குறியீட்டு அளவையியல் Symbolic logic

LANKA

हका. यह एत्ये की कार्य का प्राप्त के प्राप्

குறியீட்டு அளவையியல் SYMBOLIC LOGIC

கே. யுகபாலசிங்கம் B. A. Hons. (Cey.) Dip-in-Ed. (Cey.) முன்னுள் மெய்யியற்துறை உதவி விரிவுரையானர், பேரா தனேப் பல்கலேக் கழகம், யாழ்ப்பாணப் பல்கலேக் கழகம்.

வெளியீடு:

பட்டப் படிப்புகள் கல்லூரி, 148/1, ஸ்ரான்வி வீதி, யாழ்ப்பாணம். 1990

வெளியீடு — 14 (

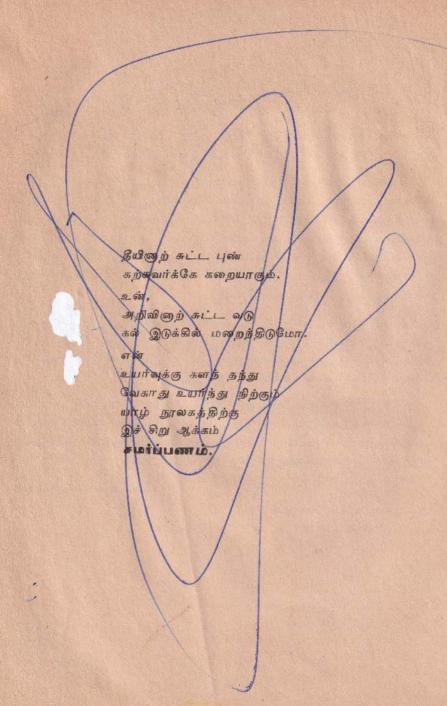
முதற் பதிப்பு டிசம்பர் — 1985 திருத்திய பதிப்பு யூன் — 1990

(சகல உரிமைகளும் ஆக்கியோனுக்குரியவை)

அச்சுப்பதிஷ: திருமகள் அழுத்தகம் சுன்ஞகம் 1990

விஸ் : ரு 30-00

முன்னுரை


கால தேவைக்கு ஏற்ப கில புதிய அலகுகளுடன் திருத்திய பதிப்பாக இந் நூஃ மீண்டும் வெளியிடுவதில் மகிழ்ச்சியடைகின்றேன்

மேஃ நாட்டில் குறியீட்டு அளவை நன்கு கதைமயமாக்கப்பட்ட அளவை முறையாக அபிவிருத்தியடைந்துள்ளது. பௌதீகம் (Physics), பொறிநுட்பம் (Engineering), கணனி (Computer) போன்ற அறி வியற் துறைகளுக்கு உதவும் முறையாகவும் வளர்ச்சியடைந்துள்ள இவ்வேளேயில், எமது மொழியில் இப்பாடநெறி அறிமுக நிஃயிலேயே இருக்கின்றது. இதனே இத்துறை சார்ந்த அறிஞர்கள் அறிந்தும் வாளாதிருப்பது கவஃக்குரியதே.

இத்துறையைச் செவ்வனே கற்க விரும்பும் என்போன்ற பலர் எதனே முல நூலாகக் கொள்வது, எதை ஏற்றுக்கொள்வது, இக் கருத்துக்கள் ஏற்புடையனவா என உரைத்துப் பார்க்க உரைகல் எதுவுமின்றிக் கல்வி உலகில் அவதியுறுகின்டேரும்.

இந் நூலின் ஆக்கத்திற்குத் தூண்டுகோலாக விருந்த பட்டப் படிப்புகள் கல்லூரிக்கும், அதன் இயக்குனர் திரு. இராசா சத்தீஸ்வரன் அவர்களுக்கும், தெளிவாக அழகுற அச்சிட்டுத் தந்த சுன்னுகம் திருமகள் அழுத்தகத்தினருக்கும் எனது நன்றிகள்.

மெ**ப்பிய**ற்துறை, பட்டப்படிப்புகள் கல்லூரி. யாழ்ப்பா**ண**ம். வே. யுகபாலசிங்கம்

Digitized by Noolaham Foundation noolaham.org | aavanaham.org

பொருள்டக்கம்						
1			1	பக்கம்		
முன்	றுரை		-	hi		
# LD IT I	ப்பணம்		/	Jiv >		
1.	பாரம்பாயிய அள்ளவை முறை		/	1		
2.1	கணித அளவை		/	3		
2.2	எடுப்புகள் //	X	4	5		
2.3	எடுப்புமாறிகள் 🏅		\	6		
2.4.	அளவை மாறிவிகள்	<i>[</i>	.\	1		
2.5.	அளவை மாறிலிகளும்		1	1		
	தமிழில் இன	எக்கும் ெ	சாற்களும்	17		
2 . 6 .	மொழி வடிவங்களேக் குறியீட	்டில் அன	மைத்தல் /	9		
2.7.	கருத்தில் கொள்ளவேண்டிய	சில அம்ச	ாங்கள் /	11		
2.8.	குறியீட்டு வடிவங்களே மொ	ழியில் பெ	பயர்த்தில்	14		
2.9.	மறுப்புமாறிகள்/		/	15		
2 . 10.	பொருளொத்த எடுப்பு வடிவ	ாங்கள்	/	15		
3.1.	வாதங்களின் வாய்ப்பிணத்	துணி தல்	/	18		
3.2.	மாறிலிகளின் பெறுமானம் .		+	19		
3.3.	வலி தான பொறிலிகள் .		<i>[</i>	20		
3.4.	உண்மை அட்டவண் நேர்மு	றை /		21		
3.5.	உண்மை அட்டவணே நேரில்மு	அறை /		24		
3.6.	உண்மைச் சந்தர்ப்ப பிரயோ	கமுறை		26		
3.7.	நற்சூத்திரங்களின் சமனேயும்	முரண்பை	யையும்			
		/	அறிதல்	27		
3.8.	முரண்மையை அறிதல் .	/		27		
3.9.	உண்மை அட்டவணேயை வன					
	குறியீட்டு வாதத்தின் வா	ய் ப்பைத்	துணி தல்	28		
4.1.				29		
4.2.			•••	30		
4 . 3 .				34		
4 . 4 .	நேர்ப் பெறுகை .		***	35		
4.5,	நேரல் பெறுகை .		***	36		
4.6.	நிபந்தீனப் பெறுகை .			38		
4.7.	துணேப்பெறுகைகள் .			37		

	VI			Licocon		
4.8.	தேற்றங்கள்	•••		39		
4.95.	பிரதியீட்டுப் பேறும் விள	rக்கமும் -		41		
	பயிற்சி	***		42		
	தமிழில் அனுமான விதிகளேக் குறிக்கும்					
		சுருக்க வ	விளக்கங்கள்	44		
	அறிந்திருக்கவேண்டிய பத	நங்கள்		50		
	உசாத்துணே நூல்கள்		***	51		
	ஆசிரியரின் ஆக்கங்கள்			52		

குறியீட்டு அளவையியல்

1. பாரம்பரிய அளவைமுறை

கிரேக்க சிந்தனேகளில் தோன்றிய அறிவியற்றுறைகளில் அளவை யியலும் ஒன்றுகும். கி. மு. 324இல் வாழ்ந்த கிரேக்க ஞானியாகிய மேஜேக்கேய அளவையியலின் தந்தையாவார். அரிஸ்டோட்டிலே இவரே அளவைமுறை பற்றியும் அளவை விதிகள் பற்றியும் திட்டவட்ட மான ஓர் ஆய்வினே நிகழ்த்தியவர். தமது உய்த்தறி அளவைமுறை பற்றிய அறிமுகத்தை அவர் மிகச் செம்மையாக ஆற்றியளித்தார் அவரது அளவையியலும் — அளவைமுறையும் இன்றும் என்பகற்க பிரயோகத்திவிருப்பதே தக்க சான்றுகும். அறிவு பெறும் வாயில்களில் ஒன்றுகிய அனுமானம் பற்றிய ஆய்வு இவரது அளவைமுறையில் அதிக முக்கியத்துவம் பெறுகின்றது. அனுமானத்தில் நியமம் என ஒன்று உளதென முதலில் தெளிவாக நிறுவியவர் அரிஸ்டோட்டிவே. இவரது நியாயத்தொடைபற்றிய கொள்கையும்—முக்கூற்றுவாத அமை வும் அறிவுபற்றிய ஆய்வாளனுக்கு அரிய கருத்துக்களே அளிப்பவை யாக உள்ளன. அளவையியல் அறிவியலாக வளர்ச்சியடைவதற்கான அணுகுமுறைகளே, அடிப்படை உண்மைகளே வெளிப்படையாக அவரே முதன்முதலாக வகுத்துத்தந்தார்.

ஆயினும், இவரது அளவைமுறை வாக்கிய (எடுப்பு) அளவை முறையாக இருந்ததால், பிற்கால அறிவியல் வளர்ச்சிப்போக்குக்கு ஏற்ப வளர்ச்சியடையவில்லே. கணி தமும் அளவையியலும் ஒரேவகை யான விஞ்ஞானத்தைச் சார்ந்தவையாயினும், கணி தத்துறை போன்று அளவைமுறை, பிற்காலத்தில் வளர்ச்சியடையவில்லே. அத்துடன் அளவைமுறை எதுன்யும் விருத்தி செய்யவில்லே. அறிவியலுக்கு அவசிய மான ஓர் அறிவியல் முறையாகக் கணி தம் வளர்ந்தமை போன்று அளவையியல் வளருவில்லே. இதுனே 18ஆம் நூற்ருண்டில் வாழ்ந்த காண்ட் (Kant) என்னும் மெய்யியலாளர் பின்வருமாறு குறிப்பிட்டார். ''18ஆம் நூற்ருண்டனவுக்குப் பிந்திய காலத்திலுமே எவ்வகை முன்னேற்றமும் அடையாது ஆரம்பெறிலேயிலிருக்கும் விஞ்ஞானம் அளவையியலே''என்று.

இதற்குப் பல காரணங்கள் உண்டு. குறியீட்டு அளவைமுறையின் வருகையும் அவசியமும் இக் காரணங்களில் தங்கியுள்ளதைக் காண லாம். அரிஸ்டோட்டிலின் அளவைமுறை மொழியாலானது. கணிதம் குறியீடுகளால் ஆன முறையாகும். அரிஸ்டோட்டிலும் அவரைப் பின்பற்றினேரும் ஆரம்பத்தில் நுணுக்கமான மொழியை உருவாக்கி யிருந்தாலும் பிற்காலத்தில் இதேபோல மொழியை வளர்க்க வாய்ப்பும் அக்கறையும் இருக்கவில்மே. இவ்வகையில் தொடர்ந்து அறிவியலுக் குரிய கிந்தனேகளேத் தெளிவாகவும், நுட்பமாகவும் முன்வைப்பதற்கு ஏற்ற சாதனமாக மொழி அமைந்திருக்கவில்லே. திந்தனேயில் தேர்ச்சி யடையோர் கூட அளவை இயலால் ஈர்க்கப்பெருது கணித இயலிலே தமது முழுக் கருத்தையும் செலுத்தியமைக்கு அதுவுமொரு காரண மாகும். அத்துடன் மொழியின் அலகுகளாகிய பதங்கள் ஈரடி இயல் படையனவாகவும் - கருத்துமயக்கத்தையுடை யணவாகவும் - கருத்தமைவில் ஒன்றேடு ஒன்று தழுவியனவாகவும் காணப்படுகின்றன. உதாரணமாக, என்ற வாக்கியத்தை நோக்கின், சிலர் ்படி இடறி வீழ்ந்தனன் '' வீட்டுப்படியில் இடறி வீழ்ந்துவிட்டான் எனவும், சிலர் பாரிய பொருட் களே நிறுக்கப் பயன்படுத்தும் படியில் இடறி வீழ்த்தவிட்டான் என வும், சிலர் படித்தல் என்ற சற்றல் தொழிலில் இடறி வீழ்ந்துவீட் இங்கு படி என்ற டான் எனவும் விளக்கம் கொள்ள இடமுண்டு. பதம் ஒன்றுக்கு மேற்பட்ட பொருளேயுடையதாக இருக்கின்றது. இவ்வாறே அன்பு. நட்பு, பாசம், நேசம் பந்தம், கருணே போன்ற பதுங்களின் கருத்துக்கள் தனித்தனியாக வரைவிலக்கணப்படுத்த முடி யாதவாறு ஒன்றேடொன்று தழுவியிருப்பதைக் காணலாம். போல், 'முடிவற்றது' என்ற பதம், வாழ்க்கை முடிவற்றது என்ற வாக்கியத்தில் ஒருவகையான அர்த்தத்தையும் இவ்விதி முடிவற்றது என்ற வாக்கியத்தில் ஒருவகையான அர்த்தத்தையும் அளிப்பதைக் **காணலாம். இக் குறைபாடுகளோடு மொழி இடத்துக்கிடம்,** ளுக்கு மக்கள் வேறுபடுவதையும் மொழிக்குமொழி இலக்கணை அமை வில் நெகிழ்ச்சிகளிலிருப்பதும், அளவைமுறை கணிதமுறை போன்று கணிகமொழி வளர்ச்சி அடையாததற்குக் காரணங்கள் எனலாம். இத்தகையன அல்ல. கணிதக் குறியீடுகள் எல்லா மக்களுக்கும் பொது வாணவையாகும். அதன் அமைவும் விதிகளும் எல்லா மக்களாலும் எவ்விடத்திலும் பொதுமொழியாக ஏற்றுக்கொள்ளமுடியாது. உதாரண மாக ' 2+2=4' என்ற விளக்கம் எல்லா மக்களுக்கும் பொதுவானதே. இதனுல்தான் அரிஸ்டோட்டில் அளவையியலில் கண்ட பகுப்பாய்வ வெற்றிகளேவிட, பைத்தோகரஸ், யூக்கிவிட் போன்ற கணித மேதைகள் தமது கணித இயலின் அமைப்பில் அளவையியல் பாகுபாட்டைப் புகுத்திக் கண்ட வெற்றி மேலானதாகும் என ஆய்வாளர்கள் குறிப் பிறவர். இவ்வாறு பாரம்பரிய அளவைமுறையில் கண்ட குறைபாடு களே குறியீட்டு அளவைமுறையின் வருகைக்கு அடிப்படைக் காரணம்க ளாயின.

2. 1. கணித அளவை

முதல் முதலில் இக் குறைபாடுகளே ஓரளவு உணர்ந்து கொண்டவர் வேபினிஸ்ட் (Leibniz—1646—1716) என்னும் ஐரோப்பிய நத்துவ ஞாணியே. இவரே குறியீட்டு அளவைமுறையின் தோற்றத்துக்கு வித் தெட்டவர். கணித முறைகளே மெய்யியவிற் பயன்படுத்தி மெய்யியற் பிரச்சினக்குத் தீர்வுகாண முற்பட்ட மெய்யியலாளர்களில் ஒருவராகிய இவர் அளவையியலிலும் அத்தகைய அவசியத்தை வலியுறுத்தினர். அளவையியலேக் கணிதத்தில் பயன்படும் உய்த்தறி நியாயமுறைக ளோடு தொடர்புபடுத்தவேண்டும் என்ற கருத்தை வலியுறுத்தினர். குறியீட்டு முறையை அளவையியலில் கையாள்வதன் மூலம் செம்மையான வாத வடிவத்தை உருவாக்கலாம் என்றுர். பதங் களேக் கணிதக் குறியிடுகள் மூலம் சீரான முறையில் கணித விதிகளுக்கு இணேயத் தொடர்புபடுத்தும்போது ஓர் உய்த்தறி அமைப்பு விரிவாக அமையும் என்றுர். இக் கருத்துக்களே நன்கு உணர்ந்துகொண்டு இவ ருடைய பகுப்பாய்வு முறையை அன்றே அளவையியலில் புகுத்தியிருந் தால் குறியீட்டுமுறையின் வளர்ச்சி என்றே ஆரம்பித்திருக்கும் ஆணுல் இவரது ஆய்வுகளும்—விளக்கங்களும் இவரைத் தொடர்ந்து துலக்கமுறவில்லே. பலரால் அறியப்படாத கருத்தாகவே இருந்தது.

19ஆம் நூற்றுண்டின் நடுப்பகு தியில் தான் மீண்டும் இக் கருத்துக்கள் வெளிச்சத்துக்குவரத் தொடங்கின. இக்காலத்தில் வாழ்ந்த பூல் (Boole,) டிமோர்கள் (De Margan) போன்ற கணித அறிஞர்கள் அளவையியலின் அடிப்படையான உண்மைகளேக் குறியீட்டு வடிவத்தில் அமைக்க முற்பட்டனர். இவர்கள் எழுதிய முறையே The Mathamatical Analysis of logic, Formal logic என்ற நூல்கள் 1847இல் வெளிவந்தன. இவர்களேத் தொடர்ந்து ஜீ. பியஞே (G. Peano), பியர்ஸ் (C. S. Peirce), சார்டர் (E. Scheder), பிருகே (G. Frege), பேட்டண்ட் ரசல் (Beetant Russell) போன்றவர்கள் குறியீட்டு அளவை முறையின் செம்மையான ஆக்க வளர்ச்சிக்கு உதவிஞர்கள். இவர்களில் இரசலேக் குறியீட்டு அளவைமுறையின் தந்தை என்றும், பிருகே என்பவரைக் கேத்திர கணித அளவை முறையின் தந்தை என்றும் அழைப்பார்கள்.

அரிஸ்டோட்டிலின் அளவையியல் பொருட்களின் வகுப்புகளேப் பற்றியது எனக் கூறிய பூல் சாதாரண அட்சரகணிதத்திலிருந்து வேறு பட்ட வேழேர் அட்சரகணித முறையைப் பயன்படுத்துவதன் மூலம், அவரின் நியாயத் தொடைக் கொள்கை முழுவதையும் உய்த்தறியலாம் என்மூர். அவரின் வகுப்புக்களே. x, y, z போன்ற குறியீடுகளால் குறிப் பதன்மூலம் நியாயத்தொடை வடிவத்துக்குரிய அட்சரகணித வடிவ முறையை விருத்திசெய்தார். ஆயினும் இவரும் அரிஸ்டோட்டிலேப் போன்றே எடுப்புக்களே எழுவாய் வகுப்பு, பயனிலே வகுப்பு என வகுத்து எடுத்தார்.

பிருகே எடுப்புக்களே எழுவாய், பயனிலே வகுப்புக்களாய் வகுத் கெடுப்பதை விடுத்து அளவையியல் எடுப்புக்கள் யாவும் உறுதியான எடுப்பக்களே எனக் கொண்டார். அளவையியலில் இருந்து ஆரம்பிக்கும் ஒன்றிலேயே கணிதத்தின் அடிப்படையைக் காணவேண்டும் குறிப்பிட்டார். கி. மு. 5ஆம் நாற்றுண்டளவில் இயுகிலிட் என்னும் கணித அறிஞர் தமது கேத்திர கணிதத்தை விருக்கி செய்கையில் கையாண்ட பொது வரைவிலக்கண முறையையே இவரும் அளவையியலே ஆராய்வதற்குப் பயன்படுத்திஞர். உய்த்தறி முறையில் சில வரைவிலக்கணங்களேயும் முதலெடுப்புக்களேயும் எடு கோளாய்க் கொண்டு கேற்றங்களே நிறுவிஞர். வாதத்தின் எடுகூற் றுக்களுக்கும் அனுமான விதிகளுக்கும் இடையிலான வேறுபாட்டைத் தெளிவாக விளக்குவதன்மூலம் அளவையியலில் குறியீட்டுமுறையின் அவகியத்தை உணர்த்தினர். அத்துடன் கணிதக் குறியீட்டின் அடிப் படையில் அமையாத பிறிதோர் குறியிட்டு வடிவமொன்றை அறிமுகம் செய்தார். இதேபோல் எண்கணிதம் முழுவதையும் அளவைமுறையின் அடிப்படையில் அமைக்கவும் முயன்ருர். இவரின் இக்ககைய பெரு முயற்கிகளே கேத்திரகணித அளவையியலின் தந்தை என அழைக்கக் காரணமாயிற்று.

இவரைத் தொடர்ந்து குறியீட்டு அளவைமுறையின் வரலாற்றில் பேட்டண்ட் ரசல், வைற்கெட் (White head) ஆகிய கணித மேதைகள் அதிக முக்கியத்துவம் பெறுகின்றனர். ரசல் எழுதிய 'பிறின்கிப்பியா மதமற்றிக்கா' (Principia Mathematica) எனும் நூல் தெளிவான குறியீட்டு அளவைமுறையின் ஆக்கத்துக்கு மிகவும் உதவியது. 20ஆம் நூற்குண்டில் விருத்தியடைந்த குறியீட்டு அளவைமுறையின் செழிப் பான வளர்ச்சிக்கு இந்நூலே களமாகியது. வேபினிஸ் என்ற தத்துவ தானியால் ஆரம்பித்து வைத்த குறியீட்டு அளவைமுறை பற்றிய கருத்தும், கணிதத்தின் அடிப்படை பற்றியதுமான கருத்தும் இந்நூலின் வருகையோடு விருத்தியடைந்தது. இதனேயே ''இந்த நூற்றுண்டில் ஏற்பட்ட மிகப் பெரிய லாபம்" என ரசல் வர்ணித்தார். இவருடன் சேர்ந்து வைற்கெட்டும் இவ்வாக்க முயற்சிக்குப் பெருந் தொண் டாற்றிஞர். சொற்களால் அமையும் மொழியானது அளவையியல் உறவுகளே விளக்க வல்லதன்று எனத் தெளிவாக விளக்கிய இவர், கணிதமும் அளவையும் முற்றொருமை உடையன என்றும் அளவையியலின் ஒரு பிரிவே கணிதம் என்றும் வரையறுத்து விளக்குவதன்மூலம் செம்மையான குறியீட்டு அளவை முறையை அமைத்து அளித்துவர்.

குறியீட்டு அளவையியுலின் வருகை வரலாற்று அமைவில் அளமை யியல் அறிஞர்களுக்குப் புதிய தென்பை அளித்தது. கணிதம் சார்ந்த அளவை அறிஞர்கள் பலர் உருவாகிஞர்கள். புதிய இதனே ரிச்சன் பேர்க் (Hans புதிய விருக்கிகள் ஏற்படலாயிற்று. Reichanback) எனும் அறிஞர் இவ்வாறு குறிப்பிட்டார்: ''அனவை அறிவுத் தோட்டத்தில் ஒருகாலத்தில் வறண்ட நிலேயில் விளமி அந்நிலம் மிகுந்த வளர்ச்சியுடைய கணிதமுறை கியது. களால் பண்படுத்தப்பெற்று விருந்தியடைந்துள்ளது '' என. குறியீட்டு அளவைமுறை நன்கு விருத்தியடைந்து வருகின்றது. தம் சார்ந்த துறைகளில் ஏற்படும் இடர்ப்பாடுகளே, முரண்பாடுகளே, தவருன கற்பி தங்களேத் தெளிவுபடுத்தும் துறையாகவும் உளது. பொறி துட்பம், கணனி போன்ற துறைகளில் குறியீட்டு அளவை முறையின் பிரயோகமுளது. இருமதிப்பு அளவை, பல்பதிப்பு அளவை, அளவை போன்ற பல அளவைமுறைகள் விருத்தியடைந்துள்ளன.

2.2. எடுப்புக்கள்

எடுப்புக்களேக் குறியீட்டு வடிவத்தில் அமைக்கும்போது முதலில் மாணவர்கள் எடுப்புக்கள்பற்றியும் — எடுப்பு வகைகள் பற்றியும் அறிந் திருத்தல்வேண்டும். குறியீட்டு அளவையின் வருகையோடு எடுப்புக்கள் பற்றிய கருத்துக்களும் விருத்தியடைந்துவந்துள்ளன. எமது மொழி தெளிவான யின் அமைவுக்குரிய வகையில் எடுப்புக்களேப்பற்றிய குறியீட்டாக்கத்துக்கு வழியாகும். அறினிருத் தலே செம்மையான பாரம்பரிய எடுப்பு வடிவங்களே மட்டும் அறிந்திருப்போர் களேக் குறியீட்டு மொழிக்குக் கொண்டுவரும்போது சில கருத்து உட்படுவதைக் எடுப்புக்களேக் மயக்கங்களுக்கு காணலாம். மொழிபெயர்க்கும்போது பின்வருமாறு வகுத்தெடுப்பது இலகுவாகும்.

- (i) எளிய எடுப்புக்கள்
- (ii) கூட்டு எடுப்புக்கள்
- (iii) இணேப்பெடுப்புக்கள்.

எளிய எடுப்புக்கள் என்பன ஒரு பொருள்பற்றி உரைப்பணவாக அமையும் எடுப்புக்களாகும். ஓர் உறுப்பு வடிவமாக அமைந்திருக்கும் விதிஎடுப்புக்கள் யாவும் எளிய எடுப்புக்களாகும். பாரம்பரிய அளவை யியலில் முற்பிரிவுத் திட்டத்திலுள்ள அறுதி எடுப்பும், புதிய வகை யீட்டில் உள்ள தொகுப்பெடுப்பும் இங்கு எளிய எடுப்பு வடிவமாகக் கொள்ளலாம். உதாரணமாக, சூரியன் உதிக்கின்றது மழை பெய்கிறது மாலா ஆலயம் சென்*ருள்*

போன்ற எடுப்புக்கள் எளிய எடுப்புக்களாகும்.

இரண்டு எளிய எடுப்புக்களேக்கொண்டமையும் எடுப்புக்களேக் கூட்டு எடுப்புக்கள் என்பர். இது இணேப்பு வடிவமாகவும், நிபந்**தனே** வடிவமாகவும், உறழ்வு வடிவமாகவும் அமையும். உதாரணமாக,

மாலா நூல் நிலேயம் செல்வாள் அத்துடன் அவள் ஆலயமும்செல்வாள்: மாலா ஆலயம் செல்வாளாயின் அவள் நூல்நி**லேய**மும் **செல்வாள்.** மாலா ஆலயம் செல்வாள் அல்லது அவள் நூல் நிலேயம் செல்வா**ள்.**

இவ்வாறு இரண்டுக்கு மேற்பட்ட எளிய எடுப்புக்களேக் கொண்டும் கூட்டு எடுப்புக்கள் அமையலாம். உதாரணமாக,

மாலா நூல் நிஃயம் செல்வாள் அத்துடன் அவள் ஆலயம் செல் வாள் அத்துடன் அவள் கடற்கரைக்கும் செல்வாள்.

இதனே இண்ப்பு எடுப்புக்கள் என்றும் அழைப்பர். பாரம்பரிய அளவையியலில் உள்ள நாற்பிரிவுத் திட்ட எடுப்புக்கள் யாவும் இங்கு எளிய எடுப்பு வடிவங்களே. விதி எடுப்புக்கள் எளிய எடுப்புக்கள் என்றும், மறை எடுப்புக்களே எளிய மறை எடுப்புக்கள் என்றும் கொள்ளலாம்.

2.3. எடுப்பு மாறிகள்

எடுப்புக்களேக் குறியீட்டு வடிவத்தில் அமைப்பதற்குப பயன்படுத் தப்படும் குறியீடுகளேயே மாறிகள் என்பர். மாறிகள் எடுப்புக்களேப் பிரதிநிதித்துவப்படுத்துவதற்காகப் பயன்படுத்தப்படும் குறியீடுக ளாகும். இன்று பொதுவாக ஆங்கில எழுத்துக்களான P.Q.R.S-T.U போன்ற வடிவங்களேயே குறியீடுகளாகப் பயன்படுத்துவர். உதா ரணமாக_த

மாலா விவேகமுடையவள் — P பாலன் அறிவுடையவன் — Q என.

இவ்வடிவங்கள் மொழிக்கு மொழி வேறுபடலாம். ஆரம்ப**காலத்தில்** தமிழில் ப, ம, ச, ற போன்ற எழுத்துக்களேப் ப**யன்படுத்தியமையு** முண்டு. Ø, 7, x போன்ற சேத்திர கணித வடிவங்களும் பயன் படுத்தப்பட்டிருக்கின்றன: கில அளவையியலாளர்கள் A, B. C, D

போன்ற எழுத்துக்களேப் பயன்படுத்தினர். X, Y போன்ற எழுத்துக் களேப் பயன்படுத்தும்போது எடுப்புக்களின் முதல் எழுத்தும் சேர்த்துக் கொள்ளப்படவேண்டும். உதாரணமாக,

மாலா அழகியவள் — Xமா என.

ஏனெனில் P என்ற எழுத்து வடிவம் குறியீட்டு அளவையில் பெறும் முக்கியத்துவம் தனி X என்ற குறியீட்டுக்கு இல்லே. அட்சரகணிதத்தில் X எனும் குறியீடு எந்த எண்ணின் மதிப்பையும் பெறவல்லதாய் இருப்பது போலவே அளவையியலிலும் 'P' போன்ற குறியீடு அந்த எடுப்பிற்கும் நிற்கவல்லது. இதனுல் இதனே எடுப்புச் சார்புகள் எனவும் அழைப்பர்:

2 . 4. அளவை மாறிலிகள்

எளிய இர குறியீட்டு எடுப்புக்களே இணேக்கும் சொல்லுக்கு வழங் கும் குறியீட்டு வடிவமே மாறிலியாகும். எளிய எடுப்புக்களேக் குறி யீட்டில் அமைப்பதன் மூலம் கூட்டு எடுப்புக்களே உருவாக்கும்போது பயன்படும் வடிவமே மாறிலி, தனியே எடுப்பு மாறிகளேக் கொண்டு கூட்டு எடுப்புக்களே உருவாக்க முடியாது. உதாரணமாக,

PQ or our.

2.5. அளவை மாறிலிகளும் – தமிழில் இணேக்கும் சொற்களும்

i. மறுப்பு மாறிலி ··--அன்று, அல்ல. இல்ஃ, (என்பது உண்மையன்று)

- ii. இணேப்பு மாறிலி ∧ - அத்துடன், ஆளுல், ஆனுலும், உம்
- iii. நிபந்தனே மாறிலிகள்
 →- ஆயின், எனின், ஆல், ஆகவே, அவ்வாருயின்
 ← ஆயினே (வலிதான நிபந்தனே)
 ← → ஆயின் ஆயினே (இருபால் நிபந்தனே)
- iv. உறழ்வு மாறிலிகள் ∨ — அல்லது, (மெல் உறழ்வு) அன்றில் ▽ — வல் உறழ்வு§

இங்கு, எமது மொழியில் வலிதான நிபந்தணே, வல்உறழ்வு போன்ற வற்றுக்கு ஏற்ற எடுப்புக்களே நிச்சயித்துக் கூறுவது கடினம்: வலிதான நிபந்தவேயையும், வல்உறழ்வையும் பல்கலேக்கழக மாணவர் எடுப்பின் அமைவிலிருந்தே கண்டுகொள்ளவேண்டும். நிபந்தவேயில் முக்கூற்று நிச்சயமாக, உறுதியாக விதித்து அமையும்போது வலிதான நிபந்தவேயாகும்: உதாரணமாக,

மாலா நிச்சயம் ஆலயம் வந்தால்தான் பாலனும் ஆலயம் வருவான்.

மாலா ஆலயம் வந்தால் மட்டுமே பாலனும் ஆலயம் வருவான். வலிதான உறழ்வும் இவ்வாறே.

ஒ**ன்**றில் மாலா நிச்சயம் ஆலயம் வருவாள் அல்லது நூல்நிலேயம் செல்வாள்:

மாலா ஆலயம் வருவாள் அல்லது மாலா ஆலயம் வரமாட்டாள்.

இருபால் நிபந்தணே எடுப்பும் இவ்வாறே. ஆயின்ஆயினே எனும் இணேக்கும் சொல் இடம் பெருமலும் எடுப்புக்கள் அமைந்து வரலாம். உதாரணமாக,

வேலேயையும் செய்து முடித்தான் அதற்**சேற்ற கூலியையும்** பெற்ருன்.

இன்று மாணவர் வசதி கருதியே ஆயினே, ஆயின்ஆயினே என்ற சொற்கள் சேர்க்கப்படுகின்றன. தமிழில் குறியீட்டு அளவை முறை அறிமுகஞ் செய்யப்பட்டு 1981ஆம் ஆண்டு வரை இவ்வாறே பயன் படுத்தப்பட்டு வந்தன. சு. பொ. த. உயர் வகுப்புகளுக்கு குறியீட்டு அளவைமுறை அறிமுகம் செய்யப்பட்ட போது, கில அஞைகள் நீக்கப் பட்டிருந்ததாலேயே இவை இடம் பெறவில்லே. இன்று காலதேவைக்கு ஏற்ப மாணவர்களின் பூரணமான அறிவு வேண்டப்படுவதால் மாண வர்கள் இவற்றையும் அறிந்திருத்தல் அவசியம். உதாரணமாக, 1989ஆம் ஆண்டு க. பொ. த. உயர்தர அளவையியல் விருக்களேக் கவனத்தில்

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org எடுத்துக் கொள்க. மேற் குறிப்பிட்ட மாறிலிகளுக்குரிய இண்க்கும் சொற்கள் தமிழில் அணேகமுண்டு. அவற்றை வாதங்களின் அமைவி லிருந்தே இணங் கண்டுகொள்ளவேண்டும். பொதுவாக வாதங்களில் எடுப்புக்களின் அமைவைப் பொறுத்து பொருத்தமான இணேக்கும் சொற்களுக்குரிய குறியீட்டு மாறிலியைப் பயன் படுத்துதல் பயிற்கியால் ஏற்படும். போதிய பயிற்கி இண்மையும், மொழிக் குறைபாடுமே மாறிலி களேப் பிரயோகிப்பதில் ஏற்படும் தவறுகளுக்குக் காரணம்.

2.6. மொழிவடிவங்களேக் குறியீட்டில் அமைத்தல்

- (1) மாலா நூல்நிறையம் சென்றுள். P
- (2) மாலா நூல்நிவேயம் செல்லவில்கோ: —P
- (3) மாலா நூல்நிலேயம் செல்வாள் அத்துடன் அவள் ஆலயமும் செல்வாள்.

(PAQ)

- (4) மாலா நூல்நிலேயம் சேல்லவில்லே எ**பை**து பொய் ——P
- (5) மாலா நூல்நிலேயம் செல்வாள் ஆயின் அவள் ஆலயமும் செல்வாள்:

(P -> Q)

- (6) மாலா நூல்நினேயம் செல்வாள் அல்லது அவன் ஆலயம் செல்வான்.
 (P ∨ Q)
- (7) மாலா நூல்நினேயம் செல்வாள் ஆயினே அவன் ஆலயமும் செல்வான். (P ← O)
- (8) மாலா நூல்நிலேயம் செல்வாள் ஆயின் ஆயினே அவள் ஆலய மும் செல்வாள். (P ← → → O)
- (9) மாவா ஆலயம் செல்வான் என்பதும் அவள் நூல் நிலேயம் செல்வான் என்பதும் பொய், — (P ∧ O)
- (10) மாலா ஆலயம் வந்தால்ஒழியப் பாலன் ஆலயம் வகுவதற்கில்கே. (P∨ — Q)

(11) மாலா ஆலயம் வருவான் அல்லது அவள் நூல்நிலேயம் செல் வாள் என்பதும் உண்மையல்ல.

 $-(P \lor Q)$ எனவும் $(-P \land -Q)$ எனவும் அமைய லாம்:

(12) மாலா நூல்நிலேயம் செல்வாள் அத்துடன் அவள் ஆலயமும் செல்வாள். அவள் ஆலயம் செல்வாள் ஆயின் பூங்கானிற்கும் செல்வாள்.

$[(P \land Q) \land (Q \longrightarrow R)]$

(13) மாலா நூல்நிலேயம் செல்வாள்ஆயின் அவள் ஆலயமும்செல்வாள் அவள் ஆலயத்திற்குச் செல்வாள் அல்லது அவள் பூங்காவிற்குச் செல்வசன். ஆகவே மாலா நூல்நிலேயம் செல்வதும் அவள் ஆலயம் செல்வதும் உண்மை.

$[(P \longrightarrow Q) \land (Q \lor R)] \longrightarrow (P \land Q)$

- (14) மாலா நூல்நிலேயம் செல்வாள்எனின் நாதன் விரிவுரைக்குச் செல்வான். டாலன் ஆலயம் செல்வான் ஆயினே மாலா நூல் நிலேயம் செல்வான். மாலா பூங்காவிற்குச் சென்முலும் நாதன் நூல்நிலேயம் செல்வான். ஆகவே மாலா தூல்நிலேயம் செல்வான் ஆயின் பாலன் ஆலயம் செல்வான்.
 - (அ) P மாலா நூல்நிலேயம் செல்லுதல்

Q — நாதன் விரிவுரைக்குச் சென்றுன்.

R — பாலன் ஆலயம் சென்றுன்.

S — மாலா பூங்காவிற்குச் சென்றுள்

T — நாதன் நூல்நிலேயம் சென்றுன்.

(3)
$$[(P \longrightarrow Q) \land (R \longleftarrow P) \land (S \land T)] \longrightarrow (P \longrightarrow R)$$

$$(\textcircled{a}) \quad \Big[(P \longrightarrow Q) \land (P \longrightarrow R) \land (S \land T) \Big] \longrightarrow (P \longrightarrow R)$$

(15) மாலா நூல்நிலேயப் செல்வாள் என எடுத்துக்கொண்டால் அவள் ஆலயம் செல்வாளாயின் அவள் பூங்காவிற்கும் செல்வாள். ஆஞல் பாலன் விரிவுரைக்குச் செல்வவில்லே. ஆகவே பாலன் நூல்நிலே யம் சென்றதும் மாலா ஆலயம் சென்றுள் என்பதும் பொய்.

去供養毒素 多亡上的

P — மாலா தூல்நிலேயம் செல்வாள்.

Q — அவள் ஆலயம் செல்வாள்.

R — அவள் பூங்காவிற்குச் செல்லுதல்.

S — பாலன் விரிவுரைக்குச் செல்லுதல்.

T — பாலன் நூல்நிலேயம் செல்லுதல்.

$$\left[\left((P \longrightarrow (Q \longrightarrow R)\right) \land -S\right] \longrightarrow -\left(S \land Q\right)$$

2 . 7. கருத்திற் கொள்ளவேண்டிய சில அம்சங்கள்

இங்கு 1ஆம், 2ஆம் எடுப்புக்கள் எளிய எடுப்புக்கள் என்பதால் அவற்றின் அடைப்புக்குறிக்குள் உள்ளடக்களில்லே. ஏனேய எடுப்புக்கள் யாவும் கூட்டு எடுப்புக்களாக அமைவதால் அவற்றின் அடைப்புக் குறிக்குள் உள்ளடக்கலாம்.

12ஆவது குறியீட்டு வடிவத்தில் இரண்டு கட்டு எடுப்புக்கள் மட்டும் தரப்பட்டு இருப்பதால் இரண்டையும் ஒன்றுக இண்ப்பதற்காக இரண்டு கூட்டு எடுப்புக்கீள்யும் ஒரு பெரிய அடைப்புக் குறிக்குள் உள்ளடக்கலாம். அடைப்புக் குறிகள் குறியீட்டுமுறையின் ஒரு பகுதியாகும். ஒரு வாதத்தின் ஒழுங்கும் உறுதியும் அதன் அமைப்பில் தங்கியுள்ளது. அடைப்புக்குறிகள் மூலமே அமைப்பை நிர்ணயிக்க லாம். ஒரு செம்மையான குறியீட்டுவாதம் அடைப்புக்குறிக்கால் ஒழுங்காக வகுத்து வரையறுக்கப்பட்டிருக்கும். ஆக்கப்படும் குறியீட்டுத் தொடர்களேத் தொகுதியாக்குவதற்கும் நிறுத்தல் அடையானங்களுக்காகவும் இவை பயன்படும்.

13ஆவது அமைப்பில் ஆகவே என்ற சொல் இடம்பெறுவதைக் கவனியுங்கள். ஒரு வாதத்தின் முடிவிடம் அதுவே. வாதத்தின் முடிச்சு என்றுங் கூறுவர். முதற் கூறப்பட்ட நியாயங்கள் யாவும் இறுதியாக விதிக்கப்படுகின்றது. அதனுல் ஆகவே என அமையும் இடத்தில் குறி வீட்டுத் தொடர்கள் தொகுதியாக்கப்படுகின்றன. இங்கு ஆகவே என்ப தற்கு 'ஃ' என்ற அடையாளத்தையோ, —> எனும் அடையாளத் தையோ பயன்படுத்தலாம். பெறுகை முறைகள் மூலம் வாதங்களின் வாய்ப்பை ஆராயும் குறியீட்டு வாதங்களில் 'ஃ' அடையானத்தைப் பயன்படுத்துவது பொருத்தமானதாகும்.

14ஆவது வாத அமைப்பில் (அ) பகுதி சுருக்கத்திட்டம் என்பர்.
பெரிய குறியீட்டுவாதங்களில் எடுப்புக்கள் யாவும் தெளிவாக இடம்
பெறுவதற்கு முதறிகண் சுருக்கத்திட்டம் ஒன்றை வகுத்தல் நன்று.
எடுப்புக்கள் தவறி விடாதிருப்பதற்கும் இது உதவும்: சில எடுப்புக்கள்
ஒரேமாதிரியான எடுப்பாக ஆரம்பத்தில் தென்படும். ஆகவே சுருக்
கத் திட்டம் ஒன்றை முதலில் தருதல் நன்று.

14ஆவது வாத அமைப்பில் (ஆ) பகுதி வாதம் குறியீட்டில் அமைக்கப் பட்டுள்ளது. இங்கு 'ஆயினே' என்ற மாறிலி அப்படியே மொழி பெயர்க்கப்பட்டுள்ளது. குறியீட்டுவாதத்தின் வாய்ப்பை ஆராயும்போது குறிப்பிட்ட குறியீட்டின் வடிவத்தை (இ) பகுதியில் உள்ளது போல் அமைத்துக்கொள்ளலாம். வாதத்தின் வாய்ப்பை ஆராய்வது எளிதாக அமையும்:

15ஆவது வாத அமைப்பில் ஆயின் என்பதற்கும், 'என எடுத்துக் கொண்டால்' என்பதற்குமிடையில் குறியீட்டு அமைவில் வேறுபடா திருப்பதைக் கவனியுங்கள். அதற்கேற்பவே அடைப்புக் குறிகள் அமைதல் வேண்டும் என்பது பொய்என முடிபுக்கூற்று அமைந்துள் ளது. இங்கு மாறிகளின் மறுப்பாக அன்றி கூட்டெடுப்பின் மாறிலி யின் மறுப்பாகவே 'என்பது பொய்' அமைகின்றது.

இவ்வாறு அமையும் குறியீட்டு வாதவடிவங்கள் எடுப்புக்களின் எண்ணிக்கையைப் பொறுத்து விரிவுபடும். வாதங்களேக் குறியீட்டு வடிவத்திற்குக் கொணரும்போது சுருக்கத்திட்டம், குறியீட்டாக்கம், குறியீட்டு வடிவம் என்ற ஒழுங்கில் அமைப்பது நண்று. அவ்வாறு அமைக்கும்போது வாதவடிவம் திட்டவட்டமானதாகவும் செம்மையான தாகவும் அமையும்.

உதாரணமாக,

இசை இன்பமானதாயின் இசை மகிழ்ச்சியானது. இசை மகிழ்ச்சியைத் தரா அன்றில் இசை துன்பத்தைத் தரும். இசை இ**ன்பமான** தல்ல. ஆகவே இசை மகிழ்ச்சியைத் தருமாயி**ல் இசை துன்பமானதே.**

சுருக்கத்திட்டம்

P — இசை இன்பமானது.

Q — இசை மகிழ்ச்சியானது.

R — இசை துன்பத்தைத் தரும்.

$$(P \longrightarrow Q) \cdot (-Q \vee R) \cdot -P \circ (Q \longrightarrow R)$$
 குறியீட்டாக்கம்.
$$\left[((P \longrightarrow Q) \wedge (-Q \vee R)) \wedge -P \right] \longrightarrow (Q \longrightarrow R)$$
 குறியீட்டு அடிவம்.

அழகு இன்பமானது. அழகு இன்பமானதல்ல அன்றில் அழகு விரும்பத்தக்கது. இசை அழகானது எனின் அழகு விரும்பத்தக்கது அல்ல. ஆனுழம் அழகு கொடுமையானது, ஆகவே அழகு இன்பமானது எனின் அழகு மகிழ்ச்சியானது. 本仍各本身最上上的

P — அழகு இன்பமானது.

Q — அழகு விரும்பத்தக்கது R — இசை அழகானது.

S — அழகு கொடுமையானது.

T — அழகு மகிழ்ச்சியானது.

P.
$$(-P \lor Q) \cdot (R \longrightarrow -Q) \land S \circ (P \longrightarrow T)$$

P $\land [(-P \lor Q) \land ((R-)-Q) \land S)] - (P \longrightarrow T)$

இங்கு தனி எடுப்புத் தரப்படும்போது அது வடிவத்தில் காட்டப் பட்டதுபோல் தனித்தே அமையவேண்டும். கூட்டு எடுப்போடு சேர்த்து அடைப்புக்குறிக்குள் உள்ளடக்கக்கூடாது. (P \ (-P \ V Q)) என அமைத்தால் கருத்து மாறுபடும். அதேவேளே, ஆனும் அழகு கொடுமையானது என்ற எடுப்பு அங்கு இணக்கப்படவேண்டும். தரப் பட்ட உதாரணத்தில் அழகு இன்பமானது, என முதல் எடுப்புத் உளித்தே உளது. ஆனுலும் அழகு கொடுமையானது எனும் எடுப்பு மூதற் கூட்டு எடுப்போடு இணேகிறது என்பதை அவதாணிக்குக. மாறிலி களின் இணேப்பை வெளிப்படுத்துவதுடன் பொருள் மாற்றம் ஏற் படாமல் இருக்கவும் அடைப்புக்குறிகள் அவசியமாகும். மாறிலிகளேப் போன்றே அடைப்புக்கள் மாறி, மாறிலிகளேயும் கட்டுப்படுத்துகின்றன. இவற்றின் எல்வேகளே அடைப்புக்களே திர்ணயிக்கின்றன.

தமிழில் அமைந்திருக்கும் எடுப்புக்களேக் குறியீட்டு மொழிக்கு மொழிபெயர்க்கும் திறன் பயிற்கியால் வருவதாகும். நிபந்தனே, உறழ்வுச் சொற்களுக்குரிய குறியீட்டு வடிவம் ஒன்று தான். ஆனுல் அவ்வடிவத்துக்குரிய தமிழ்ச் சொற்கள் பல உண்டு.

அடைப்புக் குறிகளின் ஒழுங்கு

$$\begin{cases}
\left[(()) \right] \\
(P \to Q) \\
((P \to Q) \to R)
\end{cases}$$

$$\left[(P \to Q) \land (Q \to R) \right] \to (P \to R) \\
\left[((P \to Q) \land (Q \to R) \land (P)) \right] \to (P \to R)
\end{cases}$$

$$\left[(P \to Q) \land (Q \to R) \land (P) \right] \to (Q \to R)$$

$$\left[(P \to Q) \land (Q \to R) \land (P \to Q) \right] \to (Q \to P)$$

$$\left[((P \to Q) \land P) \right] \to \left[((P \to Q)) \right] \right\} \to (Q \to P)$$

2 . 8. குறியீட்டு வடிவங்களே மொழியில் பெயர்த்தல்

குறியீட்டு அளவை இயலில் குறியீட்டு எடுப்புக்களேயும் குறியீட்டு வாதங்களேயும் மொழியில் பெயர்த்லும் ஒரு முக்கிய அம்சமாகும். இப்பயிற்கி குறியீட்டைத் தெளிவாக அமைக்கவும், மொழி அமைதி யைப் பெறவும், செம்மையாகச் கிந்திக்கவும் உதவுகின்றது.

குறியீட்டு வாதத்தை மொழியில் பெயர்க்கும்போது முதலில் அதில் இடம்பெறும் மாறிகளுக்கேற்ற சுருக்கத் திட்டம் ஒன்ற வரைதல் வேண்டும்.

உதாரணமாக

[(P→Q)∧(-Q→R)] → -- P எனும் வடிவில் அமைந்த வாதத்தை நோக்குவோம். இங்கு முதலில் சுருக்கத் நிட்டம் ஒன்றை அமைப்போம். இதற்கு மிக எளிதானவழி x என்னும் குறி யீட்டை எடுத்துக்கொண்டு

P — × புத்தியுள்ளவன்

Q — 🗴 விவேகமுடையவன்

R — 🗴 மகிழ்ச்சியானவன் என அமைக்கலாம்.

அடுத்து குறியீட்டுவாதத்தை மொழிபெயர்க்கவேண்டும். அவ்வாறு மொழிபெயர்க்கும்போது, குறியீட்டுவாதத்தின் எளிய எடுப்புக்**களில்** மறுப்பைப் பெயர்த்தல் நன்று.

உதாரணமாக

X புத்தியுள்ளவன் -> X விவேகமுடையவன்.

— X விவேகமுடையவன் — X மகிழ்ச்சியானவன்.

ஆகவே — X புத்தியுள்ளவன். என முதலிலும் பின்பு

X புத்தியுள்ளவன் -> X விவேகமுடையவன்.

X விவேகமுடையவன் அல்ல —> X மகிழ்ச்சியாணவன்.

ஆகவே X புத்தியுள்ளவன் அல்ல, என்றும், பின்பு

X புத்தியுள்ளவன் ஆயின் X விவேகமுடையவன்.

X விவேகமுடையவன் அல்ல ஆயின் X மகிழ்ச்சியானவன்.

ஆகவே X புத்தியுள்ளவன் அவ்வ.

என்றும் பெயர்க்கலாம். இவ்வாறு வகுத்து எழுதும்போது தவறுகள் பல தவிர்க்கப்படுகின்றன. சுருக்கத் திட்டத்தை வகுப்பதோடு உடனடி யாகவும் பெயர்க்கலாம்.

2 . 9. மறுப்புமாறிகள் பற்றி

குறியீட்டில் உள்ள மறுப்பு மாறிகளேப் பெயர்க்கும்போது, கருத்துப் பிழைகள் ஏற்படாவண்ணம் பெயர்த்தல் வேண்டும்.

உதாரணமாக,

— P என்பதை

X புத்தியுள்ளவன் என்பது பொய் எனவும்,

X பத்தியுள்ளவன் என்பது உண்மையில்லே எனவும்,

X பத்தியுள்ளவன் அல்ல எனவும் பெயர்க்கலாம்.

— (P ∧ Q) என்பதை

X புத்தியுள்ள**வன் அத்தடன்** X விவேகமுள்ளவன் என்பதும் பொய். — (P ∧ O)

X புத்தியு**ள்ளவன் என்பது**ம் X **விவேக**முள்ளவ**ன் என்ப**தும் உண்மை யில்லே எனவும் பெயர்க்கலாம்:

(— P ∧ — Q) என்பதை

X புத்தியுள்ளவன் என்பதும் X விவேகமுள்ளவன் என்பதும் பொய் எனப் பெபர்க்க முடியாது. மறை மாறிகள் மறையாகவே பெயர்க் கப்படல் வேண்டும்.

> (— P ∧ — Q) என்பதும் —(P ∧ Q) என்பதும் ஒன்றல்ல

ஆனுல் குறியீட்டாக்கத்தில் தெரிவித்ததுபோல் (— P /> — Q) எனும் வடிவம் — (P /> Q) எனவும் வரலாம்.

இவ்வாறு வெவ்வேறு பெறுமானமுடைய கூட்டு எடுப்புக்களேக் கருத்தில்கொண்டு தமிழில் பெயர்த்தல் வேண்டும்.

2.10. பொருளொத்த எடுப்பு வடிவங்கள்

எடுப்புக்களேக் குறியீட்டிலமைக்கும்போது குறியீட்டு வடிவங்களும் மாறுபடும் என்பதற்கு இவ் எடுப்புக்களே உதாரணமாகக் சொள்ள லாம். இங்கு,

 $P \longleftarrow Q$ என்பதை $O \longrightarrow P$ எனவும்

அமைக்கலாம். பொதுவாக வலிதான நிபந்தனே எடுப்புக்களேக் குறியீட்டிவமைக்கும்போது மூல எடுப்பின் முன்னெடுப்பும் பின் விணேவும் இடமாறியமையலாம் (1) ஆயினே என்ற சொல்கே வலி தான நிபந்தீனக்குப் பயன்படுத்தும்போது, உண்மை அட்டவஃனமுறை மூலம் வாய்ப்புப்பார்க்கும் குறியீட்டுவடிவத்தில், எடுகூற்றுக்களே இட மாற்றுமலே அமைத்து வாய்ப்பிஃனத் துணியலாம். வலிதான நிபந்தீனக் குரிய உண்ணைப் பெறுமானமானமுளது. ஆணுல் பெறுகை முறைமூலந் தேற்றங்களே அமைத்து நிறுவுகின்ற வாதபடிவத்தில் (Р ← Q) என்ப தைப் (Q → P)என மாற்றவேண்டும். வலிதான உறழ்வு எடுப்புக் களேத் தமிழில் நிபந்தின் போன்று வேறுபடுத்திக் காட்டுதல் பொது வாக ஒன்றில், நிச்சயம் என்ற சொற்களேச் சேர்ப்பதன்மூலம் வலி தான உறழ்வை வேறுபடுத்தலாம். உதாரணமாக

X புத்திசாலி அல்லது X விவேகமுடையவன் என்பதை மெல் உறழ்வாகவும், வலிதான உறழ்வை

ஒன்றில் X புத்திசாவி அல்லது X புத்தியற்றவன் என எதிர்மறைச் சொற்களால் வேறுபடுத்திக்காட்டலாம்.சரிசமம், அல்லது ஆயின் ஆயினே எனும் மாறிலியைப் பயன்படுத்தும்போது, எடுப்பின் அமைவைக் கருத் தில் எத்துக்கொண்டு குறியீட்டில் அமைக்கலாம். முன்பு இவ்வாறே அமைக்கப்பட்டன. உதாரணமாக

இராமன் வேஃயும் செய்தான் கூலியும் பெற்றுன். (P <---> O)

நீர் பணமும் செலுத்தினல் மன்ற உறுப்பினருமாவீர்.

என அமையும். இன்று இதஃன இலகுபடுத்துவதற்காகவே 'ஆயின் ஆயினே' என்ற சொல்லே இணேக்கும் சொல்லாகப் பயன்படுத்து கின்றனர். சிலர்,

' மாலா ஆலயம் சென்றுல் மட்டுமே பாலனும் ஆலயம் செல்வான். என்ற இடத்திலும் வலுச் சமன் மாறிலியைப் பயன்படுத்தலாம் என்பர். ஆனுல் வலிதான நிபந்தணேயை மெல் நிபந்தண்யிலிருந்து வேறுபடுத் இக் காட்டவே, தமிழில் நீண்டகாலமாகப் பயன்படுத்திவந்தனர்.

உதாரணமாக

மாலா ஆலயம் சென்றுல் பாலனும் ஆலயம் செல்வான்.

$$(P \longrightarrow Q)$$

மாலா ஆலயம் சென்றுல் மட்டுமே பாலனும் ஆலயம் கெல்லான்.

(P ← Q) என இதனுல் ஆயின் ஆயினே என்ற சொவ் வேப் பயன்படுத்துவதே இங்கு ஒருமைப்பாட்டை ஏற்படுத்தும்.

ஒரு நீண்டவாத அமைவில் குறிப்பிட்ட எடுப்பில் இடம்பெறும் பெயர்ச் சொல்லிற்காக அவன், அவள், அது, இது முதலிய சுட்டுப் பெயர்களே இட்டு எழுதும்போதும் இவ்வாறு பொருளொத்த நடை பேதம் ஏற்படலாம். உதாரணமாக,

மாலா நூல் நிலேயம் செல்வாள் ஆயின் பாலன் ஆலயம் செல் வான். அவள் நூல்நிலேயம் செல்லவில்?ல ஆகவே அவனும் ஆலயம் செல்லவில்லே எனவும்,

பொருட்கள் விலேயுயர்ந்தன எனின் பொருட்கள் ஏற்றுமதி செய் யப்படும். அவை விலேயுயர்ந்தன அல்ல எனவும் அமைந்து வரலாம். இதேபோன்று பொருளொத்த ஒன்றுக்கு மேற்பட்ட பதங்களும் ஒரே வாதத்தில் பிரயோகிக்கப்படலாம்.

உதாரணமாக,

பூக்கள் அழகாணவையாயின் வண்டுகளுக்கு மகிழ்ச்சி வண்டுகளுக்கு மகிழ்ச்சியில்லே. ஆகவே மலர்கள் அழகானவை அல்ல.

குறியீட்டுவாதங்களேத் தமிழிற்குப் பெயர்க்கும்போது ஒரே பொரு ளேத் தரக்கூடிய பல எடுப்புவடிவங்களிருப்பதைக் காணலாம். இருவர் ஒரு குறியீட்டிலமைந்த கூட்டெடுப்பைத் தமிழிற்குப் பெபர்க்கும் போது ஒரே பொருளேத் தரக்கூடிய நடையால் மட்டும் வேறுபட்ட இரண்டு வாக்கியங்களேத் தரலாம். இவ்வகையில் பொருளொத்த வாக்கியங்கள்பற்றிப் பயில்வோர் கருத்திலெடுத்தல் நன்று.

உதாரணமாக,

— P என்பதை

X புத்திசாலி என்பது உண்மையில்லே,

X புத்திசாலி என்பது பொய்,

X புத்திசாவி அல்ல,

X புத்திசாலி ஆகான்,

X புத்தியற்றவன்,

எனவும் எழுதப்படலாம் இங்கு என்பது பொய், என்பது உண்மை யில்லே என்பவற்றின் பொருள் சாதாரணமாய் அல்ல என்பதாலோ, இல்லே, ஆசான், அற்றவன் என்பதாலோ எடுத்துரைக்கப்படுகின்றது.

இவ்வாறே — — P என்பதை

X புத்திசாலி என்பது பொய் என்பது உண்மையல்ல, என்பதற் குப் பதிலாக X புத்தியற்றவன் என்பது பொய் எனவும் எழுதப் படலாம்.

உதாரணமாக,

X புத்திசாலி ஆயின் X விவேகமுடையவன் என்பதை X புத்தி சாவி என எடுத்துக்கொண்டால் X விவேகமுடையவன் ஆவான் எனவும் எழுதப்படலாம். இதேபோல் இவ் எடுப்புக்களுக்குச் சமமான பொருள் உள்ள எடுப்புக்களாகப் பின்வருவனவும் கொள்ளப்படும். X புத்திசாவி எனின்மட்டுமே X விவேகமுடையவன்.

X புத்திசாவி எனின் மாத்திரமே X விவேகமுடையவன்.

X புத்திசாலி ஆயினே X விவேகமுடையவன்.

இவை வலிதான நிபந்தனேக்குரியது.

இவ்வாறு உறழ்வு, இணப்பு மாறிலிகள் பயன்படுமிடங்களிலும் பொருளொத்த வெவ்வேறு சொற்றுடர்கள் இடம்பெறலாம். அல்லது என்ற சொல்லுக்குப் பதிலாக, இந்தால் ஒழிய, அன்றில் என்ற சொற் களும் அத்துடன் என்ற இணப்புச சொல்லுக்குப் பதில். ஆனல், ஆன லும் என்ற சொற்களும் அமைந்து வந்து பொருளொத்த எடுப்பு வடிவங்களேத் தரலாம்.

இவ்வாறு தமிழ் மொழியின் பிரயோகத்தில் பொருளொத்த வாக்கிய வடிவங்களேப் பயில்வோர் தெளிவாக இனங்கண்டுகொள்தல் அவசியம்.

3.1. வாதங்களின் வாய்ப்பினத் துணிதல்

குறியீட்டு வடிவில் அமையும் வாதங்களின் வாய்ப்பினத் துணியும் அளவை முறைபற்றி இங்கு நோக்குவோம். குறியீட்டிலமைந்த வலிதான, முரண்வலிதான, வலிதற்ற வாதங்களே இனங்கண்டு கொள்வதற்குப் பல அளவை முறைகள் கையாளப்படுகின்றன. இவற்றுள் உண்மை அட்டவணே முறையும் ஒன்றுகும். அளவை எடுப்புக்கள் ஒன்றில் உண்மை அல்லது பொய் என அமைவனவாகும். குறியீட்டிலமையும் எடுப்பு மாறிகளுக்கும் இது பொருந்தும். எனவே குறியீட்டு மாறிகளுக்குரிய உண்மை பொய்ப் பெறுமானத்தைப் பின்வருமாறு அட்டவணேப் படுத்தலாம்.

உதாரணமாக.

P
T
F இது தனிமாறிக்குரிய பெறுமா**ன அட்டவ**ண்.

(P Q)
T T
T
T F
F T

F கூட்டு எடுப்புக்குரிய பெறுமான

இங்கு, X புத்திசாலி ஆவான், என்ற அளவை எடுப்பிற்கு குறி யீட்டு வடிவ மாறியாகப் P என்ற வடிவத்தை வழங்கினும். இவ் எடுப்பு உண்மையாகவும் அமையலாம் பொய்யாகவும் அமையலாம் என்பதற்காக உண்மை (True) பொய் (Fales) என வழங்குகிறேம். வீதிமாறிக்கு T என வழங்கினுல் மறுப்பு மாறிக்கு F வழங்கலாம். இதற்குப் பதிலாக I, O எனவும் வழங்கலாம். உதாரவைமாக,

மாறிகளின் பெறுமானம் உண்மைச் சார்பின் அடிப்படையில் அமைகின்றது. கூட்டு எடுப்பில் இடம்பெறும் மாறிலிகளின் பெறுமானம் அக்கூட்டு எடுப்புக்களில் உள்ள மாறிலிகளுக்குரிய பெறுமானத்தால் நிர்ணயிக்கப்படும். இதனேயே மாறிலிகளின் உண்மைச்சார்பு என்பர். உண்மை அட்டவணே முறையில் இப் பெறுமானத்தைக் கொண்டே வாதங்களின் தரம் நிச்சயிக்கப்படுகின்றன_்

3 . 2. மாறிலிகளின் பெறுமானம்

இனேப்பு மாறிலி (PAQ) X புத்திசாலி அத்துடன் X விவேக முடையவன்

> TTT 1/2 TFF 3 F-FT 4 FFF

இங்கு 1ஆம் சந்தர்ப்பம் உண்மையாகவும் 2ஆம், 3ஆம், 4ஆம் சந்தர்ப்பங்கள் பொய் எனவும் அமைகின்றன.

வலிதான உட்கிடை

Digitized by Noolaham Foundation noolaham.org | aavanaham.org

வல் உறழ்வு

மாறிலி P ∨ Q
T F T 2
T T F ¾
F T T 4ஆம் சந்தர்ப்பங்கள் பொம்

இருபால் நிபந்தனே

மாறிலி $P \longleftrightarrow Q$ T T T T F F $F F T rac{1}{4}$ $F T F rac{2}{3}$ ஆம் சந்தர்ப்பங்கள் பொய்.

3 . 3. வலிதான மாறிலிகள்பற்றி

எடுப்புக்களின் உண்மைச் சார்பு அடிப்படையில் இப் பெறுமா ணங்கள் கணிக்கப்பட்டுள்ளன. இங்கு மெல் நிபந்தணேயில் 2ஆம் சந்தர்ப்பம் பொய்யாகவும், வலிதான நிபந்தணேயில் 3ஆம் சந்தர்ப்பம் பொய்யாகவும் அமைகின்றது. வலிதான நிபந்தணேயை வசதி கருதி (Q → P) என்றும் அமைப்பர். இவ்வாறு அமையும்போது கிடைக் கும் உண்மைப் பெறுமானமும் (P ← Q) க்குரிய உண்மைப் பெறு மானமும் ஒன்றேயாம். உதாரணமாக,

P .	-	Q		Q		P	
	T				T		
T	T	F	2	F	T	T	2
F	F	T	4	T	F	F	4
F	T	F	3	F	T	F	3

உறழ்வு மாறிலியில் மெல் உறழ்வுக்கும் வல்உறழ்வுக்கும் இடையிலான பெறுமானத்தை நோக்கின் மெல் உறழ்வில் 4ஆம் சந்தர்ப்பம் போய்யாகவும் வல் உறழ்வில் 1ஆம் 4ஆம் சந்தர்ப்பங்கள் போய்யாக வும் அமைகின்றன. நிச்சயம் ஏதாவது ஒரு சந்தர்ப்படே நிகழக்கூடியது என்ற வலிதான உறழ்வுக்கு உரிய வகையில் அதன் பெறுமானம் அமைவதைக் காணலாம்.

3 . 4. உண்மை அட்டவணே நேர்முறை

2. STTOWILDITS.

ஒரு குறியீட்டுவாதத்தில் நேரடியாகவே உண்டைம வணேயைப் பிரயோகிப்பகன்மூலம் அதன் வாய்ப்பினே JUTTE! லாம். இதனேயே உண்மை அட்டவணே நேர்முறை நிறுவல் என்பர்: ஒரு வாதத்தில் உள்ள ஒவ்வொரு கூட்டு எடுப்புக்களுக்குமுரிய மாறிவி களின் பெறுமானத்தைக் கணித்து அவற்றை இணப்பதன் மூலம் வாதத்தின் பெறுமானத்தைத் துணியலாம். ஒரு குறியீட்டுவாதத்தின் முடிவிடம் ஆகவே என்ற குறியீட்டைப் பெறுமிடமாகும். ஒழுங்கான ஒரு குறியீட்டுவாத அமைவில் பிரதான தர்க்கமாறியைக்கொண் டமையுமிடமே அதன் முடிவிடமாகும். இதனே வாதத்தின் முடிக்க என்றும் அழைப்பர். இவ்விடத்தில் வைத்தே வாதத்தின் வலிமை, முரண் வலிமை, வலிமையின்மை என்பன தீர்மானிக்கப்படும். வாதத்தில் இரண்டு மாறிகள் மட்டும் இடம்பெறுமாயின் நான்கு சந்தர்ப்பங்கள் உள்ள அட்டவணேயையும், மூன்று மாறிகள் இடம்பெறு மாயின் எட்டு சந்தர்ப்படுகள் கொண்ட அட்டவணேயையும், நான்கு மாறிகள் இடம் பெறுமாயின் பதிறை சந்தர்ப்பங்கள் கொண்ட அட்ட வணேயையம் பிரயோகிப்பர். இவ்வாறு வாகமொன்றில் அதிகரிக்கும் மாறிகளுக்கு ஏற்ப அட்டவணே இரட்டிப்பு எண்ணிக்கையில் அதி கரிக்கும்.

P	Q		[(P A	Q)	AQ]-	→ P	
T	T		T	T	T	T	
T	F		T	F	F	T	
F	T		F	T	T	F	
F	T		F	F	F	F	
P	Q	R	(P	∧ Q	$) \land R $	> (P	∧ R)
T	T	T	T	T	T	T	T
T	T	F	T	T	F	T	F
T	F	T	T	F	T	T	T
T	F	F	T	F	F	T	F
F	T	T	F	T	T	F	T
F	T	F	F	T	F	F	F
F	F	T	F	F	T	F	T
F	F	F	F	F	F	F	F etem Meniorità

Digitized by Noolaham Foundation noolaham.org | aavanaham.org

வாதங்களின் வாய்ப்பினத் துணிவோம்

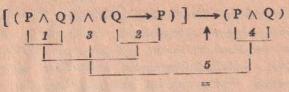
$$\begin{bmatrix} (P \land Q) \land P \end{bmatrix} \longrightarrow Q$$

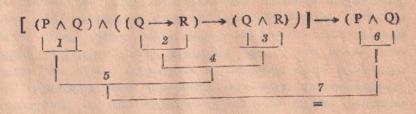
$$TTT T T T T T$$

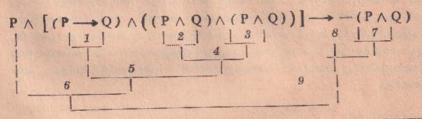
$$TFF F T T F$$

$$FFT F F T T$$

$$FFF F F T F$$


$$1 3 2 5 4$$


இங்கு முடிவிடத்தில் எல்லாம் உண்மையாக அமைவதால் வாதம் வலிதானது ஆகும்.


இங்கு முடிவிடத்தில் எல்லாம் பொய் என அமைவதால் வாதம் முரண் வலிதானது ஆகும்.

இங்கு முடிவிடத்தில் உண்மையும் பொய்யும் கலந்து வருவதால் வாதம் வலிதற்றது ஆகும்.

இங்கு வாதத்தின் அமைவைப் பொறுத்தே படிமுறையாகக் கூட்டு எடுப்புக்களே இணத்துச் செல்லவேண்டும். இது பயிற்கியைப் பொறுத்து அமைவதாகும். இரண்டிற்கு மேற்பட்ட மாறிகள் கொண்டமையும் பெரிய வாதங்களில் இணக்கும் இடங்களேத் தெளிவாகக் காட்டல் வேண்டும். உதாரணமாக,

இங்கு உண்மை அட்டவணே வரையாமல் கூட்டு எடுப்புக்கள் எவ் வாறு இணேத்தல் என்பதை ஒழுங்குபடுத்திக் காட்டப்பட்டுள்ளது.

3 . 5. உண்மை அட்டவணே நேரில் முறை

குறியீட்டுவாதங்களின் வாய்ப்பினேத் துணிவதற்கு நேர்முறையைக் கையாள்வதுபோல் மறைமுக முறையையும் கையாளலாம். உண்மை அட்டவணேயின் அடிப்படையில்தான் இம்முறையும் பிரயோகிக்கப் படுகின்றது. நீண்ட குறியீட்டுவாதங்களின் வலிமையை ஆராய இம் முறை உதவுகின்றது. நேர்முறைமூலம் மூன்றுக்கு மேற்பட்ட மாறிகள் இடம்பெறும் வாதங்களே ஆராய்வது கால, இடப் பிரச்சனேகளே ஏறி படுக்கும். அதன்ல் இவ்வாறு அமையம் வாதங்களே நேரில் முறை யால் ஆராய்வர். வாதத்தின் முடிவிடமாகிய முக்கிய தர்க்க மாறிலி யைப் பொய் என மறுத்து எடுப்பதன் மூலம் வாதத்தின் நிலேயை ஆராய்வதே நேரில் முறையாகும். வாதத்தைப் பொய் என மறுத்து எடுத்துக்கொண்டு அதற்கேற்ப பின்னேக்கி எடுப்புக்களுக்குரிய பெறு மானத்தை அறிந்த உரிய பெறமானத்தைச் சரியாகப் பெற்றுள்ளதா என வாய்ப்புப் பார்ப்பர். மாறிகளுக்குரிய பெறுமானம் ஏதாவது ஒரிடந் தில் ஒன்றுக்கொன்று முறண்படுமாயின் வாதம் வாய்ப்பானதாகும். எந்தவிடத்திலும் மாறி முரண்படாதபோது வாதம் வாய்ப்பற்றதாகும் ஒரு வாதத்தைப் பொய் என மறுத்து எடுத்துக்கொண்டு வலிமையைத் துணியும்போது முடியும் பொய்க்குமாயின் உண்மையில் வாகம் வலி தானதே.

உதாரணமாக:

$$[(P \land Q) \land P] \rightarrow Q$$

T F F பொய்யாக இருப்பதற்குரிய நினேயை காணுதல்.

T TT FF அதன் அடிப்படையின் ஏனேய மாறிலி களுக்குரிய பெறுமானத்தை இடல்.

இங்கு Q உரிய பெறுமானம் முரண்படுகிறது. (P ∧ Q) வில் T வருவதற்கு முடிவில் Q பெற்ற பெறுமானத்தை இடமுடியாது. ஆகவே Q மாறி முரண்படுவதால் வாதம் வலிதானதாகும்.

$$\left[\begin{array}{c} (P \land Q) \land (Q \longrightarrow R) \land (R \longrightarrow S) \end{array} \right] \longrightarrow (S \longrightarrow P)$$

$$\left[\begin{array}{c} (P \land Q) \land (Q \longrightarrow R) \land (R \longrightarrow S) \end{array} \right] \longrightarrow (S \longrightarrow P)$$

$$\stackrel{1}{T} \qquad \qquad \stackrel{1}{F} \qquad \stackrel{1}{F} \qquad \qquad \stackrel{1$$

P மாறி முரண்படுகின்றது. முடிபில் F பெற்றதைப்போல் முதற் கூட்டு எடுப்பில் P, Fஐப் பெற முடியாது. அதனுல் வாதம் முரண் படுவதால் வலிதானது.

$$[P \longrightarrow Q) \land (P \longrightarrow R)] \longrightarrow (R \longrightarrow Q)$$

$$F T F T F T T F T F F$$

இங்கு 1ஆம் கூட்டு எடுப்பில் Q T எனக் கொண்டு இறுதியில் F என உளது. அதனுல் முரண்படுகின்றது எனக் கொள்ள முடியாது. ஏன் எனில் முடிபில் Q, Fஐப் பெற்றதுபோல் 1ஆம் கூட்டு எடுப்பில் Q, Fஐப் பெற்றதுபோல் 1ஆம் கூட்டு எடுப்பில் Q, Fஐப் பெற்றதும் உண்மை என அமையலாம். அதனுல் இங்கு மாறி கள் எதுவும் முரண்படாததால் வாதம் வலிதற்றது. சில வாதங்களின் முடிபில் பொய்ப் பெறுமானம் மூன்று சந்தர்ப்பங்களேக்கொண்ட தாகவும் அமையும். அத்தருணம் மூன்றும் பிரயோகிக்கப்பட்டு அவதானிக்கப்படவேண்டும். ஒரு சந்தர்ப்பதுதில் முரண்படுவதாகவும் மற்ளோர் சந்தர்ப்பந்தில் முரண்படாததாகவும் அமையலாம். அப்போது வாதம் வலிதற்றதாகிவிடும். எல்லாச் சந்தர்ப்பத்திலும் முரண்படுவதாக வாதம் அமைந்தால்தான் அது வலிதான வாதமாகும்.

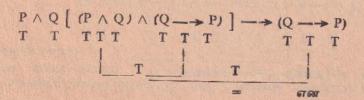
உதாரணமாக,

வாதம் வலிதானது என எடுக்கமுடியாது. முடிபில் உள்ள கூட்டு எடுப்பு பொய்யாக அமைய மேலும் இரு சந்தர்ப்பங்கள் உள்ளன.

$$[(P \longrightarrow Q) \land (P \longrightarrow R)] \longrightarrow (Q \land P)$$

$$F T F T F T T F F F F F$$

இங்கு அதேவாதம் முரண்படாது அமைகின்றது. ஆகவே வாதத் தின் வலிமையை நிச்சமிக்கும்போது உண்மை, பொய்யாக அமையக் கூடிய சந்தர்ப்பங்கள் யாவும் கருத்திற் கொள்ளப்பட வேண்டும். முதற் சந்தர்ப்பத்திலேயே வாதம் முரண்படாது அமைந்துவிட்டால் மீண்டும் ஏனேய சந்தர்ப்பங்கள் நோக்கப்படத் தேவையில்லே. வாதம் உண்மை பொய் எனக் கலந்து வந்தாலும் வலிதற்றதே. முரண்படும் போதே அஃது எல்லாச் சந்தர்ப்பத்திலும் முரண்படுகிறதா என அறிதல் வேண்டும். ஒன்றுக்கு ஒன்று முரண்படும் மாறியைக் குறித்துக் காட்டுதல் அவசியம்.


3 . 6. உண்மைச் சந்தர்ப்ப பிரயோக முறை

இவ்வாறு வாதங்களின் வாய்ப்பை ஆராய்வதற்குப் பயன்படுத்தப் படும் நேரில் முறையில் மற்டுருரு வழியும் உளது. இம்முறை மூலம் ஆரம்பத்தில் மாதங்களின் வாய்ப்பை ஆராய்ந்தனர். இன்று இம் முறையின் முக்கியத்துவம் குறைந்துவிட்டது. ஒகு வாதத்தில் இடம் பெறும் ஆரம்பக் கூட்டு எடுப்பின் மாறிலிக்குரிய உண்மைச் சந்தர்ப் பங்களே வாதத்தில் உள்ள எல்லா மாறிக்கும் பயன்படுத்துவதன் மூலம் வாதத்தின் வலிமையைத் துணியலாம்.

உதாரணமாக,

$$[(P \land Q) \land (Q \rightarrow P)] \rightarrow (Q \rightarrow P)$$

இங்கு முதலாவது கூட்டு எடுப்பிற்குரிய உண்மமச் சந்தர்ப்பம் ஒன்ருகும் T T எனும் முதலாம் சந்தர்ப்பம் மட்டுமே உளது. இதனே எல்லா மாறிக்கும் பிரயோகிப்பதன் மூலம் வாதத்தின் வலிமையை நேரடியாகத் துணியலாம்.

இங்கு இரண்டுக்கு மேற்பட்ட மாறிகள் இடம்பெறும்போது உண்மை அட்டவணே ஒழுங்கில் மாறிகளுக்குரிய பெறுமானத்தை வழங்கலாம்.

நற் சூத்திரங்களின் சமனேயும் முரண்மையையும் அறிதல்

குறியீட்டு வடிவில் பூரண தர்க்கவடிவமொடு அமைந்திருக்கும் வாதங்கள் நற்குத்திரங்களாகும். இவற்றின் ஒன்றுக்கு ஒன்று சமஞன குத்திரங்களேயும் ஒன்றுக்கு ஒன்று முரண்படும் சூத்திரங்களேயும் உண்மை அட்டவணேயைப் பயன்படுத்தி இனங் கண்டுகொள்ளலாம்.

உதாரணமாக,

3.8. முரண்மையை அறிதல்

 (P ∧ Q)
 (-P ∨ -Q)

 TTT 1
 FF F 2

 TFF 2
 FT T 3

 FFT 3
 TT F 4/1 ஒ祕 別途るまの確別 (少万碗)

 FFF 4
 TT T

3.9. உண்மை அட்டவணேயை வரையாமல் குறியீட்டு வாதத்தின் வாய்ப்பைத் துணிதல்

ஒரு குறியீட்டு வாதத்தின் வலிமையை ஆராய்வதற்கு முழுமை யாக அவ்வாதத்தில் உண்மை அட்டவணேயைப் பிரயோகிக்காமல் ஒவ் வொரு கூட்டு எடுப்பாக ஆராயும் முறை இதுவாகும். இங்கு எடுப் பூல் உள்ள மாறி ஒன்றிற்கோ அல்லது அணேத்திற்குமோ முன் கூட்டியே பெறுமானம் அளிக்கப்படும். அதை அடிப்படையாக வைத் சீக்கொண்டே வாதத்தின் வலிமையைத் துணிவர். வாதத்தின் வலிமையைத் துணியும்போது சிக்கன வழிகளேப் பின்பற்றுதலே நன்று.

உதாரணமாக,

Pபை உண்மை என எடுத்துக்கொண்டு பிலேவரும் வாதத்தின் வலிமையை நிச்சயிக்குக.

$$[(P \land Q) \land (Q \rightarrow P)] \rightarrow (P \rightarrow Q)$$

இங்கு P உண்மை எனின் 1ஆம் கூட்டு எடுப்பீன் றெறுமதி எப்போ தும் பொய்யாகும். ஏனெனில் Q உண்மையாகவும் அமையலாம். பொய் எனவும் அமையலாம் என்பதாலாகும்.

அடுத்த கூட்டு எடுப்பில் P எப்போதும் உண்மையாகையால் அதன் பெறுமானம் உண்மையாகும். முக்கூற்று உண்மையாக இருந்தாலும் பொய்யாக இருந்தாலும் உட்கிடை உண்மைப் பெறுமானத்தையே பெறும்.

மூன்ருவதாக இரண்டு கூட்டு எடுப்பின் பெறுமாணத்தையும் இணேக்கும்போது FT எனப் பெறுமானம் இருப்பதால் நிச்சயம் இணேப்பின் பெறுமானம் பொய் ஆகும். முடிபில் உள்ள கூட்டு எடுப்பில் P உண்மை ஆகையால் அதன் பெறுமானம் பொய்யாகும். ஏனெனில் QT ஆகவும் F ஆகவுமிருக்கலாம் என்பதால்.

ஆதலால் முடிபிடத்திற்கு வரும்போது இருபக்கமும் F, F என வருவதால் உட்கிடையின் பெறுமானம் T ஆகும். ஆகவே வாதம் வாய்ப்பானது. இவ்வாறு வாதங்களின் வாய்ப்பை அதில் அட்டவணேயைப் பிர யோகிக்காமல் துணியலாம். ஒவ்வொரு கூட்டு எடுப்பையும் படிப்படி யாக விளக்குதல் வலிமையை எளிதாகக் கண்டுகொள்வதற்கு உதவும். எனினும் இங்கு கிக்கன வழியைப் பின்பற்றுதலே, கிறப்பானது. மாறிலி களின் பெறுமானத்தை அறிந்து கொள்வதல்மூலம் சிக்கனமாக விடை காணும் பயிற்சியை விருத்திசெய்யவேண்டும்.

இங்கு வலிதானதோ, வலிதற்றதோ எனக் கேட்கும்போது ஒரு மாறிக்குத் தரப்படும் பெறுமானத்தைக் கொண்டும் வாய்ப்பிணே நிச்ச யிக்கலாம். உதாரணமாக (P — > Q) என்ற இடத்தில் P T எனின் Qக்குத் தரப்படாதவிடத்தில் நிச்சயம் பொய்யானதே. ஆளுல் வலிதா னதோ, வலிதற்றதோ, நிச்சயிக்க முடியாததோ என விளைய்போது, Pக்கு மட்டும் பெறுமானம் தரப்பட்டதால், நிச்சயிக்கமுடியாது:

உதாரணமாக

P T எனக்கொண்டால்

[(P→Q) ∧ (R∨P)] → (Q→R)ன் பெறுமானத்தை நிச்சயிக்குப்போது P→Qன் பெறுமானத்தையோ, (Q→R)ன் பெறுமானத்தையோ, (Q∨P)ன் பெறுமானத்தையோ நிச்சயிக்கமுடியாது. (R∨P)ன் பெறுமானத்தை நிச்சயிக்கலாமன்றே. உறழ்வுமாறிவிக்கு ஒரு உண்மைப் பெறுமானமே போதுமானது. இங்கு வலிதானதோ, வலிதற்றதோ என மட்டும் விளுவும்போது பிற்கூற்றும், முற்பகுதியும் பொய்யாக அமைவதால் வாதம் வலிதானது எனத் தீர்மானிக்கலாம்.

4.1. பெறுகை முறை

குறியீட்டு வாதத்தின் முடிபை அதன் எடுகூற்றுக்களின் ஊடாகப் பெறுவதன்மூலம் அவ்வாதம் வாய்ப்பானது எனத் துணியும்முறை இதுவாகும். இதனேப் பெறுகைமுறை என அழைப்பர். பெறுகைகண்பது முடிபு சரியாகப் பெறப்பட்டுள்ளது என எடுகூற்றின் வழியாக முடிபை ஏற்க எம்மை அழைத்துச் செல்லும்முறை எனப் பொருள்கொள்ளலாம். அனுமான விதிகளேப் பயன்படுத்தி வாதத்தின் எடுகூற்றுக்களிலிருந்து படிப்படியாக முடிபுக்குச் செல்கின்றேம். இங்கு முடிபுக்கூற்று நாம் ஏற்கனவே ஏற்றுக்கொண்ட ஏதாவதொரு நியாயத்தின்படி பெறப்பட் டுள்ளதா எனப் பார்க்கிறேம். இதற்குச் சில அனுமான விதிகளே நாம் பயன்படுத்துகின்றேம். இவ்வனுமான விதிகள் வெளிப்படையான உண்மைகனாகும். இவ்வனுமான விதிகள் மெறிய அறிவும் பயிற்சியும் வாதுங்களே நிறுவுவோனுக்கு அவசியமாகும். பெறுகைமுறைமூலம் ஆராயப்படும் உய்த்தறி முறையை இயற்கை உய்த்தறிமுறை யென்பர். இயற்கை உய்த்தறிமூலம் நிறுவப்படும் வாதங்களே தேற்றங்களாகும். அனுமான விதிகளால் நிறுவக்கூடிய வாதங்கள் யாவும் தேற்றங்களே, ஒரு தேற்றம் ஒரு அனுமான விதியால் நிறுவப்படலாம். பல அனுமான விதிகளாலும் நிறுவப்படலாம். அவ்வாறே ஒரு பெறுகைமுறையாலேர, பல பெறுகை முறைகளாலோ நிறுவலாம்.

4.2. அனுமான விதிகள்

அனுமானவிதிகள் பல உள். தேற்றங்களே நிறுவும்போது நிறுவு வோன் பெறுகைவழியில் தர்க்கரீதியான இசைவுடைய புதிய விதிகளே யும் உருவாக்கமுடியும், பொதுவாகப் பின்வரும் விதிகள் முக்கியத்து வம் பெறுகின்றன.

மீட்டல் விதி

P என ஒரு எடுப்பை மட்டும் கொண்டமைந்த வாதத்தில் அதன் முடி பாக P யையே மீட்டுப் பெறலாம்.

இரட்டை மறுப்பு விதி

P என ஒரு எடுப்பைமட்டும் கொண்டமைந்த வாதத்திலிருந்து முடி பாக அதனே மறுத்து மறுத்துப் பெறலாம். இவ்வாறு மறுத்து மறுத் தமையும் ஒரு எடுப்பைக் சொண்டமைந்த வாதத்திலிருந்து அதன் முடியாகத் தனிவிதிமாறியைப் பெறலாம்.

விதித்து விதித்தல் விதி

இதனே உடன்பட்டு உடன்படல் விதி எனவும் அழைப்பர். ஒரு நிபந்தனே எடுப்பின் முற்கூற்று மீண்டும் எடுகூற்றுய்த் **தரப்ப**டின் அதிலிருந்து முடிபாக பிற்கூற்றைப் பெறலாம். இங்கு கலப்பு நிபந்தனே நியாயத் தொடையின் முதலாம் விதியைக் கருத்தில் கொள்ளலாம்.

மறுத்து மறுத்தல் விதி

ஒரு நிபந்தனே எடுப்பும் அதன் பிற்கூற்று மீண்டும் மறுத்தமைந்து இருக்குமாயின் அதிலிருந்து முன் எடுப்பின் மறுப்பைப் பெறலாம். இங்கு கலப்பு நிபந்தனே நியாயத் தொடையின் இரண்டாம் விதியைக் கருத்தில் கொள்ளலாம்.

உடன்பட்டு மறுத்தல் விதி

$$P \lor Q$$
 என்ற கூட்டு எடுப்பையும் P என்ற தனினிதி எடுப்பையும் கொண்டு $R \to Q$ பெறலாம்.

ஒரு உறழ்வு எடுப்பும் அதன் முதல் மாற்றும் தரப்படின் அதி விருந்து முடியாக அடுத்த மாற்றினே மறுப்பாகப் பெறலாம். உறழ்வு எடுப்புக்களில் மாற்றுக்கள் உடபைடுமாயின் முடிபு மறுப்பதாகவும், மாற்றுக்கள் மறுப்பதாக அமைந்தால் முடிபு உடன்படுவதாகவும் அமையும். இங்கு கலப்பு உறழ்வு நியாயத் தொடைக்குரிய விதிகளேக் கருத்தில் கொள்க.

மறுத்து உடன்படல் விதி

இருபால் நிபந்தனே விதி

P ←→ Q என்ற கூட்டு எடுப்பிலிருந்து இரு வடிவங்களேப் பெறலாம்:

(i)
$$P \longleftrightarrow Q$$
 $P \longrightarrow Q$ state(ii)

(ii)
$$P \longleftrightarrow Q$$
 $Q \longrightarrow P$ $q \bowtie q \otimes Q \otimes Q$

நிபந்தனே நிபந்தனே இருபால் நிபந்தனே விதி

இங்கு P -> Q என்ற கூட்டு எடுப்பையும் Q -> P என்ற கூட்டு எடுப்பையும் கொண்டு P ←→ O என்ற கூட்டு எடுப்பை முடியாகப் பெறலாம்:

B. BITTERNILDITES.

$$P \longrightarrow Q$$
 $Q \longrightarrow P$ $P \longleftarrow Q$ எனப் பெறலாம்.

இனேப்பு விடு

P — எனும் தனிவிதி எடுப்பும்

Q — எனும் தனிவிதி எடுப்பும் தரப்படின் P ∧ Q எனப் பெறலாம்.

இங்கு இரண்டும் இணேக்கப்படுகின்றது. இவ்வாறு இணேத்து அமையும் ஒரு இணேப்பெடுப்பிலிருந்து தனி எடுப்புக்களேப் பெறுகல் எளிமையாக்கல் என்பர்.

உதாரணமாக.

(i)
$$\frac{P \wedge Q}{P}$$

யையும்

(ii)
$$\frac{P \wedge Q}{Q}$$

வையும் எளிமையாக்கிப் பெறலாம்.

கூட்டல் விதி

(i) P எனும் தனிவிதி எடுப்பொன்றை P∨Q எனப் பெறலாம். அவ்வாறே

அடிப்படை இருதலேக்கோள் விதி

$$(P \longrightarrow Q) \wedge (R \longrightarrow S)$$
 — எனத் தரப்பட்டு $P \vee R = -$ எனும் கூட்டு எடுப்பும் தரப் $Q \vee S = -$ பெறலாம். [பட்டால்

இக் கூட்டு நிபந்தனே எடுப்புக்கள் தரப்படுவதோடு கூட்டு எடுப் புக்களில் உள்ள முக்கூற்றுக்களேக் கொண்ட ஒரு உறழ்வு எடுப்பும் தரப்படும்போது அவை இரண்டிவிருந்து பிற்கூற்றுக்களேக் கொண்ட ஒரு உறழ்வு எடுப்பை முடிவாகப் பெறலாம்.

நிபத்தனேப்பேறு விதி

$$P\longrightarrow Q$$
 எனத் தரப்பட்ட ஒருகூட்டு எடுப்பீலிருந்து $P\longrightarrow (P\land Q)$ என்பதை ஊகமாகப் பெறலாம்.

இது முக்கூற்றிவிருந்து ஒரு மேலதிக ஊகமாகப் பெறப்படலாம் என்பதைக் குறிப்பிடுகின்றது.

முக்கூற்று நிபந்தனே விதி

$$P \longrightarrow Q$$
 என்பதும் $Q \longrightarrow R$ என்பதும் தரப்படின் இரண்டையும் இணேத்து $P \longrightarrow R$ என்பதைப் பெறலாம்.

இவ்வணுமான விதிகளுடன், ஒன்றுக்கு ஒன்று சமனுன தேற்றங் களும் உள்ளன. இவற்றையும் வாதங்களே நிறுவுவதற்குப் பயன்படுத் லாம்.

(ii) —
$$(P \lor Q)$$
க்கு (— $P \land — Q$) என்பது சமன்
இவை டிமோகன் தேற்றம். (டி. மோ. வி.)

(ii)
$$P \wedge (Q \vee R)$$
 is $(P \wedge Q) \vee (P \wedge R)$ is all $P \wedge (Q \vee R)$ is all $P \wedge (Q \vee R)$ is P

4. (i)
$$P \lor (Q \lor R) \dot{\omega}$$
 $(P \lor Q) \lor R$

5. (i)
$$(P \longleftrightarrow O)$$
 is, $(P \longrightarrow Q \Leftrightarrow (Q \longrightarrow P)$

(ii)
$$(P \longleftrightarrow Q) \dot{\omega}$$
, $(P \land Q) \lor (-P \land -Q)$

பொருட்சமன் விதி

6.
$$(P \longrightarrow Q)$$
 is, $(-Q \longrightarrow -P)$ is

பரிமாற்ற விதி

7.
$$(P \longrightarrow Q)$$
, $(-P \vee Q)$

பொருள் உட்கிடை விதி

8.
$$(P \land Q) \longrightarrow R, P \longrightarrow (Q \longrightarrow R)$$

பொருள் ஏற்று விதி

அனுமான வீதிகள் குறிப்பிட்ட வரிகளுக்கான பிரயோகத் தண் மையையும், இத் தேற்றங்கள் இரண்டு வரிகளேச் சேர்த்து நிறுவுவதறி கான பிரயோகத் தன்மையையும் கொண்டுள்ளன. இவ்விரு நிபந்தனே களின் அடிப்படையிலேயே இவை பிரயோகிக்கப்படுகின்றன.

4.3. தேற்றங்களே நிறுவுதல்

இவ்விதிகளேப் பயன்படுத்தித் தேற்றங்களே நிறுவும்போது, எடு கூற்றுக்களே வரிசைப்படுத்துவதும் பெறுகை வழிகளேத் திருத்தமாகக் குறிப்பிடுவதும் முக்கியம். பெறுகை வழிகளேப் பார்த்தே தேற்றங்கள் பொருத்தமான விதிகளேப் பயன்படுத்திச் சரியாக நிறுவப்பட்டுள்ளதா என அறிந்துகொள்ளலாம். ஒவ்வொரு வரிக்குமுரிய விளக்கமாக இப் பெறுகை வழி அமையும்.

உதாரணமாக,

இவ்வாறு வாதம் நிறுவப்படும் இடதுபக்கமுள்ள பகுதிகள், எடு கூற்றுக்கள் வரிசைப்படுத்தப்பட்டுள்ளதைக் குறிக்கும். வலதுபக்க மூள்ளவை விளக்கங்களாகும். இதவேயே பெறுகை வழிகள் என்பர். வாதம் நிறுவப்பட்டதும், எனக் காட்டுக என்ற விளக்கம் கிறப்படும். எடுகூற்று வரிகள் யாவும் ஒரு அடைப்புக்குறியால் அடக்கிக் காட்டப் படும்.

உதாரணமாக,

இவ்வாறு தேற்றங்கள் நிறுவுவதற்கு மூன்று பெறுகை வழிகளேப் பயன்படுத்துவர். அவற்றை முறையே, நேர்ப் பெறுகை, நேரல் பெறுகை, நிபந்தண்ப் பெறுகை என வழங்குவர். ஒரு குறியீட்டு வாதத்தை நன்கு அவதானிப்பதன் மூலம் அதனே நிறுவுவதற்கு ஏற்ற பெறுகையைத் தீர்மானிக்கலாம்.

4 . 4. நேர்ப் பெறுகை

ஒரு குறியீட்டு வாதத்தில் இடம்பெறும் எடுகூற்றுக்கள் நேரடி யாகவே எடுகோளாகக்கொண்டு, வாதத்தை நிறுவும்முறை இது வாகும்.

உதாரணமாக,

இங்கு நேர்ப்பெறுகையைக் கையாளும்போது குறிப்பிட்ட வாதத்தில் எடுகூற்றுக்களே நிறுவக்கூடிய தனிஎடுப்பு ஒன்று இடம் பெறவேண்டும். அதனே எடுகோளாகக்கொண்டே முடிபுக்கூற்றை அடைய முடியும். ஒரு எடுகூற்றைப் பயன்படுத்தி கூட்டு எடுப்புக்களே எத்துணமுறையும் நிறுவலாம். ஆனுல் நிறுவப்பட்ட ஒருகூட்டு எடுப்பு மீண்டும் நிறுவப்படலாகாது. தனி எடுப்புக்கள் இடம்பெருதபோது எளிமையாக்கல், கூட்டல் விதிகள்மூலம் தனி எடுப்பைப் பெறக்கூடிய கூட்டு எடுப்புக்கள் உளவா என நோக்கவேண்டும்.

உதாரணமாக,

4.5. நேரல் பெறுகை

வா தமொன்றின் முடிபிணே மறுப்பதன் மூலம் தேற்றத்தை நிறுவிக்காட்டும் முறையாகும். முடிபுக்கூற்றை மறுத்து எடுப்பதன்மூலம் எடுகோள்களுக்கிடையே பொருத்தம் காணப்படவில்லே எனக் காட்ட முயல்கின்ரேம். ஒகு பொருந்தா முடிபைப் பெறும் முறையே இதுவாகும். முடிபுக்கூற்றை மறுத்து எடுகோளாகக் கொள் வதன்மூலம் அதன்ப் பயன்படுத்தி வாதத்தின் நிறுவவேண்டும். நிறுவும்போது பெறப்படும் எடுப்பு முரண்பாட்டைக் கொண்டதாக அமையும். ஒரு உடன்பாடான எடுப்பையும் அதன் மறுப்பையும் பெறவேண்டும்.

உதாரணமாக,

நேரல் பெறுகையைப் பல சந்தர்ப்பங்களில் பயண்படுத்தலாம். ஒரு வாதத்தின் முடிபுக்கூற்றுக்கும் எடுகூற்றுக்களுக்குமிடையில் தொடர்பெதுவும் இல்லாத அமைவுகளிலும் இப் பெறுகையைப் பயன் படுத்தியே நிறுவுதல் வேண்டும். அங்கும் அனுமான விதிகளின் உதவி யோடு ஒரு முரண்பாட்டை அதாவது ஒரு எடுப்பையும் (மாறி) அதன் மழப்பையும் பெறுகின்ரேம்.

4.6. நிபந்தனேப் பெறுகை

முடிபுக்கூற்று நிபந்தனே மாறிலியைக் கொண்டமையும் கூட்டு எடுப்புக்களேக் கொண்ட வாதங்களிலேயே நிபந்தனேப் பெறுகையைக் கையாள்வர். முடிபுக்கூற்று நிபந்தனேயாய் அமைதல் வேண்டும் அந்நிபந்தனே எடுப்பின் முற்கூற்றை எடுகோளாகக் கொண்டு அதன் பிற்கூற்றின் எடுகூற்றுக்களின் வழியாகப் பெறுகின்ரும். இவ்வாறு பிற்கூற்றினேப் பெற்றதும் நிபந்தனேப் பெறுகை முடிவுறுகின்றது. உதாரணமாக,

இங்கு முடிபுக்கற்றில் உள்ள முதல் எடுப்பை எடுகோளாக எடுத்து பேற்கூற்றை நிறுவும்போது 2ஆம் வரியையும் 7ஆம் வரியையும் கொண்டு உடனடியாக முடிவுக்கூற்றைப் பெறுதல் தவருகும். ஒரு வாதத்தில் உள்ள எடுகூற்றுக்கள் யாவும் நிறுவப்பட வேண்டும். நிபந்தனேப் பெறுகையில் ஒவ்வொரு எடுகூற்றையும் நிறுவி நிறுவீச் செல்வதே பொதுமரபாகும்.

4 , 7. துணேப் பெறுகைகள்

ஒரு குறியீட்டு வாதத்தின் முடிபை நிறுவுவதற்குப் பிரதான பெறு கைக்கு உதவியாக ஒரு துணேப் பெறுகையை அல்லது பல துணேப் பெறுகைகளேப் பிரயோகிக்கவேண்டி ஏற்படும். பிரதான பெறுகைகள் மூலம் வாதங்கள் நிறுவப்படும்போது முடிபை அடைய இயலாதவாறு கில எடுகூற்றுகள், கூட்டு எடுப்புக்கள் அமைந்திருக்கும். அவ்வாருண கூற்றுக்களேயும் நிறுவி முடிபினே அடையப் பயன்படுத்தப்படும் பெறுகைகளேயே இவ்வாறு அழைக்கின்றேம்.

உதாரணமாக

$$\left[\begin{array}{cccc} \left(\begin{array}{cccc} P \longrightarrow \left(Q \longrightarrow R \right) \end{array} \right) \cdot \left(S \longrightarrow Q \right) \right] \& \left(P \longrightarrow R \right) \\ 1. & P \longrightarrow R & \text{stank stalls} \\ 20 & P & \text{flu. Qu. stg.} \\ 3. & P \longrightarrow \left(Q \longrightarrow R \right) & \text{1ib stg. st.} \\ 4. & \left(Q \longrightarrow R \right) & \text{2ib stg. st.} \\ 5. & \left(S \longrightarrow Q \right) & \text{2ib stg. st.} \end{array}$$

இங்கு 5ஆவது வரியையும் 4ஆவது வரியையும் நிறுவுவதற்கு எடு கோள்கள் எதுவுமில்லே. அதனுல் இப் பெறுகையை முடித்தற்கு முண் ஒரு துணேப் பெறுகை அவகியமாகின்றது. அதனுல் 5ஆவது வரியை மீண் டும் எனக் காட்டுக எனக் கொண்டு அதில் உள்ள முற்கூற்றை துணே நிபந்துணப் பெறுகையாக எடுத்துக்கொளிகின்ரும். இப்போது குறிப் பீட்ட வாதத்திண் நிறுவ முடிகின்றது.

மேலும் ஓர் உதாரணம்

இங்கு எனக்காட்டுக எனும் வரிகள் கிறப்பட்டு வாதம் நிறுவப் பட்டுள்ளதை நிருபிக்கலாம். அனுமான விதிகளேப் பயன்படுத்தி நிறுவக் கூடிய பல வழிகள் இருக்கலாம். அவற்றை விடுத்து உடனடியாகலே தூண்டப் பெறுகையின் உதவியை நாடக்கூடாது. பிழையான பொருந் தாத இடங்களில் எடுகோள்களேப் பிரயோகிக்கக்கூடாது. இங்கு மீட்டல் விதியைப் பிரயோகிக்கையில் நிறுவப்பட்ட தூண்ப் பெறுகை அடக்கிக் காட்டப்படும் எந்த வரியையும் மீளப் பயன்படுத்தக்கூடாது. முற்றுக நிறுவப்படாத தூண்ப் பெறுகையின் எந்த வரியையும் அதற்குள் திரும்பப் பயன்படுத்தக்கூடாது.

4 . 8. தேற்றங்கள்

அனுமான விதிகளில் பூரணமாக நிறுவப்படக்கூடிய ஒரு குறியீட்டு வாதமே தேற்றமாகும். உண்மையான ஒரு குறியீட்டு வாக்கியமாக இது அமைந்திருக்கும். ஒரு முறையில் முதலெடுப்பாய் ஏற்கப்படுவது பிறிதோர்முறையில் தேற்றமாயும் அமைந்து வரலாம்; இதனுற்தான் பூரணமாய் நிறுவப்பட்ட ஒரு வாதத்தின் முடிபுக்கூற்றே தேற்றம் எனவும் வர்ணிக்கிள்றனர்.

உதாரணமாக

(P—→{P) என்ற எடுப்பு பூரணமாக நிறுவப்பட≗ கூடியது என்பதால் இத∂னத் தேற்றம் என்பர்.

இவ்வாறு பல தேற்றங்கள் உள்ளன.

$$2. Q \longrightarrow (P \longrightarrow Q)$$

s.
$$(P \longrightarrow Q) \longrightarrow ((Q \longrightarrow R) \longrightarrow (P \longrightarrow R))$$

4.
$$((P \longrightarrow (Q \longrightarrow R)) \longrightarrow ((P \longrightarrow Q) \longrightarrow (P \longrightarrow R))$$

5.
$$((P \longrightarrow (Q \longrightarrow R)) \longrightarrow (Q \longrightarrow (P \longrightarrow R))$$

6.
$$(P \rightarrow Q) \rightarrow (-Q \rightarrow -P)$$

7.
$$-(P \rightarrow Q) \rightarrow -Q$$

8.
$$(\longrightarrow -P) \longrightarrow -P$$

9.
$$-(P \rightarrow Q) \rightarrow P$$

10.
$$((P \longrightarrow Q) \longrightarrow (P \longrightarrow R)) \longrightarrow (P \longrightarrow (Q \longrightarrow R)$$

என்பன இல.

உதாரணமாக,

 $\left(P \longrightarrow \left(Q \longrightarrow R \right) \right) \longrightarrow \left(Q \longrightarrow \left(P \longrightarrow R \right)$ என்ற தேற்றத்தை எடுத்துக்கொண்டால் இதிகுப் பில்வைருமாறு நிறுவலாம்.

LETTENTIONS,

4.9-5. பிரதியீட்டுப் பேறும் விளக்கமும்

தேற்றங்களே நிறுவும்போது குறியீடாய்த் தரப்படும் **மாறிகளு**க் குப் பதிலாயும், கூட்டு எடுப்புகளுக்குப் பதிலாகவும் வேறு குறியீ<mark>ட்டுமா</mark>றி களேயும் மாறிலிகளேயும் பயண்படுத்தலாம். இதனேயே பிரதியீடு எண்பர்:

உதாரணமாக,

Q ---> Q எனப் பிரதியிடலாம்.

 $(-R \longrightarrow Q) \longrightarrow (-R \longrightarrow Q)$ எனவும் பிரதியிடலாம்.

இங்கு Pக்குப் பதிலாக Qவைப்பிரதியிட்டதைப்போல் (—R — > Q) என்பதை Pக்குப் பதிலாகவும் பிரதியிடலாம். பிரதியீடு செய்யப்படும் ஒவ்வொரு மாறியும் ஒரே குறியீட்டு வாக்கியத்தினுல் அல்லது வாக்கிய மாறியிஞல் பிரதியீடு செய்யப்படும். தேற்றங்களின் பிரதியீட்டுப் பேறுகளும் தேற்றங்களாகும்.

பயிற்சி

சில உதாரணங்கள்

இசை இன்பமானது ஆனுறம் இசை மயக்கம் தரக்கூடியது. ஆயினே தவில் துன்பமானது ஆகும். தவில் துன்பமானது என்பதோடு இசை மயக்கம் தரக்கூடியது அல்ல. ஆகவே இசை இன்பமானது.

கருக்கத்திட்டம்

P — இசை இபைமானது.

Q — இசை மயக்கந்தருவது.

R — தனில் துன்பமானது. இவ்வாறு சுருக்கத்திட்டம் அமைக்குக.

$$(P \lor Q) \longleftarrow R$$
. $(R \land -Q) \% P$ என்பதை $(R \longrightarrow (P \lor Q) . (R \land -Q) \% P$ என அமைத்தல் வேண்ளம்.

```
\left[ (P \lor Q) \longrightarrow \left[ (R \lor S) \longrightarrow T \right] & P \longrightarrow \left[ (R \land S) \longrightarrow T \right] 
       P \longrightarrow (R \land S) \longrightarrow T
                                                               எனக் காட்டுக்.
                                                               டி. எ. எ.
        P
 2.
                                                               2. 5. 20.
 3.
        PVQ
        (P \lor Q \longrightarrow (R \lor S) \longrightarrow T
                                                               ILO GT.
                                                               3, 4, 6. 6.
        (R \vee S) \longrightarrow T
 5.
 6.
        RAS
                                                               6 ST. QU.
 7.
        R
                                                               7 50. 69.
 8.
        RVS
                                                               5. 8th. al. al.
 9.
        T
        (R \land S) \longrightarrow T
10.
        P \longrightarrow \lceil (R \land S) \longrightarrow T \rceil
II.
```

```
(P \vee Q) \longrightarrow (R \wedge S).(S \vee T) \longrightarrow U \ ] & P \longrightarrow U
                                     எனக் காட்டுக.
   P \longrightarrow U
                                    B. Gu.
2.
     (P \lor Q) \longrightarrow (R \land S) 1 is 673
     (SVT - U
                                     2 in 67.
4
    PVQ
                                     2. In. al.
5.
                                     3. 5. al. al.
8.
     (RAS)
                                      6. எளி. எ.
7.
     S
                                      7. A. al.
     (SVT)
8.
                                      4. 8. al. al.
9.
```

1987, 88ஆம், 89ஆம் ஆண்டு விஞக்களில் இடம்பெற்ற முக்கிய தேற்றங்கள் இங்கு பயில்வதற்கும், பயிற்கிக்காகவும் தரப்பட்டுள்ளன.

(iv)
$$(P \to Q) \longleftrightarrow -(P \land -Q)$$

1. $(P \to Q) \longleftrightarrow -(P \land -Q)$ state, at i.
2. $(P \to Q) \to -(P \land Q)$ state, at i.
3. $P \to Q$ state, at i.
4. $-(P \land -Q)$ state, at i.
5. $(P \land -Q)$ state, at i.
6. P state, at i.
7. $-Q$ state, at i.
8. $P \to Q$ state, at i.
10. $-(P \land -Q)$ state, at i.
11. $-(P \land -Q)$ state, at i.
12. $P \to Q$ state, at i.
13. P state, at i.
14. Q state, at i.
15. $-Q$ state, at i.
16. P state, at i.
17. $P \land -Q$ state, at i.
18. $-(P \land -Q)$ state, at i.

(viii)
$$(-P \land -Q) \rightarrow (P \hookleftarrow Q)$$

1. $(P \land -Q) \rightarrow (P \hookleftarrow Q)$

2. $(-P \land -Q)$

3. $P \hookleftarrow Q$

4. $P \rightarrow Q$

5. P

6. Q

7. Q

8. P

9. P

10. $Q \rightarrow P$

11. Q

12. P

13. P

14. Q

15. P

16. $P \hookleftarrow Q$

17. P

18. P

19. P

20. P

31. P

32. P

33. P

44. P

55. P

65. P

66. P

67. P

68. P

69. P

60. P

60. P

61. P

62. P

63. P

64. P

65. P

66. P

67. P

68. P

69. P

69. P

60. P

60.

தமிழில் அனுமான விதிகளேக் குறிக்கும் சுருக்க விளக்கங்கள்

Modus Ponens Modus Tollens Disjunctive Syllogism Hypothetical Syllogism Conditional Proof Addition Conjunction Simplification Consteuctive Dilemms Absorption M. P.
Disjunctive Syllogism Hypothetical Syllogism Conditional Proof Addition Conjunction Simplification Consteuctive Dilemms D. S. w. 2. H. S. B. B. Add Gr. B. Conj Man. Sim oran. A. C. D. M. 2. B. B. M. C. D. D. M. 2. D. 2. B. B. M. C. D. D. M. 2. D. 2. B. B. M. C. D. M. M. M. D. D. M. M. D. M. M. D. D. D. M. M. M. D. D. M. M. D.
Hypothetical Syllogism Conditional Proof Addition Conjunction Simplification Consteuctive Dilemms H. S. 局. வி. C. P. தி. நி. Add சே. வி. Conj Sim எனி. வி. C. D. இரு. அ. வி.
Conditional Proof Addition Conjunction Simplification Consteuctive Dilemms C. P. 房. 局. Add Gs. வி. Conj இன். வி. Sim எனி. வி. C. D. இரு. அ. வி.
Addition Conjunction Conjunction Consteuctive Dilemms Add Cs. 如. Co. D. ②西. 如. 公.
Addition Conjunction Conjunction Conjunction Simplification Sim 可能。例,例如,例,例,例,例,例,例,例,例,例,例,例,例,例,例,例,例,例,
Simplification Sim எளி. வி. Consteuctive Dilemma C. D. இரு. அ. வி.
Simplification Sim எளி. வி. C. D, இரு. அ. வி.
Consteuctive Dilemma C. D. 205. 21. 32.
Commulation Com Fig. 39.
Association Asso
Maveeial Equvalonee M. E Quir. Fib.
Mateial implication M. I. Quit. 2.
Double Nogation D. N. Qr. w.m.
Toransposition Ton uffur. a.
Tautology Tau #n. #n. #f.
Expoctation Expo Qun. Tp
Distribution Dis வியா. வி.
De mergn theoeams Dem 507. Ginn. 68.
Adjunction Adj 5
Conditional Blconnitional C. B. 2. B. 25. 26.

MOBBUSE Carmy u Linkshi

1 多新加姆

அவுமையில் குறியிருள்

3. அள்ளையியல் மாறிகள்

4. शिक्षा को कामी की 107 कि की कार्म

Manaju Bis sipui be

O DESCRIPTION

7. 6 2000 14

8. Sprigger Company

இத்பர்க் இயுந்தன் முர்மின்

10 शिक्ताक किए हे हरेका का की

11.

रि. केलेंगिका के क्राम्प

13 2 00000 314 4 600000

14. 2 CL GO DE STOR

15. Doyley to Med

16. உறந்வ எடும்

17 எடுப்பு

18. எதிர்மறை எடுப்பு

19. ஏற்புடைமை

20. உட்கிடை

21. எளிமையாக்கல் விதி

22. நிபந்தனே எடுப்பு

23. நிருபணம்

24. கூட்டல் விதி

25. சுருக்கத் இட்டம்

26. நற்குத்திரம்

27. நேர்ப்பெறுகை

28. நேரல் பெறுகை

29. நேர் மூறை

30. நேரல் முறை

31. நிபந்தனேப் பெறுகை

32. 帕角毒素 帕角毒素的

33. மறுத்து மறுத்தல்

34. உடன்பட்டு மறுத்தல்

35. வாய்ப்பு

36. வாய்ப்பின்மை

Assumption

Logical Symbols

Logical Variables
Logical Constants

Quantification Symbols

Punctuation Marks

Conjunction (Conj.)

Doubles Nagation (Dn.) Biconditional Constants

Bisonditional Conditional

Affirmative

Truths Function

Truth Table

Sub-Derivation Diajunction

Categorical proposition

Proposition

Negative Proposition

Formal Validity

Implication.

Simplification

Hypotholical Proposition

Proof

Adjuncton Law

Scheme of abbreviation

Welformal Formulas

Direct Derivation

Direct Method

Indirect Method

Conditional Derivation

Modus Ponens

Modus Tollens

Disjunctive Syllogism

Valid Anvalid

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

a Fragism broken

Peter Alexander:

And Introduction to Vagic. The Criticism of Arguments, London Georga Allem and unvin Utd., 1969

- 2 E. V. Lemmon
- Stood Ogic. California Granda
- 3. Irving. M. Copi
- (A) The Macmillan Company, Vork, 1973.
- (B) Interduction to logic. Fourth
- 4. P Balasubramaniam:
- M. A. (Phi.) M. A. (Psy.) Phid An Invitation to Symbolic logic University of Madras, 1977.
- 5. Hans. Reichanbach:
- (தமிழாக்கம்) அறிவியல்சார்ந்த மெய்ப்பொருளியலின் தொற்றம். தமிழ்நாட்டுப் பாட நூல் நிறுவனம் 1973.
- 6. Wiliard Van or Man Quine : From A Logilcal Point of Vicus Harvard University Press, Cam. bridge, 1961.
- R D. Gunaratna. S. V. Kasinathan: அளவையியலும் விஞ்ஞான முறையும்-இரண்டாம் பகுதி. கல்வி மெளியீட்டுத் திணேக்களம், இலங்கை, 1977.
- 8. இறியிட்டு அளவையியல். 1981, தயா அச்சகம், யாழ்ப்பாணம். க. த. இராசரத்தினம்.

இவ் ஆகிரியரின் ஆக்கங்கள்:

- (1) விஞ்ஞானமும் விஞ்ஞானமுறையும்
- (2) பொது உளச்சார்பும் பொது அறிவும்
- (3) அளமையியலும் அளவையிற் போலிகளும்
- (4) சில மெய்யியற் பிரச்சினேகள்
- (5) பொது உளவியல் (அச்சில்)
- (6) விஞ்ஞானிகளும் -விஞ்ஞானமுறையியலாளர்களும் (அச்சில்)

