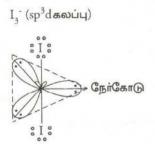


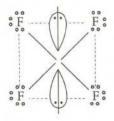
F

தனிச் சோடிகள் தள்ளுகை கூடியவை. எனவே அவற்றின் இடைக் கோணம் கூடுதலாக அமைய வேண்டும்.

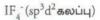


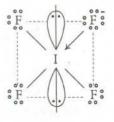
NO₂⁺ (sp²கலப்பு)


 $\circ \circ \circ = N^{\dagger} = O^{\circ} \circ$

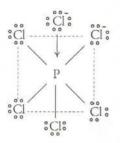

IF₃ (sp³d கலப்பு)

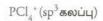
T வடிவம் (சிறிது வளைந்த)


XeF₄ (sp³d²கலப்பு)

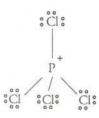


SCl₄ (sp³dகலப்பு) °Cl °Cl °Cl °Cl °Cl


π வடிவம் அல்லது See-saw வடிவம்


தளச்சதுரம்

எண்முகி



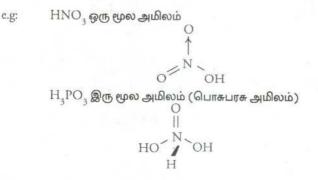
NO₃⁻ (sp²கலப்பு)

தளமுக்கோணம்

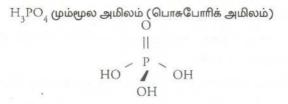
நான்முகி

SO₄²⁻ (sp³கலப்பு)

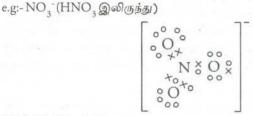
நான்முகி



அமிலங்களின் மூலஎண் (Base no of Acids)


ஒரு மூலக்கூறு அமிலம் அயனாக்கத்தில் வழங்கக்கூடிய புரோத்தன் (H⁺⁾ எண்ணிக்கை அதன் மூல எண்ணாகும்.

ஒட்சியமிலங்களைப் பொறுத்தவரை அதிலுள்ள "O - H" பிணைப்புகள் மூல எண்ணைத் தரும்.


H₃PO, ஒரு மூல அமிலம் (உப பொசுபரசு அமிலம்)

ஒட்சி அனயன்கள்

இவை அமிலங்களின் அயனாக்கத்தால் உருவாவன.

SO₄²⁻ (H₂SO₄ இலிருந்து)

	ox	1
	° O °	
00	×° × oo	
000	ôsô Oô	
	x o x o r	
	XO	
	o O o	

N.B: மூலக்கூற்று ஒபிற்றல் கொள்கை

அணு A யும் அணு B யும் அருகருகே வரும்போது நான்கு வகை நிகழ்வுகள் ஏற்படுகின்றன.

A யில் கருவிற்கும் B யில் இலத்திரன் முகிலிற்கும் இடையில் கவர்ச்சி.

B யில் கருவிற்கும் A யில் இலத்திரன் முகிலிற்கும் இடையில் கவர்ச்சி. இவற்றிற்கு முரணாக,

iii. A, B யில் இலத்திரன் முகில்களிடையே தள்ளுகை.

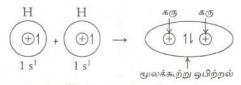
iv. A, B யில் கருக்களிடையே தள்ளுகை.

இந்நிலைமைகளின் கீழ் A யின் அணு ஒபிற்றலும், B யின் அணு ஒபிற்றலும் ஒன்றுடன் ஒன்று மேற்பொருந்தி மூலக்கூற்று ஒபிற்றலை ஏற்படுத்திப் பிணையும்.

ஆயினும், சோடியாக்கப்படாத இலத்திரன் கொண்ட அணு ஒபிற்றல் களே பிணையும்.

சோடியாக்கப்பட்ட அணு ஒபிற்றல்கள் ஒன்றை ஒன்று தள்ளும். பிணைவு ஏற்பட மாட்டாது.

இங்கு இருவகையான பங்கீட்டுப் பிணைப்புகள் கருதப்படுகின்றன.

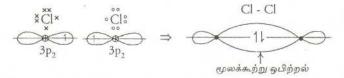

i. σ - பிணைப்பு (Zigma bond)

ii. π – பிணைப்பு (Piebond)

இரு அணுக்களிடையே ஒரேயொரு பிணைப்பு ஏற்படும்போது அவற்றின் அணு ஒபிற்றல்கள் நேர்கோட்டு திசையில் கரு அச்சின் வழியே மேற்பொருந்தி உருவாக்கும் உறுதியான பிணைப்பு σ - பிணைப்பு ஆகும். இங்கு இலத்திரன்கள் கருக்கள் இரண்டின் இடையேயும் காணப்படும் நிகழ்தகவு கூட. எனவே இது உறுதியான பிணைப்பாகும்.

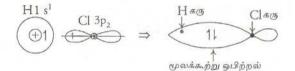
இங்கு மூலக்கூற்று ஒபிற்றலில் வடிவாக்கலில் பரப்புக் கூடிய பகுதி இலத்திரன் காணப்படும் நிகழ்தகவு கூட என்பதனைக் குறிக்கும்.

i. s – ஒபிற்றல்களின் மேற்பொருந்துகை e.g: H₂


இங்கு கருக்கள் இரண்டிடையேயும் பரப்பு கூட அமைகிறது என்பதனைக் கவனிக்குக.

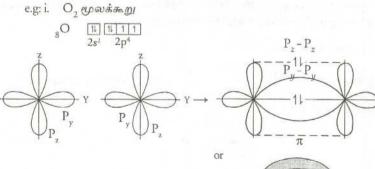
ii. p - p ஒபிற்றல் பொருந்துகை

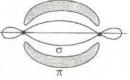
e.g: Cl₂



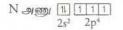
இங்கு P₂ ஒபிற்றல் மட்டுமே சோடியற்ற தனி இலத்திரன் ஒன்றைக் கொண்டுள்ளது. எனவே அது மட்டுமே பங்கீட்டில் ஈடுபடும்.

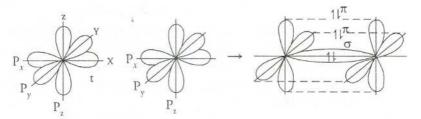
இங்கு P₂ ஒபிற்றலில் dumb-bell வடிவம் அதாவது, கருவின் இரு மருங்கிலும் அமைந்த இரு கோள வடிவங்களும் சுருங்கி கருக் களின் இடையே பரப்புக் கூடுவதனை அவதானிக்குக. இது σ -பிணைப்பில் இலத்திரன் அடர்த்தி கருக்களுக்கிடையே கூடும் எனக் காட்டுகின்றது.

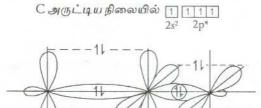

iii. s - p ஒபிற்றல் பொருந்துகை



இரு அணு ஒபிற்றல்கள் பக்கத் திசையில் மேற்பொருந்துகையில் ஒரு π பிணைப்பு ஏற்படுகின்றது.


ஆனால் இரு அணுக்களிடையே ஒரேயொரு பிணைப்பு மட்டுமே ஏற்படின் அது σ – பிணைப்பு ஆகும்.

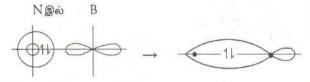

ஆனால் இரண்டாம் மூன்றாம் பிணைப்புகள் ஏற்படுமாயின் அவை π – பிணைப்புகள் ஆகும். இப்பிணைப்புகள் ஒன்றுக்கொன்று செங்குத்தான தளங்களில் அமையும்.


ii. N, மூலக்கூறு

S ஒபிற்றல் ஒருபோதும் π - பிணைப்பை ஏற்படுத்த மாட்டாது.

iii. CO, மூலக்கூறு

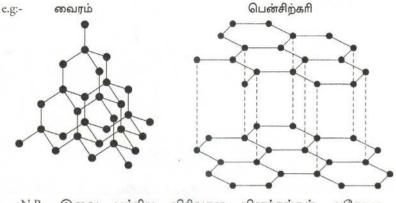
ஈதற் பிணைப்பு


சோடியாக்கப்பட்ட இலத்திரன் ஒன்றைக் கொண்ட அணு ஒபிற்றல் ஒன்றும், வெற்று ஒபிற்றல் ஒன்றும் நேர்கோட்டு மேற்பொருந்துகையால் உருவாக்கும் பிணைப்பு ஈதற் பிணைப்பு ஆகும்.

NH₃ மூலக்கூற்றில்,

N இன் தனிச்சோடி $\begin{pmatrix} 1 \\ \end{pmatrix}$ + H^* இன் வெற்றிட S ஒபிற்றல் இலத்திரன் ஒபிற்றல் s² \bullet $1 \\ \bullet$ $H_3N:\to H^* \to \begin{bmatrix} H \\ H - H \\ H - H \\ H \end{bmatrix}^+$

இங்கு வழங்கக்கூடிய தனிச்சோடி இலத்திரன் உடைய ஒபிற்றல் இலத்திரன் பற்றாக்குறையுடைய மூலக அணுவின் வெற்றிட ஒபிற்ற லுடன் மேற்பொருந்தும்.


இங்கு கேத்திரகணித வடிவம் கருதப்படும்போது σ– பிணைப்பு எண்ணிக்கையும் தனிச்சோடி இலத்திரன் நிலையமைப்பு மட்டுமே மறை மைய தள்ளுகை நிலையை தீா்மானிக்கும். π– பிணைப்புக்களை கருத்திற் கொள்ள வேண்டாம்.

அணுக்கள் அமையும் கேத்திரகணித வடிவங்கள் σ– பிணைப்பை மட்டும் குறிக்கும்.

	மையஅணு	இலத்திரன் சோடி	പിഞ്ഞെപ്പ	தனிச் சோடி	π பிணைப்பு	வடிவம்
BeCl ₂	Be	2	2	0	0	நேர்கோடு
AICI ₃	Al	3	3	0	0	தளமுக்கோணம்
CO2	С	4	2	0	2	நேர்கோடு
POCI	3 P	5	4	0	1	நான்முகி
PH ₃	Р	4	3	1	0	முக்கோண கூம்பகம்
H_2S	S	4	2	2	1	கோணல்
SO2	S	5	2	1	2	கோணல்

இராட்சத பங்கீட்டுப் பிணைப்புகள்

மூலக்கூறுகளில்லாத இராட்சத கட்டமைப்புடைய பங்கீட்டுச்சோவைகள்

N.B: இவை பற்றிய விரிவான விளக்கங்கள் அசேதன இரசாயனத்தில் உண்டு.

ஒழுக்குக் கலப்புக் கொள்கை (Hybrid orbital Theory)

இது சேதன இரசாயனத்திற்கு முக்கியமான ஒன்று. ஆயினும் இங்கு இது சுருக்கமாக விபரிக்கப்படுகின்றது. ஒழுக்குக் கலப்புக் கொள்கையின்படி பிணைப்பில் ஈடுபட முன்னர் பொருத்தமான ஒபிற்றல்கள் கலக்கப்பட்டு சமமாக சக்தி நிலையுடைய கலப்பு ஒபிற்றல்கள் சமச்சீரான வடிவத்தில் அமைந்த பின்பு அவை மேற்பொருந்தி பிணைப்புக்களை ஏற்படுத்தும்.

இங்கு கலப்பு ஒபிற்றல்கள் σ – பிணைப்புகளையும் கலப்பிலீடுபடாத ஒபிற்றல்கள் π – பிணைப்புகளையும் ஏற்படுத்தும்.

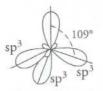
Case - I sp³ கலப்பு

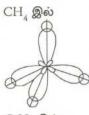
e.g: C தரைநிலை 2s² 2p²

1 2p11 2s2

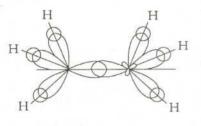
கலப்பில் ஈடுபட முன்

கலப்பு ஒபிற்றல் ஒன்றின் வடிவம்


sp³ ക്കപ്പ


அருட்டிய நிலை 2s1 2p3

கலப்பில் ஈடுபட்ட பின்


அருட்டிய நிலையில் 2s ஒபிற்றலும் 2p_x, 2p_y, 2p_z ஒபிற்றல்களும் கலப்பில் ஈடுபட்டு நான்கு சம சக்தியும் சமச்சீரான வடிவம் உடைய sp³ கலப்பு ஒபிற்றல்கள் நான்முகி நிலையில் அமையும்.

இங்கு 2sp³ -1s ஒபிற்றல்களின் நேர்கோட்டு மேற் பொருந்துகை கரு அச்சின் வழியே ஏற்பட்டு உருவாக்கும் C - H பிணைப்புகள் ஏற்படும்.

இங்கு ஆறு C - H பிணைப்புகள் ஒவ்வொன்றும் 2sp³ - 1s ஒபிற்றல்க ளின் நேர்கோட்டு மேற்பொருந்துகை யில் ஏற்படும் σ - பிணைப்புகளாகும். C - C பிணைப்பில் 2sp³ - 2sp³ நேர்கோட்டு மேற்பொருந்துகையால் ஏற்படும் ஒரு σ - பிணைப்பு அமை யும்.

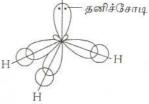
sp³ கலப்பு என்பது மறை மையங்களின் தள்ளுகை குறைந்த நான்முகி வடிவில் அமையும். நான்கு σ – பிணைப்புகள் ஏற்படுத்தும்.

NH, மூலக்கூறு

N **கலப்பில் ஈடுபடு முன்** 2s² 2p³

கலப்பில் ஈடுபட்ட பின்பு

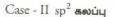
இங்கு அருட்டிய நிலை ஏற்படவில்லை N அணு


தனிச்சோடி

எனவே NH₃ மூலக்கூறு மறை மைய தள்ளுகை நிலை – நான்முகி கேத்திரகணித வடிவம் – முக்கோண கூம்பகம்

H,O மூலக்கூறு

O அணு கலப்பில் ஈடுபடு முன்



கலப்பில் ஈடுபட்ட பின்பு

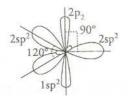
11	11	M	1
UF	11	1	L

தனிச்சோடி H தனிச்சோடி

எனவே H₂O மூலக்கூறில்

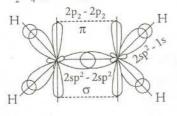
C அணு தரைநிலை 2s² 2p²

மறை மைய தள்ளுகை நிலை – நான்முகி கேத்திரகணித வடிவம் – கோணல்


கலப்பில் ஈடுபட முன்

அருட்டிய நிலை 2 s, 2 p_x, 2 p_y ஒபிற்றல்கள் மட்டும் கலப்பில் ஈடுபட்டு மூன்று 2p² கலப்பு ஒபிற்றல்களை தளமுக்கோண நிலையில் கொண்ட மையும். கலப்பில் ஈடுபடாத 2p ஒபிற்றல் இத்தளத்திற்கு செங்குத்தாக அமையும்.

அருட்டிய நிலை 2s¹ 2p³


கலப்பில் ஈடுபட்ட பின்

sp² கலப்பு ஒபிற்றல்களும் தள முக்கோண நிலையில் அமைதல்.

3 - ஏ பிணைப்புகள் ஏற்படும்.

C,H4 மூலக்கூறு

4 C-H பிணைப்புகள் ஒவ்வொன்றும் ஒரு காபன் அணுவின் sp² கலப்பு ஒபிற்றல் – ஒரு ஐதரசனின் 1 s ஒபிற்ற லின் நேர் கோட்டு பொருந்துகையால் உருவாகும் σ பிணைப்புகள்

ஒரு C = C இல்

- i. 2sp² 2sp² கலப்பு ஒபிற்றல் நேர் கோட்டு மேற்பொருந்துகையால் ஏற்படும் ஒரு σ பிணைப்பும்
- ii. 2p_z-2p_z கலப்பில் ஈடுபடாத ஒபிற்றல்களின் பக்க மேற் பொருந் துகையில் ஒரு π பிணைப்பும் அமைதல்.

BF₃ மூலக்கூறில்

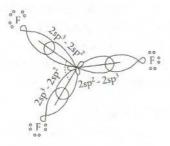
B யில் 2s² 2p¹(தரைநிலை)

B அணு

அருட்டிய நிலை 2s¹ 2p²

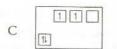
1	1	-
	2	÷

கலப்பில் ஈடுபட்ட பின்

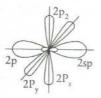

F அணு 2s² 2p⁵ இங்கு அருட்டிய நிலை இல்லை.

கலப்புக்கு முன்

	11	11	[1	7
11				

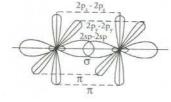


எனினும் இங்கு மைய அணுவின் கலப்பினைக் கருதின் போதுமா னது. அதுவே வடிவத்தைத் தீர்மானிக்கும்.


இது தளமுக்கோண வடிவம். இங்கு F இன் ஏனைய ஒபிற்றல்கள் காட்டப்படவில்லை.

Case - III sp - கலப்பு

தரைநிலை கலப்புக்கு முன்


ஒரு காபன் அணு

		1	1	
1	1			
2 :	sp			

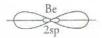
அருட்டிய நிலை கலப்பின் பின்

2sp கலப்பு ஒபிற்றல் இரண்டும் நேர்கோட்டு வடிவம்.

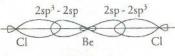
C, H, Qi

BeCl₂ மூலக்கூறில்

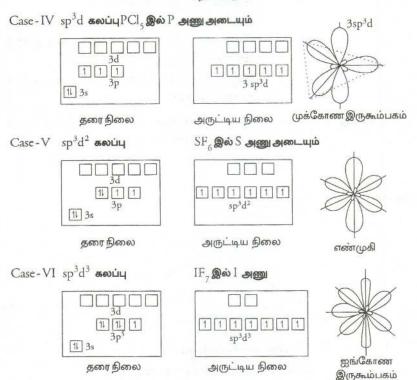
Be அணு 2s² 2p⁰


[
_		

 $2s^1 2p^1$


1	

அருட்டிய நிலை



Cl அணு முன்பு F அணு போல் (BF₃ இல்)

ஆயினும் காபன் அணுவில் sp³, sp², sp கலப்பு நிலைகள் மட்டும் பரீட்சை மையநோக்கில் போதுமானது.

மூலக்கூற்றிடை விசைகள்

எளிய பங்கீட்டு மூலக்கூறுகளிடையே பின்வருமாறு மூவகை இடைக் கவர்ச்சிகளைக் காணலாம்.

- i. இருமுனைவு இருமுனைவு கவர்ச்சிகள்
- ii. வந்தாவாலுசு (Van der Weal's) கவர்ச்சிகள்
- iii. ஐதரசன் பிணைப்பு

இருமுனைவுக் கவர்ச்சிகள்

அவசியமானது (Necessary):

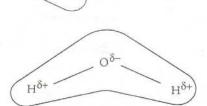
பங்கீட்டில் ஈடுபட்ட அணுக்களுக்கிடையே மின்னெதிரியல்பு வேறுபாடு காணப்படல் வேண்டும்.

இதனால் பிணைப்புச் சோடி இலத்திரன்கள் மின்னெதிரியல்பு கூடிய மூலகத்தின் புறம் காணப்படும் நிகழ்தகவு கூட.

எனவே மின்னெதிரியல்பு கூடிய மூலகம் சிறு மறை ஏற்றமும் (δ[–]) மின்னெதிரியல்பு குறைந் தது சிறு நேர்ஏற்றமும் (δ⁺) பெறும்.

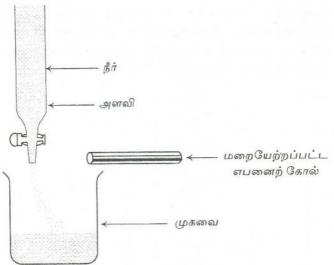
இத்தகைய அயன்தன்மையே முனைவுத் தன்மையாகும்.

Cursummers (Sufficient):

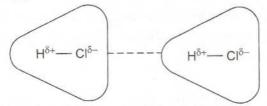

உதாரணம் :

வடிவம் சமச்சீரற்று இருப்பின் மட்டும் மூலக் கூறில் முனைவுத் தன்மை ஏற்படலாம்.

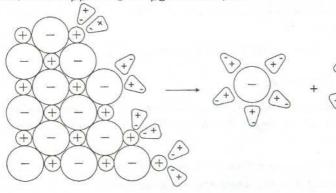
2.


1

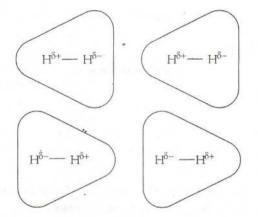
Ηδ+-



- CF₄ இல் சமச்சீர்த்தன்மை காரணம் :- வடிவம் சமசீரான நான்முகி
- 4. CO, சமச்சீரானது, நேர்கோடு
- CHCl₃ இல் இருமுனைவுத்தன்மை ஏற்படும்.



முனைவுகள் மூலக்கூறுகளிடையே ஏற்படும் மென்மையான இடைக் கவா்ச்சி இருமுனைவு–இருமுனைவு இடைக்கவா்ச்சியாகும்.


முனைவுக்கரைப்பானில் அயன் சோவைகள் கரைவதற்குக் காரணம் அயன் – இருமுனைவு இடைக்கவா்ச்சியாகும். இதனால் அயன்கள் கரைப்பான் ஏற்றப்பட்டு பிரிந்து கரைகின்றன.

Van der Waal's Forces

சமச்சீரான மூலக்கூறுகளிடையே ஏற்படும் மிக நொய்தான கவர்ச்சியாகும். ஒரு மூலக்கூறின் இலத்திரன் முகில் மற்றையதன் இலத்திரன் முகிலை ஒரு கண நேரத்திற்கு தள்ளுவதால் மாறிமாறி ஏற்படும் தூண்டிய முனைவு – தூண்டிய முனைவு இடைக்கவர்ச்சிகளாகும்.

உம்:H,

வந்தர்வாலுசு இடைக்கவர்ச்சிகள் மூலக்கூற்றுப்பரப்புக் கூட கூடும், உதாரணம்: நேர் பென்ரேனில் சதுர்க்க பென்ரேனைவிட இடைக்கவர்ச்சி கூட,

$$CH_3 CH_2 CH_2 CH_2 CH_3 > CH_3 - CH_3 - CH_3$$

 $CH_3 CH_3 - CH_3 - CH_3$

மூலக்கூற்றுத்திணிவு அதிகரிப்புடன் வந்தர்வாலிசு கவர்ச்சிகள் கூடும். இடைக்கவர்ச்சி ஏறுவரிசை.

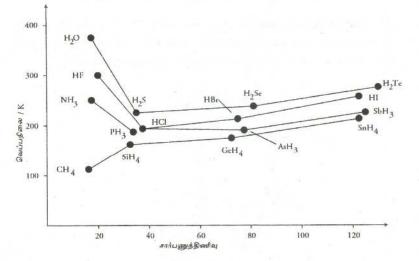
e_-ib:- Cl, < Br, < I,

கொதிநிலை கூடும் ஏறுவரிசையில் இது அமையும்.

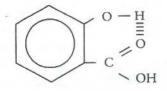
ஐதரசன் பிணைப்பு

N, O, F மூன்று மூலகங்களும் மிக மின்னெதிரானவை. இதனால் இவை 'H' அணுவுடன் ஆக்கும் பிணைப்புகளில் கூடிய முனைவுத்தன்மை காணப் படும்.

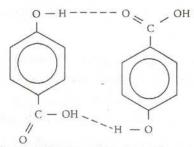
இத்தகைய முனைவுகட்கு இடையே ஏற்படும் சிறிது வலிதான நிலைமின் கவர்ச்சி ஐதரசன் பிணைப்பு என சிறப்பாகக் கூறப்படும்.


ஐதரசன் பிணைப்பு ஏற்படுத்தும் விளைவுகள்

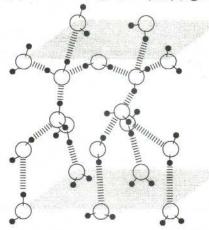
i. H,F, ஆக இரு மூலக்கூறு ஐதரசன் புளோரைட்டுகள் இணைதல்.


- ii. ஒரு அசாதாரண உயர் உருகுநிலை கொதிநிலை மறைவெப்பம் ஏற்படல்.
 - e.g. 1. V, VI, VII ஆம் கூட்ட ஐதரைட்டுக்களில் NH₃, H₂O, HF இல் அசாதாரண கொதிநிலை காணப்படுகின்றது.

ஆனால் ஏனையவற்றில் மூலக்கூற்று பரப்பு அதிகரிப் புடன் வந்தர்வாலிசு இடைவிசைகள் அதிகரிக்கின்றன.


ஐதரசன் பிணைப்பு இல்லாவிடின் நீர் திரவமாக இருக்க முடியாது. எனவே, நாம் அறிந்தவாறான உயிரினத் தொகுதியும் நிலவமுடியாது.

- e.g. 2. அற்ககோலின் கொதிநிலை அதன் சமபகுதியமான ஈதரிலும் கூட.
 - சலிசிலிக்கமிலத்தில் மூலக்கூற்றாக ஐதரசன் பிணைப்புண்டு.

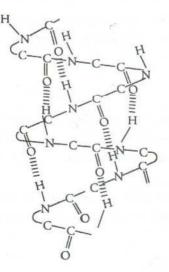


பரா ஐதரொட்சி பென்சோயிக்கமிலத்தில் மூலக் கூற்றிடை ஐதரசன் பிணைப்புண்டு.

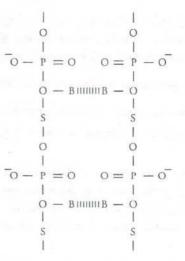
எனவே சலிசிலிக்கமிலத்தைவிட பரா ஐதரொட்சி பென்சோயிக் அமிலத்திற்கு உருகுநிலை, கொதிநிலை கூட.

iii. நீர் பனிக்கட்டியாக மாறும்போது கனவளவு கூடுவதற்கு (அடர்த்தி குறைவதற்கு) ஐதரசன் பிணைப்பே காரணம். பனிக்கட்டியில் திறந்த கட்டமைப்பு (open structure) ஏற்படுவதே இதற்குக் காரணம்.

iv. நீரின் நேரில்முறைவிரிவுக்கும் ஐதரசன் பிணைப்பே காரணம்.



பொதுவாக வெப்பநிலை கூட பதார்த்தங்களின் விளைவு கூடும். ஆனால், நீருக்கு 4°C வரை கனவளவு குறைந்து பின் கூடும். உயர் அடர்த்தி 4°C இல் ஆகும்.


- v. நீரின் உயர் மேற்பரப்பிழுவிசைக்கு காரணம் ஐதரசன் பிணைப்பு. இதனால் நீர்ப்பூச்சிகள் நீரின்மீது நடக்கின்றன. இதனை skin effect என்பர். தவிர தாவரங்கள் நீரை உறிஞ்சுவதற்கும் இதுவே காரணம்.
- vi. நீரின் உயர் பாகுத்தன்மைக்கு காரணம் ஐதரசன் பிணைப்பாகும்.
- vii. நீரின் உயர் தன்வெப்பத்திற்குக் காரணம் ஐதரசன் பிணைப்பேயாகும். நீரின் உயர் மறைவெப்பத்திற்குக் காரணம் ஐதரசன் பிணைப்பே யாகும்.

இவை அங்கிகள் உடல் வெப்ப சமநிலையை விரைவாக சீர்செய்ய உதவும். அதாவது, நீரின் வெப்ப கடத்துதிறன் ஐதரசன் பிணைப்பால் உயர்வாக இருப்பது இதற்குக் காரணம் எனலாம். நீரானது முனைவுத் தன்மை கூடிய கரைப்பானாக இருப்பது தாவரங்கள் உப்புக்களை உறிஞ்ச உதவும்.

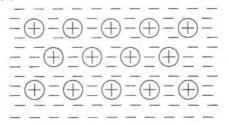
viii. புரத மூலக்கூறுகள் இடையேயுள்ள ஐதரசன் பிணைப்பு புரதங்களின் விறைப்புத் தன்மைக்குக் காரணம்.

- ix. செலுலோசு மூலக்கூறுகள் நெருக்கமாக பிணைக்கப்படுவதற்குக் காரணம் ஐதரசன் பிணைப்பாகும்.
- x. கரு அமிலங்களிலும் ஐதரசன் பிணைப்புக் காணப்படுகின்றது. DNA இல் உள்ள ஐதரசன் பிணைப்பு அதன் இரட்டைச்சுருளி (Helix) அமைப்பிற்குக் காரணமாகும்.

RNA சிலவகைகளின் மடிந்த அமைப்பிற்குக் காரணம் ஐதரசன் பிணைப்பாகும்.

xi. காபொட்சிலிக்கமில மூலக்கூறுகள் இருபகுதியமாக முனைவற்ற கரைப்பானில் காணப்படுவதற்குக் காரணம் ஐதரசன் பிணைப்பு.

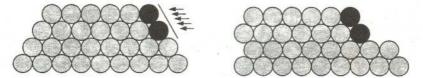
$$CH_3 - C \stackrel{\neq O \text{ IMMIN } H - O}{\bigcirc} C - CH_3$$


N.B: பொதுவாக ஐதரசன் பிணைப்புச்சக்தி 5 - 40 kJ mol⁻¹ ஆகக் காணப்படும். இது ஒரு சாதாரண பங்கீட்டுப் பிணைப்பை விட சுமார் 10 மடங்கு வலிமை குறைந்தது எனலாம்.

> நீர் மூலக்கூறில் ஐதரசன் பிணைப்பும் வந்தர்வாலிசு கவர்ச்சிகளும் உண்டு. நீராவியில் ஐதரசன் பிணைப்பு இல்லை.

உலோகப் பிணைப்பு

உலோக அணுக்களின் வெளிஓட்டு /வலுவளவு இலத்திரன்கள் சுயாதீன மாக உலோக சாலகத்தில் அசைகின்றன. இவ்வசையும் இலத்திரன் கடலிற்குள் நேரயன்கள் ஆங்காங்கு அமையும். இவ்விலத்திரன் முகிலானது ஓரிடப்படாத (delocalised) இலத்திரன்கள் எனப்படும். இந்த ஓரிடப்படாத இலத்திரன் முகிலிற்கும் நேரயன்களிற்கும் இடையிலான வலிதான இடைக்கவர்ச்சி உலோகப் பிணைப்பாகும்.


உலோக சாலகத்தின் கட்டமைப்பு

உலோகப் பிணைப்பின் சிறப்பியல்புகள்

- உலோகங்கள் சிறந்த மின்கடத்திகள். காரணம் ஓரிடப்படாத இலத்திரன்கள்.
- உலோகங்கள் சிறந்த வெப்பக்கடத்திகளாக அமையக் காரணம், ஓரிடப்படாத இலத்திரன்களும் நெருக்கக் கட்டமைப்பும் ஆகும்.
- iii உலோகங்கள் வாட்டத்தகு தன்மைக்கும் ஓரிடப்படாத இலத்திரன் களே காரணம். ஒரு விசையைப் பயன்படுத்த பின்வரு மாறு வழுக்கும்.

இதுவே உலோகங்களைக் கம்பி வடிவில் மாற்றக் காரணம்

- iv. உலோகங்கள் பளபளப்பான மேற்பரப்பைக் கொள்வதற்குக் காரணம் மேற்பரப்பில் உள்ள ஓரிடப்படாத இலத்திரன்கள் ஒளியின் சக்தியைப் பெற்று பின் கதிர்ப்பாக காலுவதாகும்.
- v. உலோகங்கள் பொதுவாக உயர் உருகுநிலை கொண்டிருப்பதற்கு இராட்சதக் கட்டமைப்பு காரணமாகும்.
- vi. கூட்டம் வழியே உலோகங்களின் ஆரை அதிகரிக்கும்போது கருக் கவர்ச்சி குறைவதால் உலோகப் பிணைப்பு வலிமை குறையும். ஆகவே, உருகுநிலை – கொதிநிலை குறையும். e.g. Cs இன் உருகுநிலை 27°C
- vii. மாறாக, ஆவர்த்தனத்தின் வழியே உலோகங்கட்கு கருக்கவர்ச்சி கூடுவதால் உலோகப் பிணைப்பு வலிமை கூடும்.

பின்னிணைப்பு

பின்னிணைப்பு ī

அலைக் கொள்கை – சில குறிப்புகள்

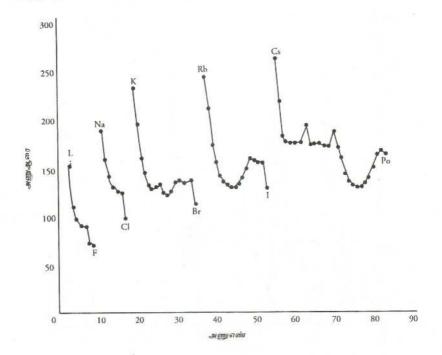
- Bohr இன் இலத்திரன் கொள்கை இதனால் நிராகரிக்கப்பட்டது.
- de Broglie என்பவர், 1923 இல் ஒளியானது துணிக்கைத் தன்மையுடை யது என்ற கருத்தை முன்வைத்தார்.
 இதிலிருந்து, λ = <u>h</u> h - Planks constant
- 1927 இல் C. Devision, L. H. Germer, G. P. Thomson என்பவரால் இலத்திரன் அலைஇயல்புடையது என்ற கருத்து முன்வைக்கப்பட்டது.
- X கதிர்களைப் போல் இலத்திரன் கற்றைகளும் பளிங்குகளில் கோணல் (diffraction) அடைகின்றன என்பது இவர்களின் எடுத்துக் காட்டாகும்.
- de Broglie இன் கருத்து அசையும் துணிக்கைகட்குப் பொருந்தியது.
 இதனை நேரடியாக கரு இலத்திரன் கவர்ச்சி விசைக்கு பயன்படுத்த முடியவில்லை.

1926 இல் Erwin Schrödinger இதனை அடிப்படையாக வைத்து சக்திச் சொட்டு கொள்கையை (Quantum mechanics or Wave mechanics) அறிமுகப்படுத்தினார்.

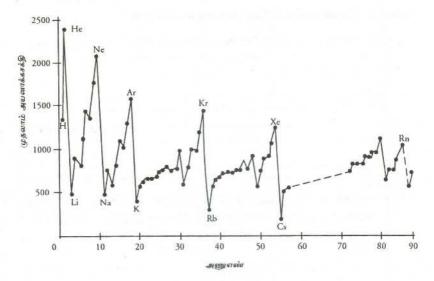
இதிலிருந்து ஒரு குறித்த ஒழுக்கில் இலத்திரன் அசையும் என்ற Bohr இன் எண்ணக்கரு நிராகரிக்கப்பட்டது.

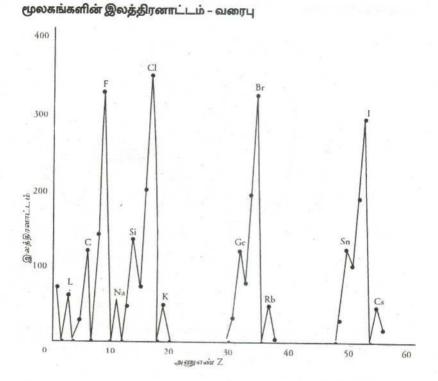
- 1927 இல் Werner Heisenberg என்பவர் சக்திச்சொட்டுக் கொள்கை மூலம் ஒரே சமயத்தில் ஒர் இலத்திரன் நிலையையும், வேகத்தையும் திட்டமாக அறியமுடியாது எனக்காட்டினார். இது "uncertainty principle" அடிப்படை யில் இருந்து எடுத்ததாகும்.
- ஒரு ஐதரசன் அணுவில் இலத்திரனின் சராசரி வேகம் 2.19 x 10⁶ ms⁻¹.
- ஒரு இலத்திரன் ஒரு குறித்த பிரதேசத்தில் ஒரு குறித்த நேரத்தில் காணப்படலாம் என்று கூறலாமே தவிர திட்டமான ஒரு நிலையில்

அல்ல. இதிலிருந்து ஒரு இலத்திரன் காணப்படும் நிகழ்தகவு கூடிய பிரதேசங்கள் இனங்காணப்பட்டன.


இலத்திரன் காணப்படும் நிகழ்தகவு கூடிய பிரதேசம் orbital ஆகும்.

Wave function - அலையியக்கம் ஆனது φ இனால் காட்டப்படும்.


குறித்த புள்ளியில் இலத்திரன் காணப்படும் நிகழ்தகவு φ² ஆகும். φ² கூடினால் அவ்விடத்தில் இலத்திரன் காணப்படும் நிகழ்தகவும் கூட.


- இதிலிருந்து முடிவாகக் கூறக்கூடியது குறைந்த சக்திமட்டத்தில் இலத்திரன் காணப்படும் நிகழ்தகவு கூட.
- இலத்திரன் நிலையைக் குறிப்பிடவே சக்திச்சொட்டெண்கள் குறிப் பிடப்பட்டன.

இங்கு எமது பாடத்திட்டத்தில் இலத்திரன் அலை இயல்புடையது எனத் தெரிந்தால் மட்டும் போதுமானது, விளக்கங்கள் அவசியமல்ல. அணுஆரை வரைபு

அயனாக்கசக்தி வரைபு

ஒற்றைப் பிணைப்பொன்றின் அயன்தன்மைவீதம்

Electronegativity defference Percentage ionic character			1.9 59													
Percentage ionic character	0.5	1	2	4	6	9	12	15	19	22	26	30	34	39	43	47
Electronegativity defference	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1,1	1.2	1.3	1.4	1.5	1.6

 இலங்கையில் பொதுவாக மின்னெதிர்த்தன்மை வேறுபாடு 2.1 க்கு மேல் அயன் பிணைப்பு எனக் கருதப்படுகின்றது. இதில் CsF இல் 80 % அயன் பிணைப்பு எனக் கொள்கின்றனர்.

அடைப்பினுள் தரப்பட்டவை வன்டர்வாலிசு ஆரையை நனோமீற்றரால் வகுத்துப் பெறப்பட்டவை. ஒற்றைப்பிணைப்பு பங்கீட்டுவலு ஆரை நனோமீற்றரால் வகுத்துப் பெறப்பட்டது. 1

உலோகஆரை நனோமீற்றரால் வகுத்துப் பெறப்பட்டது. 1 (9 3) 0.20 0.220 0.27 (a)

	Ne	e	. (0.160)	Ą	•	,	(0.192	Kr	Z		(0.197)	Xe		(0.217)	Ru	1		•	
	u.	ł.	0.072 (0.135)	C	r	660 0	(0.180)	à	ñ		0.114 (0.195)	-	0.133	1.215	At	1		0.140	
	0	×	0.074 (0.140)	S	•	0.140	(0.185)	0	BC		0.117 (0.200)	Te.	•	0.137	Po	0.14	5		
	z		0.074 (0.150)	٩	ŝ	0.110	(061.0)		As	×.	0.121 (0.200)	Sb	•	0.141	Bi	0 170	2	0.152	
	C	•	0.077	Si	•	0.117		(Ge	•	0 122	S	0.162	0,140	Ph	0.175	0.11.0	0,54	
	80	4	0.080	A	0.143	0.125		(Ga	0.141	0.125	<u>_</u>	0.166	0.150	F	+1+0	0.171	0.155	
)	Zn	0.133	0.125	Cd	0 149	0.141	H		701.0	0.144	
								1	20	0.128	0.117	An	0 144	0.134	- N		0.144	0.134	กฎสรณ
									ī	0.124	0.115	Pd	0.138	0.128	ô	1	0.138	0.129	Sle also
									ů	0.125	0.116	á	0124	0.125	2	=	0.135	0.126	உலோக பங்கீட்டு, வன்டர்வாலிச ஆரைகள்
									Fe	0.126	0.116.	ă	0.422	0.124	ð	5	0.134	0.126	டு, வன்
									Nn	0.129	0.117	L.	2010		c	a Ye	0.137	0.128	பங்கீப்
0.037									ວັ	0.125	0.117	-Ma		0.129		~	0.137	0.130	லோக
(q)									>	0.131				0.134		8	0.143	0.134	ରା
									F	0.146	0.132	ŕ	1	0.145		Ŧ	0.157	0.144	
									Sc	-		;		0.162		La	0.188	0.169	Ac
	Be	0 112	0.089	- W	Fini	0.160	0.136		Ca	0.197	0.174		ō	0.215		Ba	0.217	0.196	Ra
	TI.	0 152		No	PN	0.186	0.157	34	¥	0.231	0.203	1	5	0.244		Cs	0.262	0.235	μŗ
		101	(a) (b)			(a)	(q)			(a)	(q)			(a)			(a)	(q)	

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

PH H

I

(e)

பின்னிணைப்பு II

தாழ்த்தலும் ஒட்சியேற்றலும் Reduction - Oxidation

- ஒட்சியேற்றம் என்பது
 - ஒட்சிசனைச் சேர்த்தல் அல்லது
 - ஐதரசனை அகற்றல் அல்லது
 - iii. அலசனைச் சேர்த்தல்

என ஆரம்ப காலத்தில் கருதப்பட்டது. தாழ்த்தல் இதற்கு முரணானது. பின்னா் இலத்திரன் கொள்கை அறிமுகப்படுத்தப் பட்டது.

இதனடிப்படையில்

இலத்திரனைச் சேர்த்தல் தாழ்த்தல் எனவும்

இலத்திரனை அகற்றல் ஒட்சியேற்றல் எனவும் கொள்ளப்பட்டது.

ஒட்சியேற்றமும் தாழ்த்தலும் ஒரே சமயத்தில் நடைபெறும். இதனால் இத்தகைய தாக்கங்கள் 'தாழ்த்தேற்றல்' (Redox) தாக்கங்கள் எனப் படும்.

இதில் ஒட்சியேற்றப்படும் பதார்த்தம் 'தாழ்த்தும் கருவி' எனவும் தாழ்த்தப்படும் பதார்த்தம் 'ஒட்சியேற்றும் கருவி' எனவும் கூறப்படும்.

eg.
$$CuSO_4(aq) + Mg(s) \rightarrow Cu(s) + MgSO_4(aq)$$

இனைக் கருதுக.

இங்கு

Mg (s) — Mg²⁺ (aq) + 2e ஒட்சியேற்றல் தாழ்த்தும் கருவி

ஆக அமையும்.

எனினும் சில தாக்கங்களில் மேற்படி எந்தவொரு அடிப்படையிலும் ஒட்சியேற்றம் தாழ்த்தலை இனங்காண முடிவதில்லை.

eg. $F_2(g) + I_2(g) \rightarrow 2 IF(g)$

இதில் இலத்திரன் ஏற்றலோ / இழத்தலோ நடைபெறவில்லை. ஏனெனில் இது பங்கீட்டுச் சோவை.

ஒட்சிசனோ / ஐதரசனோ சம்பந்தப்படவில்லை. இரண்டும் அலசன்கள். அலசனுடன் அலசன் சோ்கின்றது. எனவே மேற்குறித்த கொள்கை களால் விளக்க முடியாது. இந்நிலையில் ''ஒட்சியேற்ற எண்கள்'' அறிமுகப்படுத்தப்பட்டது.

ஒட்சியேற்ற எண்கள் (Oxidation numbers)

ஒரு மூலகம்

- i. இழக்கின்ற இலத்திரன் எண்ணிக்கை அதன் நேர் ஒட்சியேற்ற எண்
- எற்கின்ற இலத்திரன் எண்ணிக்கை அதன் மறை ஒட்சியேற்ற எண் ஆகும்.

ஆனால் ஒரு பங்கீட்டுப் பிணைப்பில் பிணைப்பின் மூலம்

- i. மின்னெதிரியல்பு கூடிய மூலகம் இலத்திரனை ஏற்கின்றது எனவும்
- மன்னெதிரியல்பு குறைந்தது இலத்திரனை இழக்கின்றது எனவும் கொள்க.

எனவே பின்வரும் அடிப்படைகள் இதற்குப் பொருந்தும்.

- i. சுயாதீன நிலையில் ஒரு மூலகத்தின் ஒட்சியேற்ற எண் பூச்சியம்.
 - eg. O₂ (g) இலும் O₃ (g) இலும் ஒட்சிசனின் ஒட்சியேற்ற எண் பூச்சியம்.
- ஒரு சோவையிலுள்ள மூலகங்களின் ஒட்சியேற்ற எண்களில் அட்சர கணிதக் கூட்டுத்தொகை பூச்சியம்.
 - eg. K₂Cr₂O₇ இல் 2 × K இன் ஒட்சியேற்ற எண் + 2 × Cr இன் ஒட்சியேற்ற எண் + 7 × ஒட்சிசனின் ஒட்சியேற்ற எண் = 0
- iii. ஒரு அயனின் ஒட்சியேற்ற எண் அதன் ஏற்றமாகும்.

eg. MnO₄ இல் Mn இன்ஒட்சியேற்ற எண்+4 × ஒட்சிசனின் ஒட்சியேற்ற எண்

- = -2
- iv. புளோரின் மிகவும் மின்னெதிரானது. எனவே சேர்வைகளில் எப்போதும் அதன் ஒட்சியேற்ற எண் -1 ஆகும்.

- v. புளோரினை அடுத்து மின்னெதிரியல்பு கூடியது ஒட்சிசன். சேர்வைகளில் ஒட்சிசனுக்குப் பொதுவாக ஒட்சியேற்ற எண் -2 ஆகும். ஆயினும்,
 - a. பேரொட்சைட்டுகளில் (Peraxides) மட்டும் ஒட்சிசனுக்கு -1 ஆகும்.

eg. H-O-O-H

b. OF, இல் மட்டும் +2

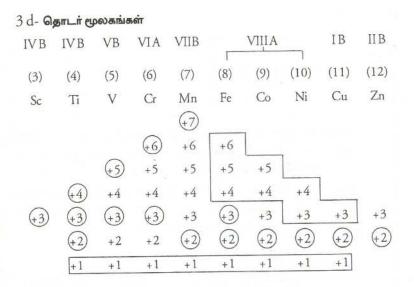
c. Superoxides இல் சராசரியாக - ¹/₂ ஆகும்.
 eg. KO₂ இல் O₂[−] அயன் உண்டு.

XX	00
[×] O [×]	00
×××	00

vi. ஐதரசனுக்கு சேர்வைகளில் பொதுவாக +1 ஆகும். ஆயினும், உலோக ஐதரைட்டுகளில் மட்டும் -1 ஆகும்.

N.B: உலோகங்கட்கு மறை ஒட்சியேற்ற நிலை இல்லை.

இதனடிப்படையில்

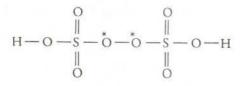

s, p - **தொகுப்பில்**

கட்டம் IA(1)	பிரதான ஒட்சியேற்ற நிலை +1 மட்டும்	வேறு நிலைகள் ()
II A (2)	+2 மட்டும்	0
IIIA(13)	+3	+1,0
IVA (14)	+4 (Pb க்கு +2)	±2,0
VA(15)	+5,±2	0, தவிர வேறு
VIA(16)	+6,±2	+4,0
VIIA(17)	+7, -1	+5, +3, +1, 0

IV, V, VI ம் கூட்டங்களில் மூலகங்களைப் பொறுத்து வேறு நிலைகளும் அமையலாம்.

eg. N ஆனது -3 முதல் +5 வரை சகல முழு எண்களும் அமையும்.

ஒரு பதார்த்தத்தில் மின்னெதிரியல்பு கூடிய மூலக அணு எப்போதும் இழிவு ஒட்சியேற்ற நிலையில் அமையும்.


• 🤇) அடையாளம் பிரதான நிலைகள்

கட்டமிடப்பட்டன காணப்படும் சாத்தியக்கூறுகள் உண்டு அல்லது
 அரிதாக அமையும்.

- eg. i. HCN இல் 'N' இன் ஒட்சியேற்ற நிலை H - C = N 'N' மின்னெதிரியல்பு கூடியது. ஆகவே -3.
- N.B: இங்கு S இன்வலுவளவு 4 S இன்வலுவளவு 2

அதாவது வலுவளவு வேநு ஒட்சியேற்ற நிலை வேறு என்பதனைக் கவனத்திற் கொள்க.

iii. H,S,O8

சாதாரண கணிப்பில் S இன் ஒட்சியேற்ற எண் +7 என அமையும். ஆனால், இது தவறு. ஏனெனில் கந்தகம் VIA ம் கூட்டம். எனவே அதியுயர் ஒட்சியேற்ற எண் +6.

இங்கு *குறியிட்ட ஒட்சிசன் அணுக்கள் இரண்டினதும் ஒட்சியேற்ற எண்கள் -1 ஆகும். ஏனெனில், O - O பிணைப்பில் ஒட்சிசனின் ஒட்சியேற்ற எண் பூச்சியம்.

iv. Fe₃O₄ இல் Fe இன் ஒட்சியேற்ற எண் சாதாரண கணிப்பில் S இன் ஒட்சியேற்ற எண் + ⁸/₃ ஆனால் உண்மையில் Fe₃O₄ ஆனது FeO. Fe₂O₃ இன் கலவையாகும். இங்கு +2, +3 நிலைகள் பொருந்தும்.

v. N இன் ஒட்சியேற்ற நிலைகளும் உதாரணமும்

-3	-2	-1	0	+ 1	+2	+3	+4	+ 5
NH ₃	N ₂ H ₄	NH ₂ OH	N ₂	N ₂ O	NO	N ₂ O ₃	N ₂ O ₄	N ₂ O

-2	-1	0	+ 1	+ 2	+4	+6
H ₂ S	H ₂ S ₂	S ₈	S,Cl,	SCl,	so,	SO

S இன் ஒட்சியேற்ற நிலைகள் - உதாரணம்

C	ஆன்	ஒட்சியேற்ற	ந	லைகள்	+	உதாரணம்
---	-----	------------	---	-------	---	---------

-4	-3	-2	-1	0	+1	+2	+3	+4
CH_4	C_2H_6	C_2H_4	C ₂ H ₂	С	C2Cl2	C2Cl4	C ₂ Cl ₆	CCI4

பின்னிணைப்பு III

அசேதனச் சேர்வைகளில் IUPAC பெயரீடு

இங்கு முன்பு stock பெயரீடு தற்போது IUPAC முறையும் வழக்கில் உண்டு. ஆயினும் இவற்றிற்கு சில சமயங்களில் திட்டமான வரையறை கூறுவது கடினம். stock முறையும் IUPAC முறையில் ஏற்றுக் கொள்ளப்படுகிறது.

அயன் சேர்வைகள்

i. நேரயன்கள் / அனயன்கள்

ஒரு மூலகம் ஒரேயொரு நேரயனை மட்டும் உருவாக்கின் பெயரீட்டு முறைகள் அவசியமல்ல.

eg: Na⁺ Sodiumion

ஆனால் ஒன்றுக்கு மேற்பட்ட நேரயன்கள் அமைந்தால் மூலகத்தின் ஆங்கிலப் பெயருடன் அடைப்புக்குறிக்குள் ஒட்சியேற்ற நிலை யானது Roman capital எண்கள் பயன்படும்.

Fe ²⁺	Iron (II) ion	Sn ² *	Tin (III)	ion
Fe^{3+}	Iron (III) ion	Sn ⁴⁺	Tin (IV)	ion

NB: சிறப்புப் பெயர்கள்

	Systermatic Name	Alternative Name
NH_4^+	azanium ion	ammonium ion
H₃O⁺	Hydroxoniumion	>

ii. மறையயன்கள்

எளிய மூலக மறை பயன்களின் பெயரீட்டில் அவற்றின் பெயரு டன் ஈற்றில் – "ide" விகுதி சோக்கப்படும்.

Cl	Chlorid	e ion	H-	hydride	ion
O ²⁻	Oxide	ion	S ²⁻	sulphide	ion
N ³⁻	nitride	ion	P ³⁻	Phosphide	ion

Systern	naticName	Alternative Name
NH ₂	azonide ion	amide ion
N ₃	trinitride (1-) ion	azide ion
0 ₂ ²⁻	dioxide(2-)ion	peroxide ion
OH.	hydroxide ion	
CN-	cyanide ion	

NB:

iii. ஒட்சி அனயன்கள்

மைய அயனின் இலற்றீன் (Latinized name) பெயருடன் ஈற்றில் "ate" விகுதியானது சேர்க்கப்படும். ஒன்றுக்கு மேற்பட ஒரு மூலகத்தின் ஒட்சியேற்ற நிலை இருப்பின் அதனைக் குறிப்பிட வேண்டும்.

carbonate ion	SO_4^{2} sulphate (VI) ion
zincate ion	SO_3^{2-} sulphite (IV) ion
aluminate ion	PO_4^{3-} phosphate (V) ion
cyanate ion	சிறப்புப் பெயர்கள்
stanate(II) ion	i. $S_2O_3^{2}$ thiosulphate ion
stanate(IV) ion	ii. SCN thiocyanate ion
nitrate(V) ion	iii. $S_2 O_8^{2}$ persulphate ion
nitrate(III) ion	
	zincate ion aluminate ion cyanate ion stanate (II) ion stanate (IV) ion nitrate (V) ion

அயன் சேர்வைக்குப் பெயரிடும்போது முதலில் நேரயன் பெயரும் சிறிது இடைவெளிவிட்டு மறை அயன் பெயரும் எழுதவேண்டும்.

Fe(CNS) ₃	Iron (III) thiocyanate
$Cu(NO_3)_2$	Copper (II) nitrate (V)
Ca(ClO ₃) ₂	Calcium chlorate (V)

பங்கீட்டுச் சேர்வைகள்

பங்கீட்டுச் சேர்வைகள் குறிப்பாக ஈர் மூலகங்கள் கொண்ட மூலக் கூறுகள் எனின் stock முறையில் ஒட்சியேற்ற நிலை குறிக்கப்படும். IUPAC முறையில் அணுக்களின் எண்ணிக்கை குறிக்கப்படும். மின்னெதிர் இயல்பு கூடிய மூலகத்தின் பெயரின் இறுதியில் எழுதி "ide" விகுதியும் சேர்க்கப்படும்.

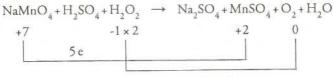
CO ₂	Carbon (IV) oxide	carbondioxide		
CO	Carbon (II) oxide	carbonmonoxide		

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

NB:

SO3	sulphur (IV) oxide	sulphur trioxide
SO ₂	sulphur (IV) oxide	sulphur dioxide
PCl	phosphorus (V) chlomite	phosphorus pent chloride
PCl ₃	phosphorus (III) chlomite	phosphorus tri chloride
POCl ₃	phosphoxyl tri chloride	

NB:	Systermaticname	Alternativename
NH ₃	azane	ammonia
N ₂ H ₄	diazane	hydrazine
HN,	hydrogentrinitride	hydrogen azide
H,O	Water	Water
Br ₂	dibromine	bromine
H ₂ SO ₄	sulfuric acid sulfuric (V) acid	
H ₃ PO ₄	tetra oxophosphoric (V) a	cid orthophosphoric acid
HTeO4	hydrogen tetraoxo techne	tate Calcium technetate
Ca ₃ (PO	$_{4})_{2}$ tricalcium bis phosphate	Calcium phosphate


சேதன இரசாயனத்தினைப் போலன்றி அசேதன இரசாயனத்தில் IUPAC முறைகள் முழுமையாக இடம்பெறவில்லை.

சிக்கலயன்கள் அசேதன இரசாயன நூலில் உண்டு.

ஒட்சியேற்ற எண் அடிப்படையில் தாக்க சமன்பாடுகளைச் சமப்படுத்து தல்.

கொள்கை: ஒர் இரசாயனத் தாக்கத்தில் மொத்த ஒட்சியேற்ற எண் மாற்றம் பூச்சியம் ஆகும்.

Method - I

-1 e × 2

 $\therefore \text{NaMnO}_4: \text{H}_2\text{O}_2 = 2:5$

 $2NaMnO_4 + H_2SO_4 + 5H_2O_2 \rightarrow Na_2SO_4 + 2MnSO_4 + 5O_2 + H_2O_2$

இதன்மேல் H₂SO₄, H₂O என்பவற்றை சாதாரண முறையில் (திணிவுக் காப்பு விதிப்படி) சமன் செய்க.

ஃ ஈடுசெய்த சமன்பாடு

 $2NaMnO_4 + 3H_2SO_4 + 5H_2O_2 \rightarrow Na_2SO_4 + 2MnSO_4 + 5O_2 + 8H_2O_2$

Method - II அயன் - இலத்திரன் சமன்பாட்டு முறை

i. ii. $MnO_4^+ + 8H^+ + 5e \rightarrow Mn^{2*} + 4H_2O$

$$H_2O_2 \rightarrow 2H^+ + O_2 + 2e$$

$$MnO_4:H_2O_2 = 2:5$$

முன்போல சமன் செய்க.

அயன் சமன்பாட்டில்

1. ஏற்றக்காப்பு விதி

2 திணிவுக் காப்பு விதி

இரண்டும் பயன்படுத்த வேண்டும்.

$$2 \text{ MnO}_{4}(aq) + 6 \text{ H}^{+}(aq) + 5 \text{ H}_{2}\text{ O}_{2}(aq)$$

$$2 \text{ Mn}^{2+}(aq) + 5 \text{ O}_{2}(g) + 8 \text{ H}_{2}\text{ O}(l)$$

மூலகங்களின் இலத்திரனிலையமைப்பு

Z 1	Elememt Hydrogen	Symbol	Structure		
		Н	$1s^1$		
2	Helium	He	$1s^2$		
3	Lithium	Li	[He]	2s ¹	
4	Beryllium	Be	[He]	$2s^2$	
5	Boron	В	[He]	$2s^2 2p^1$	
6	Carbon	С	[He]	$2s^2 2p^2$	
7	Nitrogen	Ν	[He]	$2s^2 2p^3$	
8	Oxygen	0	[He]	$2s^2 2p^4$	
9	Fluorine	F	[He]	$2s^2 2p^5$	
10	Neon	Ne	[He]	$2s^2 2p^6$	
11	Sodium	Na	[Ne]	3s ¹	
12	Magnesium	Mg	[Ne]	$3s^2$	
13	Aluminium	· Al	[Ne]	$3s^2 3p^1$	
14	Silicon	Si	[Ne]	$3s^2 3p^2$	
15	Phosphorus	Р	[Ne]	3s ² 3p ³	
16	Sulphur	S	[Ne]	3s ² 3p ⁴	
17	Chlorine	Cl	[Ne]	3s ² 3p ⁵	
18	Argon	Ar	[Ne]	$3s^2 3p^6$	
19	Potassium	K	[Ar]	$4s^1$	
20	Calcium	Ca	[Ar]	$4s^2$	
21	Scandium	Sc	[Ar]	$3d^1 4s^2$	
22	Titanium	Ti	[Ar]	$3d^2 4s^2$	
23	Vanadium	. V	[Ar]	$3d^3 4s^2$	

Z	Element Chromium	Symbol Cr	Structure	
24			[Ar]	3d ⁵ 4s ³
25	Manganese	Mn	[Ar]	$3d^5 4s^2$
26	Iron	Fe	[Ar]	$3d^{6}4s^{2}$
27	Cobalt	Co	[Ar]	$3d^7 4s^2$
28	Nickel	Ni	[Ar]	$3d^8 4s^2$
29	Copper	Cu	[Ar]	3d ¹⁰ 4s ¹
30	Zinc	Zn	[Ar]	$3d^{10} 4s^2$
31	Gallium	Ga	[Ar]	3d ¹⁰ 4s ² 4p ¹
32	Germanium	Ge	[Ar]	3d ¹⁰ 4s ² 4p ²
33	Arsenic	As	[Ar]	$3d^{10} 4s^2 4p^3$
34	Selenium	Se	[Ar]	$3d^{10} 4s^2 4p^4$
35	Bromine	Br	[Ar]	3d ¹⁰ 4s ² 4p ⁵
36	Krypton	Kr	[Ar]	3d ¹⁰ 4s ² 4p ⁶
37	Rubidium	Rb	[Kr]	5s ¹
38	Strontium	Sr	[Kr]	5s ²
39	Yttium	Y	[Kr]	$4d^1 5s^2$
40	Zirconium	Zr	[Kr]	$4d^2 5s^2$
41	Niobium	Nb	[Kr]	$4d^4 5s^1$
42	Molybdenum	Mo	[Kr]	4d ⁵ 5s ¹
43	Technetium	Tc	[Kr]	$4d^5 5s^2$
		Tc	[Kr]	$4d^6 5s^1$
44	Ruthenium	Ru	[Kr]	$4d^75s^1$
45	Rhodium	Rh	[Kr]	4d ⁸ 5s ¹
46	Palladium	Pd	[Kr]	4d ¹⁰ 5s ⁰
47	Silver	Ag	[Kr]	4d ¹⁰ 5s ¹
48	Cadmium	Cd	[Kr]	4d ¹⁰ 5s ²
49	Indium	In	[Kr]	4d ¹⁰ 5s ² 5p ¹
50	Tīn	Sn	[Kr]	$4d^{10}5s^2 5p^2$
51	Antimony	Sb	[Kr]	$4d^{10}5s^2$ $5p^3$
52	Tellurium	Te	[Kr]	4d ¹⁰ 5s ² 5p ⁴
53	Iodine .	Ι	[Kr]	4d ¹⁰ 5s ² 5p ⁵
54	Xenon	Xe	[Kr]	4d ¹⁰ 5s ² 5p ⁶

Z	Element	Symbol	Structu	
55	Caesium	Cs	[Xe]	6s ¹
56	Barium	Ba	[Xe]	6s ²
57	Lanthanum	La	[Xe]	$5d^1 6s^2$
58	Cerium	Ce	[Xe]	4f ¹ 5d ¹ 6s ²
59	Praseodymium	Pr	[Xe]	4f ³ 5d ⁰ 6s ²
60	Neodymium	Nd	[Xe]	4f ⁴ 5d ⁰ 6s ²
61	Promethium	Pm	[Xe]	4f ⁵ 5d ⁰ 6s ²
62	Samarium	Sm	[Xe]	$4f^6$ $5d^0$ $6s^2$
63	Europium	Eu	[Xe]	$4f^7 5d^0 6s^2$
64	Gadolinium	Gd	[Xe]	$4f^7 5d^1 6s^2$
65	Terbium	ть	[Xe]	4f ⁹ 5d ⁰ 6s ²
66	Dysprosium	Dy	[Xe]	4f ¹⁰ 5d ⁰ 6s ²
67	Holmium	Ho	[Xe]	4f ¹¹ 5d ⁰ 6s ²
68	Erbium	Er	[Xe]	$4f^{12} 5d^0 6s^2$
69	Thulium	Tim	[Xe]	4f ¹³ 5d ⁰ 6s ²
70	Ytterbium	Yb	[Xe]	4f ¹⁴ 5d ⁰ 6s ²
71	Lutetium	Lu	[Xe]	4f ¹⁴ 5d ¹ 6s ²
72	Hafnium	Hf	[Xe]	$4f^{14} 5d^2 6s^2$
73	Tantalum	Ta	[Xe]	$4f^{14} 5d^3 6s^2$
74	Tungsten	W	[Xe]	$4f^{14} 5d^4 6s^2$
75	Rhenium	Re	[Xe]	$4f^{14} 5d^5 6s^2$
76	Osmium	Os	[Xe]	$4f^{14} 5d^6 6s^2$
77	Iridium	Ir	[Xe]	$4f^{14} 5d^7 6s^2$
78	Platinum	Pt	[Xe]	$4f^{14} 5d^9 6s^1$
79	Gold	Au	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ¹
80	Mercury	Hg	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ²
81	Thallium	Tl	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ² 6p
82	Lead	РЬ	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ² 6p
83	Bismuth	Bi	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ² 6p
84	Polonium	Po	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ² 6 _F
85	Astatine	At	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ² 6g
86	Radon	Rn	[Xe]	4f ¹⁴ 5d ¹⁰ 6s ² 6p

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

Z	Element	Symbol	Struc	ture
87	Francium	Fr	[Rn]	7s ¹
88	Radium	Ra	[Rn]	7s ²
89	Actinium	Ac	[Rn]	$6d^1 7s^2$
90	Thorium	Th	[Rn]	$6d^2 7s^2$
91	Protactinium	Pa	[Rn]	$5f^2 6d^1 7s^2$
92	Uranium	U	[Rn]	$5f^{3} 6d^{1} 7s^{2}$
93	Neptunium	Np	[Rn]	$5f^4 6d^1 7s^2$
94	Plutonium	Pu	[Rn]	$5f^{6} 6d^{0} 7s^{2}$
95	Americium	Am	[Rn]	5f ⁷ 6d ⁰ 7s ²
96	Curium	Cm	[Rn]	5f ⁷ 6d ¹ 7s ²
97	Berkelium	Bk Bk	[Rn] [Rn]	$5f^9 6d^0 7s^2$ $5f^8 6d^1 7s^2$
98	Californium	Cf	[Rn]	5f ¹⁰ 6d ⁰ 7s ²
99	Einsteinium	Es	[Rn]	5f ¹¹ 6d ⁰ 7s ²
100	Fermium	Fm	[Rn]	5f ¹² 6d ⁰ 7s ²
101	Mendelevium	Md	[Rn]	5f ¹³ 6d ⁰ 7s ²
102	Nobelium	No	[Rn]	5f ¹⁴ 6d ⁰ 7s ²
103	Lawrencium	Lr	[Rn]	5f ¹⁴ 6d ¹ 7s ²
104	Rutherfordium	Rf	[Rn]	5f ¹⁴ 6d ² 7s ²
105	Hahnium	Ha	[Rn]	$5f^{14} 6d^3 7s^2$

N.B: IUPAC Nomenclature

101	Mendelevium	Un-nil-unium	Unu
102	Nobelium	Un-nil-bium	Unb
103	Lawrencium	Un-nil-trium	Unt
104	Rutherfordium	Un-nil-quadium	Unq
105	Hahnium	Un-nil-pentium	Unp

பல்தோ்வு வினாக்கள்

(அலகு ரீதியான தொகுப்பு)

அலகு - 2

- 1. X கதிர்கள் கண்டுபிடிக்கப்பட்டது?
 - 1. தொம்சனால்

- 2. பெக்கரலினால்
- 3. உறொன்றயனால்
- 5. மோசிலியினால்
- 4. மேரிகியூரியினால்
- ஒரு மூலகம் M உறுதியான M²⁺ அயனை உருவாக்குகின்றது. அணு M உம் அயன் M²⁺ உம் ஒரே
 - 1. கரு ஏற்றமுடையவை
 - 2. இரசாயன இயல்புகளுடையவை
 - 3. இலத்திரன் நாட்டமுடையவை
 - 4. கனவளவு உடையவை
 - 5. கரைதிறனுடையவை
- உலோகங்களின் மின் இரசாயன நடத்தையை முதன்முதலாகக் கண்டுபிடித்தவர்
 - 1. பரடே 2. கல்வானி 3. யூல்
 - 4. இரதபோட் 5. கெல்வின்

அணுக்கரு இவற்றால் தொகுக்கப்பட்டுள்ளது?

- 1. புரோத்தன்கள் மாத்திரம்
- 2. நியூத்திரன்கள் மாத்திரம்
- 3. புரோத்திரன்களும் நியூத்திரன்களும் மாத்திரம்
- புரோத்திரன்கள் நியூத்திரன்கள் ஆகியவற்றுடன் மற்றைய அடிப்படைத் துணிக்கைகளும்
- சம எண்ணிக்கையுள்ள நியூத்திரன்களும் புரோத்தன்களும் இலத்திரன்களும் 17 நியூத்திரன்களும் 19 நியூத்திரன்களும் உள்ளன.

ஒரு மாணவன் ஐதரசனின் அணுநிறமாலையைப் பற்றிய பின்வரும் கூற்றுக்களைக் கூறினான். இக்கூற்றுகளில் எது பிழை யானது?

5.

- நிறமாலையின் கீழ்ச் செந்நிறப் பாகத்தில் இருக்கும் தொடர் கோடுகள் இலைமன் தொடர் என அழைக்கப்படும்.
- நிறமாலையிலுள்ள ஒவ்வொரு கோடும் ஒரு வரையறுத்த கதிர்வீசலுக்கு ஒத்தது.
- கட்புலனாகு பாகத்தில் இருக்கும் தொடர்கோடுகள் பாமர் தொடர் என அழைக்கப்படும்.
- பாமர் தொடரிலுள்ள பிரதான கோடுகள் H_α, H_β, H_γஎனக் குறிக்கப்படும்.
- அணுநிறமாலை இலத்திரன்கள் சக்தி மட்டங்களுக்கிடையே ஏற்படுத்தும் மாற்றங்களினால் ஆனது.
- வெளிப்புறத்தில் உள்ள சக்திப்படியில் ஒரேயொரு இலத்திரனைக் கொண்ட ஒரு மூலகம்
 - 1. Hg 2. Cl 3. Ca 4. Cs 5. Mg
- அணுவெண் 48 ஐ உடைய மூலகத்தின் இலத்திரன் உருவமைப்பு பின்வருவனவற்றில் எது?
 - 1. $d^{10}s^2$ 2. p^6d^{10} 3. p^6d^2 4. $d^{10}s^1$ 5. s^2p^1
- ஒரு மூலகத்தின் அணுவைப் பற்றிய பின்வரும் கூற்றுக்களில் எது உண்மை அற்றது?
 - தரப்பட்ட மூலகத்தின் எல்லா அணுக்களிலுமுள்ள இலத் திரன்களின் எண்ணிக்கையும் ஒரே அளவானது.
 - தரப்பட்ட மூலகத்தின் எல்லா அணுக்களிலுமுள்ள நியூத் திரன் களின் எண்ணிக்கையும் ஒரே அளவானது.
 - தரப்பட்ட மூலகத்தின் எல்லா அணுக்களிலுமுள்ள புரோத் தன்களின் எண்ணிக்கையும் ஒரே அளவானது.
 - தரப்பட்ட மூலகத்தின் எல்லா அணுக்களிலுமுள்ள நியூக்கிளி யோன்களின் எண்ணிக்கையும் ஒரே அளவானதன்று.
 - தரப்பட்ட மூலகத்தின் அணுவெண், அதே மூலகத்தின் அணுவொன்றின் இலத்திரன் எண்ணிக்கைக்குச் சமன்.

9. அணு எனும் பதத்தை அறிமுகம் செய்தவர்

- 1. கனிசாரோ 2. தால்றன் 3. தோபரெய்னர்
- 4. அவகாதரோ 5. மென்தலீன்

Digitized by Noolaham Foundation. noolaham.org | aavanation.org மொலித்தனத்தின் அணுஎண் 42, M³⁺ இனது வெளி இலத்திரன் உருவமைப்புக் கொண்டிருப்பது,

1. $4d^35s^0$ 2. $4d^25s^1$ 3. $4d^15s^2$ 4. $5s^25p^3$ 5. $4d^55s^1$

11. திணிவுநிறமாலைமானியை பின்வருவனவற்றுள் எதனை மிக வசதியாகத் துணிவதற்குப் பாவிக்கலாம்?

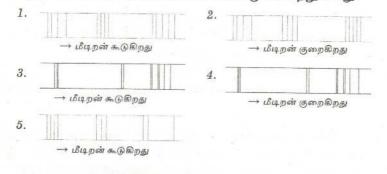
- 1. மூலகமொன்றின் முதலாவது அயனாக்கற்சக்தி
- 2. சமதானிகள் எண்ணிக்கையும் அவற்றின் சார் வளங்களும்
- 3. மூலகமொன்றினது அணுவெண்
- 4. மூலகமொன்றினது சார் உறுதிநிலைகள்
- மூலகமொன்றினால் காண்பிக்கப்படும் ஒட்சியேற்ற நிலை கள்

 12. வெள்ளியின் அணுஎண் 47 ஆகும். சில நிலைமைகளின்போது வெள்ளியிலிருந்து Ag²⁺ கற்றயன்கள் தோன்றுகின்றன. Ag²⁺ இல் அடங்கியுள்ள மொத்த d இலத்திரன்களின் எண்ணிக்கை யாது?
 1. 9
 2. 10
 3. 18
 4. 19
 5. 20

13. அணுவெண் 29 ஐக் கொண்ட மூலகத்தினால் தோற்றுவிக்கப் படும் இரு - நேர் கற்றயனின் புறச்சக்தி மட்டத்தில் காணப்படும் இலத்திரன்களின் எண்ணிக்கை யாது?

- 1. 19
 2. 18
 3. 17

 4. 9
 5. சரியான விடை தரப்படவில்லை
- 14. இலத்திரனின் ஏற்றத்தைத் திருத்தமாகத் துணிந்தவர் யார்?
 - 1. இரதபோட் 2. மிலிக்கன் 3. மோஸ்லி
 - 4. மார்ஸ்டன் 5. சட்விக்
- 15. புறச்சக்தி மட்டத்தில் ஒரு இலத்திரனை மாத்திரம் கொண்டுள்ள அணு பின்வருவனவற்றுள் எது?


1. B 2. N 3. Cl 4. Cr 5. Zn

- 16. மின் ஒர் அணு இயல்பைப் பெற்றிருக்கிறதெனும் உண்மை முத லில் யாரால் உய்த்தறியப்பட்டது?
 - 1. பரடே 2. மோஸ்லி 3. இரதபோட்
 - 4. இஸ்ற்றோனி 5. டோல்ற்றன்

17. இலத்திரனின் ஏற்றத்தைப் பரிசோதனை மூலம் அளவறி முறை யில் நிர்ணயித்தவர்

- 1. குறூக்ஸ் 2. மிலிக்கன் 3. இரகபோட்
- 4. மோஸ்லி 5. LITGL

18. ஐதரசன் நிறமாலையின் காலற்கோடுகளுடன் மிக நெருங்கிய தொடர்பைக் காட்டும் வரைபடம் பின்வருவனவற்றுள் எது?

- 19. இலத்திரனின் ______ என்னும் விகிதத்தைப் பரிசோதனை ട്ടത്തിച്ച முறையாகச் செம்மையாய்த் துணிந்தவர்
 - 1. குறூக்ஸ் 2. மிலிக்கன் 4. கொம்சன் 4. சட்விக் 5. கைகரும் மாஸ்டனும்

20. அணு எண் 51 ஐக் கொண்ட மூலகம் X இன் மிகவுந் தாழ்த்திய நிலையிலிருந்து பெறப்படும் ஐதரைட்டின் சூத்திரம்

1. XH 2. XH, 3. XH, 4. XH, 5. XH,

21. நியூத்திரன் ஒன்றின் திணிவு அண்ணளவாக,

1. $\frac{1.008}{96490}$ g 2. $\frac{0.999}{96490}$ g 3. 9.107 ×10⁻²⁷ 4. $\frac{1.0081}{1840}$ g 5. 1838 × 9.107 ×10⁻²⁷ g

22. அணுவின் கருமாதிரியுருவுடன் மிகவும் நெருங்கிய தொடர்பு டைய விஞ்ஞானி / விஞ்ஞானிகள்

- 1. கனிற்சாரோ
- 2. தொம்சனும் மிலிக்கனும்
- தூலோனும் பெற்றியும்
 கேகரும் மாஸ்டனும்

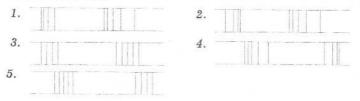
5. தொம்சன்

- 23. அணு எண் 40 ஐக் கொண்ட மூலகத்தினது அணு ஒன்றின் இறுதி உபசக்திப் படியில் உள்ள இலத்திரன்களின் எண்ணிக்கை
 - *1.* 12 *2.* 10 *3.* 4
 - 4. 2
 5. மேலுள்ளவற்றுள் எதுவுமன்று
- 24. இலத்திரன் கற்றை ஒன்றைப்பற்றிப் பின்வரும் கூற்றுகளுள் எது உண்மையானது?
 - 1. அது கதோட்டை நோக்கிக் கவரப்படுகின்றது.
 - அது N காந்த முனைவு ஒன்றை நோக்கிக் கவரப்படுகின் றது.
 - 3. அது S காந்த முனைவு ஒன்றை நோக்கிக் கவரப்படுகின்றது.
 - அது அனோட்டிலிருந்து அப்பாலே திறம்பப்படுகின்றது.
 (திருப்பப்படுகின்றது.)
 - 5. மேலுள்ள கூற்றுகள் யாவும் பொய்யானவை.

25. இலத்திரனின் ∽ி பெறுமானத்தைப் பரிசோதனை முறையாகச் செம்மையாய்த் துணிந்தவர்

- 1. மில்லிக்கன்
- 2. குறூக்ஸ்
- 3. றதபோட்
- 4. மாஸ்டென்
- 5. மேலுள்ளவர்களில் எவருமன்று
- 26. பின்வரும் கோடுகளின் கோலங்களில் எது ஐதரசனினுடைய அணுத்திருசியத்தின் (நிறமாலையின்) கோடுகளினது கோலத் துடன் மிகவும் நெருங்கிய தொடர்பைக் கொண்டது?

- மேலுள்ள கோடுகளின் கோலங்களில் எதுவும் ஐதரசனி னுடைய அணுத் திருசியத்தின் கோடுகளினது கோலத்துடன் நெருங்கிய தொடர்பைக் கொண்டதன்று.
- 27. அணு எண் 42 ஆகவுள்ள மூலகத்தினால் உண்டாக்கப்படும் +3 கற்றயனின் இறுதி உபசக்திப் படியில் இருக்கும் இலத்திரன்களின் எண்ணிக்கை
 - 1. 1 2. 2 3. 3 4. 4 5. 5


Digitized by Noolaham Houndation. noolaham.org | aavanaham.org 28. கதோட்டுக் கதிர்த் துணிக்கை ஒன்றில் இருக்கத்தக்க மின்னேற் றத்தை அளவறி முறையாகத் துணிந்தவர்

- 1. மோஸ்லி
- 2. ரதர்போட்
- 3. தொம்சன்
- 4. மாஸ்டன்
- 5. மேலே உள்ளவர்களில் எவருமன்று

29. அணு எண் 50 ஆகவுள்ள மூலகத்தின் தலைமை வலுவளவுகள்

- 1. 1 2 i b 2 2 i b 3 2
- 3. 1 2 i û 3 2 i û 4. 2 2 i û 4 2 i û
- 5. 3 2 io 5 2 io

30. பின்வரும் காட்டுருக்களில் எது அணு ஐதரசனின் திருசியத்தின் (நிறமாலையின்) கோட்டுக் காட்டுருவுடன் மிக நெருங்கிய தொடர்புடையது?

31. இயற்கையாக இருக்கும் காபனிலே 98.89 % ¹²/₆C சமதானியும் 1.11% ¹²/₆C சமதானியும் உண்டு. ¹²/₆C யின் தொடர்பு (சார்) அணுத் திணிவு 13.003 ஆகும். இயற்கையாக இருக்கும் காபனின் தொடர்பு அணுத்திணிவு

 1. 12.501
 2. 12.101

 3. 12.031
 4. 12.011

- 5. 12.003
- 32. இரசாயனவியல் பற்றிய கற்கையின் ஆரம்பக் கட்டங்களிலே அணுநிறை பற்றிய எண்ணக்கரு தொடர்பாக இரசாயன அறிஞர் களிடையே நிலவிய குழப்பத்தை நீக்கியவர்
 - 1. தாற்றன் 2. அவகாதரோ
 - 3. கனிற்சாரோ

4. மோசிலி

5. இரதபோட்

- 33. அணுத் திருசியங்கள் (அணு நிறமாலைகள்) பற்றிப் பின்வரும் கூற்றுகளில் எது உண்மையானது?
 - ஐதரசனின் திருசியத்தின் கோடுகளின் மீடிறன்கள் அதிகரிக் கும்போது கோடுகள் விரைவாக ஒருமிக்கக் கிட்ட வருகின் றன.
 - ஐதரசனின் திருசியத்தின் கோடுகளின் மீடிறன்கள் அதிகரிக்கும்போது கோடுகள் விரைவாக ஒன்றிலிருந் தொன்று பிரிகின்றன.
 - ஐதரசனின் திருசியத்திலே அடுத்து வரும் கோடுகளுக்கு இடையேயுள்ள மீடிறன் வித்தியாசம் மாறாமல் இருக்கின் றது.
 - ஐதரசன் காலல் திருசியத்தை மாத்திரம் தருகின்றது.
 - ஐதரசன் உறிஞ்சல் திருசியத்தை மாத்திரம் தருகின்றது.
- 34. இயற்கையாக இருக்கும் குளோரீனிலே ³⁵Cl சமதானியின் 75% உம் ³⁵Cl சமதானியின் 25% உம் இருக்கின்றன. இயற்கையாக இருக்கும் குளோரீனின் தொடர்பு அணுத்திணிவு
 - 1. 36 ஆகும்.
 - 2. 35.51 ஆகும்
 - 3. 35.47 ஆகும்.
 - 4. 36.5 ஆகும்.
 - வழங்கப்பட்டுள்ள தரவுகளுடன் செம்மையாகக் கணிக்கப் பட முடியாதது.
- 35. அணுக் கருவின் பருமன் முதன்முதலாகத் துணியப்பட்டது
 - 1. α துணிக்கைச் சிதறலைப் பயன்படுத்தி
 - 2. β துணிக்கைச் சிதறலைப் பயன்படுத்தி
 - உயர் கதி இலத்திரன்களைப் பயன்படுத்தி
 - நியூத்திரன் கற்றைகளைப் பயன்படுத்தி
 - 5. α துணிக்கை உறிஞ்சலைப் பயன்படுத்தி

36. அணுஎண் 43 ஆகவுள்ள மூலகத்திலிருந்து உருவாகிய +4 கற்றய னின் கடைசி உபசக்திப் படியில் இருக்கும் இலத்திரன்களின் எண்ணிக்கை

1.	1 ஆகும்	2.	2 ஆகும்	3.	3 ஆகும்
4.	4 ஆகும்	5.	5 ஆகும்		

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

- 37. அணுவின் கரு மாதிரியுருவுக்கு அடிப்படைத் தகவல்களைக் கொடுத்த பரிசோதனையில் கைகர் உம் மார்ஸ்ன் உம் பயன் படுத்திய துணிக்கைகள் சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எது மிகவும் பொருத்தமானது?
 - கைகர், மார்ஸ்டன் ஆகிய இருவரினாலும் ஆர்முடுக்கப் பட்ட துணிக்கைகள் பயன்படுத்தப்பட்டன.
 - கைகர், மார்ஸ்டன் ஆகிய இருவரினாலும் கதோட்டுக் கதிர்கள் பயன்படுத்தப்பட்டன.
 - கைகர், மார்ஸ்டன் ஆகிய இருவரினாலும் ஆர்முடுக்கப் பட்ட கதோட்டுக் கதிர்த் துணிக்கைகள் பயன்படுத்தப் பட்டன.
 - கைகர், மார்ஸ்டன் ஆகிய இருவரினாலும் ஆர்முடுக்கப் பட்ட நியூத்திரன்கள் பயன்படுத்தப்பட்டன.
 - மேலேயுள்ள எல்லாக் கூற்றுகளும் பிழையானவை.

38. அணு நிறமாலைகள் சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எது பொய்யானது?

- அணு நிறமாலைகளைக் காலல் நிறமாலைகளாகக் கற்றுக் கொள்ளலாம்.
- அணு நிறமாலைகளை உறிஞ்சல் நிறமாலைகளாகக் கற்றுக் கொள்ளலாம்.
- ஒரு அணு நிறமாலையின் நிறமாலைக் கோடுகள் தெளிவாக வேறுபடுத்தப்பட்ட கோடுகளின் பல தொடர்களாக இருக் கும்.
- உறிஞ்சல் நிறமாலையின் இருண்ட கோடுகள் தெளிவாக வேறுபடுத்தப்பட்ட கோடுகளின் பல தொடர்களாக இருப்ப தில்லை.
- 5. ஒரு அணு நிறமாலையில் இருக்கும் குறித்த ஒரு பிரகாசமான கோட்டுக்கும் கவனத்தில் எடுத்துக்கொண்ட அந்த அணு வின் குறிப்பிட்ட ஒரு சக்திப் படிக்கும் நேரடியாக ஒரு தொடர்பும் இல்லை.
- 39. அணு எண் 25 உள்ள மூலகம் வாயுநிலையிலுள்ள ஏற்றம் +1 உள்ள கற்றயன் இனம் ஒன்றை உண்டாக்குமெனக் கொள்க. இக் கற்றயன் இனத்தில் உள்ள சோடியாக்கப்படாத இலத்திரன் களின் எண்ணிக்கை

1.	1 ஆகும்	2. 2 ஆகும்	3.	5 ஆகும்
4.	6 ஆகும்	5 . 7 ஆகும்		

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

40. மூலகங்களின் அணு எண்களைத் துணிவதற்கு

- 1. காலல் நிறமாலைகள் பயன்படுத்தப்பட்டன.
- காலல் நிறமாலைகளும் உறிஞ்சல் நிறமாலைகளும் பயன் படுத்தப்பட்டன.
- 3. X கதிர் நிறமாலைகள் பயன்படுத்தப்பட்டன.
- திணிவு நிறமாலைமானி பயன்படுத்தப்பட்டது.
- மேலுள்ள ஒரு முறையும் பயன்படுத்தப்படவில்லை.

41. கதோட்டுக் கதிர்களின் ீ∕_m விகிதம் ஒரு மாறிலி என்பதை முதலிற் காட்டியவர்

- 1. மிலிக்கன் 2. பரடே 3. ரதபோட்
- 4. சட்விக் 5. மேலுள்ள ஒருவருமில்லை
- 42. ஓர் இலத்திரனில் உள்ள ஏற்றம்
 - 1. $\frac{1}{96500}$ #.Contin
 2. 10^{-19} #.Contin

 3. $\frac{1}{6.023 \times 10^{23}}$ #.Contin
 4. $\frac{96500}{6.023 \times 10^{23}}$ #.Contin
 - 5. மேற்கூறியவற்றில் எதுவுமன்று

43. யூரேனியம் அணுவின் (அணுவெண் 92 ஐயும் சார் அணுத்திணிவு, அதாவது அணுநிறை 235 ஐயும் உடையது) ஆரை பின்வரும் எவ் வரிசையில் காணப்படும்?

- 1. 10⁻⁸செ.மீ 2. 10⁻¹³செ.மீ 3. 10⁻¹²செ.மீ 4. 10⁻⁶செ.மீ 5. 10⁻⁹செ.மீ
- 44. குரோமியத்தின் இலத்திரநிலையமைப்பு பின்வருவனவற்றுள் எவ்விதமானது?
 - 1. d^5s^1 2. d^4s^2 3. d^1f^5 4. p^4d^2 5. d^4p^2
- 45. X கதிர்களைக் கண்டுபிடித்தவர்

1.	இரதபோட்	2.	மேரி கியூரி	3.	பெக்கரல்
4.	உரொஞ்சன்	5.	தொம்சன்		

46. ஒரு மூலகத்தின் அணுவெண்ணை எவ்வாறு துணியலாம்?

- 1. சார் அணுத்திணிவைத் (அணுநிறை) துணித்தல் மூலம்
- 2. திணிவு நிறமாலைமானியை உபயோகிப்பதன் மூலம்
- 3. X கதிர் நிறமாலைகளைக் கற்றல் மூலம்
- 4. X கதிர்களின் கோணல் மூலம்
- 5. சரியான விடை தரப்படவில்லை.

- 47. இயற்கையிற் காணப்படும் குளோரின் (அணுவெண் 17: சாரணுத் திணிவு 35.5) திணிவு எண்கள் 35 ஐயும் 37 ஐயும் கொண்ட இரு சமதானிகளின் கலவையினால் ஆக்கப்பட்டுள்ளது. மேற்தரப் பட்ட தரவுகளிலிருந்து பின்வரும் முடிவுகளில் எதை / எவற்றைப் பெறமுடியும்?
 - a. ³⁵Cl கதிர்த்தொழிற்பாடுடையது.
 - b. ³⁵Cl, ³⁷Cl இலும் பார்க்க மிக அதிக அளவில் இயற்கையிற் காணப்படும் குளோரினிற் காணப்படுகின்றது.
 - c. இரு சமதானிகளும் ஒரே இலத்திரன் ஒழுங்கைக் கொண்டுள் ளன.
 - d. திணிவு எண்கள் 35 ஐயும் 37 ஐயும் உடைய அணுக்களில் முறையே 17 நியூத்திரன்களும் 19 நியூத்திரன்களும் உள் ளன.
- 48. α துணிக்கைகள் பொற்தகடொன்று ஆகியவற்றை உள்ளடக்கிய இரதபோட்டின் பரிசோதனை பின்வருவதை / பின்வருவனவற் றைச் சுட்டிக்காட்டுகின்றது.
 - a. அணுக்கள் இலத்திரன்களைக் கொண்டுள்ளன.
 - ஒரு அணுவின் திணிவு அதன் மையத்திலுள்ள சிறிய கனவள விற் செறிவாக்கப்பட்டுள்ளது.
 - அணுக்கள் தான் சடப்பொருள்களின் கட்டடத் துண்டுகளா கும்.
 - d. அணுக்கள் நியூத்திரன்களைக் கொண்டுள்ளது.
- இரதபோட்டின் பொன் தகட்டுப் பரிசோதனை காட்டுவது யாதெனில்,
 - சடத்தினால் இடம்பிடிக்கப்படும் வெளியின் பெரும்பகுதி வெறுமனேயாகும்.
 - 6. நேராக ஏற்றம் பெற்றவையான கருக்களின் உருவில் சடம் குவிக்கப்பட்டிருக்கும்.
 - c. மெல்லிய படலங்கள் மாத்திரமே α- துணிக்கைகளைச் சிதறடிக்கும்.
 - d. வரையறுக்கப்பட்ட சக்தி மட்டங்களில் இலத்திரன்கள் அசைகின்றன.

50. தரப்பட்ட மூலகம் ஒன்றின் சமதானிகள்

- a. ஒரே எண்ணிக்கையான நியூத்திரன்களைக் கொண்டிருக்கும்.
- ஒரே எண்ணிக்கையானது புரோத்தன்களைக் கொண்டிருக் கும்.

- ஒரே எண்ணிக்கையான இலத்திரன்களைக் கொண்டிருக் கும்.
- d. ஒரு எண்ணிக்கையான கருவன்களை (நியூக்கிளியன்களை)க் கொண்டிருக்கும்.

51. பின்வரும் கூற்றுகளில் எவை / எது உண்மையானவை / உண்மை யானது?

- மின்புலங்கள் (மின் மண்டலங்கள்) கதோட்டுக் கதிர்களின் பாதையைப் பாதிப்பதில்லை.
- காந்தப் புலங்கள் கதோட்டுக் கதிர்களின் பாதையைப் பாதிப் பதில்லை.
- c. மின் புலங்கள் விரைவாக இயங்கும் நியூத்திரன்களின் பாதை யைப் பாதிப்பதில்லை.
- காந்தப் புலங்கள் விரைவாக இயங்கும் நியூத்திரன்களின் பாதையைப் பாதிப்பதில்லை.

52. கதோட்டுக் கதிர்த் துணிக்கைகள்

- a. எதிர் ஏற்றம் உடையன.
- b. நேர் கோடுகளில் செல்கின்றன.
- c. N காந்த முனைவு நோக்கிக் கவரப்படுகின்றன.
- d. S காந்த முனைவு நோக்கிக் கவரப்படுகின்றன.
- 53. பின்வரும் கூற்றுகளில் எவை / எது உண்மையானவை / உண்மை யானது?
 - α- துணிக்கைகள் அணுக்கருவை நோக்கிக் கவரப்படுகின் றன.
 - b. கதோட்டுக் கதிர்கள் காந்தத்தின் S முனைவை நோக்கிக் கவரப்படுவதில்லை.
 - c. நேர்க் கதிர்கள் காந்தத்தின் N முனைவை நோக்கிக் கவரப் படுவதில்லை.
 - d. X கதிர்களின் வேகத்திலும் பார்க்க α-கதிர்களின் வேகம் கூடியதாகும்.

54. அணுக்களின் இலத்திரனிலையமைப்புகளைப் பற்றிய தகவல் பின்வருவனவற்றிலிருந்து பெறப்பட்டது?

- a. அல்பாத்துணிக்கைச் சிதறல்
- b. X கதிர்க் கோணல்
- c. நிறமாலை ஆய்வுகள்
- d. அயனாக்கற்சக்திகளின் கருதுகை

- 55. கதோட்டுக் கதிர்கள் காந்த மண்டலத்தினாற் திசை திருப் பப்படும்.
- 56. கதோட்டுக் கதிர்கள் மிக மெல்லிய அலுமினியம் தகடு களுக்கூடாக ஊடுருவும்.
- 57. ஐதரசன் அணுவினது திருசி யத்தின் ஒவ்வொரு தொடரின தும் பின்னடும் கோடுகளி ரண்டுக் கிடையிலான மீடிறன் வீச்சானது திருசியக் கோடு களின் மீடிறன் அதிகரிக்கும் போது விரைவாகக் குறை வடைகின்றது.
- 58. ஐதரசன் அணுவின் நிறமாலை தொடர்கள் ஒவ்வொன்றிலும் நிறமாலைக் கோடுகளின் மீடிறன் அதிகரிக்கும்போது அடுத்தடுத்து வரும் இரண்டு நிறமாலை கோடுகளுக்கிடை யேயுள்ள மீடிறன்களின் வித்தி யாசங்களும் அதிகரிக்கின்றன
- 59. ஐதரசன் அணுவின் 1s ஒழுக் கின் இலத்திரன் அடர்த்திப் பரம்பலின் வடிவம் கோளமா கும்.
- 60. H அணுவின் காலல் நிறமாலை யும் Li அணுவின் காலல் நிற மாலையும் கிட்டத்தட்ட ஒரே மாதிரியானவை.

கதோட்டுக்கதிர்கள் நேர் ஏற்ற முடைய துணிக்கைகளைக் கொண்டிருக்கின்றன.

கதோட்டுக் கதிர்கள் α.-துணிக்கைகளைக் கொண் டது.

ஐதரசன் அணுவின் பின்வரும் சக்தி மட்டங்களின் சக்திப் பெறுமானங்கள் கருவிலிருந்து அச்சக்தி மட்டங்களுக்கான தூரம் அதிகரிக்கும்போது விரை வாக ஒன்றையொன்று அண் மிக்கின்றன.

கருவிலிருந்து தூரம் அதிகரிக் கும் பொழுது ஐதரசன் அணு வின் அடுத்தடுத்து வரும் இரண்டு சக்தி மட்டங்களின் சக்தி வித்தியாசங்களும் விரைந்து அதிகரிக்கின்றன.

போரின் கொள்கைக்கு அமைய ஐதரசன் அணுவிலிருக்கும் இலத்திரன் வட்டப்பாதையில் இயங்குகின்றது.

H, Li ஆகிய அணுக்கள் தமது ஆகவெளியேயுள்ள சக்திப் படி களில் ஒவ்வொரு இலத்தி ரனை மாத்திரம் வைத்திருக் கும்.

அலகு - 3

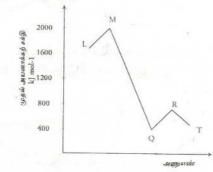
ஒரு அணுவின் ஆரை இவ்வரிசையிற் காணப்படும்?

1.	10 ⁻⁶ cm	2.	10 ⁻⁴ cm	3.	10^{-10} cm
4.	10 ⁻⁸ cm	5.	10^{-12} cm		

2. X எனும் அணுவின் இலத்திரன் உருவமைப்பு 1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ 4s²4p³ ஆகும். எனவே X இன் இரசாயனம் இதன் இரசாயனத்திற்கு ஒப்பானதாக இருக்கலாம்

- 1. நைதரசன் (7) 2. போரன் (5)
- 3. குளோரின் (17) 4. Fe (26)
- 5. Zn (30)

பின்குறிப்பு : பொருத்தமான அணு எண்கள் அடைப்புக்குறிக்குள் தரப்பட்டுள்ளன.


- 3. ஒரு மூலகம் A இன் இரண்டாவது அயனாக்கற்சக்தி
 - வாயுநிலையில் ஒரு மூல் A அணுக்களிலிருந்து 2 மூல் இலத்திரன்களை நீக்குவதற்குத் தேவையான சக்தி.
 - வாயுநிலையில் ஒரு மூல் A* அயன்களிலிருந்து ஒரு மூல் இலத்திரன்களை நீக்குவதற்குத் தேவையான சக்தி.
 - வாயுநிலையில் ஒரு மூல் A²⁺ அயன்களிலிருந்து ஒரு மூல் இலத்திரன்களை நீக்குவதற்குத் தேவையான சக்தி.
 - வாயுநிறையில் ஒரு மூல் A⁺ அயன்களிற்கு ஒரு மூல் இலத்திரன்களைச் சேர்ப்பதற்குத் தேவையான சக்தி.
 - வாயு நிலையில் ஒரு மூல் A²⁺ அயன்களிற்கு 2 மூல் இலத்திரன்களைச் சேர்ப்பதற்குத் தேவையான சக்தி.

Digitized by Noolaham Foundation. noolaham.org | aavahaham.org 4 தொடக்கம் 7 வரையுள்ள வினாக்களுக்குக் கீழே தரப்பட்டுள்ள ஐந்து (1-5) தலைப்புகளிலிருந்து விடைகளைத் தெரிவுசெய்க. ஒவ்வொரு வினாவுக்கும் மிகவும் பொருத்தமான தலைப்பைத் தெரிவு செய்க.

1. L. 2. M. 3. Q. 4. R. 5. T

ஆவர்த்தன அட்டவணையில் அடுத்துள்ள L, M, Q, R, T எனும் ஐந்து மூலகங்களின் முதல் அயனாக்கற்சக்திகளின் மாறுகை கீழே வர்ணிக்கப் பட்டுள்ளது.

L ஒரு வன்மையான ஒட்சியேற்றும் கருவியாயிருப்பதுடன் அது அறைவெப்பநிலையில் வாயுநிலையிலுள்ள ஐதரைட்டு ஒன்றை யும் உருவாக்குகிறது.

- மேற்தரப்பட்ட மூலகங்களில் எது அதிகூடிய அணுக்கனவளவைக் கொண்டிருக்கும்?
- மேற்தரப்பட்ட மூலகங்களில் எது சுவாலைப் பரிசோதனையில் ஒரு சிறப்பியல்பான நிறத்தைக் காட்டும்?
- மேற்தரப்பட்ட மூலகங்களில் எது ஈரியல்புடைய ஒட்சைட்டை உருவாக்கும்?
- 7. மேற்தரப்பட்ட மூலகங்களில் எது s² p⁵ எனும் வகையான இலத்திரன் உருவமைப்புடையது?

 அணுக் கருவொன்றின் ஆரை பின்வருவனவற்றுள் எவ் வரிசை யில் இருக்கின்றது?

1.	$10^{-2} \mathrm{cm}$	2. 10^{-4} cm	3 . 10 ⁻¹⁰	cm
4.	10 ⁻¹² cm	5. 10 ⁻⁶ cm		

Digitized by Noolaham Foundation. noolaham.org | aayanaham.org

- 9. 1s² 2s²2p⁶ 3s²3p⁶3d¹⁰ 4s¹ எனும் இலத்திரன் அமைப்பைக் கொண்டிருக்கும் மூலகம்?
 - 1. Br 2. K 3. Cu 4. Ni 5. Zn
- 10. பின்வருவனவற்றில் எது Ca²⁺ உடன் சமவிலத்திரனுக்குரிய தாகும்?
 - 1. K^+ 2. Fe^{2+} 3. Al^{3+} 4. Mg^{2+} 5. Br

11. ²⁷ Al இன் முந்நேர் (tripositive) அயன் பின்வருவனவற்றைக் கொண் டுள்ளது?

- 10 இலத்திரன்களையும் 14 நியூத்திரன்களையும்
- 2. 13 இலத்திரன்களையும் 14 நியூத்திரன்களையும்
- 10 இலத்திரன்களையும் 15 நியூத்திரன்களையும்
- 12 இலத்திரன்களையும் 15 நியூத்திரன்களையும்
- 12 இலத்திரன்களையும் 14 நியூத்திரன்களையும்
- பின்வரும் தகவல்கள் உலோகமற்ற மூலகங்கள் W, X, Y, Z உடன் தொடர்புள்ளன.

 $2 Z^{-}(aq) + X_{2}(g) \rightarrow Z_{2}(g) + X^{2-}(aq)$

 $2 X^{-}(aq) + Y_{2}(g) \rightarrow X_{2}(g) + 2Y^{-}(aq)$

W⁻ (aq) + Y₂ (g) → தாக்கமில்லை

இம் மூலகங்களின் இலத்திரனை இழக்கும் தன்மையின் ஏறு வரிசையுடன் பின்வரும் ஒழுங்குகளில் எது பொருத்தமானதாக இருக்கும்?

 1. W<Y<X<Z</td>
 2. X<W<Z<Y</td>
 3. Z<X<Y<W</td>

 4. Y<Z<X<W</td>
 5. Z<Y<W<X</td>

13. எந்த அணுவில் ஒரு இலத்திரனை அகற்றுவது மிகக் கஷ்டமான தாகும்?

1. H 2. C 3. Na 4. F 5. B

14. அணுவெண் 34 ஆக இருக்கும் மூலகத்தின் இலத்திரன் அமைப்பு எதுவாகும்?

1. $d^8 s^2 p^6$ **2.** $d^{10} s^2 p^4$ **3.** $s^2 p^6$ **4.** $d^{10} s^2$ **5.** $d^9 s^2 p^3$

15. கீழ்வரும் மூலகங்களுள் எது ஆகக் குறைந்த முதல் அயனாக்கற் சக்தியைக் கொண்டுள்ளது?

1. Be 2. B 3. N 4. Cl 5. F

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org 16. தரப்பட்டுள்ள மூலகங்களின் முதல் அயனாக்கச்சக்தியைப் பற்றிய பின்வரும் கூற்றுக்களில் எது உண்மையற்றதாகும்?

- 1. S இன் முதல் அயனாக்கற்சக்தி P ஐ விடக் குறைவானதாகும்.
- 2. Si இன் முதல் அயனாக்கற்சக்தி Al யை விடக் கூடியதாகும்.
- Al இன் முதல் அயனாக்கற்சக்தி Mg ஐ விடக் குறைவான தாகும்.
- 4. Cl இன் முதல் அயனாக்கற்சக்தி Si யை விடக் கூடியதாகும்.
- S இன் முதல் அயனாக்கற்சக்தி Mg ஐ விடக் குறைவான தாகும்.

 வெளியோட்டில் ஒரேயொரு இலத்திரனை மட்டும் கொண்டுள்ள மூலகம்

1.	Cd	2.	Cr	3	Al
4.	Mg	5.	Cl		

18. மூன்று சோடி சேரா இலத்திரன்களை உடைய உறுதியான M³⁺ அயனை மூலகம் M உண்டாக்கும். M அணு ஆறு சோடிசேரா இலத்திரன்களைக் கொண்டது. M பின்வருவனவற்றில் யாது?

1.		2.	Cr	3.	Fe
4.	Co	5.	S		

19. பின்வருவனவற்றுள் எந்த அணு மிகப் பெரிய 4 ஆம் அயனாக்கச் சக்தியைக் காட்டும்?

1.	В	2.	Al	3.	С
4.	Ne	5.	Ti		

20. O, F, Na, K, Ca, Ga, As ஆகியவற்றைக் கருதுக. இவற்றுள் மிகப் பெரிய அணு ஆரையைக் கொண்டது எது?

1.	0		2.	F

- 3. Na 4. K
- 5. சரியான விடை தரப்படவில்லை.

21. Be, B, Cl, Al, Ca ஆகிய அணுக்களைக் கருதுக. இவற்றுள் எந்த அணுவிலிருந்து மூன்று இலத்திரன்களை அகற்றுதல் மிகவும் இலகுவாக இருக்கும்?

3.

1.	Be	2.	В
4.	Al	5.	Ca

Digitized by Noolaham Foundation. noolaham.org | aayanaham.org

- 22. Y எனும் மூலகத்திலிருந்து Y²⁻ அயன்கள் தோன்றுகின்றன. Y சம்பந்தமான பின்வரும் கூற்றுக்களில் எது உண்மையாகும்?
 - இரண்டாம் அயனாக்கச்சக்தியிலும் பார்க்க மூன்றாம் அயனாக்கச்சக்தி மிகவும் கூடியதாகும்.
 - ஐந்தாம் அயனாக்கச்சக்தியிலும் பார்க்க ஆறாம் அயனாக்கச் சக்தி மிகவும் கூடியதாகும்.
 - 3. Y ஒரு தாண்டல் மூலகமாக இருக்கலாம்.
 - Y(g) + 2e → Y²⁻(g) எனும் முறை பெருமளவு சக்தியை விடுவிக் கின்றது.
 - 5. மேற்கூறப்பட்ட கூற்றுக்கள் யாவும் தவறானவை.

23. அணு X ஆனது மின்னேற்றம் +2 ஐ உடைய கற்றயன் ஒன்றை ஐதான அமிலத்துடன் உடனடியாக உண்டாக்குகின்றது. கற்றய னின் இறுதிச் சக்திப் படியிலுள்ள இலத்திரன்களின் எண்ணிக்கை

- 1. 2 2. 8
- 3. 14 4. 18
- தொடர்பாகத் திட்டமாகக் கூறமுடியாது.

24. பின்வருவனவற்றுள் எது வலிமைமிக்க மூலக்கூற்றிடைக் தவர்ச்சிகளை வெளிக்காட்டுகின்றது?

- 1.
 NH₃
 2.
 PH₃
 3.
 SiH₄

 4.
 GeH₄
 5.
 AsH₃
- 25. அணுஎண் 32 ஐ உடைய மூலகத்தின் உயர் வலுவளவு
 - **1.** 2 **2.** 4 **3.** 5 **4.** 6 **5.** 7
- 26. பின்வருவனவற்றில் எதில் முதலாம் அயனாக்கச்சக்தி அதியுயர் வானது?

1. Be 2. Mg 3. F 4. Ne 5. He

27. அணு எண் 51 ஐக் கொண்ட மூலகம் X இன் மிகவுந் தாழ்த்திய நிலையிலிருந்து பெறப்படும் ஐதரைட்டின் சூத்திரம்

1. XH 2. XH, 3. XH, 4. XH, 5. XH,

- 28. பின்வருவனவற்றுள் எது மிகவும் பெரிய அயன் ஆரையை உடையது?
 - 1. பெரிலியம் 2. சோடியம் 3. மகனீசியம்
 - 4. அலுமினியம் 5. பொற்றாசியம்

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

29. பின்வரும் கூற்றுக்களுள் எது பொய்யானது?

- அணு ஆரையானது Li < K < Rb என்னும் ஒழுங்கில் அதிகரிக்கும்.
- அயன் ஆரையானது O²⁻ < S²⁻ < Te²⁻ என்னும் வரிசையில் அதிகரிக்கும்.
- குளோரீன், புரோமீனிலும் பார்க்கக் கூடியளவு மின்மறை யானது (மின்னெதிரானது)
- குளோரீன், ஒட்சிசனிலும் பார்க்கக் கூடியளவு மின்மறை யானது (மின்னெதிரானது)
- 5. தெல்லூரியம், கந்தகத்திலும் பார்க்கக் குறைந்தளவு மின்மறையானது (மின்னெதிரானது)

30. அயனாக்கச்சக்திகள் பற்றிப் பின்வரும் கூற்றுகளுள் எது உண்மை யானது?

- ஒட்சிசனின் முதலாம் அயனாக்கச்சக்தி நைதரசனின் முதலாம் அயனாக்கச் சக்தியிலும் கூடியது.
- பெரிலியத்தின் இரண்டாம் அயனாக்கச்சக்தி இலிதியத்தின் இரண்டாம் அயனாக்கச்சக்தியிலும் கூடியது.
- அலுமினியத்தின் முதலாம் அயனாக்கச்சக்தி மகனீசியத்தின் முதலாம் அயனாக்கச்சக்தியிலும் குறைந்தது.
- 4. மேலுள்ள கூற்றுகள் யாவும் உண்மையானவை.
- 5. மேலுள்ள கூற்றுகள் யாவும் திருத்தமானவையல்ல.
- 31. Li, Be, B, C, N, O, F என்னும் மூலகங்களின் தொடரில் அதியுயர் வலுவளவு
 - 1. Li இலிருந்து F இற்குக் குறைகின்றது.
 - 2. Li இலிருந்து F இற்கு அதிகரிக்கின்றது.
 - 3. C இல் உயர்வானது.
 - 4. N இல் உயர்வானது.
 - 5. O வில் உயர்வானது.

32. அணு ஆரை அதிகரித்தல் பற்றிப் பின்வருவனவற்றில் எது உண்மையானது?

- 1. B < C < Be <Li
- 2. Na < Al < Si < Mg
- 3. Si < Al < Mg < K
- 4. Si < Al < K < Mg
- மேலே உள்ளவற்றில் எதுவும் உண்மையானதன்று.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

33. சோடியம், மகனீசியம், கல்சியம் ஆகியவற்றின் அணு ஆரைகள்

- Ca > Na > Mg என்னும் ஒழுங்குக்கு ஏற்ப குறைகின்றது.
- 2. Na > Ca > Mg என்னும் ஒழுங்குக்கு ஏற்ப குறைகின்றது.
- 3. Ca > Mg > Na என்னும் ஒழுங்குக்கு ஏற்ப குறைகின்றது.
- 4. Mg > Na > Ca என்னும் ஒழுங்குக்கு ஏற்ப குறைகின்றது.
- 5. Na > Mg > Ca என்னும் ஒழுங்குக்கு ஏற்ப குறைகின்றது.

34. பின்வருவனவற்றில் எதில் முதலாம் அயனாக்கச்சக்தி மிகத் தாழ்ந் தது?

1. Li 2. Be 3. B 4. K 5. Fr

35. ஆவர்த்தன அட்டவணையின் 5 ஆம் ஆவர்த்தனத்தில்

- 1. 18 மூலகங்கள் இருக்கின்றன.
- 2. 32 மூலகங்கள் இருக்கின்றன.
- 3. 36 மூலகங்கள் இருக்கின்றன.
- 4. 50 மூலகங்கள் இருக்கின்றன.
- 5. 54 மூலகங்கள் இருக்கின்றன.

36. அயனாக்கச் சக்திகள் பற்றிப் பின்வரும் கூற்றுகளில் எது உண்மையானது?

- Al இன் முதலாம் அயனாக்கச் சக்தியானது Mg இன் முதலாம் அயனாக்கச் சக்தியிலும் கூடியதாகும்.
- Si இன் முதலாம் அயனாக்கச் சக்தியானது S இன் முதலாம் அயனாக்கச் சக்தியிலும் குறைவானதாகும்.
- B இன் நான்காம் அயனாக்கச் சக்தியானது Al இன் நான்காம் அயனாக்கச் சக்தியிலும் குறைவானதாகும்.
- Cl இன் முதலாம் அயனாக்கச் சக்தியானது Ne இன் முதலாம் அயனாக்கச் சக்தியிலும் கூடியதாகும்.
- 5. மேலுள்ள கூற்றுகள் யாவும் பொய்யானவை.

37. அணு எண் 34 ஐக் கொண்ட மூலகத்தின் தலைமை வலுவளவுகள்

- 1. 2, 4 ஆகும். 2. 2, 6 ஆகும்.
- 3. 1, 3 ஆகும். 4. 2, 3 ஆகும்.
- 5. 3,5 ஆகும்.

38. பின்வருவனவற்றில் எது மிகப் பெரிய அயனாரையை உடையது?

1.	S ²⁻	2.	Na ⁺ .	3. F
4.	O ²⁻	5.	Mg ²⁺	-V 1

Digitized by Noolaham Foundation. noolaham.org | aavanakam.org 39. மூலகம் ஒன்றின் முதல் எழு அடுத்துவரும் அயனாக்கச் சக்திகள் முறையே பின்வருவனவாகும்: 1018, 1910, 2919, 4972, 6280, 21276, 25403 kJ mol⁻¹. இம் மூலகம்

1. ஆவர்த்தன அட்டவணையின் கூட்டம் 2 இற்குரியது.

2. ஆவர்த்தன அட்டவணையின் கூட்டம் 3 இற்குரியது.

3. ஆவர்த்தன அட்டவணையின் கூட்டம் 4 இற்குரியது.

4. ஆவர்த்தன அட்டவணையின் கூட்டம் 5 இற்குரியது.

ஆவர்த்தன அட்டவணையின் கூட்டம் 6 இற்குரியது.

40. பின்வருவனவற்றில் எது உண்மையானது?

1	96 490 C
1. அவகாதரோ மாறிலி =	2 × அல்பாத் துணிக்கைமீதுள்ள மின்னேற்றம்
	96 490 C
2. அவகாதரோ மாறிலி =	சோடியம் அயன் மீதுள்ள மின்னேற்றம்
· · · · · · ·	F
3. அவகாதரோ மாறிலி =	ஒட்சைட்டு அயன் மீதுள்ள மின்னேற்றம்
	F
4. அவகாதரோ மாறிலி =	இலத்திரன்களின் ஒரு மூலின் மீதுள்ள
	மின்னேற்றம்
5	96 490 C
5. அவகாதரோ மாறிலி =	பரோக்கன்களின் லா மூலின் மீகுள்ள

மின்னேற்றம்

41. ஆவர்த்தன அட்டவணையுடன் மிகவும் தூரத்தில் சம்பந்தப்படு பவர்கள் பின்வரும் விஞ்ஞானிகளில் எந்தச் சோடியாக இருப்பர்?

- 1. தொபரயிரும் நியூலந்த்ஸும்
- 2. தொபரயினரும் மெண்டலீவும்
- 3. அவகாதரோவும் தாற்றனும்
- 4. மெண்டலீவும் போரும்
- உலோதர் மேயரும் மெண்டலீவும்

42. அயனாக்கச் சக்திகள் சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எது உண்மையானது?

- Al இன் முதலாம் அயனாக்கச் சக்தியானது Mg இன் முதலாம் அயனாக்கச் சக்தியிலும் பெரியதாகும்.
- Mg இன் மூன்றாம் அயனாக்கச் சக்தியானது Al இன் இரண்டாம் அயனாக்கச் சக்தியிலும் பெரியதாகும்.

- S இன் முதலாம் அயனாக்கச் சக்தியானது P இன் முதலாம் அயனாக்கச் சக்தியிலும் பெரியதாகும்.
- Na இன் இரண்டாம் அயனாக்கச் சக்தியானது Mg இன் மூன்றாம் அயனாக்கச் சக்தியிலும் பெரியதாகும்.
- மேலுள்ள கூற்றுகளில் எதுவும் உண்மையில்லை.
- 43. பின்வரும் எந்த அணுவில் முதலாம் அயனாக்கச் சக்தி அதியுயர் வாக இருக்கும்?
 - 1. Na 2. Be 3. Ne 4. Xe 5. F
- 44. பின்வரும் எந்த அணுவில் மின்னெதிர்த்தன்மை அதியுயர்வாக இருக்கும்?
 - 1.
 1
 2.
 0
 3.
 C

 4.
 S
 5.
 Si

45. மூலகங்கள் தொடர்பான இரசாயனவியற் கற்றலில், பின்வருவன வற்றில் எது மிக உபயோகமானதாகும்?

- 1. அயனாக்கலழுத்தங்கள்
- 2. மின்னெதிர்த் தன்மைகள்
- 3. ஆவர்த்தன அட்டவணை
- 4. இலத்திரனாட்டங்கள்
- 5. அணுவாரைகளும் அயனாரைகளும்
- 46. பின்வரும் அணு அல்லது அயன் மாதிரிகளில் எது மிகவுயர்ந்த கனவளவை அடைத்துக் கொள்ளும்?
 - 1. Na⁺
 2. Mg²⁺
 3. Cl⁻

 4. S²⁻
 5. Li
- 47. கற்றயன் இனம் PCl₄ * இன் வடிவம்
 - 1. தள வடிவம்
 - 2. முக்கோணக் கூம்பக வடிவம்
 - 3. முக்கோண இருகூம்பக வடிவம்
 - 4. நான்முகி வடிவம்
 - 5. மேலுள்ளவற்றுள் எதுவுமன்று.

48. பின்வருவனவற்றில் எது நீர் BaCl, உடன் வீழ்படிவைத் தரும்?

1.	NH ₃	2.	HI	3.	CH ₃ Cl
4.	CH_4	5.	H ₂ S		Č.K

Digitized by Noolaham Foundation. noolaham.org | aavahaham.org 49. காரமண் உலோகங்களின் (தொகுதி IIA) அணுவண் கூடிக் கொண்டு போகும்பொழுது பின்வரும் போக்கு முறைகளில் எது/ எவை அவதானிக்கப்படும்

- a. உலோகவியல்புகள் கூடுகின்றன.
- b. வாயுநிலையில் இலத்திரனை இழக்கும் தன்மை கூடுகிறது.
- c. முதல் அயனாக்கற் சக்திகள் கூடுகின்றன.
- d. அணுப்பருமன் குறைகிறது.

50. அணுக்கள், அயன்கள் பற்றிய பின்வரும் கூற்றுக்களில் எது சரியா னது / எவை சரியானவை?

- மூலகங்களெல்லாவற்றினதும் அணுஆரைகள் ஒரே பருமன் வரிசையிலானவை.
- மூலகங்களெல்லாவற்றினதும் அயனாரைகள் ஒரே பருமன் வரிசையிலானவை.
- c. ஒரே மூலகத்தின் அணுக்கள் எல்லாம் ஒரு தன்மையானவை.
- d. ஒரு மூலகத்தின் அணுவாரையிலும் பார்க்க கற்றயனாரை பெரியது.

51. ஆவர்த்தன அட்டவணை சம்பந்தமான பின்வரும் கூற்றுக்களில் எது உண்மையானது / எவை உண்மையானவை?

- a. Li இலிருந்து F வரையிலான மூலகங்களினது உயர் ஒட்சி யேற்ற எண் 1 இலிருந்து 7 வரை ஒரு ஒழுங்கான முறையில் அதிகரிக்கின்றது.
- b. Na இலிருந்து Cl வரையுமான மூலகங்களினது உயர் ஒட்சி யேற்ற எண் 1 இலிருந்து 7 வரை ஓர் ஒழுங்கான முறையில் அதிகரிக்கின்றது.
- c. Na இலிருந்து Cl வரையுமான மூலகங்களினது உயர் ஒட்சியேற்ற நிலையிலிருந்து பெறப்பட்ட ஒட்சைட்டுகளின் அமிலத்தன்மை ஓர் ஒழுங்கான முறையில் அதிகரிக்கின்றது.
- d. Li இலிருந்து F வரையிலான மூலகங்களினது ஐதரைட்டுக்க ளினது மூலத்தன்மை ஓர் ஒழுங்கான முறையில் குறைகிறது.

52. ஆவர்த்தன அட்டவணைபற்றிப் பின்வரும் கூற்றுகளில் எவை / எது உண்மையானவை / உண்மையானது?

- கூட்டம் 4 இன் சில மூலகங்கள் இருவலுச் சேர்வைகளை
 உண்டாக்குகின்றன.
- கட்டம் 3 இன் சில தாண்டலில்லா மூலகங்கள் +4 ஒட்சி யேற்ற நிலையை வெளிக்காட்டுகின்றன.

- கூட்டம் 4 இன் சில மூலகங்கள் +7 ஒட்சியேற்றநிலையை வெளிக்காட்டுகின்றன.
- d. கூட்டம் 7 இன் சில தாண்டலில்லா மூலகங்கள் +1 ஒட்சி யேற்ற நிலையை வெளிக்காட்டுகின்றன.

53. தாண்டல் மூலகங்களுக்கு பின்வரும் கூற்றுக்கள் உண்மை யானவை?

- எல்லா மூலகங்களும் உயர் மின்கடத்து வலுவுடையன.
- b. எல்லா மூலகங்களும் கற்றயன்களை உண்டாக்கும்.
- எல்லா மூலகங்களும் உயர்வான அசையுந்தகவு இலத்திரன் களை உடையன.
- d. எல்லா மூலகங்களும் உயர் வெப்பக்கடத்துவலு உடையன.

54. Cs இன் முதலாவது அயனாக் கற் சக்தி K இன் முதலாவது அயனாக்கற் சக்தியிலும் குறைவானது. Cs கருவிலுள்ள ஏற்றம் K கருவில் உள்ள ஏற்றத்திலும் பார்க்கக் கூடியது.

- 55. பொசுபரசின் அணுக் கனவ ளவு சிலிக்கனின் அணுக் கனவளவிலும் பார்க்கக் குறைவானது.
- 56. Na⁺, K⁺ ஆகியவற்றின் அய னாரைகள் சமமானவை

கொண்டுள்ளது. Na உம் Kஉம் ஆவர்த்தன அட்ட

வணையின் தொகுதி IA இற்கு

உரித்துடையவையாகவுள்ளன.

பொசுபரசு சிலிக்கனிலும் பார்க்

கக் கூடியளவு புரோத்தன்களைக்

57. ஆவர்த்தனத்தின் குறுக்கே தொகுதி I லிருந்து தொகுதி VII வரை மூலகங்களின் அணுக்கனவளவு அதிகரிக் கின்றது. ஆவர்த்தனத்தின் குறுக்கேயுள்ள மூலகங்களின் வெளியோட்டில் இலத்திரன்கள் கூட்டப்படுகின் றன.

58. கந்தகம் S²⁻ அயனைத் தோற்றுவிக்கின்றதெனினும் குளோரீன் Cl²⁻ அயனைத் தோற்றுவிப்பதில்லை. கந்தகம் குளோரீனை விட மின் னெதிரானது.

- 59. Sn⁴' அயனின் ஆரை Sn²⁺ அய னின் ஆரையை விடப் பெரியது.
- 60. ஒட்சிசன் வாயுவிலும் பார்க்க நைதரசன் வாயு தாக்குதிறன் குறைந்தது.
- 61. ஆவர்த்தன அட்டவணை யின் நெடும் வடிவத்தின் 3 ஆம் ஆவர்த்தனத்திலே 18 மூலகங்கள் இருக்கும்.
- 62. ஆவர்த்தன அட்டவணை யின் நீண்ட வடிவத்திலே 4 ஆவது ஆவர்த்தனத்தில் 18 மூலகங்கள் இருக்கின்றன.
- 63. ஆவர்த்தன அட்டவணை யின் 4 ஆவது ஆவர்த்தனத் தில் 18 மூலகங்கள் மாத்திரம் இருக்கின்றன.
- 64. இரேடியமணுக்கள் மிகச் சுலபமாக இலத்திரன்களை இழந்து Ra²⁺ ஐ உண்டாக்கும்.
- 65. சகல தாண்டல் மூலகங்களும் உலோகங்களாகும்.

இசுத்தானிக்கு அயனின் ஏற்றம் இசுதானசு அயனின் ஏற்றத்தை விடப்பெரியது.

ஒட்சிசனிலுள்ள 2s² 2p⁴ இலத்தி ரன் ஒழுங்கிலும் பார்க்க நைதரச னிலுள்ள 2s² 2p³ இலத்திரன் ஒழுங்கு உறுதி கூடியது.

3 ஆம் சக்திச்சொட்டு மட்டத் தில் உயர்ந்தபட்சம் 18 இலத்திரன்கள் இருக்கலாம்.

4 ஆவது சக்திப் படியிலே 18 இலத்திரன்கள் மாத்திரம் இருக் கலாம்.

4s, 3d, 4p **உபபடிகளிலே** 18 இலத்திரன்களுக்கு மாத்திரம் இடமளிக்கலாம்.

கதிர்த் தொழிற்பாட்டு மூலகங் கள், உண்மையில் இலத்திரன்க ளாகிய β - துணிக்கைகளைக் காலுகின்றன.

அவற்றின் அணுக்கள் d -இலத்திரன்களை உடையன.

ക്രര്യം - 4

1. BeCl, மூலக்கூறு?

4.

- 1. தளவடிவினது
- 3. முக்கோண வடிவினது
- 5. மேற்கூறிய எதுவுமன்று
- 2. கோணவடிவினது
- நேர்கோட்டு வடிவினது

 பின்வருவனவற்றில் இதைத் தவிர மற்றையவை யாவும் சமவிலத்திரனுக்கு உரியவை?
 1. CO
 2. O₂
 3. N₂

 1.
 CO
 2.
 O₂

 4.
 CN⁻
 5.
 NO⁺

 இரு அணுக்களுக்கிடையேயான பிணைப்பு அயன் பிணைப் பெனக் கூறப்படுவது எப்பொழுதெனில்?

- ஒன்று அல்லது ஒன்றிற்கு மேற்பட்ட சோடி இலத்திரன்கள் இரு அணுக்களிடையே பங்கிடப்படும் பொழுது
- இலத்திரன்களுக்கிடையேயுள்ள நிலைமின்விசையினால் இரு அணுக்கள் ஒன்றுடன் ஒன்று சேர்ந்திருக்கும்பொழுது
- ஒன்று அல்லது ஒன்றிற்கு மேற்பட்ட இலத்திரன்களை ஒரு அணுவிலிருந்து மற்றதற்கு மாற்றீடு செய்யப்படும்பொழுது
- இரு அணுக்கள் அவற்றிற்கிடையே இலத்திரன்களை ஒன்றுக்கொன்று மாற்றீடு செய்யும் பொழுது
- 5. கருவிசைகளினால் இரு அணுக்கள் ஒன்றுடன் ஒன்று சேர்ந்திருக்கும் பொழுது

4. BCl₃ இன் மையவணுவைச் சுற்றியுள்ள வலுவளவு இலத்திரன் சோடிகளின் எண்ணிக்கை பின்வருவனவற்றில் எதுவாகும்?

- **1.** 8 **2.** 4 **3.** 3
 - 6 5. மேற்கூறியதில் ஏதுமன்று

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

5.	பின்வரும் மூலக்கூறுகளில் எந்தவொன்று கூம்பக வடிவுள்ளது?
	1. நீர் 2. அமோனியா
	3. பெரிலியம் குளோரைட்டு 4. காபன் நாற்குளோரைட்டு
	5. போரன் முக்குளோரைட்டு
6.	பின்வருவனவற்றில் எது Zn ²⁺ கற்றயனுடன் சமவிலத்திரனுக்கு
	உரியதாகும்?
	1. Cu ²⁺ 2. Ni 3. As ³⁺
	4. Co 5. Se ⁴⁺
7.	O ²⁻ பின்வருவனவற்றுள் எதனுடன் சம இலத்திர நிலையமைப்
	பைக் (isoelectronic) காட்டுகிறது?
	1. S ²⁻ 2. N ³⁻ 3. Li ⁺
	4. Be^{2+} 5. B^{3+}
8.	Li ⁺ , Be ²⁺ , Mg ²⁺ இனது அயன் ஆரைகளின் மாற்றம்
	1. $Li^+ < Be^{2+} < Mg^{2+}$ 2. $Be^{2+} < Li^+ < Mg^{2+}$
	3. $Mg^{2+} < Be^{2+} < Li^+$ 4. $Li^+ < Mg^{2+} < Be^{2+}$
	5. $Mg^{2+} < Li^+ < Be^{2+}$
9.	H ₂ S மூலக்கூறின் வடிவம் பின்வருவனவற்றில் யாது?
	1. 虎止∟ல (Linear)
	2. Свлат
	3. நான்முகி
	4. முக்கோணி
	5. மேற்கூறியவற்றில் யாதுமில்லை.
10.	பின்வரும் எச்சேர்வையின் மூலக்கூறுகளுக்கிடையிலான விசை
	கள் மிக வலிமையானவை?
	1. H ₂ O 2. NH ₃ 3. HCl
	4. CIF 5. CO ₂
11.	BF ₄ அன்னயனின் வடிவம் தொடர்பாகப் பின்வரும் எக்கூற்று மிகவும் பொருத்தமானதாகும்?
	 அது தளவடிவமுடையது. அது நான்முகி வடிவமுடையது.
	 அது நானமுக வடிவமுடையது. அது முச்சாய்வுடைய இரட்டைக் கூம்பக வடிவமுடையது.
	 அது முச்சாய் வுலாடய இரட்டைக் கூம்பக் வடிவமுடையது. எண்முகி வடிவமுடையது.
	 6. மேற்குறிப்பிட்டவற்றுள் எக்கூற்றும் பொருத்தமானதல்ல.

noolaham.org | aavanaham.org

12. உலோகங்கள் ஏன் சிறந்த மின்கடத்திகள் ஆகும்?

- 1. ஏனென்றால் உலோகங்கள் மிகவும் மின்னேரானவை.
- ஏனென்றால் உலோகங்கள் மிகை இலத்திரன்களைக் கொண் டுள்ளன.
- ஏனென்றால் உலோகங்களின் இலத்திரன் நாட்டம் குறை வாகும்.
- ஏனென்றால் உலோகங்கள் உயர் அசையுந் தகவுடைய இலத்திரன்களைக் கொண்டுள்ளன.
- ஏனென்றால் உலோகங்கள் அயன் சாலகங்களைக் கொண்டி ருக்கின்றன.

13. அணு X ஒரு அனயனை உருவாக்குகின்றது. இந்த அனயனின் கடைசி உபசக்தி மட்டத்தில் இருக்கக்கூடிய இலத்திரவ்களின் எண்ணிக்கை,

1. 6 2. 8 3. 10 4. 16 5. 18

- 14. கீழே தரப்பட்ட மூலக்கூறுகளில் நலிந்த மூலக்கூற்றிடையான கவர்ச்சியை எம் மூலக்கூறு காட்டுகிறது?
 - 1. NH₃ 2. HI 3. H₂S 4. CH₄ 5. PH₃
- இலித்தியம், பெரிலியம், மக்னீசியம் ஆகியவற்றின் கற்றயன்கள் ஆரைகள் பின்வருமாறு அதிகரிக்கின்றன.
- 16. பின்வரும் பிணைப்புகளில் எதற்கு அயன்தன்மை அதிகமாக உள்ளது?
 - 1. H-H 2. F-F 3. Cl-Br 4. N-H 5. O-H
- உலோகங்களில் மின்கடத்தில் சம்பந்தமான இலத்திரன்களின் நடத்தையானது,
 - NaCl இல் உள்ள சில குறிப்பிட்ட இலத்திரன்களின் நடத்தைக்கு ஓரளவு ஒத்ததாகும்.
 - HF இல் உள்ள சில குறிப்பிட்ட இலத்திரன்களின் நடத்தைக்கு ஓரளவு ஒத்ததாகும்.
 - C₆H₆ இல் உள்ள சில குறிப்பிட்ட இலத்திரன்களின் நடத்தைக்கு ஓரளவு ஒத்ததாகும்.

- CF₄ இலுள்ள சில குறிப்பிட்ட இலத்திரன்களின் நடத்தைக்கு ஓரளவு ஒத்ததாகும்.
- H₃N : BF₃ இல் உள்ள சில குறிப்பிட்ட இலத்திரன்களின் நடத்தைக்கு ஓரளவு ஒத்ததாகும்.
- ஒட்சிசன், புளோரின், கந்தகம் ஆகிய மூலகங்களின் அனயன் ஆரை எவ்வாறு குறையும்?
 - 1. $O^{2-} > F^- > S^{2-}$ 2. $S^{2-} > O^{2-} > F^-$
 - 3. $S^{2-} > F^- > O^{2-}$ 4. $O^{2-} > S^{2-} > F^-$
 - 5. $F' > S^{2-} > O^{2-}$

 உலோகங்கள் உயர் மின் கடத்துவலுவைக் கொண்டிருக்கின்ற மைக்குக்காரணம்,

- 1. அயன் பிணைப்புகளாகும்.
- 2. ஈதற் பிணைப்புகளாகும்.
- 3. ஓரிடத்திலிருந்து அகற்றிய இலத்திரன்களாகும்.
- 4. உயர் அசையுந் தகவுள்ள அயன்களாகும்.
- 5. மேலுள்ளவற்றுள் எதுவுமன்று.

 20. பின்வரும் பிணைப்புகளுள் எதிற் பங்கீட்டுவலுச் சிறப்பியல்பு அதியுயர்வானதாகும்.

- 1.
 H-D
 2.
 H-I
 3.
 H-S

 4.
 B-I
 5.
 Si-O
- 21. ஐதரசன் பிணைப்பு எதில் வலிமைமிக்கதாக இருக்கும்?
 - 1. திரவ நீரில்
 - 2. திரவ அமோனியாவில்
 - 3. திரவ ஐதரசன் குளோரைட்டில்
 - 4. திண்ம ஐதரசன் அயடைட்டில்
 - 5. திண்ம முப்புளோரோமெதேனில்
- 22. பின்வரும் கூற்றுகளுள் எது மிகவும் பொருத்தமானது?
 - 1. BeCl, கோண வடிவமானது.
 - 2. BCl, கோண வடிவமானது.
 - 3. NH2⁺ கோண வடிவமானது.
 - 4. மேலுள்ளவை யாவும் கோண வடிவமானவை.
 - 5. மேலுள்ளவற்றுள் எதுவும் கோண வடிவமானதன்று.

23. பொசுபரசு பற்றிய பின்வரும் கூற்றுகளில் எது பொய்யானது?

- 1. சேர்வை PCl₃ உளதாய் இருக்கின்றது.
- 2. சேர்வை PCl, உளதாய் இருக்கின்றது.
- சேர்வை P₂O₃ உளதாய் இருக்கின்றது.
- சேர்வை P₂H₅ உளதாய் இருக்கின்றது.
- 5. சேர்வை PO4 உளதாய் இருப்பதில்லை.

24. கற்றயன் இனம் PCl₄+ இன் வடிவம்

- 1. தளம் 2. சதுரத்தளம்
- 3. கூம்பகம் 4. முக்கோண இருகூம்பகம்
- 5. மேலே உள்ளவற்றில் எதுவுமன்று.

25. அணு X ஆனது அனயன் X²⁻ ஐ உண்டாக்குகின்றது. அணு Y ஆனது அனயன் Y³⁻ ஐ உண்டாக்குகின்றது. இவ்விரு அனயன்களினதும் இறுதி உபபடியில் உள்ள இலத்திரன்களின் எண்ணிக்கைகள் முறையே n_x, n_y ஆகும். n_x இற்கும் n_y இற்குமிடையே உள்ள தொடர்புடைமை யாது?

- **1.** $n_x > n_y$ **2.** $n_y = n_x$ **3.** $n_y - n_y = 1$ **4.** $n_x = n_y = 8$ **5.** $n_x = n_y = 6$
- 26. பின்வரும் மூலக்கூறுகளில் எது முனைவானதன்று?

1.	NH3	2. HCl	3. CO ₂
4.	SO ₂	5. H ₂ S	

27. ClBrFPO வின்வடிவம்

- 1. நான்முகி 2. தளம்
- 3. முக்கோண இருகூம்பகம் 4. எண்முகி
- மேலுள்ளவற்றில் எதுவுமன்று.

28. அல்பாக் கதிர்கள் பற்றிப் பின்வரும் கூற்றுகளில் எது உண்மை யானதன்று?

- அல்பாக் கதிர்களின் ஊடுருவும் வலு தாழ்ந்தது.
- அல்பாக் கதிர்களின் அயனாக்கும் வலு உயர்ந்தது.
- அல்பாக் கதிர்கள் ஒளியின் வேகத்திற்கு ஏறத்தாழச் சமமான வேகத்துடன் செல்கின்றன.
- அல்பாக் கதிர்களின் பாதை மின்புலங்களினால் மாற்றப் படுகின்றது.
- அல்பாக் கதிர்களின் பாதை காந்தப் புலங்களினால் மாற்றப் படுகின்றது.

29. பெரிக்குப் பொசுபேற்றின் இரசாயனச் சூத்திரம்

1.	$Fe(PO_4)_3$	2.	FePO
	$Fe_2(PO_4)_3$	5.	Fe ₂ (PO ₄),

3. Fe(PO₃),

30. இனம் PF₄ * இன் வடிவம்

- 1. தளம்
- 2. சதுரத்தளம்
- 3. நான்முகி
- 4. முக்கோண இருகூம்பகம்
- மேலுள்ளவற்றில் எதுவுமன்று.

31. பின்வரும் சேர்வைகளில் எது அதியுயர் அயன் சிறப்பியல்பை உடையது?

 1.
 LiCl
 2.
 HF
 3.
 LiBr

 4.
 RbCl
 5.
 HI

32. காந்தியக் கந்தச்சல்பேற்றின் இரசாயனச் சூத்திரம்

- 1. ScS₂O₃ ஆகும்.
 2. Sc(S₂O₃)₂ ஆகும்.

 3. Sc₂(S₂O₃)₃ ஆகும்.
 4. Sc₂(S₂O₃)₂ ஆகும்.

6. மேலே உள்ளவற்றில் எதுவுமன்று.

33. POCIBrF மூலக்கூறின்வடிவம்

- தளமாகும்.
 சதுரக் கூம்பகமாகும்.
- 3. எண்முகியாகும். 4. நான்முகியாகும்.
- 5. முக்கோண இருகூம்பகமாகும்.

34. ClO3 அனயனின் வடிவம் சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எது மிகவும் பொருத்தமானது?

- 1. இது நான்முகியாகும்
- 2. இது தளமாகும்.
- 3. இது T எழுத்தின் வடிவத்தை எடுக்கும்.
- 4. இது முக்கோண கூம்பகமாகும்.
- 5. இது SO3 மூலக்கூறின் வடிவத்தை உடையதாகும்.

35. பின்வரும் எந்த ஒரு மூலக்கூறில் இரு முனைவு இயல்பு ஆகக் குறைவாக இருக்கிறது?

1.	H ₂ S	2. PH ₃	3. AsH ₃
4.	H ₂ Se	5. BF ₃	5

36. நைதரசன் சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எது பொய்யாக இருத்தல் கூடும்?

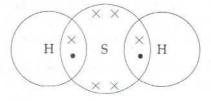
- 1. NCl, இருக்கிறது.
- 3. NO,⁺ இருக்கிறது.

2. NF₃ இருக்கிறது.

- 4. NF₅ இருக்கிறது.
- 5. N,H, இருக்கிறது.

37. இரேடியம் பரமங்கனேற்றின் இரசாயனச் சூத்திரம்

- 1. RA(MnO₄)₂ ஆகும்.
- 2. Ra(MnO4), ஆகும்.
- 3. RAMnO₄ ஆகும்.
- 4. RaMnO₄ ஆகும்.
- 5. Re(MnO4), ஆகும்.
- 38. C₆H₆ மூலக்கூறு சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எது மிகவும் பொருத்தமானது?
 - 1. C_cH_c மூலக்கூறில் C = C பிணைப்புகள் இரண்டு உள்ளன.
 - C_cH_c மூலக்கூறில் C = C பிணைப்புகள் மூன்று உள்ளன.
 - C_cH_c மூலக்கூறில் C = C பிணைப்புகள் இரண்டு உள்ளன.
 - C₆H₆ மூலக்கூறில் C = C பிணைப்புகள் ஆறு உள்ளன.
 - மேலேயுள்ள எல்லாக் கூற்றுகளும் பிழையானவை.


39. அமோனியா மூலக்கூறின் வடிவத்துக்குக் கிட்டிய வடிவத்தைக் காட்டக்கூடியது பின்வரும் இனங்களில் எது?

- 2. SOCI, 3. COCI, **1.** SO_3 **4.** CO_2^{2-} 5. BF,
- **40.** [SiF₆]²⁻ அனயனின் Si அணுவின் வலுவளவு ஒட்டில்
 - 2 இலத்திரன்கள் உண்டு.
 2. 4 இலத்திரன்கள் உண்டு.
 - 3. 6 இலத்திரன்கள் உண்டு. 4. 10 இலத்திரன்கள் உண்டு.
 - 5. 12 இலத்திரன்கள் உண்டு.

41. எதைன் மூலக்கூறு சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எது மிகவும் பொருத்தமானது?

- 1. எதைன் மூலக்கூறில் ஒரு σ பிணைப்பு உண்டு.
 - எதைன் மூலக்கூறில் இரண்டு ஏ பிணைப்புகள் உள்ளன. 2.
 - 3. எதைன் மூலக்கூறில் ஒரு π பிணைப்பு உண்டு.
 - எதைன் மூலக்கூறில் இரண்டு π பிணைப்புகளும் ஒன்றுக் 4. கொன்று செங்குத்தானவை.
 - எதைன் மூலக்கூறில் இரண்டு π பிணைப்புகளின் இரு 5. தளங்களுக்கிடையேயுள்ள கோணம் 90° ஆகும்.

- 42. PH, மூலக்கூறானது,
 - 1. தளமானதாகும்.
 - முக்கோணத்தின் மையத்தில் போரன் அணுவுடன் முக்கோணமானதாகும்.
 - 3. கூம்பகமானதாகும்.
 - 4. T வடிவமானதாகும்.
 - மேற்கூறிய வடிவங்களில் எதனையும் உடையதல்ல.
- 43. புளோரைட்டு அயன் இதன் / இவற்றின் இலத்திரன் கட்டமைப் பிற்குச் சமனான இலத்திரன் கட்டமைப்பைக் கொண்டுள்ளது?
 - a. குளோரைட்டு அயன் b. ஒட்சிசன் அணு c. O²⁻ அயன் d. நேயன் அணு
- 44. பின்வரும் வரைபடம் H₂S மூலக்கூற்றொன்றின் வலுவளவு இலத்திரன்களின் திட்டவர்ணனையாகும்?

இது,

- வலுவளவுகள் 2 ஐயும் 4 ஐயும் மாத்திரம் தான் சல்பர் (கந்தகம்) கொண்டிருக்கமுடியும் என்பதைச் சுட்டிக் காட்டு கின்றது.
- மூலக்கூற்றிலுள்ள இலத்திரன்களின் முழு எண்ணிக்கை யைச் சுட்டிக்காட்டுகிறது.
- c. ஐதரசனிலிருந்து வரும் பிணைப்பு இலத்திரன்களின் எண்ணிக்கையைச் சுட்டிக்காட்டுகிறது.
- d. சல்பரிலிருந்து (கந்தகத்திலிருந்து) வரும் பிணைப்பு இலத்திரன்களின் எண்ணிக்கையைச் சுட்டிக் காட்டுகின்றது.

45. பின்வருவனவற்றுள் எது சடத்துவ வாயு விதிக்கு கட்டுப்படும் / கட்டுப்படாது?

a.	S ²⁻	b.	N ³⁻
C.	Li*	d.	Be^{2+}

- 46. ஐதரசன் பிணைப்புகள் தொடர்பாக பின்வரும் எக்கூற்று உண்மை யானது / எக்கூற்றுக்கள் உண்மையானவை?
 - OH கூட்டம் காணப்படாவிடினும் ஐதரசன் பிணைப்புக்கள் தோன்றலாம்.
 - b. ஐதரசன் பிணைப்புக்களின்றி நாம் அறிந்து வைத்துள்ள விதத்திலான உயிர் நிலவ முடியாது.
 - c. ஐதரசன் பிணைப்பொன்றினது சக்தியானது C H பிணைப் பொன்றினது சக்தியின் அளவுக்கு உயர்வானதாக இருக்க லாம்.
 - d. ஐதரசன் மூலக்கூறில் அதிவிசேட வகையைச் சேர்ந்த ஐதரசன் பிணைப்பே நிலவுகின்றது.
- 47. பங்கீட்டு வலுச்சேர்வைகள், அயன் சேர்வைகள் என்பன தொடர் பாகப் பின்வரும் எக்கூற்று / எவ்வெக் கூற்றுக்கள் உண்மையா கும்?
 - பங்கீட்டுவலுச் சேர்வைகளின் உருகுநிலை ஒருபோதும்
 உயர்வானதாக இருக்கமுடியாது.
 - b. பங்கீட்டு வலு மூலக்கூறொன்றில் மிக மின்நேரான அணு வுக்கு / அணுக்களுக்கு எப்போதும் விழுமிய வாயுவொன் றின் இலத்திரனிலையமைப்பு கிடைக்கப் பெறுகின்றது.
 - c. அயன் சேர்வைகளில் மிக மின்னெதிரான அணுவுக்கு / அணுக்களுக்கு எப்போதும் விழுமிய வாயுவொன்றின் இலத்திரனிலையமைப்புக் கிடைக்கப்பெறுகின்றது.
 - d. உலோகங்கள் எதுவும் பங்கு பெறாமலேயே அல்லுலோகங் கள் சேர்வதால் அயன் சேர்வைகள் தோன்றலாம்.
- 48. PF₃ மூலக்கூறில் உள்ள பொசுபரசு அணு பற்றிய பின்வரும் கூற்றுக்களில் எது உண்மையானது / எவை உண்மையானவை?
 - a. இதன் வலுவளவு ஓடு 3 இலத்திரன்களை வைத்திருக்கிறது.
 - b. இதன் வலுவளவு ஓடு 5 இலத்திரன்களை வைத்திருக்கிறது.
 - c. இதன் வலுவளவு ஓடு 8 இலத்திரன்களை வைத்திருக்றிது.
 - d. இதன் வலுவளவு ஓடு 1 தனிச்சோடி வைத்திருக்கிறது.
- 49. SiF₆²⁻ அனயனின் Si அணு பற்றிய பின்வரும் கூற்றுக்களுள் எது / எவை உண்மையானது / உண்மையானவை?
 - a. அது F அணுக்களினால் எண்முகமாகச் சூழப்பட்டுள்ளது.
 - b. அதன் வலுவளவு ஓட்டில் 6 இலத்திரன்கள் உள்ளன.
 - அதன் வலுவளவு ஓட்டில் 14 இலத்திரன்கள் உள்ளன.
 - d. அதன் வலுவளவு ஓட்டில் 12 இலத்திரன்கள் உள்ளன.

Digitized by Noolaham Foundation. noolaham.org | aayanaham.org

- 50. ஐதரசன் பிணைப்புகள் பற்றிப் பின்வரும் கூற்றுகளில் எது / எவை உண்மையானது / உண்மையானவை?
 - a. NH₂ கூட்டங்களினால் ஐதரசன் பிணைப்புகளை உண்டாக் கலாம்.
 - b. SiH₂ கூட்டங்களினால் ஐதரசன் பிணைப்புகளை உண்டாக்க லாம்.
 - c. CH₃ கூட்டங்களினால் வலிமையான ஐதரசன் பிணைப்பு களை உண்டாத்கலாம்.
 - d. திரவ HF இல் வலிமையான ஐதரசன் பிணைப்புகள் இருக்கின்றன.

51. வலிமையான ஐதரசன் பிணைப்புகள்

- a. CH3OH திரவத்தில் இருக்கின்றன.
- b. CH₃COOH திரவத்தில் இருக்கின்றன.
- ட திரவ NH, இல் இருக்கின்றன.
- d. திரவ HF இல் இருக்கின்றன.
- 52. ஐதரசன் பிணைப்புப் பற்றிப் பின்வரும் கூற்றுகளில் எவை / எது உண்மையானவை / உண்மையானது?
 - a. CH₃CH₂NH₂ இல் ஐதரசன் பிணைப்பு இருக்கிறது.
 - b. CH₃SiH₂OCH₃ இல் ஐதரசன் பிணைப்பு இருக்கிறது.
 - c. CH₃CH₂OSiCH₃ இல் ஐதரசன் பிணைப்பு இருக்கிறது.
 - d. திரவ NH, இல் ஐதரசன் பிணைப்பு இருக்கிறது.
- 53. BF₃ இற்கும் N(CH₃)₃ இற்குமிடையே பிணைப்பு உண்டாகும் நடைமுறை சம்பந்தமாகப் பின்வரும் கூற்றுகளில் எவை / எது உண்மையானவை / உண்மையானது?
 - N அணுவிலிருந்து B அணுவுக்கு ஆரம்பத்தில் ஒரு இலத்திரன் தற்காலிகமாக மாற்றப்பட்டதாக எடுத்துக்கொள்ளலாம்.
 - b. B அணுவிலிருந்து N அணுவுக்கு ஆரம்பத்தில் ஒரு இலத்திரன் தற்காலிகமாக மாற்றப்பட்டதாக எடுத்துக்கொள்ளலாம்.
 - c. பிணைப்பு உண்டாவதற்கு B அணு இலத்திரன்களின் சோடி ஒன்றை வழங்கும்.
 - பிணைப்பு உண்டாவதற்கு N அணு இலத்திரன்களின் சோடி ஒன்றை வழங்கும்.

- 54. உலோகங்கள் உயர்ந்த வெப்ப கடத்துதிறனையும் மின் கடத்துதிறனையும் உடையன.
- 55. BF₃ மூலக்கூறு NH₃ மூலக் கூற்றின் உருவத்தைப் போன்று உருவத்தைக் கொண்டுள்ளது.
- 56. SiO₂ உயர் உருகு நிலையைக் கொண்டது.
- 57. Cl⁻ அயனின் அளவு Cl அணு வினளவை விடப் பெரியது.
- 58. வைரத்தின் உருகுநிலை அதி உயர்வானது.
- 59. H₃O⁺ தளமானது.
- 60. PF ,மூலக்கூறு தளமானது.
- 61. வைரத்தின் வன்மையானது திண்மக் காபனீரொட்சைட் டின் வன்மையிலும் பார்க்க ஆகவுங்கூடியது.
- 62. PBr, மூலக்கூறு தளமாகும்.

உலோகங்கள் அயனாக்கமடை கின்றன.

BF₃, NH₃ ஆகிய இரண்டும் ஒரே எண்ணிக்கையுள்ள பிணைக்கும் இலத்திரன் சோடிகளையுடை யன.

Si சக () இடையேயுள்ள வன்மை யான பிணைப்புகளினால் அது ஒரு இராட்சத மூலக்கூறு.

Cl அணுவிலிருந்து Cl⁻ அயனுக் குப் போகையில் கருவேற்றம் குறைகிறது.

வைரத்திற் பிணைப்புகள் பங் கீட்டு வலுப்பிணைப்புகளாகும்.

H₃O⁺ இல் மூன்று O - H பிணைப்புகள் உண்டு.

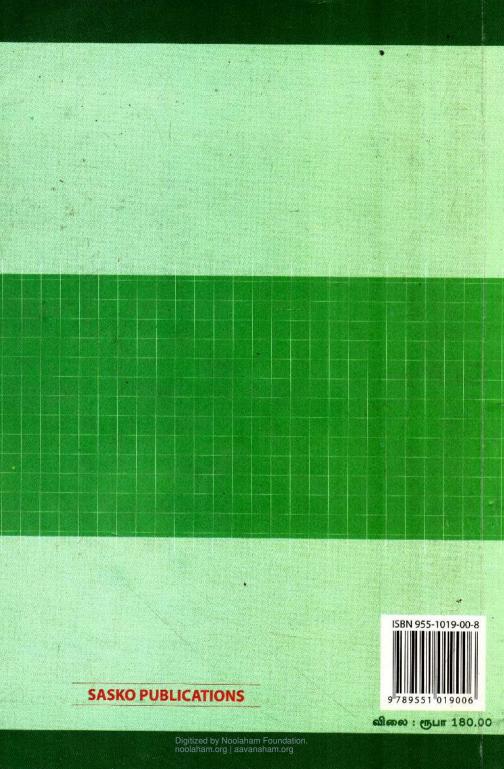
PF₃ இலே பொசுபரசு முவ் வலு வளவுள்ளது.

C - C பிணைப்பு வலிமையானது C = O பிணைப்பு வலிமையிலும் பார்க்க ஆகவுங் கூடியது.

PBr₃ மூலக்கூறில் உள்ள பொசு பரசு அணுவைச்சுற்றி ஆறு வலு வளவு இலத்திரன்கள் உண்டு.

			ഖിൽ	டகள்			
	୬	லகு – 2			କ୍ଷାର	கு – 3	
1.	3	31.	4	1.	4	34.	5
2.	1	32.	3	2.	1	35.	1
3.	2	33.	1	3.	2	36.	2
4.	4	34.	5	4.	3	37.	2
5.	1	35.	1	5.	3	38.	1
6.	4	36.	3	6.	5	39.	4
7.	1	37.	5	7.	1	40.	2
8.	2	38.	4	8.	4	41.	3
9.	2	39.	4	9.	5	42.	2
10.	1	40.	3	10.	1	43.	3
10.	2	40. 41.		11.	1	44.	2
11.	4		5	12.	3	45.	3
		42.	4	13.	4	46.	4
13.	3	43.	1	14.	2	47.	4
14.	2	44.	1	15.	2	48.	5
15.	4	45.	4	16.	5 🔨	49.	1
16.	4	46.	3	17.	2	50.	1
17.		47.	2	18.	2	51.	2
18.	3	48.	2	19.	1	52.	4
19.	3	49.	1	20.	4	53.	5
20.	3	50.	2	21.	4	54.	2
21.	open	51.	3	22.	5	55.	4
22.	4	52.	1	23.	5	56.	4
23.	4	53.	2	24.	1	57.	4
24.	5	54.	3	25.	2	58.	3
25.	5	55.	3	26.	5	59.	4
26.	5	56.	3	27.	3	60.	2
27.	3	57.	1	28.	5	61.	4
28.	5	58.	5	29.	4	62.	3
29.	4	59.	2	30.	3	63.	1
30.	1	60.	4	31. 32.	4	64.	2
				32. 33.	3 1	65.	2

Digitized by Noolahang Foundation. noolaham.org | aavanaham.org


	அல	கு - 4	an a
1.	4	32.	3
2.	2	33.	4
3.	3	34.	4
4.	3	35.	5
5.	2	36.	4
6.	2	37.	2
7.	2	38.	5
8.	2	39.	2
9.	2	40.	5
10.	1 .	41.	5
11.	2	42.	3
12.	4	43.	3
13.	1	44.	3
14.	4	45.	5
15.	1	46.	1
16.	5	47.	3
17.	3	48.	3
18.	2	49.	4
19.	5	50.	4
20.	1	51.	5
21.	1	52.	4
22.	3	53.	4
23.	4	54.	2
24.	5	55.	4
25.	5	56.	2
26.	3	57.	3
27.	1	58.	2
28.	3	59.	4
29.	2	60.	4
30.	3	61.	3
31.	4	62.	5

Digitized by Noolahan ≩oundation. noolaham.org | aavanaham.org

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

-

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

