
தேசிய உயர் கல்விச் சான்றிதழ் இரசாயனம் பகுதி 1

X+YkJ

YKJ

XkJ

தேசிய உயர் கல்விச் சான்றிதழ்ப் பரீட்சைக்குரியது

இரசாயனம்

பகுதி 1

R. S. ராமகிருஸ்னு B.Sc. (இலங்கை). D.Phil (ஒக்ஸ்போட்), F.R.I.C. Fl Chem C. J.N.O. பிரனுந்து, B.Sc. (இலங்கை), Ph.D. (லண்டன்), D.I.C., C. Chem., M.R.I.C., A.I. Chem C. செல்வி சுலாதா கருளுரத்ன, B.Sc. (இலங்கை), Ph.D. (நியூகாசில்).

> M சண்மூகம், B.Sc. (இலங்கை)

G.P. குணரத்ன B.Sc. (இலங்கை)

கல்வி வெளியீட்டுத் திணேக்களம்

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

முதற்பதிப்பு 1976

பதிப்புரிமை அரசினர்க்கே

நூலாக்கியோர்

அத்தியாயம் 2:

R.S. ராமகருஷ்ணு, இசீணப் பேராசிரியர், இலங்கைப் பல்கலேக்கழகம், கொழும்பு வளாகம்

அத்தியாயம் 3, 4: J.N.O. பிரனந்து. இரசாயன விரிவுரையாளர், இலங்கைப் பல்கலேக்கழகம், கொழும்பு வளாகம்

அத்தியாயம் 1: செல்வி சுஜாதா கருணூத்ன. இரசாயன விரிவுரையாளர், இலங்கைப் பல்கலேக்கழகம். கொழும்பு வளாகம்

М. М. упятливи

K. மகேஸ்வரன்

1. жанулы

அத்தியாயம் 5: M. எண்முகம், G.P. குணரதன, பிரதம பதிப்பாகிரியர்கள், கல்லி வெளியீட்டுத் திணக்களம்

மொழிபெயர் ந்தோர்:

பதிப்பாசிரியர்கள்:

திருமத் M.M. ராசநாயகம் தருமத் K. மகேஸ்வரன் திருமத் I. தனராசா

L. D. T ஜய. கூரிய

திருமதி திருமதி

திருமதி

e Sa

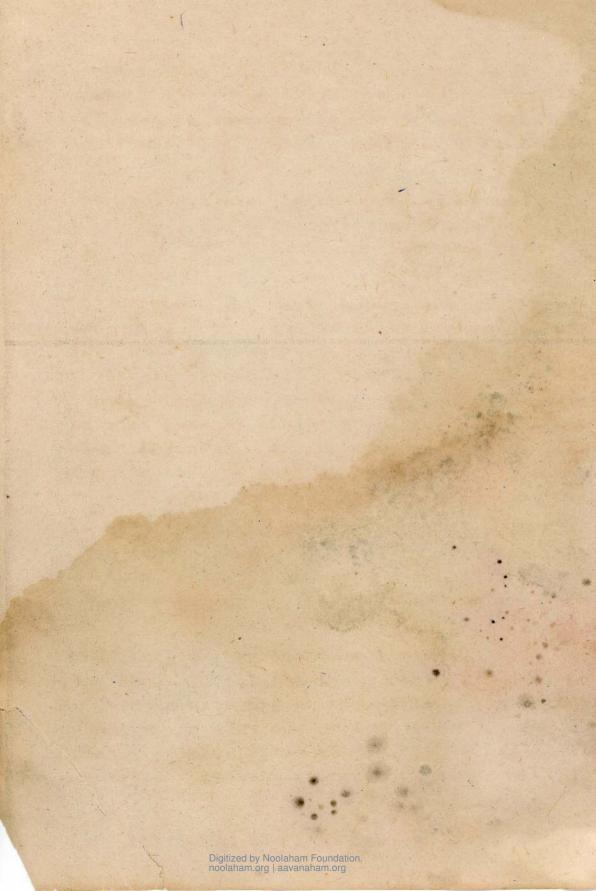
М. சண்டுகம்

சித்திரக்கலேஞர்:

தட்டெழுத்தாளர்:

S. தனபால9ங்கம்

கல்வி வெளியீட்டுத் திணேக்களத்தால் தயாரிக்கப்பட்டு அரசாங்க அச்சகக் கூட்டுத்தா பளத்தில் அச்சிட்டு வெளியிடப்பட்டது.


76 @c 26 (5000)

Digitized by Noolaham Foundation noolaham.org | aavanaham.org

1.	அடிப்படை எண்ணக்கருக்கள்1
2.	அணுக்கட்டமைப்பு
3.	சக்தியியலும் பிண்ப்பும்86
4.	சக்தியியலும் பிணப்பும்146
5.	ஆவர்த்தன இயல்பு179

135

1

மகவுறை.

கிரேட்ட திஜோக்கல்வி நிஜேலயில் 10, 11 ஆம் தரங்களிலே கற் பிக்கேப்படும் ஈராண்டுப் பயிற்சி, நெறி, இன்றைய அரசாங்கம் புகுத்தியுள்ள புதிய கல்விச் சீர்திருத்தங்களில், மூன்றுவது படியாக அமைகிறது. இந்நெ றிமையப் பயின்ற மேடித்த மாணவர் தேசிய உயர் கல்விச் சான்றிதழ்ப்பரீட் சைக்குத் தோற்றத் தகுதியுடையவராவர்.

இப்பயிற்சிநெறி மூன்றை பிரிவுகே 2எக் கொண்டது. அவையாவன.—

(அ) கட்டாய பாடங்கள்.

(ஆ) விருப்புதெறிப் பாடங்கள்.

(Q) SiLCa 20.

கீரேட்ட திர்கைக் கேல்லி நிரேலக்குறிய புதிய பாடவிதானம் 59 இற்கும் கடுதலான பாடங்கரோக் கொண்டது. இப்பாடங்கரேப் பயிழைம் போதம் பயிற்றவிக்கும்போதம், மாணவரும் ஆகிறியரும் எதிற்நோக்கத் தக்க இடற்ப்பாடுகள் சிலவற்றைத் தவிற்க்கும்முகமாக, பல்வனகப் பாடத் தேதைகளிழைம் சிறந்த விளங்கும் அறிகுற்களின் உதலியுடன், பாடதால்கள் தொதுக்கப்படடு வருகின்றன. இந்தால்களத் தவர்கைக்குத் தவர்கை நியா யமான விரேலகளில் மாணவருக்குக் கிடைக்கச் செய்யும்வனகயில், முறைமை யான திட்டமொன்ற மேற்கொள்ளப்பட்டுள்ளது. இவற்றை விசேட பாட தோற்கே ளாகத் தொகுத்த வெளியிடவும் கருதப்பட்டுள்ளது.

கடந்த காலத்தில் மொழிக்கும் இலக்கியத்தக்குமே பாடரா ல்கள் விதிக்கப்பட்டு வந்தன. புதிய பாடவிதானம் பறையதிலிருந்த மேற்றம் லேறபட்டாக இருப்பதால், மானவருக்கும் ஆசிரியருக்கும் ஒருங்கே வழி காட்டிகளாக அமையத்தக்க ரோ ல்க 2ளத் தயாரிக்கவேண்டிய தேவை ஏற் பட்டுள்ளது எங்கதை யாவரும் ஒப்புக் கொள்வற்.

கிரேட்ட து வேக்கேல்வி நி2லக்கொளக் குறித்த யா ல்க2ள வெளியி டத் தேவையில் 2ல என்பத ஏற்றக்கொள்ளப்பட்டுள்ளது. உலகின் மொத்த அறிவானது ஐந்தாற ஆண்டுகளுக்குள் ளேயே இருமடங்காகிவிடுகிறைதன நம் பப்படுகின்றது. எனவே எந்தப்பாட யாஷம், அ∴த எத்த2ேனை முழுமையா கத் தொகுக்கப்பட்டாஷம், சில வருடேஸ்களிலே வழக்கிறைந்த போகலாம். உயற்கேல்விக்கு ஆயத்தப்படுத்தும் மாணவற் தங்கள் அறிவு வளற்ச்சிக்குத் தனியே, ஒரு தா 2ல மட்டும் நம்பியிருப்பனதத் தேவிர்த்த, தா ல் நி2ல யேங்க2ளப் பயன்படுத்திப் பிற தா ல்கள், புதினத்தாள்கள், சஞ்சிலைக்கள் ஆகியைவுற்றையும் வாசித்தத் தமத அறிவை விறிவாகக்கிக்கொள்ள வேண்டு மெனப் பெரும்பாலான நாடுகளிவுள்ள கல்விமான்கள் எதிர்பார்க்கிக்றனர். ஆகவே, மாணவர் தாமாகவே மேற்கொள்ளவேண்டியே விசேட பானி ஒன்ற யாதெனில், தா ல்கள், சஞ்சிலைக்கள் வாயிலாகத் தமத அறிவை விருத்தி செய்த கொள்ளலாகும். எனிலும், அவ்வாறன தா ல்க2ளயும் சஞ்சிலைக க2ளயும் பெறுவதில் எமது மாணவருக்குள்ள இடர்ப்பாடுக2னக் கருத்திற் கொண்டே, இந்தா ல்க2ளத் தயாறிப்பதற்கான நடவடிக்கைகைவேக்காடுக் கப்பட்டன என்பதை நண்டு பிசேடமாகக் குறிப்பிடவேண்டும்.

குறித்த பாடங்கள் சிலவற்றைப் பொறுத்த மட்டில், விறிவான பாடத்திட்டங்களும் நாற்பட்டியல்களும் பாடசா 2 லக்குக்கு ஏலவே அனுப் பப்பட்டுள்ளன. பாடசா 2 லை நால்தி 2 லயங்க 2 ள விருத்தி செய்வதற்காக இந்நி 2 லக்குறிய கல்லிக்குத் தேவையான நால்கள் இவ்வாண்டியைம் கடந்த ஆண்டியைம் மேற்படி நால்நி 2 லயங்கட்கு அளிக்கப்பட்டுள்ளன. அத்துடன், தசிறியருக்குச் சேவையிடைப் பயிற்சியொன்றைம் அளிக்கப்பட்டுள்ளத.

இந்தா ல்கள் பற்றித் தங்கள் ஆலோசேச்வகைஞம் ஷிமரிசனங்களும் உவந்த ஏற்றக் கொள்ளப்படும். இறுதி நா 2ல வெளியிடுதற்குத் தயா ரிகீஞேம்போது தங்கள் ஆலோசு 2்னகட்கு விசேட கவனம் செஷத்தப்படும். தங்கள் ஆலோளா 2்னக் 2்ளயும் கருத்துக்க 2்ளயும் கல்வி வெளியீட்டு ஆச்னையா எருகீகு அதுப்புவீர்களாயின், நாய் நன்றியுடையறா வோம்.

அடிப்படை எண்ணக் கருக்கள்

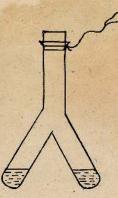
1.10 அதுக்கள்

சடப்பொருளானது சிறிய தனிக்கைகளால் ஆக்கப்பட்டது எதும்கருத்து சுமார் 2000 ஆண்டுகளுக்கு முன்பு தோன்றியது. சடப்பொரு 2 வத் தொடர்ந்த பிரிப்பதன் மூலம், ஈற்றில் மேலும் பிரிக்க முடியாதவொரு தனிக்கையே எஞ்சியிருக்கும் எதும்கருத்து பழைய மெய்யியலறிஞர்களிடையே நிலவியது. மேலும் பிரிக்க முடியாத இச் சிறிய தணிக்கைக்கு "அது " (Atomos (atom)) எதும் பெயறை டிமோகிறிற்றன் அளித்தார்.

1808 இல் ஜோன் தாற்றன் தனது அனுக் கொள்கையை வெளியூட் டார். இக்கொள்கை பரிசோத2ன முறையான ததாரத்தை அடிப்படை யாகக் கொண்டத. அவர் இரசாயனத் தாக்கமொன்றில் பற்குபற்றும் யிகச் சிறிய துகிக்கைகள் அனுக்கனே எழும் கருத்தைத் தெரிவித்தார். தாற்றனின் அணுக் கொள்கையைக் கருதுவதற்கு முன்பாக, இரசாயனத் திற்கும், அணுக் கொள்கைக்கும் அடிப்படையாகவலைந்த விதிக2வக்கருத வேண்டும். இவ்விதிகள், அணுக்கள் இருக்கிவ்றன என்பதற்கு தோரத்தை அரிக்கிற்றன.

தினிவுக் கோப்பு விதி

பதா தொன்ற இவாக்கப்பட்ட சோதிவக் குழாயிலைக்கை நெருப்புக்குச் சிலை எரிக்கும்போத, அவதானிக்கும் இரசாயல மொற்றத்தைக் கருதாக (னிஞ்ஞாலம் 8ஆம் தரம்–அத்தியாயம் 18). நெருப்புக்குச்சிலை எரித்த பில் தோனிலை எவ்விதை மாற்றமுடில் 2லே என்பதை அவதானிக்கலாம்.


நெருப்புக் குச்சி + ஒட்சிசன் 😑 காபன் + சாம்பல் + வாயு

இறசாயனத் தாக்கத்தில் பின்பு கூட, தாக்கிகளில் தினிஷை காக்கப்படு கின்றது. இறசாயனத் தாக்கமொன்றிலுள்ள இச் கிறப்பியல்பு திணிஷக் காப்பு விதி எனப்படும். இல்லிதியை இலவோசியர் 1774 இல் வெளி மிட்டார். இல்லிதியானத்.– "இறசாயன மாற்றமொன்றிகைல் சடப் பொரு 2 வ ஆக்கவோ அவிக்கவோ முடியாது என்பதாகும்.

இரசாயனத் தாக்கமொன்றிற்கு இவ்விதினையுப் பின்வருமாற சிறப்பாகக் குறிப்பிடலோம்:

> "இரசாயனத் தோக்கமொஃறில், தாக்கிகளின் மொத்தத் திலிவை தாக்கத்தின் விரீள பொரூட்களின் மொத்தத் தினி விற்குச் சமமானத."

இவ்விதி அறிமுகப்படுத்தப்பட்டதைத் தொடர்ந்த, இவ்விதியின் உறதிப் பாட்டைச் சோதிப்பதற்குப் பல பரிசோத 2 கேகள் மேற்கொள்ளப்பட்டன. 1831 இற்கும் 1908 இற்கும் இடையில் இலண்டொற்ச என்பவர் தொ டர்ச்சியான பல பரிசோத 2 வக 2 விருத்தமானதாகவிருந்தன. இப்பரி சோத 2 வக்குக்கு அவர் இலண்டொற்ச சோத 2 வக் குழா யொன்றை (படம்1-1) பயன்படுத்திரை. சோத 2 வக் குழா யின் பியங்களில் கதை சல் க 2 வ வைத்த அடைத்த, சோத 2 வக் குழா யின் பியங்களில் கதை சல் க 2 வ வைத்த அடைத்த, சோத 2 வக் குழா யின் தினிலை அளவிட்டார். கதை சல்கள் கலத்தப்படுவதற்கு சோத 2 வக் குழா யின் தினிலை அளவிட்டார். கதை சல்கள் கலத்தப்படுவதற்கு சோத 2 வக் குழா யின் தினிலை அளவிட்டார். கதை சல்கள் கலத்தப்படுவதற்கு சோத 2 வக் குழா யின் தினி வை அளவிட்டார். கதை சல்கள் கலத்தப்படுவதற்கு சோத 2 வக் குழா யின் தினிலை அளவிட்டார். சுதை கம் முற்றுப்பெற்று, சோத 2 வக் குழா யி தினிலு அளவிட்டோர். சுதை ததும், சோத 2 வக் குழா யி திய தினிஷ் அளவிடப்பட்டத. பரிசோத 2 க

படம் 1.1 இலன்டொற்ற குமாய்

வழுவின் திட்டவட்டமான எல் 2லகளுள் இவ்விரு திண்ணை,களும் ஒரே அளவாயி ருக்கக் காணப்பட்டன. இலண்டொற்ற இப் பரிசோத 2வனையப் பதி 2னத்து கரைசற் சோடிக 2ளப் பயன்படுத்திச் செய்தார். பயன்படுத்தப்பட்ட வகையான தாக்கங்கள் பின்வருமாறு. –

> Digitized by Noolaham Foundation noolaham.org | aavanaham.org

2

(1) ஐதரயடிக்கொல்லத்தையும் அயடிக்கபிலத்தையும் கொண்ட குறைசல்கள். இல்லிரு கரைசல்களும் தாக்கமடைந்த அயடீப்கேத் தருகின்றன. இத் தாக்கம், கனமானப் பகுப்பிற் பயன்படுத்தப்படுகிறது.

 $5I(aq) + IO_3(aq) + 6H(aq) \longrightarrow 3I_2 + 3H_2O$

(11) சோடியஞ் சல் பைற்றையும் அயடி 2ேனயும் கொண்டகரை சல்கள். தாக்கத்தின்போத ஐதரசன் அயடைட்டு, சோடியம் சல்பேற்று என்பன உண்டாக்கப்படுகின்றன. அயடின் ஒரு ஒட்சியேற்றும் கருவியாகத்தாக்கமுறுகின்றது.

SO₃(aq) + I₂ + H₂O(s) → SO₄(aq) + 2H(aq) + 2I(aq) இலைங்டொற்ற நடாத்திய இத்தகைய 15 பரிசோத2்வகள் திணிவுக் காப்பு விதிின் உறுதிப்பாட்டை நிரூபித்தன. திட்டவட்டமான சமத்துவ நி2லமிலிருந்த காணப்படும் விலகல்கள், 6வ்ளிப் பௌதிகக் காரணங்களிகுல் இடம் பெற்றனவேயன்றி இரசாயனத் தாக்கங்களின் விசனவாகவல்ல என் பதை இலன்டோற்ற கண்டறிந்தார்.

இலன்டோற்ற நடத்திய இரசாயனத் தாக்கங்கள் மிகச் சிறிதளவு வெப்பமாற்றங்க2னயே உட்படுத்துகின்றன. சடப்பொருள் சக்தியாகமாற் றப்படலாம் என இப்போது அறியப்பட்டுள்ளது. பெருமனவு வெப்பம் வெளிவிடப்படும் தாக்கமொன்றை ஆராய முடியமைவில் உணர்ச்சியிக்கதராக ஒன்றும் கிடைக்கப்பெறுமாயின், இரசாயனத் நாக்கமொன்றின் பயனுகதிணி வில் ஏற்படும் சிறிதளவு தரைவை அளந்தறிய முடியும். திணிவிற்கும் சக் திக்குமிடையேயான தாக்கம் அயின்கதையின் சமன்பாட்டிலைல் தரப்படுகிறது

 $E = mc^2$

.E = சக்தி (யூல்களில்), m = திணிஷ (கிலோகிறும்களில்);

C = ஒளியின் வேகம் (2.997925 × 10⁸ m 5⁻¹ பிகச் சிறிதளவு திவிவொன்ற அழிக்கப்படும்போத கட பெருமளவு சக்தி வெளிவிடப்படுகிறதென்பதை இச்சமன்பாடு காட்டுகின்றது. (உடம் 19) சடப்பொருள், கமார் 30.55 × 10⁶ கிலோவாற்ற பின்னேட்டத்தைத் தரும் அல்லத 4.2 × 10⁶kg எரிபொரு*ளென்னெய் அ*ளிக்கும் சக்திக்குச் சமமான சக்தியைப் தோற்றுவிக்கும்). எந்தவொரு சாதாறமை இறசாயனத் தாக்கத்திலும், வெளிவிடப்படும் சக்திக்கு, சுமார் 100 × 10⁻¹² kg மட்டிலான சடப்பொருள்மட்டுமே சக்தியாக மாற்றப்பட வேன்டியிருக்கும் என்பதை, மேலே தறப்பட்ட தொடர்பைப் பயன்படுத்திப் பெறப்பட்ட கூதிப்புகள் காட்டுகின்றன. இத் தகைய சிறிய திணிஷ மாற்றத்தை, எந்தவொரு இறசாயனத் தறாசிணும் கண்டறிய முடியாத.

எனவே தாக்கமொன்றில் சாதாரன நிறைமான (திலிஷை) முறைகே2ீள யோ அல்லது சாதாரன இரசாயனப் பகுப்பு முறைகை2ீவமோ நாம்ஆரா யும் போது, இரசாயனத் தாக்கமொன்றில் இடம்பெறக் கூடிய திலிஷை மாற்றம் எமக்கு எவ்வித முக்கியத்துவத்தையும் அளிக்காத. ஆயிஹம்அஹுச் சக்தி பற்றிக் கருதம்போது திலிஷை மாற்றம் மிக முக்கியமானது.

மாளவமைப்பு விதி

இரும்பிற்கும் கந்தகத்திற்கு பிடையேயான தோக்கத்தைக் கருதக(வித் தோகம்–8 ஆம் தரம்– அத்தியாயம் 18). இரும்பும், கத்தகமும் சேர்ந்த கல வையொன்ற வெப்பமேற்றப்பரும் போத, பெரும்பாலும் தாக்கிகள் யாவும், முற்றூக இரசாயனத் தாக்கமடைவதில் 2ல. சிலவே 2 எகளில் உண் டாக்கப்பரும் தாக்க வி 2 வைபாருளான பெரசுச்சல் பைட்டுடன், தாக்க மடையாத இரும்பு தல்லது கந்தகம் காணப்பரும். இவ்வவதானிப்பு மூல கங்கள் ஒன்று சேர்ந்து புதிய வி 2 வைபொருட்க 2 வ உண்டாக்கும் பிறதொகு திகளுக்கும் உண்மையாகும்.

சகல இரசாயனத் தாக்கங்களுக்கும் பொதுவான இவ்வியல் பை, ஆய்வு கடத்தில் நடாத்தக் கூடிய ஒரு எளிய தாக்கத்தைக் கருதுவதன் மூலம் விளக்கலாம்.

பரிசோத2ன—மக்னீசியத்திற்கும் ஒட்சிசஓக்குமிடையே நிகழும்தாக்கம் (விஞ்ஞானம், 8ஆம் தரம், அத்தியாயம் 18).

(1) புடக்குகையொன்றில் மக்னீசியம் துண்டொன்றை வெப்பமேற்ற வதால், மக்னீசியத்தை ஒட்சியேற்றலாம். புடக் குகையை மூடியுடன் வெறுமையாக நிறத்து அதன் திணிவைப் பதிலு செய்க. அரத்தா2வைப்பயல் படுத்தி, சிறிய துண்டு மக்லீசியத்தை துப்பரவாக்கு க. மக்ஷீசியம் துண் டைப் புடைக்கு வையில் வைத்து அத2ன அதன் மூடியுடன் மீன்டும் நிறக்க. புடக்கு கையை முதலில் மெதுவாகவும் பின்பு வன்மையாகவும் வெப்பமேற்று க.

4

வெப்பமேற்றகையில், இடைக்கிடை புடக்குகையில் மூடியைச் சற்றத்திறக்க. மக்னீசியம் முழுவதம் மக்னீசியம் ஒட்கைட்டாக மாற்றப்பட்டதம் புடக் குகையைக் குளிரவிட்டு, அத2வ மூடியுடன் நிறக்க. மாறு நிறையொன் றைப் பெறுமட்டும் புடக்குகையை வெப்பமேற்றுகை. மேற்கூறிய மூல்ற நிறுவைகளிலு பிருந்து, மக்னீசியமும் ஒட்சிசதும் சேரும் விசிதங்க 2வைப் பெற லாம்.

வெவ் வேறே தோணிவுகே 2எக் கொண்ட மக்னீசியம் தாண்டுகள் பலவற்றைப் பயப்பைடுத்திமேலே தேரப்பட்ட பரிசோத 2வேலைய திரம்பவும் செய்க.வி 2எ பொருளில் மக்னீசியத்தினதும் ஒட்சிசவினதும் விசிதேம் ஒத்திருப்பதைக் காண லாம்.

(11) மக்னீசியம் அநத்திரேற்அற வெப்பமேற்றுவதன் மூலமும், மக்னீ சியம் ஒட்அசட்டைத் தயாரிக்கலாம். மக்னீசியத்தை, செறிந்த HNO₃ உடன் தாக்கமுறச் செய்வதால் மக்னீசியம் அநத்திரேற்று தயாரிக்கப்படு கிறத.

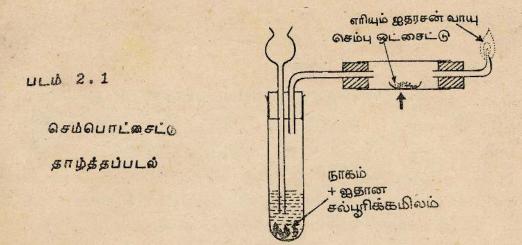
உலர்ந்த வன்கண்ணுடிச் சோத2கைக் குழாயொன்றை முதலில் வெழலை யாக நிழத்தப் பின் தப்பரவான மக்னீசியம் நாடாத் துண்டொன்றை அத ஒவ் வைத்த நிழக்க. மக்னீசியத்தை முற்றுகக் கரைக்கும் வன்றை, தவிக் கும் குழாயியொன்றைப் பயன்படுத்தி, சோத2கைக் குழாய்க்குள் மிகக் குறைந்த கணியம் HNO, ஐச் சேர்க்க. வெண்மையான திண்மமொன்றைப் பெழம்வரை கரைச2ல மெதுவாகச் குடாக்குக. அதன்பின் இத் திண்மம் முற்றுகப் பிரிகையுழமைவரை வண்மையாக வெப்பமேற்றுக. சோத2னக் குழானயக் குளிரவைத்து, மாறுத் திணிவு பெறப்படும் வரை நிழக்க.பெற பேறுகேலிலிருந்து, மக்னீசியத்தினதும் ஒட்சிசண்ணதும் திணிவைக் கணிக்கலாம்.

பிவ்வருவவலற்றிற்காவ விடையைத் தருக.

- 1) பயன்படுத்துவதற்கு முவ்பாக மக்கீசியம் நாடா தப்பறவாக்கப்
- ப் புகுவ தேன் ?
- 2) 1ஆம் முறையைப் பயன்படுக்கும் போத மக்னீசியம் அநத்திரைட்டு உண்டாக்கப்படுவதில் 2லே. ஏன் ?
- 3) இரு பரிசோத 2வகளிலும் மக்கூசியத்திவதும் ஒட்சிசலிவதும் திணில விதிதுக்கேள் பற்றி யாத குறலாம்?
- 4) உமது அவதாவிப்பை விளக்க முடியுமா?

இர பெரிசோதேசீவகைவிலேம் மக்சிசேயத்தினதோம் ஒட்சிசவினதும்திணிஷை விகிதங்கள் அன்னேவைாகவொத்தலாலை.

இதேலிருந்த, சேர்வையொல்றைத் தயாரிப்பதற்கு எத்தவகய முறை வைப் பயன்படுத்தினும், மூலகங்கள் சேரும் விகிதங்கள் மாறிலியானவை எனத் தொரிகிறது. இத ஏறக்குறைய எல்லாத் தொகுதிகளுக்கும் உள்மை யானது. இது மாறுவமைப்பு விதி எல்றழைக்கப்படும் விதியாகக் கூறப் பட்டுள்ளது. 1799 இல் பிரௌஸ்ற் எல்பவரால் கொடுக்கப்பட்ட இவ் விதி பீல்வருமாறு: –


"இரசாயனச் சேர்காவையொன்றின் தோய மாதிரிகள் யாவும் — எந்த விசைமாகத் தேயாரிக்கப்பட்ட போதிலும்— எப்போதும் ஒரே மூலகங்கே2வ, ஒத்த திணிஷ விகிகங்களிற் கொட்டிருக் கும்."

சில சேர்வுவகளில் அமைப்பு மாறுந்தல்மை அரய்ந்தது எவ இப்போது அறியப்பட்டுவ்ளது. இச்சேர்ணைகள் பீசமானமற்றவலை எனப்படும் (கூறித்த அமைப்பைக் கொண்ட சேர்வைகள் பீசமாகம் உடையலை எலலும்,மாகம் அமைப்பை உடைய சேர்வைகள் பீசமாவலற்றவை எனவும் கூறப்படும்). உடம். இரும்பின் ஒட்சைட்டுக்களும் சல்பைட்டுக்களும். பெறகச் சல் வைட் டுக்கு, FeS எதம் குறியிட்டையவிக்கலாம். ஆயிதம் உன்மையில் 9,50 தொடக்கம் Fe S வரை வேறபட்டு இரும்பின் பற்றுக் muuy Fe S குறையைப் பகிர்ந்த கொள்கிக்றன. இதே போன்ற பெரசு ஒட்வசட்டி (F.() இரும்புப் பற்றுக் குறை ஏற்படுகின்றது. a) in பெரதச் 80 கைபட்டும், பொசு ஒட்சைட்டும், மாறுவகைப்பு விதிக்குப் புறம்பாயகைய.

சமதாவிகளின் கொஸ்டு பிடிப்பும், ஒரே சேர்வுவயின் இரு மாதிரிகள் வெல் வேறே அமைப்பு வூதைக்கே 2 எயுடையன என்பதைக் கோட்டுகின்றது. ஒரே மூலகத்தில் வெல் வேறே சமதாவிகள் இருப்பதே இதற்குக் காரணமொகும்.

បកា៤ទក ភ ខណ

ஆய்வு கடக்கில், செம்பை ஐக்சசகுல் தர்ழ்த்துவதால், அதன் இரு ஒட்சைட்டுக்கலினையும் பகுக்கலாம். படத்தில் காட்டியைவாறு உபகரணக்கைத ஒழுங்குபடுத்தகை.

திகிலைறியப்பட்ட செம்பு ஒட்கைட்டை வெப்பமேற்றி அதன டாக ஐத ரசவ் வாயுகைபச் செவுத்தாக. எஞ்சிய செம்பை மீஸ்டும் நிறக்க. செம் பில்இரு ஒட்கைட்டுகளுக்கும் இப் பரிசோத2்மலைய மேற் கொள்க.

இந் நிழகவைகளிலிருந்தே இரு ஒட்சைட்டுக்களிலும், ஒட்சிசஓடுக்கொக் கோலுற்ற செய்டிவ் தினிலைக் கட்டைறியலாம்.

செம்பு (11) ஒட்கைட்டில் (கருப்புதிற செம்பு ஒட்கைட்டு)31.89 செம்பு, 89 ஒட்சிகதுடைப் சேர்கின்றது. மற்னறய செம்பு (1) ஒட் கைட்டில் (சிவப்புதிற செம்பு ஒட்கைட்டு) 63.69 செம்பு, 89 ஒட்சி சதடைப் சேர்கின்றது. 31.8:63.6 எதம் இவிவிகிகம் அதாவது 1:2 எவிமையான விகிகமாகும்.

பரிசோத 2வே முறையான இவ்வல தாணிப்பை <u>பல்விக்தசம விதி</u> எனப் படும் விதிலையான்றில் கருக்கிக் கறலாம். 1803இல் தாற்றன் இல்விதி வை வெ**எியிட்டார்.**

இவ்விதி பின்வருமாத கறகிக்றத.

" ஒக்றிற்கு மேலான சேர்வாவக2ன உட்டொக்குவதற்கொல இரு மூலகங்கள் ஒன்ற சேரும்போது, ஒரு மூலகத்தில் குறித்த திவிவொன்றடன் சேரும் மற்துறய மூலகத்தில் வெவ்வேறதினி அகள் எளிய முழு என் விகிதைத்தில் இருக்கும்".

காபவின் ஐதலைபட்டுக்கள் இவ்விகிக்குப் புறநடையாகவை. உ-ம் C7H16, C8H28

7

இவ்விர ஐதறைட்டுக்களில், காபலில் ஒரு குறிப்பிட்ட திலிலைற்கு ஐதறசலில் விசிதம் 64:63 ஆகும். இல் விசிதசமன் முழு என் விசிதமாகவிருந்த போதம் அது எளிறையானதன்று.

மேலே விவரிக்கப்பட்ட இரசாயனச் சேர்க்கையின் மூன்றுவி கேசாயும் தாற்றவின் அணுக் கொள்கையிஞல் விளக்கலாம். ஜோன் தாற்றன் இவீ வணுக் கொள்கையை 1908 இல் வெளியிட்டார். இக் கொள்கையின் கருத்துக்கு 2்வப் பின்வருமாறு சுருக்கிக் கூறலாம்.

- (j) சடப்பொருள்கள் யாவும் அதுதைக்களால் ஆக்கப்பட்டவை.
- (ii) அணுக்க 2ளப் பிரிக்கவோ, அழிக்கவோ ஆக்கவோ முடியாது.
- (iii) எந்தவொரு மூலகத்தின் அஹுக்கள் யாவும் ஒத்தனவ. ஆயி ஜம் அவை பிறிதொரு மூலகத்தின் அணுக்களிலிருந்த வேற பட்டனவ.
- (iv) அணுக்கள் சிறிய முழு என்களில் இரசாயனச் சேர்க்கைக அடைவதிகுல் சேர்கைகள் உடைரைகின்றன. இச் சேர்க் கையின் பெறுபேறுக அணுக்க 2ளக் கொட்டை சிறிய கூட் டமொன்ற இரசாயன முறையாக ஒன்ற சேர்ந்தாள்ளது. அணுக்க 2ளக் கொண்ட இத்தகைய ஒரு கூட்டம் தற் போத மூலக்கூற என அழைக்கப்படுகிறது.

தாற்றனின் அதுகைக்கொள்கையில்படி, அது என்பத மூலகமொக்றின்றிசேலத் திறுக்கக் கடியை மிகச் சிறிய தானிக்கையாகும்.

இக் கொள்ளகவைப் பயன்படுத்தி, இரசாயலச் சேர்க்கை விதிக2ள விளக்கலாம்.

(а) திணிவுக் காப்பு விதி

தாற்றலின் அஹுக்கொள்னகப்படி இரசாயனத் தாக்கம் ஒன்றில் பங்கு பற்றம் இரசாயனப் பொருட்கள் (தாக்கிகள்) ஒரு குறிப் பிட்ட முறையில் ஒன்று சேர்ந்தள்ள குறித்த எண்ணிக்கை அஹுக்க 2வக்கொண் டுள்ளன. இவ்விரசாயனப் பொருட்க2வ ஆக்கும் அஹுக்கள் குறித்த நிணி வையுடையன. இவ்விரசாயனப் பொருட்கள் ஒன்றுசேர்ந்த தோக்கமடையும் போது, அஹுக்கள் தம்மமை மாற்றியமைத்த வி2்வபொருட்க2வத் தருகின்

8

றன. அணுக்க2வே ஆக்கவோ அழிக்கவோ முடியாதென்பதால்,தாக்கத் திற்கு முன்பும் பின்பும்,அணுக்களின் மொத்த எண்ணைக்கைகை ஒரேயனவாக இருக்கும். எனவே தாக்கத்தின் பயகுகை திணிவில் ஒருமாற்றமும் ஏற்படு வதில் 2லே.

(b) மாகுவமைப்பு விதி

(1) எந்தவொரு மூலகத்தின் அதுவக்கள் யாவும் ஒத்தவை.

(2) இவ்வணுக்கள் வேற மூலகங்களின் அணுக்களோடு சிறிய முழு என்களில் சேர்க்கை அடைகின்றன எதும் தாற்றனின் கூற்றைப் பயன் படுத்தி, மாருவ கைமப்பு விதியை விளக்கலாம். உடம். மக்னீசியம் ஒட் சைட்டு. இதில் –ு அணுக்கள் மக்னீசியமும் பூ அணுக்கள் ஒட்சிசதும்உள் என என அதுமானிப்போம். எனவே மக்னீசியம் ஒட்சைட்டில் உள்ள மக் வீசியத்தின் திணிஷச் சதவீதம்

oc அணுக்கள் மக்னீசியத்தின் திணில

-X 100

் கு அணுக்கள் மக்னீசியத்தின் திணிவு + பூ அணுக்கள் ஒட்சிசனின் திணிவு மக்னீசியம் ஒட்காசட்டில், மக்னீசியம் அணுக்கள் யாவும் ஒத்தவை. அதே போல் ஒட்சிசன் அணுக்கள் யாவும் ஒத்தவை. எனவே, மக்னீசியம் ஒட் சைட்டில், மக்னீசியத்திற் திணிவு விசிதம் மாறிலியானது. அதாவது மக்னீ சியம் ஒட்னாசட்டு மாறுவறைப்புடையது.

மேற்கறியவதலயாத்த வாதத்தைப் பயன்படுத்தி, மற்றைய சந்தர்ப் பைக்கள் யாவற்றிலும் மாறுவமைப்பு விதி உன்றையானதெப்பைதை எடுத்தைக் காட்டலாம்.

(с) பல்விகித சம விதி

காபன் இரு ஒட்சைட்டுக்கைசேன உண்டாக்கும்போத, சிறிய முழு என்களில் காபன் அணுக்கள் ஒட்சிசஓடன் சேர்ந்த காபகேஹொட் சைட்டு (CO) காபன்றொட்சைட்டு (CO₂) என்பவற்றை உண்டாக்குசி றது. இவற்றின் சூத்திரங்களிலிருந்து காபனின் குறிப்பிட்ட திணிவு (1அணு) ஒரு ஒட்சிசன் அணுவுடன் சேர்ந்து காபகேஹொட்சைட்டையும், இரு ஒட் சிசன் அணுக்களுடன் சேர்ந்து காபகூறொட்சைட்டையும் உண்டாக்குகிற தென்பதை அவதானிக்கலாம். இவ்வாறு ஒரு குறிப்பிட்ட திணிவு காபறுடன் சேரும் ஒட்சிசனின் வெவீவேறு கிணிவுகள், 1:2 எறும் விசிதைத்தில் உள்ளன. இத, பெல்விசிதேசம விதியின் பிரகாரம் ஒட்சிசனில் திணிவுகள் 1:2 எறும் ஒரு எளிய விசிதத்தில் உள்ளன எஸ்பனதக் கோட்டுகில்றத.

தாற்றனின் அணுக்கொள்கையிலுல் சேர்க்கை விதிகஞுக்கு அளிக்கப்படும் விளக்கங்கேள், சடப்பொருட்களில் அணுக்கள் இருப்பகைக் கோட்டுகின்றன. பதார்த்தங்களின் நடத்தையை விளக்குவதேற்கு, அணு பற்றிய கோட்பாட் டை நோம் இல்னைமும் பயன்படுக்துகின்றேவுறை போதிலும், சடப்பொருளின் யிகச் சிறிய தானிக்கை அணு அல்ல என்பத இப்போது நமக்குக் தெரியும் இத பிவ்னர் முற்றுக ஆராயப்படும்.

1.20 மூலக் கூறுகள்

1.21-கேஷசாக்கில் விதி

(௳) பரிசோது 2வே – ஐது தனிலதும் குளோரீ வினது ம்சேர்க் கை. ஆய்வு கடத்தில் ஐதான சல்பூரிக்கமிலத்தை உலோக நாகத்துடன் பரிகரிப்பதன் மூலம் ஐது சன் தயாரிக்கப்படுகிறது. பொற்று சியம் பேரீ மங்கவேற்றை ஐதான ஐதறோகுளோரிக்கமிலத்தால் தாக்கி குளோரீன் தயாரிக்கப்படுகிறது.

இர கொதிகுழாய்க 2 எ நீரினுல் நிரப்பி, அவற்றை நீர் கொட்டை ஒர ிண்ணத்தில் கவிழ்த்த வைக்க. இர கொதி குழாய்களுக்கும் வெல் வேறைகச் சம கவவவவு (20 ml) குளோரூ 2வயும் ஐகரச 2வயும் சேர்க்க. ஒரு குழா வயச் சற்றே சரிப்பதல் மூலம், இக் குழாயிலள்ள வாயு வை, மற்றைய வாயு வைக் கொண்ட குழாய்க்குள் செஷத்தகை. பின்வருவனவற்றிற்கான விடை கையத் தேருகே.

- 1. உமத அவதாவிப்பிற்கு எவ்வ காரனம் கறலூர்?
- 2. எஞ்சிய வாயுவின் (ஏதாவதிருப்பின்) கலலை எவெவ்ன?
- 3. இரு வாயுக்களும் தாக்கமடையும் கலைவவை விகிதம் என்ன?
- 4. வழுத் தோற்றுவாய்கள் யாவை?

ஜகேரச**க்** சல்லாட்டு வாயுஅவையும் குளோரூன் வாயு வையும் பயன்படுத்தி, மேற்கூறைப்பட்ட பரிசோதே2்களையுவொத்த, பரிசோதூக்கைய நடாத்தலாம். பெறுபேறுகைகிலிருந்த இவ்விரு வாயுக்களின் சேரும் கவுவவவு விகிதைத்தைப் பெறலாம்.

10

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org (b) நீரின் பின்பகுப்பு

நீர் கொட்டை கிண்ணமொன்றுள் இரு காபன் பிஸ்வ எய்க 2ளப் பொருத்துக. இம்பின்வாய்கள், நேரோட்ட பின் லேட்டத்தையளிக்கும்ஒரு தோற்றுவாயுடன் தொடுக்கப்படுகின்றன. முற்றுக நீரிஞல் நிரப்பப்பட்ட இரு சோத 2னக் குழாய்க 2ள அல்லது இரு அளவிக 2ள இவ்விரு பில்வாய் கள் மீதம் கவிழ்க்க. இடையிடையே பில்வாய் ஒவ்வொன்றின் மீதம் சேக ரிக்கப்படும் வரியுக்களின் கனவளவுக 2ள அவதா விகைக.

பில்வருவ வைற்றிற்கா வ விடையைத் தருக.

- 1. அஞேட்டில் சேகளிக்கப்படும் வாயு எத?
- 2. கதோட்டில் சேகரிக்கப்படும் வாயு எத?
- 3. இவ்விரு வாயுக்களினதும் கவுவவை விகிதம் எவ்ன?
- 4. இவ்விரு வாயுக்களும் ஒவ்றேடொன்று தாக்கமடையும்போது உண்டாகக் கூடிய பதார்த்தம் எத?

(பின்பகுப்பிற்கான சிறந்த முறையொன்றை அறிவதற்கு படட உறேயிஸ் இன் பௌதிக இரசாயனம் என்ற நா 2லப் பார்க்க)

இப்பரிசோத 2்னப் பெழுபேறுகளிலிருந்த பின்லரும் முடிவுக2்ள நாம் மேற் கொள்ளலாம்.

- (1) ஒரு கனவளவு ஐகரசன் ஒரு கனவளவு குளோரீனடன் சேர்ந்த ஐதுரசன் குளோவாட்டைத் தருகின்றத (மேற்கூறப்பட்ட பரி சோத 2வேயிலிருந்த ஐதுரசன் குளோரைட்டின் கனவளவை திர்ண யிக்க முடியாத. ஐது பசன் குளோரைட்டின் கனவளவைத்தரும் முறையொள்றை அறிவதற்கு படு. உறையிஸ் இன் பௌதிக இர சாயலம் எல்றும் நா 2லப் பார்க்க).
- (11) 2 கனவளவு ஐதரசல் 1 கவுவளவு ஒட்சிசஓடன் சேர்ந்த நீறைத் தோற்றுவிக்கின்றத.

சேர்க்ககையடையும் வாயுக்கவில் கேவவெளவிற்கிடையெயுள்ள தொடர்பு, கேஷ சாக்கில் விதி எனப்படும் ஒருவிதியில் சுருக்கியளிக்கப்பட்டுள்ளது. சேர்க்ககை யடையும் வாயுக்களில் கேவவைளவுகே2்ளப் பற்றி கேஷைசாக் பல பரிசோத2்வ கே2்ள மேற்கொண்டு 1808இல் அவ் விதியை வெளியிட்டார்.

இவ்விதி பில்வருமாற கறுகில்றது. –

" வாயுக்கள் தொக்கமணடையும்போத, அலை ஒன்றுக்கொன்று எளிய விகிதேசமத்தில் உள்ள கனவளவுகளில் தாக்கமணடவதோடு, விટீள பொருட்களும் வாயுக்களாக இருப்பின் அவற்றின் களவளவுகளுடைலும் எனிய விகிதேசமத்தில் இருக்கும்; இங்கு கவவளவுகள் எல்லாம்ஒரே வெப்பறிடூல அமுக்க நிபந்தடீவகளில் அளவிடப்படல் வேண்டும்.

இறசாயனச் சேர்க்கை விதிக்2ன விளக்குவதற்கு தாற்றனின் அணுக் கொள்கை பயறைடையதாக இருந்ததால், சேர்க்கையடையும் கனவளவுகள் பற்றிய கேவூசாக்கின் விதியை விளக்குவதற்கும் அணுக்கொள்கை ஏற்ற தாகவிருக்கும் என நம்பப்பட்டது.

தாற்றவில் அபிப்பிராயப்படி, அணுக்கள் சிறிய முழுவெண் விகிகங்களில் ஒன்ற சேர்கின்றன. கேஷசாக்கில் கருத்தோப்படி சிறிய முழுவெண் விகிகைக் கேலைவைவுகளில் வாயுக்கள் ஒன்ற சேர்கின்றன.

அவ்வாயுக்களின் அணுக்களுக்கும் கனவளவுகளுக்கும் இவடயே ஒரு தொடர்பு இருக்கலாம் எனத் தோஷ்றியது. ஒரே நிபந்த2கைளில் வா யுக்கள் யாவற்றினதும் சம கனவளவுகள், ஒரே அளவு எண்ணிக்கை அணுக் கேீளயுடையன எனத் தாற்றன் கருத்தத் தெரிவித்தார்.

உடம். ஐத் சதும் குளோரீதும் அடையும் தாக்கம்

1 களவ ளவு 1 கனவ ளவு 2 கனவ ளவு ஐகரசன் + குளோரீன் ஐகரசன் குளோரைட்டு

தாற்றவில் அறுமொனத்தில்படி

n ஐத் சன் அணுக்கள் + n குளோரீன் அணுக்கள் ----->

21 ஐத் சன் குளோரைட்டு கட்டு அணுக்கள்

1 ஐத் சக் அணு + 1 குளோரீன் அணு —> 2 ஐத் ரசன் குளோரைட்டு கூட்டு அணுக்கள்

2 ஐகரசன் குளோரைட்டு கூட்டு அணு குறைந்தத ஒரு ஐகரசன் அணுவையாவத கொண்டிருக்கல் வேண்டும். எனவே 2 ஐகரசன் குளோரைட்டு கூட்டு அணுக்கள் குறைந்தது 2 ஐகரசன் அணுக்க ீளயாவத கொண்டிருக்க வேண்டும்.

தாற்றலின் அழுமானப்படி மேற்கூறப்பட்ட தாக்கத்தில் 2 ஐகரசன்குளோ வைரட்டுக் கூட்டு அணுக்கள் 1 ஐகரசன் அணுவிலிருந்த உண்டாக வேண்டும். அதாவது 1 ஐதரசன் அணு, இரு ஐதரசன் அணுக்க2ளக் கொடுக்க வேண்டும். அணுக்க2ளப் பிரிக்க முடியாதென்பதால் இது சாத்தியமா காது. தாக்க வி2ளபொருளின் கனவளவு, தாக்கத்தில் பங்கு பற்றும் வாயு மூலகங்களில் ஏதாவது ஒன்றில் கனவளவிலும் பார்க்கக் கூடுதலாக இருக்கக் காணப்பட்ட தாக்கங்கள் எல்லாவற்றிலும் இத்தகைய பிரச்ச2ன காணப்பட்டது. இதஞல் கேலுசாக்கின் சேருங் கன்வளவு விதியை தாற்ற ஞல் விளக்க முடியவில் 2ல.

1.22 அவகாதரோவில் விதி

இப் பிரச்சடீனமை அவகாதரோ 1811இல் தீர்த்த வைத்தார். ஐத ரசவ், ஒட்சிசன். குளோரூன் போல்ற வாயு நிடுல மூலகங்களில் இரண்டு அல்லத அதற்கு மேற்பட்ட அணுக்கடுளக் கொண்ட கட்டங்கேளாக அணுக் கள் இடுணந்தாள்ளன என அவர் கருத்தத் தெரிவித்தார். அணுக்கடுளக் கொண்ட இக்கட்டத்திற்கு அவர் மூலக்கற எதும் பெயரை உபயோதித்தார்.

அவ கா தறோவின் விதி குறுவ தாவத

ாஒரே வெப்பநிலே, அழுக்க நிபந்தல்லகளில் சமகனவளவு

வாயுக்கள் யாவும் சம எண்ஷிக்கை மூலக் கழகூஇகைகொண்டுள்ளன.

இவ்விதினைப் பயன்படுத்தி ஐதேரசனிவதேம் குளோரூலினதம் சேர்க்கையை விளக்கலாம்.

1 களவளவு ஐதுரசன் + 1 கனவளவு குளோரீன் → 2 கனவளவு ஐதிரசன் குளோனரட்டு

அவகாதரோவில் விதிப்படி ஸை மூலக்கற **ஜைத**ேசன்+ஸமூலக்கற குளோரும்→2ஸமூலக்கழ தூதேசம் குளோகாட்டு

1 மூலக்கற ஐத்ரசன் + 1 மூலக்கற குளோரீன்→2 மூலக்கற ஐத்ரசன் குளோரைட்டு

இதிலிருந்த ஐதரசன், குளோரீன் மூலக்கூழகள் ஒவ்வொன்றும் குறைந் தத இரண்டு அணுக்களேயாவத கொண்டிருக்க வேண்டும் எனத் தொரிகிறது. இதே முறைகளால் ஒட்சிசன் மூலக்கூறுகளும், நைதரசன் மூலக்கூறுகளும் ஈரது க் கொண்டவை எனக் காட்டலாம். எனிலும் நீண்ட காலம் வரை, ஈரணுக் கொண்ட மூலகங்கள் இருப்பதற்கான ஆதாரங்கள் கண்டுபிடிக்கப்படவில் 2ல.

1.30 சார் அணுக்கிலைம் சார் மூலக்கற்றுக் கிண்ஷம்

1.31 அனுத்திலில் அலகு

சார் அணுத்திகிஷைம் சார் மூலக்கற்றத் திகிஷைம் ஒரு நியமத்திற்கு சார்பாக வரையறுக்கப்படும். தாற்றன் 1680 இல் சார் அணுத்திகிஷை கட்கு ஐதரசீன (н=1) நியமமாகப் பயன்படுத்திறைர். ஐதரசின் திகிஷை அணுத்திகிஷை அலகு என எடுத்தக் கொள்ளப்பட்டது. இந்த ஐதரசின் அன விடையில், உதாரணமாக நிக்கலில் சார் அணுத் திகிஷை 58 (அ.அ.அ) வ.பா.பா.ஆகும்.

1960 தொடக்கம் ஐதரசன் நியமம் ஒட்சிசன் நியமத்தால் படிப்படியாக மாற்றீடு செய்யப்பட்டது. பின்வரும் காரணங்களால் O₂ நியமம் ஒரு தகுதிவாய்ந்த நியமமாகும்.

- பல சார் அணுத்திலிவுகள் முழுவெண்கள் ஆக மாறின (நிறையால்).
- 2. 0₂ பல மூலகங்கைஞடைவ் விரைவாகத் தாக்கமுறம். உண் டொகும் ஒட் இசுட்டுக்கேள் இலகுவில் பகுக்கப்படும் (சமுவலுத் திஷிவைத் தூணிவதற்குப் பயல்படும்).
- 3. ஒட்சிசன் நியமமாகப் பயன்படுத்தப்படும்போத தேஷிவு அளவிடப்படுகிறது. பில நியமமாகப் பயன்படுத்தப்படும் போது கனவளவு அளவிடப்படுகிறது. கனவளவிலும்பார்க் கத் தினிவை மிகக்கூடிய திருத்தமாக எம்மால் அளவிட முடியும் (சமவலுத் தினிவைத் துனிதல்).

<u>சமதான்</u> எறும் தோற்றப்பாடு குண்டுபிடிக்கப்படும் வனர ஒட்சிசன் நியமம் திருப்திகரமானதாக இருந்தது. <u>திண்வெண்கம்</u> ¹⁶0,¹⁷0, 18 ஆசியவற்றை உடைய சமதானிகே 2 வக் சொண்டுள்ள சமதானி மூலகமே ஒட்சி சன் எனக் கண்டறியப்பட்டது. வளிமண்டலத்திலுள்ள ஒட்சிசன் திணிவெண்கள் 17, 18 ஆசியவற்றைய வை சமதானிக 2 வக் நாண்ணளவில் கொண்டுள்ளது. இபசாயனவறிஞர்களும், பௌதிகவறிஞர்களும் ஒட்சிச 2 வச் சார்ந்த இனவித் தியாசமான நியமங்க 2 வை உபயோகித்தனர். இபசாயனவறிஞரின் நியமம் 0 = 16 ஒட்சிசன் இயற்கையில் காணப்படும் நி2லவைய அடிப்படையாகக் கொண்டது. அதாவது, மூன்று சமதாவிகளின் கலவையாக அமைந்தது. பௌதிகவறிஞர் நியமமாக, சமதானி ¹⁶O ஐ உபயோகித்தனர். எனவே சார் இரசாயன அணுத்தேனைவுகள் சார் பௌதிக அணுத் தேஷைவுகளிலிருந்தை சற்று வேறுபடும். பில் வேயதை முன் வேயதாக மாற்றுதற்கு மாற்றல் காரணி உபயோகிக்கப்படல் வேண்டும். அளவிடையில், அனுத் திணிவில் அலகு O அணுத் திணிவில் <u>1</u>6 ஆகும்.

இச்சிக்கல் காரமை 1962 இல் ஒரு புதிய நியமம் அறிமுகப்படுத் தப்பட்டது. இந்நியமம், காபலில் சமதான் ¹² இல் சார்ந்தள்ளது. இச் சமதானியின் ஓர் அஹுவிற்கு 12 அலகு நினிஷை கொடுக்கப்பட்டுள்ளதால் இப்புதிய நியமம் ¹²C = 12 எனக் குறிப்பிடப்படும். இதனுல்ஏற்படும் மாற்றம், O = 16 நியமத்தில், முன்னர் கொடுக்கப்பட்ட சார் அஹுத் திணைஷை களின் பெறுமோனங்களில் பிகச்சிறிய வித்தியாசங்கே2ள மட்டுமே உண் டாக்கியது. உதாரணமாக, ஒட்சிசன் நியமத்திலும் ¹² தியமத்திலும் ஐத ரசனின் சார் அணுத்திணிஷ 1.008 (மூன்று தசமதானம்வரை ஒரேயனஷ) ஆகும். இப்புதிய நியமத்தை உபயோகிப்பதால், O = 16 அளவிடையில் கொடுக்கப்படும் ஒரு சார் அணுத்திணிஷ, பத்தலட்சத்தில் 43 பகுதிக ளால் மட்டுமே குறைகிறது. எனவே, முன்னர் திருத்தமாக 16 ஆகவிருந்த ஒட்சிசவின் சார் அணுத்திணிஷ, இப்போது 15.994 ஆகின்றது. ¹² தன விடையில், அணுத்திணிஷின் அலகு ¹² சேமதானியின் திணிவின் <u>1</u> ஆகும்.

சார் அணுத்திலிவு

ஒரு மூலகத்தின் சார் அஹுக்தினிவு, அம் மூலகத்தியதை அஹு வொென்றின் சராசரித் திணிவிற்கும் ஒர் ஒட்சிசன் அஹு வினது திணிவின் <u>16</u> இற்கும் அல்லதை ¹²C அஹு வினது திணிவின் <u>12</u> இற்கும் இடையேயுள்ள விகிகமாகும். உதாரணம், இரும்பின்(Fe) சார் அஹுத்திணிஷை 56(அ.தி.அ)

amu ygi.

1.33 சார் மூலக்கற்றக் கூறை

ஒரு மூலகத்தில் அல்லது சேர் வையில் சார் மூலக்கற்றத் திலிஷை, ஒரு ஒட்சிசன் அஹுவினது திலிலில் <u>16</u> இற்கும் அல்லது ¹²C அணுவினது திவிவின் <u>12</u> இற்கும் இடையெயுள்ள விசிதேமாகும்.

உதாரணம், N₂ இன் சார் மூலக்கற்றுக்கினிலு 28 (அ.கி.அ) amu ஆகும்.

1.34 சமவனத் திலிவு

பகுதி 1.21இல் மக்னீசியத்தினதும் ஒட்சிசலும் சேர்க்காக விகிதங்க ீளக் காட்டுவதற்கொக இரை பரிசோதீசனைகீளச் செய்தீர். இப்பரிசோ தீீனைகளில் பெறுபேறேகளிலிருந்து 86 ஒட்சிசலுடைல் சேர்க்காகயுறும் மக்னீசி யத்தில் திணிரைவைக் கணிக்க முடியும்.

பரிசோத உனகள்

(1) நாகவொட்காசட்டு, செப்பொட்காசட்டு ஆகியவற்றின் ஆக்கல். நாகம்,ஒட்சிசன் என்பவற்றின் சேர்க்னாக விடிதைக்கைதையும், செம்பு ஒட்சிசன் என்பவற்றின் சேர்க்னாக விடிதைக்கைதயும் பெறுவதற்கொன பகுதே 1.21இவுள்ள பறிசோது 2னே (ட) ஐ மீண்டும் செய்க.

அதன் பெறபேறுகளிலிருந்து 8**9** ஒட்சிசதுடைல் சேர்க்கையுறும் நாகத்தின் அல்லது செம்பில் திலி வைக் கணிக்க.

(11) நாகத்தால் செம்பை இடம் பெயர்த்தல்.

ஒரு சோத2வக் குழாயில் செப்புச் சல்பேற்றின் ஓரளவு நிரம்பிய கரை சலே (ஏறக்குறைய 20 ml) தயாரிக்க. இச் செப்புச் சவ்பேற்றுக் கரை சலிற்கு , நிறை அறியப்பட்ட நாகத்தை (ஏறக்குறைய 0.1g) சேர்க்க தாக்கம் முற்றூப்பெற்ற பின் கலவையை வடிகட்டுக . இவ்வீழ்படிவை முதலில் நீராலும் பின்னர் அற்ககோலாலும் கழுவுக. வீழ்படினை உலரவிட்டு பின் உலர்த்தியில் வைக்க வீழ்படிவை நிறுத்த அதன்பின் செம்பின் தினிவைத்துணிக. இப்பெறுபேறுகளிலிருந்த, நாகத்தால் இடம் பெயர்க்கப்பட்ட செம்பின் திணினைக் கண்டறியலாம். 8 ஒ ஒட்சிசலுடன் தாக்கமடைந்த நாகத்தின் திணினைக் கண்டறியலாம். 8 ஒ ஒட்சிசலுடன் தாக்கமடைந்த நாகத்தின் திணினைக் கண்டறியலாம். 8 ஒ ஒட்சிசலுடன் தாக்கமடைந்த நாகத்தின் பெயர்க்கப்படும் செம்பின் தினினை உல்மால் கண்டறிய முடியும்.

பின்வருவனவற்றிற்கு விடை கருக.

- ஒரு தொல்கு நாகத்தைச் சேர்க்கும்போது தொக்கப் பாத்திறத்தில் அவதாவிக்கப்படும் மாற்றங்கள் யானவ?
- நாகம் முழுவ அம் தாக்க மடைந்துள்ள தாவெ வ நீர் எவ்வாழு அறிந்த தொள்வீர்
- 3. நாக உலோகத்தின் து யீமை பற்றி நீர் என்ன அறிவூர்?
- 4. நாகத்தை எவ்வடிவில் நீர் உபயோகிப்பீர்?

4. நாகவுலோகத்தை நீர் எவ்வாற தாய்தாக்குலிர்?

5. உண்டாகும் செம்பைறீர்எவ்வாற உலர்த்துவீர்?

மேற்கறிய பரிசோத 2வகளிலிருந்த பில்வருவனவற்றைப் பெறலாம்.

1. 89 ஒட்சிசனுடன் தாக்கமுற்ற நாகத்தின் அல்லத செம்பின் திணிவு 2. 649 நாகத்தடன் தாக்கமுற்ற செம்பின் திணிவு.

8.9 ஒட்சிசனுடன் தாக்கமுற்ற நாகத்தின் அல்லத செம்பின் திணிவு இவ்வு லோகங்களின் சமவலுத் திணிவுக 2ள ஒத்திருக்கும்.

ஒரு மூலகத்தின் சமவலத்திலிவு (அல்லத சேர்க்காகயுறும் திலிஷ), ஐக **பசனின் திலி**வின் 1 பகுதியடுவ் அல்லத ஒட்சிசலின் திலிவின் 8 பகுதிகளுடன் சேர்க்கையுறும் அல்லது இடம்பெயர்க்கும் அம் மூலகத்தின் திலிவொலானபகு திகளின் என்னைக்கைகயுன வரையறுக்கப்படும்.

பயிற்கி

5.

- 1. 0.329 கந்தகம் SO ஆக ஒட்சியேற்றப்படும்போத 0.809 ஒட்சைட்டைக் கொடுக்கின்றது. கந்தகத்தின் சமலனத் திணிவு யாத?
- 2. •H2SO இலுள்ள SO இனதும் HNO இலுள்ள NO இனதும் சமவலுக் கிணிவுக 2 எதீர் எவ்வாற பெறுவீர்?
- 0.588 ஏ உலோகம், எரிசோடாக் கரைசழுடன் வெப்ப மாக்குவதால் கரைக்கப்பட்டது, வெரியேற்றப்பட்ட ஐகரசன் 13°C இவம் 728 mm அழுக்கத்திலும் 800 c c என அள விடப்பட்டது. அவ்வுலோகத்தின் சமவலுத் திணிவைக் கணிக்க.
 இரும்பின் இரு ஒட்சைட்டுக்களேப் பகுக்கப் பின்வரும் பெறுபேற
- 4. இரும்பின் இரு ஒடனசட்டுக்க கோப் பகுன்பே பான் செ கன் பெறப்பட்டன.

ஒட்சைட்டு 1 – 77.08 ச தவீதம் இரும்பு ஒட்சைட்டு 11 – 70.00 ச தவீதம் இரும்பு

இவ் விரு சேர் வைகளிலுள்ள இரும்பின் சமவலுக் தேவிவுக 2ள கணிக்க. இவ் விரு பெறு மானங்களும் வேறுபடுவதற்கான காரணத்தை விளக்குக. இப்பெறு மானங்கள், பலவிகிதசம விதியுடன் உடன் படுகின்றன வென்பதைக் காட்டுக.

2.5 9 நாகஷ வோகம் 3.11 9 நிறையுடைய ஒட்சைட்டாக

மாற்றப்பட்டது. 10 ஏ டே பே 2 ஆ உப்பைக் கொண்டுள்ள டே பே 50 க கரைசலிற்குள் 2.5 ஏ நாகம் சேர்க்கப்பட்டது. உலோகச் செம்பு வீழ்படிவாகியது. இவ்வீழ்படிவு கழுவப்பட்டு, நீரா வியடுப்பில் உலர்த்தப்பட்ட பின் 2.43 ஏ நிறையையடையதாய் இருக்கக் காணப்பட்டது. செம்பின் சமவவத் திவிவைக் காணிக்க. செம்பு உப்பு 39.83 சதவிதம் டே ஐக் கொண்டிருக்குமாயின், கரைசலில் தவ்கியிருக்கும் இவ்வுப்பின் அளவு என்ன?

- 6.15°C இலும் 750mm அமுக்கத்திலும் அளவிடப்பட்ட 10 cc உலர் குளோரீல் வாயு KI கரைசலால் உறிஞ்சப்பட்டது. வெளியேற்றப்பட்ட அயுடீன் நீராவியில் வடிக்கப்பட்டது.இந்த அயுடீன் 0.1982 வெள்ளி அயடைட்டை உண்டாக்குவதற்குப் போதுமாயிருந்தது.வெள்ளி அயடைட்டு 54.04 சதவீதம் அய டீலேக் கொண்டிருந்து. CL இன் சமவலுத்திணிஷ 35.5 ஆக வுயிருப்பின், அயடீனின் சமவலுத்திணிலைக் கேனிக்க.
- 7. ஒரு கிராம் உலோகக் கம்பியொன்ற ஐதான H₂SO₄ இல் கரைக்கப்பட்டபோது 17°C இலும் 760 mm அமுக்கத்திலும் 422 cc உலர் ஐதரச 2வக் கொடுத்தது. அதே கம்பியின் 1.400 ஒட்சியேற்றத்தால் 2.000 ஒட்சைட்டைக்கொடுத் தது. இல் விரு சந்தர்ப்பங்களிலும் உலோகத்தில் சமவலுத் தினிலை கணிக்க; இப் பெறுபேறுக 2வ விளக்குக.

1.34 தார் மூலக்கற்றத் தினினவத் துலிதல்

பகுரி 1.32 இல் சார் மூலக்கற்றத் திகிலில் வரைவிலக்காலும்தொடுக் கப்பட்டத. சார் மூலக்கற்றத் திகினைவைத் துணிவதற்கான முறைக2ள நாம் இங்கு ஆராய்வோம்.

ஒரு சேர்வையின் சார் ஆவியடர்த்தியை அறிவதால் அதன் சார்முலக் கற்றத் தீணிவைக் கண்டறியலாம். ஒரு தெரிந்த கனவளவைடய வாயுவின் தீணிவு அறியப்பட்டிருப்பின் அதன் அடர்த்தியை (၂ டால்)கண்டுபிடிப்பத சுலபமாகும். ஆயிலும் வளிண்டலத்தின் வெப்பதிலே, அமுக்கம் என்பவற் ரேடு அடர்த்தி மாற்றமடையும். எனவே வெப்பதிலேயிலும் அமுக்கத் திலும் சார்ந்திராத, சார்படர்த்தி உபயோகிக்கப்படுகின்றது.

ஒரு வாயுவின் சார்படர்த்தி பின்வருமாற வேரையறகையப்பும
சார்படர்த்தி = ஏதாவதொரு கவவளவுள்ள வாயுவின் திகிலை
ஒத்த வெப்ப நி 2லையிலும் அமுக்கத்திலும் அதே கனவளவு
H₂இன் திகிஷை
வாயுவின் கனவனவு
$$\infty \text{ cm}^3$$
 ஆயித்
= $\frac{\infty \text{ cm}^3 வாயுவின் திணிஷ $\infty \text{ cm}^3 \text{ H}_2$ இன் திணிஷ
அவகாதரோவின் கோட்பாட்டிலிருந்து;
 n மூலக்கற வாயுவின் திணிஷ
= $\frac{n மூலக்கற வாயுவின் திணிஷ$$

1 மூலக்கூற வாயுவின் திணிவு

1 மூலக்கத பு, இன் அணிவு

1 மூலக் குழ ஐதேரசன் 2 அஹுக்கூடுளக் கொண்டுள்ளது எனக் கொண்டு ஐதேரசனின் 1 அஹுவின் தினினை சார் மூலக்கூற்றத் திணிவின் அலகெனஎடுத் தோல்

வாயுவில் சோர்படர்த்தி = சார் மூலக்கற்றுக் கிலிவை 2

் சார் மூலக்கற்றத் திலிஷ = சார்படர்த்தி × 2

சார் அணுத் திணிவுகள் குறிக்கும் நியமமாக 0 = 16 அளவிடை எடுத்தக் கொள்ளப்படின், இத்தொடர்பு பின்வருமாற இருக்கும்.

சார் மூலக்கம்மத் திலிலை = சார்படர்த்தி 🗙 2.016

இத்தொடர் பை உபயோகித்த, ஒரே வெப்பநி2ல அமுக்க நிபந்த2வகளில் ஏதாவதொரு வாயுவிலதேம், H₂ இனதும் சமகவை எவுகளின் திணிவுக2எஒப் பீடுவதால் அவ்வாயுவின் சார்மூலக் கற்றத் திணிவைக் துணியலாம்.

தா மசின் முறை, விக்றர் மேயரின் முறை, பரவுகை முறை, வெளிப்ப ரவல் முறை போன்ற பழைய முறைகூ 2வைப் பயன்படுத்தி ஒரு வாயுவின்சார் படர்த்தி பெறப்படும். இம்முறைகைப் வேறே புத்தகத்தில் விரிவாக விப ரிக்கப்பட்டுள (பெளதிகவிரசாயகம் H·L·டேறையிஸ்)

பயிற்கி

- 0.175 g ஆலிப்பறப்புள்ள பதார்த்தம் ஒன்ற 15°C இலும் 740 mm ஆமுக்கத்திலும் 19cG வெளியை இடம் பெயர்த்தது, இல்வரி நீரின் மேல் சேகேரிக்கப்பட்டது. இப்பதார்த்தத்தின் சார் மூலக் கூற்றத் தினி அவைக்கணிக்க. 15°C இல் நீரின் ஆனியமுக்க 12.7 mm
- 2. ஒரு உபகரணத்தில் 19 NaCl செறிந்த H₂SQ உடன் கலக் கப்பட்டபோத வெளிவிடப்படும் ஐது ரசன் குளோரைட்டு இரசத்தின் மேல் சேகரிக்கப்பட்டது. 18°C இலும் 755 mm அழுக்கத்திலும் அதன் கனவளவு 411cc ஆகும். உபகரணத்தின் திணிவு நட்டம் 0.624 9 ஆகும். நிவை.அ இல் ஐதரசன் குளோரைட்டின் அடர்த்திரையக் கணிக்க.
- 3. தா மசின் முறையால் ஒரு பதார்த்தத்தின் சார்படர்த்தி தானியைப்படும்போது பின்வரும் தறவுகள் பெறப்பட்டன.

வ ழியில்கு பிழின் அவிவு 48.0016q = 97°C இல் குமிழினதம், குமிழை நிரப்பும் ஆவியினதும் திகில 48.2960 q -நீரால் நிரப்பப்பட்ட குமீழின் திலைவு 238.09 = தராகப் பெட்டியின் வெப்புதிலே 13°C -பாரமானியின் அளவிடு 750 mm = வைவியில் சாதாறன அடர்த்த 1.293 ql = H. இன் சாதாரன அடர்த்த 0.0898791 = இப்பதார்த்தத்தில் சார்மூலக் கூற்றத் திலிலைக் காண்க.

4. ஒரு 1000 CC குடுவை வளியகற்றிய பின் 50.8839 நிறையனடங்து. நியம் அமுக்கத்திலும் 20°C இலும் ஒரு வாயுவால் நிரப்பப்பட்ட பின் அதன் நிறை 52.0809 வாயு இலட்சியத் தேவ்மையைக் காட்டுகின்றதொக்கொண்டு அதன் சார் மூலக் கற்றுத்தின்றைவக் கோவிக்க. வாயு வைக் கண்டறிவதற்கான முறையைத் தொரிவிக்க.(நி.வெ.அஇல் வாயு வின் மூலர்க் கனவளவு 22.4 Cm எனக் கொள்க).

1.35 சார் அணுக் கினிலைக் குணிகல்

1.35.1 கவிற்சாரோவின் முறை

கனிற்சாறோ, மூலகங்களின் சார் மூலக்கற்றுக் கிணிவுக 2 எக்கான் பதற்கு சார் மூலக்கற்றுக் கிணிவு — சார்படர்த்தி × 2 எதும் தொடர் பைப் பயன்படுத்திஞர். அவர் முதலில் இம்முறையை ஐதரசனுக்கு மட் டும் பிரயோகித்தார். அவர், சார்படர்த்தியை 2 ஆம் பெருக்கிசில ஐதரசன் சேர்வைகளின் சார் மூலக்கற்றுக் திணிவுக 2வப் பெற்றுர். இவற்றின் பெறபேறுகள் பின்வரும் அட்டவ 2 பேலில் கொடுக்கப்பட்டுள்ளன.

சேர்வை	சார்படர்த்தி	சார் மூலக் கற்றத்தினிஷ	ஒரு மூல் பதார்த் தத்தில் ஐதுரசலின் திராமளவு
ஐதரசன்	1	2 (எடுகோள் பெறுமானம்)	2
ஐதரசன்			and the second
குளோரைட்டு	18.25	36.5	1
நீராவி	9	18	2
ஐதரசன்			
சல்பைட்டு	17	34	2
பொசுபீன்	17	34	3
மெதேன்	8	16	4
எதனேல்	23	46	6

அவர், இச்சேர்வலை கூறேப் பகுத்தை 1 மூல் சேர்வையிலுள்ள ஐகரசலில் கிராம் என்னிக்கையை (கிராயில் சார் மூலக்கூற்றுக் திவிவை)கண்டறிந்தார். ஏதாவதொரு ஐதரசன் சேர்வையின் ஒரு மூலிலுள்ள மிகக் குறைந்த ஐதர சனின் கிராமளவு, ஐதரசனின் சார்மூலக்கூற்றுக் திணிவின் அரைப்பங்காகும். ஐதரசனின் சார் மூலக் கூற்றுக் திணிவு 2 என்பதால் அதன் சார் அணுக் திணிவு 1 ஆகும்.

குளோரீன், காபன் போன்ற பிற மூலகங்களின் சார் அஹைத் திணிவு கே ீ கக் காண்பதற்கு கனிற்சாரோ இம்முறையைப் பிரயோசித்தார். பல காபன் சேர்வைகள் பகுக்கப்பட்டு அவற்றின் பெறுபேறுகள் கீழே கொடுக் கப்பட்டுள்ளன. அவர், ஏந்தவாரு காபன் சேர் வையினதம் ஒரு மூலில் உள்ள மூலகத்தின் டிகக் குறைவான திணி வைத் தணிந்தார்.

The survey of th	சார்படர்த்தி	சார்மூலக் கூற்றுக்கிலை	1 மூலீ சேர்வை யிலுள்ள காபனின் கிராம் அளவு
மெதேன்	8	16	12
எதேவ்	15	30	24
புறோப்பேன்	13	26	36
பியூற்றேன்	29	58	48
<i>ទ</i> យុ ធា ទ ធំ	26	52	24
காபனேறொட்கைட்டு	14.	28	12
காபகீறொட்கைட்டு	22	44	12

1 கிராம் மூலக்கூற காபன் சேர்வையிலுள்ள மிகக்குறைந்த காபனின் திணிவு 129 ஆகவிருப்பதால் காபனின் சார் அஹைத்திணிவு 12 ஆக விருக் கும். இதே முறையில் குளோரீனின் சார் அஹைத்திணிவு 35.5 எனவும் ஒட்சிசனின் சார் அஹுத்திணிவு 16 எனவும் கண்டறியப்பட்டத.

கணிற்சா ரோ ஆவிப்பறப்புள்ள பல சேர் வைகை 2 எக் கொடுக்கும் பிற மூலகங்களின்,உதாரணமாக, புரோமீல்,அயடுல் ஆசியவற்றில் சார்அணு க் கிலிஷைக 2 எத் தோவிவைதற்கும் இதே முறை வைப் பிரயோகித்தார்.

சார் மூலக்கற்றுக் கிலிஷை — சார்படர்த்தி × 2 எலும் தொடர்புஇலட் சிய வாயுக்களுக்கு மட்டுமே பொருந்தம். எனவே இம்முறையால் பெறப் பட்ட சார் அணுத்திலிவுகள் அன்வைளவாகவை. எலிலும் ஒரு மூலகத்தில் செம்மையான சமலலுத்திலிவும் வலுவளவும் அறியப்பட்டிருப்பில்

சார் அணுத்தினிவு — சமவலத்தினிவு × வலுவளவு என்ற தொடர் ைப் பயன்படுத்தி சார் மூலக்கற்றத் திணிலின் திருத்தமான பெறுமானத்தைப் பெறலாம்.

ଭା ବ୍ୟୁଭା ଶାର୍ଯ୍ୟ

வலுவளவு என்பது வெவ்வேறு அணுக்களின் சார் சேரும் கிறனே யாகும். உதாரணமாக NaCL, MgCL, ALCL, CCL, ஆகிய குளோரைட் டுக்களில், முதல் மூலகத்தின் ஓர் அணுவானது, முறையே ஒன்று, இரண்டு மூன்று, நான்கு அணுக்கள் குளோரீனுடன் சேருகின்றது. எனவே நாம் சோடியத்தின் வலுவளவு ஒன்று எனவும், மக்னீசியத்தின் வலுவளவு இரண்டு எனவும் அலுயினியத்தின் வலுவளவு மூல்ற எனவும், காபனின் வலுவளவுநான்கு எனவும் கறலாம். வெவ்வேறு அணுமக்களின் சேரும் திறன் வேறுபடுகில்ற தென இவ்வுதாரணம் காட்டுகின்றது. ஒரு மூலகத்தின் வலுவனைவு ஐதரசன் அணுக்களின் பிரகாரம் அளவிடப்படும். வலுவளவைப் பின்வருமாற வேரை யறுக்கலாம்.

தரப்பட்ட ஒரு மூலகத்தின் ஒரணுவுடன் சேரும் அல்லத ஒரணுவால் இடல் பெயர்க்கப்படும் ஐதரசன் அணுக்களின் எண்ணிக்கை வலுவளவாகும். ஐதரசஓடன் தாக்கமுறுத மூலகங்களில், ஐதரசஞக்குச் சமமான கட்டங் கஞடன் இம்மூலகங்கள் உண்டாக்கும் சேர் வைக 2 எக் கொண்டு இவற்றின்வலு வளவுகள் உய்த்தறியப்படும். எனவே, CL, Br, CH₃, C₂H₅, ஆகியவற்றுடன் உண்டாக்கப்படும் சேர் வைகள் ஒரணு ஐதரசஓக்குச் சமமான சேரும் திற இடையவை.

இதேபோல் ஒட்சிசனின் வலுவளவு 2 எனக் கொள்டு ஒட்குசட்டுக்களிலிருந்து மூலகங்களின் வலுவளனவ உய்த்தறியலாம்.

சார் அணுத்தினிவு = சமவலத்தினிவு × வலுவளவு எதும்தொடர் பை பின்வருமாற பெறலாம்.

ஒரு மூலகம், X, ஐகரசஓடல் சேர்ந்த XH_n எதும் சேர்வையைக் கொடுக்கின்றதெனக் கொள்வோம். இங்கு n இம்மூலகத்தின் வலுவளல, ஆகும். அதாவத X இன் 19 அதுதுத்தினிவு H₂ இன் ng அணுத்தினிவு உடன் சேரும். ஆயின் X இன் 19 சமவலுத் திணிவு ஐகரசனின் 19 சம வலுத் திணிவுடன் அதாவது 19 ஐகரச**ஓடன்** சேரும்.

: H=1 எவ்ற அளவிடையில்

x இன் சார் அணு க்கினிவு

X இன் சமவலுத்தாகிலு

X இன் சார் அணுத்திணிவு = x இன் சமுவலுத்திணிவு × வலுவளவு இத்தொடர்பிலிருந்த ஒரு மூலகம் ஒன்றுக்கு மேற்பட்ட சமவலுத் திணி வைக் கொண்டிருக்குமாயின் அம்மூலகம் ஒன்றுக்கு மேற்பட்ட வலுவளனவக் கொண் டுள்ளதென்பத தெளிவாகின்றது.

இத் தொடர்வைப் பயல்படுத்தி, ஒரு மூலகத்தில் சோர் அணுத்திலிலை

செம்மையான பெழுமானத்தைப் பெற்முடியும்.

இ நசாயன முறைகளால் செம்மையான அனுவுக் கிணிவைக் காணும் போத, முதற்படியாக இயலுமானவளவு கிருத்தமாக சமவலுக்கிணிவு அல்லத சேரும் கிணிவு தணியப்படுகிறது. சமவலுக் கிணிவைத் தணிவதற்கு நீர்பகுகி 1.33 இல் பல பரிசோத2னைக2ளச் செய்திருப்பீர். இதற்கான வேழ முறைகள் பௌதிக இ நசாயனம் H·L· உேறயிஸ் என்னும் நாலில் கொடுக் கப்பட்டுள்ளன. இரண்டாவது படி, வலுவளவைக் காண்பதாகும். பின்னர் செம்மையான சமவலுக்கிணிவு வலுவளவால் பெருக்கப்படும்.

வலுவளவை கனிற்சாறோவின் முறையால் துணியலாம். கனிற்சாறோவின் முறையை உபயோகித்தை (பகுதி 1.35 இல் விளக்கப்பட்டுள்ளவாறு) மூல கங்கேளின் சார் அணுத் திணிவிற்கான அண்ணளவுப் பெறுமாலங்க 2ளப் பெற லாம். இப்பெறுமானத்தை செம்மையான சமவலத் திணிவின் எண்பெற மானத்தால் பிரிக்கவரும் ஈறைவ கிட்டியை முழுவென்றைகைப் பெறப்படுவது வலு வளவாகும்.

உதாரணம்: கனிற்சாரோ காபலில் சார் அணுத்திணிவு அன்ணளவாகப் 12 எலக் கண்டார். காபல், காபனீரொட்சைட்டாக ஒட்சியேற்றப்படுவதிலிருந்த, கோபனில் சமவவத் திணிவு 3.003 ஏ எலக் காட்டலாம்

ଗଙ୍ଗ ରୋ କାର୍ଭୁରା ଶାର୍ଯ୍ = 4

. செம்மையான சார் அணுக்கிலை 12.012 ஆகும்.

1.35 (11) து லோன் பெற்றிற்றர் விதி

இவ்விதி, தின்ம மூலகங்களில் சார் அணுத் திணிவினதும் தன் வெப்பத் தினதும் பெருக்கம் (கிராமொன்றின் வெப்பக் கொள்ளவை) அண்ணளவாக ஒரேயளவாவது எவவும், அது 26 TK⁻¹ இற்கு சமமானது எவவும் கூற கூல்றது. அதாவது ஒரு மூல் வெவ்வேறு திண்ம மூலகங்களின் வெப்ப நிலேனைய ஒரு கெல்வின் (=1°C) ஆல் உயர்த்துவதற்கு 26 ரவைப்பச் சக்தி தேவைப்படுகின்றதென்பதை இது விளக்குகின்றது. ஒரு மூலகத்தின் சார் அணுத்திணிவினதும் தன்வெப்பத்தினதும் பெருக்கம் மூலர் வெப்பக் கொள்ளவை, எவவும் அழைக்கப்படும். சார் அதைத்திலை, × தன்லெப்பம் — 26 JK⁻¹

மூலகம்	சார் அணுத் தினிலு	வெப்பக் கொள்ளைஷ ர ₉ ⁻¹ k ⁻¹	மூலர் வெப்பக் கொள்ளளஷ Jmol ¹ К ¹
ड नबीढेंह	75	0.347	26.0
செம்பு	63.6	0.353	22.5
சயம்	207	0.130	26.9
இக்கல்	58.7	0.451	26.5
வைள்ளீயம்	118.7	0.230	27.3

வை கையான இப்பை மூலகங்கள் அலவற்றின் மூலர் வெப்பக் கொள்ளளவு கள் பின்வரும் அட்டவ ஊேயில் கொடுக்கப்பட்டுள்ளன.

ஒரு கிராம் மூலகத்தக்கு அளவிடப்பட்ட வெப்பக் கொள்ளளவை,26 ஆல் பிரிக்க சார் அணுத் திளிவிற்கு அண்ணைவலான பெறுமானம் ஒன்றுபெறப் படும். செம்மையான சமலலுக் திளிவு அறியப்பட்டிருப்பின், நாம் வல வளவைக் கோஸ்டு, அதிலிருந்த ஒரு மூலகத்தின் சார் அணுத்திளிவின் செம் மையான பெறுமானத்தைப் பெறலாம்.

உதா**றனம், ஒரு உலோகத்தின்** சமல**லத் தினி**வு 18.61 **அதன்** தன் வெப்பக் கொள்ளளவு **9.4**6 Jg¹ ஆகும். அதன் செம்கைமயான சார் அணுத்தினிலைக் கணிக்க.

செம்ஸையான சோர் அணுத்திலிலை — வெலுவளைலு 🗙 சமலவத்திலிலை 3 × 18.61 = 55.83

ରା କ୍ରାରା ଶାକା

)

இவ்விதி வாயு மூலகங்களுக்கும், குறைவான அணுக் கிணிவும், உயர்ந்த உருகு நில் கரும் உள்ள மூலகங்களுக்கும், உதாரமைமாக, பெரிலியம்போரன் காபன், சிலிக்கன் போன்றவற்றுக்கும் பிரயோகிக்க முடியாது. சாதாரண வெப்பதிலே மில் இம்மூலகங்களின் (Be,B,C,Si,) மூலர் வெப்பக் கொள்ளளவுகள் 26 Jmol¹ K⁻¹ இலும் பார்க்கக் குறிப்பிடத்தக்களவு குறைவானவை. உயர் வெப்பறிலேகளில், அவற்றின் மூலர் வெப்பக்கொள் ளவுகள் படிப்படியாக ஆகிகளித்து இறுகியில் மாறு நில்லையயடையும். இப் பெறுமானம் இன்னமும் 26 Jmol¹ K⁻¹ இலும் குறைவாகுவிருக்கும். உடம் C, B, Si ஆகியவற்றுக்கு இப்பெறுமானம் சுமார் 23 Jmol¹ K⁻¹ ஆகும்.

கஷிற்சாறோ தானே கண்டுபிடித்த, சார் அனுறைத்திணிக 2 எப் பயன் படுத்தி தாலோன் பெற்றிற்றர் விதியின் தகுதியை நிரூபித்தார். பின் Na,Cu,Ag,Au போன்ற பல உலோகங்களின் சார் அனுறத்திணிவுக 2 எப் பெறுவதற்கும் இவ்விதியைப் பயன்படுத்திஞர். கணிற்சாறோவின் முறையால் பகுக்க முடியாத மூலகங்களின் சார் அன்றத் திணைவுக 2 எதே தணைவ் தற்கு தாலோன் பெற்றிற்றர் முறை ஒரு சிறந்த முறையாகும்.

பயிற்சி

- 1.18 உலோக புறோமைட்டு நீரில் கரைக்கப்பட்டு, அதற்குள் மிகை வெள்ளி நைதறேற்றுக் கரைசல் சேர்க்கப்பட்டது. இத் தாக்கத்தின் வி?வைாக வரும் வெள்ளி புறோமைட்டுக் கரைச லின் நிறை 1.888 . இங்கு கருதப்பட்ட உலோகத்தின் தன் வெப்பக் கொள்ளவு 0.67 J⁻¹ k⁻¹ ஆயின் அதன் சார் அணு த திணிவைக் கணிக்க
- 2. 15°C இல் ஓர் உலோகத்தின் தன் வெப்பக்கொள்ளளவு 1.799 ர₉^{-1,1} ஆகும். இவ்வுலோகம் 88.65 சதவீதம் குளோரீ2னைக் கொண்டுள்ள ஒரு குளோனரட்டைக் கொடுக்கும் அதன் ஆவியடர்த்தி 40 ஆகும். இத்தரவு கொடுக்கும் சார் அணுக் திணிவிற்கான சான்றை வினைக்குக
- 3. ஆவிப்பறப்புடைய உலோகமொன்றின் சமவலத்திகிஷை 100.3, அதன் தேன்வெப்பம் 0.138 Jg¹ k⁻¹ ஆகும். இவ்ஷலோகத்தின் 0.25 g 500°c இலம் 101.3 × 10³ KNm²(760 mm)

இலும் கவை எவு 79.5 Cm ஐக் கொண்டிருக்கும். ஆவி அவத்தை யூல் இவ்வு லோகத்தில் சார் அணுத் திணி வையும் சார் மூலக்கற் றத் திணி வையும் கணிக்க.

1.36 சேர்வைகளில் தேத்தோமங்கள்

இரசாயனச் கூத்திரம், ஒரு மூலகத்தின் அல்லது சேர்வாவயின் இரசா யன அமைப்பைக் கூறிப்பிடக்கடிய ஒரு சுருக்கமான முறையாக அமைகின்றது. 8 ஆம் வகுப்பூல் (விஞ்ஞானம் 8 ஆம் தரம், அத்தியாயம் 18) மக்னிசியம் ஒட்வாசட்டின் மூலக்கற்றுச் சூத்திரம் MgO எனப் படித்திருப்பீர். இங்கு அச் சூத்திரத்தைப் பெறுவதற்கு மாறுவமைப்பு விதிையைப் பயன்படுத்தினிர்.அதே போன்று பெரதச் சல்வாபட்டினதாம் (FeS) காபனீரொட்சைட்டினதைம் (CO) மூலக்கற்றுச் சூத்திரங்கே2ள எழுதாவதற்கு உமக்குத் தொியும்.

இவ்வடிப்படை அறிவை உபயோகித்த வேற சேர்வைகளின் குத்திரங் கேீலக் கண்டறிய எத்தனிக்கலாம். ஒரு சூத்திரத்தைப் பெறுவதற்கு சேர் வையிலுள்ள மூலகங்களின் சார் திணிவுக 2ள முதலில் கண்டறியவேன்டும். இச் சார் திணிவுகள் பின்வருவனவற்றில் சார்ந்துள்ளது.

- (ட) அணுக்களின் கினிவுகள்
- (b) ஒன்று சேர்ந்துள்ள ஒவ்வொரு மூலகத்தினதும் அணுக்களின் சார் எண்ணிக்குக.

அறியப்பட்ட அவைவை வைய சேர் வையிலுள்ள மூலகங்களில் அவிவுகள் நீர் முல்லர் செய்த பரிசோத2வை களிலிருந்த அல்லது பிறபகுப்பு முறைகளிலிருந்த கைக்டைறியப்படும். ஒரு சேர்வையை உட்டைரக்குவதற்கு ஒன்ற சேரும்அஹுக் களின் சார் எஷ்ஷிக்கையானது அம்மூலகங்களின் அவிவைகைகள் அவற்றில் அஹுக் அவிவை களால் பிரிப்பதால் பெறப்படும்.

உதா ரணம்:	4.50 ஜ சேதனச் சேர்வை பொற்ற, (அக்கிரிலிக்
	கமிலம்), 2.25 தகோபன் (С), 2.00 தட்
	சுசன் (O), 0.25 த ஐதரசன் (H) ஆகியவற்
	எறக் கொண்டிருக்கக் கானப்பட்டது. இதன் குத்
State of the state of the	អ្នកចំ ៣៥ឆ្នំ
	திணிவுகள் 2.25 2.00 0.25
	சார் அணுத்திலை உபயோகித்த தில்லை அமைப்பை சார்

Digitized by Noolaham Foundation.

	Star March	AAD	அமைப்பாக	மாற்றவோம்.	
មកតំ ខ្ល	new 3	மைப்பு	C 2.25 12,	$\frac{0}{2.00}$,	0.25 1
					1

0.187 0.125 0.25

இகைவ ஒவ் வொக்றையும் யிகக் குறைந்த சார்அணு எண்ணிக்கையால் பிரித் தால் СО-125).

0.187	0.129	0.25
0.125	0.125	0.125
1.5	1	2

இதிலிருந்த சூத்திரத்தை C_{1.5} H₂O₁ என எழுதலாம். எல்லாச் சூத்திரங் கஞம் முழுவென்களில் எழுதப்பட வேண்டுமாதலால் எல்லாக் கீழ் எழுத்தக் கஞம் இரண்டால் பெருக்கப்பட்டு C₃ H₄O₂ எதும் சூத்திரம் பெறப் படுகிறது. மேற்குறப்பிட்ட விகிதத்தைக் காட்டும் எளிய சூத்திரம் இத வேயாகும். இவ்விகிதத்தை C₆ H₈O₄, C₉ H₁₂O₅, முதலியவற்*ளு* ம குறிப்பிடலாம். இச்சூத்திரம் அச்சேர்வையின் <u>அநுபவ சூத்திரம்</u> எனைப்படும். <u>அநுபவ சூத்திரம்</u>: – ஒரு சேர்வையிலுள்ள வெல்வேற மூலகங்களின் அணுக் களிதை விகிதத்தைக் காட்டும் எளிய சூத்திரமே அச் சேர்வையின் அறுபவ சூத்திரம் ஆகும்.

மூலக்கற்றச் குத்திரம்

ஒரு சேர்வையின் மூலக்கூரென்றில் உள்ள ஒவ்வொரு மூலகத்தின் அணு என்னிக்னகயை மூலக்கூற்றச் குத்திரம் காட்டுகின்றது.

அக்கிரிலிக்கமிலத்தின் செம்மையான மூலக்கற்றச் சூத்திரத்தை எழுத வதற்கு அதன் மூலக்கற்ற நிறையை அறிந்திருக்க வேண்டும். அக்கிரிலிக்க பிலத்தின் மூலக்கற்ற நிறை 72 ஆகும்

= 1

 $\left(C_{3}H_{4}O_{2}\right)_{n} = 72$

ஆகவே அக்கிரிலிக்கமிலத்தின் மூலக்கற்றச் குத்திரம் C₃H₄O₂ ஆகும். பல சேர்வைகள் மூலக்கறைகளாகக் காணப்படுவதில் 2ல உதாரணம். சோடியங் குளோரைட்டு, மக்னீசியம் குளோனைட்டு. இவை ஒன்றுக் கொன்ற எதிரான ஏற்றங்க 2ீளயுடைய அயன்க 2ீளக் கொண்டுள்ள பளிங்குத் திண்மங்களாகும். இச்சேர் கை 2ீள அவற்றின் அழபவதுத்திரங்களால்கு றிப் பிடுதல் வேண்டும். இவ்வாறு சோடியங் குளோரைட்டிற்கும்(NaCL) மக்னீசியம் குளோரைட்டிற்கும் (MgCL₂) உபயோகிக்கப்படும் குத் திரங்கள் அவற்றின் அநபவ குத்திரங்களேயாகும்.

பொழிப்பு

பரிசோத 2வே யால் துணியப்பட்ட கிணிவ மைப்பிலிருந்த இரசா யனச் சூத் தேரத்தைப் பெறவதற்கு: –

- மூலகங்களில் திணிவுக 2ன, அதனதல் சார் அணுத்திலில களால் பிரித்த, மூலகங்களின் அணுக்களின் சார் எண் ணிக்னக்களாக மாற்றுக.
- 2) பிகச் சிறிய சார் எண்ணிக்கையால் ஒவ்வொரு சார் எண்ணிக்கையையும் பிரிக்க. இது அண்ண எவாக சிறுமுழு எண்க2ளக் கொடுக்கும்.
- 3) இச்சிற முழ எஸ்கை உளிய மூலகத்தின் குறியீட்டுக்குக் கீழ் எழுத்தக்களாகப் பயல்படுத்தி அறைபைல குத்திரத்தை எழுதுக.
- 4) மூலக்கூற்ற நிறை தெரியுமாகையால் மூலக் கூற்றச் சூத் திரத்தை எழுதுக.

வலுவளவும் இரசாயனச் சூத்திரங்களும்

மூலகங்களின் அல்லத முலிகங்களின் வலுவளவுகள் அறியப்பட்டிருப்பின் அவை உண்டாக்கும் சேர்வைகளின் இரசாயனச் குத்திரங்க 2ள நாம் எழுத லாம். இவ்வாறு அலுயினியத்தின் வலுவளவு (AL) 3 , புறோயினின் (8+) வலுவளவு 1. எனவே 1 அலுயினியம் மூலக்கூற 3 புரோமீன் மூலக் கூறகளுடன் சேர்க்கையுறலாம். இதனுல் பெறப்படும் அவுயினியம் புரோமைட்டு ALBr எனம் தக்கிரத்தைக் கொண்டிருக்கும். அதேபோன்ற 2 அடியிலிய மூலக்கறக) வலுவளவு 2 ஆகும். காபனேற்றின் (CO ஆக்ஷம் 3 காபனேற்ற மூலக்கூறுகளில் சேரும்திறன் ளின் சேரும் திறன் 6 6 ஆக்ஷம் இருப்பதால் 2 அதுமிலிய மூலக்கறுகள் 3 காபனேற்ற 1000 8 எனவே அவுமிஷியம் காப வேற்றின் குத்திரம் ALCCO கறகஞடன் சேரும்.

ஆகும். வழலைவை, அட்டல உனைய உபயோகித்த மொகாலர், மூலகங்களில் அல்லத மூலிகங்களில் எல்லாவிதமான சேர்க்கையில் கூத்திரங்கீகளயும் எழு தலாம். (ஆயிலம் எழுதப்பட்ட சேர்வலை உண்மையில் இருப்பதற்கான அத்தாட்சி இல் 26, அத இருப்பில் எழுதப்பட்ட சூத்திரம் சரியாவதை). பயிற்சி

 பிவ்வரும் மூலகங்களின் அஅவளவுகள் தொரிந்திருப்பதால் அம்மூல கங்கள் உண்டாக்கும் சேர் வைகளினதும், அயன்களினதும் குத்திரங்க 2ளஎழுதுக.

- (a) ஒரு காபன் அணுவும் ஐகரசதும்
- (b) ஒரு பொசுபரசு அணுவும் ஒட்சிசனும்
- (C) ஒரு கல்சியம் அணுவும் காபதும் ஒட்சிசதும்
- (d) ஒரு அணுநாகமும், குளோரீழம்
- (2) ஒரு அணு பெரிக் இரும்பும் ஒட்சிசலும்

2. பின்வரும் சேர்வைகள் ஒவ்வொன்றினதும் அதுபவ சூத்திரத்தை எழுதக. அவற்றின் திறை அமைப்பு விசிதம் சிழ் கொடுக்கப்பட்டுள்ளன.

(a)	Ca =	20.0	%	Br=	80.0	*	
(6)	c =	53.0	%	0 =	47.0	%	「「「「「「
(c)	Al =	23.1	%	C =	15.4	%	0=61.5 %
(d)	Sr =	65.7	%	Si =	10.4	%	0=23.9 %
	all support of the second	56.4		S =	43.6	70	

3, பில்வரும் அதுபவச் சூத்திரங்களும், சார் மூலக்கூற்றுக் கிலைவுகளும் கொடுக்கப்பட்டுள்ளன. உண்மையான சூத்திரத்தைக் கலிக்க,

ஆடைவ குத்து ரம்	சார் மூலக்கழ்யத் திவிவு	. உண் மைச் சூத்திரம்
CHz	84	
НО	34	•
CH2O	150	
HgCl	472	/
HF	80	

4. 2.80 g CuCl₂, 2.11 g NH₃ உடன் சேர்ந்துஒரு சேர் வைவையக் கொடுத்தது. அச்சேர் வையின் சூத்திரத்தைக் கூரண்கு. 5. பெயர் அறியப்படாத சேர்வை பில்வரும் அமைப்பை உடையது.

3.2 % H , 37.5 %C,59.3 % F ; அச் சேர்வையின் அதுபவரூத்திரம் யாத? நி.வெ.அ (S-T-P) இல் இப்பதார்த் தத்தின் 150 cm³ 1.07 g நிறையைக் கொண்டிருக்கும். அதன் உண்மையான சூத்திரம் என்ன?

6. மீகவும் செறிந்த HNO தீர்க்கரைசலொன்ற குளிரவிடப்பட்ட போத வென்னிறைப் பளிங்குத் தின்மமொன்ற வேருகியத; இதறிறை யால் 22.2 % H₂O ஐயும், 77.8 % HNO ஐயும் கொண் டிருக்கக் காணப்பட்டது. இரசாயனவறிஞர் பலன், இத்தின்ம மானத ஒரு கலகைவயல்லவென்றம், அத ஒரு உண்டையான சேர் வையைனவும் அபிப்பிராயப்பட்டனர். அவர்களது முடிவை ஆதரிப் பதற்கான காரணம் எதையாவது உம்மால் குறமுடியுமா?

இதசாயனச் சமன்பாடு

ஒரு சமன்படுத்தப்பட்ட சமன்பாட்டால் ஒரு எனிய இறசாயன தாக் கத்தை எவ்வாறு குறிப்பிடலாம் என்பதை 8 ஆம் வகுப்பில் (விஞ்ஞானம் 8 16 தம் அத்தியாயம்) படித்துள்ளீர். உதாரணம், மக்னீசியம் ஒட்சிசஓடன் தாக்கமுற்று மக்னீசியம் ஒட்சைட்டைக் கொடுத்தல். இனி கூடிய சிக்கலான தொகுதிகட்கு எவ்வாறு சமன்பாடுக2வே எழுதலாம் எனக் கற்போம்.

இரசாயனச் சமன்பாடு, இரசாயனத் தாக்கம் பற்றிப் பரிசோத2்ன மூலம் தணியைப்பட்ட விபரங்க2்ளக் குறிப்பிடும். பரிசோத2்னயில் நோக் கப்படும் இல்விபரங்கள் எல்வாற குறிப்பிடப்படுகின்றனவென்பதை நாம் ஆராய்வோம்.

உதாரவமாக, பெரசுச் சல்லைட்டிற்கும் ஒட்சிசனிற்கும் இடையேயுள்ள தாக்கத்தை எருப்போம். பெரசுச் சல்லைட்டு ஒட்சிசன் வாயுணில்வெப்ப மாக்கப்பரும்போது பெரிக்கொட்சைட்டும், கந்தகலிரொட்சைட்டு வாயு வும் உண்டாசின்றன. இவ்விபரங்கூசிப் பின்வருமாறு குறிப்பிடலாம்.

பெறசுச்சல் கைட்டு + ஒட்சிசன் (வாயு) = பெரிக்கொட்சைட்டு + கந்தகலிறொட்சைட்டு (வாயு)

இரசாயனப் பகுப்பால் எல்லாத் தோக்கிகளிலதும் விடீளவுகளினதும் **கூத்தி** ரேங்கேடீள நாற் தோவியைலாம். இவ்விபரங்கடுள மேலே எழுதப்பட்ட சமன் பாட்டில் பிரதியிட்டால், FeS + 02 --- Fe,03 + 502

சமுப்பெடுத்தப்படாத இச் சமன்பாடு எமேக்குப்பின்வருவனவற்றை உணர்த்த கின்றத.

- 1) தாக்கிகள் எளவ,
- 2) தாக்க வி2ளவுகள் எவை,
- 3) விடுவாவுகளினதும் தாக்கிகளினதும் அமைப்புகள்.

இச் சமன்பாட்டைச் 'சமன்படுத்தலாம்' சமன்படுத்தப்பட்டசமன் பாடு, தாக்கமொன்றில் சம்பந்தப்பட்ட ஒவ்வொரு பதார்த்தத்திலும் எந்தவனவு தாக்கத்தில் ஈடுபடுகின்றதென்பதை எமக்குச் சுருக்கமாகக்கூற சின்றது. இத்தகைய சமன்படுத்தலுக்கான நிரூபணம் திளைவுக் காப்புவிதியா லூம்,தாற்றனின் அணுக்கொள்கையாலும் கொடுக்கப்பட்டுள்ளது. இவ்விதி கள், இரசாயனத் தாக்கங்களின் போது அணுக்கவே ஆக்கவோ அழிக் கவோ முடியாதெனக் கூறகின்றன.

தாக்கத் தொடக்கத்**தி**லும் தாக்கமுடிவிலும் ஒவ்வொரு மூலகமும்ஒரே யளவான அணுக்கடீளக் கொண்டுள்ளது என விளக்குகின்றது.

சமன்பாட்டைச் சமன்படுத்ததற்கு, இழதிச் சமன்பாட்டில் தாக்கிதனும் விரேஷைகளும் சம என்னிக்கை அணுக்கரோக் கொண்டிருக்கக் கடியதாக, ஒவ்வொரு பதார்த்தத்தின் சூத்திரத்திற்கு முன்பாக அவற்றுக்கான குனகங் கரே எழுதக. எளிய சமன்பாடுகரே முயல்வழு முறையால் நாம் சமன் படுத்தலாம். கூடிய சிக்கலான சமன்பாடுகளுக்கு நாம் விசேட முறைக ரே கையானவேண்டும்.

சமன்படுத்தப்பட்ட சமன்பாடு பின்வருமாறிருக்கும்.

 $4FeS + 70_2 \longrightarrow 2Fe_2O_2 + 4SO_2$ апазная алданая алдана ал

4 we is a gain FeS+7 we is a gain $O \rightarrow 2$ we is a gain FeO + 4 we is a gain SO_{2}

இரசாயன மாற்றத்தில் ஈடுபடும் சடப்பொருள்களின் கணியைங்கள் பற் றிய சுருக்கமான கூற்றே இச்சமல்பாடு ஆகும்.

பயிற்சி

2.

4 .

- பின்வரும் கற்றுக்க 2 எ இரசாயவச் சமன்பாட்டில் தந்த, பின் அச்சமன்பாடுக 2 எச் சமன்படுத்துக.
 - (a) பேரியங்குளோரைட்டு நாகசல்பேற்றுடன் தாக்கமுற்ற நாகக் குளோரைட்டையும் பேரியங்குளோரைட்டின் வீழ் படிவையும் தந்தது.
 - (6) கல்சியம் நைகறேற்று சோடியம் பொசுபேற்றுடன் தாக் கமுற்று சோடியம் நைதறேற்றையும் கல்சியம் பொசுபேற் றின் வீழ்படிவையும் தந்தது.
 - (c) பொற்றுசியம் குளோறேற்றை வெப்பமாக்க பொற்றுசியம் குளோவுரட்டையும், பொற்றுசியம் பேர் குளோறேற்றை யும் கொடுத்தது.
 - (பு) உலோக அலுயினியம், இரும்பை இரும்பொட்சைட்டினிருந்த மாற்றீடு செய்த அலுயினியம் ஒட்சைட்டையும் இரும்பையும் தருகின்றது.
 - (e) செம்பு ஐகான மைத்திரிக்கையிலத்தில் கலைந்த செப்புறை தேரேற்ற, ஜீர், மைத்திரிக்கொட்சைட்டு ஆகியலற்றைக் கொடுத்தது.

 $4HCl + 0_2 \longrightarrow 2H_0 + 2Cl_1$

0.35 மல் CL, ஜப் பெறுவதற்கு, எத்த2வ மல் HCL தேவை?

3. 16 HCl + 2KMnD₄ → 2MnCl_e + 2KCl + 4H₂D + 5Cl₂ 3.20 wi HCl அமிலத்திலிருந்த எத்த 20 wi குளோர்வ்

வாயு பெறப்படும்?

Fes + 2HCL --- Has + FeCla

1009 H₂5 ஐப் பெறுவதற்கு எத்த2வ கிறாம் FeS தேவைப் படும்? பெறப்பட்ட H₂S நி.வெ.அ (S-T-P-) இல் என்ன கவைவவைக் கொண்டிருக்கும்?

5. H₂SO₄ ஜப் பெருமளவில் பெறுவ தற்கான தொடுகை முறையில் FeS₂ இலுள்ள கந்தகம் இறுகியில் H₂SO₄ ஆக மாற்றப்படும். இம்மாற்றம் முற்றுக நிகழ்கின்றதொகைக் கொண்டு 2.0 தொன் FeS2 இலிருந்த எத்த2ன கிலோ கிராம் H2S02 பெறப்படும்?

1.40 100

நீங்கள் 8ஆம் தற விஞ்ஞானப்பாடத்தில் மூல் என்றுல் என்னை என்பத பற்றிக் கற்றுள்ளீர்கள். இங்கு மூல் பற்றிச் சற்ற மேஷம் கவலிப்போம்.

அஹுக்கள், மூலக்கறைகள் ஆகியவற்றில் கணியைங்கூலா அளப்பதற்கு உப யோகிக்கப்படும் அலகு மூல் ஆகும். மூல் பின்வருமாறு வரையறுக்கப்பட லாம்.

> ஒரு பதார்த்தத்தின் 1 மூல் = கிராம் அலகுகளில் கொடுக்கப் படும் ஒரு மூலகத்தின் அல்லத சேர் வையின் சூத்திரநிறையாகும்.

உதாறணங்கள்

1 www.kCl	74.537g
1. 100 N2	28.0149
1 www.H SO4	98.079
1 wai 2 n 504	161.4349
1 wiAL(50,);18 Ha0	666.2669
1 (00 NI	58.769

1.41 அவகாதுறோவின் எண்

எந்தவொரு சேர்வையினதும் ஒரு மூல் கணியக்கில் ஒறே அளவு எண் னிக்கையான மூலக்கூறுகள் உண்டு என ஏற்கனவே கற்றுள்ளீர்கள். உதார மைமாக ஒரு மூல் H₂SO₄ இல் எத்த2ன H₂SO₄ மூலக்கூறகள் உள்ளனவோ அத்த2ன மூலக்கூறகளே ஒரு மூல் O₂ ஒரு மூல் H₂O ஒரு மூல் Ni ஆகியலுற் றிலும் இருக்கும்.

ஒரு மூல் சேர்காவையில் உள்ள மூலக்கறுகளின் எண்ணிக்கையை ஒரு எளிய பரிசோதே2ன மூலம் அண்ணளவாக அளக்கலாம். உமத ஆசிரியர் அப்பரி சோத2னரைய உமக்கு நடாத்திக் காட்டுவார்.

பரிசோத2வ

இப் பரிசோத**ீனயில்** ஒலேயிக் கமிலத்தின் மிக்ஷிம் ஐதான கரைசல்

நீங்கள் உபயோகிப்பீர்கள். ஒரு குழாயியை உபயோகித்த ରୁଖ କାଠ 1.00ml ஒலேயிக்கமிலத்தை ஒரு நியமக் குடுவையிலுள் (250ml)இடுக. குடுவையிறைன் பெற்றேலிய மதசாரத்தை இட்டு அடையாளம் வரைநிரப்புக. குடுவையை அடைப்பாகுல் அடைத்து நவ்கு குழக்குக. பெற்றேலிய மது சாரத்தால் இக்கவைரச லே பத்த மடங்கு ஐதாக்குக. (இதாக்கப்பட்ட கமாரசலில் செறிலாவக் கணிக்க). இக்கவைசலின் ஒரு அளியின் கவவளவை அறிதலே இப் பரிசோது இன் அருக்க படியாகும். ஒரு அளவுகோடிட்ட குழாயியில் இக்களைசலில் சிறிதளவை எடுத்த 1 ml களைசலில் உள்ள தாளி க்கின் என்னிக்கை பை அவலிடுக. இத்தகைய மூன்ற அளவீடுகளின் சராசரி யிலிருந்த ஒரு தளி கலைசலின் கனவளவைக் களிக்க.

ஒரு தொட்டியில் ஏறக்குறைய 2 அங்குல அமத்திற்கு நீரை சுக்கமான மன்னியதாகத் து வொக்கப்பட்ட கந்தகத்தை அல்லத a (båa . Сғпа நான் தாவுக. மூன்பு பயன்படுத்திய குழாயியை உபயோ 60.55 மேல் கித்த ஒலேயிக்கடிலக் கறைசலில் ஒரு தரியை நீரிப்பேல் இடுக. JU போத ஒலேயிக்கமிலப் படலம் ஒன்று நீரின் மேற்பரப்பில் உன்டாகம். இப்படலத்தின்பரப்பளவை அளவிடுக. ஒலேயிக்கமிலந்தில் மூலக்குமு 5 21 வடிவமுடையதெனவும், ஒலேயிக்கமிலப் படலம் ஒரு மூலக்கற்றுக் ទធបំប டையது எனவும் கொண்டு அவகாதறோவிக் எண்டுணக் கணிக்க.

> ஒலேயிக்கமிலத்தின் மூலக்கற்று நிறை = 286 9 ஒலெயிக்கமிலத்தின் அடர்த்தி = 0.873 gml⁻¹

பிக்ஸ் ருவ கலற்றுக்கு விடை தருக:

- இப்பரிசோத 2வேயில் ஏன் ஒலேயிக்கையிலம் உப யோகிக்கப்பட்டது? இதற்குப் பதிலாக உப யோகிக்கைக் கூடிய பிறிதொரு பதார்த் தத்தை உம்மால் கூறமுடியுமா ?
- 2. ஏன் ஒலெயிக்கமிலத்தின் மிகூஷம் ஐதான கரைசேலே உபயோகிக் கிறீர்?
- 3. ஏன் பெற்றேலியம் மதுசாரத்தைக் கறைப்பாகுக உபயோகிக்கி றீர்?

உம்மால் உபயோகிக்கப்படக் கடியை பிற கனரப்பாள்கள் யானவ ?

4. அலகாதறோவின் என்னின் பெறுமானத்தைப் பெறுவதற்குப் பயன் படுத்தக்கூடிய இன்னெரு முறையொன்றை உம்மால்குறிப்பிடமுடியுமா?

5, நீர் பெயற அவகாதறோ எண்ணிக் பெறமாலம் யாத?

பரிசோதாக முறைகளால் பெற்ற அவகாதறோ எண்ணின் பெறுமாலம் 6.0221 × 10²³ ஆகும். அதாவத ஒரு மூல் சேர்வையில் உள்ள மூலக்கறகளின் எண்ணிக்கை 6.0221 × 10²³ ஆகும்.

- 1. உமத பரிசோத2னப் பெறுமானம் 6.02 x 10²³ என்றபெற மானத்தாடன் எவ்வளவு இசைவாக உளது.
- 2. வழ எவ்வளவு பெரியத?
- 3. இவ்விரு பெறுமானங்களும் வித்தியாசப்படுவதற்கான காரணத்தை உம்மால் கூறமுடியுமா?

வெவ்வேற சேர்வைகளின் ஒரு மூலிலுள்ள மூலக்கறகளின் எண்ணிக்கை ஒரே அளவானது என நாம் முன்னர் விளக்கியுள்ளோம். உதாரணமாக, 32 8 0 அல்வது 64 8 SO ஒரேயெண்ணிக்கையான மூலக் கழ கூலாக் கொண்டிருக்கும். இவ்வெண்ணிக்கை 6.02 x 10²³ இற்கு சமமா வது. 64 8 (1மூல்) SO இல் உள்ள மூலக்கறுகளின் எண்ணிக்கை 328 (1 மூல்) கந்தகத்திலுள்ள அணுக்களின் எண்ணிக்கைக்குச் சமமானது.அயன் கஞக்கும் அயன் கூட்டங்களுக்கும் நாம் மூல் எழும் பதத்தை உபயோஷிக்க லாம். ஒரு மூல் அயனிலுள்ள துணிக்கைகளின் எண்ணிக்கைகையானது ஒரு மூல் சேர் வவயில் உள்ள மூலக்கறுகளின் எண்ணிக்கைக்கு அல்லது ஒரு மூல் மூலகத் திலுள்ள அவலுக்களின் எண்ணிக்கைக்கு சேமமானது வைக்

பமற்க

- (1) 25 g சல்பூரிக்கமிலத்தில் எத்து வே மூல் சல்பூரிக்கமிலம் உவ்ளன?
- (2) 2.50 மூல் கல்சியம் குளோகாட்டில் எத்த 2வ திராம் கல்சியம் குளோரைட்டு உள்ளன?
- (3) 0.0268 குப்பிரிக்கு கைதறேற்றில் எத்த 2வை பில்லி மூல் С. (NO₃) உள்ளன?
- (4) 40.08 நீரா H0608 சோடியம் சூளோரைட்டா அதிகவளவு மூலக்கதுக் கொண்டுள்ளத?
- (5) 2.0 த நீரில் எத்த 2வ நீர் மூலக்கூறுகள் உள்ளன?
- (6) ஒரு அணு ஒட்சிசன்ன் திணிவு யாத?
- (7) ஒரு மூலக்கற நீர் கொள்ளும் சநாசரிக் கலை எவுயாத?

- (8) 20.0 mg ஐகரசன் சல் பைட்டில் எத்தீன பில்லிரூல் கந்தகம் உள்ளன?
- (9) 10 mg கைதாசனீரொட்சைட்டிலிருந்த 1.8×10¹⁹ நைதரசனீரொட்சைட்டு (NO₂) மூலக்கூறுகள் அகற்றப் படின், எஞ்சியுள்ள NO₂ இல் எத்த2ன மூல்கள் உண்டு?
- (10) -5°C இல் காபன் நாற்குளோரைட்டின் (CCl₄) அடர்த்தி 1.65 gml⁻¹அதே வெப்பதிலேயில் ஒருமூல் CCl₂ கொள்ளும் சராசரிக் கலைவை யாது?

<u>1.42</u> இரசாயனத் தாக்கங்கள் வழக்கமாகக் கரைசல் நி2ல யில் நடாத் தப்படுகின்றன. இரசாயனத் தாக்கத்துக்கு உட்படுத்தப்படும் பதார்த்தங் கள் திண்மமாயிருப்பின் தகுந்த கரைப்பாலில் கரைத்து இத்திண்மங்களின் கரைசல்கள் ஆக்கப்படும். உதாரணமாக, சோடியம் குளோரைட்டானது நீரிக்கரைசலாக உபயோகிக்கப்படும். கரைசலாக்குவதற்கு உபயோகிக்கப் படும் திரவம் <u>கரைப்பான்</u> (இங்கு கரைப்பான் நீர்) ஆகும். திர வத்தில் கரைக்கப்படும் பதார்த்தம் <u>கரையம்</u> (இங்கு சோடியங் குளோ ரைட்டு) எனப்படும். கரைசலின் கணியங்கள் வழக்கமாகக் கனவளவில் அளக்கப்படும். கரைசலின் கணியங்கள் வழக்கமாகக் கனவளவில் அளக்கப்படும். கரைசல் காய் பயன்படுத்தி அளவறி பகுப்புக்கள் செய் யும் போது, ஒரு அலகு கனவளவு கரைசலில் உள்ள கரையத்தின் அளவை அறிந்திருத்தல் வேன்டும். இவ்வியல்பு கரைசலின் செறிவு எனப்படும்.

ஒரு கேஅரசலில் உள்ள கரையத்தின் செறிவு மூலர்த்திறன், மூலற்றிறன் நேர்த்திறன் ஆகிய அளவுகளில் அளக்கப்படும்.

முலர்த்திறன்எப்பத ஒரு லீற்றர் கறைசலிலுள்ள கரைய மூல்களின் எண்ணிக்கைக யாகும்.

would be dead Man	கவரய மூலகள
we it sao a, M,=	கனரசலின் கனவளவு , லீற்றரில்
	கனரய டில்லி மூல்கள்
	கனரசலின் கேனவை எவு டில்லி வீற்றரில்
க்கிறன் என்பத ஒரு லீ	ற்றர் கணரசலிலுள்ள கணைபத்தின் சமவலக்களின்
க்கையாகும்.' நோக்கிறன்,N, =	கறையச் சமவலக்கள்
- יין אישעומע מיופיש	

களைதலில் கைவவளவு வீற்றரில்

நேர் த் என்னிக் கவை பய பில்லி சமவலுக்கள்

களரசலின் கனவனவ, டில்லி லீற்றரில்

மூலற்றிறைன் என்பத ஒரு கிலோ கிராம் (1000 g) கதைப்பாடியைள்ள கதைய ஸூலீகளின் எண்ணிக்கையாகும்.

கனைபயக்கின் அளவு, மூல்களில்

மலற்றிறன்

கறைப்பாஷின் நிறை, கிலோ கிராடில் (1000 கிரோடில்)

களையத்தின் அளவு, பில்லி மூல்களில்

கதைப்பாலின் நிறை, கிரோடில்

மூலற்றிற 2னக் கேஸ்ப்பதற்கு கேனரப்பானின் நிறை தேவைப்படும்.இவ்வ லைகு, கேடியை கிரைக்கம் தேவைப்படுகில்றை பரிசோத2லகளில் மட்டுமேபேயன் பெடுத்தைப்படுகின்றது.

முல் பின்னம்

பல பதார்த்தங்கேஉீளக் கொட்டைற்றை குலை வையில் உள்ள ஒவ்வொரு பதார்த்தத்தில் கைவியைத்தையும் அளப்பதற்கு மூல் பில்லைம் என்னும் அளவு பயல்பெடுத்தப்படும்.

மூல் பிவ்வைய் என்பத ஒரு கலனவயிலுள்ள ஒருகுறிப்பிட்ட பதார்த்தத்தின் மூல்களின் எவ்விக்கையிவதும் அக் கலனவயிலுள்ள பதார்த்தங்களின் மொத்த மூல்களின் எவ்விக்கையிவதும் விகிதமாகும்.

பயற்கி

- 1. 1 மூல் வெல்லம், 30ČC இலுள்ள 19 மூல் நீரில் கனரக்கப் பட்டதா. வெல்லத்தினதம், நீரிவதம மூல் பின்னைத்தைக் கணிக்க.
- 2. பின்வரும் கரைசல்கள் ஒவ்வொன்றிலும் உள்ள கரையங்களின்மூல் பின்னத்தையும் மூலற்றிற£னயும் கணிக்க. (j) 4009 நீரிலுள்ள 509 C₂H₂OH .

பையீற்சி_	மலர்	\$Apå,	நேர்த்தறன்,	மலற்றிற <i>க்</i>	
			றீரிலு ள் எ ்	13g	சல்பூரிக்கமிலம்
	(iii)	280g	நீரிலுள்ள	28 g	சோடியம்குளோ ரைட்டு
	(ii)	100g	அசற் ே முகில ள்ள	1 709	ี มี มี มี มี มี มี มี มี มี มี มี มี มี

- (1) 3 M H SO an Duditana aira

 - (ii) 0.1N Ca(OH)இன் மூலர்த்திறன் எல்ன?
 - (iii) 20 mg CuSO4/mega warts so an an a?
 - (iv) 2.4 பிசி CaCL/ml இவ் நேர்த்திறன் எவ்ன?
 - (V) 5% NaCl கீரைசலில், மூல் NaCl/kg கமைப்பால் என்ன? அதாவத அதல் மூலற்றிறல் எல்ன?
- 2. ஒரு கரைசலின் செறிவு லீற்றரொள்றுக்கு 40.0g NaCl எனக் கொடுக்கப்பட்டுளது. அதன் செறிவை மூலர்ந் கிறனிலும் நேர்த்திறனிலும் தருக.
- 3. ZnSO₄ கரைசல் ஒன்றின் செறிவு லீற்றரொன்றுக்கு 0.70 மூல் ZnSO₄ ஆகும். இத2ன நேர்த்திறன் அலவீல் தருக.
- 4. 1.50 லூற்றர் 2.0 M HCL கரைசலில் எத்த 2வ மூல் HCL உள்ளத? எத்த 2வ கிராம் HCL உள்ளத?
- 5. 0.64N H₂SO இன் என்ன கவை எவு:-(a) 13.08 H₂SO₄ ஐக் கொண்டிருக்கும்? (b) 0.25 மூல் H₂SO₄ ஐக் கொண்டிருக்கும்?
- 6. 300ml 02.20 M ALCL கரைச 2ல நீர் எவ்வாற தயாரிப்பீர்?
- 7. ஒரு தாக்கத்திற்கு 12 8 H₂SO தேவைப்படுகிற ஒ. அதற்கு எத்த 2வ பில்லிலீற்றர் 3.0 M கரைச 2ல நீர் உப யோகிக்க வேன்டும் ?
- 8. வீற்றரொன்றுக்கு 3.80 g No₂ CO₅ ஐக் கொண்டுள்ள 240 m கேலை சல்ல நீர் எவ்வாலு தயாரிப்பீர்? ஒரு மிகவும் செறிவான கரைசலிலிருந்த ஒரு ஐதான கரைச 2ல நீர் எவ்வாறு தயாரிப்பீர்?

ஐதாக்கல் பற்றி நன்கு விளங்கிக் கொள்வ கற்குப் பின்வரும்

பயிற்சிகள் உதவியளிக்கும்.

- 9. ஆய்வு கடத்தில் உள்ள HCL போத்தலில் 12.0M எனக் குறிக்கப்பட்டுள்ளது. இக் கேரைசலிலிருந்த 20mL 3.0MHCL கலரசீல எல்லாற தேயாரிப்பீர்?
- 10. 6.0 M H₂SO₄ இல் தொடங்கி 24 ml 0.25 M H₂SO₄ கரைச2ல எவ்வாறு தயாரிப்பீர்?
- 11. 50 ml 3.0 M HCL கனரசல், 70 ml 4.0 M KNO₃ கனரசவடன் கலக்கப்பட்டத. கனரசலிலுள்ள HCL இனதும் KNO₃ இனதும் இறுதிச் செறிவு யாத? (கலத்தலின் போது கனவளவில் மாற்றம் இல் 2ல எனக் கொள்க).

1.43 மூலர் கனவளவு

அலகாதரோவில் கோட்பாட்டிலிருந்த, சமகவை எஷ வாயுக்கள்ஒரே வெப்பநி2்ல யிலம் அமுக்கத்திலும் சமஎன்னிக்கையான மூலக்கூறுக 2 எக்கொண் டுள்ளன என நாம் அறிவோம். இக்கூற்றின் மறுத 2லயும் உண்மையானத. அதாவத வெப்பநி2்ல, அமுக்கம் ஆசியலைற்றின் ஒரே நிபந்த 2 னகளில் அள விடப்படின் வெவ்வேறு வாயுக்களின் சம எண்ணிக்கையான மூல்கள் ஒரே கனவள வைக் கொள்ளும். எந்தவொரு பதார்த்தத்தின் ஒரு மூலாதை இன்னுரே பதார்த்தத்தின் ஒரு மூல் கொண்டுள்ள அதே எண்ணிக்கையான மூலக் கூறுக 2 எக் கொண்டிருக்கும். இல் விரு பதார்த்தத்தின் ஒரே மூலாதை இன்னுரே பதார்த்தத்தின் ஒரு மூல் கொண்டுள்ள அதே எண்ணிக்கையான மூலக் கூறுக 2 எக் கொண்டிருக்கும். இல் விரு பதார்த்தங்களும் வாயுக்களாய் ஒரே வெப்பநி2்ல யிலும் அமுக்கத்திலும் இருப்பின் இதைவ ஒரே கனவளவைக் கொண்டிருக்கும். இக்கனவளவானது, ஒரு வாயுலின் மூலர்க் கனவளவு எனப்படும்.

> ஆகவே ஒரு வாயுவின் மூலர்க் கனவளவான அ, ஒரு மூல் வாயு (_{O°C} இலும் 1 வளிமண்டல அருக்கத்திலும்) கொ**ள்ளும் கனவளவு என** நாம் வரையறுக்கலாம்.

வாயு அளவீடுகளுக்கு நியம நிபந்தீச்வகளாக, O'c வெப்பநிசீலயும்,ஒருவளி மேன்டைல அழுக்குழும் தவ்விச்சையாகத் தேரீந்தெடுக்கப்பட்டுள்ளன. இசுவ, நி.வெ.அ (நியம வெப்பநிசீல, அழுக்கம்) எவப்படும்.

ஒரு வாயுவின் மூலர்க் கனவளவு, நி.வெ.அ இல் 22.4 L என பரி சோதாக முடிபுகளிலிருந்த பெறப்பட்டுளது.

எகவே இலட்சிய வாயுக்களுக்கு பிவ்வரும் தொடர்பு உவ்மையாகும்.

1 மூல்வாயு = 22.4 பே வாயு (நி.வெ.அ.இல்) கூத்திரம், அமைப்பு ஆகியவைபற்றிய அறிவைப் பயன்படுத்தாது, நிறத்த லால் மட்டும் ஒரு வாயுவின் சார் மூலக் கூற்றுத் திளிவைத் துணிவதற்கு இத் தொடர்பு உதவும்.

ஒட்சிசவினதம், காபளிறொட்சைட்டினினதம் மூலர்க் கேவலளைவுகை 2ஸப் பெறுலதேற்கு ஆய்வு கூடத்தில் ஒர் எளிய பரிசோத 2 லையை நீர் செய்யலாம். <u>பரிசோத 2 எ</u>: ஒட்சிசவில் மூலர்க் கு*வ*லைளவு

> சோத 2 வக் குழாயொன்றை ஏறக்குறைய 1 அங்குலத் திற்கு பொற்று சியம் பேர் மங்கனேற்றுல் நிரப்புக. பின்பு பஞ்சுச் செருகியொன்றைச் சோத 2 வக் குழாய் வாயினுள் புகுத்துக. குழாயை நிலக்க. இச் சோத 2 வேயைக்கு ழாயை இறப்பர் குழாயிகுல் அல்லது கண்ணுடிக் குழர்யிஞல் ஒருகழு வற் போத்தலுடன் இ 2 கைக்க. வெளியேற்றப்படும் வாயு கழுவற் போத்தலிலிருந்து சம கவவளவு நீரை இடம்பெயர்க் கும். இது அளவுச் சாடியில் சேகரிக்கப்படும். இல் 2 லையேல் வெளியேற்றப்பட்ட வாயுவை நேரடியாக ஒரு அளவுச்சாடி மூல் சேர்க்கலாம்.

இன், பொற்ரூசியம் பேர்மங்கனேற்றைக் கொண்டுள்ள குழாவை வெப்பமேற்றி ஏறத்தொழ 200 ml வாயுவைச் சேகரிக்க. வாயுவின் கனவளவை அளந்த சோதே2னக் குழாவைக் குளிரவிட்டுப் பின் அத2ன நிலக்க. (பஞ்சுடன்) நிறை குறைவைக் குறித்தக் கொள்க. வெப்பநி2லனையயும் அழுக்கத்தையும் குறிக்க.

இப்பரிசோத£னவை, அதே பொற்றுசியம் பேர்மங்க கேற்றை (மூந்தைய பரிசோத£வைல் பெறப்பட்ட மீினைய) உபயோகித்தை மும்முறை செய்க. இவ்வாறு பெற்ற பெறு மாவுங்க£ா (நிறை குறைவு, கவவளவு, ஆகியவைற்றை) உபயோகித்தை நி.வெ.அ இல் ஒட்சிசனின் மூலர்க்கவவளவைக் கணிக்க.

காபகீறொட்கைட்டின் மூலாக் கனவ*ையைப் பெறுவதற்கு, இதே பரி* சோத2்கலைய பொற்றுசியம் பேர்மங்கனேற்றுக்குப் பதில் சுயக் காப னேற்றை உபயோகித்துச் செய்க. பெறப்பட்ட வி?னவுக?ளப் பயன் படுத்தி காபனீறொட்சைட்டின் மூலர்க் கனவளவைக் கணிக்க.

பில்வருவவலற்றக்கு விடை தருக

- பொற்றுசியம் பேர்மங்கவேற்ற, ஈயக் காபவேற்ற ஆகியவற் றில் வெப்பத் தாக்கத்துக்கான இரசாயவச் சமன்பாடுக2வத் தருக.
- 2. ஏன் பஞ்சு பயன்படுத்தப்பட்டத?
- 3. முதல் வாசிப்பிலிருந்த பெறப்பட்ட மூலர்க் கனவளவிற்கு மற்ற வாசிப்புக்களிலிருந்த பெறப்பட்ட மூலர் கனவளவிற்கு பிடையில் குறிப்பாடத்தக்க வேறுபாடு ஏதும் உள்ளதா? அவ்வாறிருப்பின் அத2னே எவ்வாறு விளக்குவீர்?
- 4. ஒட்சிசன், காபனீரொட்னுசட்டு ஆஷியேவற்றக்குப் பெறப்பட்ட மூலர்க்கனவளவுப் பெறுமானங்கள் ஒரேயேளவாகவையா? இப் பெறுமானங்கள் பரிசோது 20ப் பெறுமானமாகிய 22.4L உடன் எவ்வளவு இபையுடையனே?
- 5. இப்பரிசோத**ீன மில்** வழுக்கள் ஏற்படும் தோற்றுவாய்கள் யாவை ?

பைற்சி

 நி.வெ.அ இல் 150 Cm³ கவவளவைக் கொண்டுள்ள வாயுலின் ஒரு மாதிரி 0.6249 நிறையைக் கொண்டிருக் கக் கோணப்பட்டது. அவ்வாயுவின் மூலக்கற்று நிறை யாத?
 நி.வெ.அ இல் 800 Cm³ அமோனியா வாயுவில் எத் தூன கிராம் அமோனியா உள்ளத?

3. நி.வெ.அஇல் ஒரு வாயுவால் நிரப்பப்பட்ட 250 cmீ குடுவையொன்றின் திணிவு 260.023 வாயுவை அகற்றிய பின் அக்குடுவையின் திணிவு 260.242 வில்வாயுவின்மூலக் கற்றத் திணிவு யாத?

4. OC இல் காபன் நாற்குளோரைட்டின் (அரவ) அடர்த்த 1.600 gcm³ 800 மூலக்கூறுகள் Ccl₄கொள்ளும் கவைளவு யாத? ஒரு மூலக்கூற ccl₄ கொள்ளும் கவவளவு யாத? பின் ீனைய முடிவிலிருந்த அங்குகள் அலகுகளில் CCL4 இல் விட்டத்தை கோண்கை.

1.50 <u>பீசமானம்</u>

ஓர் இரசாயனத் தாக்கத்தில் ஈடுபடும் அயன்களினதும் மூலக்கறைகளின தம் எண்ணிக்கையைக் குறிப்பிடும் பதமே பீசமானமாகும். ஓர் இரசா யனத் தாக்கத்தைச் சமன்படுத்தப்பட்ட சமன்பாடு ஒன்றுல் குறிப்பிடுவோ மாயின், (இரசாயனச் சமன்பாடானது ஒரு தாக்கத்தின் செம்மையான எடுத்தக்காட்டு எனக் கருதப்படும்). பீசமானம் அச்சமன்பாடுகாட்டும் எண்ணுக்குரிய தொடர்பையே குறிக்கின்றது.

தேரப்பட்ட ஒரு தொக்கத்தில் உண்டொகும் விூனைபொருளின் அல்லத உபயோ கிக்கப்பட்ட தாக்கிகளின் அளவைக் கொலிப்பதற்கு பூசமானம் பற்றிய அறிஷ அத்தியாவசியமானத.

1.51 ஒரு தாக்கத்தில் பீசமானத்தைத் துணியும் முறை

1.51.1 பதொடர் மாறல் முறை

ஒரு தாக்கத்தின் பீசமானத்தைத் துணிவதற்கான முறைகளில் `தொடர் மாறல் முறையும் ஒன்*ரு*கும். இம் முறையில் ஒருதாக்கி மற் றைய தாக்கிக்குக் கொண்டுள்ள செறிவுவிகிதம் மாற்றப்படும். ஒருசோத 2லப் பொரு 2 வ மேல திகமாக எடுத்த மற்றையது மேல திகமாக இருக் கும்வறை அதாவத தாக்கிகளில் மொத்தச் செறிவு (மூல்கள்) மாறு தஇருக் கும்வறை குணியமாற்றம் இடம்பெறும். ஒப்பிடும்போது சிறிய அளவில் கானப்படும் சோத 2 வைப் பொருளின் செறிவிலிருந்த உண்டாகும் வி 2 வைபா ருளின் அளவு துணியப்படும். மேல திகமாயுள்ள மற்றைய சோத 2 வைப்பெர ருளின் அளவு துணியப்படும். மேல திகமாயுள்ள மற்றைய சோத 2 வைப்பொ ருளின் தாக்கமுறு திருக்கும். மொத்த மூல் களின் எண்ணிக்கை மாறு திருக்கை யில் அதாவது, தாக்கிகள் பீசமான வி தேத்தில் இருக்கும்போது உச்ச அளவில் வி 2 வைபாருள் பெறப்படும்.

<u>பரிசோத2ன</u> (a) வீழ்படிவு உண்டாதல்

பேரியம் குளோவுரட்டுக் கரைசலாடன் அமோனியத் சல்பேற்றுக் கேனர்ச 2லச் சேர்க்க. பேரியத் சல்பேற்றின் வெண்ணிற வீழ்படிவு உண்டாகும். இத் தாக்கத்தில் பீசமானத்தைத் தாஷ்வதற்கு பேரியத் சல்பேற்று உண்டாத 2லப் பயன்படுத்தலாமா?

ஒவ் வொன்றும் 1 M செறிவுடைய பேரியம் சல்பேற்ற, அமோனியம் சல்பேற்ற ஆகியவற்றின் கேனரசல்க2ளத் தயாரிக்க. ஒரே குறுக்கு வெட்டுப் பரப்புடைய 9 சோத2னக் குழாய்க2ள எடுத்ததைவற்றுக்கு இலக்கமிடுக. ஓர் அளவு கோடிட்ட குழாயியை அல்லத அளவியைப் பயன்படுத்தி, பின்வரும் அளவுகளில் இரு கேனறசல்க2ளயும் சோத2கக் குழாயில் சேர்க்க.

சோத 2னக்குழோயில் இலக்கம்	1	2	3	4	5	6	7	8	9
Balle gå snang (ml)	2	4	6	8	10	12	14	16	18
(NH,) 50, இன் கனவளவு (ml)	18	16	14	12	10	8	6	4	2
பூழ்படிவின் உயதம் (mm)	-	\mathbf{t}_{i}		NF.	-	T.	-	-	-

இராப் பொழுகிற்கு வீழ்படிவைச் சோத2னக் குழாய்கள் அடைய விட்டு அதன் உயரத்தை அளவிடுக. வீழ்படிவின் உய ரத்தை தாக்கிகளின் (BaCl₂ உம் (NH₄)₂SO₄ உம்) கனவ எவு விகிதத்திற்கு எதிராகக் குறிக்க. குறிக்கப்படும் புள்ளிகள் இர ண்டுநேர் கோகனில் அமைவதை அவதானிக்க. இப் புள்ளிகள் இர கொண்டிருக்கக் கூடிய சிறந்த நேர்வரைகள் இரண்டி 2னயும் வரைந்த இவை வெட்டும் புள்ளியில் தாக்கிகளில் விகிதைக்தைப் பெறுக.

பில்வரும் விஞக்களுக்கு விடை தருக. -

- (1) உண்டாகும் வூர்படிவின் அளவைத் தோக்கமடைந்துள்ள அளவுடன் எவ்வாற கொடர்புபடுத்துவீர்?
- (2) வரைபடத்தின் வடிவத்தை எவ்வாற விளக்குவூர்?
- (3) வகாபடத்தில் எப்பகுதி உச்சத் தாக்கத்தைக் குறிக்கில்றது?
- (4) தாக்கமடைந்துள்ள அளவு உச்சமாக இருக்கும்போது தாக்கி களில் விசிதம் என்ன?
- (5) இரு சேர்வைகளும் தாக்குமுறும் மூலர் விகிதம் (பீசமாவம்) எவ்வ ?
- (6) இத்தாக்கத்திற்கான சமன்பாட்டை எழுதுக?
- (b) வெப்பமான முறை

ஓர் இரசாயனத் தாக்கம் வெப்ப வெளியேற்றத்துடன் நிக ழக்கூடும். வெளியேற்றப்படும் வெப்பம் தாக்கமடைந்தள்ள அளவிற்குஓர் அளவிடாகும். எனவே வெப்பமாற்றத்தை அளவிடுவதன் மூலம் ஒரு தாக் கத்தின் பீசமானத்தைத் தணியலாம்.

பரிசோத 200 :- HCL கரைச 2லயும் NaOH கரைச 2லயும்

ஒன்றுகக் கலக்கும்போது பெருமளவு வெப்பம் வெ வியேற்றப்படும், தாக்கக் கலனவ யின் வெப்ப நிலே அதிகரிக்கும்;அது வெப்பமானியால் அளவிடப் படும்.

பஞ்சால் அடைக்கப்பட்ட ஒரு முகவையிறுள் தப்பரவான ஒரு சோத2வக் குழானய வைக்க. இலி, ஒரு குழாயி மூலம் 9 mil HCL ஐ அச் சோத2னக்குழாயிலுள் சேர்த்த அதன் வெப்ப நி2லனையக் குறிக்க. அதே சோத2னக் குழா யிலுள் 1 mil No.OH கரைச2லச் சேர்க்க. கனரச2ல நன்றுகக் கலக்கி இறுகி உச்ச வெப்ப நிலேயைக் குறிக்க. வெவ்வேறு கனவளவுகளில் HCL, NAOH கரைசல்களே உபயோகித்துப் பரிசோத கேவையத் திரும்பவும் செய்க; ஒவ்வொரு சந்தர்ப் பத்திலும் உச்ச வெப்பநிலே உயர்வைக் குறிக்க. வெப்பநிலே அதிகரிப்பைச் சேர்க்கப்பட்ட தாக்கி கேளின் (HCL உம் NAOH உம்) கனவளவு விகிதேங் கஞக்கு எதிராகக் குறிக்க. முன்னர் செய்ததைப் போல், இப்புள்ளிகளினு டாக மிகச்சிறந்த இரு நேர்கோடுகளே வரைக. இவை ஒன்றையொன்ற வெட்டும் புள்ளியில் HCL, NAOH துகியவற்றின் கனவளவு விகிதைக்கைப் பெறுக. அதிலிருந்த தோக்கத்தின்பீச மானத்தைக் (மூலர் விகிதைத்தை) தணிக.

1.51. 2 கனமான முறை

கவமொன முறையில் செறிவு தொிந்த நியமக் களாரசலின் கேவாவை அளவிடுதல் சம்பந்தப்படுகிறது. இக்கலரசல் நியமலி எவப்படும். 50 வளவு துவியைம் முறை நியைப்ப்பு எனப்படும். நியபிப்பில்போது நியமணியில் தாக்கும் கற தியபிக்கப்பட்டவிருக்கும் கரைசலிலுள்ள குறித்த பதார்த் தத்தில் கோவியத்தாடல் தோக்கமுறம். அயில–மூல நியயிப்பில்போத உகா ரணமாக, HCL (நியமனி) NaOH (நியமிக்கப்படலிருக்கும் கறைசல் உடன் தாக்கமுறம். முடிவுப் புள்ளியில் தாக்கம் முற்றப்பெறும். ஒருகாட் டியின் மூலம் முடிவை நிலே தாணியப்படும். நியபிப்பில் சேமுவதுப் புள்ளியில் அல்லது அதற்கு பிகவும் அண்மைறில் முடிவுப் புள்ளி இருக்குமென வழக்க மாகக் கொள்ளப்படும். சமவழப்புள்ளியில், நியமவியிலள்ள தாக்கும்கறின் செறிஷ, நியபிப்புக் கறைசலிலுள்ள தாக்கும் பதார்த்தத்தில் செறிவிற்கும் சமமானது. எனவே தாக்கிகளின் செறிவு அறியப்பட, மூடிவு நிலேயை அடைவதற்குத் தேவையான கனவளலில் உள்ள மூல்களின் என்னிக்கையைக் கைக்கைமுடியும். இதிலிறுந்த தோக்கத்தின் பீசமானம் துணியைப்படும்.

பரிசோத 2ன

(1) ஒரு வல்லயிலத்தை (HCL) வன்காரத்துடன்
 (NaOH) நியயித்தல்
 ஒல் வொன்றும் 0.1 செறிவுடைய HCL, NaOH

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org ஆகியவற்றின் கரைசல்க2ளத் தயாரிக்க. அளவியை அதன் பூச்சியப்புள்ளிவரை HCL கரைசலால் நிரப்புக 25 mL No.0H கரைச2லக் குழாயியால் எடுத்த நியபிப்புக்குடுவையில் சேற்த்த காட்டியாக, மெத றில் செம் மஞ்ச2ள அல்லது பினேத்தலி 2வச்சேர்க்க கரைசல் இளச்சிவப்பு நிறமாக (மெதயிற் செம் மஞ்சள்) அல்லத நிறமற்றதாக (பினேத்தலில்) மாறும்வறை அளவியிலிருந்த HCL ஐச் சேர்க்க.

இதே செய்முறையைப் பயன்படுத்தி பின்வருவனவற்றைச் செய்க.

- (ii) (வ) பினேத்தலின் (Ь) மெதயிற் செம்மஞ்சள் உப யோகித்து 25 ml Na₂CO₃(0·11%)8 HCL (0·1M) ஆல் நிய மிக்க
- (iii) (() பினேத்தலீ 2 வை () வெதயிற் செம்மஞ்ச 2 வை உபயோ கித்தை 25 மீலீ NaOH (0.1 M) இ பொசு போயிக் கமிலத்தால் நிய மிக்க.

இப் பரிசோதடூககளில் பெழபெறுகளிலிருந்த, தொக்கங்கள் (i) (ii) (iii). ஆகியைற்றில் தாக்கமுறம் பதார்த்தங்களில் மூலர் விகிதங் கடீளப் பெறுக.

இதுவரை நீங்கள் செய்த நியைிப்புக்கள் அமில– மூல நியயிப்புக்கள் அல்லதை நெடுநி2லயாக்கல் நியயிப்புக்கள் எலப்படும்.

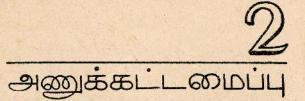
நியபிப்பு முறைகளால் ஆராயக்கடிய வே மு தாக்கங்களும் உள்ளன.

உடம் (;) ஒட்சியேற்றல் – தாழ்த்தல் தாக்கங்கள்

தாக்கப் பதார்த்தம், நியமக் கரைசலிலுள்ள தாக்கும் களுல் ஒட்சியேற்றப்படும் அல்லது தாழ்த்தப்படும்

உடம் பொற்_{று}சியம் பேர்மங்கனே_{று}ல் ஒட்சிரலிக்கமிலத்தின் ஒட்சி யேற்றம்.

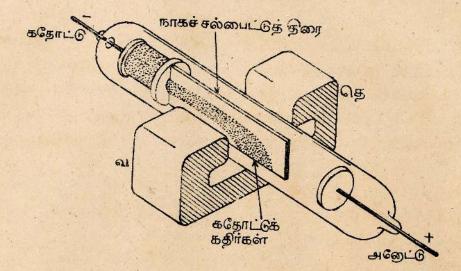
(ii) <u>படிவு வீழ்த்தல் தாக்கங்கள்</u>


தாக்கப் பதார்த்தமும் நியமக் கரைசவும் தாக்கமுற்று ஒரு வீழ்படிவைக் கொடுக்கும்.

47

உடம் வெள்ளி வநைத்திரேற்றிவதைம் ஐதரோக் குளோரிக்கமி லத்திவதம் தாக்கம் (காட்டி–பொற்முசியம் குரோ மேற்ற).

பயிற்கிகள்


- 1 (a) 60.00 mL 0.62 M NaOH ஐ நடுநிலேயாக்குவகற்கு எத்தலே மில்லிலிற்றர் 0.46 M H_PO₄ தேவைப்படும்?
 - (b) 60.00 ml 0.62 M NaOH, 0.46 MH PO4 ஆல் நடு நிலேயாக்கப்படின், எத்தலே சமவலுக்கள் உப்பு (Na PO4) உண்டாகும்.
- 2. 15.00 ml HNO₃ கரைசல், (அதன் அடர்த்தி 1.060 g ml; அது நிறையால் 11.0 % HNO₃ ஐக் கொண்டுள்ளது) முற்றுக நடு நிலேயாக்குவதற்கு 55.46 ml NaOH தேவைப்படும். NaOH கரை சலின் நேர்த்திறன் என்ன?
- 3. ஒரு கனை சல், H_ESO₄, ஒட்சலிக்கமிலம் ஆகியவற்றின் கலனவயைக் கொண்டுவது. 25.00 ml கரைசலே ஒட்சியேற்றுவதற்கு 23.45 ml 0.02 M KMnO₄ கரைசல் தேவைப்பட்டது. தாக்கத்தின் பீச மானத்தைக் காண்க.
- 4. 1.259 K₂Cr₂O₇, 250 ml வடித்த நீரில் கரைக்கப்பட்டத. இக்கரைசலில் 25.00 ml H₂SO₄ ஆல் அயிலமாக்கப்பட்டுப் பில் மிகையான KI கரைசல் சேர்க்கப்பட்டத. வெளியேற்றப்பட்ட அயாவினத் தாழ்த்துவதற்கு 25.25 ml N|10 NaSO₄ தேவைப்பட்டத. இத்தாக்கத்தின் பீசமானத்தைக் காண்க.

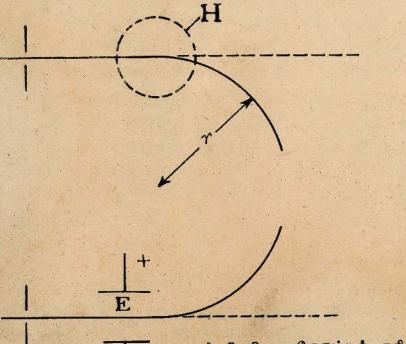
சடப்பொருள்களின் இயல்புகள் பலவற்றை, அவற்றை ஆக்கும் ' அணுக் கே உளயும், மூலக்கறுகை உளயும் கொண்டு, எளிதில் விளம் திக்கொள்ள លុណ្ដាល ហ្វេ . சடப்பொருளின் அணுக்கன்மைக்கு ஆதறவாகவுள்ள பரிசோக வேச் சான் ஒரு சில மூலகங்கள் WL (6 G LD றகள் ஏற்கனவே விலரிக்கப்பட்டுள்ளன. அறியப்பட்டிரைந்த 19ம் நாற்றுண்டி மேற்பகுகியில், அஹுக்கள் பிரிக்கப்பட முடியாகனவெனவும், அவற்றைப் பிறிதொரு வகையைச் சேர்ந்த அணுக்க தாற்றவில் அணுக்கொள்கை ளாக மாற்ற முடியாதைவைும் நம்பப்பட்டது. (1) சடப்பொருஷின் மிகச் சிறிய அலகு 'அஹை' (11) 905 We as is தன்மையை மாற்றதல் அசாத்தியம் என்ற இவ்விரு கருத்தக்களில் जीवा । பின் வை து அதுறுக் தன் மையது, அதாவது 38 ஆதா ரமாகவிருந்தது. நிலேயால சிற அலகுகளால் ஆனது என்பதைக் காட்ட 19ம் நூற்றுண்டில் பிற்பகுகியில் பரடே எவ்பவர் மில்பகுப்பு சம்பந்தப்பட்ட பரிசோத2வக psoså, பின்னேற்ற அலகாவத, ஒரு டின்வாயில், 2வக் செய்தார். வெள்ளி முதலியன போன்ற ஏதாவதொரு ஒரு வழவளவுள்ள மூலகத்தின் ஒர ஹாவை இறக்குவ தற்குக் தேவை யான பின்கணியமென விலரிக்கப்பட்டத. 1.60×10^{-19} கலோம்களாகக் கானப்பட்டது. மீன் இதன் பெறமானம் எஹுவிற்காக இவ்வலத 'இலத்திறன்' எனப்பட்டய.

2.10 கதோட்டுக்கதிர்களில் இயல்புகள்

இலத்திரவின் தன்மை பற்றிய ஆராய்ச்சிகள், குரூக்ஸ் என்பவரினதும், ஏ &ே யாரினதும் தாழ்ந்த அமுக்கத்தில் நடாத்தப்பட்ட வாயுக்களின் மின் கடத்தற் பரிசோத & கே க ஆதாரமாகக் கொண்டிருந்தன. சாதாரண அமுக்கங்களில் வாயுக்கள் குறைவாகவே மின் &ே க் கடத்தம்; ஆயின், தாழ்ந்த அமுக்கங்களில் அவை சிறந்த மின்கடத்திகள் ஆகின்றன. இரு மின்வாய் கஞ்டைய ஒரு கண்ணூடிக் குழாயில் ஒரு வாயுவை அடைத்த, அதன் அமுக் கத்தை 5 mmHg இற்குக் குறைத்து, போதமான உயர் உவோற்றளவைப் பிரயோகிக்கும்போது, பிரகாசமான ஒளிர்வுள்ள இறக்கம் அவதானிக்கப் படும், அமுக்கத்தை 0.01 mm Hg ஆக மேலுக் குறைக்க, ஒளிர்வுள்ள இறக்கத்திற்குப் பதிலாக, கதோட்டிலிருந்த புறப்படும் மிகவும் மங்கிய ஒளிர்வுள்ள கதிர்கள் காணப்படும். குழாயில் பயன்படுத்தப்படும் மின் வாய்களின் தன்மையும், வாயுலின் தன்மையும் எவ்வாறிருப்பிழைம்இக்கதிர்கள் அவதானிக்கப்பட்டன. அவை பிவ்வரும் இயல்புகளுடையனவாய் காணப் பட்டன.

படம் 2 . 1 கதோட்டுக் கதிர்க் குழாய்

- (1) அக்கதிர்கள், ஒன்றிற்கொன்று எதிரான ஏற்றமுள்ள இரு தகடு கேஷிறுடே செயத்தைப்படுமாயின், அணவ நேரேற்றமுடையதகட்டை நோக்கித் திரும்புவதாகக் காணப்பட்டத–அதாவத அவை எதி ரேற்றம் உடையவை.
- (11) அக்கதிர்கள், காந்த மண்டலத்தால் திருப்பப்படும் திசையானது எதிரேற்றமுடைய துணிக்கைகளுக்கு எதிர்பார்க்கப்படும் அதே திசையாக இருக்கவும் காணப்பட்டது.
- (111) குழாயிலுள்ள யின்வாய்களிடையே பொருத்தப்பட்டுள்ள ஒருசிறிய அடுப்புச் சில்லில் மேற்தட்டைகளோடு அக்கதிர்க2ள மோத விட்டால், சில்லு கதோட்டிலிருந்த தள்ளிச் செல்லும் திசையில் சுழலக் காணப்படும். எனவே இக்கதிர்கள் சக்தியைஉடையன.
- (iv) மின்வாய்களிடையே ஒரு பொருள் அவக்கப்படுமாயின்,அ⊖ைட்டின் பக்கத்தில் நிழல் விழக் கானலாம். இது இக்க∄ிர்கள் கதோட்


டிலிருந்த ஒரு தெனிவான நேர்த்திசையில் செல்வதைக் குறிக்கும்.

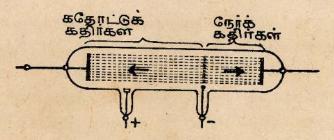
மேலேயுள்ள அவதானங்கள், 'கதோட்டுக் கதிர்கள்' எதிரேற்றமு டையை தாவிக்கைகள்ால் ('இலத்திரன்களால்') ஆனவை என்பதைத் தெரிலிக் கின்றன. அவற்றின் தன்மை, இந்த இறக்கக் குழாய் பரிசோத2வகளில் பயன்படுத்தப்பட்ட பில்லொயில் பதார்த்தத்திலும் வாயுவிலும் தங்கியிருக்க வில் 2ல.

2.11 இலத்திரன்களின் இயல்பு

குரூக்ஷின் இவ்வாராய்ச்சிகடீன விரைவில் தொடர்ந்த, தொம்சன் என் பவரும் யிலிக்கன் என்பவரும் இலத்திரனின் ஏற்றம் ۱၉၊ ஐயும் திணிஷ 'സ ஐயும் பெறப் பரிசோதடீனகள் செய்தனர். தொம்சவின் பரிசோதடீன கேஷில் கதோட்டுக் கதிர்கள் பின்வருவனவற்றினு டாகச் செலுத்தப்பட்டன.

(1) இக்கதிர்களே ஒரு திசையில் திருப்பி அவற்றை ஆறை ' + ' உடைய வட்டப் பாதையில் செல்லச் செய்வதற்கு, வலிமை H உடைய காந்தப் புலம் (11) இக்கதிர்களே எதிர்த் திரையில் திருப்ப செங்குத் தான திசையில் பிறபோகிக்கப்படும் வலிமை E உடைய, பின்புலம்.

படம் 2.2 கதோட்டுக் கதிர்கள் (1) காந்தப் புலத்தால் திருப்பப்படல் (11) மின் புலத்தால் திருப்பப்படல்


Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

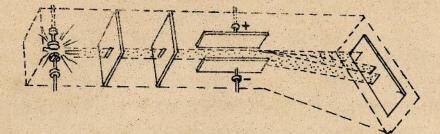
காந்தப் புலமும் மின்புலமும் ஒரே சமயத்தில் பிரயோகிக்கப்படும். இப்புலங்கள் இல்லா கவிடத்து, கதோட்டுக் கதிர்கள் சென்ற அரம்பப் பாதையில் விலகல் ஏதும் ஏற்படாதவாற செல்லும் வகையில்இப்பலங்களின் வலிமைகள் சீராக்கப்பட்டன. ஒவ்வொன்றும் கிலில் ்ா உடனம் ஏற்றம் `e' உ**ட**தம் கதி`ப'உடலும் சென்ற கொண்டிருக்கும் இக்கதோட்டுக்கதிர்த் தாக்க்அககளில் விீசா அவைக் கரத்திற்கொள்டு, இத்தாகிக்கைகள் அளப்பரிய கதியில் 3 × 10⁹ cm s'செல்வ தாகவும், C/m அதாவத இலத்திறலின் ஏற் றத்திற்கும் திவிலிற்குமுள்ள விகிதம், கிராமொக்றிற்கு ஏறக்குறைய 5.2.7× 10 esu எனவும் கானப்பட்டத. இப்பெறபேறுகள், எப்பேர்ப்பட்ட 50 மையுடைய ககோட்டுப் பதார்த்தத்தை (உதா Demions AL, Fe, Pt. முதைவியைவை) உபயோகித்தாலும், மின்னிறைக்கம் செலுத்தப்படும் வாயுக்களின் (உதாரமமாக H₂, CO₂,காற்ற முதலியன) தல்கைம் எவ்வாறிருப்பிலும்ஒரே மாதிரியிருக்கக் காணப்பட்டன. இவ்வழி, வெவ்வேற இரசாயன மூலகங் களின் ' அதுமக்கள்' யாவும், ஒரே வகையினதான இறுதித் துனிக்கைகளின் (இலத்திரவ்களில்) வெவ்வேற எண்ணிக்கைகூகாக் கொண்டிருக்கின்றன.இலத் திரன்கீள வேற முறைகளாலும் உண்டாக்க முடியும். உதாரனமாகஇரே டியோ வால்வுகளில் போன்ற உலோக இழையங்கூசு வெப்பமாக்கும் போத, இரு சடப்பொருள்க2ள ஒன்றேடொன்ற உரோஞ்சும்போத, உதா ரனமாக, பொறிமெழுகையும் கம்பளியையும் உரோத்கம்போத, அவை ஒரு வகைச் சடப்பொருகிலிருந்த வேறொரு சடப்பொருஞக்கு இடம்பெயரும்.

இவ்வழி, வெவ்வேறே வேகைப் பதார்த்துங்களிலிருந்த பெறக்கூடிய இலக் திரைக்கைப் , அஹுக்களின் அடிப்படை அமைப்புக் கூறுகளில் ஒன்றாகும்.20ம் நாற்றான்டின் முற்பகுதியில், மிலிக்கன் என்பவரின் பரிசோத 2வகளிலிருந்த இலத்திரைவின் ஏற்றம் 'e', 4.802 × 10⁻¹⁰ esu எனக் காணப்பட்டது. இவ்வழி, இலத்திரனின் திணிஷ m , 9.107 × 10⁻²⁸ கிராயிற்குச் சம குகும். அதாவத, தைதாசன தொலின் திணிவின் ஏறக்குறைய 1/1840 இற் குச் சேமமாகும்.

2.12 அதுவிலைப்பை பிற அடிப்படைத் தோகிக்கைகளின் தன்மை.

இறக்கக்குழாய்க 2வேப் பயன்படுத்திச் செய்யப்பட்ட பரிசோத 2வைக 2வே விவரிப்பதன் மூலம் அணுக்கள் பின் தன் மையின என்பதையும், பின்னின் எதி ரேற்றமுடைய அலகுக 2வே – இலத்திரன்க 2வே – கொண்டுள்ளன என்பதையும்காட் டியுள்ளோம். இவ்வாறுயிலும், அணுக்கள் பின்னடு நிலேயு டையனவாதலால் நாம் அவை சம என்னிக்கையில் பின்னின் நேரேற்ற அலகுக 2 வயும் கொன் டிருக்க வேண்டுமென எதிர்பார்த்தல் வேண்டும். கதோட்டுப் பதார்த்தத் தில் சிறு து 2 வக 2 வ உண்டாக்கிப் பெற்ற ஓ 2 வைட்ட கதோட்டைப் பயன் படுத்தி கோல்ட்டிற்ரீன் என்பவர் இப்பரிசோத 2 வக 2 வ மீன்டும் செய்தார். அவர் 'கதோட்டுக் கதிர்க 2 வ மட்டுமல்லாமல், அவற்றேரு கதோட்டி தோ டாக எதிர்த் திவசயில் செல்லும் கதிர்கள் உண்டாவ தையும் அவதானித் தார். இப்பின் 2 வைய கதிர்கள், மின், காந்தப் புலங்கள் இரண்டாலும்

படம் 2.3 நேர்க்கதிர்க் குழாய்

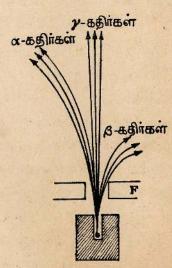

இலத்திரள்களிற்கு எதிரான திசையில் திருப்பப்படக் காணப்பட்டத.எனவே இக்கதிர்கள் நேரேற்றமுடைய தாகிக்கைகளால் ஆக்கப்பட்டவையாகும். இளவ பதேர்க் கதிர்கள்: எனப்படும்🐔 பரிசோத**ீவகளி**ன்போது ରେଇ ଅ ସେ ଅ வாயக்கள் பயன்படுத்தப்படுமாயின், ்கதோட்டுக் கதிர்கீகப் போலல் லாத, "நேர்க்கதிர்களில் அணிலும் ஏற்றமும் இறக்கக் குழாயில் UUM படுத்தப்படும் வாயக்களின் தன்மைக்கேற்ப வேறுபடக் காணப்பட்டத. ் நேர்க்கதிர்கள், கதோட்டிவிருந்த வெளிவரும் இலத்திரைக்கள் ศส Ga . குழாயில் எஞ்சியிருக்கும் வாயுவின் மூலக்கூறுகளோடு மோதுவதால் பெறப் அதிக சக்தி உடைய இலத்திரன்கள், வாயு மூலக் இவ்வழி, ULSG (hi). அணுக்களாகப் பிரித்த, அணுக்களிலிருந்த கூறகளோடு மோதி, அவற்றை இலத்திரவ்க 2 எ நீக்கி, நேர் இலங்க 2 எ (நேரயவ்க 2 எ) கொடுக்கும் இவை கதோட்டிகுல் கவரப்பட்டு, அது தேசோயிடப்பட்டிருக்குமாயில் அதன டாகச் செல்லும். ஐதரசன் வாயு பயன்படுத்தப்படுமாயின், பாரம் டிகைக் கு வறந்த நேரயன் உண்டாகும். இலத்திரனின் திணிவு ஐதரசன் 2 manalia

தீனிலை 1/1840 ஆக இருக்குமாயின், ஐதரசன ஹைலின் நேரயனின் (H) தீனிலை நடு நி2ல அஹுலின் தீனிலைற்குச் சமஞகைலிருக்கும். அதாலத இலத் திரனின் தினிலைக் காட்டியம் 1840 மடங்கினதாக இருக்கும். இதன் ஏற் றம் இலத்திரவின் ஏற்றத்திற்குச் சமஞனை நேரேற்றமுடையதாய் இருக்கும். சடப்பொருளின் அடிப்படை தேரேற்ற அலகாகிய H⁺ அயன் 'புரோத்தன்' எனப்படும். பிற வாயுக்களிலிருந்த உண்டாகும் 'நேரேயன்களின்' திணிஷ கள், 'புரோத்தனின்' திணிவின் ஏறக்குறைய முழுவைன் பெருக்கங்களாக இருக்கக் காணப்பட்டது.

2.13 சமதாலிகள்

சிட்டத்துட்ட இதே காலத்தில் மூலகங்களில் திணிவுக 2 வ அளவிடப் பரி சோத 2 வகற் முதலில் தொம்ச குலைம் பில்லர் அற்ற குலும், செய்யப்பட்டவ. அற்ற வில் பரிசோத 2 வைல் தந்தலம் யாதொலில், ஒரே வேகத்தில் செல் லும் நேரயல் களில் கல வை வை ஒரு காந்தப் புலத்தினை டாகச் செலுத்தும் போது, ஒவ்வோரயலும் திருப்பப்படுமளவு அதனதன் திணிவிற்கும் ஏற்றத்திற்கு மேற்ப இருக்கும் என்பதாகும். பாரங்கு வைறைந்த அயன், அதேஏற்றத்தை யுடைய ஆகுல் பாரங்கூடிய அய 2 வேவிடக் கடுதலாகத் திருப்பப்படும். இரட் டையேற்ற முடைய அயல், அதே திவிலை யுடைய ஆகுல் ஒற்றையேற்ற முடைய அய 2 வக் காட்டிலும் 'கருதலாகத் திருப்பப்படும். அயன் களின் திணிவுகள், நடுதி 2 ல அணுவில் திகுவிற்குச் சமமென எருத்துக்கொள்ளப்படும், அற்ற குல் உபயோகிக்கப்பட்ட உபக தலம் பில்வரும் ஏற்பாடுக 2 வக் கொண்டி ருந்தது.

- (1) பதார்த்தத்தின் தன்மையைப் பொறுத்துப் பல்லேறே வெவகையில் நேரயன்கூ வே உண்டாக்குவதற்குரிய அயகுக்கேவறை.
- (11) அயல்களிற்கு உயர்வானதும் மாறுத்துமான வேகத்தைக்கொடுக் கும் விரைவுபடுத்தும் ஏற்பாடு.
- (11) அயன்களின் பாதையைத் திருப்புவதற்கான காந்தப் புலம்
- (iv) வெல்வேற திலிவுக 2ளயு டைய அயன்கள் வெவ்வேறனில் திருப் பப்படுவதற்கேற்ப, வெவ்வேற இடங்களில் ஒரு தொடர் கோடுக 2ளத் திருப்பப்பட்ட கற்றை அயன்கள் கொடுப்பதற் கான ஒளிப்படத்தகடு. இக்கோட்டுத் தொடர் 'திலிவை நிற மா 2ல ' எனப்படும்.


படம் 2.4 அசுத்தவின் திணிவு நிறமா 2ல பதி கருவி

அளிவு அறியப்பட்ட மூலகமொன்*றல்* உபகரசும் அளவு கோடிடப்பட்டிருக்கு மாயின், நேரேயன்களின் தினிஷைகூடாத் தாஷியக் கோடுகளின் நிடுலகைடீளப்பயன் படுத்தலாம். இப்பறிசோத 2வகவில் ஒட்சிச 2வேப் பயன்படுத்தி 0,0, ஆகியவற்றிற்கான கோடுகள் பெறப்பட்டன. அவையிலியைம் பயன்படுத்தைப்பட் ஆகியலற்றிற்கான கோடுகள் பெறப்பட்டன. இல் LGUTB, AL. AL. AL வாராய்ச்சிகளில் பெரும்பாலான மூலகங்கள். வெல்வேற கேஜ்லகே உளயனடய அணுக்களால் ஆக்கப்பட்டிரைப்பதாகக் காகப்பட்டத' உதாரணமாக. Ø அஹுக்கிலிவைகள் 35,37 தகியவற்றையடைய அஹுக்களால் தக் Can That. கப்பட்டதாகம். தைதாசன் நீங்கலாக, பெரும்பாலான மூலகங்களில் அவற் றின் அணுக்களின் கிளிவெய்கள் அவற்றிடமுள்ள 'புரோத்தல்களின்' என்னிக் கையைக் காட்டிலும் கருதலாகவிருந்தன. இவ்வேறபாடாகத் புரோத்த வின் திவிலிற்கு ஏறக்கு அறய சமமான தம் பின் வேற்றம் இல்லாததுமான பிற அடிப்படைத் துகிக்கைகள் – நியூத்திரவ்கவ் – அணுவில் இருத்தலாலா குமைவலிலக் 35Ga . கிவிவென் A தகவுள்ள ஒரஹு, 7 பரோத்தன்க கப்பட்டக. 2வயும்· A-Z நியூக்கிரன்க2வயும் கொண்டிருக்கும். 17 புறோத்தன்க 2ள கொண்டிருப்பதாகக் கானப்பட்டுள்ள குளோரீவின் அதுதை திகிலைகள் 35,37 ஆக வேறபட்டிருத்தல், 18 நியூத்திரன்க 2 வையனடய ஒரணவ வடிவமும் 20 நியூத்திரன்க 2வேயுடைய பிறிதொரு அணுவடிவமும் இருப்பதாலாகுமெனவினக் நியத்திரன்களின் எண்ணிக்கையில் மட்டுமே வேறபட்டிருக்கும் கப்பட்டத. இவ்வ ஹுவடிவங்கள் 'சமதாகிகள்' எனப்படும். ஒருமூலகத்தின் GT 01 3 61 .

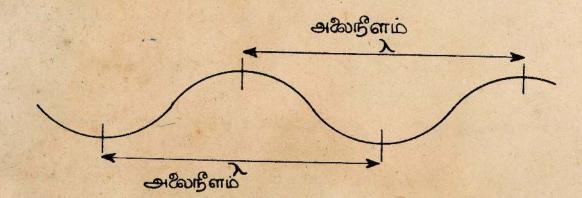
சமதானிகள் அதுத்திலில் களில் மட்டுமே வேறபடும்.

2.20 கதிர்த் தொழிற்பாடு

இவ் வத்தியாயத்தின் ஆரம்பத்தில், தாற்றலின் அணுக் கொள்கைக்கு ஆதாரமாகவிருந்த இருகருத்துக்க 2 ை நாம் குறிப்பிட்டோம். சடப்பொரு வின் மிகச் சிறிய அலகு அணுவாகும் என்ற முதற் கருத்தை தவருவதாகும் என்பதை நாம் காட்டியுள்ளோம். அணுக்கள் சிறியஅலகுகளாகானவை, அதாவத இலத்திரன், புரோத்தன், நியூத்திரன் ஆகியவையால் ஆனவை. ஒரு மூலகத்தின் தன்மையை மாற்றுகல் லாத்தியமாகும் என்றஇரண்டாவத கருத்தை இனி நாம் கருத்தில் கொள்வோம். பு. பெக்ரல் என்றஇரண்டாவத கருத்தை இனி நாம் கருத்தில் கொள்வோம். பு. பெக்ரல் என்றஇ கருத்தை இனி நாம் கருத்தில் கொள்வோம். பு. பெக்ரல் என்றவர 1896 இல் ஒரு யூரேனியச் சேர்ணவனையச் சில ஒரிப்படத் தட்டுகளுடன் தொடுகையுறவிட்டிருந்த போத அத்தட்டுக்கள் கருமையானைதச் தற்செய லாக அவதானித்தார். பதார்த்தங்க 2 ை ஊடுருவிச் செல்லக்கூடிய யூரே னிய உப்பால் ஏதோவொரு வடிலக் சுதிர்ப்பு காலப்பட்டனமயே அதற் குக் காரனமைன அவர் தனது அவதானத்தை விளக்கிக் கூறிரைர். கியூரி

படம் 2.5 கதிர்ப்புக்கள் கா<mark>ந்தப்புலத்</mark>தால் திருப்பப்படல்

தம்பதிகள், பொலோலியம், ரேடியம் போன்ற பிற மூலகங்களும் இத் தகைய வி&ளவுக&எக் கொருப்பதாகப் பின்குல் கண்டனர். கதிர்ப்பைக் காழகின்றபதார்த்தங்களின் தோற்றப்பாரு கதிர்த்தொழிற்பாரு எனப் பட்டத; அப்பதார்த்தங்கள் <u>கூறிர்க் தொழிற்பாடுடையை பதார்த்தங்கள்</u> எனைப்பட்டன. இக்கதிர்ப்புகளின் தேன்மை ஒரு காந்தப் புலத்தைப் பயன் படுத்தி ஆராயப்பட்டத;இல்லாராய்ச்சியில் மூலு அகக் கதிர்ப்புகள் இனம் கோணப்பட்டன.


— கதிர்கள்: இசைய நேரேற்றமுடையலவை இக் காட்டும் தீசையில் திருப் பப்பட்டன. இவை ஒரு கடதாசித் தாளால் தடுத்து நிறுத்தப்படக்கூடிய அளவுக்கு பிகக் குறைந்த ஊடுருவிச் செல்லும் திறன் உடையலுவாகக்கானப் பட்டன. இவை, ஈலியமயன்கை&ன ஒத்திருக்கக் காணப்பட்டன.

<u>β – கதிர்கள்:</u> இவாவை எதிரேற்றமுடையைவை ாகுஷம், இலத்திரன்கீனஇயல் பில் ஒத்தவையாகஷம், ஆயின் அவற்றைவிட அதிக வேகுமுடையவலாகுஷம் காலப்பட்டன.

<u>γ_ கதிர்கள்:</u> – இசுவை காந்தப் புலத்தால் திருப்பப்படலில் &லை; ஊடுருவிசீ செல்லும் திறஸ்பிக்க∽வலை. Χ_கதிர்க & னதாவத து &ல நீளம் சிறிதாக வுள்ள பிஸ்காந்தக் கதிர்ப்பை ஒத்த தி &லகளாக இவலை காணப்பட்டன.

2.21 டில்காந்தக் கதிர்ப்பு

சக்தி, கதிர்ப்புக்களாகச் செலுத்தப்படலாமெல்பது நன்கறியப்பட்ட தொன்றுகும். கதிர்வூசிக்கு அருகாலையில் உபைரப்படும் வெப்பம், இத் தோற்றப்பாட்டிற்குச் சிறந்த உதாரனமாகும். கதிர்ப்பானது குறுக் கலேயியக்கமாகச் செல்வதாகக் காணப்பட்டுள்ளது; இரு உலோக யில்

படம் 2.6 குழக்கு அலே

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org வாய்களிடையே காணப்படும் வெளியினு டு மில்பொறி பாயும்போத பிறப் பிக்கப்படும் அ2லக 2எப் போன்றவை கதிர்ப்பு அ2லகள்.

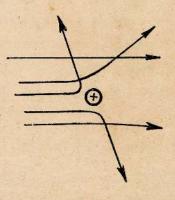
அலேநீளம் 💫 , இதல் குறிப்பிடப்படும். ஒரு செக்கவில் தரப்பட்ட ஒரு புள்ளி அயக் கடந்த செல்லும் அ2லகளின் என்னிக்கை, கதிர்ப்பின் மீடிறைன் ஆகும். ஒரு கயிற்றின் ஒரு முசீனவை நிசீலயாக வைத்த, மற்றமுசீனவை ஆட்டுவோமாயின், எம்மால் அ2லக2எக் கானமுடிகிறது. அத2ன உக்கி ரமாக அட்டுவோமாயின் அலேகள் சிறிதாகும். (A சிறிதாகும்) ஆல்லது ஒரலது நேரத்தில் அப்லகளில் எண்ணிக்கை அதிகரிக்கும் (> அதிகரிக்கும்). எனவே, கயிற்றிற்த அக்க சக்தியைக் கொடுக்தம்போத י ு அவ்பைய மாவம் உயர்ந்த, ் 👌 இன் பெறுமாவம் சிறிதாகும், எற்றமுடைய தாளிக்கை வொடுக்கில், பில்காந்தக் கதிர்ப்பை அல்லத பில்காந்த அடுவகடுள உண்டாக்கும். இவ்வடுலகளின் அடுவறினம் பல்லாயிற மீற்றர்க **எலிருந்த** 10⁻¹⁰ cm ஆக அல்லது அதற்கும் குறைவாக வேறுபடும். அவ தறிப்பிட்ட அல்ல நீளமுடைய அல்லகல்ள மட்டுமே எமது குள்தைல் பார்க்க முடியும். நிறமா 2ல பில் கட்பல குதைம் பகுதி வெல்லேற நிறங்களாகத்தை ரிகின்றது. வெற்றக் கண்ணுல் பார்க்கக் கூடிய மிக நூனமான அ2லசிலப் பாகும்; இவற்றைக் காட்டியும் நீளமான அூலகள் வெப்பவில்களாகும். வெப்பமான கதிர்விசியிலிருந்த வெப்பம் கதிர்ப்பத இவ்வகை அடுவவடிவிலா இவை நிறமாடீலழில் கீழ்ச் செந்நிறப் பகுதியை உள்டாக்கும். குள் தம். தல் பார்க்கக்கழைய் யிகச் சிறிய அ2ல் ஊதாவாகும்; இதைக் காட்டியும் சிறிய அலேறீளங்கள் அதிதவதாக் கதிர்களாகும்; இவை வெறில் எரிவவ உண்டாக்கும். இவை நிறமா லேயில் அத்தவுதாப் பகுதியை உண்டாக்கும். ஆகவே, கதிர்ப்புக்களின் சேக்திகள்

கிழ்ச் செந்திறம் > கட்புலன் > அதித ஊதா என்ற வரிசைப்படி அதிகரிக்கும்.

அடுஅநீலம் குறைகின்றை வரினசப்படி அல்லதை சேத்திகள் அதிகரிக்கும் வரிலசப் படி X – எதிர்களும் 🍞 – கதிர்களும் உள.

யூரேஷியம் போன்ற வெரிய பாரமான அணுக்கள், பிற மூலகம்கேஷின்எனிய அணுக்களாகப் பிரிதேலே கதிர்த்தொழிற்பாட்டிற்குக் கோரனமொடுமன உருத போர்ட் 1903 இல் தெரிவித்த, ஒரு மூலகத்தின் இயல்பை மாற்றமுடியொ தென்ற தாற்றனின் கருத்த தவறைனக் காட்டி**தேர். உதாரன**மாக,அணுத்

58


கிலிஷ 226 ஆகவுள்ள பேடியவனு கதிரீப்பைக் கால்று, < – கதிர்க ீளக் கொடுக்கின்றது, இக்கதிர்ப்பின்போத ஒல்லொன்றம் *தின்லைன்* 4 ஆகவுள்ள 5 ஈலியலையன்களுக்குச் சமமான 🗙 – கதிர்களும் மிரைகயான இலத் தி**ர**வ்களும் வெளியேற்றப்படுகின்றன. இவ்வழியாக இவ்விரேடியவ ஹனை கிணிவு 206 ஆகவுள்ள ஈயமாக மாழகிறது. பாரங் குறைந்த மூலகங்களில் அறியப் கதிர்த்தொழிற்பாட்டு வடிவங்களும் இயற்கையில் தோன்றுவதாக பட்டுள்ளது. வளிமண்டலத்திலுள்ள CO2 இன் ஒரு சிறு பெகுதி, கிணிவைன்14 ஆகவு வீள காபவின் கதிர்த் தொழிற்பாடுடைய வடிவத்தைக் கொட்டைள்ளது. **திணி**வெண் 40 ஆகவள்ள பொற்றுசியத்தின் ஒரு வடிவத்தையும் இயற்கையில் பெறலாம், இயற்கையாகத் தோன்றம் இக்கதிர்த் தொழிற்பாட்டுப் பதார்த்தங்கள் இயற்கைக் கதிர்த் தொழிற்பாட்டுத் தோற்றப்பாட்டைக் காட்டுகின்றன. ஒரு கதிர்த்தொழிற்பாட்டுப் பதார்த்தம் கதிர்ப்புக்க ²வைக் கோன்று கேருவில் ஏற்படும் மாற்றங்களின் வூதம் கதிர்த்தொழிற்பாட் டுத் தேய்வு வீதம் எனப்படும். இது ஒவ்வொரு மூலகத்தக்கும் சிறப்பியல் பானது. இத உஅறைச் சீவியக் காலத்தால் " (மூலகத்தில் அறைப் பகுதி மாற்றமடையுத் தேவையான காலம்) – விபரிக்கப்படும். ரேடியத்தின் அரைச் சூவியக் காலம் ஏறக்குறைய 1600 வருடங்களாகும். எனவே 1q சேடியம் 1600 வருடங்களில் த்த சேடியமாகவும், மேலும் 1600 வருடங்களில் ≵ ஏ ேடியமாகவும் மாற்றமடையும். மேலும் இவ்வாறு. க கிர்த் தொழிற்பாடுடைய பதார்த்தமொன்றின் கதிர்ப்புக் கால 2லப் பல்லே இ ஏற்பாடுகளால் குண்டுபிடிக்கலாம். இலற்றுள் மிகவெளிய ஏற்பாடு கைகள் முல்ல நெண்ணியாகும்.

2.30 உருதபோர்ட்டில் அணு மாதிரியுரு

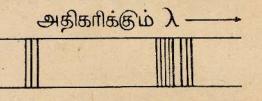
நாம் இதுவரை கருத்தில் கொண்டத யாதெலில், அணுவை ஒன்ற சேர்ந்த ஆக்கும் துணிக்கைகளில் தல்மையும், பாரமாவ மூலகங்களிற் சில இயற்கையாகவே 'கதிர்த் தொழிற்பாடுடையல் எல்பதமாகும். அடிப் படைத் துணிக்கைகள் அணுவில் எல்வாறு அமைந்தள்ளை எல்பத பற்றியதக வூலப் பெறுதலே அதாவத அணுவில் கட்டமைப்புப் பற்றிய தகவூலப் பெறுதலே அடுத்தபடியாகும். 1911இல் உருதபோர்ட் லு – துணிக்கைக் கற்றையில் பாவதறில் மெல்லிய உலோகத் தகடுகளே வைப்பதவ்விளே பற்றிய பரிசோதூல்கைவேச் செய்தார். சிங்குச் சல்பைட்டுத் திரைறில்

59

ஏற்படும் பளிச்சீடுகளிலிருந்த அவர் 🗸 – துளிக்கைகளில் பாதையை அவதா வித்தார். அவர், 🗸 – துணிக்கைகளில் பெருப்பாலாவனவ, திசையில் மாற்றமேதயின்றி, உலோகத் தகட்டினு டாகச் செல்வ தைக் கண்டார். **தயினம், அவ**ற்றில் அல் 90[°] அல்லது அதற்குக் கடுதலான அகன்ற கோ வாவ்களிது டோகத் திருப்பப்படக் கோணப்பட்டன. 🗸 – தாவிக்கைகள் மிகுவு யர்ந்த சத்தியுடையலலாதலால், இவ்வலதாலம் எதிர்பார்க்கப்படாத தொள்ளுக இருந்தது. 🗶 – துணிக்கைகள் நேரேற்றமுடையை வை யா தலின், சில துகிக் கைகள் மட்டுமே திசைதிருப்பப்பட்டகும் ஒரு கிற பகுதியில் மட்டுமே செறிந்திருக்கும் நேரேற்றமுடைய துவிக்கைகளுடன் மோதியதாலேயேதிகழ்ந் தத என்ற முடிவிற்கு அவர் வந்தார். ஏறக்குறைய 20,000 இல் 1 மட்டுமே திசைதிருப்பப்பட்டமையால், திசை திருப்பலிற்குக் காரனமாகவு ருக்கும் நேரேற்றமுடைய தாகிக்கைகள் உலோகவ ஹுவில் மிகக் சிறிதளவு பகுதியை மட்டுமே பிடித்திருத்தல் வேண்டும். அணுவிலுள்ள СБСОФФБ துகிக்கைகள் மொத்தக் கலைவைலில் ஏறக்கு ஹைய 10⁻¹² ஐ மட்டுமேபிடித் திருக்குமெலைப் பெறுபேறுகள் காட்டிலை. அணுவிலுள்ள புரோதத்தள்கள் (நேரேற்றமுடைய துணிக்கைகள்) யாவும் ஒன்ற சேர்ந்திருக்கும் சிறியபகுதி அணுவின் 'கரு' எலப்படும்.

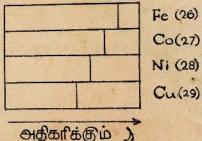
படம் 2.7 🗹 - தணிக்கைகள் திருப்பப்படல்

இவ்வழி, அணுக்கருவான அனுவின் எல்லாப் புறோத்தன்களும், நியூத்திரன்களும் சேர்ந்த ஆக்கப்பட்டிருக்கும். இத்துணிக்கைகள் ' நியூக்கிரி யன்கள்' எனப்படும். '<u>பொகித்தி</u>ரன்கள்' '<u>மீசன்கள்'</u> ஆகிய பிற அணிக் கைகளும் பின்னுல் கண்டுபிடிக்கப்பட்டன. இத்தாவிக்கைகளும் அஹுக் கட்ட கைமப்பை அறிந்தகொள்ளதில் முக்கியமாயிருந்தன.


2.31 அணு வென்னும் சமதாவிகளும்

1913 இல் வான் டென் பிரொக் என்பவர், ஒரு மூலகத்தின் <u>அணு</u> <u>வென்</u> நேரேற்றங்களின் என்னிக்கைக்கு அதாவது கருவிலைன் பரரோத்தன்க வின் எண்ணிக்கைக்குச் சமமைன முன்மொழிந்தார். அணுவென் அறியப் பட்ட மூலகங்களின் x – கதிர் நிறமா 2லகள் பற்றி மோற்லி செய்த பரிசோ த2கைக் பின்னர் இதற்கு ஆதரவளித்தன.

உயர் கதியில் செல்லம் இலத்திரக்களால் மூலகங்க2ளமோதியடிக்கும் போது மிகக் கூறுகிய அ2லறீளமுடைய x – கதிர்கள் (பின்காந்த வ2லகன்) கொடுக்கப்படுவதாக மோன்லி கண்டார். மோஸ்லி தனது பரிசோத2ன களில் கதோட்டுக் கதிர் குழைாயின் மாற்றியமைத்த வடிவத்தைப் பயன் படுத்திரைர். இதில் கதோட்டு தங்கிதன் கருள் தூதம். இது, சயக் கண்


லோக அஹே X & Britan திந்துக்கள் சுருள உயர் உவோற்றளவு கதோட்டு

படம் 2.8 x – கதிர்க் குழாய் தூடிக் தமாயில் உயர் வெற்றிடத்தில் பின்தூல் வெப்பமாக்கப்படும். வெளியி டப்படும் இலத்திரன்கள் பெரு உவோற்றளவைப் பிரயோகித்த வேகவளர்ச் சியடையச் செய்யப்படும். இவ்வழி பெறப்படும் உயர்வேகமுடைய இலத் திரவ்கள், ஓர் உலோக அனேட்டிவ்மீத விழு விடப்படும். காலப்படும் X-கதிர்கள் குழாயிலிருந்த ஒரு யன்னதொ டாக வெளியேறும் வன்னைம் அஜேட்டு உரிய கோடத்தில் சரிந்திருக்கும். இனி இக்கதிர்கள் கோடலை வியடைப் பைப் பயன்படுத்திக் கோடைப்படும், இதன்பின் இவற்றை ஒர் ஒளிப்படத் தட்டில் விழச் செய்த x- கதிர் நிறமா & பெறப்படும். இவ்வாறுபெறப் பட்ட 🗴 – கதிர் நிறமா 2ல, ஒவ்வொன்றும் ஒரு குறித்த அ2ல நீளத்தை ஒத்த ஒரு கட்டம் கோடுக 2எக் கொண்டிருக்கக் காணப்பட்டது. ALLN கவாகவிருக்கும் கோடுகள் பலவற்றில் எந்தவொரு கூட்டத்திலுள்ள ஏதாவ தொரு சிறப்புக் கோட்டில் அலேறீஸமானது, அதல்ல ஏற்படுத்தும் 100 கத்தின் தேவ்மைக்கேற்ப மாறபடக் காணப்பட்டத. மூலகத்திற்க மூலகம் ஒரு குறிப்பிட்ட கோட்டின் அ2ல நீளத்தில் ஒழுங்கான மாற்றம் காணப்பட் எவலே, மூலகத்திற்கு மூலகம் ஒழுங்காக அதிகரிக்கும் ஒரு திட்ட 上母. மான கணியம் இருப்பதாக முடிவுசெய்யப்பட்டத. இக்களியம் கருவிலள்ள புறோத்தள்களின் என்னிக்கை அல்லது அஹுவிலுள்ள இலத்திரன்களின் எண்ணிக் எனவே, அது வெண்ணுவது நேறேற்றவலகுகளின் கைஎனக் கானப்பட்டது. எண்ணிக்கைக்கு அல்லத கருவிலுள்ள புரோத்தன்களின் எண்ணிக்கைக்குச் சம மாகும். அஹு வென்தை அஹுவிலள்ள இலத்திரள்களின் எண்ணிக்கைக்கும் சமமாகும். மூலகங்களின் ஆவர்த்தன அட்டவ ஊயில் மூலகங்கள் தோன் றம் வரிசையை அணுவென் விவரிக்கும்.

UL1 2.9

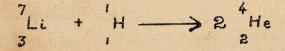
கதிர் நிறமா 2ல

படம் 2.10 உலோகங்கஞக்குச் சிறப்பியல்பான கோடுகள் மூலகைங்களின் கருக்களில் மாற்றங்க2ள ஏற்படுத்துவதற்கு அதிகவளவில்சக்தி தேவை, அதுறைக்கருக்க2ள உயர்கதியில் செல்லம் தாரிக்கைகளால் மோதி யடித்தே இம்மாற்றங்க2ள ஏற்படுத்தலாம்–அதாவத அதுறைக்கருகைவச் செ யற்கைக முறையில் பிரித்த புதிய மூலகங்க2ளப் பெறமுடியும்.

2.40 கருஷில் நிகழும் மாற்றங்கள்

1919இல், உருகபோர்ட் 🔨 – துணிக்கைகசேள (ஈலியம் கருக் கசே வநதரசன் வாயுவினு டாகச் செலுத்தி புரோத்தன்கசீனயும் ஒட்சி சன் இனங்கசீளயும் பெற்றூர். கருத்தாக்கம் எனப்படும் இத்தாக்கம்

$$^{14}_{7}N + {}^{4}_{2}He \longrightarrow {}^{1}_{1}H + {}^{17}_{8}O$$

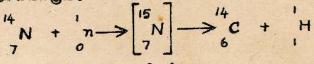

எனக் கொடுக்கப்படும்.

2-0

மேல் என் மூலகத்தின் திணிவென்டுனையும் கூழ் என் அதன் அணுவெண்டுனையும் குறிக்கிற்றைல். இப்பரிசோது இனைபிற மூலகங்களுடலும் திரும்பவும் நடாத் தப்பட்டுப் பல கருத்தாக்கங்கள் பெறப்பட்டன.

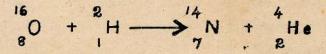
இத்தாக்கங்களில் துணிக்கைகை 2 வே விரைவு படுத்தல் எப்பொழுதும் அவசியம் என்பத கவனிக்கப்படல் வேள்டும். பெரிலியம் உயர் சக்தியுள்ள & – துணிக் கைகளால் மோதியடிக்கப்பட்ட போது ஊடுருவக்கூடிய கதிர்ப்பு பெறப்பட் டது. இக்கதிர்ப்பு அலகுத் திணிவையும் பூச்சிய ஏற்றத்தையும் உடைய நியூத்திறன் என முன்னர் குறிப்பிடப்பட்ட ஒரு துணிக்கையைனக் கண்டறியப் பட்டது. 9 4 12

இத்தகைய தாக்கங்கள், மோதியடித்தலின் முன்னர் இதே முறையில் விரை அபடுத்தப்பட்ட •புரோத்தன்கள் • நியூத்திரன்கள் போன்ற பிற துணிக்கை களாலும் நடாத்தப்படலாம்



இத்தாக்கத்தில் ஒரு நிலேயற்ற கரு ⁸A முதலில் உண்டாகக்கூடும். அது பிரிந்த இரு **ஈலியக் கருக்க**ூளக் கொடுக்கும்.

் 🗙 – அணிக்கைகள், புரோத்தன்கள் ஆகியவற்றிலும் பார்க்க நியூத்திறன் கள் அணுக்கருவைத் தாக்குவதற்குக் கூடிய திறன் உடையன எனக் கண்ட றியப்பட்டது. ஏனெனில் மிக்னேற்றம் அற்ற நியூக்சிரவ்கள் நேர் ஏற்றமு கைடய கருவால் தள்ளப்படமாட்டா. குரைவான சக்சிகே2ீனயுடைய மெது வாகச் செல்லம் நியூத்திரவ்கள் மூலகங்களில் கருக்களுடன் சேர்வதால் அ வற்றின் தியிவென் அதிகரிக்கப்பட்டு இலக்கு மூலகத்திவ் சமதானி ஒன்ற பெறப்படும்.


 $\begin{array}{c} 3I \\ P \\ is \end{array} \stackrel{i}{\longrightarrow} \begin{array}{c} 32 \\ p \\ is \end{array} \stackrel{i}{\end{array} \stackrel{i}{\end{array}} \stackrel{i}{\end{array} \stackrel{i}{\end{array}} \begin{array}{c} 32 \\ p \\ is \end{array} \stackrel{i}{\end{array} \stackrel{i}{\end{array}} \stackrel{i}{\end{array} \stackrel{i}{\end{array} \stackrel{i}{} \begin{array}{c} 32 \\ p \\ is \end{array} \stackrel{i}{\end{array} \stackrel{i}{\end{array} \stackrel{i}{\end{array} \stackrel{i}{} \begin{array}{c} 32 \\ p \\ is \end{array} \stackrel{i}{\end{array} \stackrel{i}{} \begin{array}{i}{\end{array} \begin{array}{c} 32 \\ p \\ is \end{array} \stackrel{i}{\end{array} \stackrel{i}{} \begin{array}{i}{} 12 \\ p \\ is \end{array} \stackrel{i}{\end{array} \stackrel{i}{} \begin{array}{i}{} 12 \\ p \\ is \end{array} \stackrel{i}{} \begin{array}{i}{} 12 \\ p \\ is \end{array} \stackrel{i}{\end{array} \stackrel{i}{} \begin{array}{i}{} 12 \\ p \\ is \end{array} \stackrel{i}{} 12 \\ p \\ is \end{array} \stackrel{i}{} 12 \\ p \\ is \end{array} \stackrel{i$

விரைவாகச் செல்லும் நியூத்திரன்கள் உபயோகிக்கப்படின் மேலதிகச் சக் தியானது முதலில் உண்டாகிய "கூட்டுக் குரு" இல் இருந்து ஒரு புரோத் த2ன வெளியேறச் செய்யும். வி2ளவு, அதே திணிவெண் 2வாயும் அடுத்துக் கீழுள்ள (ஒன்ற குறைவான அதுறைவெண் 2வாயும் உடைய) மூலகத்தின் கருவை யும் உடைய மூலகமாகும்.

உறதியற்றத

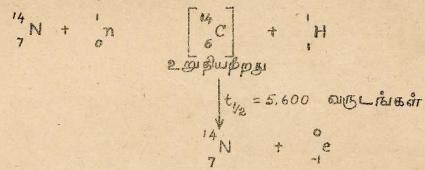
உறதியான "நியூக்கிரோட்டுக்கல்" எனவும் அழைக்கப்படும் பிற உறுதியான கருக்கர்ஸுப் பெறவதற்கு, அணுக்கருக்கரன மோதியடிக்க திறிவைன் 2,88 உடைய ஐதேரசனின் சமதானியான தாத்துறும் உபயோகிக்கப்படுகின்றது. உதாரமமைக ஒட்சிசன் அணு தாத்தரனின் மோதலிலைல் ஒரு நைதரசன் அணு வை உண்டாக்கி வே – தானிக்கைகளே (ஈலியைக் கரைக்கரன) காலும்

இதுவறை கூறப்பட்ட தாக்கங்கள் உறுதியான நியூக்கிலேட்டுக்கலேக்கொருத் தன. என்றும் கதிர்த்தொழிற்பாட்டுத் தோற்றப்பாட்டைக் காட்டும்நியூ கிலேட்டுக்கலேத் தரும்தாக்கங்களும் உன. எனவே உயர் சக்தித் தாகிக் கைகளால் மோதியடித்து கதிர்த்தொழிற்பாட்டு இனங்கலே துக்குதல் <u>செ</u> யற்கைக் கதிர்த்தொழிற்பாட்டை ஏற்படுத்துகின்றது.

கிக்கைகளால் போறன், மக்னிசியம் அவுமிலியம் தகியமுலகப் கிலை மோதியடித்தபோது உறதியற்ற நியூக்கி 2வட்டுக்கள் பெறப்பட்டன. உதாரனமாக வூடதணிக்கைகளால் அலுயினியத்தை மோதியடித்தபோத ஒர் உறுதியற்ற நியூக்கிலோட்டு பெறப்பட்டது. இது பொசித்திரவ் கீல (பூச்சியத் திலைவுடைய நேரேற்றமுள்ள தணிக்கைகளே) காவ்ற உறுதியான நியூக்கிலோட்டைக் கொடுத்தது.

$$27 \text{ Al} + 4 \text{ He} \longrightarrow \begin{bmatrix} 30 \\ 15 \end{bmatrix} + \frac{1}{2} \text{ He} \longrightarrow \begin{bmatrix} 30 \\ 15 \end{bmatrix} = \frac{1}{2} \text{ He} \text$$

உற்தியானத பொகித்திரன்


பொசுபரசின் உறுதியற்ற நியூக்கிலேட்டின் அரை வாழ்க்கைக் காலம் (t_{V2}) 3 நியிடங்கள் எனக் கண்டறியப்பட்டது.

கதிர்த் தொழிற்பாட்டு நியூக்கிலோட்டுக்கலா உண்டாக்கும் கருத்தாக்கங்க ஞக்கான பல, பல்வ வகப்பட்ட உதாரணங்கள் உள்ளன.

$$25 \qquad He \longrightarrow \begin{bmatrix} 28 \\ 13 \end{bmatrix} + He \\ He \longrightarrow \begin{bmatrix} 28 \\ 13 \end{bmatrix} + He \\ add t = 2 \\ by d d t = 2 \\$$

ததிர்த்தொழிற்பாட்டுச் சமதானிகள் எனப் பொதுவாகக் குறப்படும்கதிர்த் தொழிற்பாட்டு நியூக்கிீீளேட்டுக்களின் ஆக்கத்தில், பின் நடுநி 2லத் தன்னம யூடையைவான நியூத்திரன்கள் பெரிதும் உபயோகத்தில் உள்ளன.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org கதிரீத்தொழிற்பாட்டுக் காபன் ¹⁴C , நைதறசன் வாயுவிஸ்மீத நியூக்கிறனின் வூசுகதிர் வூழலால் ஆக்கப்படும்.

இவ்வாறு பெறப்பட்ட செயற்கைக் கதிர்த்தொழிற்பாட்டுச் சமதானிகள் கைத்தொழில், மருத்தலம், விவசாயம், விஞ்ஞான ஆராய்ச்சி ஆகியவற் றில் உபயோகிக்கப்படுகின்றன. மேல் விபரிக்கப்பட்டவற்றைப் போன்ற கருத்தாக்கங்களால் புதிய மூலகங்க 2வ ஆக்குவதற்கும் முடியும். ஓர்அணு வின் அணுக்கருவானது அவ்வணுவின் மிகவும் சிறிய பகுதின்யயே பிடித்தக் கொள்கிறதென நோம் கண்டோம். ஓர் அணுவின் திணிவு அதன் கருவில் செறிந்துள்ளது. அத புரோத்தன்களாலும், நியூக்திரன்களாலும் ஆக்கப்பட் டுள்ளது: நாம் புரோத்தன்கேசுவழம் நியூத்திரன்க 2 வையும் தேன்று சேர்த்து "தியூக்கினியன்கள்" எனக் கூறுவோம், ஆகவே இத்ணுக்கைகளின் மொத் தத்திணிவு அவ்வனனவின் 'திணிவைன்' ஆகும்.

அஹுக்கிஷிஷ அளலுக்கிட்டத்தின் நியமமாக, இப்பொழுத காபவின்தைக் வெளமுடைய சமதானி '²C உபயோகிக்கப்படுகிறது. இதன் திணிஷ திருக்க மாக 12 அலகுகள் எனக் கொள்ளப்படும். 1962இல் கையானப்பட்ட இந்நியமம் முன் 2வேய 'ஒட்சிசன் நியமத்திலும்' அதிகம் விரும்பப்படுகின்றது. 'ஒட்சிசன் நியமம்' 0 = 16 இயற்கையில் காணப்படும் மூலகக்கைத அடிப் படையாகக் கொண்டுள்ளது.இது ¹⁶0,00 துகிய மூன்ற சேமதானிகளின் கலனவ யாகும். இப்புகிய "காபன் நியமம்" மூன்னர் விபரிக்கப்பட்ட அண்ரனின் பரிசோத2வேயில் உபயோகித்த திணிஷ நிறமா 2ல காட்டி வை அளவுகோடி டுலதற்கு மிக்ஷம் உகுந்தது. ஏவெனில் இது காபனின் பிரதான சமதானி யாகும்.

இந்த அணுக்கிலை அளவுக் கிட்டத்தில் ' = 12

ஒரு புரோக்கலில் கிலில = 1.0074 அலகுகள்

66

ஒரு நியூக்கிரவின் திணிவு = 1.0089 அலகுகள் ஒரு இலத்திரவில் திணிவு = 0.00055 அலகுகள்

இணிவு நீறமா 2லே மானியால் துனியப்பட்டதைப் போன்று, பெரும்பாலும் அல்லது ஏறக்குகைறய எல்லா அணுக்களிலும் கருத்திணிவானது அவற்றின் புரோத்தன்களினதம் நியூத்திரன்களினதம் மொத்தத் திணிவிற்குச் சமமற்ற தெனக் காணப்பட்டத.

உதாறணமாக, 2 புரோத்தல்கை 2 வியூ த்திரல் கு 2 வியூ த்திரல் கு 2 வியு ம் கருவில் தேணிஷ (2×1.0074 + 2×1.0089) = 4.0326 அலகுகள் ஆக இருத்தல் வேண்டும். ஆகுல் பரிசோத 2 வை மூலம் பெறப் பட்ட உண்மையான திணிஷ 4.0015 அலகுகள் ஆகும். இந்த நிறைக்கு அறைஷ 0.0311 அணு த்திணிஷ அலகுகள் சக்தியாக மாற்றப்படுகில்றைகளை தன்கு அறியப்பட்ட திணிஷ – சக்தித் தொடர்பை, E = mc, உபயோகித்த விளக்கப் படும். கயாதின புரோத்தல்கள், நியூத்திரல்கள் ஆகியலற்றிலிருந்த கரு உண்டாகும்போத வெளியேறும் சக்தி இதுவாகும். இச்சத்தி "கட்டுச்சக்தி" எனப்படும். கருவை உடைப்பதற்குச் சம அனைச்சக்தி தேவை என்பதை இத விளக்குகிறது. இது காரணமாக அணுக்கருக்களில் மாற்றங்க 2 வே வரு வரு கதிர்த் தொழிற்பாட்டுச் சமதாவிக் 2 விக் கொடுப்ப தற்கு உயர் சக்தித் துணிக்கைகள் தேவைப்படுகின்றன.

2.50 இலக்கிரக் கட்ட கைப்பு

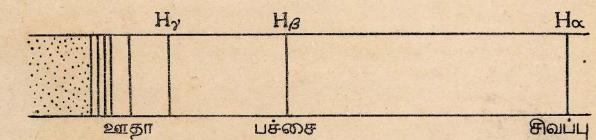
தராயப்பட்ட பெடும்பாலான சாதாரண இரசாயன மாற்றங்களில் ததிகளவு சக்தி தேவைப்படாததால், அச்சக்தியாகது அணுக் ടനുമിയ மாற்றங்கீக உண்டாக்குவதில் 2லே. அடிக்கடி அவதாவிக்கப்படும் இரசா யவத் தோக்கங்களில் கருவிற்கு வெளியே மாற்றங்கள் நிகைழ்வதால், கள விற்கு வெளியேயள்ள அதுவில் கட்டலைப்பை ஆராய்பதே முக்கியமாகம். உலோகத் தகட்டால் 🗸 – துதிக்கைகளின் திசைதிருப்பல் பற்றிய 见雨季 போட்டிக் பரிசோத2ன, அதுவில் கிலிலை கருவிற் செறிந்தல்வத GT GA அதுதானை யின் 2வப் பொறுத்தளவில் நடுநி2ல் யாக்குவதற்குக் விபரித்தது. இலத்திறன்கள், அரசங்கள் நூரியடீவச் சுற்றிச் சுழல்வகைப் ேத கைப் யான போன்ற கரணைச் சுற்றிச் சுழல்கின்றனவென விபரிக்கப்பட்டுள்ளது. Qas திரன்களுக்கும் புரோத்துவ்களுக்கும் இடையெயுள்ள கூவர்ச்சியானத GO LD UI நீக்க விளசயால் சமவ்படுத்தப்பட்டுள்ளது. கருவைச் சுற்றித் தொடலவில் சழலும் இலத்திரன்கள் பற்றிய இந்தப் படமானது பின்வரும் காரணங்களுக்கு ஏற்கப்படமாட்டாத. இலத்திரன்கள் இயக்கத்திலுள்ள ஏற்றமுள்ள தாவிக்கைக கள்; இவலை தொடர்ச்சியாக சக்தினய வெளியேற்றுகின்றன. எனவே வட் டமான ஒழுக்கில் அசையும் ஒர் இலத்திரன் சக்திவய வெளியேற்றிய டின் அதன் வேகேம் குறைக்கப்பட்டுச் சிறிய ஒழுக்கில் அசைந்த இறுதியில் கர வில் விழவேண்டும். எனவே அணு பற்றிய உருதேபோட்டின் மாதிரியுருவா ததை திருப்தியற்றத.

படம் 2.11 கருவைச் சுற்றி இலத்திரன் அசைஷ (உருதபோரிட்டின் கருத்தப்படி) - 50 6

ஒர அஹுவின் இலத்திரன் பரம்பியிருக்கும் முறையாகதை, பெறப்பட்ட அஹு ஐதேரசுஸ் நிறமா 2லக்கான விளக்கத்தில் பெரிதும் தங்கியுள்ளது. இது 1913 இல் நீல் போர் என்புவரால் கொடுக்கப்பட்டது.

1900 இல் பிளாங்க் என்பவர், அஹுக்கஞக்கும் மூலகங்கஞக்கும், வெப்பம், யீன்னிறைக்கம் ஆகியவற்றைப் பிரயோகிப்பதாலும் உயர்வேக இலைத்திரன்களில் மோதலிஞ்ஷம் சக்தியளிக்கப்படின் அவை குறித்த அளவுகள் அதாவது "சக்திச் சொட்டளவு" சக்தியைக் காலும் அல்லத உறித்தம்எனக் கண்டதாக முன் மொழிந்தார். இச்சக்திப் பெடுமானங்கள் கதிர்ப்பு மீடி றன் "ல் இல் தங்கியேன. இவை சக்தி E இன் 'போற்றன்கள்' ஆக வெதிலிடப்படும்.

$$E = h v$$


இதில் 1⁄2 பிளாங்கின் மாறிலியை பைப்படும். கதிர்ப் பை வெவ வேற அலே தீனங்களாக வேருக்கும் கருவியான நிறமாலே மானியைப் பயன் படுத்தி காலப்படும் கதிர்ப்பைப் பகுக்க ்றிறமால் பெறப்படும். வெவி வேற மூலகங்களின் நிறமால்கள் வித்தியாசப்படும். வாயுக்கள் உபயோ தித்கப்பட்டால், பெறப்படும் நிறமால் யானத நிறமால் பகுதி முழுவ

> Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

தும் பரஷியிருக்கும் வெவ்வேற அ2ல நீளங்கள் உடைய வரையழக்கப்பட்ட சிற கோடுகளின் தொடராகவிருக்கும்.

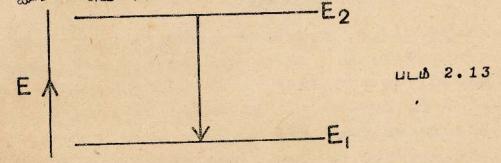
2.51 அணு ஐகரசவின் காலல் நிறமாடீல

இறக்கக் குழாயொன்றில் தாழ்ந்த அமுக்கத்திலுள்ள ஐதரசன் வாயு வுக்கு பின்னிறக்கம் பிரயோகிக்கப்படின் இந்த உயர் பின்சக்தியைப் பேர யோகிப்பதன் பயகுக ஐதரசன் மூலக்கூறுகள் அணுக்களாக பிரியக் கடும் என நாம் எதிர்பார்க்கலாம். இவ்வைதரசன் அணுக்கள் கதிர்ப்பைக் காலதல் காணப்பட்டது. இக்கதிர்ப்புகள் நிறமா லேகாட்டியால் பகுக் கப்படும்போத ஒனிப்படமாக்கப்படக் கூடிய கோட்டு நிறமா லேயொன்று பெறப்படும். இந்திறமா லேயின் ஒவ்வொரு கோடுகளும் கதிர்ப்பின்குறித்த ஒரு அலேநீனத்தை ஒத்திருக்கும். சில கோடுகள் வெறுங் குண்ஹைக்குத் தெரியக்கூடுமாதலால் அனவ நிறமா லேயின் கட்புலன் பகுதியிலும், மற்றனவ சிறிய அலேநீனங்க வேயனடியதால் அவை நிறமா லேயின் ஊதாக்குடந்த பகு தியிலும் காணப்படுகின்றன. பெறப்பட்ட நிறமா லே ஒரு குறித்த அமைப்பை யுடையதால் அது அணு ஐதரசணின் காலல் நிறமா லே எனப்படும், நிறமா வே

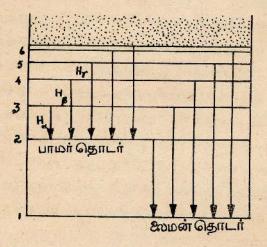
படம் 2.12 அனு ஐதரசனின் காலல் நிறமா 2ல

யின் கட்புலன் பகுதியின் கோட்டுத் தொடர், மிகத்தெனிவான மூன்று கோடுகளே உடையது. இவை H_e, H_g, H_g, என அடையாளம் இடப்பட்டுள் வன. இத்தொடர் <u>பாமர் தொடர்</u> எனப் பெயரிடப்பட்டது; பாமர் என்பவர் இத்கோடுகள் உண்டாவதை வெற்றிகரமாக விளக்கிஞர்.கோடுக வின் பிற தொடர்களும் இவ்வதைனக் கண்டறியப்பட்டன. <u>ஆதாக்கடந்த</u> பகுதியிலுள்ள கோட்டுத் தொடர் <u>2லமன் தொடர்</u> எனவும், நிறமா2லயின் <u>கீழ்ச் செந்நிறப் பகுதியில்</u> உள்ள அடுத்த தொடர் <u>பாசென் தொடர்</u> என வும் இனங்காணப்பட்டது.

கையக் கருவைச் சுற்றி இலந்திரன்கன் சுழல்கின்றன எலும் ஆணு பற் றிய உருதபோட்டின் மாகிரியுருவைக் கொண்டு ஐசரசலின் கோட்டு நிறமா லேயை விளக்க முடியாத. நாம் முன்னர் விளக்கியதைப் போன்ற, சுழலும் இலத்திரன் தொடர்ச்சியாகக் கதிர்ப்பைக் காலுவதால் அணு நிறமா லேஒரு தொடர் நிறமா லேயாக இருத்தல் வேண்டும். உன்மையில் பரிசோத 2ன யால் பெறப்பட்டதைப் போன்று தொடர்ச்சியற்ற அமைப்பைக் கொண்டி ருக்காத. 1913 இல் போர் என்பவர் அணு ஐதரசனின் நிறமா லேவை விளக்குவகற்குப் பின்வரும் அணுவின் மாதிரியுருவை முன்மொழித்தார்.


- 1. எந்தவொரு அஹுவின் இலக்கிரன்களும் குறிக்த சக்கி நி 2லக 2 எயுடைய பல ஒழுக்குகளில் கருவைச் சுற்றிச் சுழலிகின்றன. உயர் சக்தியுடைய இலக்கிரன் நேர் ஏற்றமுடைய அணுக்கருவில் இருந்த அதிக "து ரத் தில்" உள்ள ஒழுக்கில் சுழல, குறைந்த சக்தியுடைய இலக்கிரதுவதை கருவில் இருந்த குறைந்த "து ரத்தில்" உள்ள ஒழுக்கில் சுழலும்; அன்னபிறவும்.
- 2. ஏதாவதொரு ஒழுக்கில் இலத்திரன்கள் சுழலம்போது கதிர்ப்பு காலப்படுவதில் 2ல. ஆயின் ஒரு ஒழுக்கில் இருந்து குறைந்த சக்திதி 2லேயிலுள்ள வேஜெரு ஒழுக் குக்கு இலத்திரன் பாழின் கதிர்ப்பு காலப்படும்.

மாறுத சக்தியுடைய திட்டவட்டமான ஒழுக்கு <u>நி2லயான நி2ல</u> எனக்குறப் படும். ஒரு அதுவின் இலத்திரல்களுக்கு இத்தகைய நி2லயான நி2லகள் பல உண்டு. சடப்பொருள் தொடர்ச்சியான அளவுகளில் சக்தியைக் கால வோ உறிஞ்சவோ மாட்டாத, அத "சத்திச் சொட்டுகள்" எனக் கூறப் படும் திட்டவட்டமான அளவுகளில் மட்டுமே சக்தியைக் காலும் அல்லத உறிஞ்சும்.


ஒரு நிலேயான நிலையிலிருந்த குனைறந்த சக்கியுள்ள பிறிகொரு நிலைக்கு இலத்திரன் போகும்போத கொலப்படும் கதிரீப்பின் அலேநிளம், இரு சக்தி நி &லகளில் அதாவத செக்திப் படிகளில் உள்ள இலத்திரனில் சேக்தி வித்தியா சத்திலிருந்த தொவ்பப்பட்டத.

$$E_{g} - E_{i} = hv$$

எனவே அணு ஐகரசன் நிறமா 2ல யிலுள்ள கோரு ஒன்றின் அ2ல நீனத்தை (1/2 = >) உயர் நி 2ல யில் உள்ள இலத்திரவின் சக்திக்கும் (E₂) குறைந்த நி 2ல யில் உள்ள இலத்திரவின் சத்திக்கும் (E,) இடையேயுள்ள வித்தியாசத் திலிருந்த கணிக்கக்கடியதாயுள்ளது. கணிக்கப்பட்ட பெறுமானம் கோட்டு நிறமா 2ல யிலிருந்த பெற்ற பெறுமானத்துடன் ஒத்திருந்தது. இறக்கக் கு மா யில் உள்ள ஐதரசதைக்கு மின் இறக்கம் செலுத்தப்படும் பரிசோத 2 வையில் உண்டாகும் ஆதரசன் அணுக்களின் சக்தி வெவ் வேறு அனவுகளுக்கு உயர்த்தப் படுமெனவும் அதனுல் ஐதரசன் அணுவிலுள்ள இலத்திரனிற்கு ஒரு தொடரான சக்தி மட்டங்கள் அல்லது சக்தி நி 2லகள் உள்ளை எனவும் நாம் எதிர்பார்க் கலாம். ஐதரசன் அணு நிறமா 2ல யில் குறித்த அலே நீனத்தையுடையகோடு

உண்டாதல் உயர் சக்திதிலேயில் இருந்த அதைச் சார்ந்த தாழ்சக்திதிலேக்கு இலத்திரன் "பாய்வதால்" ஆகும். பல சக்தி நிலகள் இருக்கக்கருமாத லால் வெல்வேற அலேறீனமுகூடய பல கோருகள் நிறமா லேயில்பெறப்படும் நிறமா லேயின் கட்புலப் பகுதியில் பாமர் தொடரின் கோருகள், இலத்திரன் கள் உயர்சக்தி நிலேகளில் இருந்த, ஐதரசன் கருவிற்கு இரண்டாலதாகக் திட்டிய சக்தி நிலேக்கு மீண்டும் செல்வதால் பெறப்படும். இலத்திரனிற்கு இருக்கக்கூடிய சக்தி மட்டங்கலோ (சக்திநிலேகள் அல்லது நிலேயான நிலே கள்) குறைந்த சத்திநிலேயில் <u>அ</u>து <u>தரைநிலேயில்</u> இருந்த 1,2,3,4,5 _____ என ஒழுங்குபடுத்தலாம். நிறமா லேயில் இனங்காணப்பட்டமுன்ற கோருகள் H_a, H_a, H_a, கியலை தோன்றில் காறமைம் சக்திநிலே முறையே 3 4,5 இல் இருந்த சிக்திநிலே 2 இற்கு இலத்திரன் பாய்தல், காறமைக சக்திக்கதிர்ப்பு நிகழ்வதால் ஆகும். ஆகவே இக்கோடுகள் அதிகரிக்கும் தாண்டல் சக்தியை, (அ–த) அதிகரிக்கும் கதிர்ப்பு மிடிற 2வ தல்லது குறையும் கதிர்ப்பு அ2லநீளத்தை ஒத்தாள்ளது. ஆகவே இக்கோடுகளின் அ2லநீளங்கள் H_g, H_g, H_g எதும் ஒழுங்கில் அதிகரிக்கும்.

< H H H ol பச்சை உறை สิณมัน

ULB 2.14

<u>2லமன் தொடர்</u>, நீறமா 2லயின் ஊதாக்கடந்த பகுதியில் உள்ள கோடு கே விபரிக்கின்றது. எனவே தாண்டலிற்கு உயர் சக்தி (குறைந்தது 2ல நீளங்கள்) தே கூலப்படுகின்றன. உயர் சக்தி மட்டத்திலிருந்து முதல் சக்தி மட்டத்திற்கு இலத்திரன் "பாய்வதாலேயே" இத்தொடர் பெறப்படும். இதைப்போன்ற மூன்றும் சக்தி மட்டத்திற்கு இலத்திரன் பாய்வதாலேயே பாசென் தொடர் உண்டாகும். இங்கு குறைந்த சக்தி தேவைப்படுகின்றது. இத்தொடரில் கோடுகவ் நிறமா 2லயில் <u>சீழ்ச்செந்நிறப் பகுதிக்குச்</u> சமீப மாக உயர் அ2ல நீளங்களில் இருக்கும்.

அணு நிறமா 2லக்கான கோட்டு நிறமா 2ல, கோடுகளில் அ2லே மீளம் குறைய கோடுகள் ஒன்று சேர்ந்த நெருக்கமாகி இறுகியில் ஒரு தொடர் ஒரிப்பட்டை உண்டாகுமெனக் காட்டியது. இதற்குக் காரணம் சக்திநி 2லகன் கருவிலிருந்த தொ 2லவில் செல்லச்செல்ல அடுத்தடுத்த சக்தி நி 2லகஞக்கி டையேயுள்ள சக்திவித்தியாசங்கள், குறைதலேயாகும். E., E₂, E₃ என்பன முறையே 1, 2, 3, ... ஆகிய நி 2லகளில் சக்தியைக் குறிக்குமாயில்,

E₂-E, > E₃ - E₂ > E₄ - E₃ > E₅ - E₄ > E₆ - E₅ >..... இவ்வாற அணு ஐகரசனில் காலல் நிறமா?ல விளக்கப்படலாம். ஐகரச அணுவில் ஒரு இலத்திரன் மட்டும் சம்பந்தப்பட்டிருப்பதால் அதன் சக்தியைக்

72

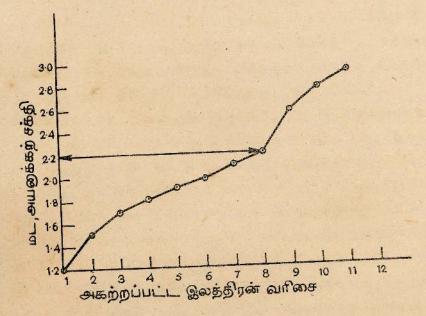
களிப்பதற்கு போரின் மாதிரியுருவை உபயோகிக்கலாம். பல இலத்தொன் கைவயுடைய பெரும்பாலான அதுதைக்களுக்கு, இத்தகைய கணிப்புக்கள்கஉடி டமாகவை. என்றைம் போரின் விலரிப்பின்படி மற்றைய அதுதைக்களுக்கான காலல் நிறமா லே வைப் பயன்படுத்தி பெரிய அதுதைக்களில் இலத்திரன்களின் பரம்பலே விளங்கிக் கொள்ளலாம்.

வெவ்வேழ மூலகங்களுக்கு அவற்றின் அணுக்கருவிலுள்ள நேர் ஏற்றம் வித்தியாசப்படுவதால் சக்திப்படியொன்றில் உள்ள இலத்திரவின் சக்தே மூல கத்தாக்கு மூலகம் வேறுபடும்,(அ-க) ஐதரசனின் இரண்டாவத சக்திப்படியின் சக்தியும் பொற்றுசியத்தின் இரண்டாவத சக்திப்படியின் சக்தியும் ஒரே அன வினவல்ல. ஒரு மூலகத்தில் அணு நிறமாலேயில் பெறப்பட்ட ஒழுங்கான கோடுகளாலான காலல் நிறமாலே ஆராயப்பட்ட ஒவ்வொரு மூலகத்தைக் கும் சிறப்பானதாகும். சோடியம், துரந்தியம், பொற்றுசியம் முதலிய வற்றின் உப்புக்கள் சுவால்க்குக் கொடுக்கும் வெல்வேறை நிறங்களில் தேலிய காரணம் நிறமால் ஆல் கொடுக்கும் வெல்வேறை நிறங்களிற்குக் காரணம் நிறமாலேயின் கட்டிலப் பகுதியில் சக்தி காலப்படுவதாலேயாகும்.

2.52 அயனுக்கற் சக்திகள்

பல இரசாயனத் தாக்கங்களில் சம்பந்தப்படும் சக்தி மாற்றங்கைள் பேற்றி விளங்கிக் கொள்வதற்கு ஒரு அஹுவில் பேற்பல சக்தி நி2லகளில்இலைத் திரைக்கைள் பரம்பல் பற்றி அறிதல் முகிகியமாகும்.

நேநேற்றமுள்ள அணுக்களுவின் கவர்ச்சு விசையிலிருந்த முற்றூக ஒரு இலத்திர2ன அகற்றுவதற்குக் தேவைப்படும் சக்தி அவ்வணுவின் 'அயகுக்கற் சத்தி எனப்படும். இதன் கருத்த யாதெனில் அணுவில் உள்ள இலத்திரன் நேரேற்றமுள்ள கருவால் பாதிக்கப்படாத அளவிற்கு உயர்ந்த சக்தியைக் கொண்டுள்ளது என்ற கருதம் அளவிற்கு இலத்திரனின் சக்தி உயர் சக்தியைக் கொண்டுள்ளது என்ற கருதம் அளவிற்கு இலத்திரனின் சக்தி உயர் சக்தியட் டங்களுக்கு உயர்த்தப்படும் என்பதாகும். இது அண்ணைவைரக சக்தியட்டப் படத்தின் புள்ளியிடப்பட்ட பகுதியால் குறிப்பிடப்படும். ஆகவே அயகுக்கேற் சக்தியின் பெறுமானம் குறைந்த சக்தி நி2லறேல் அல்லத தரைதி 2லறுல் இலத் திரன் இருக்கும் சக்தி மட்டத்திலும் கருவிலுள்ள நேரேற்றத்திலும் அ-த கரு வேற்றத்திலும் தங்கிலுள்ளது.


எனவே ஒரு அணுவில் அயலுக்கற் சக்தினய அதல் காலல் நிறமா &ல பில் இருந்த தேனியைக் கூடியதாயுவது. பரிசோத 2ன மூலம் அவதானிக்கப் பட்ட ஒரு அணுவில் காலல் நிறமா 2ல வெவ்வேறு அ&லநீவங்கை 8வேயுடைய கோடுக 2வக் கொண்டுள்ளதெலக் காணப்படுகின்றது. அ2ல நீனம் குறையக் குறைய கோட்டு நிறமா 2லயானது கதிர்ப்பில் தொடர் பட்டையாகத் தோன்றுகிறது. இந்தக் கதிர்ப்புத் தொடர்பட்டையைப் பெறுவதற்கான உயர் அ2ல நீனம் அல்லது குறைந்த மீடிறேன் இலத்திற 2ன அகற்றுவதற்குத் தேவைப்படும் சக்தியின் அளவை நேரடியாகப் பெறுவதற்கு உபயோகிக் கப்படும்.

ஒரு அஹுவின் அயனுக்கற் சக்தி, வாயு நிலேயிலுள்ள அணுக்கல் உப யோகித்தும் நேரடியாக அளக்கப்படும். அயனுக்கற் சக்தி இலத்திரன் வோற்றுகளில் (டூர) அல்லது கிலோ கலோரிகள் கிராம் அணுவில் ' அளவிடப்படும். இது SI அலகுகளில் யூல் மூல் 'இல் அனக்கப்படும்.

அஹுவிலிருந்த முதல் இலக்கிறன் அகற்றப்பட்ட பின் மீதி இலக்கிறன்கள் கருவிலுள்ள மாறு நேர் ஏற்றத்தால் மிகவும் வன்மையாகக் கவரப்படும் எனவே இறண்டாவது இலத்திற 2ன அகற்று தற்கு அதிகளவு சத்தி தேவைப் படும். ஆகவே அயஞக்கற் சக்திப் பெறுமானங்கள் I,<I₂ <I₃ <I₂ <.... எதும் ஒழுங்கில் அதிகளிக்கும். எலவே, ஒரு அடுவைின் முதலாம் அயகுக் கற் சக்தி மட்டுமன்றி இரண்டாம், மூன்றும், நால்காம் ஆதிய அயனுக்கற் சக்தியில் பெறுமாவங்கேீஎயும் தானியைக் கூடும். இந்த அடுத்தடுத்த பெறு மானங்கள் ஒவ்வொரு மேலதிக இலத்திறதும் அகற்றப்படுவதற்கு எற்ப அதிகரிக்கும் என எதிர்பார்க்கப்படல் வேண்டும். எனவே அணுக் கரு மட்டும் எத்சியிருக்கும் வரை ஓரஹுவின் கருவிற்கு வெ வியேயுள்ளகிடைக்கக் கூடிய இலத்திறைக்கள் எல்லாவற்றையும் படிப்படியாக அகற்றுவதற்கொத்த ஒரதுஹைவின் அடுத்தடுத்த அயறுக்கற் சக்திப் பெறுமாலங்களின் தொடர் ஒவ்றைத் துணிதல் பற்றி நாம் கருதலாம். ஓர் அனுவிற்கு இருக்கக் கூடிய வெவ்வேறு அயகுக்கற் சத்திகளின் என்னிக்கையாளது கருவிற்கு வெளி யேயுள்ள இலத்திரன்களின் மொத்த எண்ணிக்கைக்குச் சமமாகும்; இச ஒரு அஹுவில் கருவிலுள்ள புரோத்தன்களில் மொத்த எண்ஷிக்கைக்கு அதாவ அ அணு என்றைக்குச் சமமாகும். இவ்வலகில் ஏற்கனவே விபரிக்கப்பட்டுள்ள மோஸ்லியின் முறையை உபயோகித்து நேயனின் X – சுதிர் நிறமா &ல யில் இருந்த நேயனின் அணு என் 10 எனத் தானியப்பட்டத. இம்மூலகம்நேயன் பின்வரும் அடுத்தடுத்த அயஞக்கற் சத்திப் பெறுமாவங்கேீள கொண்டிருக்கக் காணப்பட்டத.

74

இலத்தால் உலோற்றகளில் அயனைகற் சய்வி, TTO 19 I8 17 12 I4 I5 16 I1 Iz 1470 242 1200 208 158 65 100 128 22 45 இப்பெழமாகங்கடீன என் அளவிடாடில் கேறிக்கல் சாத்தியமல்ல. ஆயின் அயகுக்கற் சத்திப் பெழுமாவங்களில் மடக்கை அவலிடையை அகற்றப்பட்ட இலத்தேறவ்களில் வரிவாகக்கு எதிராகக் குறித்தல் வசதியாவதாகும். ଭୁଇଁ இல் ஒரு முறினைக்காட்டியத. இகவ் வாற பெறப்பட்ட வரைபடம் மட I, முதல் எட்டு இலத்திறக்க 2வே அகற்றுவதற்குளிய AUDÉ கருத்த யாதெலில் சத்திப் பெறுமானங்கள் முதலாவதிலிருந்த எட்டாவத வரை ஒர்ஒலுங் கற் அதிகளிக்கிக்றத எக்பதாகும். đầ

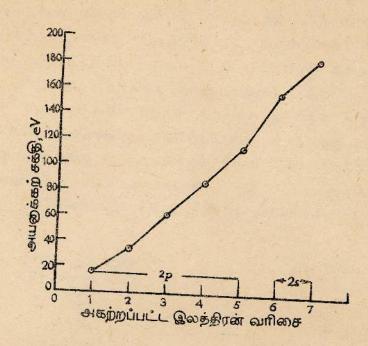
படம் 2.15 நேயனின் அடுத்தடுத்த அயறுக்கற் சக்திகள்

எட்டாம் அயகுக்கற் சக்திவரை அவதானித்த ஒழுங்கான அதிகரிப்பின் அடிப் படையில் எதிர்பார்த்த அதிகரிப்பிலும் பார்க்க ஒன்பதாம் அயகுக்கேற்சக் தியின் பெறமானம் பிகேஷம் அதிகமாகும். நேயனின் அடுத்தடுத்த அயகுக் கேற்சக்திகளின் இந்த அவதானிக்கப்பட்ட வேழுபாடுகள் பின்வருமாறு விளக் கப்படக் கடும். நேயன் அணுவின் கருவிற்கு வெளியேயுள்ள பத்த இலத் திறன்கள், 8 இலத்திறன்க£ளக் கொண்டுள்ள ஒரு கூட்டமாகவும், மீதி 2 இலத்திறன்க£ளக் கொண்டுள்ள இன்றேர் கூட்டமாகவும் பிரிக்கப்படும். 8 இலத்திரவ்கு 2 வக் கொண்டுள்ள கூட்டத்தின் சக்தி 2 இலத்திரவ்க 2 வக்களை டுள்ள கூட்டத்தின் சக்தியிலும் மிகவும் அதிகமாகும். அதாவத 2 இலத்தி ரவ்க 2 வக் கொண்ட இரன்டாம் கூட்டம் கருவிற்கு அருகாமையில் குறைந்த சக்தி நி 2 லைல் இருப்பதால் 8 இலத்திரவ்க 2 வக் கொண்ட முதற் கூட்டத் திலும் பார்க்க இலற்றை அகற்றுவதற்கு அதிக சக்தி தேவை. 8 இலத் திரவ்க 2 வக் கொண்ட முதலாம் கூட்டம் கருவிற்கு வெகுதா ரத்தில் உயர் சக்தி நி 2 லைல் இருப்பதால் இவற்றை அகற்றுவதற்கு சார்பவவில் குறைந்த சக்தி நி 2 லைல் இருப்பதால் இவற்றை அகற்றுவதற்கு கொண்ட சேத்தில் உயர் சக்தி நி 2 லைல் இருப்பதால் இவற்றை அகற்றுவதற்கு சார்பவவில் குறைந்த சக்தி தேவைப்படும். எனவே ஓர் அனுவில் கருவிற்கு வெளியேடிய்ளஇலத் தி 2 வக்களுக்கை திட்டமான சக்தி நி 2 லகள், சக்தி மட்டங்கள் அல்லது சக்தி ஒடுகள் உள்ளன.

2.6 சக்த மட்டங்கள்

யிகக் குறைந்த சக்திநிலே அவ்வது சக்தி ஒடு K ஓடு எனப்படும்;இத 2 இலத்திரைக்கீலக் கொள்ளக்கடியது. அடுத்த உயர் சகீதிநி2ல அல்லது சக்கி ஒடு, ட ஒடு எனப்படும்; இது நேயன் அனுவின் மற்கைறய 8 இலத் திரன்கடுளக் கொண்டிருக்கும். ஆகணிற்குக் கிடைக்கக் கூடிய பதினெட்டுஅய தைக்கற் சக்தியுடன் ஒரு ஒத்த வரைகோடு குறிக்கப்படின், மட 1 இல் முறினையும் மட I_{I6} இல் இல்லொரு முறிவையும் அவதொகிக்கே முடியும். IDL IIG உடன் ஒப்பிடும்போது மடI_{I7} உம் மடI₁₈ம்கர்மையான அதிகளிப்பைக் எனவே இலத்திரவ்கள் 8 ஐக் கொட்ட ஒரு கட்டம், இவ்ஞெரு காட்டும். 8 ஐக் கொண்ட இரண்டாம் கட்டம், 2 ஐக் கொண்ட மூன்றும் கட்டம் என மூன்ற பிரிவுகளாக உள எதும் முடிவுக்கு நாம் வரலாம். gads silja இலத்திரவ்கின அகற்றுவதற்கு இரண்டாம் கூட்டத்த இலத்திரவ்கிலே அகற்று வதற்குத் தேவையான சக்தியிலம் கூடிய சக்தியும், இரண்டாம் கூட்டத்து இலத்திரவ்க 2வ அகற்றுவ தற்கு முதலாம் கட்டத்த இலத்திரவ்க 2வ அகற்றுவ தற்குத் தேவையான சக்தியிலும் கூடிய சக்தியும் தேவைப்படுகின்றன. ஆகவே ஆகவில் இலத்திரவ்களில், 8 இலத்திரவ்கூலவுக் கொண்ட முதலாம் கூட்டம் கருவேற்றத்தில் கவர்ச்சி விசைக்கு வெகு தொடலவில் இருக்கக்கூடிய முறை யூல் ஒழுங்குபடுத்தப்பட்டிருக்கும். இதன் இலத்திரன்களே அகற்றுவதற்கு 8 இலத்திரன்கடீனக் கொண்ட இரண்டாம் கூட்டத்த இலத்திரன்கடீன அகற்றுவ தற்குத் தேவையான சக்கியிலும் குறைந்தவவு சக்தி தேவைப்படும். Q B B இரண்டாம் கட்டம் முதலாம் கட்டத்திலும் பார்க்க கருவிற்கு அன்மையாக

உள்வத. 2 இலத்திரவ்கீஎக் கொட்டை இறதிக் கட்டம் கருவிற்கு ରିକା କ୍ର அன்மையில் உள்ளதால் இக்கட்டத்த இலத்திரன்க 2ள அகற்றுவதற்கு மிகலும் சக்தி தேலைப்படும். கருவிற்கு மிக அன்மையில் உள்ள சக்தி ஓடு 5 10 IU களில் தொடங்கி K, L, M, N , எனக் குறிப்படப்படும் சக்கிப் படிக ளுடன் அல்லது சக்தி ஒடுகளுடன் இக்கூட்டங்களத் தொடர்பு படுத்திகுல் தகவில் இலத்திரைவ்கள் K ஒடு (2 இலத்திருவ்கள்), L ஓடு (8 இலத்த இலத்திரவ்கள்) ஆகியவற்றைக் கொண்டிருக்கும். (8 0 aa a), M 80 ஆகவே ஒவ்வொரு சக்தி ஒரும் ஒரு திட்டமான என்விக்கை இலக்திரவ்க 2வக் கொண்டிருக்கும். இச் செய்முறையை உயர் அணு வென்னு டையமூல கங்களுடன் நடாத்துவதால் சக்தி ஒடுகளின் கொள்ளனடிகள் பிக்வருமாறு கானப்படும்.


சக்த ஒடு	இல த்திரள்களின் உச்ச எண்ணிக்கை
к	2
L	8
M	18
Ň	32
0	32

எனவே, அயறுக்கற் சக்தியின் அடுத்தடுத்த பெறுமானங்கள், அணுக்களில் சக்தி மேட்டங்கள் இருத்தல் பற்றிய சான்றைக் கொடுக்கின்றன.

2.61 உப சக்தி மட்டங்கள்

ஒரு குறிப்பிட்ட சக்தி ஓட்டின் இலத்திரன்களின் அயருக்கற் சக்திக்கும் எதிராக இலத்திரன்கள் அகற்றப்படும் வரினசனயக் குறித்தப்பெற்றவரைபு ஒரே சக்தி ஒட்டிறைவ் சிறு சக்தி வித்தியாசங்க 2வேக் காட்டுகின்றதென்பது புளோரீனின் முதல் ஒன்பத இலத்திரன்களின் 350 கன்டறியப்பட்டத. ஆயின் இதன் அய இலும் முறிவகைஉளக் காட்டுகில்றது. றல் 15 இலும் 17 CODA மடக்கையைக் குறிக்க மட 1, இல் மட்டும் ஞக்கற் சக்திகளின் இதிலிருந்த புளோரிலில் 2 இலத்திரவ்கள் K ஓட்டிலும் காணப்படுகின்றது. 7 இலத்திரைக்கள் ட ஒட்டிலேம் இருக்கின்றன எனத் தெரிகின்றது. ட ஓட்டில் மேலும் உபசக்தி மட்டங்கள் அவதாவிக்கப்படக்கடியதாயுள்ளது;இதில் 2 இலத்திரன்கள் உள்ள ஒரு கூட்டம், மீதி 5 இலத்திரன்களிலும் பார்க்க

77

படம் 2.16 புளோரீவின் அடுத்தடுத்த அயறுக்கற் சக்திகள்

கருவிற்கு அன்மையிலுள்ளது. இந்த L ஒரு, இர உபசக்தி மட்டங்களாகப் பிரிக்கப்படும். இச்சக்தி உபமட்டங்கள் மிகக் குறைந்த சக்கியுடைய உப சக்தி மட்டத்தில் தொடங்கி 5, p, d, f, எனக் குறிப்பிடப்படும். ஒரு பிர தான சக்தி மட்டத்திலுள்ள உபசக்தி மட்டங்களின் எண்ணிக்கையும், ஒவ் வொரு சக்தி மட்டமும் கொள்ளக்கடிய இலத்திரவ்களின் எண்ணிக்கையும்பின் வருமாற காணப்படும்.

பிறதான சக்திஓடு	உபசக்தி மட்டங்கள்	இல த்திரம் களின் எண்ணிக்கை
K	5	. 2
L	5	2
	Р	6
	S	2
M	Р	6
	d	10

பிறதான ` சக்திஓடு	உபசக்தி மட்டங்கள்	இல த் தர வ் க வில் எண்ணிக் வக
	5	2
	Р	6
N	Ġ	10
	f	14

பிரதான சக்தி ஒருகள் K,L,M,N முதலியன, ஒவ்வொன்றும் ஒவ்வொரு என்னுல் அடையாளம் இடப்படும்; இவ்வென்னுனத, முதற் சக்திச் சொட் டென் பா எகப்படும்.

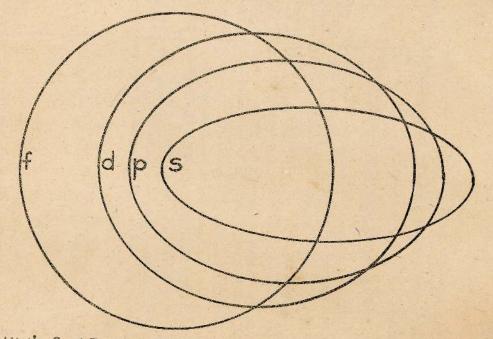
इ ऊँ झि	R b	முதற்	र छ झे में	சொட்டென்
ĸ			1	
L			2	
M			3	
N			4	

ஒல் வொரு பிரதான சக்திமட்டங்களும், முதற்சக்திச் சொட்டெண்களுக்குச் சமமான (மொத்த) எண்ணிக்கையுடைய வெவ்வேறே உபசக்தி மேட்டங்களாகப் பிரிக்கப்படும்.உதாரணமாகKஓடு ஓர் உபசக்தி மேட்டத்தையும்(s),ட ஓடு இரு உபசக்தி மேட்டங்கே?எயும்(sஉம் p உம்) கொண்டுள்ளன, இவ்வாறு பிற ஷம். எந்தவொரு பிரதான சக்தி மேட்டத்தின் இலத்திரன்களின்மொத்த எண் ணிக்கை அதன் முதற் சத்திச் சொட்டடைன், 71 இன் எண்பெறுமானத்தைக் கொண்டு விபரிக்கப்படும். அத27 இற்குச் சமமாகும்.

அணுக்களில் கோட்டு நிறமா லேகள் பற்றி விளக்கும்போதுநிலேயான நிலேகள் என நாம் அழைக்க மாறுச் சக்தியுடைய இலத்திரல்கைகோண்ட திட்டமான ஒழுக்கும், நாம் இங்கு குறிப்பிட்ட பிரதான சக்திச்சொட்டென் டி உம் ஒல்றே. எனவே, சக்தி மட்டங்கள் உண்டென்பதற்கு கோட்டுநிற மா லகுழைம் சான்றுகும். ட ஆனத கருவைச் சுற்றிச் சுழலம் ஒருகொடுக் கப்பட்ட சக்திறிலேயில் உள்ள இலத்திரல்களுக் கொண்ட திட்டமான ஒழுக் கப்பட்ட சக்திறிலேயில் உள்ள இலத்திரல்களுக் கொண்ட திட்டமான ஒழுக் குகளால் விபரிக்கப்படுமாயின், உபசக்தி மட்டங்கள், சிற சக்தி வித்தியா சங்களேயுடைய இல் வொழுக்கின் இயக்கத்தை விபரிக்கும். எனவே மிகக் குறைந்த சக்தியுடைய உப சக்தி மட்டம் கருவிற்கு மிக்ஷம் அன்மையாயும் கூடிய சக்தியுடைய உபசக்தி மட்டம் கருவிற்கு விக்ஷம் அன்மையாயும்

தனரதி 2ல யூல் மூலகங்களில் இலத்திரன் நி 2லய அமைப்பு

3	AOD								
	அனு என்	The local division of		28 2	D 38 3p 3	$\begin{array}{c c} 3d \\ 3d \\ 4s \\ 4p \\ 4d \\ 4f \\ 4f \\ 1d \\ 1$	0 5s 5p 5d 5f	P 6s 6p 6d 6f	Q 78
	$\frac{1}{2}$	H He	12						
	3 4 5 6 7 8 9 10	Li Be B C N O F Ne	222222222222222222222222222222222222222	$ \begin{array}{c} 1\\ 2\\ 2\\ 1\\ 2\\ 2\\ 3\\ 2\\ 4\\ 2\\ 5\\ 2\\ 6 \end{array} $	-				
	11 12 13 14 15 16 17 18	Na Mg Al Si P S Cl Ar	222222222222222222222222222222222222222	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	$ \begin{array}{c} 1\\ 2\\ 2\\ 1\\ 2\\ 2\\ 2\\ 3\\ 2\\ 4\\ 2\\ 5\\ 2\\ 6 \end{array} $				
	19 20 21 22 23 24 25 26 27 28	K Ca Sc Ti V Cr Mn Fe Co Ni	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2			
	29 30 31 32 33 34 35 36	Cu Zn Ga Ge As Se Br Kr	222222222	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	37 38 39 40 41 42 43 44 45 46	Rb Sr Y Zr ^D M ^O Cc Ru Rh Pd	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A CONTRACTOR AND		
	47 48 49 50 51	Ag Cd In Sn Sb	2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3		


11

80

தனரதிலேயில் மூலகங்களில் இலத்தாரல் நிலையமைப்பு

			792100	Sec. 1			D	In
आख्या हर जंबर	Gonzie	K 18 28	$\begin{vmatrix} L \\ 2p \end{vmatrix} 3$	M s 3p 3d	N 48 4p 4d 4f	0 5s 5p 5d 5f	P 6s 6p 6d 6f	Q 78
52 53 54	Te I Xe		6 2 6 2 6 2	2 6 10 2 6 10 2 6 10	2 6 10 2 6 10 2 6 10	$ \begin{array}{r} 2 & 4 \\ 2 & 5 \\ 2 & 6 \end{array} $		
$\begin{array}{c} 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\end{array}$	Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb La Hf Ta W Re Os Ir Pt	222222222222222222222222222222222222222	6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 6 10 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
79 80 81 82 83 84 85 86	Au Hg Tl Pb Bi Po At Rn	222222222222222222222222222222222222222	2 6 2 6 2 6 6 6 6 6 6 6 6 6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
80 87 88 89 90 91 92 93 94 95 96 96 97 98 99 100 101 102	Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 2 & 6 \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

கும். இத்தகைய இயக்கம் நீன்வ வேயத்திலிருந்த வட்டம் வரை வித்தியாச மான வடிலங்களேக் கொண்டிருக்கும். மிகக் கிட்டிய உபசக்தி மட்டம் (மிகக் குறைந்த சக்தியனடயத) உச்ச நீள்வ வேயத் தல்மையுடைய நீள் வளேய இயக்கத்தையும் மிக்ஷம் தொவேலுள்ள உபசத்தி மட்டம் (ஆசுக் கூடிய சக்தியுடையத) வட்ட இயக்கத்தையும் உடையனவாய் இருக்கும்.இந்த உபசக்தி மட்டங்கள் திசைவிற் சத்திச் சொட்டென் என அழைக்கப்படும்

படம் 2.17 வெல்வேற சக்தி நீ2லகளில்உள்ள இலத்திரக்கள் கருவைச் சுற்றி அசையும் பாதைகள்

அணேச்சக்கிச் சொட்டென்னுல் விபரிக்கப்பரும். கருவைச் சுற்றி இலத்தி மன் செல்லும் பாதையின் மீள்வ வேயத் தன்மையைத் திரைகவிற் சக்திச் சொட் டென் குறிப்பீட்டுக் காட்டுவதால் நாம் இச்சக்திச் சொட்டென் இலத்திரன் ஒழுக்கின் வடிவத்தை விபரிப்பதாகக் கருத முடியும். எனவே, ஒரு பிர தான சக்தி மட்டத்தின் உபமட்டங்களில் வெவ்வேறு வடிலங்களேயுடைய ஒழுக்குகளின் சக்திகள் சிறிற வேறுபரும். எந்தவொரு பிரதானச் சக்தி மட்டத்திலும் ஒரு இலத்திரனிற்கு இருக்கக்குடிய வெவ்வேறு ஒழுக்குகளின் என் ணிக்கைக்கு ஓர் எல்லே உண்டு. இவ்வாறு இருக்கக்குடிய இலத்திரவ்பாதை கள் ஒரு பேதான மட்டத்தின் உபமட்டங்கள் ஆகும். எந்தவொருபிரதான கள் ஒரு பேதான மட்டத்தின் உபமட்டங்கள் ஆகும். எந்தவொருபிரதான சக்தி நீ2ல அய விபரிக்கும் முதற் சக்திச்சொட்டென் ற. ஆயின் அங்கு இருக்கக்கடிய ஒழுக்குகள் அல்லத உபசக்தி மட்டங்கள் நற்குச்சமமாகும். உதாரனமாக ற=4 ஆகவிருப்பின், இருக்கக்கடிய ஒழுக்குகள் அல்லத உப சக்திமட்டங்கள், நான்கு ஆகும். உபசக்தி மட்டங்க2ன விபரிக்கும்எழுத் தக்கள் s, p, d, f ஆகியன, இலை sharp, principal, diffuse, fundamental தூகிய நிறமா 2லயின் பதங்களின் மூதல் எழுத்தில் இருந்தைபெற்ற வையாகும்.

நாம் முல்னர் விபரித்த அணு நிறமா 2ல வை எருத்தால், நிறமா 2லக் கோருக 2 வக் காவுகின்ற தோற்றுவா வை (ஒரு மூலகத்தின் அணு) வன் காத்த புலமொன்றில் வைத்துப் பெற்ற நிறமா 2ல வைப் பின்னா பரி சோதிக்க, அந்நிறமா 2ல யின் ஒவ் வொரு கோரும் பல கழுகளாகப் பேரிந் திருக்கக் காணப்பட்டது. இந்த வி 2 வஷ 1896 இல் சிமன் என்பவரால் முதலில் அவதானிக்கப்பட்டது; இது சிமன் வி 2 வஷ எனப்படும். காழகின்ற அணுக்கள் வன் காந்தபுலத்தில் இருக்கும்போத, சக்திமட்டங்கள் உப சக்தி மட்டங்களாகப் பினக்கின்றன என இந்த அவதாணிப்புக்கன் காட்டு கிறைன. இவ்வி 2 வஷ பல் வேற உபசக்திப்படிகள் இருப்பதற்கான மேல திக சான்றுக எடுத்துக் கொள்ளப்படும்.

2.7 இலத்திரனிலேயமைப்பு

ஒரு மூலகத்தின் அணுவின் கருவிற்கு வெளியேயுள்ள இலத்திரன்கள்வென் வேறு சக்தி மட்டங்கள்ஸ் ஒழுங்குபடுத்தப்பட்டுள்ள முறையே அம்மூலகத்தின் இல<u>த்திரன் 2 லை வைப்பு</u> எனப்படும். பிரதான சத்தி மட்டங்கள் K, L, M, N முதலியனவும் அல்லது n = 1, 2, 3 முதலியனவும் ஒரு பிரதானசக்தி மட் டத்தின் உபசக்தி மட்டங்கள் 5, p, d, f ஆகியனவும் சக்தி அதிகளிக்கும் வளி சையில் ஒழுங்குபடுத்தப்பட்டிருக்குமாயின், மூலகங்களின் அணுக்களில் இலத் திரன்களின் பரம்பல் பற்றி பிரதான சக்தி மட்டங்கள், உபசக்தி மட்டங் கள் ஆகியன சார்பாக நாம் கருதலாம். ஒரு இலத்திரனின் சக்தி மட்டங் கள் ஆகியன சார்பாக நாம் கருதலாம். ஒரு இலத்திரனின் சக்தி மட்டங் மாக, ஒரு 3 d சக்திமட்டம், முதற் சக்திச் சொட்டென், 3 ஆக்ஷன்வ பிரதான சக்தி மட்டத்தின் 3 ஆவது உப சக்தி மட்டத்தைக் குறிப்பிரும். இச்சக்தி மட்டத்தின் 3 ஆவது உப சக்தி மட்டத்தைக் குறிப்பிரும்.

15<25<2p<35<3p<45<3d<4p....

ஆகவே, ஒரு அஹுவில் மொத்த இலத்திரன்கள், மீகக் குறைந்த சக்தி யூடைய அதாவத கேருஷிற்கு மிக அண்மையிலுள்ளசக்தி மட்டத்தில் தொடங்கி சக்த மட்டங்களில் ஒழுங்குபடுத்தப்படும். இச்சத்தி மட்டம் அதற்குக் கிடைக்கக்கடிய உச்ச எண்ணிக்கை இலத்திரன்களால் நிரப்பப்பட்ட பின் அடுத்த உயர் சக்தி மட்டம் நிரப்பப்படும். அவ்வாறே பிற சக்தி மட் டங்களும் நிரப்பப்படும். உதாரனமாக, அணு-வென் 11 ஐக் கொண்ட சோடியம் Na இன் 11 இலத்திரன்களும் பின்வருமாற பரம்பி இருக்கும். 15 மட்டத்தில் 2 இலத்திரன்கள் ஐ5 மட்டத்தில் 2 இலத்திரன்கள், 20 மட்டத்தில் 6 இலத்திரன்கள், 35 மட்டத்தில் ஒரு இலத்திரன்.இவ்விலத் அறன் பரம்பல் IS, 2S, 2p⁶, 3S' என எழுதப்படும்; இது சோடி யத்தின் இலத்திரவிலேயடிமைப்பை விபரிக்கும்: சக்தி மட்டங்களின் म के की வரிகையும், ஒவ்வொரு சக்தி மேட்டத்தில் கொள்ளளையும் அறியப்படின் தெரிந்த அணுவென்றை வடய ஒரு மூலகத்தின் இலத்தாவி 2லய மைப் வை எழு ததல் இலகுவாகும்.

பயற்சி

- (a) கதோட்டுக் கதிர்கள் (4) அணு நிறமா 2ல ஆய்வுகள் என்பன பற்றிய அளவறிதற்குரிய ஆராய்ச்சி பற்றியும் அவற்றிலிருந்த பெறக் கடிய அழமைரனங்கள் பற்றியும் விவாதிக்க.
- 2. ஒர் அதுஹைவின் தினிவர்வது ஒரு டிகச் சிறிய நேரேற்ற வடிவில் செறிந் திருக்சின்றதொக் கருதைற்காவ காரணங்கீலாத் தாருக.
- 3. இலத்திரவ்கள், புரோத்தவ்கள், நியூத்திரவ்கள் ஆசியவற்றைச் சடப் பொருளிவ் அடிப்படைக் கூறுகள் எலக் கேருதைதற்கால காரணங்கீகளத் தேருக.
- 4. பரடேயின் டிவ்பகுப்பு விதிகீலக் கருத்திற் கொண்டு, டிவ்றுனத 'அஹுத்தவ்வைமயது எவக் காட்டுக.
- 5. உருதபோர்ட்டில் அது மொதிரியுருவிற்கான பரிசோத2லச் சான்ற கீலத் தருக.
- 6 . போர் கொள்ளகயின் பிரதால ஒப்புக்கோள்கீளயும் அதன் வரை. யனுறகீவயும், ஓர் இலத்திரீனச் சிறப்புப் படுத்துலதைவ்பொருட்டு பல சக்திச் சொட்டெண்கள் புகுத்தப்பட வேண்டிய அவசியத்தையும்

ஆராய்க.

பின்வருவனவற்றிற்கிடையெயுள்ள வேறுபாடுக 2ள விளக்குக:

- (ே) இரசாயன அணு நிறையும் பௌதிக அணு நிறையும்
- (1-) கினிவென் ஹம் அணு வென் ணும்
- (с) அஹு பற்றிய உருதபோர்ட்டின் மாதிரியுருலிற்கும் அணுபற்றிய போரின் மாதிரியுருவிற்கும்
- . ஆசனிக்கு, வெள்ளி ஆசியவற்றின் இலத்திரவிலேயலமைப்புகலள எழுதாக (இம்மூலகங்களின் அணுவெண்கள் முறையே 33 உம் 47 உம் ஆகும்).
- . பகதார்த் தொழிற்பாடுப் எதும் பதத்தை விளக்குக.
 - (1) மூல்றவறைக் கதிர்ப்புகளில் ஒவ்றிலிருந்த ஒவ்றை எவ்வாற வேறபிரித்திக் காண்பீர்?

(11) ๙, β, தானிக்கைகள் இல்லையை எவ்வாற உறதிப்படுத்தாவூர்? (111) கதிர்த் தொழிற்பாட்டை அளவறிமுறையில் எவ்வாற அளவிடுவூர்? கதிர்த்தொழிற்பாட்டு மூலகமொல்றின் அரைச் சூவியகாலம் 30 நியி டங்கள் ஆகும். அதன் தொழிற்பாடு, தொடக்கப் பெறுமானத்தின் 1/1500 ஆகக் குறைவதற்கு எடுக்கும் நேரத்தைக் கணிக்க.

சக்தியியலும் பினேப்பும்-I

3.01 அறிமுகம்

பதாரீத்தங்களிலுள்ள அணுக்க2்ள ஒன்ற சேரீத்த அவத்திருக்கும் விசைகளின் வனக்க2்ள அறிந்த கொள்வதன் மூலமும் பாகுபடுத்துவதன்மூல மும் இபசாயனப் பதார்த்தங்க2்ளயும் அவற்றின் தாக்கங்க2்ளயும்பற்றிய அறிவு பெருமளவில் முறைப்படுத்தப்பட்டுள்ளது. இவ்வணுக்க2்ள ஒன்ற சேர்த்த அவப்பதில் பல்வேறு வகையான விசைகள் சம்பந்தப்படுகின்றன. இவற்றின் மூலம் நாம், பி2்ணப்புக்கள் பற்றிய கோட்பாட்டிற்கு அறிமுக மாதிண்றேம். உதாரணமாக, சேதனச் சேர்வைகவிலுள்ள பி2்ணப்புவகை கள், அசேதனச் சேர்வைகளிலுள்ள பி2்ணப்பு வகைகைகளிலிருந்த அதிகவளவில் வேறுபட்டனை என்பதை நாம் ஏற்கனவே அறிவோம்.

இயற்கையில் நாம் எதிர்கொள்ளும் பல்லேற வகையான பதார்த் தங்களில் சம்பந்தப்படும் விசைக 2 எயும் பி 2 கைப்புக்க 2 எயும் கருதம்போத நாம் கருத்திற் கொள்ள வேண்டிய மிக முக்கிய காறணி சக்தியாகும். சக்தி எலும் காற•் சம்பந்தப்பட்ட ஆறாய்ச்சிகள் <u>சக்தியியல்</u> எனப்படும். இவ் வல•் சக்தியியலுக்கும் பி 2 கைப்புக்கும் இடையில் ஒரு தொடர்பை ஏற் படுத்தவத எமத நோக்க மாகும். இத்தகைய தொடர்பில் அவைறிதல் நோக்கு க 2 வச் சம்பந்தப்படுத்த வேண்டிய நியதி ஏற்படும். இத்தொடர் பின் பொருட்டு இந் நோக்குகள் பெரிதம்பயன்படுத்தப்படுகின்றன.

3.02 544

சக்தி எச்பத வே 2ல செய்வதற்கான ஆற்றல் அல்லத திறன் என வரையழக்கப்படும். பல்வேழ வகைச் சக்திகள் உள்ளன. வரலாற்றரீதியில் நோக்கின், சக்தியை அளவறிதற்கான முறையில் குறிப்பிடுவதற்குக் காலத் திற்குக் காலம் பல்வேழ வைக அலகுகள் சேர்க்கப்பட்டிரைப்பஅத அறி யலாம்.

இவற்றாள் அடங்குவன–ஏக்குகேள், யூல்கள், லீற்றர்–வளிமண்டலங்கள், கேலோ ரிகள், இலத்திரன் உவேலற்றுக்கள் ஆகியனவாகும். ஆயிறைம், சர்வ தேச அலகு முறையில் சகலவகையான சக்திக2ளயும் குறிப்பிருவதற்கு யூல் (ரூ) எலும் ஒரு அலகே பயன்படுத்தப்படும்.

பல்வேற வகையான சக்திகளில் எமக்கு ஏற்கனவே அறிமுகமானத பொறிமுறைச் சக்தி அல்லத பொறிமுறை வே2ல எனப்படும் வகையாகும். <u>பொறிமுறை வே2லறை</u> ஒரு பொரு2்னத் தாக்கும் விசையினதும், அப் பொருள் இயக்கப்படும் தா ரத்தினதும் பெருக்கம் என வரையறுக்கலாம், என் உதாரணம் ஒன்றை இங்கு நோம் கருதைவோம்.

உதாரணம்

0.1 கிலோ கிராம் (0.1 kg , அதாலத 100g) கிலிஷைடைய ஒரு நிலேயான பொருரே 1 நியூற்றன் (1Nஅதாவத 10 அதன்) வினச தாக்கி, அப்பொருரே 5 மீற்றர்களிற்கு (5m அதாவத 500cm)இயக் குகில்றத.

பிக்வருவைவற்றைக் கணிக்க: (1) செய்யப்பட்ட பொறிமுறை வே 2ல (5ர அதாவத 5×10⁷ ஏக்கு) (2) தோற்றுவிக்கப்படும் ஆர்முடுகல் (10ms²அதாவத 10³cms²) (3) இறுகி வேகம் (10ms¹ அதாவத 10³cms¹) (4) பொருளின் இயக்கப் பண்டிச் சக்தி அதிகளிப்பு (5ர அதாவத 5×10⁷ ஏக்கு)

குறிப்பு: – விடைகள் அடைப்புள் தரப்பட்டுள.

இவ்வு தாராணத்திலிருந்த, ஒழு 2ல உள்ளடக்கும் வெளிவிசையிறலை தொகு திலைய உள்ளடக்கும் அப்பொருளின் மீத செய்யப்படும் வே 2லயின் பயதுகைத் தொகுதியின் இயக்கப்பண்டிச் சக்தியும் அதே அளவில் அதிகளிக்கின்றதான்பத தெளிவாகின்றது. இதே போன்ற தொகுதியானத கூழலின் மீத . ஏதாவத வே 2ல லையச் செய்யுமாயின், தொகுதியின் இயக்கப்பண்டிச் சக்தி சமஅனவில் தேறையும்.

<u>ஈர்ப்புவேலே</u> என்பத இன்னுரை வகையான வேலேயாகும்.ஒருபொ ரேள் ஈர்ப்பு விசைக்கொதேராக உயர்த்தப்படுமாகுல், அப்பொருளின் மீத ஈர்ப்பு வேலே செய்யப்பட்டு தொகுதியின் ஈர்ப்பு நிலேப் பண்புச் சக்தி பேல் அதே அளவான அதிகரிப்பு ஏற்படும். ஈர்ப்பு வேலேயானது ஈர்ப் பழுத்தத்தினதும் (புலியீர்ப்புக் காறகமைாக ஆர்முடுகல் & பொருள் உயர்த் தப்படும் உயரம்) பொருளின் திணிவினதம் பெருக்கத்தால் அளவிடப்படும்.

வாயுவொன்ற புறச் சூழல் அமுக்கத்திற்கெதிராக விரிவடையும்போத <u>அமுக்க–கனவனவு</u>, வேலே செய்யப்படும். இவ்வேலே வெளியமுக்கத்தின தும் (இதற்கெதிராக விரிவு இடம் பெழும்) கனவளவில் இடம் பெழும் மாற்றத்தினதும் பெருக்கத்தால் அளவிடப்படும். இதன் விஃனவாக வாயுவில் இருக்கும் அமுக்க–கனவளவுச் சக்தி அதே அளவில் குறையும். ஒருதொகுதி அதன் கனவளவை விரிவுபடுத்தும் தற்றலே அமுக்க–கனவரவுச் சக்தியாகும்.

லக்சபான நீர் வல நிலேயத்தில் பில்சாரத்தை அல்லது யின்சக் <u>திலைய</u>ப் பிறப்பிப்பதற்கு நீர் பயன்பெடுத்தப்படுகின்றதென்பதை நாம் ad லோம். இத எவ்வாற சோத்தியமாகின்றது? கீழேயுள்ள பின்னி&லயத்தோடு ஒப்பிடுவைகில் குறிப்பிடத்தக்க உயரத்தில், நோட்டன் பாலத்திலுள்ளதீர்த் தாங்கி பெருமனவு நீரைக் கொண்டுள்ளது. பின்றிலேயத்தின் ஸ்தானத்திற் தூச் சார்பாக நீராவத ஈரிப்பழுத்தச் சக்தியைக் கொண்டிரைக்கும். மீர் கூழ்நோக்கி ஒடும்போத, அதன் வேகம் அதிகரிக்கின்றது. அதாவத டிர்ப் பழத்தச் சக்தி, இயக்கப் பண்டிச் சக்தியாக மொற்றப்படுகிறது. டின்சக்தி றிலேயத்திலைகள்ள கழல்சக்கரங்கலே நீர் அடைந்ததும் அதன் உயர் இயக் கப்பண்டைச் சக்தியாவதை, குழல் சக்கரங்கேீளச் குழற்றி, பொறிமுறை வே & செய்வ தற்குப் பயன்படுத்தப்படுகிறது. இப்பொறிமுறையிகும், பொறிமுறை வேலேயாவது, மின் சக்தி எனப்பரும் மிகப் பயகுகைக்கு ஒரு சக்தி வடிவமாக மாற்றப்படுகிறது. நோட்டப் பாலத்தின் நீர்த்தாங்கி பிழைள்ள நீர் அதிகளவு ஈர்ப்பழுத்தச் சக்தியைக் கொண்டுள்ளது. இச்சக்தி யானது ஈற்றில் டில் செக்தியாக மாற்றப்பட்டு, எமது வீடுகளில் ஒளியேற் ுவதற்கும், பின்னழுத்திகளுக்குக் தேலையாக வெப்பத்தை அவிப்பதற்கும், பல்வேற பின் சாதவங்கீகள் இயக்குவதற்கும் தேவையால சேக்தியை அரிக் நீர்த் தாய்கியொன்றியன்ன நீரின் நிலேப் பண்டிச் சக்தியானத đảnga. ஒனி, வெப்ப அல்லது பொறிமுறைச் சக்தியாகவும் மாற்றப்படுவதை விழ் தைக்குரியதொக்குகும்.

3.03 இரசாயனச் சக்தி

ஒரு பொருள் அல்லது ஒரு பதார்த்தம் தான் செய்யக்கூடியவே 2லக் கேற்பக் கொண்டுள்ள நி2லப்பண்புச் சக்தி, அழுத்த—கணவ வூலைச்சக்தி, வெப் பச் சக்தி போன்ற பல்வேறு வகையான சக்திகளுடன், அதன் இரசாயன அமைப்பில் பலஞக மேஷமொரு சக்தியையும் கொண்டிரைக்கும். இத்தவகைய சக்தி இரசாயலச் சக்தி எவப்படும்.

எந்தவொரு பதார்த்தமும் அணுக்களாலும் மூலக்கழைகளாலும் ஆக் கப்பட்டதாகும். இவ்வணுக்களுக்கும் மூலக்கழைகளுக்கும் இடையேயான இடைத்தாக்கத்தின் வலுவிற்கேற்ப பதார்த்தங்கள் மூலக் கூற்றிடையான இடைத்தாக்கச் சக்தியைக் கொண்டுள்ளன. இத்தனைகய சக்தி,வாயுறிலே பிலுள்ள மூலக்கூறுகளுக்கு மிக முலேப்பான ஒரு இயல்பு அன்று ஆயிலும்திரவ நிலையிலும் திண்ம நிலேயிலும் உள்ள மூலக்கூறுகளுக்கு, இவற்றின் மூலக்கூற் றிடைத் தாரம் மிகச் சிறியதாக இருப்பதால், இச்சக்தி,பெரியதாகும்.

மூலக்கற்றிடையான இடைத்தாக்கச் சக்தியோடு, ஒரு குறிப்பிட்ட மூலக்கற்றிலுள்ள அணுக்கதுக்கிடையேயும் இடைத்தாக்கங்கள் நிகழும். இத ஒல் ஏற்படும் சக்தி, மூலக்கற்றக இடைத்தாக்கச் சக்தி எலப்படும். மூலக் கற்றிடை இடைத்தாக்கச் சக்தி, மூலக்கற்றக இடைத்தாக்கச் சக்திஎன் பன இரண்டும் ஒரு குறிப்பிட்ட பதார்த்தத்தின் சிறப்பியல்பாகும். இவ்விரு சக்திகளும், பதார்த்தங்களின் சக்தியினது, இரசாயனச் சக்திக் கற்றைப் பெரும்னவில் ஆக்குகின்றன.

சக்திக்கும் பிடீயைப்பிற்கும் இடையேயான தொடர்பைக் கருத்திற் கொள்கும் இவ்வலகில், பதார்த்தங்களின் இரசாயன இயல்பு, அமைப்பு என்பவற்றின் பயஞக அவை கொண்டுள்ள இரசாயனச் சக்தியையே பிரதா மைாகக் கருதவோம். மூலக்கூற்றக இடைத்தாக்கச் சக்தியினதும் மூலக் கூற்றிடைத் தாக்கச் சக்தியினதும் இயல்பையும் பருமடீனயும் பொறுத்த , வெவீவேற இரசாயனச் சேர்வுவகள் வேறுபடும் அளவுகளில் இரசாயனச் சக்தியைக் கொண்டனுயாக இருக்கும். இத்தகைய இரசாயனப் பதார்த் தங்கள் உடையே இரசாயனத் தாக்கங்கள் இடம் பெற்றுப் புதிய பதார்த் தங்கள் உண்டாகும்போது, விடீனபொருட்களின் இரசாயனச் சக்திகளின் கட்டுத் தொகை, தாக்கு பொருட்களின் இரசாயனச் சக்திகளின் கட்டுத் தொகை, தாக்கு பொருட்களின் இரசாயனச் சக்திகளின் கட்டுத் தொகைக்குச் சரி சமமாக இருக்குமென்பது சாத்தியமாகாத. எனவே அத் தொகுதியில் அதற்கேற்றவொரு சக்தி மாற்றம் கட்டாயமாக இடம் பெறும்.

சக்திக்காப்புக் தக்குவத்தில்படி இயற்கையின் எந்தவொரு உருமாற் றத்திலும் சக்தியில் மொத்தக் கூட்டுத்தொகை அதிகரிக்காமலோ குறை யாமலோ இருத்தல் அவசியம். சக்தியை உண்டாக்கவோ அழிக்கவோ முடியாது. ஒரு வகைச் சக்தியை, சக்தியின் இன்னமொரு வகையாகவோ அல்லது பலவகைகளாகவோ மட்டுமே உருமாற்ற முடியும்.

உதாரனமாக, யின் கலவடுக்கொன்றிலிருந்த, யின் தேட்டமொன் அறப் பெழும்போத உண்மையாக நாம் செய்லத யாதெனில், யின் கலவடுக்கின் கலங்களிடையே இரசாயனத் தாக்கமொன்ற இடம் பெறச் செய்துதாக்கு பொருட்களுக்கும் விர்ளபொருட்களுக்கு பிடையே இரசாயனச் சக்தியிலுள்ள வேறுபாட்டை யின் சக்தியாகப் பெறுதேலேயாகும். எனவே யின் கலவடுக் கானத, இரசாயனச் சக்தியை, யின் சக்தியாக மாற்றும் யின்னி ரசாயன கலங்கரேனக் கொண்டவொரு கூட்டமாகும். தோற்றுவிக்கப்படும் யின் சக்தி யானது, யின் கலவடுக்கிலிருந்து வரும் யின் தேரிற்றுவிக்கப்படும் யின் சக்தி யானது, யின் கலவடுக்கிலிருந்து வரும் யின் தேரியாக மாற்றும் விரே க்கி வழகாயனச் சக்தியை பயறையை யின் சக்தியாக மாற்றும் வி 20 த்திறன் வழகையாக தூற சதலு தமாக இடம் பெறுவதில் 20 ஆய் வேறுபாட்டிற்குக் காறனம் பயறு வைடய சக்தி விரயமாவதாகும். இல்லாறு விரயமாகும் சக்தி வழமையாக வெப்பமாக அல்லது வெப்பச் சக்தியாகத்தோன்றும்.

இதற்கு மாருக, வெளித் தோற்றுவாயொன்றிலிருந்த பின்றேட்ட மொன்றை எதிரீத்திசையில் பின்கலவடுக்கொன்றினாடாகச் செலுத்திருல்இவ் வி சாயனத் தாக்கத்தை பின்கலவடுக்கில் எதிரீத் திசையில் இடம் பெறச் செய்யலாம். வலுவிழந்த மோட்டார் வாகன மின்கலவடுக்கொன்ற ஏற் றம் பெறும் போத இத்தகைய தாக்கமே இடம் பெறுகிறது. அச்செய் முறையின்போது, வெளித்தோற்றுவாயொன்றிலிருந்து(பின்னேற்றிஒன்றிலிருந்த) நாம் பின் சக்தியை அளித்து, அத2ன பின்கலவடுக்கில் சேமிக்கப்படும் இ சாயனச் சக்தியாக மாற்று தின்றேல். ஏற்றச் செயல் முறையின்போது யின்கலவடுக்கில் இடம் பெறும் இ சாயனத் தாக்கங்கள், இறக்கம் எனப் படும் செயல் முறையின் பேர்து மோட்டார் வாகனமொன்றிற்கு பின்னேட் டத்தை மின் கலவடுக்கொன்ற அளிக்கையில் இடம் பெறும் தாக்கங்களுக்கு எதிர்மாறுனவை.

யின் கலவடுக்கில் இடம் பெழம் இரசாயனத் தாக்கத்தில் திரைசலையி பொறுத்து சேயிக்கப்பட்ட இரசாயனச் சக்தி பெயறுளை பின்சக்தியாக மாற்றப்படலாம் அல்லது எதிர் மாறுகவும் மாற்றப்ப<mark>டலாம்என்பது</mark>முந்திய பந்திகளிலிருந்த தெளிவாகின்றது. முதல் மாற்றத்தில், **பின்கலவடுக்கில்**

90.

சேடிக்கேப்பட்ட இரசாயுவச் சக்தியில் குறைஷ ஏற்படுகின்றது. மீஸ்மாற்றத் தின்போது, சேடிக்கப்பட்ட இரசாயவச் சக்தியில் அதிகளிப்பு ஏற்படு கின்றது.

இரசாயவச் சக்தி குறைக்கப்படும் இரசாயவத் தாக்கமொக்யுஇடம் பெறும்போத, பின் கலவடுக்கில் உள்ளத போன்ற, வெளிவிடப்படும் இற சாயவச் சக்தி, மில்சக்தி போன்ற சக்தியின் வெறெரு வடிவமாக மாற் றப்படக் கூடிய வசதியில்லாவிடின், வெலிலிடப்படும் அச்சக்தி, அதே அன வான வெப்பமாக அல்லது வெப்பச் சக்தியாகத் தோவ்றி அத்தொகுதியில் வெப்பறிலே வைய அதிகளிக்கச் செய்யும். இவ்வெப்பச் சக்தி, SUP S (S வை விவிடப்பட்டால் கூழல் வெப்பறி 2ல உயரும். நிலே பில். இத்தகைய தொகதியிலிருந்த வெப்பம் வெளிவிடப்படுகிறத என நாம் கூறவோம். இதற்த மாறக, இரசாயவச் சக்தி அதிகரிக்கும் ஒரு இரசாயவத் தாக் கம் இடம் பெறும் போத, வெளித் தோற்றுவாயொள்றிலிருந்த តា ធ្វី 🗳 வொரு வடிவிலம் சக்தி வழங்கைக்கடிய வாய்ப்பில்லாலிடின், தொகுதியின் வெப்பநிலே குறையும். இந்நிலையில் தொகுகியால் சக்தி உறித்சப்பட்டத எக்கிறேம்.

3.10 புறவெப்பத்தாக்கங்களும் அகவெப்பத்தாக்கங்களும்

இரசாயகத் தாக்கங்கள் இடம் பெறம்போது, அவை சிறப்பீயல்பான பீசமானத்துடன் இடம் பெறுகின்றன என்பதை நாம் ஏற்கனவே அலகு1இல் கற்றேம். இத்தகைய, உருமாற்றங்கள் வழமையாக வெப்பச் சக்சி உறிஞ்சப்படுவதுடன் அல்லத வெளிவிடப்படுவதுடன் இடம்பெறுகின்றன என்ப தீவே பகுதே 3.03 இல் நாம் அறிந்தோம். எனவே இத்தகைய உரு மாற்றங்கள் வெப்ப இரசாயகத் தாக்கங்கள் என அழைக்கப்படுகின்றன.

3.10.1 அகவெப்பத் தாக்கங்கள்

undensta

ஒரு தேக்கரண்டி அமோனியம் குளோரைட்டை அல்லது அமோனியம் நைத்திரேற்கைற, நீரைக் கொண்டுள்ள பரிசோத2னக் குழாயொன்றிறுள் இட்டு, நன்கு குவக்குக. பரிசோத2னக் குழாயின் வெனிப் பக்கத்தை உமத உள்ளங்கையால் பிடிக்க என்ன உணருகின்றீர்? உமதஅவதானிப்பிற்கு எவ்வாத விளைக்கம் கூறுவீர்? அமோனியம்உப்பு நீரில் கரையும்போதாள்ள நடைபெற்றிருகீகும்? இக்களைசேசல மேலும் சிறித ேறோம் வளியண்டைலத்தில் இருக்கவிட்டால் என்ன நடைபெலும்?

நீர் தற்போத செய்த பரிசோத2கேயிலிருந்த, அமோஷீயம் உப் பொக்ற நீரில் கரைக்கப்படும்போத, குஷிர்ச்சி உடைபாகும் என்பதை அவ தாகிக்கலாம், அமோஷீயம் உப்பையும் நீரையும் கொண்ட இத்தொகுதி அத2க அடுத்துள்ள பரிசோத2கைக் குழாயிலிருந்தும் அதைச் சுற்றியுள்ள காற்றிலிருந்தும் வெப்பச் சக்தியை உ<u>றிஞ்</u>சி பரிசோத2கைக் குழாயில்வைப்ப நி2லையக் குறைக்கின்றது. இது, அகவெப்பத் தாக்கங்களுக்கோன ஒரு மாதிரி உதாரணமாகும். தாக்கத் தொகுதி குழலிலிருந்து வெப்பத்தை உறிஞ்சுவதோடு இடம் பெறும் தாக்கங்களே அகவைப்பத் தாக்கங்கள்ளன வரையறுக்கலாம்.

அகவெப்பத் தாக்கத்தை எடுத்தக் காட்டுவதற்கான மேலுமொரு உதாரணம் அமோனியங் கந்தகசயனேற்றை, பேரியலைதரொட்சைட்டுக் கரைச்வுடன் சேர்த்தலாகும், அப்போத இடம்பெறும் தாக்கம் ஒருஅக வெப்பத்தாக்கமாகும்.

 $Ba(OH)_2 + 2 NH_4 CNS = Ba(CNS)_2 + 2NH_3 + 2H_2 O$

ப்சமாவத் கற்றேம். உறித்சப்ப திசே பர பாற்றத்து

H2 + 12 +	30 kJ	(வெப்பம்) = 2HI +
N2 + 02 +	180 kJ	(ดิฒ บํ บ นํ)	= 2NO = CS
C +2 5 +	116 KJ	(ລິຟ ປໍ່ ປ ທໍ	and an and an
I_2	218 KJ	(வெப்பம்)	27 27
NOU HE WAR	435 KJ	(ลม ป ป น)	1 BIR 24

வெப்பமாற்றங்க 2 வயும் உள்ளடக்கி முற்றுய்ச் சமன்படுத்தப்பட்ட இல் வகைத் தாக்கங்கள் வெப்பவிரசாயனச் சமன்பாடுகள் எனப்படும். வெப் பம் உறிஞ்சப்படுவதோடு மூலகங்கள் ஒன்ற சேர்ந்த உண்டாகும் சேர்னவ கள் (உ–ம் HI, NO, C, S₂) அகவெப்பச் சேர்வைகள் எனப்படும். வழ மையாக இத்தகைய சேர்வைகள், அவற்றின் ஆக்கக்கூற்ற மூலகங்களிலிருந்த உயர் வெப்ப நி2லகளில் மட்டுமே கணிசமான அளவுகளில் உண்டாகின்றன. அகவெப்பச் சேர்வைகள் பொதுவாகச் சாதாரண வெப்பறி2லகளில்உளுதி

92

论的上来

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org யற்றகைவ்.

303 S 2

3.10.2 புற வெப்பத் தாக்கங்கள்

to the

தாக்கத் தொகு கியிலிருந்த குழலுக்கு வெப்பம் வெலியேற்றப்படுவதுடன் இடம்பெலும் அநேக தாக்கங்கள் உங்களுக்கு ஏற்கனவே பரிச்சயமானவை. அகவெப்பத் தாக்கங்களிலும் பார்க்க பிகச் சாதாரணமான இத் தாக் கங்கள் புற வெப்பத் தாக்கங்கள் எனப்படும். புறவெப்பத் தாக்கங்க தைக்கான சில: உதாரதுங்கள் கீழ்வருவன: –

is. 4 algundantanta suidatan

เสิรรถเสร้าย เรื่องเกมส์เห

× •	C	+	0,	=	CO2	+	393	kJ	(வெப்பம்)	+ ·
	122		02		SO2		292	kJ.	(ดิฒ บ่ บ เช้)	1.
2	H2	+	02	110 - #12	2H,Õ	. 5 🕇	572	KJ	(ຄຸຍຸ ບໍ່ ບໍ ບໍ ບໍ)	
a. 17	H	t	Cla	é na z ás	ZHCE	. di ()+1	168	kJ	(வெப்பம்)	te f
5 22	N ₂	t	3Ĥ,		2NH3	di Ha	92	kJ	(ຄຸຍບໍ່ມູ່ຜູ້)	1
in C	CH	+	20,	= 0	02+21	420+	891	kJ	(ലെப்பல்)	
N	að	H	$+H\tilde{c}$	ce = n	IaCl++	120+	57	kJ.	(വെப்பம்)	1.01

வெப்பம் வெரிவிடப்படுவதோடு, ஆக்க மூலக்கறுகள் ஒன்ற சேர்ந்த உண்டாகும் சேர்அவகள் புறவெப்பச் சேர்அவகள் எனப்படும். இத்தகைய சேர்வைகள், சாதாரண வெப்ப நிலேகளில் வடுஅமையாக உறுகியாவனவ. ஆயிழும் உயர் வெப்ப நிலகளில் இனவ பிரிவணடகின்றன. 3.10.3 புற வெப்பச் சேர்அவகலாயும் அகவெப்பச் சேர்வைகைலாயும்

3.10.3 புற வளப்பு சொண்ணக்கள்றம் அகளைப்புச் சோண்ணக்குள்றும் கிற்றிலைக் ஒப்பிருதல் கைகளிக் கிற்றபடி பிறை இறுப்படிற்றில் கிறைக்கு கிற்றில் இதுப்பிருதல் கிக்களிக் கிற்றபடி பிறை இறுப்படிற்றில் கிறைக்கு

பொதுவாக அகவெப்பச் சேர் கைக்ஸ் புறவெப்பச் சேர் வைகளியும் பார்க்கக் கேடிய தாக்கமுடையைகை. இது குறிப்பாக சாதாரான வெப்ப நி2்லகளில் கூடுதலாகவிருக்கும். உறுகிக் தல் மையில் காணப்படமீஇல் வேறு பாட்டி, லச்சற்றலியேயின் தத்துவத்தின் அடிப்படையில் விளக்கலாம்.இது பகுதி 11.20 இல் ஆராயப்படும்.

எல்லாருயிலும் அசுவெப்பச் சேர் வைகள் சயமாகப் பிரிவகயுற வேண் டியை நியதியில் ஃல. பிரினைகனயை ஆரம்பிப்பதற்ற ஏவற்சக்கி என அழைக்கப் படும் ஒருவித சக்தி பெரும்பாலும் அளிக்கப்படல் வேண்டும். எனிறும் பிரிலைக ஆரம்பித்ததும், செயல்முறையின் போத வெளிவிடப்படும் வெப்பம் தேவையான ஏவற்சக்தியை அளித்த பிரிவகயை முற்றப்பெறச் செய்கிறது.

3.10.4 <u>லவோசியரினத</u>ம் லப்பிளசினதும் விதி

இ நசாயனத் தாக்கமொக்றின் போத வெளிவிடப்படும் வெப்பம் இத் தாக்கம் எதிர்ந் திசையில் நிகழும்போத உறிஞ்சப்படும் வெப்பத்திற்குச் சமமென வவோசியரும், லப்பிளசும் எடுத்தக் காட்டினர். இவ்வாலு, ஒரு மூல் அமோகியாவும், ஒரு மூல் HCL உம் சேர்ந்த NHCL ஐ உண் டாக்கும் போத வெளிவிடப்படும் வெப்பம், ஒரு மூல் NH⁴₄CL மேற்கூறிய வாயுக்களாகப் பிரிகையடையும் போது உறிஞ்சப்படும் வெப்பத்திற்குச்சம மானதை.

ல வோசியரினதும் லப்பினசினதும் விதி, உண்மையில் விரிலான சக்திக் காப்புத் தத்துவத்தின் (பகுதி 3.03 இல் இத ஏற்கன வே குறிப்பிடப் பட்டுனது) ஒரு விசேச அம்சமாகும். ஏனெகில் தாக்கு பொருட்க 2ேன ஒன்ற சேர்க்கையில் வெளிவிடப்படும் வெப்பமானது, வி 2 வைபொருட்க 2 வை பிரிப்பதற்குத் தேவையான வெப்பத்திலும் பார்க்கக் கூடுதலாக இருப்பின் சேர்க்கை, பிரினைக, செய்முறைக 2 வே அடுத்தடுத்தை இடம்பெறச் செய்வ தால், வெறு மையிலிருந்து, எல் 2 லயற்ற கணிசமான வெப்பச் சக்தினையப் பெறுவதை சாத்தியமாக இருக்கவேண்டும்.

3.11 வெப்பவிரசாயனமும் கலோரியளவியலும்

இறசாயனத் தாக்கங்களுடன் நிகழும் வெப்பமாற்றங்கள் பற்றியதுய்லு வெப்பவிறசாயனம் எனப்படும். வழகுமயாக இடம்பெறும் பல்லேறை இற சாயனத் தோற்றப்பாடுக 2ேனப் பொருள் வினைக்கிக் குறுவ தற்கும், வினங்கிக் கொள்வ தற்கும், வெப்பனிறசாயனம் பிரதானமானதும் மிக முக்கியமானத மான ஒரு பங்கை வெசிக்கில்றது. இறசாயனச் சேர்ணவ வொன்றை உண்டா கும்போது, இடம் பெறும் சக்தி மாற்றம், அச் சேர்ணவயின் உறுதித்தன் மைனையத் தீர்மானிப்பதாக இருக்கூம்.

தாக்கங்களில் இடம்பெறும் வெப்பமாற்றங்கள், உரிய வெப்பநி2ல மாற்றமாகப் பீரதிபலிக்கும். வெப்பநி2ல மாற்றத்தை அளவிடுவதற்கு குறிப்பிட்டளவு நீரிகூல் கூழைப்பட்ட ஒரு பாக்திரத்தில் தாக்கத்தை இடம் பெறச் செய்யலாம். இவ்ஷபகரசைம் முழுவதும் கலோரிமாகி எவப்படும். ஒரு கலோரிமாகிவையப் பயன்படுத்தி வெப்பமாற்றங்க2**எ அளவிடல்**கலோ ரிமானம் எனப்படும். வெப்பமானி ஒன்றை அல்லத வெப்பனி2ேனை போக் றவொரு உபகரணத்தைப் பயன்படுத்தி வெப்பநி2ல மாற்றம் நிர்ணயிக்கப் படுகின்றது. புறவெப்பத் தாக்கங்களில், வெப்பச் சக்தி வைகினிடைப்படு வதால், வெப்பநி2லயில் அதிகாரிப்பு ஏற்படுகின்றது. இதற்குமாறுக,அக வெப்பத் தாக்கத்தில் வெப்பச் சக்தி உறிஞ்சப்படுவதால், வெப்பநி2ல குறைகின்றது.

கலோரிமானி ஒன்றில் வெப்பமாற்றத்தினதம், அதற்கு ஈடான வெப் பநிலே மாற்றத்தினதும் விகிதம், அதற்கேயூரிய சிறப்பியல்பொன்றுகும். இவ்விதேம் வெப்பக் கொள்ளனவு எனப்படும். இத தொகுதியில் காணப் படும் பதார்த்தத்தின் அனவைச் சார்ந்ததாகவிருக்கும். ஒரு மூல்பதார்த் தத்தின் வெப்பக் கொள்ளனவுப் பெழமானம் மூலர் வெப்பக் கொள்ளனவு எனப்படும். பதார்த்தத்தின் ஓர் அலகு நிறையினதை வெப்பக்கொள்ளனவு ததன் தேவைப்பம் எனப்படும்.

வெப்பக் கூளியம் (2 உண்டாக்கப்படும் ஒரு இரசாயகத் தாக்கத்தை நாம் இப்போத கருதுவோம். இத △ ர் எதும் வெப்பறிலே மாற் றத்தை (துரம்ப வெப்ப றிலேக்கும் இறுகிவைப்ப றிலேக்கும் உள்ள வித்தி யாசத்தை) கலோரிமானியிலும் (ஜ மூல்கள் = நிறை (2) அதன் உள்ள டக்கத்திலும் (ஒழுல்கள் = நிறை (ர) உண்டாக்குகிறைதெனைக் கொன் வோம். கலோரிமானியினதும் அதன் உள்ளடக்கங்களினதும் மூலர் வெப்பக் கொள்ளவுகள் முறையே (, (2 ஆகும். இவற்றிற்கு ஒத்த தன் வெப்பங் கள் முறையே (த தீ ஆகும். கலோரிமானியினதும் அதன் உள்ளடக்கங்களி தாற் வெப்பக் கொள்ளவு பின்வரும் கோலையிரைல் தரப்படுகிறது:

> மொத்தவெப்பக் கொள்ளவடி = $xC_1 + yC_2 = aS_1 + bS_2$ = $Q/\Delta t$

அதே வே, பல் வேறு பகுதிகளினது நிறைகள் தன் வெப்பங்கள் என்ப் அற்றிலிருந்த கணித்து நிர்பையீக்கலாம். மாறுக, கலோரிமாவியில் வெப்பமாக்கும்கரு வொக்கூற வைத்து, யின் தேட்டமொன்றிறு பாக வரையறுத்த கணியத்தில் வெப்பத்தைப் பிறப்பிக்கலாம். இதற்கேற்ப நீரில் ஏற்படும் வெப்பநி 2ல அதிகரிப்பைக் கொண்டு, கலோரிமாவியினதும் அதன் உள்ளடக்குங்களினதும் மொத்த வெப்பக் கொள்ளவுணவப் பரிசோத 2னே முறையோகப் பெறலாம்.

வை கிஷிடப்பரும் வெப்பம் பின்வரும் தொடர்பிதல் கலோ ரிமா கிழின தம்

அதன் உள்ளடக்கங்களினதும் மொத்த வெப்பக் கொள்ளனவுடன் தொடர்பு படுத்தப்படும்.

 $\mathbf{Q} = \left[\mathbf{x}C_1 + \mathbf{y}C_2\right]\Delta \mathbf{t} = \left[\mathbf{a}S_1 + \mathbf{b}S_2\right]\Delta \mathbf{t}$

கலோரிமாகியூல், அவப்பவிரசாயன அவலீடுகூ உளத் திருத்தமாகச் செய்ய முயல்கையில் எதிர்கொள்ள வேண்டிய பெரும் பிரச்சி 2வகளில் ஒன்ற வெப்ப இழப்புக்க 2ளக் தவிர்ப்பதேயாகும். வெளிமண்டலக்கில் குவக்கப் படும் சூடான இரும்புக் கம்பி தொடர்ச்சியாக குழலக்கு வெப்பத்தை இழந்த படிப்படியாகக் குளிரடைந்த அறை வெப்பநிலேயை அடையும் என் நாம் அறிவோம். இத்தகைய வெப்ப இழப்புக்கள் கடத்தல், LOS மேற்காவுகை, கதிர்ப்பு எதும் முறைகவால் இடம் பெதுகிக்றவ. கூடாக அல்லத கொதி திரவத்தைக் கொண்ட ஒரு பாத்திரமும், நேரம்போகப் போகக் குளிரடையும். ஆய்தும் இத்திரவத்தை விரைவாகக் குளிரடையுச் செய்வு தாகுல், அறைவெப்ப நிலே விலும் பார்க்கக் துறைந்த வெப்பநில யிலுள்ள நீரைக் கொண்ட ஒரு பாத்திரத்தில் இத் திரவத்தையடைய பாத் திரத்தை நாம் அமீழ்த்தி வைத்தல் வேண்டும். அதாவத, சூழல் வெப்ப நிலேயைக் குறைப்பதன் மூலம், திரவம் குளிரடையும் வேகத்தை நாம்தரி தப்பருக்குகிறேம். இத எதைக் குறிக்கின்றத? வளியண்டைலவெப்பநி 2லயில் றீர் இருக்கும்போது கட பாத்திரம் வு வில்ஸ்டலத்தில் வைக்கப்படுவதிலும் பார்க்க நாரில் கொக்கப்படும்போத விரைவாகக் தேவிரேடைவதன் காரணம் என்ன? துனிரடையும் செயல்முறையில் சம்பந்தப்பட்ட தோற்றப்பாட்டைப் பற்றிறீர் பெறக் கடிய முடிவுகளும் உய்த்தறிவுகளும் யாவை?

கதிர்ப்பால் இடம் பெறம் வெப்ப இழப்புக்கள் நியூற்றனின் குகிரல் விதியீதல் தளப்படுகின்றன. இவ்விதியீன் பிரகாரம், வெப்பஇழப்பு வுதம் பரிசோத2கத் தொகுதிக்கும் கூழலுக்கும் இடையேயுள்ள வெப்பநி2ல வித் தியாசத்திற்கு விகித சமமானத. இவ்வழலைத் தவிர்ப்பதற்கு இரு பிர தான முறைகைப் பயன்படுத்தப்படுகின்றன.

(1) கதிர்ப்பின் வி 2வுவால் ஏற்படும் வெப்பஇழப்பை இயன்றவுவில் குறைப் பதற்கு கலோ ரிமா விப் பாத்திரம் வெப்பமுறையாகக் காவலிடப் பட்ட பல கத்சகங்களால் குழப்பட்டிருக்கும் அல்லத சிறப்பாக திவார் வெற்றிடக் குடுவை பொன்றிறைன் வைக்கப்படும். (வெப்பக்

காலலிகளாகப் பயன்படுத்தவதற்கு எத்தகைய பொருட்கள் சிறந் ஏன் ? ஏற்ற உதாரணங்க 2வத் தருக). Cana 5 600 2

62.00

(11) சேறவூல்லாத கலோரிமா இவொக்ற பெயன்படுத்தப்படுகிறது. இம் ் முறையீல், பொ தலாக நீறைக் கொண்ட வெளிக்கத்ககத்தின் வெப் பநீ2ல, தாக்கத்தில் போத தொடர்ச்சியாகச் சரிப்படுத்தப்படு இவ்வழி செய்தல், தாக்கு பாத்திரத்தில் வெப்பநில் பிலும் SOB. ் பார்க்கக் கைத்தைக் நீரில் வெப்பதி 2ல ஒரு பா கையில் பில்லத்திலும் கருதலாக வேறபடாமல் இருப்பதன் பொருட்டேயாகும். இவ்வழி ் தொகுதிக்கும் கற்றுடதுக்கு மிகையே யுக்க வெப்ப வேறுபாட்டைக் குகைறப்பதல்லுலம், கதிர்ப்பால் ஏற்படும் வெப்ப இழப்பு ஆடுமான ு இது குற கீற்றவலினதாக்கப்படும் இது பட்டும் க a Dans sandar.

கலோரிமாகியைச் கற்றியிருக்கும் சேறவில்லா நி 2லக் கத்தகங்கள் சிறந்தவையாக இல்லோவிடின், குளிரலக்கான திருந்தமொன்ற அவசியமா நேரத்திற்கொதிராகக்குறித்த ் கலோ ரிமானியில் வெப்பநிலே கூய ain ng. நேரத்திற்குக் குகிரல் வ 2ன வெப்பத்தை வெலிலிரும் தாக்சம் ஆரம்பித்த கோட்டைப் பின் இதேக்கி நீட்டி குளிரழக்கான திருத்தம் பெறப்படுகின்றது. அவதா வீப்புக் காலத்தில் போத கேலோ ாமா வியிலிருந்த கதிர்ப்பு வெப்ப இழப்பு இடம் பெறுவிடின், பின்னீட்டப்பட்ட வெப்பநி 2வக்கும் ஆரம்பவெப்ப நி 2லக்கு பிடையேயுள்ள வித்தியாசம், ஏற்பட்டிருக்கக் கூடிய வெப்ப அதிக ிப்பீற்காவவொரு சுமாராவ மதிப்பீட்டைக் குறிக்கும். 四季 6 6 6 6

யிகவிரைவாக இடம்பெதம் தாக்கங்கள் (இவற்றில் கலோரிமாகியின் ழிகக் குஷறந்த நேரத்தில் உயர் வெப்பறிலேயை gan uis) உள்ளடக்கள்கள் நீறைவு பெலும் தாக்கங்கள் (இவற்றில் பெறப்படும் வெப்பப் பெறுமானம் தாக்கத்திற்குறியது எவ்பகையும், எந்தவொரு தாக்கு பொருதும் snås மடையாமல் இருக்கலில் 2ல எட்பதையும் உலகிப்படுத்தம்) எட்பன ดอย่า விரசாயன வெப்ப மாற்றங்க 2வே அளவிடுவதற்குக் கிடைக்கக் கடிய Hoiss தாக்கங்கள் ஆகும். இதன் பொருட்டு, கலோறிமாகியின் தாக்கு பாத் ஒரு குழாயீல் ஊக்கியொல்றை வைத்த, வாயுக்கவிடையோன និចនំសិលតំព சில லே 2வகளில் தரிதப்படுத்தப்படுகிறது. தாக்கங்கள்

தாக்க நேரம் முழுவதும் ஒரே சீரான வெப்புதிலேயை உறுதிப்படுத் தலை தல் பொருட்டு கலோ ரிமா வியிலும்பை நீர் நன்னு கலக்கப்படுதல் கலோ

I CE GE TRAINER

ரிமான அளவீடுகளில் முக்கியமாளதொன்றுகும். பின் கலக்கியொன்றை அல் லது காந்தக் கலக்கியொன்றை பயன்படுத்தலாம். ஆயிதும் கலக்குவதால் பிறப்பிக்கப்படும் வெப்பம் பிகச் சிற்றனவினதாக இருக்கவேண்டும்.கலோரி மானியிலன்ன நிரீ ஆவியாதலும் பிகச் சிறிதனவினதாக இருத்தல் வேண்டும்.

3.12 தாக்கவெப்பம்

நாம், பகுதி 3.11 இல், வெப்பவிரசாயனத் தாக்கமொன்றில்றிக மும் வெப்பமாற்றத்தின் அவள்டு பற்றி ஒரவவுக்குப் பொதுப்படையாகவே கருதிஞேம். பகுதிகள் 3.10.1 இலம் 3.10.2 இலம் முறையே வெப் பச் சக்தியின் உறித்சவடமும் வெளியேற்றத்துடமும் நிகழும் தாக்கங்கள்கில வற்றைக் கருதிஞேம். தரப்பட்ட ஒரு சேர் வையினது குறிப்பிட்ட அவவின் (பெரும்பாலம் ஒரு மூல்) தாக்கத்தோடு சம்பந்தப்பட்ட வெப்பமாற்றம் தாக்கத்திற்கான சமன்படுத்தப்பட்ட சமன்பாட்டிற்கு அமைய ஒந்த தாக் கிகளுடன் கூடை அச்சேர்வையின் தாக்கவைப்பம் எனப்படும். தாக்கம் பொருள் பொதிந்ததாக இருப்பதற்கு, மாற்றத்தைக் குறிப்பிடும் இரசா யனச் சமன்பாட்டுடன் தாக்கவெப்பத்திற்கான என் பெறமானமொன்றை நேரடியாகத் தொடர்ப்படுத்தல் வேன்டும் என்பதை வவியறத்தும் வேன்டும்.

3.13 ஒரு தாக்கத்திற்கான நிபந்தின்கள்

வெப்ப மாற்றங்கள் சம்பந்தப்படும் தாக்கங்களுக்கான உதாரணங்கள் சிலவற்றை முதலில் கருதலோம்.

(1) இரு வாயுக்கள் ஒன்றுசேர்ந்த வெப்பத்தை வெகிலிட்டு(அதாவத ஒரு புறவெப்பத்தாக்கம்) திரவ அல்லது வாயு நிலேயிலான விலிவைபாரு வேக் கொடுக்கும் தாக்கமொன்றைக் கருதாக. வில்லபொருள் வாயுவாக இராமல் திரவமாக இருக்குமாயின் வெகிலிடப்படும் வெப்பத்தினைவு கடுத லாகலிருக்கும் எப்பதை வெகிப்படை. ஏன் இவ்வாறு நிகழ்கிறது?

ஒரு குறிப்பிட்ட உதாரணத்தைக் கவைக்கே. உதாரணமாக,வாயுநிலே மீழன்ன ஐகரசமும் வாயுநிலையிலுள்ள ஒட்சிசமும்

H₂ + ½O₂ = H₂O என்ற தாக்கத்திற்கேற்ப ஒன்று சேர்ந்து 1 மூல் நீறாவியை (244 kJ வெப்ப வெரியேற்றத்துடன்) அல்லது 1 மூல் திறவ நீரை (286 kJவெப்ப வெளியேற்றத்தடன்) கொருப்பதைக் கருதுக, விளேபொருள் வாயுவாக விராமல் திரவமாக இருக்கும்போது கூடுதலால வெப்பச் சக்தி(42kJ) வெளியேற்றப்படுவதற்கான காரணம் யாதாகவிருக்கும் என நீர்கருதுகிறீர்.

தாக்கவெப்பத்தை வெளியிடுதல் சம்பந்தமாக எமத முடிவானகருத்த யாதெனில், தாக்கத்தில் சம்பந்தப்படும் ஒவ்வொரு பதார்த்தத்தினதும் பௌதிக நிலேயைத் திட்டவட்டமாகக் குறிப்பிடுதல் முக்கியம் என்பதாகும். பதார்த்தம் தில்மை, திரவ, அல்லது வாயு நிலேயில் இருப்பதைக் குறிக்க சமன்பாட்டில் காணப்படும் ஒவ்வொரு பதார்த்தத்தினதும் மூலக்கற்றுச்சூத் திரத்திற்குப் பின்குல் முறையே (၄), (Ն) அல்லது (၃) என்றஎழுக்கைச் சேர்த்தல் ஒரு பொது வழக்காகும், இவ்வாறு திரவ நீருஷ்டாதல்

 $H_2(g) + \pm O_2(g) = H_2O(L) + 286 kJ$ or and u. Bornall emilipsi

 $H_{2}(q) + \frac{1}{2}O_{2}(q) = H_{2}O(q) + 244 kJ$ எனவும் எழுதப்படும்.

எனிலும், ஒரு தேறப்பட்ட பதார்த்தத்தில் பெவதிக நிடீல வெளிப்படையாக இருக்கூமோயின் அல்லத அப்பதார்த்தத்தில் சாதாரண உறுதியான நிடூலனயக் குறிக்குமோயில் (உதாரணமாக ஒட்சிசனிற்கு வாயு நிடூல) இத்தகைய பின் விடீணப்பைச் சேர்க்காத விடலாம்.

(ii) $NH_{2}(g) + HCL(g) = NH_{4}CL(g)$

என்ற சமன்பாட்டிற்கமைய வாயுறிலேயிலுள்ள அமோஷியாவும் வாயுறிலேயி லுள்ள HCL உம் ஒன்றசேர்ந்த தின்மை NH₄CL ஐ உண்டையக்கும்போது வெப்பம் வெளிவிடப்படும். இவ் வெப்பம் ஒரு மூல் NH₄CL இற்கு 176 kJ ஆகும். ஆயின், அமோனியாவினதும் HCL இனதும் நீர்க்கரைசல்கள்

NH₂(aq) + HCL(aq) = NH₄CL(aq) என்ற தாக்கத்தீற்கமையத் தாக்கமுறும்போத வெளிவிடப்படும் வெப்பம் மூலொன் றுக்கு 51 kT மட்டுமேயாகும். (இங்கே பயன்படுத்தப்பட்டவாறு "aq" என்ற குறியீடு ஒரு பதார்த்தத்தின் நீர்க்கரைசல் நி2லயைக் குறிக்கப்பயன் படுத்துவதற்கு ஏற்றுக்கொள்ளப்பட்ட முறையாகும். மேலும் இக்குறியீடு கரைசலானது, பதார்த்தத்தின் பிகவைதான கரைசல் என்பதையும் குறிக்கும்).

விலாதத்திற்குரிய விஞ

ஒரு பதார்த்தத்தின் பௌதிக நிஃலனையப் பொறுத்த வெளிவிடப்படும் வெப்பத்தில் பெருமாற்றத்தை ஏற்படுத்தும் காரவி யாத? இதிபோன்ற அலதானத்தைப் பெறக்கடிய தாக்குங்களிற்கான உதாரணங்கள்சிலவற்றைக் குறிப்பிடுக.

ensis who washer, with

வை மற்றத்துடன் தொடுப்பதைக் களுக்க விலை

(iii) $4 P(s) + 5 O_2(g) = 2P_2 O_3(s)$

என்ற சமன்பாட்டின்படி பொசுபரசை ஒட்சிசனில் எரித்த 1 மூல் பொசுபரசுசையொட்சைட்டைப் பெறும்போத வெளிவிடப்படும் வெப்பம் செம்பொசுபரசைப் பயன்படுத்தவோமாயின் 72 05 இன் மூலொன்றுக்கு 45 kJ ஆகும்; வெண்பொசுபரசைப் பயன்படுத்தவோமாயின் வெளி விடப்படும் வெப்பம் 47 kJ ஆகும். இவ்வித்தியாசத்திற்குக் காரணம் வெண்பொசுபரசு செம்பொசுபரசாக மாற்றப்படும்போத உருமாறல் மறைவெப்பம் வெளிவிடப்படுவதாலாகும். இவ்வாது, பல்வேறுபிறதிருப்ப வடிவங்கள் சம்பத்தப்படுமாயின், ஒரு மூலசுத்தின் குறியிட்டோடு அதன் பௌதிக நிலேயைக் குறிப்பிடுவது மட்டுமல்லாமல் அதன் பிறதிருப்ப வடி வத்தையும் குறிப்பிட வேண்டும். காபல உதாரணமாக எடுத்துக்கொள் வோமாயின் பென்சிற்களி, ஹரம் தல்ப இருபிற திருப்ப வடிலங்கள்

 $C(s, Glum a slip a slip) + O_2(q) = CO_2 + 394 hJ$

C (s, வைரம்) + O₂ (g) = CO₂ + 396 k.J ஆசிய இரு வெப்பவிறசாயனச் சமன்பாடுகளும் குறிப்பீடுவதற்கேற்ப, தாக்க வெப்பத்தில் 2 kJmcl⁻¹ வித்தியாசத்தைக் காண்பிக்கில்றன.

(N) HCL இற்கும் NoOH இன் நீர்க்கரைசவிற்கு மீடையே நிகழும் நடுதி 2லயாக்கல் தாக்கத்தில் வெளிவிடப்படும் வெப்பம், தாக்குபொருள் HCL வாயுதி 2லயில் அல்லது நீர்சேர் நி 2லயில் இருப்பதைப் பொறுத்தி ருக்கும். இதற்கேற்ற சமன்பாடுகள் வருமாறு

 $\begin{aligned} HCl(g) + NaOH(aq) &= NaCl(aq) + H_2O + 130 kJ \\ HCl(aq) + NaOH(aq) &= NaCl(aq) + H_2O + 57 kJ \\ @ <math>dw$ snowing with all shund in 73 kJ spines snowing, $HCl(g) + ulms shift = HCl(aq) \\ &+ ('aq' so shift = HCl(aq) \end{aligned}$

> Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

என்ற சமன்பாட்டின்படி 73 kJ வெப்பத்தை வெளிவிட்டு ஒரு மூல் HC). வாயு நீரில் கன்றவதாலாகும்.

(v) தாக்கங்கள், குறிப்பாக வாயுக்கள் சம்பந்தப்படுபலை, மாரு வெழுக்கத்தில் நிகழுமாயின், கவைளனில் பெருமளவு மாற்றங்களோடு நிகழ லாம். இத்தகைய சந்தர்ப்பங்களில், மாருவமுக்கத்திலும் மாளுக்கவைன விலும் நடாத்தப்படும் ஒரு தாக்கத்தின் வெப்பங்களிடையே பெரிய வேலு பாடுகள் காணப்படும்.

இல்வாற Zn + H_ESO₄ = ZnSO₄ + H_B என்ற சமன்பாட்டிற்கமைய, மா*ளு*வளிமண்டல வமுக்கத்திலான சாதாறன ஆய்குட நிபந்த2னகளில் நாகம் ஐதான சல்பூரிக்கமிலத்தில். கரையும்போது ஒப்பீட்டளவில் தாக்கியின் சிறிய கனவளவிலிருந்த பெருமளவில் ஐதரசன்வாயு வெளியேறல், வளிமண்டலத்திற்கு திராக அழுக்க_கனவளவு வே 2ல செய் யப்பட இடமளிக்கும் - இப்புற வெப்பத் தாக்கத்தில் வெளிவிடப்படும் வெப்பச் சக்தியில் ஒரு பகுதியைப் பயன்படுத்தியே தொகுதியானத இவ் வே 2லனையச் செய்யும். ஆகவே, மா*ளு*வமுக்கத்தில் தாக்கத்தை நடாத் தம்போத வெளிவிடப்படும் வெப்பம் 163 × J ஆகும்; ஆயின் மா*ளு*க்கவை ளவில் (இந்நி 2லையல், வளிமண்டலத்திற்கு திராக வே 2ல செய்யப்படமாட் டாது), தாக்கம் நிகமுமாயின் வெளிவிடைப்படும் வெப்பம் 166 kJ ஆகும்).

ப்பட்டை இதற்கு மாருக, வாயுதி&லயிலுள்ள ஐகரசலும் ஒட்சிசலும் விலாட்டி பிழ(ு) + பூ0((g) குட №0(g)

என்ற சமன்பாட்டிற்கமையத் தாக்கமூற்ற (110°C இல்) நீராவியாகும் போ த, நீராவி உண்டாகத் தொடங்கியதம் கனவளவு குறையும். வெளிமண் டலவ முக்கத்தில் தாக்கம் நடாத்தப்படுமாயின், விளேபொருள் உண்டாகும் போ த கனவளவு குறைதல் தொகுதியீத வளிமண்டலத்தால் வே லேசெய்யப் படுவதைக் குறிக்கும். எனவே மாறுவழுக்கத்தில் தாக்கம் நிகழ்வதை மாறுக்கனவளவில் தாக்கம் நிகழ்வதுடன் (வே லே செய்வத சாத்தியமற்றத) ஒப்பிடும்போத மேற்கூறியதன் விளவாக வெளிவிடப்படும் வெப்பச் சக்தி அதிகரிக்கும்.

விவாதத்திற்குரிய விஜ

C (s, பென்சிற்கார்) + O C (s, பென்சிற்கார்) + O C (s)

எதம் தாக்கம் மாறுவமுக்கத்திலும், மாறுக்கனவளைவிலும் நடாத்தப்பட்டது.

இல்லிரை வகைகளிலும் தாக்க வெப்ப மாற்றத்தை (மாற்றம் ஏதம் இருப் பில்) ஆராய்க.

(vi) தாக்கமொன்ற ஒரு வெப்பதிலேயில் அகவெப்பத் தாக்கமாக வும் வேஹெரு வெப்பறி2ல் பில் புறவெப்பத் தாக்கமாகவும் இருக்கலாம். ஏவெளில் ஆவ்விர வெப்பநிலக்கிலும் ஒரு அல்லதை பல பதார்த்தங்களின் பொதிக நிலேகள் வேழபட்டிருப்பதாலளகும். இவ்வாத, தாம்வெப்ப றி லேகளில் வாயு நிலே பிலுள்ள ஐதரசதும் தின் மறிலே பிலுள்ள அய உலும் ஒன்று. சேர்ந்த ஐத் சன்படைட்டை உண்டாக்கு தல், 54 kJmol வெப்பச் சக்திலை உறித்சலாரு நிகைழும் அகவெப்பத் தாக்கமாகும்; உயர்வெப்ப நி 2லகளில் , அயடுவ் வாயுநி 2லயிலிருக்கும் ; அத்தொடு பதங்கமாதல்மறை வைப்பத்தை உறித்தவதன் காறனமாக அயடீல் அதிகவரவை சக்கிலையும் கொண்டிருக்கும். அதே விடுளபொருள் – அரயுநிடுலயிலுள்ள ஜத்றசல் அயணடட்டு–இந்நிபந்த 2வேகேவில் உண்டாகும்போத தொக்கம் புறலுப்பத் தாக்கமாக இருக்கும்; இங்கு வெளிலிடைப்படும் வெப்பத்தினைவு 11 kJmol¹ ஆகும்.

இப்பகு தியில் கருதப்பட்ட உதா ரணங்கள் தாக்கங்களோடு நிகழும் வெப்பமாற்றத்தினைவு தாக்கம் நிகழும் நிபந்த 2னைகளால் குறிப்பிடத்தகுந் தனவில் பாதிக்கப்படுகின்ற தென்பதைத் தெளிவாகக் காட்டுகின்றன. எனவே ஒரு தாக்கத்தின் வெப்பமாற்றத்திற்கான பெறுமான மொன்றைக் குறிப்பி டும்போது, தாக்க நிபந்த 2னைக 2ன அதாவது தாக்கத்தின் ஆரம்பத்திலும் முடிலிலும் தாக்கு பொருள்களினதும் வி 2 வேபொருள்களினதும் நிபந்த 2 வைக 2 வ குறிப்பிடுதல் முக்கியமாகும். இதனுல் வெப்பமாற்றம், குறிப்பிட்ட நிபந்த 2 கைனில் ஏற்படும் வெப்பமாற்றம் எனப்படும். இந்நிபந்த 2 வைகளும் விவ ரக் கூற்றுக்கும் தாக்கு பொருள்கள், வி 2 வ பொருள்கன் ஆகியவற்றின் பென திக நி 2 ல வையடிம், வெப்பநில அமுக்கம் (அல்லது கனவளவு) ஆகியவற்றை யும் உள்ளடக்கல் வேன்டும். தாக்கத்தின் நிபந்த 2 வகள் குறிப்பிடப்படா விடின் தாக்க வெப்பத்திற்குக் கொடுக்கப்பரும் பெறுமானம் உண்மையான பௌதிகைக் கருத்த அற்றதாகிலிடும்.

3.14 நடுதில்யாக்கல் வெப்பம்

தாக்கலெப்பமாவது யாத எப்பைதைப் பகுதி 3.12 இல் கருதியபின் பகுதி 3.13 இல் இல்லெப்பத்தில் பெறுமாலம் தாக்கத்தில் நிபந்த2்கக ீளப் பொழுத்திருக்கும் என அறிந்தோம், இனி, சிலவகைத் தாக்கங்க ீனயும் அவற்கூரே சம்பந்தப்படும் வெப்பங்கீளயும் கருதுவோம்-

முதலில் நாம், எல்லோருக்கும் நன்கு பரிச்சயமான மிகச் சாதார கைத் தாக்கமொன்றை, அதாவத மூலமொன்றுல் ஒர் அமிலம் நடுநிலேயாக் கப்படுவதை கருதுவோம். தாக்கத்தின் குறித்த நிபந்த2கைகில், ஒரு கிராம் சமவதுவளவு அமிலம் (அல்லத மூலம்) ஒரு கிராம் சமவதுவளவு மூலத்தால் (அல்லத அமிலத்தால்) நடுநிலேயாக்கப்படும்பொருதை வெளி விடப்படும் வெப்பமே,நடுநிலேயாக்கல் வெப்பமெனை வரையறக்கப்படும்,

பரிசோது ஆய்வு

மானவர்கள் பின்வரும் செய்முறையை நடாத்தி இதஞல் பெறப்படும் பெறுபேறுக 2 வப் பயன்படுத்த சோடியமைதறொட்சைட்டால் ஐதறோகு வோரிக்கயிலத்தின் நடு தி 2 லயாக்கல் வெப்பத்தைத் துணியவேன் டும் (இவ் வு தாறனத்தில் தாக்க நிபந்த 2 வகவாவன. இரு தாக்கு பொருள்களும்கரை சல்களாகும்; தாக்கம் (மாறு) வளிமண்டலவழுக்கத்திலும், அறைவெப்ப நி 2 லயிலும் நடாத்தப்படும்).

செய்முறை

சாதாறனமாக இத்துணிவு கண்ளுடியால் அல்லத செம்பாலான கலோ ரிமாவியில் நடரத்தப்படும்; கலோரிமாவி சிறந்த காவலிடும் பதார்த் தத்தால் சூழப்பட்டிருக்கும். சிறப்பாக கலோரிமானியாக வெற்றிடக் குடுவையொன்றைப் பயன்படுத்தியும் இத்துணித2லச் செய்யலாம்(கலோரி மான தூய்வுகளில் இத்தகைய காவலிடப்பட்ட கலோரிமானி அவசியமாயி ரூப்பதன் காறனம் யாத?).

(1)கலோரிமாஷியில் வெப்பக்கொள்ளளவு, C ஐக் தூலிகை.இதன் பொருட்டு, கனவளவு v₁ உடைய (ஏறக்குறைய 100 cm³) தண்ணிறைக் குடுவையில் எடுக்கு, சாதாரண வெப்பமானியொன் மூல் அதன் வெப்பநி2ல t₁, ஐ எடுக்க. ஏறக்குறைய 60°c இலுள்ள (இப்வெப்பநி2ல t₂ ஐ அவதானிக்க), கனவளவு v₂ உடைய (ஏறக்குறைய 200 cm³) நீனைதக் குடுவையில் ஊற் மூக. கலவையைக் குவனமாகக் கவக்கி, கலோரிமானியிலுள்ள மொத்த உள்ளடக்குத்தேன் அடையும் உயர் வெப்பநி2லவை (t) அல தானிக்க. அப்போது கலோரிமானியும் கலோரி _ சுரு நீரின் மானியிலுள்ள தண்ணீரும்பெற்ற வெப்ப நட்டம். வெப்ப நயம்.

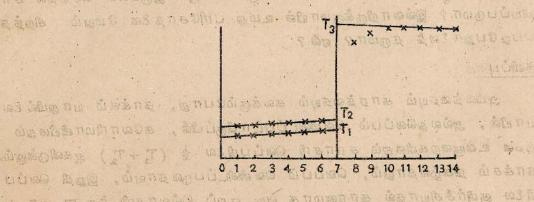
நீரிவடர்த்த பே ஆகவும் அதன் தேன்வெப்பம் S ஆகவும் இருப்பின் (C + v₁d5)(t-t₁) = v₂dS (t₂-t) பி உம் S உம் அறியப்பட்டிருப்பின், C ஐ வசதியாக மதிப்பிடலாம்.

சோடியமைதரொடன்சட்டு, M ஐக்ரோகுளோரிக் (ii) M கமிலம் ஆசிய ஒவ்வொக்றினதும் ஏறக்குறைய 200 cm இ தயாரிக்க. வெற்றக் கலோரிமாகிக் குடுவையை சிழித ளவு காரத்தால் கழுவி, அதில் 🗸 கலவை எவு டைய(ஏறக் குறைய 125 cm) காரக் கரைச லே எடுக்க. தப்புற வான தம்புக் குடுவையொல்றைச் சிறிதளவு ஐக்ரோகுளோ ரிக்கமிலத்தால் கூழுவி √ இற்கு நிகரொத்த கனவளவ அமீலத்தை அதனுள் எடுக்க. கலோரிமாலிக் குடுகூவ யி லள்ள திரவத்திலுள்ளும், கூம்புக் குடுகலையிலுள்ள திரவத்தி றைள்ளும் 0.10 வரை வாசிக்கக்கடிய வெப்பமாவிகீளை சொருகுக. ஒரு நிமிட இடைவே சேகைவில் (ஏறக்குறைய) 6 நிடிடங்களுக்கு வெப்பநி2வக2்ள அவதானிக்க. (இரு வெப்பநி2லகளும் ஒன்றக்கொன்ற நிகரொத்தவையாக இல்லா திருப்பதோடு அறை வெப்பறிலேக்கும் நிகதொத்த தாக இல்லா திருப்பதேன் ? நேரம் போகப் போக வெப்பநிலே மூல் சிறிதளவு இறக்கம் அல்லதே ஏற்றம் காணப் படுவதேன் ?).

ஏறக்குறைய 7வத நிபிடத்தில், நேரத்தை அவதானித்த கம்புக் குடுகூவயிலிருக்கும் அயிலக்கனரச2ல கலோரிமானிக் குடுவையிலிருக்கும் காரக் கரைசலாள் ஊற்றி நன்றுகக் கலக் குக. நடைடுறையில் இயலுமான தடவைகள் வி2ளவுக் கரை சலிவை வெப்பநி2ல்லைய 17, அவதானிக்க. (நேரத்திற்கைதி : Stockies தடன்வ கள் எவ்வ எவிற் கெவ் ராக வெப்பநிலே அளவிடப்படும் அதிகமாக இருக்கிறதோ அவ்வளவிற்கவ்வளவு பேறுக ରା ଶାର୍ଘ செம்அமையீருக்குமைப்பைதை தொடுகத்தில் கொள்க. ஏன்?). റിര് கறைதல்கடிலக் கலக்கியடில் ஏறக்குறைய 6 – 8 நிடி மேக்க தொடர்ந்த உமத அவதானங்க2ளச் செய்க. ிற்கு (கலப்பதற்துமுன்) இரு கரைசல் வரைப்படத்தா வில்

· 30 50 50 13 (

a rel (iii)


1992年1月29月

RO GY NO

QGD (கலத்தவின்பின்) விீப்ளவுக்கனற வெப்பநிலைக்கோயும் र ती थे। இல் வைப்பறிலேக்ளயும் குறிக்க. UL10 3-1 சலின் மாதிரி அனவூடுகளின் ஒரு தொகுதி கோட்டப்பட்டுனது. உமத அவலிடுகவி இம்மாதிரி வறைகீகோட்டை ஒத்திருக்கிறதா?

专利的 (13 (11 (1) (1))) 》 第二日

as a contraction of the second and a second and a second as a seco

3. படமீ huis Grand Ling 160 13

உமத வெப்பநிலே அளவீடுகள் ஓர் உச்சநிலேயை அடைந்த ்கை பில் படிப்படியாகக் கூழிறங்குவதேல்? உச்சநில்லை அடைந்த பின் உமத வெப்பநி2ல அளவீடுகள் கீழிறங்காமல் இருந்திருந் தால் பொருத்தமாயிருந்திருக்குமா? (ஏன்?) அவ்வாறுயின் உச்சநிலேயை அடைந்தபின் வெப்பநிலே கீழிறங்குவகைதஇயன் பல இதுக்கு **மையிய்குக் குறைப்பதாவ் பொறு?**ு நாகக்இடு வதற்றிக்காக நடி

்படம் 3 – 1 இல் குறிப்பிடப்பட்டுள்ளவாற பின்வரும் அளவீட்டுக் தொகுதிகளி ஓரடாக இயன்றவரையில் யிகச் சிறந்த நேர்கோடுக 2வ வரைக. கை (i) கலப்பதற்கு மேன் கோறக் கரைசலின் வெப்பநி2லகள் அமிலக் கேளை சவின் வெப்பறி 2லகள் கலப்பதற்கு முன் (11).

139 35 30 F

(iii) உச்ச வெப்பநி2ல்லைய அடைந்தபில், கலப்புக் கரைசலில் வெப்பநி2ல்கள்.

கலக்கப்படும் நேரத்தில் (படம் 3.1இல் 7 வது நியீடம்)இம்மூன்ற நேர்கோடுகளும் நிலேக்கூற்றச்சை சந்திக்கட்டும்; முறையே கோடுகள் (i). (ii). (iii) ஆகியவற்றை ஒத்த வெப்பநிலேகள் T₁, T₂, T₃. ஆகிய மூன்றையும் வாசித்தறிக.

⊤, ⊤, எவ்பன கலத்தலிவ்போத முறையே காரத்தினதம் அடிலத்தினதம் ஆரம்பவெப்ப நிலேகீகக் குறிக்கும். 7, கரைசல் அடையும் உச்சவெப்ப றி லேயைக் காட்டியம் உயர்வாக இருப்பதேன்? T இனத பெறுமானத்தின் முக்கியத்துவம் யாது? கரைசல் உச்ச வெப்பநிலேயை அடைந்தபின் **B**n வெப்பரிலே சீழிறங்குவதை இயன்றவரையில் குறையச் செய்தீராயின் T இனதும் உச்ச வெப்பநிலேயினதும் சார்புப் பெறுமானங்கள் பற்றி யாத south? T ஐ உச்ச வெப்பநிலக்குச் சமதைக இருக்கச் செய்தல் சாத் தியப்படுமா? இவ்வொறிருக்குமாயின் உமத பெரிசோதேலே மேலும் சிறந்த பெறிபேறுக் உளத் தருமா ? ஏன் ?

கைவிப்புகள்

106

அய்லத்தையும் காரத்தையும் கலக்கும்போத, தாக்கம் யாதுயில் 2ல யாயின், அல்லதவெப்பம் வெளிவிடப்படா திருப்பின், கலோரிமானியினதும் அதன் உள்ளுறைகளினதும் சராசரி வெப்பதி 2ல ½ (T₁ + T₂) ஆகவிருக்கும். தாக்கம் நிகழ்வதாலும், வெப்பம் வெளிவிடப்பருவதாலம், இறுதி வெப்ப நி 2ல குளிர்ச்சியாதல் காரணமாக வழு ஏதம் இல்லாதவிடத்த T₃ ஆக விருக்கும் (கரைசலால் அடையப்பரும் உயர் வெப்பதி 2லக்குப் பதிலாக இவ்விறுதி வெப்பநி 2ல T₃ ஆக எருக்கப்பருவதேன்?). எனவே, தாக்கத்தின் போத வெளிவிடப்பரும் வெப்பம் காரணமாக கலோரிமானியினதும் அதன் உள்ளுறைகளினதும் வெப்பநி 2ல உயர்வு T₃ – ½ (T₁ + T₂) என்பதாகும்.

னி2்ளவுக் கரைசலின் கனவளவு ∿, அமைப்பு, இரையபு, செறிவு ஆகியவை யாதாகவிருக்கும்? இக்கரைசலின் அடர்த்தி, தன்வெப்பம் என்பனமுறையே ρ,C' ஆகவும் கலோரிமானியின் வெப்பக்கொள்ளளவு C ஆகவுயிருப்பின் கலோரிமானியினதம் அதன் உள்குறையினதும் மொத்த வெப்பக்கொள்ளவு (∨ρC'+C) ஆகவிருக்கும். எனவே, கலோரிமானியும் அதன் உள்கு வறயும் நயமடைந்த மொத்த வெப்பச் சக்தி:- $(\mathbf{v} \mathbf{p} \mathbf{C}' + \mathbf{C}) \begin{bmatrix} \mathbf{T}_3 - \frac{1}{2} (\mathbf{T}_1 + \mathbf{T}_2) \end{bmatrix}$ இற்குச் சமனுகும். இது, கனவளவு \mathbf{v}_3 உடைய \mathbf{M}_2 HCL ஆல் கனவளவு \mathbf{v}_2 டைய \mathbf{M}_2 NaOH நடுநிலேயாக்கப்படும்போது அதாவத $0.5 \times \mathbf{v}_3$ சமவலுக்கள் NaOH, $0.5 \times \mathbf{v}_3$ சமவலுக்கள் HCL ஆல் நடுநிலேயாக்கப்படும்போது, வெளி விடப்படும் வெப்பத்திற்குச் சமனுகும். எனவே 1 சமவலு NaOH ஒரு சம வல HCL ஆல் நடுநிலேயாக்கப்படும்போது வெளிவிடப்படும் வெப்பம் $\begin{bmatrix} \mathbf{v} \mathbf{p} \mathbf{C}' + \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{T}_3 - \frac{1}{2} (\mathbf{T}_1 + \mathbf{T}_2) \end{bmatrix} \frac{1000}{0.5 \times \mathbf{v}_3}$ இளுவ் தரப்படும். இந்நடுதிலேயாக்கல் வெப்பத்தைக் கணிக்க.

கறிப்பு

(i) மேலுள்ள பரிசோதூனயில் HCL <u>கனைருகலால்</u> NaOH <u>கனைருகலின்</u> நெடுநிஜீலயொக்கல் வெப்பத்தைத் தோஷிதல், மா*ளு*வளிமேட்டைலவெழுக்கம் (கலோ ரிமானியும் அதுன் உள்ளுறையும் வளிமாட்டைலத்திற்குத் திறந்த கொலக்கைப்பட்டி ருந்தமையின்) ஏறக்குறைய அறை வெப்பநிஜீல ஆகியே நிபந்தஜீனைகளில், நடாத்தப்பட்டது.

(ii) இந்திபந்த 2வே கேஷில் நடுநி 2லேயாக்கல் லெப்பத்திற்கான பெறுமானம் 57.3 kJnol¹ எனப் பதிஷசெய்யப்பட்டுளத. இப்பதிஷப் பெறுமானத் தடன் ஒப்பிடும்போது உமத பொசோத 2னப் பெறுமானம் எவ்வாற இருக் தின்றது? முரண்பாடேதேம் இருக்குமாயின், அதற்கு நீர் கறம் காரணம் யாது? மேலும் செம்மையான பெறுபேறுக 2வேப்பெற உமத பரிசோத 2வேச் செய் முறைக 2வே எவ்வ கைகளில் மாற்றியமைக்கலாம்?

(iii) பில்வைரும் அடில, காரச் சோடிகூ கோப் பயல்படுத்தி முழுப்பரிசோ தே வேலையையும் மீளச் செய்க.

	3	மிலம்			காரம்
(a)	H H	NO3		Ma	NaOH
(6)	· 문 H	ICL		Ma	кон
(c)	MH	INO3		M	кон
(4)	· 나 나	INO3	• 10 • •	7	Ca(OH)2

107

(€	:)	Ma	HCL	T.r		Ma	NH40H
(4	.)	Σla	CH3COOH	. J.	104 104	Ma	NaOH
(9 ராயீவ) () ()	Ela	CH3COOH	0 - 5 x	或 编行 AL 图	M	NH ₄ OH

(ப) வரை நீர் கணித்த நடுநிலேயாக்கல் வெப் உ தா பனங்கள் (a) பங்கள், பரிசோத 2ன வழுவின் எல் 2லக்குள், ஏறக்குறைய ஒன்றை பொன்று றிகைரொத்தலையாக இருக்க, உதாரணங்கள் (உ) – (9) வனரகணித்த வைப்பங்கள் குறிப்பிடத்தகுந்தளவிற்குத் தாழ்வானவையாக இருக்கின்றனவா? போன்ற அமிலங்களும் NaOH , KOH போன்ற காரங்களும் HNO, HCL முறையே வல்லமில் வகுப்பையும் வேன்காற வகுப்பையும் சேர்ந்தவைாகும். (௳)–(௧.)இல் அடிலங்கள், காரங்கள் யாவும்இவ்வகுப்காபச் உதாரணங்கள் சேர்ந்தவலாகும். உதாராமை் (உ) இல், ஒரு வல்லயிலம் (HCL மென்மூலத்தடன் (NH40H) தாக்கமுற, உதாரனம் (f) இல் ஒரு மெல்ல மிலம் (CH 200H) வன்மூலத்தடன் (NoOH) தாக்கமுறக் காண் கிறேம். உதாறனம் (ஒ) இல் அமிலம், மூலம் ஆகிய இறக்குமே மென் மையானவையாகும்.

EN LA TENKS

வல் அயிலங்கள் / காரங்கள் மெல்அயிலங்கள்/காரங்கள் பற்றியகோட் பாடுக2்ளக் கருதம்வரை, நாய் உதாரணங்கள் (௳)–(Վ) மட்டுமே ஏறக்குறைய றிகரொத்த நடுதிலேயாக்கல் வெப்பங்க2ளத் தர,ஏ2்னயவை சிறிய பெறுமானங்க2்னயே தந்ததற்குமான காரணங்க2்ள மேலும் ஆய்வ தற்கு முற்படமாட்டோம். இப்பொருள், அலகு 11இல், அயன் சம றி2்லகள் விரிவாக ஆராயப்படும்போத கருதப்படும்.

n**3.15 தான்றல் வெப்பம்** கைறாகல் தீராக், விஜ வ்றனிப (mi)

குறிப்பிடப்பட்ட தாக்க நிபந்த2்வகளில் தனது ஆக்கக்கூற்ற மூலகங் களிலிருந்த ஒரு மூல் சேர் வையொன்று உண்டாகும்போது நிகழும் வெப்ப மாற்றமே தோன்றல் வெப்பமென வரையறுக்கப்படும். தோன்றல் வெப் பக்களின் பதிவுசெய்யப்பட்ட பெறுமானங்கள் (பிற தாக்கவெப்பங்கள்உட் பட), பொதுவாக நூல்களில் சில குறிப்பிட்ட நிபந்த2்வகளில் எடுத்த தைக்கப்பட்டிருக்கும்; இந்நிபந்த2்வகள் அ2்வத்தலகரிதியாக ஏற்கப்பட்டுள. இவை "நியம நிபந்த2்னகள் " எனக் குறிப்பிடப்பட்டுன. இப்பதம் நியம வளிமண்டலவருக்கத்திலும் 298 K (25°C) இலும் ஒவ் வொரு தாக்குபொரு

341

கும் விடீளபொருஞம் சாதாரண உழகியான நிடூலமில் இருக்கும்போ தபைற்ற தாக்க வெப்பத்தைக் குறிக்கும். இத்தகைய தியம நிபந்தடு கைவிலிருக்கும் ஒவ்வொரு பதார்த்தமும் நியம நிடூலமில் இருப்பதாகக் குறப்படும். நியம நிபந்தடூலகளில் பெறப்படும் தாக்க வெப்பங்கள் நியமத் தாக்க வெப் பங்கள் எனப்படும். நியம நிபந்தடூலகளில் பெறப்படும் தோன்றல்வெப் பம், நியம தோன்றல் வெப்பம் எனப்படும். எனவே, நியம தோன்றல் வெப்பங்கள், ஒரு மூல் சேர்வை, அதன் அமைப்புக்கற்ற மூலகங்களிலி ருந்த உண்டாகும் போத நிகுழும் வெப்பமாற்றங்களாகலிருக்கும். இங்கு மூலகங்கள், சேர்வைகள் ஆகிய யாவும் நியம நிடூலகளிலிருக்கும்.

அமோனியானவத் தொகுப்பதற்குப் பயன்படுத்தப்படும் ஏபர் முறை யில் (பதார்த்தங்கள் யாவும் நியமநிலேயில் இருக்கும்),

 $NH_{2}(q)$ $\frac{1}{2}N_{2}(q) + \frac{3}{2}H_{2}(q) \longrightarrow$ என்ற தாக்கத்திற்கமைய ஒரு மூல் அமோனியா அதன் அமைப்புக் SOD மூலகங்களிலிருந்த (அ–த N, H) உண்டாகும்போத <u>வெளிலிடப்படும்</u>வெப் பச்சக்தி 46 kJ ஆகும். எனவே அமோனியாவின் நியம தோன்றல் சக்தியை வெளிவிடப்படும் வெப்பச் ஆகும் . Qauum-46 kJmol **தாக்கத்தின் <u>எதிர்</u> வெப்பமாகக் குறிப்பிடுவத வைழக்காகும்; வெப்பச்சக்**தி வெளிவிடைப்படுவதற்கொப்ப பரிசோத2்வத் தொகுதியிலிருந்த சேக்தி சிறித ளவில் இழக்கப்படுவதே இதற்குக் கார்குமாகும். தொகுதியால் இழக் கப்படும் எந்தவிதை வெப்பமும் சுற்றுடலிற்கு நயமாகும் எவ்பத வெளிப்படை. பொத வழக்கிற்கேற்ப NH போன்ற புறவெப்பச் சேர்வைகள் எதிர்த் தோன்றல் லெப்பம் உடையனவாகவிருக்கும்.

பதார்த்தங்கள் யாவுமே நியம நிலையிலிருக்க,

 $2C_{(s,ouddlighter)} + 2H_2 \longrightarrow C_2H_4$

என்ற சமன்பாட்டிற்ககைமய ஒரு மூல் எதிலீலே அதன் அமைப்புக் கூற்ற மூலகங்களிலிருந்த (அ–த.C, H) தொகுக்கும்போத <u>உறிஞ்சப்படும்</u>வெப் பச்சக்தி 40 kJ ஆகும். உறிஞ்சப்படும் வெப்பச் சக்தியை தோன்றலின் <u>நேர்</u> வெப்பமாகக் குறிப்பீடுவது பொதுவழக்காகும். சக்தியை உறிஞ்ச விற்கேற்ப பரிசோதலேத் தொகுதியில் சிறிதளவு சக்தி நயம் உண்டாக இதற்கேற்ப கற்றுடலில் வெப்ப இழப்பு ஏற்பருவதே இதற்குக் காரணமா கும். இப்பொது வழக்கிற்கொப்ப, C₂H₄ போன்ற அகவெப்பச் சேர்வை கள் நேர்த் தோன்றல் வெப்பம் உடையனவாக இருக்கும்.

298 K இல்,சாதாறணச் சேரீலைகள் கிலவற்றின் நியமத் தோன்றல் லெப்பங்கள் அட்டலடூனை 3.1 இல் கொடுக்கைப்பட்டுள.

៤ ភ្ កំណុល	வெப்பம், நாவி	சேரீவை	வைப்பம், காலர்			
H20 (g)	-244	ده (ع)	-109			
H20(L)	-286	(0, (9)	-393			
HF(g)	-268	MgO (s)	-600			
HCl(g)	- 92	CuO (s)	-191			
HB+ (g)	- 36	Nall (s)	-410			
HI (g)	+ 26	Agel (s)	-123			
HCL (aq)	- 73	CH4 (g)	- 75			
S0, (g)	-298	$C_{2}H_{6}(q)$	- 85			
50 (g)	- 395	C3H8(9)	-104			
H _a S (g)	- 20	$C_{2}H_{4}(g)$	+ 40			
$H_2SO_4(L)$	-810	$C_{3}H_{6}(C_{9})$	+ 20			
NO (g)	+ 90	$C_2H_2(q)$	+226			
NO2(g)	+ 34	CH30H (L)	-238			
NH ₃ (g)	- 46	C2H50H(L)	-168			
HNO3(L)	-172	CH3COOH (L)	-485			
PCL3(9)	- 320	CCl4 (L)	-139			
PCts(g)	-400					

ALLA Car 3.1

3.16 தக்க வெப்பம்

ஒரு கிராமஹு/மூல் பதார்த்தத்தை, குறிப்பிட்ட நிபந்த2்கக**கில்** (மிகை ஒட்சிசனில்) முற்றுக எரிக்கும்போத நிகேழும் வெப்பச்சக்தி மாற் மமே தரப்பட்ட ஒரு பதார்த்தத்தில் தைகுவைப்பமாகும். குறிப்பிட்ட இந்நிபந்த2்வகள் நியம நிபந்த2்கைகைக் குறிப்பதாயில், தகன வெப்பம் நியம தகவைவைப்பம் எவப்படும்.

ஒரு கிராமஹு காபன் (பென்சிற்கரி) ஒரு மூல் ஒட்சிசைஓடன் நியம நிபந்தீக்களில் தாக்கமுற்று 1 மூல் காபவீரொட்சைட்டை உண்டாக்கும் போது வெளிவிடப்படும் வெப்பச் சக்தி 393 kJ ஆகும்.

எவலே, காபனின் நியம தகவ வெப்பம் – 393kjmoiீஆகும். இத கோபனீரொட்சைட்டின் நியமத் தோன்றல் வெப்பத்திற்குச் சமதைகைம்.ஏவை வூல், இத்தாக்கம், நியமநிபந்த2வகளில், ஒரு மூல் காபனீரொட்சைட்டு அதன் அமைப்புக்கற்ற மூலகங்களிலிருந்த உண்டோவதை ஒத்திருப்பதாலாகும். இதேபோல், ஐதரசனின் நியமத் தகன அெப்பம் (–286 kjmoi¹) நீரின் நியமத் தோன்றல் அவப்பத்திற்குச் சமானமானதாகும்.

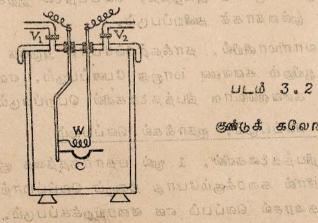
வெப்படிறிஞ்சலாடன் நிகழும் தகனத் தாக்கமொன்லு, வாயுநிலேயிலுள்ள நைதாசன், ஒட்சிசனில் எரிந்த வாயுதிலேயிலுள்ள அநத்திரிக்கொட்சைட்டைக் கொடுத்தலாகும். இதற்கான சமன்பாடு

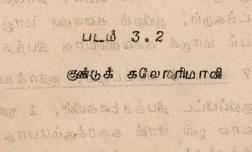
 $N_{p}(q) + O_{p}(q) \longrightarrow 2NO(q)$

நீயம நீபந்த 2 வகளில், இத்தாக்கத்தில் உறிஞ்சப்படும் லெப்பச் சக்தி 180 kJmol¹ N₈ ஆகும்; எனவே இது தைதரசனின் நீயமத் தகவைப்ப மாகும். இத்தாக்கம், நீயம நீபந்த 2 வகளில், இருமூல்கள் நைத்திரிக் கொட்சைட்டு அதன் அமைப்புக் கூற்ற மூலகங்களிலிருந்து உண்டாத 2லயும் ஒத்தளது. எனவே நைத்திரிக்கொட்சைட்டின் நியமத் தோன்றல் வெப் பம் + 90 kJmol¹ NO ஆகும்.

இதுவரை, நாம் காபன், ஐதேரசன், நைதரசன் ஆகியவை போன்ற மூலகப் பதார்த்தங்கள் சம்பந்தப்படும் தகனத் தாக்கங்க 2 எக் கருதி தேம். இவ்வு தாரணங்களில் மூலகப் பதார்த்தங்களின் தகனவெப்பப்பெற மானங்களிற்கும், உண்டாகும் சேர்வையின் தோன்றல் வெப்பப் பெறுமானங்

களிற்கு பிடையே நாம் ஒரு தொடர்பை ஏற்படுத்தக் கூடியதாக இருந்தது. நாம் ஒன்றிற்கு மேலான மூலகங்கள் அடங்கிய பிற சேர்வைகள் சம்பந் தப்படும் தகவங்க 2ளயும் கருத்திற் கொண்டு அவற்றின் 45.50 ดฉบบบบ่ பெறுமானங்க 2ள ஆராயலாம். இத்தகைய தாக்கங்க 2ளக் கருதும்போத ழிகச் சாதாரன உதாரணங்கள் சேதனச் சேர்வலைகள் சம்பந்தப்பட்டலை யாக இருப்பதைக் கொண்போம். இச்சேர் அவகள் , இவற்றின் இயல்பு காறணமாக, டிகவெ ிதில் தகவமடைகின்றன. (அ-த தகவப் பேறடை யவலாய் இருக்கின்றன.) உடம் ஐகரோகாபன்கள். இத்தகைய தாக்கம்கள் சிலவும் அவற்றுக்கான நியமத் தகனவெப்பங்களும் கீழுள்ள அட்டவ வேயில் GALLARD J கரப்பட்டுள. 题创始的问题开题 (ARA# 143 12 രവനും തെന്നിലെവര് തെല്വാം ക്ഷ 393 പ


சேர்வை	Gaulus kJmol	ଓ ୫ ମ ଦ୍ଧର	வெப்பம் kJ mot
H ₂ Cg)	-286	C6H6 (9)	-3132
C (ຄາມສຳ ສີາມື່ອຍາກິ, 5)	-393	CH COOH (L)	-2816
on (9) வி	-283	C2H50H (L)	-1367
CH ₄ (g)	-890	CH COCH CL)	-1790
$C_{2}H_{6}(g)$	-1560	$C_{H_{12}}(l)$	-3930
C3H8(g)	-2220	C6H106(L)	-2816
C2H4(9)	-1411	$C_{12} H_{22} (L)$	-5650
$C_2H_2(q)$	-1299	$C_{10}H_{g}(L)$	-5150


அட்டவ கே 3.2 நியமத் தகன வெப்பங்கள்

சேதன எரிபொருள்க 2ளப் பயன்படுத்தி சக்திரையப் பிறப்பிப்பதில் தகனத் தோக்கங்கள் பெருமளவில் முக்கியத்தலம் வகிக்கின்றன.(நிலக்கரி, கற்கரி ஆகிய வடிவில்) காபன், (இயற்கை வாயுவின் ஓர் அமைப்புக்க றுகூஷள்ள மெதேன் போன்ற) ஐதறோகோபன்கள்,(மண்டினையைய், பெற் ரேல் ஆகிய வடிவில்) ஐதறோகோபன்களின் கலலைகள், ஆகிய வைபெராதும் பயன்படுத்தப்படும் வாணிபைப் பயன்பிக்க எரிபொருள்களாகும். பெரும்

பாலும் காபனேரொட்சைட்டு உண்டாக்கப்படுகிறத், போதமானவு காற்ற கிடைக்குமாயின், Co எரிந்த CO, ஆகும். இத்தகைய தாக்கங் களில் பெருமளவு கணியங்களில் வெப்பம் வெளிவிடப்படும் என்பனதயும் இல் வைப்பச் சக்திகள், அகத்தொழிற் தேவைகளுக்கும் வூட்டுத்தேவைகளுக்கும் தேவையான சக்தித் தோற்றுவாய்களாக பயன்தரு முறையில் பயன்படுத் தப்படுகின்றன என்பதையும் நாம் அறிவோம்.

இத்தகைய தகவத் தாக்கங்களில் வெளிவிடப்படும் வெப்பச்சக்திக2வ நம்பிக்கையான முறையில் அளவுட, தாக்கு பொருள்கள், வி உளபொருள்கள் ஆகியன யாகாவயும் தாக்கம் நிகழ்ந்த முடியும்வரை கலோரிமாஷியில் வைத் திருத்தல் அவசியமாகும். இம் முறையிருல் மட்டுமே, ஆரம்பறி 2ல, இறுதி நிடீல ஆகிய இரு நிடீலகள் பற்றிய திருத்தமான தகவடிலப் பெறமுடியும். ஒட்சிசஓடன் நிகழும் தகவத் தோக்குக்கைளில் கலோரிமானி அளவூடுகளுக்கு, குண்டுக் கலோரிமானி (படம் 3.2) எனப்படும் அடைக்கப்பட்ட கொள் கலம் சாதாரணமாகப் பயன்படுத்தப்படும்; இதனுல், தொகுதியிலிருந்து தாக்குபொருள்களின் ஏதாவதொரு பகுதியோ அன்றி வி 2ளபொருள்களின் ஏதாவதொரு பகுகியோ இழக்கப்படமாட்டாத. தாக்குபொருள்க 2ளக் கலோரிமாவியிலிட்ட அடைத்தபில், கலோரிமாகியில் உட்பதுதியிலிருக்கும் ஒரு சிழ டீவ்பொறிச் கருவில் வெப்பத்திருல் தாக்கத்தை எளிதில்தொடக்கி லைக்கலாம். இதற் வுத்துப்படு

கலோ ாமானி உயரமுக்கத்தைத் தாங்கக்கடியதாக அமைந்திருக்க வேண்டியதாகையால் குண்டுக்கலோரிமாஷிகய உபயோகித்தல் அவசியமாகும். கலோரிமானியில் கொண்டு ஏறக்குறைய 20 வளிமண்டல அமுக்கத்திலாள்ள ஒட் சிசஞல் நிறப்பப்படும். நிறையறியப்பட்ட தாக்குபொருள் (உதாரனமாக

காபன்) பிளாற்றினப் படக்குகையில் வைக்கப்படும்; இப்படக் குகையில் பொறிச்சுருள் சொருகப்பட்டிருக்கும். அதன் பின் குண்டுக் கலோரிமானி அடைக்கப்படும். ஆரப்பத்தில் சுமார் 25°C இல் உள்ள கலக்கிய வண் வையிருக்கும் நிறையறியப்பட்ட நீருள் கலோரிமானி அயிழ்த்தப்படும்.பொறிச் சுருளிதா டாக யின் தேட்டத்தைச் செதுத்தித் தாக்கம் ஆரம்பிக்கப்படும். ஒரு பெக்குமன் வெப்பமானியால் 0.01°C இற்கு, வெப்பநி2ல உயர்வு அவைடைப்படும்.

தாக்கு தொகு தியிலிருந்த இடமாற்றப்படும் மொத்த வெப்பக்கணியம் தாக்கத்தின் போத ஏற்படும் வெப்பநிலே மாற்றங்களால் பாதிக்கப்படு வதில் 2ல வெனப் பரிசோத 2ன அளவீடுகள் காட்டுகின்றன. தாக்கம் முற் றப்பெற்றதும் தொகுதி ஆரம்ப வெப்பநிலேயை மீளவும் அடையவிடப்படும். தாக்கத்தின்போத ஏறும் (அல்லத இறங்கும்) வெப்பநிலேயின் அளவுயாதா கனிருப்பிலும் தொகுதியை ஆரம்ப நிலேயிலிருந்த வெப்பநிலேக்குக் கொண்டு வர இடமாற்றப்படும் வெப்பத்தின் மொத்தக்கணியம் ஒரேயளவினதாக இருக்கும். இடமாற்றப்படும் இவ்வெப்பும், சாதாரண கலோரிமாவை முக் கள் உட்பட, தகனத் தாக்கத்தின் வெப்பத்திற்குச் சமஞகவிருக்கும். தகன வெப்பத்தைக் கணிப்பதற்கு, பயன்படுத்தப்படும் கருவிகள் யாவற்றினதும் வெப்பக் கொள்ளவுக 2 எ அறிந்திருத்தல் அவசியம். அறியப்பட்டவெப்ப நிலேயிலுள்ள நீரிலுள் களுவியை அமிழ்த்தி, வெப்பநிலே இறக்கத்தை அவ தானித்த, இவை முன்னதாகத் தணியப்படும்.

குண்டைக் கலோரிமா அயில், தாக்கத்தில் போத அமுக்க மாற்றங்கள் ஏற்படக்கூடும், ஆயிஒம் கனவளவு மாறுத பேனப்படும். எனவே தகன வெப்பம் மாறுக் கனவளவிலான நிபந்த £னகளில் பெறப்படும்.

3.17 கரைசல் வெப்பமும், ஐதாக்கல் வெப்பமும்

குறிப்பிட்ட நிபந்தீகளால், 1 மூல் பதார்த்தத்தை குறித்த எண்ஷிக் கையிலான மூல் நீரில் கதைக்கும்போது நிகழும் வெப்பமாற்றம், ஒரு பதார்த்தத்தில் கைறைசல் வெப்பம் என வதையறுக்கப்படும்.

உதாரணமாக, ஒரு மூல் சோடியங் குளோரைட்டை 10மூல் நீரில் கரைக்கும்போத ஒரு மூல் NaCl இற்கு 2kJ வெப்பம் உறிஞ்சப்படும். இவ்வாறு குறிப்பிட்ட செறிவுவரை நீரில் NaCl இன் கரைசல் வெப்பம் 2 kJmol ஆகும். நீரில் No.Cl இன் இத்தகைய (செறிவுடைய) கரை சல், மேலும் 10 முல் நீரைச் சேர்ப்பதன் மேலம் மீண்டும் ஐதாக்கப்படு மாயின், மேஹம் 1.5 kJ வெப்பம் உறிஞ்சப்படும்; ஆயின் உறிஞ்சப்படும் இப் பின்ன ய யை விடக் குறைவாக இருக்கும். வைப்பக் கோளையும் 2 kJ குறிப்பீட்ட நிபந்த2வ வெப்பமாற்றம் ஐதாக்கல் வெப்பம் எனப்படும். ஒரு மூல் கரையத்தையுடைய ஏதாவதொரு களவளவுடையகரைசல் สสาม . குறிப்பிட்ட கனவளவிற்கு ஐதாக்கப்படும்போத நிகழும் **ด**ม บ บ பேலாய் மாற்றம் ஐதாக்கவ் வெப்பம் என வரையறுக்கப்படும். 905 WW Nacl நீரிலான செறிவுவனா, நீரில் NaCl இன் கனரசல் வெப்பத்தை 20 (00) 3.5 kJ வெப்பமாகவும் கருதமுடியும். மேலும் 10 மூல் நீரைச்சேர்ப் போமாயின், கூறிப்பிட்ட இரு செறிவுகளிற்குமிடையையான ஐகாக்கல்வெப் பத்திற்கொப்ப, (மேலும் சிறிதளவில்) மேலுமொரு வெப்பமாற்றம்இடம் நடைமுறையில், ஐதாக்க2ல அதிகரித்துக் கொட்டு போனகயில் பெறம். ஐதாக்கல் வெப்பத்தில் பருமல் படிப்படியாகக் குறையும். ଗଣ୍ଡାରେ (Q) (D) தியில், ஐதாக்க 2ல அதிகளிப்பிஜம் மேலம் வெப்பமாற்றமேறும் நிகைமாத. நடிமுறையில் ஒரு மூல் கதையக்கிற்கு ஏறக்குறைய 800–1000முல் நீர் முடிவிலா இருக்கும்போத இவ்வாறு நிகழும். இதை நாம் பதார்த்தம் ஐதாக்கவில் இருப்பதாகக் கூறுவோம்; இதையொத்த கரைசல் வெப்பம் முடிவில்லா ஐதாக்கலில் கரைசல் வெப்பத்தைக் குறிப்பிடும். நீரில் NaCl இக்கரைசல் பின் இற்கு இதற்கால பெறுமாலம் 4.98 kJ mol ஆகும். வரும் வகைச் சமன்பாட்டைப் பயன்படுத்தி எடுத்தரைக்கப்படும்.

Nacl + aq ---- Nacl (aq)

உப்புக்க 2 எப் பொறுத்தவனரயில், அவை நீரேற்றிய நி2லயில் இருக்கின்ற னவா அல்லது நீரற்ற நி2லயில் இருக்கின்றனவா என்பதைக் குறிப்பிடுதல் அவசியம்; ஓர் உப்பிற்கு ஒவ்றிற்கதிகமான ஐகரேற்றுக்கவ் இருக்குமாயின் சம்பந்தப்படும் பிரத்தியேக ஐகரேற்றைக் குறிப்பிடுதல் வேண்டும். NaCl ஐப் பொறுத்தவரையில், அது பளிங்குறுவில் நீரற்றநி2லயில் இருப்பதால் இத்தகைய விவரக் கூற்றுக்களேதும் தேவையில் 2லே.

பரிசோத 2வ வே 2ல

றீரில் எதே©ேவில் கேவைசல் வெப்பத்தை பில்வருமாற தேவிகை:— தகுந்த கலோரிமாலிப் பாத்திரமொன்றில் மொத்த வெப்பக் கொள்ளவு C ஐக் தணிக. அவவியொல்றிலிருந்த 9 cm³ நீரை அளவிட் டெடுத்த பாத்திரத்திறைன் சேர்க்க. நீரில் ஆரம்ப வெப்ப நிலேனையப் பதிவு செய்க. எதஞேலே விரைவில் பாயும் இரண்டாவது அளவியில் எடுத்து வெப் பதிலே ைய அவ தானித்து 29.0 cm³ எதஞேலே இயன்றனவு விரைவாக நீருடன் சேர்க்க. வெப்பநிலேயின் உச்ச உயர் வைப் பதிவு செய்க. இதிலிருந்த திரவங்களின் ஆரம்ப வெப்பநிலேக்கும், இழதி உச்ச வெப்ப நிலேக்கு நீடையோன வெப்பநிலே வித்தியாசம் குனி தூய்க (அவசியமாயின், குளிரல் திருத்தமொன் கூறப் பிரையோகிக்க),

(ே) எத்தின மூல் நீரூம் எது ஆழைம் ஒன்றேடொய்ற தொக்கமுற்று எ? (நீர், எது இலே ஆகியவற்றில் தேல்வூர்ப்பு முறையே 1உம் 0.794 உம்).

் (b) கலோரிமாஷீப் பாத்திரையும் உள்ளுமையும் நயமடைந்த வெப்ப அளவு யாத?

(с) ஒரு மூல் அற்ககோலிற்கு லெளிலிடப்படும் வெப்பக்கைக்கணிக்க. (d) நீரினதம் அற்ககோலிவதும் வெவ்வேறு மூலர் விகிகைக்கைக்கை பயன்படுத்தி, இப்பரிசோது 2வே பையும் மேலுள்ள கணிப்புக்க 2வ யும் மீனச் செய்கு. பின்வருமாது உமது பெதுபேறுகு 2வ அட்ட வை 2ணப்படுத்தாக. (சில மூலர் விகிதங்கள் அட்டவ 2வாயில் தரப் பட்டன)

அற்க கோல் மூல்களில் என்னிக்கை	தீர் மூல்களின் என்னிக்கை	நூர் / அற்ககோல் இன் நூலர்விகிதம்		ஒரு மூல் அற்க கோலிற்குவெ வி விடப்படும்வெ ப் பம்
1/2	(por Lon		30,0M	
14	ale and alter			nue uns saute
120122	ា តាធំបក្មួន៥ ឲ្យ	u u u u u u u u u u u u u u u u u u u	多旗 直	her swing ran
	ol daandu a	19. mnostericities	i BOE	น้อ ที่ 💀 . นี้ แห่ง เลเ
JJ3M. d	adat adatit	a den an Dese a	SOUL	· huszinga Du
	ou in 23 un in	n Glas 24 ans u an		LEWARDING IN
1/6	° 2 . @\$	Columnation diameter		and the second sec
1/5	2	10	+8	41- 412 B-11 8 01 L
1/12	ahau 2.5. Diekt	ANAL 30 LAG WED	ano- tu	2015 T X 755 - CAM 40

Autor at non ALLO 200 3.3 Generations

RE BARRY W

- (e) ஒரு மூல் அற்ககோலிற்கு வெளிவிடப்படும் வெப்பத்தை மூலர் விகிதத்திற்கதிராகக் குறிக்க. இவ்வரை கோட்டில் கிடைப் பகுதியொவ்வறப் பெறுகிறூரா? இத்தகைய கிடைப்பகுதிஎதைக் குறிக்கும்?
- (f) வரைப்படத்திலிருந்த முடிலிலா ஐதாக்கலில் எதஞேஷின் கரை சல் வெப்பத்தை உய்த்தறிக.

3.18 இடப்பெயர்ச்சித் தாக்க வெப்பம் பெப்பல நற்க மதக்கியக்கும்

ஓர் உலோகம் அதன் உப்பொன்றின் குரைசலிலிருந்த இடப் பெயர்ச்சி செய்யப்படும் தாக்கத்தில்போத வெளிவிடப்படும் வெப்பச்சக் திவைப் பரிசோத2ன மூலம் துணியமுடியும். இத2னப் பயன்படுத்தி அவ்வு லோகத்தின் இடப்பெயர்ச்சி வெப்பத்தைக் கணிக்க முடியும், பின்வருமாறு செப்புச் சல்பேற்றுக் கரைசலிலிருந்த செம்பு இடப்பெயர்ச்சி செய்யப் படுவதை துராய்க.

 $(p) \exists k = (p) =$

செய்முறை

ஒரு சோதீகைக் குழாயில் எடுக்கப்பட்டிருக்கும் 10 ml 0.025 M CuSO4 கவரசீல குழலிலிருந்த தகுந்தவாற கோவலிடப்பட்டிருக்கும்ஒர் இடத்தில் கைவக்க. வெப்பதிலேயை அவதானித்த 0.59 நாகத்தைக்கவ கமாகச் சேர்க்க. வெப்பமானியைப் பயன்படுத்தி சோதீகைக்குழாயில் உள்ளவற்றைக் கலக்குக. வெப்பமானியால் குறிப்பிடப்படும் உச்ச வெப்ப நிலேயை அவதானிக்க. (அவசியமாயில் குளிரல் திருத்தமொக்கைறப் பேர போதிக்க.)

(a) தாக்கத்தில்போத இடம் பெயர்க்கப்படக் கூடிய செம்பு மூல் கவில் உச்ச எண்ணிக்கைவையக் கணிக்க.

() எத பிலையாயுனது?(நாகமா, செம்பா?)

- (с) 0.59 இற்கு அகிகப்படியான நாகத்தைப் பயன்படுத்த முடி யுமா?
- (d_) கரைசலின் வெப்பக் கொள்ளளவு நீரின் வெப்பக் கொள்ளளவை ஒத்திருக்குமென அருமானிக்த, இடப்பெயர்ச்சியின் மூலர் வெப் பத்தைக் கணிக்க. (இம்மூலர் பெருமானத்தைக் கணிக்கும்போத நாகம், சார்பாகவா அல்லத செம்பு சார்பாகவா உமத

களிப்பு இடம்பெறகிறது? என்?)

3.19 பிரினைக வெப்பம்

ஒர மூல் பதார்த்தம் மூற்றுகப் பிரிகையுற்ற ஒரு வளிமண்டலவமுக் கத்திலம் 25℃ இலம் வாயு அவத்கையில் அமைப்பக் கூற்ற மூலகங்களின் அஹுக்கீக உண்டாக்கும்போது நிகமும் வெப்பமாற்றம், ஒரு பதார்த் தத்தின் பிரிகை வெப்பமாகும். பொதுவாக, ஒரு பதார்த்தத்தைப் பிரிகையுறுத்துவதற்கு வெப்பம் உறிஞ்சப்படல் வேண்டும்; எனவே,பிரிகை வெப்பங்கள் பெரும்பாலும் நேரோனவையாகும். சில மூலகங்களின் இத்த கைய பெறுமானங்கள் அட்டவிண் 3 .4 இல் தரப்பட்டுன.

கட்டப்பிரிகைச்	சம	ងំហាក្រ	AH _1 kJ mol
$F_2(q)$	=	2F (g)	+153
Cl ₂ (g)	=	2Cl (g)	+242
Bra(L)	=	2 B+ (g)	. +224
I2(c)	=	2I (g)	+214
H2(g)	=	24(9)	+435
02(9)	-	20 (g)	+495
N2(g)	=	2N (g)	+945

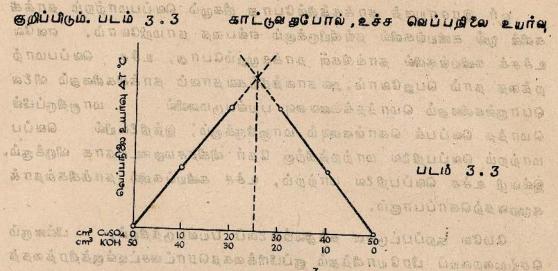
ALLO 20 3.4

3.20 <u>பதார்த்தங்களில் கூடீதேறங்கூறன் த</u>ணிவைதில் வெப்பமாற்றங்களில் பெயன்பாடு.

பகுதி 1.51 இல் தொடர்ச்சியான மாறல் முறை பற்றிக் கருதப் பட்டத. இம்முறையின் தத்துவம் யாதெனில், ஒரு தாக்கத்தில் உச்சக் கணியங்களில் தாக்கிகள் பங்குபற்றம்போத தகுந்தவோர் இயல்பில் _ஆகக் கூடிய மாற்றம் நிகழுமென்பதாகும்.

118

ஓர் இரசாயனத் தாக்கத்தின்போத நிகரும் வெப்பமாற்றம் தாக்கி கேலின் மூல் கணியங்களில் தங்கியிருக்கும் என்பதை நாமறிவோம். எனவே உச்சக் கணியங்களில் தாக்கிகள் தாக்கமுழும்போத, உச்ச வெப்பமாற் றத்தை நாம் பெறவோம். அவதானத்திற்குவதானம் தாக்கிகளினதும் வி?ன பொருள்களினதும் மொத்தக் அவைனவு பயன்படுமனவில் மாளுதிருப்பின் மொத்த வெப்பக் கொள்ளனவும் மாளுதிருக்கும்; இந்நி 2ல பில் வெப்ப மாற்றம் வெப்பநி 2ல மாற்றத்திற்கு நேர் விகிதசமது டையதாக விருக்கும். இவ்வழி உச்ச வெப்பநி 2ல மாற்றம், உச்ச கணியங்களில் தாக்கிகள்தாக் குமுறுவதற்கொப்பாகும்.


மேலே கூறப்பட்டுள்ள தத்துவங்க 2 எப் பயன்படுத்தியும், பில்லைரும் செய்முறையைப் பிரயோகித்தும் குப்பிரிக்கைதரொட்கைட்டிக்குத்திரத்தைத் தனிகை.

1 M Cu Soq இனதும் 2 M KOH இனதும் நியமக் கரைசல்க2ேகத் தயாரிக்க. ஒரு குழாயியின் மூலம் 40 cm³ காரத்தை எடுத்த கலோ ரிமாவிப் பாத்திரமொன்றில் சேர்த்து, வெப்பநி2லனைய் பதிவு செய்க. தொடக்க வெப்பநி2ல அறியப்பட்டுள்ள 10 cm³ Cu SO₄ ஐக் கலக்கியவாற சேர்க்க; கலனையின் உச்ச வெப்பநி2லனைய அனதாவிக்க. பின்வருவை வற்றேடு பரிசோத2னனைய பின்டும் செய்க.

(i)	20 Cm3 8	எரமும்	30	cm	Cuso4	கரைசலும்
a contraction of the second	10 cm ³ a					கரைசலும்
	30 cm ³ 8		20	Cm ³	Cuso	கதைசலும்

பெறபேறக 2வப் பயவ்படுக்கல்

ஆராயப்பட்ட நான்கு கலனவைகளிற்கும் காரத்தின் (அல்லத CuSO4 குறைசலில்) கவலவைவிற்கு எதிராக வெப்பநிலே உயர்ணவக் குறிக்க. O, 50 cmகாரம், பூச்சிய வெப்பநிலே உயர்ணவ ஒத்தவையாகும், இலீவிரண் டும் மேலதிகக் கேறிப்புகள் ஆகும். (மொத்தக் கலலவை, 50 cm³ ஆக மாறுகிருக்க வைத்தாப் பிற கலனவகலியும் பயன்படுத்தலாம்). ஒருதொடர் மாதிரிப் பெறுபேறுகள் படம் 3.3 இல் கொடுக்கப்பட்டுள, வகைரபடத் தில் காணப்படும் புள்ளிகளினோ டாகச் செல்லும் இரு கோடுகலியும் நீட்டி ஒரு புள்ளியில் சந்திக்க அவக்கே; இப்புள்ளி உச்ச வெப்பதிலே உயர்காவைக்

வெப்பமாற்றம்) 25 cm⁵1 M Cuso₄களரசல் (ଗରା ଦିଘା 2 8 8 25 cm RM, KOH கனரசவடன் அடையும் தாக்கத்தை ஒத்திருக்கும். $C_{u50_{4}} + 2 KOH = C_{u}(OH)_{2} + K_{2}SO_{4}$

9-8 ++ 前形的 偏衡前的自己要式 可以 Cu (aq) + 2 OH (aq) = Cu (OH) (6) என்ற சமப்பாடுகளிற்கமைய, ஒரு மூல் Cuso, இரு மூல்கள் Koh அடையும் தாக்கத்தை ஒத்திருக்கும். எவலே குப்பிரிக்கைதறொட்சைட்டில்

குத்தரம் மேலே குறிப்பீட்டவாறேயாகும்.

40 Cm Cuso, adde to bu 10 Cm³ au u au

90 We Cuso இற்கான தாக்க வெப்பத்தைக் கணிக்க. (கனரசவிக் வெப்பக் கொள்ளளையை நீரின் வெப்பக் கொள்ளளவினதாகக் கொள்க). **ஆய்விற்குரிய விறக்கள்** கோக வதற்றுக மகமை நுல்றத பட்டப்பறது.

(1)்தாக்க வெப்பம்: எவ்பதவ் பொருவ் யாத? தாக்கம் (a)90 சேர்வை உன்டாதல் தக்கமாதல் (C) நடு நீல்யாக்கல் (பி) ஐதாக் (b) கல் (e) បនុស្មល័យរំនំទល់ கவை தல் ஆகிய வையாக இருக்கும் போது (f)இத்தொடரில் பொருக் யாதெப்பைஷதத் கூட்டலட்டமாகக் கறக.

(2) பெரும்பான் மையான அமிலங்களினதும் மூலங்களினதும் நடுநி2லயாக்கல் வெப்பம் ஏறக்குறைய ஒரே பெறுமாகமுடையதாக, அதாவதாருக்கு அறைய – 57.3 xJ ஆக இருப்பதேன் என்பதை விளக்குக. இப்பொதுகையப்பாட்டிற்கு புறநடைகள் இருப்பதேக்? குறிப்பாக சேதவ அயிலங்களும் மூலங்களும் இப்பொதுவமப்பாட்டிற்குப் புறநடைகளாகக் காணப்பட்டுள. பொதுவாக இவ்வாற இருப்பதற்கு தீர் கருதம் காரணம் யாத?

(3) ஒரு பதார்த்தத்தில் பௌதிகநி2ல, அத சேம்பந்தப்படும் தாக்கல் கேளில் வெப்பப் பெறுமானத்தை எவ்வாறு,ஏன் பாதிக்கில்றத? (4) ாநியம நி2லா, ுநியம நிபந்த2வகள் ஆகிய பதங்களால் நீர் விளங்குவத யாத?

高加志面能的

Anos dil

3.21 வெப்பவுள்ளுகைற

பகுதி 3.03 இல், இரசாயலச் சேர்காவகளா ல் வெவ்வேறு ्यधास கேஷில் (இழசாயவச்) சக்தி சேர்ந்திருக்குடுமைகக் கூறப்பட்டது. BU 90 சாயன மாற்றம் நிகமும்போத, தாக்கிகள் விடீவபொருள்களாக மாற்ற நிகமும் எந்தவிதமாக சக்தி மாற்றமும் தாக்க மதுடனகுழில் ඉඩ්ඩ ඉ எவப்படும் வெப்பச்சக்தி (பகுதி 3.10) உறித்சப்படுவதால் வை நிலிடப்படுதலில் பிரதியலிக்கப்படும் (பகுதி 3 .12),இத்தாக்க அவப் பத்தில் அவவு தாக்க நிபந்தீச்சுகளில் தங்கியிருக்கும் (பகுதி 3.13)இத் தகைய தாக்கங்கவீற்கான குறித்த சில வகைகள் பகுதிகள் 3.14-319 也就而如此,你的你上面的**你的**你,你你的你是你 இவ் கருதப்பட்டுவ. பட்டு, இதல் விச்வாகத் இதாகதில் வெப்பத

<u>மாறுவமுக்கத்தில்</u> தாக்கம் நிகமும் ஓர் இரசாயனத் தொகுதியில் தாக்கத்தோடு சம்பந்தப்பட்ட வெப்பச் சக்தி மாற்றத்தை, அத்தொகு தியின் குறித்தவோர் இயல்பில் ஏற்படும் நிகரொத்த மாற்றமாக இனங் காகூலாம். இவ்வியைல்பு <u>வெப்பவுள்ளுறை</u> எனப்படும்; இத பூ என்ற குறி யீட்டால் குறிப்பீடப்படும். ஒரு தொகுதியின் வெப்பக் கொள்ளனவுப் பெறுமானத்தை, அத்தொகுதியில் சேகேளிக்கப்பட்ட மொத்தச் சக்தியைனத் தன்னிச்சையாகக் கறலாம். ஆயின்,இத2்னத் திட்டவட்டமாக அனவிடுவ தற்கு தீர்க்கமான முறை எதுவுயில் 2ல.

தரப்பட்ட ஒரு தாக்கத்தில் தொக்கிகளில் மொத்த வெப்பவுள்ளுகைறப் பெறுமாகம் H_, ஆகவும் வி?வபொருள்கவில் மொத்த வெப்பவுளிளுகைற H₂ ஆகவும் இருப்பில்,

, ສຸປພຣຍທີ່ , ອັດພຣສັນຜູ້ , ພຣະລັດພຣະລັດ

老山白白地の

் மாருவமுக்கத்தில் தொகுதியின் மாருவமுக்கத்தில் தாக்கத்தின் வெப்பச் சக்தி அதிகரிப்பு — போத உறிஞ்சப்பட்டவெப்பச் சக்தி.

Ho-H,

வழமைப்படி ஒரு தொகுதியின் வெப்பக் கொள்ளளவு அதிகைரிப்பு டாப ஆல் குறிப்பிடப்படும். எனவே

 $\Delta H = H_2 - H_1$

கறிப்பு

எந்தவொரு மாற்றத்தையும் குறிப்பிட கிரேக்க எழுத்தாகிய A 88 ('டெல்ரா' என உச்சரிக்கப்படும்) பயன்படுத்தல், விஞ்ஞானவியவில் ஏற் மக் கொள்ளப்பட்டவொரு வழக்கமாகும். அத்தோடு ஒரு மாற்றத்தை அளவிடுவதற்கான வழக்குமுறை இழதிநி2லக்குரிய பெழமானத்திவிருந்துதைரம் பநி2லக்குரிய பெழமானத்தைக் கழித்தலாகும்.

3.21.1 அகவெப்பத் தாக்கங்களில் வெப்பவுள்குமை மாற்றங்கள்

அகவெப்பத் தாக்கங்க 2வே நாம் கருதிய பகுதி 3.10.188 நி2்வவு இத்தகைய தாக்கங்களில், சுற்மூடலிலிருந்த வெப்பச்சக்தி உறித் கரிக் சப்பட்டு, இதன் விசீவவாகத் தொகுதியின் வெப்பச் சக்தி அதிகரிக்க சற்றுடவின் வெப்பச் சக்தி குறையும்.' மாறுவமுக்க நியந்த 2வகளில் அக வெப்பத்தாக்கம் நிகழ்ந்திருக்குமாயின் தாக்கத்தின்போத உறித்சப்பட்ட வெப்பச் சக்தி 🛆 🛏 இற்குச் சமகைவிருக்கும். உறிஞ்சப்பட்டவெப்பச சக்தி தொகுதியில் வெப்பவுள்குறைப் பெறுமாவத்தை H. இவிருந்த(தொக்கி கஞக்கானத) H₂ வறை (விசோபொருள்கஞக்கானத) அதிகரிப்பதால் 🛆 H நேராகவிருக்கும். அகவெப்பத் தாக்கங்களிற்கு 🛆 🖁 இச் ଗଣାତିରା இல்கே தாக்கிகளோடு ஒப்பிடும் பெழமானங்கள் நேராக விருக்கும். போத விடீளபொருள்களின் சக்தி அல்லத வெப்பவுள்குறை கடுதலாக விருக்கும்.

இவ்வுருமாற்றத்தில் நிகழ்ந்தது யாதெவில், கூற்றுடலிலிருந்த வெப்பச் சக்தி, தாக்கிகளாலும் விீச்எபொருள்களாலும் ஆக்கப்பட்ட தொகுதியில் சமவளவு சேயிப்புச் சக்தியாக மாற்றப்படுவதேயாகும். இத, சக்திக் காப்பத் தத்துவத்திற்கமைய இருக்கிறைது; இதன்படி, கூற்றுடவில் நிகழும் எந்தவொரு வெப்பவிழப்பும் (சுற்றுடலிலிருந்த தொகுதியினர் வெப்பச் சக்தி வெளியிடப்படல் மூலமாக) தொகுதியின் சக்தி அதிகரிப்பால் (தாக் சிகள் விவேபொருள்களாக மாற்றப்படும்போது நிகழும் வெப்பவுள்ளுறை அதிகரிப்பு மூலமாக) பிரதிபலிக்கப்படும்.

பதுதே 3.10.1 இல் தறிப்பிடப்பட்ட அகவெப்பத் தாக்கங்களிற்கான வெப்ப விரசாயனச் சமல்பாடுக 2எ பில்லருமாற மீளமுறைப்படுத்தலாம்.

		வுள்ளுறை மாற்றங்கள்
H2 (8)	= 2 H (8)	△H =+435KJ
I ₂ (9)	= 2 I (8)	$\Delta H = +218 \text{ kJ}$
C (5) + 25 (5)	$= CS_{g}(\mathbf{x})$	$\Delta H = +116 \text{ kJ}$
$N_{2}(3) + O_{2}(3)$	= 2 NO (3)	$\Delta H = +180 \text{ kJ}$
$H_{g}(9) + I_{2}(9)$	= 2 HI (8)	$\Delta H = +30 \text{ kJ}$

பகுதே 3.10.2இல் நால் கருதிய புறவெப்பத் தாக்கங்க உள்றிச்வவு காக், இத்தாக்கங்களின் போது தொகுதியின் வெப்பச் சக்தியில் Cadu இழப்பு ஏற்பட்டத, அதாவத இத்தாக்கங்களில் தாக்கவெப்பம் இரசா யனத் தொகுதியிலிருந்த சேற்றுடலுக்குக் கொடுக்கப்பட்டத.தாக்கம் மாறு வ முக்கத்தில் நிகழுமாயில், தொகுதியால் உறிஞ்சப்படும் வெப்பச் म के की வெப்பவள்ளுவற அதிகாிப்பிற்கு △H இற்குச் சமதைம் உள்வையில் தொகுதி வெப்பச் சக்தியை வெளிவிடுவதால் தொகுதியால் உறித்சப்படும் வெப்பச் AH எதிராகவிருக்கும், அதாவத தொகுதியின் म अं में, Qua வெப்பவு க்குறை Нத, தொடக்க வெப்பவுள்ளுறை H, ஐ விடச் சிலிதாக விருக்கும். எனவே, தொகுதியின் வெப்பவுள்ளுறைக் குறைவு சுற்றுடலால் உறித்சப்படும் வெப்பச் சக்திக்கு எண்ணளவிற் சமதுகைய். இத மீளவும் சக் திக் காப்புத் தத்துவத்தக்கு அமைவாகவே இருக்கிறது; இத்தத்துவ த்தில் படி, ஒரு தொகுதியில் நிகழும் எந்தவொரு சக்தி நட்டமும் (தாக்கிகள் வி 2ளபொருள்களாக மாழு வகழில் வெப்படிள்கு கைறக் கு கை மூலம்) அதே அளவான கற்றுடலில் சேக்தி அதிகரிப்பால் (வெப்பச் சக்தி உறிஞ்சப்படுதல் ழுலம்) பிரதிபவிக்கப்படும். தேறிய விசீளவு யாதொவில், (தாக்கிகள், விடீவ்பொருள்கள் ஆகியவற்றுல் ஆய) தொகுதியில் சேயிப்புச் சக்தி சுற்ற

3

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org டவின் வெப்பச் சக்தியாக மாற்றப்படுதலாகும்.

பகுதி 3.10.2இல் குறிப்பிடப்பட்ட புறவெப்பத் தாக்கங்களிற்காவ வெப்பவிரசாயவச் சமன்பாடுக 2்ளப் பில்வருமாற மீளமுறைப்படுத்தலாம்.

C (5) + 02 (g)	$= CO_{g}(g)$	$\Delta H = -393 \text{ kJ}$
$S(s) + O_{g}(g)$	= 502 (8)	$\Delta H = -292 \text{ kJ}$
$2H_2(g) + O_2(g)$	$= 2 H_2 O(1)$	$\Delta H = -572 \text{kJ}$
$H_{g}(g) + Cl_{g}(g)$	= 2 HCl (l)	$\Delta H = -84 \text{ kJ}$
$N_{2}(g) + 3H_{2}(g)$	= 2NH3 (g)	$\Delta H = -46 \text{ kJ}$
CH4 (g) + 202 (g)		
NaOH (aq) + HCl (aq	$) = Nacl (aq) + H_20$	$\Delta H = -57 \text{ kJ}$

3.22 தனி வெப்பவுள்ளுறைப் பெறுமாவங்கள்

தொகுதியின் பகுதி 3.21 இல் குறிப்பிடப்பட்டுள்ளதுபோல் 9 Ch மொத்தச் சேயிப்புச் சக்தியை (அ–த தவி வெப்பவுள்ளுறைப் பெறுமானத் ஆயின் கலோரிமான அளவு கை த) அளவிடுவதற்கான முறையெ துவு மீல் உல. டுகள் ஒரு தொகு தியிலிருந்த அல்லத அத்துள் இடமாற்றம் பெறும் வெப்பக் கணியைங்கேஞக்கோன நம்பத்தகு எண்டுபெறுமா எங்கே 26ாத் தரகின்றன; இப்பெ ம மானங்கூீளப் பரிசோதீனே வெழியாக எவ்வாற பெறலாடுமைப்பதை நாம் பகுதிகள் 3.14–3.20இல் கண்டுள்ளோம். மாரூவமுக்க நிபந்த2வகளில் இடமாற்றம் பெறும் வெப்பத்தினளவு, தொகுதியின் வெப்பவுள்ளுறை மாற் எனவே, ஒரு சேர்வையோடு அல்லத ஒரு றத்திற்குச் சமதைகவிருக்கும். கொகு தியோடு சம்பந்தப்பட்டுள்ள வெப்பவுள்ளுறையின் தவிப்பெறமானத் கைதைத் தோவிதைல் அசாத்தியமாகவிருப்பிழும், தாக்கங்களின் கலோரிமாலஅள லீடுகள் ஒரு குறிப்பிட்ட தாக்கத்தோடு அல்லத உருமாற்றத்தோடு சம் பந்தப்பட்ட வெப்பவுள்ளுறை மாற்றங்களுக்கான பெறுமானங்க2ளத் தர கின்றன.

தனி வெப்பவுள்ளுறைப் பெழமானங்கள் இல்லாதவிடத்த, ஒரு குறிப் பிட்ட சேர்வையின் அல்லது தொகுதியின் <u>சார்பு</u> வெப்பவுள்ளுறைப் பெற மானங்காள எடுத்துக்கூற, வசதியானதும் முரன்பாடற்றதுமான ஒரு மாட்

2

டேற்றற் புள்ள வைத் தெரிந்தெருத்தல் அவசியமான தோரு விரும்பத்தக்க தாகவு முனது. இம்மாட்டேற்றல் புள்ளியில் தொடி, ம2லத்தொடர்களில் உயரங்கடீவையும், சமுத்திரங்களில் ஆழங்கடீவயும் அளவிடவும் எடுத்தறைக்க வும் கடல் மட்டத்தைப் பூச்சியப் புளீளியாகக் குறிப்பிடுவனத 954994 வேளைர மட்டத்தைப் பூச்சியப் புள்ளியாகக் கொண்டிருந்தாலும் அது சரி கடல் எங்கும் பரவி இருப்பதை தாபகத்தில் யாக இருக்கும். என்றம் குறிப்பாகக் கருதம்போது, கடல் மட்டமே மிகச் சிறந்தாக இருப்ப தோடு வசதியிக்கதாகவுமுளது. இதேபோல, வருடங்களின்எண்ணிக்கைகவை மதிப்படவும், ஒரு குறிப்பிட்ட வருடத்திற்கு ஓர் இலக்கத்தை ஒதுத் கவு ம் JÖDS இதே போன்ற வசதியான மாட்டேற்றற்புள்ளி எல்லோ ராலும் கொள்ளப்பட்டுள்த.

் வெப்பவுள்குறையைப் பொறுத்த வரையூல் 25 ் இழம் 1 வளிமன்டல வழக்கத்திலம் (அதாவத மூலகங்களின் நியமநிலேயில்) தா ய உறுதியான வடிவத்தில் மூலகங்களின் வெப்பவுள்குறைப் பெறுமானம் பூச்சியம் எனக் கொள்ளுதேல் எல்லோ நாலும் ஏற்றுக்கொள்ளப்பட்ட மாட்டேற்றற்பூச்சியப் புள்ளி ஆகும். இம்மாட்டேற்றற் புள்ளி நியமமாக ஏற்றுக்கொள்ளப்பட்ட தும், அளவிடப்பட்ட வெப்ப அல்லத வெப்பவுள்குறை மாற்றத்தின் அடிப் படையில், ஒரு தொகுதியில் வேறெந்த நிலேக்கும் சார்பு வெப்பவுள்ளு ஹைப் பெறுமானங்களே ஒதுக்கமுடியும். இத்தகைய பெறுமானங்கள் தணி வெப்பவுள்ளுறைப் பெறுமானங்களல்லைவன்பதையும் இவை <u>சார்பு</u> வெப்ப வுள்ளுறைப் பெறுமானங்களேவுன்பதையும் (அ–த, முன்னர்விவரிக்கப்பட்ட எல்லோற் மூம் ஏற்றுக் கொள்ளப்பட்ட நியமத்திற்குச் சார்பானது என்ப தையும்) தெனிவாக உணர்ந்த கொள்ளல் வேன்டும்.

மேலே கூறிப்படப்பட்ட மாட்டேற்றற் புள்ளியில் அடிப்படையில்,25°ட இதும் ஒரு வெளிமைப்டைலவமுக்கத்திலும் தா ய ஒட்சிசல் வாயுவில் வெப்பவுள் குகைற பூச்சியமாகும். இதேபோல், 25°ட இதும் ஒரு வளிமாட்டைவமுக் கத்திலும் தா ய உறதியால வடினிலுள்ள ஒவ்வொரு மூலகத்திற்கும் ஒதுக்கப் பட்டுள்ள வெப்பவுள்ளுறைப் பெதுமானம் பூச்சியமாகும்.

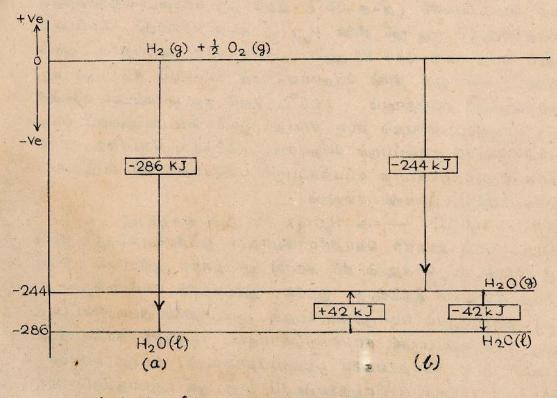
3.23. பதார்த்தங்களில் நியம வெப்படின்குறைகள்

மூலகங்கள்,பதார்த்தம் ஆகியன யாவுமே அவற்றின் நியம நிலேகளில் இருக்க, ஒரு மூல் பதார்த்தம் அதன் அமைப்புக் கூறகளிலிருந்த உண்டா கும்போத நிகழும் வெப்பமாற்றமே நியமத் தோல்றல் வெப்பமென பகுதி 3.15 இல்நாம் வரையறுத்துள்ளோம், மாளுவழுக்க நிபந்த2்கைனில் நிக ழும் ஒரு வெப்ப மாற்றம் செய்முறையுடன் கூட நிகழும் வெப்பவுள்ளுறை மாற்றத்திற்குச் சமனைகவிருக்கும் (பகுதி 3.21), ஆகவே, மூலகங்கள் பதார்த்தம் ஆகியன யாவுமே அவற்றின் நியம நி2்லகளில் இருக்க, ஒருமூல் பதார்த்தம் அதன் தமைப்புக் கூறுகளிலிருந்த உண்டாகும்போது நிகழும் வெப்பவுள்ளுறை மாற்றத்திற்கு அப்பதார்த்தத்தின் நியமத் தோவ்றல்வெப் பம் சமனைகிறது, இவ்வழி

> ஒரு பதார்த்தத்தின் நியமத் தோவ்றல் வெப்பம்

ப தார்த்தத்தில் அமைப்புக் கூற்று வெப்பவுள்ளுறை மூலகங்களில் வெப் பவுள்ளுறைக்கூட்டுத் (நியமநிலேயில்) தொகை (நியம நிபந்தலை களில்)

பொதுவழக்கின்படி, நியம நிபந்த 2வகேளில் மூலகங்கள் யாவற்றிவதைம் வெப்படின்ஞனறகளுக்கு பூச்சியப் பெறுமானம் கொடுக்கப்பட்டுளதென்றை பகுதி 3 . 22 இல் கற்றறிந்தோய். ஆகவே ஒரு பதார்த்தத்தின் நியமத் தோன்றல் வெப்பம், நியம நி2லேயில் அப்பதார்த்தத்தின் வெப்படின்ஞ அறக்கு, அ–த பதார்த்தத்தின் நியம வெப்படின்று கைறக்கு சமனைகும்.


எனலே, (பகுதி 3.15 இல்) கொருக்கப்பட்ருள்ள சில பதார்த் தங்கேளின் நியமத் தோக்றல் வெப்ப அட்டவ 2ா, உன்றையில் இப்பதார்த் தங்களின் நியமவெப்பவுள்குகைற அட்டவ 2ா யாகும். ஆயின், இந்நியமவெப் பவுள் துறைகள் தனிப்பெறுமானங்களல்ல, அவை, சார்புப் பெறுமானங்களே யாகும், ஆடத எல்லா மூலகங்களினதும் நியமவெப்பவுள் துறை பூச்சியம்என் பதற்குச் சார்பான வையாகும்.

3.24 வெப்பவுள்ளுறை உருவப்படங்கள்

ஏற்காவலே (பகுதே 3 . 22இல்) குறிப்பிடப்பட்ருள்ள அழக்குமுனறமாட் டேற்றற் புள்ளியைப் பயன்பெடுக்தி, வெப்புவுள்ஞனற மாற்றங்கே எ ஓர்உர அப்பட அடிவில் எளிதில் எடுத்தைக் காண்பிக்க மூடியும். இப்படங்கள் அெப் பவுள்ளுறை படங்கள் எனப்படும்; இவை வெப்பவுள்ளுறை மாற்றங்க2ன விளக்குவதில் பயல்யிக்க ஒ2ேனக் கருவிகளாகவுள.

வாயு நிலேயிலுள்ள ஐதேரசனிலிருந்தும் ஒட்சிசனிலிருந்தும் ஒரு மூல் திரவ நீர் உண்டாகும்போது (இவை யாவும் நியமநிலேகளிலுள) சம்பந்தப்படும் வெப்பவள்ஞுறை மாற்றம் Δ H = -286 kJmoī திரவதீர் என்பதை நாமறி வோம்.

H₂(g) + த் O₂(g) = H₂O(l) △ H = −286 кЈ இதன் பொருள் யாதெனில், ஒரு மூல் H₂O(l)இன் வெப்பவுள்ளுறை H₂(g)இன தம் த் O₂(g)இனதம் வெப்பவுள்ளுறைகளின் கூட்டுக் தொகையிலிருந்தை 286 kJ

படம் 3.4 நீர் உண்டாவதற்குரிய வெப்பவுள்குறைப் படம்

ஆல் குறைந்திருக்கிறது என்பதாகும். வழக்கு முறை மாட்டேற்றற் புள்ளி பைக் கருத்தில் கொள்ள (பகுதி 3.22),H₂(g) இனதும் த் O2(g) இனதும் வெப்பவுள்குறைகளின் கூட்டுத்தொகை பூச்சியமாகவிருக்கும். அத்தோடு

Ho(L) இன் வெப்பவுள்குறை — 286 kJ ஆகும். இப்பெறுமானங்க 2 வ வெப்பவுள்கு ஒறப் படத்தல் (படம் 3.4 (வ)) எருத்தக்காட்டலாம்.

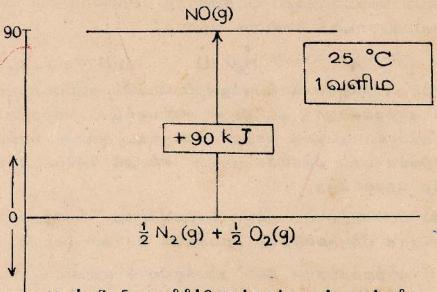
இதற்குப் பதிலாக, பில்லரும் வெப்பளிரேசாயனச் சமல்பாட்டைக் குருத வோமாயின்,

 $H_{2}(g) + \frac{1}{2}O_{2}(g) = H_{2}O(g) \qquad \Delta H = -244 \text{ kJ}$

தியம நிபந்த Σனகளில் (அ-த 25 ீ இலும் ஒரு வளிமுட்டைலவ முக்கத்திலும் வாயு நி 2ல பிலும் என ஒரு மூல் நீரின் H₂O (த) அ-த நி ராவியின் வெப்பவுள் குறைப் பெறுமானம் – 244 kJ ஆகும். அ-த அதே வெப்பநி 2ல அமுக் கத்தேல் 1 மூல் திரவ நீரில் பெறுமானத்தைக் காட்டிலும் 42 kJ ஆல் கடு தலாகவிருக்கும் எல்பதாகும். (25 ீ இலும் ஒரு வளிமண்டலவ முக்கத்தி சும்) வாயு நி 2ல நீரினதும் திரவ நீரினதும் மூலர் வெப்பவுள்ளுறைப் பெறு மானங்களிடையே காணப்படும் வேறுபாடு, (42 kJ), திரவநீரை நீ ரா வியாக உருமாற்றும்போது சம்பந்தப்படும் பரிசோத 2ன யூல் பெற்றவெப் பமாற்றத்திற்கு உள்ளைமயில் சமகுகும்.

H₂O(1) → H₂O(2) Δ H = +42 kJ இவ்வுருமாற்றம் திரவநீர் கொதிநீராவியாத2ல ஒத்திருக்கும்; 2.5°C இலம் ஒரு வரிபடைலவழுக்கத்திலும் நீர், நீராவி ஆவதற்கான ஆவியாதல் வெப் பத்தை 42 kJmol குறிக்கிறது. இத2ன, ஆவியாதலின் வெப்பவுள்ளுறை எனக் குறிப்பிடுதலும் பொருந்தும்; மேலும், ஆவியாதலின் நியம வெப்பவுன் குறை எனக் குறிப்பிடுதல் சாலத்திறந்ததாகும். ஏனைலை தாக்க நிபந் த2கைன் நியம நிபந்த2கை2ன ஒத்திருப்பதாலாகும். வாயுநி2லயிலுள்ள குதுரசமும், ஒட்சிசலும் வாயுநி2லயிலுள்ள H₂O ஆக உருமாறதலும் திரவ நீர் வாயுநி2லயிலுள்ள H₂O ஆதலும், மேலே கொடுக்கப்பட்டுள்ள வெப் பவுள்ளுறைப் படம், படம் 3.4(b) இல் காட்டப்பட்டுன.

Hoo(g), Hoo(t) ஆகமாறம் எதிர் உருமாற்றம், ஆவியாதல் செய் முறையை நிகதொத்த இதிர்ச்செயற்பாடாகவிருக்கும்; நியம நிபந்த வே களில் இதற்கான ஒருங்கல் வெப்பம் (அல்லத வெப்பவுள்ளுறை) – 4.2 kJmol ஆகும் என்பத வெப்பவுள்ளுறைப் படத்திலிருந்த தெளிவாகிறது. இதை ஒத்த வெப்பவிரசாயனச் சமன்பாடு வருமாறு.


H₂O(g) → H₂O(L) Δ H = - 4 ≳ x J இல்வுருமாற்றமும் மேலுள்ள வெப்பவுள்ளுறைப் படத்தில் குறிப்பிடப்பட்டுளது. இரசாயன மாற்றங்களோடு கூட நிகழும் வெப்பவுள்ளுறை மாற்றங்க2்ளப் பரிகரிப்பதபோல், அவத்தை மாற்றங்களோடு கூட நிகழும் வெப்பவுள் ளுறை மாற்றங்க2்ளயும் பரிகரிக்க முடியும் என்பதம் மேலே கூறப்பட்ட வற்றிலிருந்த தெனிவாகிறது.

சக்கிப் படங்களில்லெப்ப அல்லது வெப்பவுள்ளுறை மாற்றங்க2ளக் குறிப்பிடும்போத பில்வருவனைற்றை ஞாபகத்தில் கொள்ள வேண்டும்;

- (i) மாற்றத்திற்கான திசை அம்புக்குறியால் குறிப்பிடப்படும். அம்பின் தூலப்பகுதி தகுந்தனாற வைரையப்படல் வேண்டும்.
- (ii) சம்பந்தப்படும் வெப்பமாற்றம் (புறவெப்பச் செய்முறை களில் எதிராகவும் அகவெப்பச் செய்முறைகளில் நேராக வும்.இருக்கும்), அம்புக்குறியின் நடுப்பகுதியில் செவ்வக அடைப்புள் குறிப்பிடல் வேண்டும்.
- (iii) பௌதிக அல்லது இறசாயன மாற்றத்திற்கான எதிர்ச் செய்முறை முன்பக்கச் செய்முறையை நிகரொத்த ஆயின் எதிர் முறையில் குறிப்பிடப்படல் வேண்டும்,

வேறேர் உதாரவமாக வெப்பவுள்ளுறைப் படத்தில் குறிப்பதில் பய றைடைய ஒரு வெப்பவிரசாயனத் தாக்கம் (இது ஒர் அகவெப்பச்செய்முறை) வாயநிலேயிலுள்ள நைதரசனும் ஒட்சிசதும் ஒன்று சேர்ந்த வாயுநிலேயிலுள்ள நைத்திரிக்கொட்சைட்டைக் கொடுத்தலாகும்.

ż № 2 (3) + ż O2 (3) → № (9) Δ H = + 90 кЈ தாக்கிகள் அ–து வாயுறி வேயிலுள்ள சைந்தரச்தும் ஒட்சிச்தும் எமது வழக்கு முறைப்படி (பகுதி 3.22) அவற்றின் நியம் நிலேகளில் பூச்சிய வெப்ப வுளிஞறை உடையனவாகும். இவ்வடிப்படையில் வாயுறிலேயிலிள்ள வநத்தி ரிக்கொட்சைட்டு அதன் நியம் நிலேயில் + 90 kJmol மேல் வெப்பவுள்குளை உடையதாகவிருக்கும் என்பதாகும். இவ்வழி, அதற்காவைப்பவுள்குறைப் படம் வருமாற:

படம் 3.5 நைதிரிக்கொட்சைட்டு உண்டாதற்குரிய வெப்பவுள்குறைப் படம்

3.25 வெப்படிள்ளுறை ஒரு விரிவான இயல்பு

ஒரு மூல் H₂O(U) இன் நியம வெப்பவுள்ளுறை – 286 kJ ஆக இருப்பதை ஏற்றுக்கொள்ளப்பட்ட வழக்கு முறை அடிப்படையில் (பகுதி 3.22) நாம் கண்டோம். அ– த யாவுமே நியமநிலேகளில் இருக்க, மாருவமுக்கத்தில் ஒரு மூல் H₂O(I) ஐ அதன் ஆக்க மூலகங்களிலிருந்த ஆக்கும்போத வெளி விடப்படும் வெப்பச் சக்தி 286 kJ ஆகும். ஆகவே, யாவுமே நியம நிலேகளில் இருக்க, இரு மூல்கள் H₂O(I) ஐ அதன் ஆக்க மூலகங்களிலிருந்த உண்டாக்கும்போத வெளிவிடப்படும் வெப்பச்சக்தி 2×286 அ– த 572 kJ ஆகும்; வேறுவிதமாகச் சொல்வதேதனில், இரு மூல்கள் H₂O(I) இன் நியம வெப்பவுள்ளுறை – 572 kJ ஆகும். மேலே கேறப்பட்டுள்ள உண்மைகிடைநை வெப்பவிரசாயனச் சமன்பாட்டில் வெவில் பிள்வருமாற எடுத்தைக் குறலாம்:

2 H₂(g) + O₂(g) = 2 H₂O(l) Δ H = -572 κ சடப்பொருளின் அளவிற்கு நேர்விகிக சமனுடைய வெப்பவுள்ளுறைபோன்ற இயல்புகள், விரினான இயல்புகள் எனப்படும். இத்தகைய இயல்புகளுக்கு ஒரு சிறப்புண்டு. அதாவது சமன்படுத்தப்பட்ட ஒர் இரசாயனச்சமன்பாடு

130

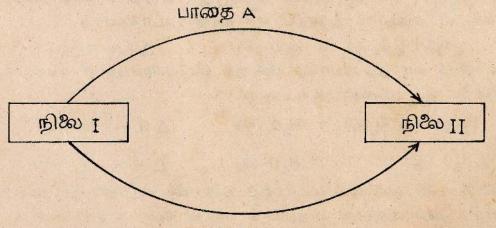
தொடர்பாக இல்லியலிபு குறிப்பிடப்பட்டபின், பெருக்கல் அல்ல அவகுத் தல் முறையால் அச்சமன்பாடு மீஅ ஏற்படுத்தப்படும் மாற்றங்கள் இவ் வியல்பிலும் ஒத்த விகிதசமமான மாற்றங்க2ளக் காட்டும். இவ்வழிமேலே தரப்பட்டுள்ள கடைசிச் சமன்பாட்டை ஒரு காரணியால் உதாரணமாக 4 ஆல் பெருக்கினேமாயில் QH இற்கான பெழுமானத்தையும்அதே காரணியால் பெருக்குதேல் வேண்டும்; எனெனில் அப்போதுதாவ் வெப்பவிரசாயனச் சமன் பாட்டின் உண்மைச் சமநி2ல பேணப்படும். இவ்வழி நமக்குக் கிடைப்பத

 $8H_2(g) + 4O_2(g) = 8H_2O(l)$ $\Delta H = -2288 \text{ kJ}$

3.30 எசுவில் மாற வெப்பக் கூட்டல் விதி

H₂(g) ஐ உம் O₂(g)ஐ உம் H₂O(L) ஆக மாற்ற &லை, பின்வரும் வெப்ப வி சாயனச் சமன்பாட்டிற்கேற்ப <u>ஒரு</u> படியில் நடாத்தலாம்.

H₂(g) + ஜ்O₂(g) = H₂O (l) △ H ≃ - ≳86 kJ அல்லாவிடில் மாற்றுமுறையாக, பிக்லரும் வெப்பலிறசாயனச் சமன்பாடுக ஞக்கேற்ப இரு படிகளில் நடாத்தலாம்.


 $H_{2}(g) + \frac{1}{2}O_{2}(g) = H_{2}O(g) \qquad \Delta H = -24.4 \text{ kJ}$

H₂O (ஒ) = H₂O (ℓ) Δ H = -4 2 kJ (வேறுவ நகறில் குறிப்பிடப்பட்டாலன்றி இவ்வலகில் எருத்துக் கூறப்பட்ருள்ள வெப்ப, வெப்பவுள்ளுறை மாற்றங்கள் யாவும் நியம நிபந்த2்னைக2்ளக் குறிப்பிருகின்றன என்பதை அவதானிக்க).

இருபடிகள் சம்பந்தப்பரும் இரண்டாவகு முறையில் வாயுநிலேயிலுள்ள ஐகர சதும் ஒட்சிசனும் திரவதீராக மாறம் தாக்கத்திற்கேற்ப மொத்த வெப் பமாற்றத்தில் — 286 kJ (அ–த, – 244–42 kJ) சம்பந்தப்படுகிறது. இசு, அடுத்தடுத்த நிகழும் இரு நிகழ் முறைகரளக் குறிப்பிரும் சமஸ்பாடு களின் அட்சரகணிகக் கூட்டுத்தொகைக்குச் சமனுகும். (வெப்பவுள்ளுறை மாற்றங்கள் கூட்டற்றக்ஷக்குரியன எஸ்பதை அவதாணிக்க, பகுதி 3.25).

மேலே சுறப்பட்டவற்றிலிருந்த பெறப்படுவத யாதொனில், ஆரம்ப நிலேயும் (அ–த தாக்கிகளும்), இறுகிறிலேயும் (அ–த விலவபொருள்க ஞம்) ஒரே மாதிரி இருக்கும் வரையில், ஆரம்ப நிலவபிலிருந்த இறுகிறிலே வரையுள்ள பாதையில் சம்பந்தப்படும் படிகளின் எண்ணிக்கை அல்லத படி களின் வகை, தாக்கங்களில் நிகழும் வெப்பவுள்ளுறை மாற்றங்கஞக்குப் பரி சோதீசே மூலம் பெறப்படும் அல்லது களிக்கப்பமும் பெறுமானங்கீசிப் பாதிப்பதில் 2ல என்பதாகும்.

ஆரம்ப நிலேயிலிருந்த ஒரே இழகிநிலேகலே அடையும் பாதைகளில் ஒன்றில் பெறப்படும் வெப்ப மாற்றம் பிறிதொன்றில் பெறப்படும்வெப் பமாற்றத்திலிருந்சு வித்தியாசப்படுமாயின் இதைக் தொடர்ந்து ஏற்படும் விளேஷகள் யாவை எவ்பதை இவ்விடத்தில் சற்று சிந்திக்த ஆராங்கல்பயன் தரும். உதாரணமாக, நிலே 1 இலிருந்து பிறிதொரு நிலே 11 இற்கு A,B ஆகிய இரு வெவ்வேறு பாதைகளால் செல்லும்போது வெளிவிடப்படும் வெப்பம் முறையே Q₁, Q₂ (Q₁ > Q₂) ஆக இருப்பதாகக் கருதுக.

பாதை в

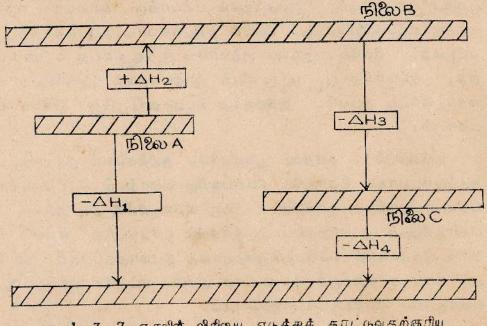
ULB 3.6

இதிலிருந்த பெறுவத பானத B மூலம் நிலே II இலிருந்த நிலே I இற்குச் செல்வோமாயின், Q₂ அளவு வெப்பம் உறிஞ்சப்படும் என்பதாகும்.எனவே பாதை A மூலம் நிலே I இலிருந்து, நிலே II இற்குச் செல்லும்போத Q₁ அளவு வெப்பம் வெளிவிடப்படும்; அத்தோடு நிலே I இற்கு பாதை B மூலம் திரும்பு வோமாயின், Q₂ அளவு வெப்பம் உறிஞ்சப்படும். இதிலிருந்த பெறுவத யாதெனில், நிலே I இலிருந்த நிலே II இற்கு பாதை A மூல மும் மீண்டும் நிலே I இற்கு பாதை B மூலமும் செல்லும்போத Q₁ > Q₂ ஆக இருப்பதால் மொத்த வெப்பச்சத்தி (Q₁ - Q₂) வெளிவிடப்படும்குன் பதாகும். இச்சுற்றுப் பாதையினு டு செல்வதால் எவ்வித் செலவும்இன்றி ஒவ்வொரு சுற்றுக்கும் (Q₁ - Q₂)வைப்பச் சக்தி வெளிவிடப்படும், ஏனெலில்

> Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

சுற்றப் பூர்த்தியாக பீன்டும் நாம் ஆறம்பநி2்லக்கு (அ– ஏ, தாக்கிகள்) வருகிறேம். இவ்வழி, வெப்பச்சக்கி வெறமையிலிருந்த தோற்றுவிக்கப்பட வேன்டும். இத்தகையவொரு நி2்வ, சக்திக் காப்புத் தத்துவத்திற்கு முரன்பாடானதாகும்; இத்தத்துவம் பல்லாண்டு காலமாக கடும் பரீட் சைக்கு உட்படுத்தப்பட்டு, பிகவும் நாணுக்கமாக அமைவதாகக் காணப் பட்டுளத. எனவே, ஆரம்ப அதுமானம் ஒ₁> ஒ₂ என்பத சரியல்லவென்ருகி றது. இவ்வாறே ஒ₁, ஒ₂ ஐ விடக் குறைவாகவும் இருக்கமுடியாதென்ப தைக் காட்ட முடியும். இதிலிருந்த பெறுவது ஒ1, ஒது நிகரொத்ததைன் பதாகும்.

உள்மையில், சக்தியை ஆக்குதலோ அழித்தலோ முடியாத என்பதை அடிப்படையாகக் கொண்டே வெப்பவுள்குறைமாற்றம் வெப்பமாற்றத்துடன் தொடர்புபடுத்தப்படுகின்றது. ஒரு தொகுதியிலிருந்து அல்லது ஒரு தொகுதியிலுள் இடமாற்றப்படும் சக்தியில் ஒறேயொரு வடிவம் வெப்ப மாக இருக்கையில் வெப்பவுள்ளுறையாதை இடமாற்றப்படும் வெப்பத்திற் குக் காறணமாவதற்குத் தேவையான அளவில் மட்டுமே மாற்றமடையும்அத் தொகுதியில் சக்தியாகக் கருதப்படும்.


H₂ இற்கும் O₂ இற்குயிடையே நிகழுந் தாக்கத்திற்கான வெப்ப வுள்குறைத் தரவின் கூட்டற்பன்பு பற்றிஏற்கனவே கருதப்பட்டுளது. இக்கூட் டல் தத்துவத்தின் பொதுமைப்பாடு, சக்திக்காப்புத் தத்துவத்திலிருந்து பின் தொடரவேண்டிய விரேவு எகிறது; இவ்வுண்மை முதன்முதலாக 1840 இல் ஜெரீமெயில் உறைவற் எசு என்புவரால் கண்டறியப்பட்டது; வழக்கமாக இது எசுவின் மாற வெப்பக் கூட்டல் விதி எனப்படும்.

் ஆரம்ப நிலேயிலிருந்த இழகிநிலே வரை ஒரு தொகுதியில் நிகழும் மாற்றக்கோடு தொடர்ந்த நிகழும் வெப்பவுள்ளுறை மாற்றம், ஆரம்ப நிலேக்கும் இழகி நிலேக்கு பிடையேயான பாதையில் தங்கியிருப்பதில் லே.

A இலிருந்த D வரையுள்ள பாதையை

<u>ஒள்றில்</u> (௳) A → D வரையுள்ள நேர் மார்க்கம் (நிலே A இன் வெப்ப வுள்ளுரை > நிலே D இன் வெப்பவுள்ளுறை) ஆக அல்லது (Ხ)A→B,B→C,C→Dவரையுள்ள நேரில் மார்க்கம் (நிலே B இன் வெப்பவுள்ளுறை > நிலே A இன்வெப்பவுள்ளுறை) ஆக இருப்பதாகக் கருதவும்.

இச் செய்முறைக்கான சக்தி மாற்றங்க2ள வெப்பவுள்ளுறை உருவப்படத்தில் குறிப்பிடும்போது நாம் பெழுவது

படம் 3.7 எகுவின் விதியை எடுத்தக் காட்டுவதற்கு^{ரிய} வெப்பவுள்ஞறைப் படம்

<u>வழி (a)</u> இற்கு, வெப்பவுள்ளுறை மாற்றம் = $-\Delta H_1 = H_D - H_A$ <u>வழி (b)</u> இற்கு, வெப்பவுள்ளுறை மாற்றம் = $\Delta H_2 + (-\Delta H_3) + (-\Delta H_4)$ $\Delta H_2 = H_B - H_A, -\Delta H_3 = H_c - H_B, \Delta H_4 = H_D - H_c$ ஆக்ஸிருப்பதால்

> வெப்பவுள்ளுமை மாற்றம் = $(H_B - H_A) + (H_c - H_B) + H_D - H_c$ = $H_D - H_A$

இதிலிருந்த பெறப்படுவத யாதெனில், வழி (௳) அல்லத வழி (Ხ) இன் தன்மை எவ்வாறிருப்பிறும், வெப்பவுள்ளுறை மாற்றம் ஒன்றே என்பதாகும். இதையே எதவின் விதி கூறுகிறது.

எசுவின் விதியில் அடங்கியிருக்கும் அடிப்படைகள் பின்வருவன எல்பதைத்

தைவிலாக வினங்கிக் கொள்ள வேண்டும்.

- (i) ஒரு தொகு கியின் ஒவ்வொரு நிலேக்கும் வெப்பவுள்ளுறைக்கான பெறுமாலம் ஒன்றுண்டு.
- (ii) இரு நிலேகள் வெப்பவுள்ளுறையில் வேறுபடுமாயின், தொகுதி ஒரே அமுக்கத்தில் இருக்க, ஆரம்ப நிலையிலிருந்த இழுதி நிலேக்கு ஒரு மாற்றம் நிகுழும்போது இவ்வேறுபாட்டிற்குச் சரிசமமான வெப்பச் சக்தி உறிஞ்சப்படும் அல்லத வெளி விடப்படும்.

(மாறுவமுக்கத்தில், வெப்பவுள்ஞு ைற மாற்றம், வெப்பமாற் றத்திற்குச் சமஞ்கும் என்பதை அவதானிக்க).

கொழும்பிலிருந்த கண்டிக்கான ஒரு பயனத்தை நாம் கருத்தில்கொண்டு வெப்பவுள்ளுறையில் மாறத்தல் வைக்கு ஒரு பருமட்டான ஒப்புமையைப் பெற லாமீ。 இப்பயணத்தை நடத்தல், மாட்டுவண்டி, மோட்டாரீவண்டி, புகை யிரதம், பஸ்வண்டி, லொறி, வானார் இ ஆகியவற்றில் ஒன்ளுல் மேற்கொள் ளலாம். பயணம் செய்யும் வனகக்கேற்ப, செலவாகும் நேறம், பணச் செலவு, பயனத்தில் உள்ளமத்தா ரம் ஆகியன வேறுபடும். ஆயின், கொமும் பில் இருந்த கைக்டிக்கான பயனத்தில் குறைந்தபட்சம் ஒரு கணியமாவத மாளதிருக்கும். அதாவத, பயணம் செய்யும் விதத்தில் தங்கியிமாத ஒரு கணியம் ... இக்கணியம், கொழும்பிலிருந்த கேண்டிலரை பயணமான நி2லக்குத்துக் தா ரமாகும், ஓர் இரசாயனத் தாக்கத்தில் நிகழும் வெப்பவுள்ளுறைமாற் றத்னத, கொழும்பிற்கும் கண்டிக்குமிடையெயான பயணத்தின் நிலேக்குத்துத் தை ரத்திற்கு ஒப்புமையாகக் கூறலாம். ஒருவர் வெவ்வேறு பாதைக2ளத் தெரிவதன் மூலம் அ-- த வெவ்வேற தாக்கத் தொடர் மூலம் எந்தவொரு சந்தர்ப்பத்திலும் ஒரு தொகுதியின் நிலேகளிடை பேயான வெப்பவுள்ளுறைவித் அயாசத்தை மாற்றமுடியாது. தொடக்கத் தாக்கிகளும், இறதி வி2வ பொருள்ககும் ஒன்றுக இருக்கும்வரை, இடைப்படும் தாக்கங்களின் பானத அல்லது கொடர் யாதாகவிருப்பிலும், வெப்பவுள்ளுறை மாற்றம் ஒரேயள விலதாகவே இருக்கும்.

3.31 எசுவின் விரியில் ஆதாரமாகவுள்ள கூடிப்புகள்

நேராகத் தனிய முடியாத தாக்க வெப்பங்க£ளக் கூலிக்க உதவுவ தாலும் நேராகத் தூலியக்கூடிய தாக்க வெப்பங்க£ளக் கூடத் தனித்தனி யாக நீரைபிக்க உதஷவதாலும் எதலில் விதி மீக முக்கியமாவதொன்றுகும்.

ஒரு தொகுதியின் ஒவ்வொரு நிலேக்கும் தலிப்பட்ட வெப்பவுள்ளுறைப் பெறமானம் உண்டென்பதை நாம் ஏற்கனவே கற்றறிந்தள்ளோம். 25 தோடு, மாளவழக்கத்தில் ஒரு நி2வறிலிருந்த வேளெரு நி2வக்குமாற்றல் இரு நிலேகளுக்குமான வெப்பவுள்ளுறை வித்தியாசத்தின் பருமனக்குச் சம தாவைளவில் வெப்பச் சக்தி உறித்சலோடு/வெளிவிடலோடு சம்பந்தப்படும் இத்தகையவொரு மாற்றத்தை என்பதையும் நாம் அறிவோம். C IS D IQ யாக ஒரு படியில் நடக்காத, சுற்றில் ஒரே இறுகி நிலேயே ត្លាំបក្រធំ பல படிகளடங்கும் நேரில் முறையில் நடத்திதல், எசுவின் விதிக்கேற்பஒன் றன்பின் ஒன்றுக நிகழும் படிகள் ஒவ்வொன்றிலும் சம்பந்தப்படும் வெப்ப (அல்லத வெப்படிள்குறை) மாற்றங்களின் கூட்டுத்தொகாக, மொத்தலைப்ப அல்லது வெப்பவுள்ளுறை மாற்றக்கிற்குச் சமதைக இருக்கல் வேண்டும்.

மேலே கூறப்பட்டுள்ள உண்மைகளில் பயல்தர விரீளவு யாதெனில்சமன் படுத்தப்பட்ட இரசாயனச் சமன்பாடுகரே (சம்பந்தப்படும் வெப்ப அல் லத வெப்பவுள்ஞறை மாற்றங்களுக்கான பெறுமானங்கள் உட்பட) கூட்டல் கழீத்தல், சமன்பாட்டில் ஒரு பக்கத்திலிருந்த மேலுபக்கத்திற்கு பதங்கரே மாற்றல், ஒரு பொதுக் காரணியால் பெருக்குதல்/பிரித்தல் போள்றஅட் சர கணிதைக் கையாட்சிகளுக்கு உட்படுத்த முடிகின்றமையேயாகும். வெப்ப வுள்குறை ஒரு விரிவான இயல்பு என்பதை நாமறிந்தாள்ளோம் (பகுதி 3.25). இந்த உண்மையும் எதவில் விதியும், மேற்கூறிய அட்சரகணிதக் கையாட்சி கரே வெப்பவிரசாயனச் சமன்பாடுகளில் பிரயோகிப்பதை சாத்தியமாக் குகின்றன.

மேலே கூறப்பட்டுள்ளதைப் பிறிதொரு வகையில் கூறுவதாயின், சமன் படித்தப்பட்ட இரசாயனச் சமன்பாடுகளுடன் சம்பந்தப்படும் வெப்ப அல் லது வெப்பவுள்ளுறை மாற்றங்கள், சமன்பாடு பெறப்பட்ட வகையில் தங் கியிராத ஒரே மாதிரியாகவே இருக்கும் என்பதாகும். தேவைப்படும் ஒர் இரசாயனச் சமன்பாட்டில் நிகழும் வெப்ப அல்லத வெப்பவுள்குறை மாற்றங்க2வக் கணக்கிடுவதில் வெப்பவிரசாயனச் சமன்பாடுக2்ள அட்சர கணிதை முறையில் வைசயாஞவதோடு சம்பந்தப்படும் செய்முறையைச் சுருக்க மாகப் பிலேவேருமாற பொதுப்பட எடுத்திக் குறலாம்.

(i) தறப்பட்ட சமன்பாடுக 2ள (தறவுக 2ள) அட்சறகணிதைச் சமன்

பாடுகளாகக் கொள்க.

(ii) வெப்பவுள்ளுறைகீள அட்சரகணித முறையில் கூட்டுக.

(iii) தேவைப்படாத பதார்த்தங்களின் சமஎண்ணிக்கை மூல்கீ (அ.த. இழகியில் தேவைப்படும் சமன்பாட்டோடு சம் பந்தப்படாதவற்றை) நீக்கி, தேவையான பதார்த்தங்கீ மட்டுமேயடைய சுண்பாட்டைப் பெறும்வகையில் சமன்பாடு கீளக் கையாதுக.

எசுவின் விதியை ஆதாரமாகக் கொண்ட கணிப்பு முறையை எடுத்த விளக்குவதற்கான பொருத்தமான உதாரணங்கள் சிலவற்றை அடுத்தக் கரு தேவோம்.

உதாரணம் (i)

பில்லருந் தரவுக 2ளப் பயல்படுத்த வாயுநி2லயிலுள்ள அமோனியாவில் தோல்றல் வெப்பத்தைக் கூலிக்க

 $4 \text{ NH}_{3}(9) + 3 O_{2}(9) = 6 \text{ H}_{2}O(9) + 2 \text{ N}_{2}(9) \qquad \Delta H = 1268 \text{ kJ}_{--}(4)$ $2 \text{ H}_{2}(9) + O_{2}(9) = 2 \text{ H}_{2}O(9) \qquad \Delta H = -488 \text{ kJ}_{--}(4)$ $3339 \text{ M}_{2}U = 488 \text{ kJ}_{--}(4)$

± N₂(9) + 3 H₂(9) = NH₃(9) ΔH = ? ····(3) என்ற தாக்கத்தோடு சம்பந்தப்பட்டுள்ள வெப்பவுள்ளுறை மாற்றத்தைக் கணிக்கவேண்டியுளது. ஏனெனில், இச்சமன்பாடு ஒரு மூல் NH₃அதன் ஆக்கக் கற்ற மூலகங்களிலிருந்த உண்டாவதை ஒத்திருப்பதாவாகும்.

சமன்பாரு (3)இல் கூறுகள் O₂(9) உம் H₂O(9) உம் இல் 2லயாதலால் சமன்பாருகள் (1)இலும் (2) இலுயிருந்*கு இவற்றை* அகற்ற வேண்ரும்.

சமல்பாரு (2)ஐ காரணி 3 ஆல் பெருக்கிப் பெறுவ அ 6H₂(9) + 3O₂(9) = 6H₂O(9) ΔH = -14,64 кJ...(4) சமன்பாரு (4) இலிருந்த சமன்பாரு (1) ஐக் கழித்துநாம்

பெறுவத

6H2(9) - 4NH3(9) = -2N2(9) AH=(-1464+1268)kJ=-196kJ உறப்புக்களே மாற்றியமைத்த நாம் பெறுவத

 $2N_2(q) + 6H_2(q) = 4NH_3(q) \Delta H = -196 hJ$

 $\frac{1}{2}N_2(9) + \frac{3}{2}(9) = NH_3(9)$ எனவே வாயுநி2லயிலுள்ள அமோலியாலின் தோன்றல் வெப்பம் 49 kJmol⁻¹ ஆகும். கறிப்பு சமன்பாரு (2) ஐ 3 ஆல் பெருக்கிப் பெற்ற சமன்பாரு, கூறுகள் 3 0,00 ஐயும் 6 H_O(g) ஐயும் கொண்டிருந்தத; இவ்விரு கூறகளும் சமன்பாடு(1) இலும் தோவ்றியுவ. இந்நி£லயில் ஒரு சமவ்பாட்டிலிருந்த மற்றயதைக் கழிக்க, தேவையற்ற கூறுகளாகிய இவையிரன்டும் நீங்கின. உதாரலம் (11) பின்வரும் தரவுக 2 வப் பயன்படுத்தி திரவ பென்சினின் С ஆக தகன ഖെ പ് பத்தைக் கூறிக்க. H_O(L) இன் தோவ்றல் வெப்பம்= -286 kJmol இல் தகவவெப்பம் $= -393 \, \text{kJ gatom}^1$ C(s) தோன்றல் வெப்பம்= - 84 kJmol CHL Qé களிப்பு $C_{e}H_{e}(e) + 7 \pm 0_{2}(9) = 3H_{2}O(e) + 6CO_{2}(9) \quad \Delta H = ? \dots \dots (n)$ இத்தாக்கத்தீற்காவ வெப்பமாற்றத்தைக் கணிக்கவேண்டியனது. தறப்பட்டுள்ள தறவுகடேவைப்படிறைசாயனச் சமல்பொடுகளின் வடிஷில் பின்வருமாற எழுதலாம் $H_2(g) + \frac{1}{2}O_2(g) = H_2O(e)$ AH = -286 kJ -- (2) $C(s) + O_2(g) = CO_2(g)$ AH = -393 kJ -- (5) $6C_{(s)} + 3H_{2}(9) = C_{6}H_{6}(1)$ AH = - 84 RJ -- (4) இம்மூன்ற சமன்பாடுகளிலிருந்தும் நாம் H2(3), C(s) ஆகியவற்றை Jaa

4H=-49kJ

இத2வக் காரன் 4 ஆல் பிரிக்க

வேண்டும். இதன்பொஞ்ட்டு சமன்பாடு (2) ஐ (3) ஆலம் சமன்பாடு(3) ஐ (6) ஆலம் பெருக்குக. இத்தல் பெறப்படுவத,

3H2(9) + 5 02(9)	=	3 H20(2)	ΔH =	-858 kJ-6)
6C(s) + 6 02(g)	=	6 CO2(9)	• Δ H =	-2358 kJ6)

(5) ஐயும் (6) ஐயும் கூட்ட நாம் பெறவது,

3H2(9) + 6C(5) + 75202(9) = 3H2(L) + 6C02(9) AH = -(858+2358) = -3216 kJ...(7) சமக்பாடு (7) இவிருந்த (4) ஐக் கழிக்க 6C(5)உம் 3H2(9) உம்

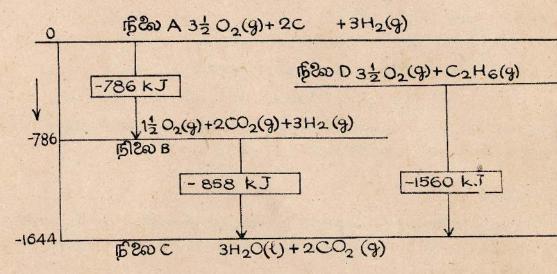
நீங்கப்பெற்ற நோம் பெறவே ,

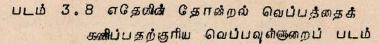
 $7_{2}O_{2}(q) = 3H_{2}O(L) + 6(O_{2}(q) - C_{6}H_{6}(L) \Delta H = (-3216 + 84) kJ$ $2 \mu U U = 3 \mu_{2}O(L) + 6(O_{2}(q) - C_{6}H_{6}(L) \Delta H = (-3216 + 84) kJ$

C₆H₆(L) + 7½0₂(9) = 3H20(L) + 6C0₂(9) AH=-3132 kJ இச்சமன்பாடு உண்மையில் சமன்பாடு (1) ஆகும். எனவே, தேவைப்படும் திரவ பெக்சீவின் தகனவெப்பம் – 3132 kJ ஆகும்.

உதாரணம் (111)

எதேன், பென்சிற்கரி, ஐதரசன் ஆகியவற்றின் தேகனவைப்பங்கள் மூறையே – 1560, – 393, – 286 kJ mei⁻¹ ஆகும். எதேனின் தோன்றல் வெப் பத்தைக் கோகிக்கை.


கொடுக்கப்பட்ட தரவுக்கள் வெப்பவிரசாயனச் சமன்பாடுகளின் வடிவில் பிசுவேருமாற எழுதலாம்.


 $C_{2}H_{g}(q) + \frac{7}{2}O_{2}(q) = 2CO_{2}(q) + \frac{3}{2}H_{2}O(l) \Delta H = -1560 \text{ kJ}...(l)$ $C(s) + O_{2}(q) = CO_{2}(q) \Delta H = -393 \text{ kJ}...(2)$ $H_{2}(q) + \frac{4}{2}O_{2}(q) = H_{2}O(l) \Delta H = -286 \text{ kJ}...(3)$

தாக்கம் 2C(s) + 3Hcg) = C₂H₆(g) $\Delta H = ?....(4)$ இற்கான AH ஐக் கணிக்குமாற கேட்கப்பட்டுளது.

இப்பயிற்கியை, உதாரணங்கள் (1) ஐயும் (11) ஐயும் செய்தத போல வெப்பலிரசாயனச் சமன்பாடுக2ளே அட்சரகணித முறையால்கையாண்டு செய்யமுடியும். மாற்முமுறையாக, வெப்பவுள்ஞறைப் படங்கள் சம் பந்தப்படும் வேளொரு முறையையும் பயன்படுத்தலாம். இப்பின் 2னயமுறை வையப் பயன்படுத்தி உதாரணம் (111) தீர்க்கப்படும். வெப்பவுள்ளுறைப் படத்திற்கான தொடக்கப் பொருள்களாவன:

%_0₂(д) + ೩С(д) + ತH₂(д) இவையாவும் (நியம நிபந்த£னகளில்) பூச்சிய வெப்பவுள்ளுறை உடையன. இது நி8ல A எனக் குறிப்படப்படும்.

2C(s) உம் 20₂(q) உம் ஒல்ற சேர்ந்த வெப்பவுள்குறை மாற்றம் 2 X (-393) அ-த -786 kர உடன் 2C0₂(q) ஐக் கரும். இம்மாற்றம் வெப்பவுள்ளுறைப் படத்தில் நி2்ல A இலிருந்த நி2்ல B இற்கான மாற்ற மெனக் குறிப்பிடப்பட்டுவது, நி2்ல A ஐக் காட்டிலும் 786 kர சக்தி சூறைவாகவுள்ள நி2்ல B இன் கூறகள்

³/₂O₂(9) + 2(O₂(9) + 3 H₂(9) ஆகும். (நிலே A இலிருந்த நிலே B இற்கான மாற்றத்தில் கூறு 3 H₂(9) எந்தவித மான மாற்றத்தையும் அடையவில்லே என்பதை அவதானிக்க).

அடுத்தபடியில், நாம் 1 ½ 0₂ (ஏ) உம் 3 H₂ (ஏ) உம் ஒன்ற சேர்ந்த 3 H₂ 0 (டி) ஐத் தருவதைக் கவனிப்போம், இம்மாற்ற ந்தில் சம்பந்தப் படும் வெப்பவுள்ளுறை மாற்றம் 3 x (– 28 čீ) அ– த – 858 kJ வே மாற்றம் வெப்பவுள்ளுறைப் படத்தில் நி2ல B இலிருந்த நி2ல c இற்கான மாற்றமாகக் குறிப்பிடப்பட்டுளது. நி2லே இன் சக்தி நி2ல B இவகைக் காட்டியைம் 858 kJ குறைவாயுளது (அல்லது நி2ல A இவதைக் காட்டியேம் 1644 kJ குறைவாகவுளத). நி2ல C இன் குறுகள் 3H_O(2)+ 2.CO2(9)ஆகும்.

(நிலே B இலிருந்த நிலே C இற்கான மாற்றக்கில் கூற 2.CO (வு) எந்த விதமான மாற்றத்தையும் அடையலில்லே என்பதை அவதானிக்க.)

சமன்பாரு (1) இல் தரப்பட்ருள்ள வெப்பவிரசாயனத் தரவு, C2 H89 உம் 7 O2 (9) உம் 3 H2O(2) ஆக்ஷம் 2 CO2(9) ஆக்ஷம் மாற் றமடையும்போது சம்பந்தப்பரும் வெப்பவுள்ளுறை மாற்றம் – 1560 kJ எனக் குறிப்பிருகிறது. 3 H2O(2) உம் 2 CO2(9) உம் நிலே C ஆ ஆக்கு வதால் C2 H6(9) + 7 O2(9)

என்ற தொகுதி கொண்டுள்ள நி2ல (இது நி2ல D ஆல் குறிப்பிடப்படும்) நி2ல C ஐக் காட்டிலும் 1560 k J சக்திரையக் கடுதலாகக் கொண்டிருக் ஒம். எவவே நி2ல D , நி2ல C உடல் ஒப்படும்போது சக்திஅச்சில் 1560 k J ஆல் கூடிய ஒரு புள்ளியில் இருக்கவேண்டும். இவ்வடிப்படையிலே யே நி2ல D வெப்பவுள்குறைப் படத்தில் குறிப்பிடப்பட்டுளது.

<u>7</u> O₂(9) + 2 C(s) + 3 H₂(9) **ж**ащы ферентан Авен А

 $\frac{7}{2}O_{2}(9) + C_{2}H_{6}(9)$

ஆகியவற்றுலான நிலே D ஐக் காட்டிலும் 84 நூ (அ–அ. 786 + 858 – 1560 நூ) சக்தியைக் கடுதலாகக் கொ. ஷடிருக்கிறதென்பதை வெப் பவுள்ளுறைப் படத்தைப் பார்த்து அறிகிறேம். அதாவது, நிலே A இல ருந்து நிலே D இற்கான மாற்றத்தில் 84 நூ சக்தி வெளிவிடப்படுகிறது என்பதாகும். 7 02(9), நிலே A, நிலே D ஆகிய இரண்டிற்குமே பொது வாக இருப்பதால், 2 C(s) + 3 H2(9) ஆனது C2 H6(9) ஆக மாறம் போது 84 நூ சக்தி வெளிவிடப்படுதல் சம்பந்தப்படுகிறது என்பத விளல் கும். இதலே நாம் வேறுவிதமாக தாக்கம் (4) இற்காவ

2C(s) + 3H₂₍₉₎ = C₂H₆₍₉₎ AH, -84 kJ எனக் கூறலாம். (வெப்பச் சக்சி வெளிவிடப்படுவதால் எதி ராகவுளது) எனவே, எதேலின் தோத்றல் வெப்பம் _84 kJmoī¹ ஆகும்.

உதாறனம் (iv)

ஒரு சரிஷக் கேந்தகத்திலதைம் சாய்சதாக் கந்தகத்திஷதம் தகல வெப்பங் கள் முறையே –298.49, –298.20 kJgatom¹ எலத் தேரப்பட்டுஎ. ஒரு சரிஷக் கேந்தகம் சாய்சதாரைக் கந்தகமாவதற்கான தாண்டல் – வெப் பத்தைக் கோவிக்கே.

Salůy

கொருக்கப்பட்ட தரவுகீள வெப்பவிரசாயன வடிவில் பின்வருமாற எழுத லாம்:

 $S(905 # m_{3}s) + 0_{2}(q) = S0_{2}(q)$ $\Delta H = -298 \cdot 49 kT$ $S(4\pi \dot{u} = 30 \cdot 10_{2}(q) = S0_{2}(q)$ $\Delta H = -298 \cdot 20 kT$ கழிக்கும்போது நாம் பெறுவது

S(ஒரு சரிஷ்,S)– S(சாய்சதாம்,S) = AH = – 0.29 kJ அ–ச S(ஒரு சரிஷ்,S) = S(சாய்சதாரம்,S) = AH = – 0.29 kJ எனவே, தாண்டல் வெப்பம் – 0.29 kJ ஆகும்.

குறிப்பு

ஒரு சரிஷக் கந்தகம் சாய்சதுரக் கந்தகமாக மாறல் இயற்கையாக நிகழ்வதொன்றுகும். வெப்பமாற்றம் 290ர ஆக மட்டுமே இருப்பதால் திருத்தமான கலோரிமான அளவீடுகரேச் செய்யமுடியாத அளவுக்கு இம் மாற்றம் மிக மெதுவாக நிகழ்கூறது. எணிலும் மேலேயுள்ளவாறு எசுவின் விதிகையப் பயன்படுத்தித் தாண்டல் வெப்பத்தைப் பெறுவதற்கு ஒருசரிஷக் கந்தகத்தினதும், சாய்சதுரக் கந்தகத்தினதும் தகனவெப்பங்கரேஷத் தனித் தனி தணித்து பயன்படுத்தலாம்.

உதாறனம் (v)

S (சாய்சதுரம், S) +20₂(g) + H₂(g) = H₂S0₄(L) என்ற சமன்பாட்டிற்கமைய சல்பூரிக்குமிலம் அதன் மூலகங்களிலிருந்த உண் டாவதற்கான தாக்க வெப்பம் யாத?

சாய்சது நக் கந்தகத்தினதும் _ஐக நசன் வாயுவினதும் தகன வெப்பங்கள் முறையே – 298.20, – 286 kj ஆகும். பின்வரும் தரவுகளும் கொடுக் கப்பட்டுள.

 $250_{2}(q) + 0_{2}(q) = 250_{3}(q) \qquad \Delta H = -197 \text{ kJ}$ $50_{3}(q) + H_{2}(q) = H_{2}s0_{4}(L) \qquad \Delta H = -130 \text{ kJ}$

குறிப்பு

நேராக நடாத்த முடியாத தாக்கத்திற்கு இத ஓர் உதாரவமொகும்.ஏவை வூல், ஐதரசன், ஒட்சிசன், கந்தகம் ஆசியைற்றை ஒரு கலோரிமானியில் கலந்த செல்பூரிக்கயிலத்தை நேரடியாகப் பெறமுடியாத. என்றைம் நேரடி யாகக் கலோரிமான அவவீடுக2்ன எடுக்கக்கூடிய தாக்கங்க2்வத் தெரிஷ செய்ய முடியும். இவை, ஒன்ற சேர்க்கப்படும்போத விரும்பப்படும் மொத்தத் தாக்கத்தைத் தருவனவாக இருக்கும். சல்பூரிக்கமிலத்தில் தோன்றல் வெப்பத்தைத்தரக்கூடிய வகையில் தெரிஷ செய்யப்பட்ட தாக் கங்களிற்கான வெப்பவிறசாயனத் தறவுகவே இப்பயிற்சியில் கொடுக்கப்பட் டுள்ளன.

கைவிப்புகள்

லைப்பவிரசாயனச் சமன்பாடுகள் வடிவில் கொடுக்கப்பட்டுள்ள தகனத்து வுகள் வருமாறு: $S(aniagona, s) + 0_{a}(g)$ $= 50_{9}(9)$ AH= _298.20 kJ ... 1 AH= _286 kJ ____2 HO(L) + 3/20,(g) $H_{g}(q)$ ---- $+ 0_{2}(q) = 250_{3}(q)$ kJ 3 AH = _ 197 250 (g) + H20(1) = H504(1) $\Delta H = _130$ kJ. ஐ 2 ஆலம் (4) ஐ 2ஆலம் பெருக்க, நாம் பெறுவத kJ_4 50,(9) சமவ்பாடு (2) 2H (g) + 0,(9) = 2H,0(L) $\Delta H = -572$ kJ = 2H_SO4(L) AH = _260 + 2HO(L) kJ 250 (9) சமன்பாடுக் வயும் கட்ட நாம் பெறுவத (на0 ஐ நீக்குதற்கு) இவ்விரு AH = _832 kJ ... 5 = 2H, 504 (L) $2H_{2}(q) + O_{2}(q) + 25O_{2}(q)$ (So ஐ நீக்குதற்கு) சமன்பாடுகள் (3) ஐயும் (5) ஐயும் கட்டதாம் പെന്തെ ക kT___6 = 2H, 504(L) AH = _1029 250 (g) + 20 (g) + 2H (g) பெருக்கிப் பெறுவ த 50 ஐ நீக்கு தற்கு சமன்பாடு (1) ஐ 2 ஆல்

 இனி, சமன்பாடுகள் (6) ஐயும் (7) ஐயும் கூட்டப் பெறுவது

25 (சாய்சது 5)+ 40 (g)+2H (g) = 2H SO4(L) $\Delta H = -1625.4 \text{ kJ}$

AH=_ 812.7 KJ

இதீன் 2 ஆல் பிரிக்க

 $S(rimes god, S) + 20_{2}(q) + H_{2}(q) = 2H_{2}SO_{4}(l)$

எனவே, திரவசல்பூரிக்கமிலத்தை அதீன ஆகீகும் மூலகங்களிவிருந்தலைறம் போத (மேழள்ளசமன்பாட்டின்படி)அதன் தோன்றல் வெப்பம்— 812。7 ஆகும்.

மாணவருக்கான எண்கொண்ட பயிற்சிகள் (தாக்க வெப்பங்கள்).

(1) திரவ பென்சீனதாம் அசற்றலீன் வாயுவினதும் தகன வெப்பங்கள் முறையே — 3,345, — 1,300 kJmol எனத்தரப்பட்டிரைக்கும் போது

 $3C_{gH_{g}}(g) = C_{GH_{g}}(l)$

எதும் சமன்பாட்டிற்கலமைய அசற்றலீனிலிருந்த பென்சீன் உண்டா வதற்கான நியமத் தோன்றல் வெப்பத்தைக் கோணிக்க.

- (2) எதேனின் தோஷ்றல் வெப்பவுள்குறை, (85 kJmol)பென் சிற்கரி யின் பதங்கமாதல் சக்தி (700 kJ gatom⁻¹) ஐதரசன் மூலக் கூற்றின் கட்டப்பிரினைக் சக்தி, (+435 kJmol⁻¹), (இப்பெழமானங்கள் யாஷம் 25°C இற்கும் 1 வளிமண்டலவ முக்கத்திற்கும் தரப்பட்டவையாகும்.) எனத் தரப்பட்டிருக்கும் போது ஒரு மூல் எதேன் அதன் அமைப்புக் கூற்றஹுக்களாகப் பிரிகையு முவதற்கான வெப்பவுள்குறையைத் தானிக.
- (3) 25°⊂ இல் H₂O(k), C₂H₅OH(k), ⊂₂H₄(q) ஆசியவற்றின் நியமத் தோன்றல் வெப்பங்கள், முறையே -244, -168, +68 kJmol ஆகும்.

 $C_{g}H_{5}OH(I) \longrightarrow C_{g}H_{4}(g) + H_{g}O(I).$

இதற்கான தாக்க வெப்பத்தைக் கோகிக்க.

(4) பின்வரும் தரவுகளிலிருந்த தின்ம் அமோனியங்குளோரைட்டின் (AL₂Cl₂) தோன்றல் வெப்பத்தைக் கணிக்க:

144

 $\begin{aligned} Al(s) + 3HCl(aq) &= AlCl_3(aq) + \frac{3}{2}H_2(q) & \Delta H = -525 \text{ kJ} \\ H_2(q) + Cl_2(q) &= 2HCl(q) & \Delta H = -184 \text{ kJ} \\ HCl(q) + aq &= HCl(aq) & \Delta H = -73 \text{ kJ} \\ Al_2Cl_6(s) + aq &= 2AlCl_3(aq) & \Delta H = -650 \text{ kJ} \\ (5) & PCl_3(l) & gd & Gsndpd & Gallud & -320 \text{ kJmol}^{-1} & Gaqd \\ & PCl_3(l) + Cl_2(q) &= PCl_5(s) \\ gd & snds & Gallud & -130 \text{ kJ} & Gaqd & spluttq (f, d, d, d, d) \\ PCl_5(s) & gd & Gsndpd & Gallud & gpluttq (f, d, d, d, d) \\ PCl_5(s) & gd & Gsndpd & Gallud & ggd & gnd &$

-825 kJmol -610 kJmol \$60.

3 Mg + Fe₂O₃ = 3 MgO + 2 Fe இன் தாக்க வெப்பத்தைக் கணிக்க.

(7) காபன், கந்தகம், காபணிருசல்லைபட்டு ஆகியவற்றின் தகன வெப்பங்கள் முறையே – 393, –297, –1,200 kJmol எனத் தரப்பட்டிரைக்கையில், காபனிருசெல்லைபட்டின் தோன்றல் வெப்பத்தைக் குணிக்க.

(8) CuSO₄ (s) + 5H₂O (g) = CuSO₄ · 5H₂O (s) என்ற சமன்பாட்டிற்கமைய, 5 மூலி நீராவியால் 1மூல் CuSO₄. இன் நீரேற்றல் வெப்பத்தைக் கணிக்க. இதே நிபந்த 2னகளில் நீர் நீராவியாதற்கான ஆவியாதல் வெப்பம் 42kjmoi ஆகும். பின்வரும் தாக்கத்தின் தாக்க வெப்பம் - 78 kj ஆகும்.

 $CuSO_4(s) + 5H_2O(l) = CuSO_4 \cdot 5H_2O(s)$

சக்தியியலும் பிணேப்பும்-П

4.01 அறிமுகம்

ஒரு பதார்த்தத்தின் மொத்தச்சக்தி (அல்லத வெப்பவில்குறை)என்பத அப்பதார்த்தத்தடன் செம்பந்தப்பட்டிரைக்கும் எல்லாவுகைச் சக்தியின் திரட் டிய மொத்தமாகும்.ஆயில்,இரசாயனத் தாக்கங்கள் நிகைழும்போது, តា படும் வெப்பவுள்குறை மாற்றம்(மாறுவமுக்க நியந்த 2வுகளில் இசு வெப்ப மாற்றத்திற்குச் சமஞகவிருக்கும்) இரசாயனச் சக்திக் கூறல் பெருமளவில் பாதிக்கப்படும், இச்சத்திக்காய, அணுக்கஞக்கும் மூலக்காமகைக்கும்இடையே நிகழும் தாக்கத்தின் செறிவில் தங்கியிருக்கும். இவ்விடைத்தாக்கம் இருவகை யினத; அவையாவன மூலவ்கூற்றிடை , மூலக்கூற்றகத் தோக்கங்களாகும். (pas கற்றிடைத்தாக்கங்கள் மூலக்கழைகைஞக்கிடையே நிகைழும்; இலை பெருங்கட்ட அமைப்புகாஞக்குக் காரணமாகின்றன; வைலே இலைவ ஒரு பதார்த்தத்தில் மூலைக் கழகளின் ஒழுங்கிற்குக் காரணமாகின்றன. மூலக்கற்றகத் தோக்கங்கள் 90 மூலக்கற்றின் அது கைகளிடையெ இடம்பெறகின்றன. இலவை ஒரு பதார்த்தத் தின் மூலக்கழகைளில் காணப்படும் அஹுக்கீஎ ஒன்ற சேர்த்த வைத்திருக்கும் பல்வித விசைகைஞக்குக் காரணமாகும்.

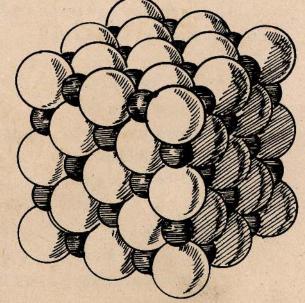
மூலக்கற்றிடை, மூலக்கூற்றக இடைத்தாக்கச்சக்திகள் இரண்டுமே ஒரு பதார்த்தத்தின் அறப்பியல்பாகின்றன, இவை ஒரு பதார்த்தத்தின் இரசாய வச்சக்திக்குப் பெரிதம் காரணமாகும்.எனவே, இவை இரசாயனத்தாக்கத் தோடு நிகழும் வெப்ப (அல்லத வெப்பவுள்குறை) மாற்றத்திற்குப் பெரி தம் காரணமாகும்.

எனவே, மூலக்கூற்றிடை, மூலக்கூற்றக இடைத்தாக்கற் சக்திகள், மூலக் கூற்றில் அஹுக்கள் இணக்கப்பட்டிருக்கும் அல்லத பிணேக்கப்பட்டிருக்கும் முறையைக் கட்டாயம் பிரதிபலிக்க வேண்டும். அதாவத மூலக்கூற்றிடைமூலக் கூற்றக இடைத்தாக்கற் சக்திகள் மூலக்கூறுகளிடையேயும் மூலக் கூறுகளின் அணுக்களிடையேயும் காணப்படும் இண்ப்புக்களின் வலிமைக 2வேப் பிரதி பலிக்கும். இத்தகைய இ2்பைப்புக்களின் வலிமை ஒரு குறிப்பிட்ட சேர்வலையின் உறுதிநி2ல்லையக் குறிப்பிடுவதாயுளத; இத ஒரு மூலக்கறின் அணுக்களிடையே யேம் ஒரு சேர்வலையின் மூலக்கூறகளிடையேயும் காணப்படும் பி2்பைப்புகளாலும் பி2்பையும் அகைகளாலும் எடுத்தக்காட்டப்படும்.எனவே இரசாயனத் தாக் கூக்களின்போது நிகுழும் வெப்ப அல்லத வெப்பவுள்குறை மாற்றங்களின்பரு மன்கள், மூலக்கூறகளின் அணுக்களிடையேயும் மூலக்கூறகளிடையேயும் காணப் படும் பி2்பைப்பின் தன்மையிலும், எண்ணிக்கையிலும் வகைகளிலும் தங்கியிருக்கும் என்பத தெனிவாகிறது; இவ்வாற நோம் சக்தியியலிற்கும் பி2்பைப்பிற்குமிடையே யான நேரேடித்தொடர்பையும் இலையலையும் காண்கிலேயே இலைவைக் எடித்தாவப்படும் விடயமாகும். இதற்கு முந்தியபகுதிகளில் நிகழ்முறைகளில டங்கும் சக்திமாற்றங்களின் பல்வேற அம்சங்கள் பற்றிக் கற்றறிந்தோம்; இனிநாம், அவற்றை மூலக்கூற்றின்பி வேப்பில் கிறைப்பியல்புகளோடு தொடர்பு படுத்தி பதாரித்தங்களின் பல்வேறைபளதிகளியல்புகள் பற்றி ஆய்ந்தறிய மு2்வவோம்.

இருஅணுக்களிடையே அல்லத அணுக்க உளக் கொண்ட கூட்டங்களிடையே தொழிற்படும்விசைகள், அவ்வணுக்க உளச் கூலபமாக ஒரு தனிப்பட்ட மூலக் கூற்றினமாகக் கருதேவதற்குப் போதியளவு உழதித் தேன்மை வாய்ந்தவொரு திர உள உருவாக்க எதுவாகவிருப்பின், அவ்வணுக்களிடையே ஒரு பி ணேப்பு உள்ளது எனக் கொள்வோம்.

இவ்வரைவிலக்கணத்தள் அடங்கக்கூடியதாக பலவகைப் பிடூகைப்புக்க 2 எ-நி 2லமின், பங்கீட்டு வலவைனவு, உனோகைப் பிடூகைப்புக்கள் – சேர்த்துக்கொள்ள லாம். ஆயின், இப்பாகுபாடு திட்டேமானதொன்றல்ல; ஏனெனில் திட்டவட் டமாக ஒரு வகையைச் சேர்ந்த பிடூகப்புகள் நன்கு வரையழக்கப்பட்ட இயல்புகஞ்டையைனவாக இருப்பிலும், ஒரு வகைப் பிடூகைப்பு பிறிதொன்றுக மாறவிச் படிப்படியாக நிகைழ்ந்த இடைப்பட்ட வகையைச் சேர்ந்தபிடூகைப் புகள் உண்டோகவும் கூடும்.

அடுத்தை சிலபகுதிகளில் நாம் பல்வேறவைகைப் பி ஊேப்புகூ 2 னையும் இத் தகைய பி 2 ணைப்பு வகையைப் பிரதிபலிக்குக் கூடியதாக மூலைக்குறைகளின் இயல் புகள் சிலவற்றையும் கருது வோம்.நாம் கருதவிஞ்க்கும் பல்வேறை வகைப் பி 2 ணைப்புக்களிடையே உபபிரிஷகள் காணப்படும்.நி 2லேமின்பி 2 ணைப்புவகை (இதில் வலிலமையான அயன்பி 2 ணைப்பும், நலிந்த இடைநி 2 லேப் பி 2 ணைப்புகளான அயன்–இருமு 2னவு, இருமு 2னவு–இருமு 2னவு வனகயும் அடங்கும்)., பங்கீட்டுவல வைளவுப் பி 2ணப்பு, உலோகப்பி 2்கோப்பு, மூலைக்கூற்றிடை வினசுகளே முற்றிசுமை சம்பந்தப்படும் ஐதரசன்பி 2்கோப்பு,ஆகியவற்றின் உபபிரிஷகள் இதில்அடங்கும்.


4.02 அயன் பிச்வைப்புகள்

இரு அஹுக்களில் அல்லது அஹுக்களின் கூட்டத்தில் அவை ஒவ்வொன்றக கூம் மற்றைய அஹு அல்லது அஹுக்கூட்டம் இருப்பதைச் சார்ந்திராதபடி திட்டேமான இலத்திரன்கட்டமைப்பைக் கொடுக்கக்கூடிய சந்தர்ப்பங்களில்இல் விரு அஹுக்களிடையே அல்லது அணுக்கூட்டங்களிடையே நி2லமின் இடைத் தாக்கங்கள் இருப்பின் அங்கு நி2லமின் பி2்பைப்பொன்ற உண்டாகியுள்ளதெனக் கூறலாம்.

நி 2லமின் பி 2ணப்புகளில் மிகமுக்கியமா வதென அயன் பி 2ணப்பைக்குறிப் பிடலாம்.எதிரேற்றங்கொண்ட அயன்களில் மிகையான மிக்னேற்றங்கள்காட் டும் கூலோம் வகைக்கவர்ச்சியால் இப்பிசீணப்பு ஏற்படுகில்றத.உலோக மூலகைப்கை**ளின் அணுக்கள் (உ.ப் N**த) வெளிஇலத்திர*ி*கைளில் *கி*லவேற்றையிகவெளி இழந்த(நேரேற்றமுடைய) உலோகக்கற்றயன்க 2ீள(உ— ம் No) உண்டாக் தில் குடுமென்பதை நாமறிவோம். அல்ஷுலோக மூலகங்களின் அதுவைக்கள் (உ.ம்Cl) பேலதிகை இலத்திரைன்கடீளச் சேரீத்து,அவற்றின் வெளிஇலத்திரன் அட்டகத்தை நிறைவுசெய்த(எதிரேற்றமுடைய அல்அலோக அனயன்க²ள(உ—ம் C.L.)உண் டாக்கும் தன்மையடையன. இத்தகைய உலோகக்கற்றயன்கள், அல்லலோக அனயன்கள் ஆகிய இரண்டும் நிறைவுபெற்ற வெளியோட்டு இலத்திரன் அட்ட கத்தை உடையன, இவ்விலத்திரன் கட்டமைப்புகள், உழதியான கற்றயன்களி நாமறிவோம். வதம் அவயவ்களினதம் கட்டமைப்புக்கீள ஒத்தனை எவ்பதை இத்தகைய ஒருசோடி கற்றயலும் அன்பலும்(உ–ம் Na, CL) ஒன்றையொன்ற நெருங்கி உறதியான மூலக்கற்றை அல்லத பளிங்கை (உ– ப் NaCl) உண்டாக்கும் போத அவை தமத இலத்திரன் கட்டமைப்புக்க 2ளக் கட்டாயமாகப்பேணு கின்றைன. இவற்றின் எதிரேற்றங்கள் காறணமாக, இத்தகையவிரு அயன்கள் ஒன்றையொன்ற நெருங்குதல் குலோம் கவர்ச்சி விசைகளிறைல் அழகலமடை யும்;இதன்விடீளவாக, இருஅயன்களிற்குமிடையெயுள்ள தா ரேம் குறையும்போது சக்தியினளவும் குறைந்த Na Cl மூலக்குற உண்டாகும். ஆயின், அயன்கள் ஒன்றிற் கொன்ற மிகவண்ணித்தாக நெருங்கும்போது, ஒவ்வொரு அய 2னயும் சற்றி யுள்ள இலத்திரன்களிடையெயான தவ்வல் விசைகள் கூலோம் கவர்ச்சிவிசை

கை 2 எக் காட்டியையே மேலானதாகவிருக்கும், எனவே ஒரு குறித்தமாறு நிலே அயனிடைத் தாரத்திற்கப்பால் மொத்தச்சக்தி அதிக்ரிக்க ஆரம்பிக்கும். இழிவுச் சக்தி நிலேயே சாதாரணமாக மிகவுறுதியான நிலேயாக இருப்ப தால் Na[†] அயனிற்கும் ஒரு CL அயனிற்குமிடையெயான சமநிலேயான அல்லத உழதியான அயனிடைத்து ரேம் இத்து ரத்தை ஒத்திருக்கும்.

சோடியங்குளோறைட்டுப் பளிங்கில், தனித்தனியான NoCL மலக்குறைகள் இருப்பதில் 2ல. பல NoCLமூலக்கூறகளிடையேயான மூலக்கூற்றிடை நி 2லையின் விசைகள், பளிங்கின் பெருங்கட்டமைப்பில் ஒவ்வொரு Not அயதும் அத 2 வளைன் முகி வடிவில் சூழ்ந்திருக்கும் எதி 7 ேற்றமூடைய 6 CL அயன்களால் யிகவன்மை யாகக் கூவரப்பட்டும், அவற்றூல் பிடித்தைக் கொள்ளப்பட்டுயிருக்கும் கட்ட மைப்பைக் கொடுக்கின்றன. இதே மாதிரி இதில் ஒவ்வொரு CL அயதும் நே 7 ேற்றமூடைய 6 Not அயன்களால் மிகவன்மையாகக் கவரப்பட்டும், அவற் ரூல் பிடித்துக் கொள்ளப்பட்டுயிருக்கும். பளிங்கில் நிகமூம் இடைத்தாக்கங்க 2 எ விவரிக்கும்போது, ஒவ்வொரு அயதும் அதன் அயலிலுள்ள எதி 7 ேற்றமுடையது அயன்களோடு அயன்பி 2 வேப்புக்க 2 ன ஏற்படுத்துகிறது எனக்கூறைகிறே பே 2 வேப் புகள் பளிங்கிலிருக்கும் அயன்கள் யாவையும் ஒன்ற சேர்த்து ஒரு இராட்சத மூலக்கூற்றை உண்டாக்குகின்றன. மொத்தப் பகுப்பில், மொத்கப் பளிங்குமின்னடு நி 2 லையுடையதாக இருக்கவேண்டியிருப்பதால், ஒவ்வொரு CL அயனிற்கும் ஒரு Not அயன் உண்டு. சோடியங்குளோறைட்டின் மொத்து அனு ஒழுங்கு படத் தில் காட்டப்பட்டுளது.

படம் 4.1 அயன் பிணேப்புக்கள்

4.02.1 சாலகச் சக்தி

வழக்க முறைப்படி,முடிவில்லாத் தா ரத்திலிருக்கும் தனித்தனி அயக்கஞக் கூப் பூச்சியசக்திப் பெழமொனம் வழங்கப்படுமாயின், உண்டாகும் உழதியான அயன் பளிங்கின் மூலொன்றிற்கான சக்தி, பகுதி 4.01 இல் குறிப்பிட்ட வாற, சாலகச் சக்தி எனப்படும் கணியத்தால் குறைவாகக் காணப்படும்.

உழைதியான பளிங்கில் கவரும் நிலேமின் கூலோம் விசைகள் இலத்திரன் களிடையெயான தள்ளல் விசைகளால் சமவளலில் ஈடுசெய்யப்படுகின்றனஎன்ற உண்மைமையைப் பயன்படுத்துவதால் சாலகச் சக்திக்கான பெழமானம்பெறப் படுகின்றது. இவ்வேதி பெறப்பட்ட பெழமானத்தைக் குறிக்கும் சமன்பாடு பின்வரும் கோவையால் தரப்படும்.

snows + stat(L) =
$$\frac{N_{A} \cdot A \cdot Z_{1} Z_{2} e^{2}}{\gamma} \left(\frac{n-1}{n}\right)$$

இதில் N_A அவகாதறோ மாறிலி; A மேட்ஷங் மாறிலி;இத உண்டாகும் பளிங்குக் கட்டமைப்பில் அல்லத சால கத்தில் தங்கியிருக்கும். Z₁, Z₂ இரு அயன்களின தம் ஏற்றங்கள்; ஒ அயணிடைத் தா ரம்; ₁ ஒரு முழுவென்; இதன் பெறுமானம் பளிங்கிஷைள்ள இரு அயன்களினதம் இலத்திரன் இலைபில் தங்கியிருக்கும்.

இச் சமன்பாட்டிலிருந்த, சொலகச் சக்தி பிரதானமாக இருகோறணிக எல் தேங்கியிருக்கிறதென்பத தெரிகின்றது.—

- (1) இன் பெழமானத்தைத் தேணியும் அயனின் பருமன். அயன் சிறிதாயிருப்பின், சாலகச் சக்தி கூடுதலாக விருக்கும். எனவே, பளிம்தின் உழதிநிலேயும் கூடுத லாகவிருக்கும். இவ்வாற CsF, LiClayகியவற்றின் சாலகச் சக்தியைக் காட்டிலைம் LiFஇன் சாலகச் சக்தி பெருமளவில் கூடுதலாகவிருக்கிறது.
- (11) அயன்கள் 2₁, 2₂ இனது ஏற்றங்கள்.அதிகளவு ஏற்ற முடையஅயன்களிலிருந்தே வலிமையிக்க அயன்பி 2மோப்பும் எனவஆகக்கூடியை சாலகச்சக்தியும் (உழதியும்) பெறப் படுகிறது.

யீகக் கூடுகலான ஏற்றத்தையடைய பிகச் சிறிய அயன்களே பிகக் கடுதலான சக்தி வெளியேற்றத்தோடு வலிமையிக்க அயன்பிலோப்புக்களே உள்டாக்கும் எவ்பத மேற்கூறிய இரு காரணிகவிலிருந்தும் தெவிவாகின்றது. இத்தகைய அயன் பதார்த்தங்கள் தாக்கமுற்ற பிற வி2எபொருள்க 2வக் கொடுக்கும்போத மிக வன்மையான பிடீனப்புகள் பிளவுறும்.எனவே, இதன் பொருட்டுப் பெருமனவு சக்தி செலவிடப்பட வேள்டி நேரிடும். அயன்பளின் குகளில் (உ– ம் NeCl) சாதாரவமாக அவதானிக்கப்படும் உயர் உருகு நிலேகளிற்குக் காரனம், ஒரு பளிங்கில் காணப்படும் ஒன்றக்கொன்ற எதி ஏற்றமுடைய அயன்களிடையேயள்ள வன்மையான நிலேயின் கவர்ச்சி DIE க 2 வ விஞ்சுவ தற்குத் தேவைப்படும் பெருமளவிலா வ சக்தியேயாகும். கருத் கிற் கொட்டை பளிங்கில் மாபெரும் அமைப்பையும் சமச்சீர் தன்மையையுள் கரு தம்போத, இவ்விசைகள் மூலக்கழ்றிடையிலைாக இருப்பத போலலே மூலக்கற்றகைத்திவதாகவும் இருக்கின்றனவெல்பத தெளிவாகிறது. Na⁺, CL[®] அயன்கள் இருக்குயடத்தம், தனித்தன் NaCl பளிங்குகள் இல்லா தவிடத்தம் இக்குறிப்பிட்ட உதாரவத்தில் மூலக்கற்றிடை, மூலக்கற்றகத் தாக்கங்கூ2வ வேறபடுத்துவது அசாத்தியமாகும்.

பெரும்பாலும் அயன் திண்மங்களிற் பல, நீரில் கனரயும்போத வெப் பம் உறிஞ்சப்படுகிறது; ஏனெனில், கரைதல் நிகழ்ச்சியின்போத அயன் சாலகம் அழிக்கப்படுகிறது; எனவே இதற்கு சாலகச் சக்தி எனப்படும் சக்தி கொடுக்கப்படல் வேண்டும். ஆயின் பனிங்கு கரைவதால் உண்டாகும் அயன்களின் நீரேற்றல், வெப்ப வெளியேற்றத்தோடு நிகழ்கிறது; என்றுலைம் இந்நீரகற்றல் வெப்பம், சாலகச் சக்தியைவிட கடுதலாக இருந்தாலை நிய ஓர் அயன் திண்மம் கரைசலாவதற்கு <u>தேறிய</u> சக்தி(இத,சாலகச்சக்தி. நீரேற்றல் சக்திக்குச் சமனுகும்) அளிக்கப்படுதல் அவசியமாகிவ்றது.எனவே இவ்வனைக் கரைதல் (NH4NO3, NH4CI ஆகியவற்றில் நிகழ்வதுபோல) வெப்ப உறிஞ்சலோடு நிகழும் (பகுதி 3.10.1 ஐப் பார்க்க).

4.03 பங்கீட்டு வலுவளவுப் பிகோப்பு

உறுதியான பிசேயைப்பு உருவாகுவதற்கு அவசியமான இலத்திரன் அட் டகத்தைப் பெறும்வகையில், இலத்திரல்க 2 வப் பங்கிடுதல் மூலம் (மூலக் கூறு உண்டாவதில் பங்குகொள்கும் அணுக்களிடையே) பங்கிட்டு வலுவளவுப் பிசோப்பு தோன்றகிறது. சக்தி சம்பந்தப்பட்ட நோக்கில் பார்க்கும் போத, இரு நடுநி2ல அணுக்கள் (உ–ம் भ, C1) ஒன்றையொன்ற நெருங் கும்போத, ஒரு குறிப்பிட்ட இடைத்தா ரத்தில் மொத்தச் சக்தி இழிவு நி2லையை அடையும் வரை அது குறைந்த கொண்டு போகும். இந்நி2லயில் அணுக்களின் இடைத்தா ரத்தை மேலும் குறைக்க முயற்கித்தால் மொத்தச் சக்தி அதிகரிப்பு ஏற்படும். இழிவுச் சக்திக்கு ஏற்ற தா ரம் சமநி2லக் கருவிடைத் தா ரமாகும்; இதுவே இவ்வாற உண்டாகும் பங்கீட்டு வலுவளவு மூலக்கற்றின் பி2ணப்பு நீளமாகும்.

பங்கீட்டு வலுவளவுப் பிளேப்பு உண்டாகும்போத, இரு நடுநிஃவஅணுக் களின் சக்திக் கட்டுத் தொகைக்கும் உண்டாகும் பங்கீட்டு வலுவளவு மூலக் கூற்றின் சக்திக்குமுள்ள வித்தியாசத்திற்குச் சமனை சக்தி, தொகுதியிலிருந்த வெளியேற்றப்படுகிறது. அயன் பிவேப்பைப் போலல்லாது, பங்கீட்டு வலுவளவுப் பிவோப்பு வெளியில் குறித்த திசை உடையது.

வெவ்வேற வகைப்பங்கீட்டு வுஅவளவுப் பிசீனப்புகளுள், இவை ஒற்றைப் பி கோப்புகளைவும் பல் பி கோப்புகளைவும் கூறப்படும். மெதேன்மூலக் கூற С பு, இல் С இற்கும் பு இற்கு மிடையேயுள்ள நான்கு பினேப்புகளும் ஒற் றைப் பிச்சைப்புகளாகும், இவையாவும் ஒன்றிற்கொன்ற சமமானவையாகும். எதிலீன் மூலக்குமுC2H2 இல்C,H இற்கிடையெயுள்ள நான்கு பிச்பைப்புகளும் மெதேவில் C இற்கும் H இற்குமிடையே காணப்படும் பிச்னப்பு வகையைச் சேர்ந்த ஒற்றைப் பிச்பைப்புகளாகும். ஆயின் இருகாபனனுக்களிடையே ஒரு பல்பி வோப்பு உளத; இத இரட்டைப் பி வோப்பு எனப்படும். 95 இருபி கோப்புக்களால் ஆனத; இவற்றில் ஒன்ற மெதேன் எதிலீன்ஆகியவற்றில் காணப்படும் ஒற்றைப் பிச்பைப்புக்சன உழகிநிசல முதலியவற்றில் நைருங்கி ஒத்தளது. மற்றையது, வேறுவகையைச் சார்ந்ததும் உறதி குறைந்தது மலக்கமு C, H, இல் C இற்கும் H இற்குமிடையே மாகும். அசற்றவீன் யான பிஜோப்புகள் ஒற்றைப் பிஜோப்புகளாகும். ஆயின், இருகாபனதுமக் களிடையெயுள்ள பிசாப்பு ஒரு பல்பிசோப்பாகும்; இத மும்மைப்பிசோப்பு எனப்படும். பங்கீட்டு வழவளவுப் பிசோப்புகூ வேயிடைய சேரிவைகள் பங் கீட்டு வெலுவைவைச் சேர்வைகள் எனப்படும்.

ஒரு பங்கீட்டு வறவைஎவுப்பி வோப்பைப் பிரிப்பதற்கு தொகுதிக்கு சக்தி வேழங்கப்பட வேண்டும், ஏனெனில், தொகுதியின் தனித்தனி அஹுக்கள், தொகுதியைக் காட்டியைம் கூடிய சக்தி உடையனவாய் இருப்பதாலாகும். தரப்பட்ட ஒரு பங்கீட்டு வழவளவுப் பிச்ஸுப்பைப் பிரிப்பதற்குத் தேவைப் படும் சக்தியனளவை அப்பிச்ஷுப்பில் வலிமையில் அளவாகக் கொள்ளலாம்.

எனிஜம், பங்கீட்டு வவோவளவுப் பிடுவாப்புகள், அயன் பிடுகைப்பக்கடுளப் எனெலில் பில்லைய வகையில் ஏற்றமுடைய போல் வலிமையாலவையன்று. இனங்கள் நி2லயின் கவர்ச்சி விசைகளால் ஒன்ற சேர்த்துப் பிடித்தக்கொள் எப்படுகில்றன; இவீவிவசகள், பங்கீட்டு வெலுவளவுப் பிசீனப்பு உண்டாவதற் விதைகீகைக் காட்டியைம் பன்மடங்கு வெலிவமையடையன கைக் காறனமாகும் வாகும். மேலும், அயன் பதார்த்தத்தில் பெரும் கட்டமைப்பில் கானப் படும் மூலக்கூறகளுக்கு இடையேயுள்ள மூலக்கூற்றிடை விசைகளுமே நிலேமின் வகையினவாகும் (பகுதி 4.02.1 ஐப் பார்க்க). பங்கிட்டு வழலவாவுச் சேர் வைகளில் தனித்தலிப் பங்கீட்டு வைவளவு மூலக்கறைகளுக்கினட பேயான மூலக்கூற்றினட விசைவனக்கள் நிலபில் வகை விசைக் கோட்டிலும் பிக நலிந்தவையாகும். இவீவிசைகள் வந்தர்வால்ஸ், வகை விசைக்கள் ஒத்துள. எனவே, அயன் சேர்காவகளோடு ஒப்பிடும்போத பங்கிட்டு வலுவளவுச் சேர் வைகே2ள உருக்கவும், கொதிக்க வைக்கவும் தேவையான சக்தி ஒப் பளவில் குறைவாகவே இருக்கும். இவ் வேறபாடு பங்கீட்டு வலுவளவுக் சேரீ வை களில் ஒப்பளவில் கூறைந்த உருகு நி2ல, கொதிநி2ல ஆகியவற்றை விளக்குகில்றது.

4.03.1 இவோப்புச் சக்தி

வெவீவேறு பங்கீட்டு வலுவளவுப் பி2்ணப்யுகளின் வலிமையை ஒப்பிடுவ தற்கு 'பி2்ணப்புச் சக்ச்' எனும் பதம் பயன்படுத்தப்படும். பி2்ணப்புச் சக்தியை நியம நிபந்த2்வகளில் அ–த 25°C இலும் ஒரு வளிமண்டலஅமுக் கத்திலும், வாயுநி2்லயில், தரப்பட்ட ஒரு பி2்ணப்பின் அமைப்புக் கூற்ற ஹைக்க2்ள ஒன்றிலிருந்தொன்றை, முடிவில்லாத் து ரத்தால் வேறுக்குவதற் குத் தேவைப்படும் சக்தியைன வரையறக்கலாம்.

மூலக்கறகளிலுள்ள பிளேப்புக்க 2ன பிரிப்பதற்குக் கணக்காகத் தேவை யான சக்தியே ஃபினேப்புச் சக்தி என வரையறுத்தக் கறுவதற்காகவே மூலக்கறகள் வாயுறிலேயிலுள்ளன எனக் குறிப்பிடப்பட்டத. தின்ம, திரவ நிலேகளோடு ஒப்பிடும்போது வாயுநிலேயில் மூலக்கற்றிடை இடைத்தாக் கங்கள் (உதாரணமாக வந்தர் வால்ஸ் வைகையினது) மிகக் குறைவாகவி ருக்கும்; ஒரு குறிப்பிட்ட பிலோப்பை உண்டாக்கும் கறைக2ன வேறுக்குவதற் குத் தேவையான சக்தி, மூலக்கற்றக இடைத்தாக்கக் காறவியாலேயே பெரிதம் துவியைப்பருகிறது.எமலே,வாயு நிலே வைக் கேருதம்போது திறவ நிலேயில் மூலக்கறக 2 ைதுற்றிரைந்தொன்ற பிரிப்பதற்குத் தேவையான சக்தி (அ–த ஆவியாதல் வெப்பம்) திம்மைநிலேயில் மூலக்கறக 2 ை ஒன்றிலிருந் தொன்ற பிரிப்பதற்குத் தேவையான சக்தி (அ–த பதங்கமாதல் வெப்பம்) போன்ற அவத்தை மாற்றத்துக்குத் தேவையான சக்திகைப் பில்லைப்புச்சக்தி யில் அடங்கா.

ஒரு மூல் தொடர்பான பிடீபைப்புச் சக்தியானத் ஒரு மூல் வாயுமூலக் கழகவ்அவற்றின் அமைப்புக் கூற்ற வொயு அதுவுக்களாக முடிவில்லா இடைத் தோ ரத்தால் வேளுகும்போது நிகழும் வெப்பவுள்ளுறை மாற்றம் எனப்படும்.

ஓர் இரசாயலத் தாக்கம் நிகமும்போது, தாக்கிகளின் பிடியைப்புகள் பிரிக்கப்பட்டு, விீவபொருள்களில் பதிய பிசீணப்புகள் உண்டாக்கப்படும். ஒல்வொரு தாக்கியோடும் விசீசுபொருசோடும் சம்பந்தப்படும் 8 8 A (அல்லத வெப்பவுள்ளறை) மாற்றத்தை, இத்தகைய ஒவ்வொரு தாக்கியி வதம்/விீவலபொருளினதம் பிடீகப்பேச் சக்தியில் பிரகாரம் எடுத்தைக் S.D லாம், தாக்கிகளினதும் விடீளபொருள்களினதும் பிடீனப்புச் சக்திகளிடையே காணப்படும் வித்தியாசத்திற்களவான சக்தி தாக்கத்தின் வெப்பவுள்குறை மாற்றமாக சந்தர்ப்பத்திற்கு ஏற்றவாற வெளியிடப்படும் அல்லத 之前的 பி வோப்புச் சக்தியின் பருமறுக்குக் காரணமாகவிரைக்கும் கார **៩បំដ**ុស្រធំ. கிகைஞல் பிடுகைப்புக் து ரைமும் ஒன்றுகும்; பிடிகைப்பை உண்டாக்கும்இரஅணுக் களிற்க அல்லது அஹுக்களின் கூட்டத்திற்கிடையெயுள்ள து ரமாகப்பி வேப்பு பி வேப்பு நீலம் நீண்டதாகலிரைப்பின் பி வேப்புச்சக்தி நீளம் அளவிடப்படும். குறைவாகவிருக்கும்.

அணுக்களின் அல்லத அணுக்கட்டங்களின் ஒரு குறிப்பிட்ட சேர்க்லகையி லான பிஜோப்புக்கீகப் பிரிப்பதற்கு அல்லது ஆக்குவதற்குப் பெறுமானங்க ீளக் கொடுத்தல் எவ்வாற சோத்தியமாகிறதென்பதையும், இத்தகைய பெறுமானங்கீீவ எவ்வாற பயன்படுத்தலாமென்பதையும் அடுத்திக் கூவனிப் போம்.

4.03.2HCl ga ulauiyi säg

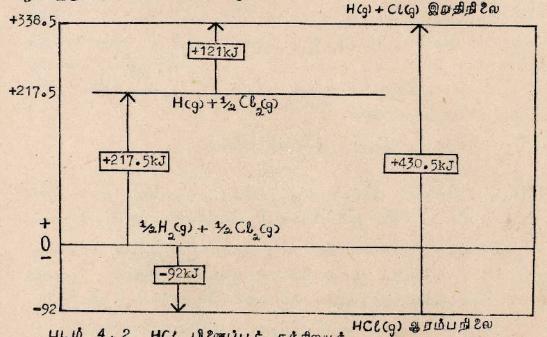
பிட்ணைப்புச் சக்கியின் வகாரவிலக்கானத்திவ்படி, ஐதரசலில் பிட்ணப்புச்

+ & A ,

H_(9) = H(9) + H(9) என்ற தாக்கத்தின் தூட்டப் பிரிகை வெப்பத்திற்குச் சமனுகும். இத 435 kJmolara நவ்கறியப்பட்டுள்ளது. எனவே, H2 இவ் பில்கப்புச் சக்தி 435 kJmol¹ ஆகும். O2, N2, CL, F2, Bv2. I ஆகியவற்றிற்கான பெறுமானங்கள் முறையே 495,940,242,153,192,151 kJmol ஆகும். பல பங் கீட்ட வைவளைவுப் பிசீனப்புக்கச்எ உண்டாக்கும் N2,O2 ஆகியலற்றிற்கானஉயர் பெறமாலங்கீ 2 வ அவ தா விக்க.

HCl, இற்குரிய தாக்கம் பின்வருமா ய

HCl(g) = H(g) + Cl(g)இத HCL பிணேப்பைப் பிரிப்பதோடு சம்பந்தப்பட்டுள்ள^{து}. இத்தாக்கத் திற்கான வெப்பம், HCL இல் பிச்வைப்புச் சக்கிக்குச் சமஞக இருக்கும்.


எசுவின் விதியைப் பயன்படுக்கி HCL இற்கான பிவேப்புச் சக்தியை (அ– அமேலே குறிப்பூட்ட தாக்கத்தின் வெப்பத்தை) கணிக்க முடியும். இவ்வாற கணிப்பதற்கு HCL(9)இன் தோன்றல் வெப்பத்தையும் அதாவது

 $H_{2(9)} + Cl_{2(9)} = 2 H C l_{(9)} \Delta H = -184 \text{ kJmol}^{1}$ எதும் தாக்கத்திற்கான வெப்பமாற்றத்தையும் H2, Cl2இற்கான பி&னப்புச் சக்திப் பெறுமானங்கள் 435, ஐயும் 242 ஐயும் பயன்படுத்தலாம்.

பின்வரும் லெப்பவிரசாயனச் சமன்பா குகளின்படி $H_2(9) = 2H(9) \quad \Delta H = 435 \text{ kJmol}^3$ $Cl_{2(3)} = 2Cl_{(3)} \Delta H = 242 \text{ kJmol}^{2}$ இவீவிரு சமவ்பாடுக 2 எயும் கூட்டும்போது நாம் பெறுவது $H_{2(9)} + Cl_{2(9)} = 2H_{(9)} + 2Cl_{(9)} \Delta H = 677 \text{ kJmol}^{2}$ அத்துடவ் $2 HCl(g) = H_2(g) + Cl_2(g) \Delta H = 184 \text{ kJmol}^{-1}$ இவ்விரன் டையும் கட்டும்போத

 $2HCL(g) = 2H(g) + 2CL(g) \Delta H = 861 \text{ kJmol}^{1}$ gåog $HCl(g) = H(g) + Cl(g) \Delta H = 430.5 \text{ kJmol}^{-1}$ எனவே HCL பிசினப்பிற்கான பிசீனப்புச் சக்தி 430.5 kJmol⁻¹ ஆகும். எனவே, பற்சோதாக முறையாகத் தேனியைக்கடிய H2, CL ஆகியவாயுக்

களின் கோட்டப்பிரினை வெப்பத்தையும் வாயுநிலேயிலுள்ள HCLஇன் தோன்றல் வெப்பத்தையும் பயன்படுத்தி HCL பிலாப்புச் சக்தி 430.5 kJmol ஆக இருப்பதாகக் காணப்பட்டுளது.

படம் 4.2 HCt பிலோப்புச் சக்தியைக் கணிப்பதற்குரிய வெப்பவுள்குறைப் படம்

H-H, CL-CL ஆகிய பி²ணப்புகளுக்குப் போன்ற HCL பி²ணப்பிற்கும்கணித் தேப் பெற்ற பி²ணப்புச் சக்திகள் அவ்வப் பதார்த்தத்தின் கட்டப் பிரிஷச் சக்திகளுக்குச் சமஞகவள; ஏனெனில் இவ்வகை ஈரஹு மூலக்குழகளில் கட் டப்பிரிவில் ஒரே வகைப் பி2்ணப்புக்க 2'ளபே பிரிக்க வேண்டியுளத.

மூவஹை அல்லத பிற பல்லஹு மூலக்கழகை 2 எக் கருதம்போதஇவற்றில் பல பி 2 கைப்புக்கள் சம்பந்தப்படுகின்றன; இம்மூலக் கறக 2 எ அணுக் களாக நிறைவாகக் கட்டப்பிரிகையுறுத்தும்போது நிகழும் சக்தி (அல்லத வெப்பவுள்ளுறை) மாற்றம் மூலக்கறுகளில் காடைப்படும் எல்லாப் பி 2 கைப்புக் களினதும் பி 2 கைப்புச் சக்திகளின் கட்டுத்தொகைக்குச் சமமாக இருக்க வேண்டும். மூலக்கற்றில் காடைப்படும் பல பி 2 டைப்புக்களில் ஒவ்வொரு பி 2 கைப்போரும் தொடர்புற்றிருக்கும் வெப்பவுள்ளுறை மாற்றத்தின் அனைவதே தனைதைல் சா தீதியமாகுமா?

4.03.3 H-O-H இற்கான பிச்வைப்புச் சக்திகள்

கிடைக்கக்கடிய தறவுகளாவன H₂ (3) இனதும் O₂ (3) இனதும் கட்டப் பிரிஷச் சக்திகளும், H₂O (4) இனது தோக்றல் வெப்பமுமாகும், இத்தற வுகேீள வெப்பவிரசாயனச் சமன்பாடுகளின் வடிவில் பின்வருமாறு எடுத்துக் கூறலாம்:

 H₂(g) = 2H(g)
 Δ H = 435 kJ _____

 O₂(g) = 2O(g)
 Δ H = 495 kJ _____

 H₂O(g) = H₂(g) + $\frac{1}{2}O_2(g)$ Δ H = 244 kJ _____

 H₂O(g) = H₂(g) + $\frac{1}{2}O_2(g)$ Δ H = 244 kJ _____

 H₂O(g) = H₂(g) + $\frac{1}{2}O_2(g)$ Δ H = 244 kJ _____

 H₂O(g) = O(g)
 Δ H = 247 kJ _____

 H₂O(g) = O(g)
 Δ H = 247 kJ _____

 H₂O(g) = O(g)
 Δ H = 247 kJ _____

 H₂O(g) = O(g)
 Δ H = 247 kJ _____

 H₂O(g) = O(g)
 Δ H = 247 kJ _____

 H₂O(g) = O(g)
 Δ H = 247 kJ ______

 H₂O(g) = O(g)
 Δ H = 247 kJ ______

 H₂O(g) = O(g)
 Δ H = 247 kJ ______

 H₂O(g) = O(g)
 Δ H = 244 kJ ______

 H₂O(g) = O(g)
 Δ H = 244 kJ _______

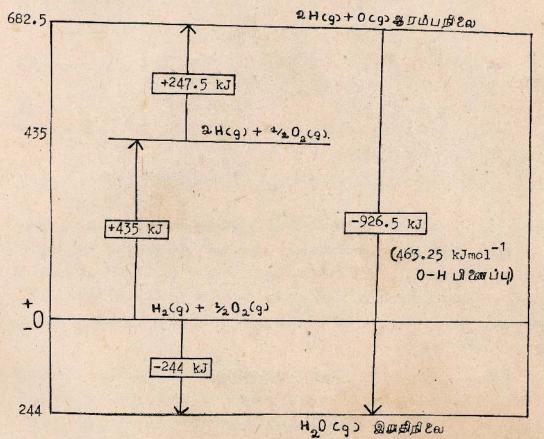
 H₂O(g) = O(g)
 Δ H = 244 kJ _______

 H₂O(g) = O(g)
 Δ H = 247 kJ _______

 H₂O(g) = O(g)
 Δ H = 247 kJ ________

 H₂O(g) = O(g)
 Δ H = 247 kJ ________

 H₂O(g) = H₂O(g) = O(g)
 Δ H = 247 kJ _________


 H₂O(g) = H₂O(g) = O(g)
 Δ H = 247 kJ _________

 H₂O(g) = H₂O(g) = O(g)
 Δ H = 247 kJ __________

 $H_{2}O(g) = 2H(g) + O(g) \Delta H = (435 + 247 \cdot 5 + 244) KJ$ = 926.5 KJ

இச்சமன்பாரு H-O-H இலுள்ள 2 O-H பிலோப்புகள் பிரினகயுற்ற ஐ H ஐயும் O ஐயும் தருவதை ஒத்திருக்கிறது. இதற்குத் தேவையான சக்திவழங்கல் 926.5 kJ ஆகும். கூட்டப்பிரிகையுறுதே H-O-H மூலக்கூறில் காணப்பரும் இரு O-H பில்ஸப்புகளும் ஒன்றையொன்ற ஒத்தலையாகையால் ஒரு மீர் மூலக்கூறில் ஒவ்வொரு O-H பிலேபப்பிற்குமான பிலேபைப்புச் சக்தி,463.25 kJmol ஆக இருக்கவேன்ரும்.

என்றும், நிறமா 2லகாட்டித் தரவுகளிலிருந்த பெறப்பட்ட இவ்விரு பே வேப்புக்களுக்கான கூட்டப் பிரிவுச் சக்திப் பெழுமானங்கள் HO-Hபி 2 வேப் பிற்கு 495 kJmol என்பதையும் H-O-H இல் காகூப்படும் முதல் O-H பி 2 வேப்பு பிரிக்கப்பட்டபின் மீ தியாகவிருக்கும் O-Hபி 2 வேப்பிற்கு 430 kJmol என்பதையும் தெளிவாக விளங்கிக்கொள்ள வேண்டும். இவற்றிடையேயான என்பதையும் தெளிவாக விளங்கிக்கொள்ள வேண்டும். இவற்றிடையேயான வித்தியாசம் குறிப்படத்தக்க அளவினது. H அனுக்களோடு சேர்வதில் OH மூனிகங்கள் O அணுக்க 2 எக் காட்டிலும் அதிக தாக்கு திற்று டையனவளன் பதோடு இவ்வித்தியாசத்தைத் தொடர்புபடுத்தலாம். இரு சந்தர்ப்பங் களிலும் O-Hபி 2 வைப்பத்தை மட்டுமே வெளிவிட OH மூலிகம் H அணு வுடன் சேரும்போது 430 kJ வெப்பத்தை மட்டுமே வெளிவிட OH மூலிகம் H அணு வுடன் சேரும்போது 495 kJ வெளிவிடுகின்றது. என்னும் நிறமா 2 லகாட்டித் தறவுகளிலிருந்த பெறப்பட்ட இல்லிர பிடூப்பேச் சக்திகளில் சராசரிப்பெறு மோனமான 462.5kJ, வெப்பவிரசாயனத் தறவுகளிலிருந்த இதே OH பிடூபப்பிற்குப் பெறப்பட்ட சராசரிப் பிடூவைப்புச் சக்திக்குச் சமதைகைவிருப் பத குறிப்பிடத்தக்கது. இதற்கான வெப்பவுள் துறைப்படம் படம் 4.3இல் கொடுக்கப்பட்டுளது.

்படம் 4.3 H—O–Hபிடீணப்புக்களின் பிடீனப்புச் சக்திலையக் கூஷிப்பதற்கூரிய வெப்பவள்ஞனைறப் படம்.

4.03.4 ஒரே வகைப் பிளேப்பையடைய பிற பல்லணுப் பதார்த்தங்கள்

CO2, NO3, CH4போன்ற மூலக் கூறுகள் தமத மூலக்கற்றில் ஒரே வகைப் பிலோப்பையுடையன; இவை, பகுதிகள் 4.03.2 இலும்4.03.3 இலும் H-Cl இற்கும் H-O-H இற்கும் விவரிக்கப்பட்ட முறையில் சராசரி பிலோப்புச் சக்திகலோக் கோகிக்கப் பயன்படுத்துக் கூடியனவாயுள. ஈரஹா மூலக்குறகஞாக்கு சராசரி பிலோப்புச் சக்தி பிலாப்புக் கூட்டப்பிரினைக்

> Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

சக்திக்குச் சமனகலிருக்கும். பல்லஹு மூலக்கழகைஞக்கு சேராசரி பிடுகப்புச் சக்தி பீடீவைப்புக் கட்டப்பிரிறைகச் சக்திக**ி**ன் சேராசரிக்குச் சமஞகைவிரைக்கி றது.

சராசரி பில்னப்புச் சக்திக்கும் பில்னப்புக் கூட்டப் பிரிவாகச் சக்திக் குடிவடையேயுள்ள வித்தியாசம், கூட்டப் பிரிலில் விலேவளைகத் தோக்றும்**தான்** டூப் பகுதிகள்,முன்பிருந்த கட்டமைப்பொழுங்கை விட வித்தியாசமான கடீ டகைமப்பொழுன்தில் அமைவதாலாகும். எனவே, இதில் ஏதோவொருவைகை மற ஒழுங்காக்கும் சக்தி சம்பந்தப்படல் வேண்டும்.

CO_R, NO₃ ஆகியலற்றில் இத்தகைய வேறைபாடுகள் மீனைகயாகக்காட் டப்படுகின்றன; CO_R இற்கு (வெப்பலிரசாயனத் தேறவுகளிலிருந்த C--Oஇன் சேநாசரி பிஜோப்புச் சக்சி 8.00 kJmol எலப் பெறப்பட்டுவதை)பிஜோப் பிக் கட்டப் பிரினைக்ச சக்திகள் OC-O இற்கும் C-O இற்கும் முறையே 1080, 525 kJmol ஆகும். NO₃ இற்கு (வெப்பலிரசாயனத் தறவுக ளிலிருந்த N-O இன் சறாசரி பிஜோப்புச் சக்தி 571 kJmol எனப் பெறப் பட்டுளது)

O₂N-O,ON-O,O-N ஆகியவற்றின் பிடீனைப்புக் கூட்டப் பிரிகைச் சக்திகள் முறையே 210,302,630 kJmol⁻¹ ஆகும். மெதேடேவைப் பொறுத்த வரையில் H₃C-H, H₂C-H, HC-H, C-H ஆகியை பிடுகைப்புகளிற்கு அடுத் தடுத்த பிடுவைப்புச் சக்திகள் முறையே 435,442,442,348 kJmol⁻¹ ஆகும். இதன் சராசரி பிடூவைப்புக் கூட்டப் பிரிகைச் சக்தி 415 ஆகும்.

4.03.5 வெவ்வேறு வனகப் பிச்சுப்புக்க 2 வயுடைய பல்லஹு மூலக்கூறுகள்

எதேன் போன்ற பல்லது, மூலக்கழகளில், பலவகைப் பிடீனப்புகளுளி எதேன் C₂H₆சமவலுவுடைய ஆறு C - H பிடீனப்புகடீளயும், ஒரு C – C பிடீனப் பையும் கொண்டுளது.

$$2C(s) + 3H_{2}(g) = C_{2}H_{6}(g) \quad \Delta H = -84 \text{ KJ}$$

என்ற சமன்பாட்டிற்கமைய எதேனின் தோன்றல் வெப்பவுள்குறையான -84 kJmol என்ற பெழமானத்தைப் பெறுவதற்கு பகுதி 4.31இல்எதேன் (-1560 kJmol பென்சிற்கார் (-393 kJmol) ஐகேரசன் (-286 kJmol) ஆகியவற்றின் தகன வெப்பவுள்குறைகள் பயன்படுத்தப்பட்டன.இப் பெறுமானத்தையும்,

2C(5) = 2C(g) $\Delta H = +1440 \text{ kJ}$

3 H₂(g) = 6 H (g) △ H = + 1300 kJ எதும் தறவுக£வயும் பயன்படுத்தி எதேன் அதன் அமைப்புக் கூற்து வாயு

அணுக்களாகக் கேட்டப் பிரிவடைவதற்காக வெப்பத்தைக் கவித்தப் பெற மூடியும்.

கடைசி இரு வெப்பவிரசாயனச் சமன்பாடுக 2ளக் கூட்டும்போ தநாம் பெறுவது

Ձே (s) + 3 H₂ (g) = 2C (g) + 6 H (g) ΔH = 2740 kJ அ–து ឧC (g) + 6 H (g) = 2 C (s) + 3 H₂(g) ΔH = - 2740 kJ எதேவ் உண்டாவ தற்கான சமவ்பாட்டுடன் இவ்வெப்பவிறசாயனச் சமவ்பாட் வடக் கூட்டும்போத நாம் பெறுவத

2C(g) + 6H(g) = C2H6(g) AH = -2740 - 84 KJ அ-த C2H6(g) = 2C(g) + 6H(g) AH = 2824 KJ இல்லழி எதேவில் காணப்படும் ஆறு C-H பில்லப்புகளினதம் ஒரு C-Cபில்லப் பினதும் <u>மொத்தப்</u> பில்லப்புச் சக்தி 2824 kJ ஆகிறது.

(குறிப்பு. விடீளபொருள்கடீயத் தாக்கிகளாகவும் தாக்கிகேடீன விடீள பொருள்களாகவும் மாற்றி ஒர் இறசாயனச் சமன்பாட்டை மீள எழு தம்போது, சமவ்பாட்டின் புதிய வடிவத்திற்கான வெப்பவுள்ஞுறைமாற் றம், குறி மாற்றத்தோடு முன்டீனையதை ஒத்திருக்கும்)

4.03.6 பிசீவப்புச் சத்திகளில் அட்டவசீன

எதேஷில் கானப்படும் C-H, C-C பி 2ணப்புக்களிற்கான சராசரிப்பூ 2ணப் புச் சக்திக2ளக் கணிக்கும்போது, ஒரு மூலக்கற்றின் இரு இனங்களிடையே யுள்ள ஒரு பி 2ணப்பின் சக்தி, பி 2ேப்பேக் காணப்படும் மூலக்கற்றின் எஞ்சிய பகுதியின் தன்மையிலும் கட்டமைப்பிலும் தங்கியிருக்கும் என்பதை ஒராபகத்தில் கொள்ள வேண்டும், இரு சராசரிப் பி 2்ணப்புச் சக்தியிலிருந்த பி 2்ணப்புக் கட்டப் பிரிலாகச் சக்திகள் ஏன் பொதுவாக வேறைபடுகின்றன வென்பதைத் கெளிவாகக் காட்டுகிறது. எனவே தரப்பட்ட இரு இனங்களிடையேயுள்ள பி 2்ணப்புச் சக்தி, இப்பி 2்ணப்புத் தோன்றம் பல்வேறே சேர் வைகளிலும் மாறுதிருக்குமென மேற்கொள்வதற்கு எந்துவித நிரூபோமைம் இல் 2லே .என்று மை (போலிங் என்பவர் செய்ததுபோல), தாம் தோன்றும் சேர்வைகளில் சேர்வைக்குச் சேர்வை பெருமளவில் வேறைபடாதிருக்கும் தரப்பட்ட ஒரு பி வேப்புத் தொடரின் பி 2ணப்புச் சக்திகளுக்கான சராசரிப் பெறுமானத் தைப் பெறுவது சாத்தியமாகும். அட்டவ 2ண 4.1 இல் மாதிரிப் பெறு மானங்களின் தொடரொன்று கொடுக்கப்பட்டுளது.

ມີ ໃໝ ີ ບໍ່ມູ	பி வேப்புச் சக்தி_1 லாலி	<i>ปា ខ្លែ</i> វាបំបុ	பி 2னப்புச் சக்தி கியல்
нн	435	CI-CI	242
Li-Le	105	Br Br	192
c—c	334	С — Н	415
C==C	607	N H	390
C === C	828	0 H	464
N N	269	FH	565
N ==== N	940	Na-H	196
0-0	146	Се-н	431
0==0	495	C O	330
F F	153	C === 0	723
Na-Na	71	C === 0	1050

அட்டவ 2கா 4.1 பிலாப்புச் சக்திகள்

4.03.7 பிடீனப்புச் சக்தில் பெழமானங்களின் உபயோகங்கள்

பி 2்ணைப்புச் சக்திகள் காணப்படும் ஒரு தொடர் சேர் அவைகளிலிருந்த பெறப்பட்ட உண்மையில் சராசரிகளாகவுள்ள இப் பி 2்ஷைப்புச்சக்திப் பெற மானங்க 2 ளே, வேற பி 2்கூப்புச் சக்திக 2 ளக் கணிப்பதற்குப் பயன்படுத்த வாம். உதாரணமாக, எதேஷில் உள்ள ஒரு C—C பி 2்ணைப்பிற்கும், ஆற C—H பி 2்கூப்பிற்கு மான <u>மொத்தப்</u> பி 2்ணப்புச் சக்தி 2824 kJ எனதாம் கணித்தோம். தனித்தவொரு C—H பி 2்கோப்பிற்கான சராசரிப் பி 2்ணப்புச் சக்திப் பெறமானமாக 415 kJ ஐ பயன்படுத்தி, எதேவிஷேன்ன C—C பி 2்ணப்பிற்கான பி 2்ணப்புச் சக்தியைப் பின்வருமாற கணிக்கலாம். $6 \times E(C-H) + E(G-C) = 2824$ $\therefore 6 \times 415 + E(C-C) = 2824$ $\therefore E(C-C) = 2824 - 2490$

=334 kJmol

(தறிப்பு: – E, ஒரு குறிப்பிட்ட பி 2்ணப்பு வககையின் பி 2்ணப்புச் சக்திலையக் குறிக்கும்)

$$C - C = 2C(q)$$

எதும் கற்ப 2வத் தாக்கத்திற்குத் தேவையான சக்தியைக் குறிப்பிடுகில்றது.

தாக்கங்களின் வெப்ப மாற்றங்க2ள டிதிப்பிடுவதற்கும் இத்தகைய பெறுமானங்க2ளப் பயன்படுத்தலாம். இத2னப் பின்வரும் உதாரணம் தெளிவாக விளக்குகிறது.

உதாறனம்

ЗСҢ₄(с) = С₃Н₈(с) + ೩Н_∞(с) எலும் தாக்கத்கிற்கான வெப்ப மாற்றத்தைப் பெறுக.

കൽവ്വ

இத் தாக்க வளர்ச்சி அடுத்தடுத்த இடம்பெறும் இரு படிகளில் நடை பெறுவதாகக் கருதலாம்: –

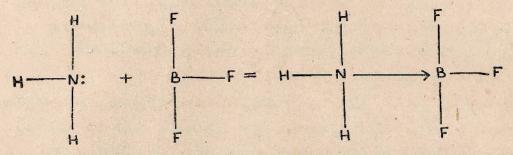
- (i) ஆக்கக் கூறகளான C,H அணுக்கூசனத் தோற்றுவிப்பதற்கு மெதேனிஷெள்ள 3 × 4 C—H.பி ஜோப்புக்கள் பிளைவடைதல்.
- (ij) ஆக்கக் கூறகளான C, H அஹுக்களிலிருந்த பிருப்பேகில் எட்டு C— H பிசீனப்பிக்களும், இருப்பேடு C பிசீனப்பிக்களும் ஐது சனில் இரு H— H பீசீனப்பிகளும் உண்டா தல்.

இவ்விர படிகளிலும் பின்வரும் சக்தி மாற்றங்கள் இடம்பெறகின்றன.

(1) 12 x 415 சக்தி வழங்கல் = 4980 kJ

(11) சக்தி வெளியீடு

			4858	ĸJ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2 x	435	=	870	кJ	Ø G	н-н	பி 2னப்புகளுக்கு
2 X	334	=	668	кJ	QG	c-c	பி வேப்புகளுக்கு
8 ×	415	=	3320	кJ	எட்டு	5 C-H	பில்லப்புகளுக்கு


எனவே தேறிய சக்தி வழங்கல் (4980 — 4858) அதாவத 122 kJ வெப்பச் சக்தியாகும். எனவே, எதேலிலிருந்த புரோப்பேல் உண்டாதல் ஒரு <u>அகவெப்பத்</u> தாக்கமாகும். இத்தாக்கத்தில் ஈற்ற விரேவை வத நால்கு — பிரியைப்புக்கல் பிரிக்கப்பட்டு இரு — – டிரியேப்புகளும் இரு பு— பிரியேப்புக்களும் உட்டோதலாகும்.

கற்ப 2வத் தாக்கங்களில் இடம் பெறும் வெப்பவுள்ளுறை மாற்றங்க2ளப் பி 2வேப்புச் சக்திகள் குறிப்பிடுகின்றன. ஒரு குறிப்பிட்ட பதார்த்தத்தின்ஒரு மூலிலுள்ள பி 2வோப்புக்கள் யாவற்றையும் உள்ளடக்கும் ஒரு தேறிய சமன்பாட் டைத் தரும் வெள்ளைம், கற்ப 2னத் தாக்கங்களுக்கான சமன்பாடுக 2ளயும் அவற்றின் வி 2 ளவாக ஏற்படும் வெப்பவுள்ளுறை மாற்றங்க2ளயும் ஒன்று சேரீப் பதால், அவற்றிற்கேற்ற பி 2வேப்புச் சக்திகளின் கூட்டுத்தொகை, ஒருமூல் பதார்த்தம் அதன் சுயாதீன அணுக்களாகக் கூட்டேப் பிரிவடையும் போத உறிஞ்சப்படும் சக்தியைக் குறிப்பிடும் என நாம் அறிந்தோம்.

ஆக்க வெப்பவுள்ளுறைகள் பயன்படுத்தப்படும் அதே வகையிலும் அவை பயன்படுத்தப்படும் அதே தேவைகளிலும் பிஜோப்புச் சக்திகள் பயன்படுத்தப் படும். நியம நிஜலகளிலுள்ள மூலகங்கள் சார்பாகவே தோன்றல் வெப் பவுள்ளுறைகள் கொடுக்கப்படுதின்றன. எனிலும் பிஜோப்புச் சக்திகள், மூல கங்கள் தயாதின அணுக்களாக உள்ளன என்ற அடிப்படையில் தரப்பட்டுள.

4.04 ஈதற் பிச்சைப்பு அல்லது இசேத்த பிச்சைப்பு

இரு அணுக்களிடையே இலத்திரன்கள் பங்கிடப்படுகின்றன என்பதில் இ 2ணத்த (அல்லத ஈதற்) பி 2ணப்புகள், பங்கிட்டுப் பி 2ணப்புக 2 ள ஒத்த வையாகவுள; எனினும், பங்கீட்டுப் பி 2 ணப்பிற்கு மாறுக, ஈதற்பி 2 ணப்பை அல்லத இ 2 ணத்த பி 2 ணப்பை உண்டாக்குவதற்குத் தேவையான இரு இலத்தி ரன்களும், ஈதற் பி 2 ணப்பு ஆக்கப்படுவதில் சம்பந்தப்பட்ட இரு அணுக்க வில் ஒரு அணுவிலிருந்தே பெறப்படுகின்றன. இவ்வாறு, இ 2 ணத்தபி 2 ணப்பு உண்டாக்கப்படுவதற்கு, தனி இலத்திறன் சோடியொன்றைக் கொண்ட ஒரு இனமும், இலத்திறன் பற்றுக் குறையானவொரு இனமும் இருத்தல் வேண்டும். உதாறணமாக,தனி இலத்திறன் சோடியொன்றைக் கொண்ட அமோனியா மூலக்கூறுறுறை, இலத்திறன் பற்றுக் குறையுள்ள போரன் முப்புளோறைட் டிற்கு தவத இலத்திறன் சோடியை வழங்சி கேட்டற் சேர்வையொன்றைஉண் டாக்கும்:

அம்புக்குறி, இ&்கப்புப் பி&்னப்பைக் குறிப்பிடும். தனிச் சோடி இலத்திற&்வப் பெறும் இனத்தை நோக்கி இவ்வம்புக் குறி இருக்கும் . குறிப்பாக, தனிச் சோடிக&வயுடைய (NH₃ அல்லது Hongo போன்ற) மூலக்கறைகள் அல்லது (ஏ&லட்டு அயல்கள் போன்ற) அயல்கள் கானப்படும் தாண்டல் உலோக அயல்களே இத்தகைய பி&்கைப்பை உண்டாக்குகில்றன.

 $\begin{bmatrix} C_{u} [NH_{3}]_{4} \end{bmatrix}^{++} = 50_{4} ; K_{3} \begin{bmatrix} Fe [CN]_{6} \end{bmatrix}^{---} ; K_{2} \begin{bmatrix} PtCl_{6} \end{bmatrix}^{---} \end{bmatrix}$

ஈதவி&ேயப்புகளின் பி&ேயப்புச் சக்திகள், பங்கூட்டு வலப்பி&ேயப்புக்களின் பி&ேயப்புச் சக்திகளின் அளவை ஒத்தவை. பி&ேயப்புச் சக்திறில் வேறுபா டுகள் காணப்படலாம். இது பிறதானமாக வழங்குகி இனம் அதன் தனிச் சோடி இலத்திற&ே எவ்வளவு கலபமாக வழங்குகிறதென்பதிலும், இலத்தி ரன்க&எக் குறைவாகக் கொண்ட ஏற்றுக் கொள்ளி இனம் எவ்வளவு இலகு வாக இலத்திரன்க&எ ஏற்றுக் கொள்கின்றதைப்பதிலும் சார்ந்திருக்கும். ஈதற் பி&ோப்பு ஆக்கத்தைப் பாதிக்கும் காரணிகளில், அணுக்களின் பகுதி ஏற்றமும் அவை இ&னைந்திருக்கும் கூட்ட வகைகளும் அடங்கும்.

164

4.05 உலோகப் பிள்ப்பு

உலோகம் எனப் பகுக்கப்படும் மூலகங்கள் – குறிப்பாக ஆவர்த்தன அட்டவ வேமூல் சீழ்ப்புறமாக இடத பக்கத்தில் காணப்படுபனவ – குறிப்பிடத் தக்களவிற்குச் சில சிறப்பியல்புக 2 எக் காட்டுகின்றன. இணவயாவன உயர் யின்கடத்த திற்றும் லெப்புல் கடத்த திற்றும், உலோகத்தலைக்கம், நீட்டற் றன் மை, வாட்டத்தகு பியல்பு, உயர் உருகு நி2ல என்பன. இவ்வியல்புகள் குறிப்பிட்ட இம்மூலகங்களில் ஒரு தனிப்பட்ட இலத்திறன் கட்டமைப்பு இருப்பதையும் அதன் வி 2 வவாகப் பி 2 கைக்கும் தோற்றப்பாடுகள் இருப்பதை யும் குறிப்பிடுகின்றன. எனவே, உலோகமொன்றிலுள்ள அணுக்க 2 வைக்கு சேர்த்த வைத்திருக்கும் வினைகளின் தன் மை, பகுதிகள் 4.02-4.04 இல் மூன்பு குறிப்பிடப்பட்ட விலைகளிலிருத்த வேறுபட்டனவ என எதிர்பார்க்க லாம்.

உலோகங்களின் சிறப்பியல்புகள் சிலவற்றைவிளக்கும் கொள்கையொன் றை லொழெவ்ட்ற் வெளியிட்டார். கடந்த அண்டுகளில் இக் கொள்ளக மேலும் விருத்தியாக்கப்பட்டுள்ளது. உலோக மூலகமானத, நெருக்கமாகக் கட்டப்பட்ட கற்றயன்க 2 எக் கொண்ட சாலகம் ஒன்றிருல் ஆக்கப்பட்டதெ வையும், இமீறுலக அணுக்களின் வெளியோடுகளிலுள்ள இலத்திரன்கள் இச்சால கத்திலையீன கண்ண அறகளில் ஒப்பளவாகச் சுயாதின அலசலைமேற் கொள்ளக் கூடிய வை எவவும் கருதலாம், பல்வே மு விதமாக அழைக்கப்படும் இலத் திரன் கூட்டம்" அல்லத "இலத்திரவ்க2எக் கொண்ட கடல்"அல்லதாஇலத் தலிப்பட்ட இயல்புகளான மீகையான உறதித்தவ் வம,உலோ ADA ແມຣີສິນ " கத்தலக்கம். வேறு ஒளியீயல்புகள், உயர் வெப்பங்கடத்த திறன், யின் உயர் வெப்பக் கொள்ளளவுப் பெறுமானங்கள் போக்றவற் கடத்துகிறன், அவிக்கின்றது. உலோக அணுக்களிடையே உண்டாக் வற உலோகத்திற்கு கப்படும் உறுதியான பிஜாப்புகள் காரணமாக உலோகம் டிகஷையானான சாலகச் சக்தியைக் கொண்டிருக்கும்; பிசோப்பில் போது பெருமாவுசக்தி வெளிஷிடப்படுவதாவேயே உலோகம் உயர்வான சாலகச் சக்தியைக் கொண் டிருக்கிறது. பொழிழியல் வேலேகளிற் பயன்படுத்தப்படும் பலவன்கூறான உலோகங்களின் உயர் உருத நிலேகளும், பெருமளவிலாவ பொறிமுறை உழுதித் தன்மையும் உலோகப் பனிங்கிலுள்ள அணுவிடை விசைகவ் பிகப் பெரியவை என்பதற்குச் சான்றுக அமைகில்றன. உலோ கமொன்றின் அஹு

வாதல் வெப்பத்தைக் கருதுவதால் அவ்வுலோகத்தின் உலோகப் பிடேயைப்பு வலிமைக்கான அளவூட்கூடப் பெறலாம். ஒருலோகத்தின் அணுவாதல்வெப் பம் எல்பத

உலோகம் (பளிக்கு) _ உலோகம் (வாயு)

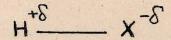
என்ற நிகழ்முறையோடு சம்பந்தப்படும் வெப்பமாற்றமென வரையறுக்கப் அட்டவு 2வ 4.2 இல் காட்டப்பட்டுள்ள அதுவொதல் வெப்பங்களின் பரும். மாதிரிப் பெறுமானங்கள், அவர்த்தன அட்டவ 2வாழில் பிழதான **BLL** உலோகேற்களிலும் பார்க்க தாண்டல் உலோகங்கள் பொதுவாக உயர்ந்த அதுவை எதல் வெப்படிகை 2 எயுடையன என்பதைக் காட்டுகின்றன. இதற்க தாண்டல் உலோகங்களில் உறுதியான பிசினப்புகசீன உண்டோக்குவதில் d.— ஒழைக்குகள் பிரதாக பங்கு கொள்கில்றன எவ்பு தைக் காரனமொக கொள், பி 2வோக்கபிலத்திறவ்கள் எவ்வளவு கூடுதலாகக் கிடைக்குமோ அவ் வலாம். வளவிற்கு உலோகப் பூ2ணப்பு மிக உறுதியானதாகவிருக்கும். ର୍କ୍ଷ କ୍ଷ କ୍ଷ କ୍ଷ பஞ்சீட்ட வெஷப்பி வேப்பிலாம் அவதாலிக்கப்படுகிறது. பிரினப்பு உறுகியான தாகவிருக்கும்போது, உலோகப் பிணேப்பைத் தகர்த்து தாக்கத்தைஇடம் பெறச் செய்வ தற்குத் தேவையான சக்தியும் அல்லது வெப்பவுள்ளு அறச் சக்தியும் கடுதலாகவிருக்கும்.

ALLO LON 4.2

சாதாரண உலோகங்களின் அணுவாதல் வெப்பங்கள் (kJmol)

உலோகம்	வெப்பம்	உலோகம்	வெப்பம்
W	+840	. Lu	+155
T:	+470	Na _	+109
Fe	+405	ĸ	+ 90
Cu	+342	Zn	+130

அட்டவ 2வேயில் பதிவு செய்யப்பட்டுள்ள பெறுமானங்களிலிருந்த புலப்படுவத போன்று, உலோக ஆரை அதிகரிக்க, மூன்ற காரவுலோகங்களும்(Li, Na,K) குறைந்த செல்லும் அணுவாதல் வெப்பங்க2ளக் காட்டுகின்றன. எனவே உலோகப் பி2வோப்பில் வலிமை குறைவடைகில்றது.

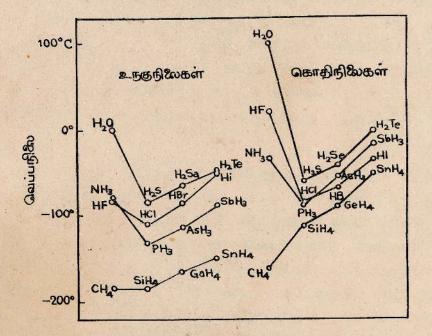

அணுவாதல் வெப்பங்களுக்கான ஒப்பீட்டோவில் பெரிய பெறுமானங்கள் 166 இரசாயனத் தாக்கமொன்றில் போத திண் மூலாகமொன்ற உண்டாக்கப் படுமாயின், அதற்கேற்ப பெருமளவு வெப்பச் சக்சி வெளிவிடப்படும் என் பகையும், இதற்கு மாறுக திண் மவுலோகமொன்ற அழிக்கப்படுமாயின் பெரு மளவு சக்தி உறிஞ்சப்பட வேன்டுமென்பதையும் குறிக்கும். இவ் வெப்ப (அல் லத வெப்பவுள்ளுறை) மாற்றங்களின் பருமன் உண்கைமயில் ஒப்பிடத் தகுந் தனை யாக்ஷள சில சந்தர்ப்பங்களில், இது, அயன் பிலேயைப்பு, பங்கிட்டு வதுப்பிலோப்பு என்பவற்றின் ஆக்கத்திலும் அழிப்பிலும் சம்பந்தப்படும் வெப்ப (அல்லத வெப்பவுள்ளுறை) மாற்றங்களில், இது, அயன் பிலைப்பு, பங்கிட்டு

4.06 மூலக்கற்றிடை வினசகள்

அயன் பிடூனப்பு, பங்கீட்டுஅவுப் பிடூனப்பு, ஈதற்பிடூனப்பு, உலோகப் பிடூணப்பு என்பவற்றேரு சம்பந்தப்பட்ட ஒப்பீட்டனவில் வலிகைமயானபிடூகைப் பாக்கத்தைப் பற்றி நாம் இதுவரை கரதிேஞேம். அடுத்த, ஒன்றிற் கொன்ற அருகாமையிலன்ன மூலக்கறைகளிடையே காணப்படும் மூலக்கற்றினட விசைகளின் பயஞாக இடம் பெறும் ஒப்பீட்டனவில் நலிந்த பிடீனப்பு வகைக டீனக் கருதேவோம்.

இத்தகைய வினசக 2 வக் கொண்ட மா திரி வகையொன்ற ' ஐதரசன் பி 2 ணப்பு ' என்ற ஒழக்கப்படும் தோற்றப்பா டொன்றிலிருந்த தோன் ழகிறது. ஐதரசன் அணு வொன்ற வலிமையான விசைகளால் இன்று மொரு அலுவிற்கு மட்டும் ஈரிக்கப்படாமல் இரு. அலு க்களுக்கு ஈரிக்கப்படுவதால் உண்டாகும் பி 2 ணப்பே ஐதரசன் பி 2 ணப்பு எனப்படும். இத்தகைய ஈர்ப்பிதைல் முன் கூறப்பட்ட இரு அணு க்களிடையேயுள்ள ஒரு பி 2 ணப்பாக ஐதரசன் அணு வைக் குருதலாம். ஐதரசன் பி 2 ணப்பெனப்படும் இப் பி 2 ணப்பு அலைவே 2 ள கவில் இதரசன் பாலம் எனவும் அழைக்கப்படும்.

ஐகரசன் அணு வொன்று, X எனும் பின்னெ திரான அணு வொன்றுடன் (அலசன் அணு போன்றனை) பிலேக்கப்படும் போது, பகிர்ந்துகொள்ளப் படும் (H, X அணுக்களிடையே பிலேகைப்பைடும் போது, பகிர்ந்துகொள்ளப் படும் (H, X அணுக்களிடையே பிலேகைப்பை உண்டாக்கும்) சோடி இலத்தி ரன்கள் மீத பின்னை திரான அணு ஏற்படுத்தும் இலத்திரன் ஈர்க்கும்பாதிப்பு பிலைபை முலேவாக்கி, ஐதரசன் அணுவில் பயஓடைய (பகுதியான) ஒர நேர் ஏற்றத்தையும், தன்மீத பயஓடைய (பகுதியான) ஒர் எதிர் ஏற் றத்தையும் உண்டாக்கும், எனவே H--X மூலக்கற்றைத் திட்டவட்டமாகப் பின்வருமாற கேறிப்பிட வேண்டும்.



இம் மூலக்கற்றிடைக் கவர்ச்சி பிரதாவமாக நிலேயின் தன்மையத.மூலகம் X இன் மீல்னெறிர்த் தன்மை குறைய, உண்டாக்கப்படக் கூடிய மூலக் கூற் றிடை ஐத்ரசன் பிணேப்பின் வலுவும் குறையும். எனவே மூலகம் X இன் மீல்னெறிர்த் தன்மை குறைய ஐத்ரசன் பிணேப்பின் உறுறித் தன்மையும்குறை யும். ஐத்ரசன் பிணேப்புச் சக்றியின் பருமன் 8–30 kJmol என்ற வரி சைப்படியினதாகும். இது புளோர்இதைகு ஆகக்கூடியதாகவும் (28 kJmol) ஒட்சிசலுக்கு (நீரில்) 19 kJ மால் தது அகைக்கு (அமானியாவில் 5.5 kJ mol) ஆகக் குறைந்தும் காணப்பரும்.

இத்தகைய ஐதேரசன் பிடூனப்பு உண்டாக்கப்படும்போத (அயன்பிடீனைப் பையும் பங்கீட்டு வலப் பிடூணைப்பையும் ஒப்பிடுகையில்) ஒப்பீட்டளவில் சிறி தளவு சக்திக் குறைப்பும், சிறிதளவு ஏவற் சக்தியும் சம்பந்தப்படுவதால் ஐதரசன் பிடூணைப்புக்கடு பிகேச் சலபமாகத் தேகர்க்கலாம். F,O,N,Cl போன்ற பின்னைதிர்மை பிகுந்த மூலகங்களுடன் ஐதுரசன் அனுவ பிடூணையும் போத மட்டுமே இத்தகைய பிடூணப்பு உண்டாகின்றது. இவ்வாற இரசாய னத் தாக்கமொன்றின் போது ஐதுரசன் பிடூணப்புக்கள் உண்டாக்கப்பட்டால் அல்லது தகர்க்கப்பட்டால், இதனுல் மட்டும் ஏற்படும் சக்திமாற்றம் அன விக்கதிகமாகவிராத.

ஐதரசன் பிணேப்பு உண்டாகும் பதார்த்தங்களில், அடுத்தடுத்த வரும் இரு H,X அணுக்களிடையே ஒத்த பிலோப்பு வகைகலோ உண்டாக்குவதன் பொருட்டு, பினேப்பாக்கத்தில் ஈருபடும் இலத்திரன்கள் மொத்தத்தில் முழுவதாக மாற்றியமைக்கப்படுகின்றன என்பதை தொபகத்தில் வைத்திருத்தல் வேண்டும். ஐதரசன் பிலோப்பின் முக்கியத்துவத்தையும் அதபரந்த கானப்படுவதை யும் அறிந்தமை, அசிகவளவில் இனைக்கமடைந்திருக்கும் திரவங்களில் (நீர், ஐதரசன் புளோரைட்டு போன்றவை) இடம் பெழும் ஒன்றிற்கொன்றுன இடைத்தாக்கத்தின் பருமலேயும் தன்மையையும் விளக்குவதற்குப் பயன்படுத்த தேவையிருந்தத. H₂O, HF போன்ற பதார்த்தங்களின் உருகுநிலே, கொதி நிலே மின்கோடுபுகுதுடோக மாறிலி போன்ற முலப்பான பௌதிக இயல் புகுகுக்கு ஐதரசன் பிலேயப்பே காரணமாகின்றது.

ஒத்த இலத்திறன் கட்டமைப்புடைய பதார்த்தங்களில் அணுக்களிடையே யுள்ள வந்தர் வாலிஸ் விசைகள், அணுவெண் குறைவடைய வழமையாகக் குறைவடைகில்றன. எனவே, பில்வரும் சேர்வைகளில் தொடர் ஒவ் வொல்றிலும், பில்னெதிர் மூலகத்தில் அணுவைண் குறைவடைவதன் காறன மாக, உருகுநிலேகள், கொதி நிலேகள் என்பன குறைவடைகில்றன.

படம் 4 . 4 கூட்டங்கள் 4 – 7 இல் உள்ள ஐதரைட்டுக்களின் உருகுநிலேகளும் கொதிறிலேகளும்

 $HI \longrightarrow HBr \longrightarrow$ $SbH_3 \rightarrow A_SH_3 \rightarrow PH_3 \rightarrow NH_3$ $SnH_4 \rightarrow GeH_4 \rightarrow SiH_4 \rightarrow CH_4$ தரப்பட்ட ஒரு கூட்டத்தில் மின்னெதிர் மூலகத்தின் அணு வெண் குரைய உருகு நிலேயும் கொதி நிலேயும் குறைவது 4 ஆவது கூட்ட மூலகங்களில் Sn.H, ____ GeH, ____ Si.H, ____ CHஎனம்தொடரில் மட்டுமே தொடர்ச்சியாகப் பேனப்படுகிறதெவ்பதைப் படத்திலிருந்தகான லாம். கூட்டம் 5,6,7 இல் பாரங்கு அறைந்த மூலகங்களிலுல் உண்டாக்கைப் படும் ஐதரைட்டுக்கள் முறையே NH₃ H₂0 HFஎன்பன தொட**ரி**ல் அடுத்த மூலகங்களுடன் முறையே PH3, H25, HClouid முகையில் அசாதா நனமாக வுயர்நீத உருகுநிலேயையும் கொ.தி நிலேயையும் உடிடயவவாயுள. (எதிர் பார்த்த ஒழுங்கு பின்பற்றப்படுமாயின் நீரின் உருகுநி 2ல –100 ் ஆகவும் கொதிநில் – 80°C ஆகவும் இருந்திருக்கும். ஆயில், பரிசோதல்லப் பெறுமானங்கள் இலற்றிலும் பார்க்க டிகவுயர்வாகவுள). இல்லொல்லாகும கள் யாவற்றையும் ஐகரசன் பி2்கப்பின் மூலம் சுலபமாக விளக்கலாம். ஐகரசன் பிடீனப்புக் காரணமாக உருகுவதற்கும் ஆவியாவதற்கும் மேலதிக சக்தி அவசியமாகின்றது. இதன் விீச்வவாக உருகுநிசேலயும் கொதிநிசேலயும் உயர்வா கூஷ வீவன .

Hote -> Hote -> Hot -> Ho

HCL -> HF

கொதி நி2ல வி2ளவு, உருகுநி2ல வி2ளவு என்பலற்றில் காரணமாக HF, H2O, NH3 பளிங்குகளில் காணப்படும் 'ஐதேநசன் பிடீபைப்புக்களிற் சில உருததேலில் போத பிளவலடகின்றனவெனவும் மீதியான பி ஊப்புக்கள்கொதி நி 2ல யிலும் திரவ த்தில் நி 2ல த்திருக்கின்றன வெ வையும் பின்பு ஆவியாக்கப்படும் போது அப்பிகோப்புக்கள் பிளக்கப்படுகின்றனவெனவும் உய்த்தறியலாம் என் பகைக் கூவவித்தல் பயனடைத்து. உண்மையில் HF இன் யிக்ஷறு தியான தூதறசன் பிடீனப்புக்கள், பகுதியாகப் பல்பகுதியமாக்கப்பட்ட ஆவி நிடில யிலம் மூலக் கூறுகீள ஒன்றுக அவத்திருக்கும் தல்மையில. சேதவச்சேர் கைவகளில் —குறிப்பாக மு2அவிலிக் கலைப்பான்களிலுள்ள காலொட்சிலிக்கமி லங்களில்— ஐகரேசன் பி 2லப்புக்கள் சர்வசா தா ரணமா எவை எவக் கேறிப்பிட லாம்.

Digitized by Noolaham Foundation.

4.07 இகாடநிலப் பிலாப்புகள்

பகுதி 4.06 இல் ஐகரசன் பி2னப்புப் பற்றிய ஆராய்வின்போத பதார்த்தங்களின் அனுதக்களிடையே வந்தர் – வால்ஸ் விசைகள் செயற்பட லாம் எனக் குறிப்பிடப்பட்டது. இவ்வகையான கவர்ச்சி, ஒப்பீட்டளவில் நலிவாக இருப்பினும், சம்பந்தப்பட்ட பதார்த்தங்களின் மூலக் குழகளிடை யே நிகழும் இலத்திரவி உத் தாக்கங்களிலிருந்து தோவ்றலாமை நம்பப் படுகிறது. மூலக்கழைசள் ஒன்றிற்கொள்ற அண்மையாக இருக்கும் போத இடைத்தாக்கம் முக்கியத்துவம் வாய்ந்ததாகவுள்ளது. துர்ரம் அதிகரிக்க இடைத்தாக்க வி2வவு விரைவாக வீழ்ச்சியடைகின்றது. இத்தகைய பி2னப் புக்களின் பருமன் 4 – 5 kJ mot⁻¹ என்ற கிரமப்படியிருக்கும். எனவே, இர சாயனத் தாக்கத்தின் போது நிகமும் மொத்த சக்தி மாற்றத்திற்கு இத் தகைய பி2சைப்புக்கள் வழங்கும் சக்தி கிறிதளவாகவேயிருக்குறு. மேலே குறிப்பிடப்பட்ட இடைத்தாக்கங்களின் வி2வைாகத் தோன்றும் பி2்ணப்புக்கள் இடைதிலேப் பி2்ணப்புக்கள் எனப்படும்.

இரு மு²னவு – இருமு²னவு இடைத்தாக்கம், அயன் – இருமு²னவு இடைத் தாக்கம் போன்ற வெவ்வேற இனங்களிடையே காணப்படும் பிற நலிந்த நி2லமின் கவர்ச்சிகளின் பயஞகவும் இடைநி2லப் பி2்ணப்புகள் தோன்றலாம். ஒரு மூலக்கற்றின் அயனுென்ற அல்லது நி2்லயுள்ள இரு மு²னவு, இன்னுமொரு இனத்தின் நி2்லயுள்ள இரு மு²னவிற்குக் கவரப்படுவதன் வி²ளவாக நலிந்த நி2்லமின் பி2்ணப்புக்கள் உண்டாகின்றன. மேலும் மூலக்கற்ற மு²னவாக நலிந்த நி2்லமின் பி2்ணப்புக்கள் உண்டாகின்றன. மேலும் மூலக்கற்ற மு²னவாக்கத் தின் வி2்ளவாக மூலக்கறைகளிறைன் ஏற்றங்கள் வேலுபடுத்தப்படலாம். இன்வாற உருவாக்கப்படும் மு²னவாக்கப்பட்ட மூலக்கற்றின் இருமு²னவு அயன் தாண் டிய இருமு²னவாக்கத்திற்கு, அல்லது நி2்லயுள்ள இருமு²னவு – தாண்டிய இர மு²னவு இடைத்தாக்கங்களுக்கு உட்படுத்தலாம். இம்முறைகள் யாவற்றின் வி2்ளவாகவும் இடைநி2்ல வகைப்பி2்ணப்புகள் உண்டாக்கப்படும்.

4.08 பொழிப்பு

இ றசாயனத் தாக்கமொன்றின் போத இடம்பெறும் வெப்ப மாற்றம் அல்லத வெப்பவுள்ளுறை மாற்றம், தாக்கத்தின் போத உண்டாகும்பி வேப்பு வலிமை மாற்றத்தால் துணியப்படும். அயன் பிணேப்பு, பங்கீட்டு வலுப் பூ வேப்பு, ஈதற் பி வேப்பு அல்லது உலோகப் பி வேப்பு போன்ற உறுதி யான பி வேப்புக்கள் சம்பந்தப்பட்டு, தாக்கத்தின் வி வேவாக இத்தகைய

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org பினேப்புக்களின் தேறிய ஆக்கம் அல்லது பிளவு ஏற்பட்டால், வெப்ப மாற் றம் குறிப்பிடத்தக்களவு பெரிதாகவிருக்கும். தாக்கத்தில் இடம் பெறும் பயனூடைய மாற்றம், ஐதரசன் பிலேப்புப்போன்ற தலிந்த பிலேப்புகளின் விலோவாக ஏற்படுவதாக இருந்தால், வெப்ப மாற்றம் பிகச் சிறியதாக விருக்கும். பல்வேற வகையான மூலகங்களுக்கும் சேர்வைகளுக்கும் சிடைக்கக் கூடியதாகவுள்ள பிலேப்புச் சக்திகளினதும் சாலகச் சக்திகளி னதும் அட்டவலேகைலோப் பயன்படுத்தி, தாக்கங்களின்போது நிகரும் வெப் பமாற்றங்களின் பருமலன மதிப்பிடலாம்.

4,50 போண் மேறபர வெப்பவிரசாயனச் சக்கரம்

பகுதி 4.02 • 1 இல் அயன் பளிங்கொன்றின் சாலகச் சக்தியை (அதாவது பளிங்கொன்று, முடிவின்றிய தூரத்தில் வாயுதிலேயிலுள்ள அதன் ஆக்கக் கூறுகளிலிருந்து வாயு அவத்தையில் உண்டாக்கப்படும்போது வெளி விடப்படும் சக்தி), கொள்கை முறையாக மதிப்பிடுவதற்குப் பின்வரும் சமன்பாட்டைப் பயன்படுத்தலாம் எனக் கருதிகேறேம்.

 $\mathfrak{snws} \mathfrak{ss} (L) = \frac{N_A \cdot A \cdot Z_1 Z_2 e^{R}}{r^{2}} \left(\frac{n-1}{n} \right)$

இங்கு No – அவகாதரோ மாறில

A - மடலங் மாறிலி

Z, , Z, – இர அயல்களில் ஏற்றங்கள்

∽ – அயலிலடத் தாரம்

ന - ഗ്രധുഖെൽ

ட – இலத்திரன் ஏற்றம்

எசுவின் விதி வயப் பயன்படுத்தி பரிசோத 2வே முறையில் பெற்றவெப்ப ஷேன் துறைத் தேரவுகளிலிருந்த அயன் பளிங்கொன்றின் சாலகச் சக்தியைக் கணிப்பதற்குப் பயன்படுத்தப்படும் தாக்கங்களும் அவற்றுடன் தொடர்பான வெப்பவுள் நேறை மாற்றங்களும் <u>போண் உேறபர் வெப்ப</u>விரசாயனச் சக் <u>கரம்</u> என்ற நைக்கப்படும். அயன் பளிங்கொன்று அதன் ஆக்கக் கூறுமூலக அயன் களிலிருந்த (யாவும் வாயு அவத்தையில்) உண்டாக்கப்படுவதில் சம் பந்தப்படும் தாக்கம் செய் முறையாகச் சாத்தியமற்றது என்பதால், மேற் கறியத போன்ற பெரிசோதூனத் தறவுகளிலிருந்த நேரில் முறையிலான கைவிப்பு அவசியமாகிறத.

நேரில் முறையாகக் கணிப்பதற்கு அவசியமானதும் கிடைக்கப்பெறுவது மான வெப்பவுள்ளுறைத் தரவுகள், M எனும் அண்டுவுலோகத்தையும் X எனும் ஈரஹுகொண்ட வாயுவொல்றையும் (உம்– No.[†]CL[–]) கொண்டு உண்டாக்கப்படும் ஒரு பொதுவான பளிங்கு M⁺X[–] இற்கு கீழே தரப்பட் டுள்ளது.

(1) உறுதி நி2லயிலுள்ள ஆக்கைக் கூறு மூலகங்களான M (தின்மம்) Х வாயு என்பவற்றிலிருந்த உண்டாக்கப்படும் பளிங்கு M¹X⁻இன் ஒரு மூலுக்கான தோன்றல் வெப்பம் ΔΗ, அதாவத,

M (5) + 👌 X₂ (g) = M⁺X (பளிங்கு) எவ்ற தாக்கத்தில்வெளிவிடப்படும் வெப்பச் சக்தி.

(11) ஒரு மூல் உலோகம் M இன் பகங்கமாதல் வெப்பம் S (அதாவத ஒரு மூல் கிண்ம மூலகம் M வாயு அவத்தைக்கு ஆவியாக்கப்படும் போத உறிஞ்சப்படும் வெப்பச் சக்தி).எனவே S என்பத

$$M(s) = M(g)$$

என்ற நிகழ் முறையின்போது உறிஞ்சப்படும் வெப்பச் சக்தியாகும்.

(111) ஒரு மூல் வாயு X இவ் கூட்டப் பிரிஷச் சக்சி, D (அதாவத ஒரு மூல் வாயு X ஆ கூட்டப் பிரிவடையும் போது உறிஞ்சப்படும் வெப்பச் சக்தி). எனவே D என்பத

$$X_2(q) = 2X(q)$$

என்ற நிகழ்முறைறின்போது உறிஞ்சப்படும் வெப்பச்சக்தி ஆகும்.இதி லிருந்த

$$\frac{1}{2} X_2(g) = X(g)$$

என்ற நிகழ்முறையின்போத உறிஞ்சப்படும் சக்தி <u>D</u> ஆகும்.

(iv) M இன் வாயு அணு வொன்றின் அயஞக்கற் சக்தி I (அதாவதுமூல கத்தின் ஆகக் கூடிய சக்தி மட்டத்திலிருந்து முடிவிலாத் தொ ரத்திற்கு ஒரு இலத்திரான நீக்குவகற்குத் தேவையான சக்தி), எனவே,

$$M(g) = M'(g) + e$$

என்ற நிகழ் முறையின்போத உறிஞ்சப்படும் சக்கி I ஆகும்.

(V) X இன் வாயு நிலே அணுவொன்றின் இலத்திரன் நாட்டம் E (அதாவது முடிவிலாத் தா ரத்திலிருந்த ஒரு இலத்திரலே வாயு நிலேயி லுள்ள அனு X இன் ஆகக் கூடிய சத்தி மட்டத்திற்குக் கொண்டு வந்து அதலே ஒரு அனயன் X ஆக மாற்றும்போத வெளிவிடப்படும் சக்தி),

X(q) + C = X(q)

என்ற நிகழ் முறையின்போத வை எிவிடப்படும் சக்தி E ஆகும்.

போடு சேறபர் வெப்பவிரசாயவச் சக்கரத்தில் பிரதான பெயன்பாடு யாதுகில் AH,S,D,T,E எலும் பெறுமானங்கீ£ளப் பயன்படுத்தி சோல கச் சக்திலை (ட) அதாவத,

$$M^{+}(g) + X(g) = M^{T}X(Uallows)$$

என்ற நிகழ்முறையில் வெளிவிடப்படும் சக்திறையக் கணிப்பதிலாகும்.

இதே தாக்கத்தை அல்லது நிகழ்முறையைப் பல சமன்பாடுகளின் அட் சரகணிதக் கூட்டலாகப் பெற்றுல், இரு சந்தரிப்பங்களிலும் வெப்ப மாற்றம் ஒன்றையொன்று நிகரொத்ததாகவிருக்கும் என்பது எசுவின் விதி யிலிருந்து எமக்குப் புலனுகிறது. நாம் இச் சந்தரிப்பத்தில் பயன்படுத்தும் இதே செயன்முறை, பகுதி 3.31 இல் அநேக உதாரணங்களில் மேற் கொள்ளப்பட்ட அதே செய்முறையே ஆகும். அறிந்த தரவுகள் பில்வரு மாற பொழிப்பாகத்தரப்படலாம்:--

	de la	<mark>தழ்முறை</mark>		and the Television	வெப்ப மாற்றம்
	M (s)	+ 1 X2(g)	= M ⁺	×(ப விங்கு)	- A H
	M (5)			1 (g)@	+ 5
		±×₂(g)	= >	((g)3	+ <u>D</u>
	M(g)		= M	1 ⁺ (g)+e@	÷ I
	e	+ 'X(g)	= X	- (g)5	-E
(" வெப்ப	மாற்றம் எ	ைம் <u>எ</u>	ரைலில் உறிஞ்சப்படு	۵
	<i>ดิ</i> ฒบ่มต่ะ	கள் யாவும் ே	நர் 6	ப நமானங்களா கவு ப	3
				ாவும் எறிர் பெறுமா பாதக் கவனிக்க.)	7

பிவ்வரும் தேவையான சமன்பாட்டைப் பெறுவகற்கு

M⁷(g) + X⁷(g) = M⁷X⁷(பனிங்கு) (வைப்ப மாற்றைக்-ட) சமன்பாருகள் (2), (3), (4), (5) என்பவற்றைக் கட்டி பின்வரும் சமன்பாட்டைப் பெறவேண்ரும்.

$$\begin{split} \mathsf{M}(\mathsf{s}) + \frac{1}{2} \mathsf{X}_2(\mathsf{g}) + \mathsf{M}(\mathsf{g}) + \mathsf{e} + \mathsf{X}(\mathsf{g}) &= \mathsf{M}(\mathsf{g}) + \underbrace{\mathsf{Gouiu unrippu}}_{\mathsf{X}(\mathsf{g}) + \mathsf{M}(\mathsf{g}) + \mathsf{e} + \mathsf{X}(\mathsf{g})} \\ \mathsf{X}(\mathsf{g}) + \mathsf{M}(\mathsf{g}) + \mathsf{e} + \mathsf{X}(\mathsf{g}) & \mathsf{S} + \frac{1}{2} + \mathbb{I} - \mathsf{E} \end{split}$$

அதாவ த

$$M(s) + \frac{1}{2} X_{2}(g) = M(g) + X(g) \qquad S + \frac{1}{2} + I - E$$

அதாவது

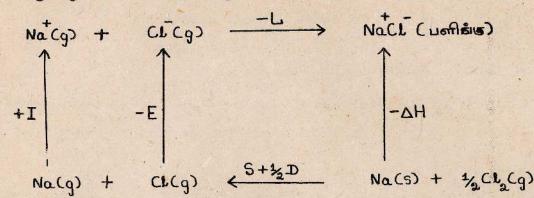
$$M(q) + X(q) = M(s) + \frac{1}{2}X_{2}(q) = E - S - \frac{1}{2} - I$$

இச்சமன்பாட்டை, சமன்பாடு (1) உடன் சேர்த்தால்

$$M(s) + \frac{1}{2}X_{g}(g) + M(g) + X(g) = MX(uonline) + M(s) + \frac{1}{2}X_{g}(g)$$

அல்ல த

$$\begin{array}{rcl}
 & 1^{\prime}(q) + X^{\prime}(q) & = & M^{\prime}X^{\prime}(\cup affaics) \\
 & \underline{B} \overset{\circ}{D} \overset{\circ}{\otimes} f \overset{\circ}{\Pi} \overset{\circ}{U} & \underline{O} \overset{\circ}{U} \overset{\circ$$


கடைசியாகத் தரப்பட்டுள்ள சமன்பாட்டைப் பயன்பெடுத்தி டூH,S,D, I,E, எனம் பரிசோதீலப் பெறுமானங்கீள உபயோகித்தை டூ ஐக் கணிக்க முடிகிறது. அத்துடன் முன்பு குறிப்பிடப்பட்ட கொள்ளக முறையான சமன்பாட்டிலிருந்திபெறப்பட்ட கொள்கை முறையான பெறுமானத்தொடன்ஒப் பீடலம் உதுவுகிறது.

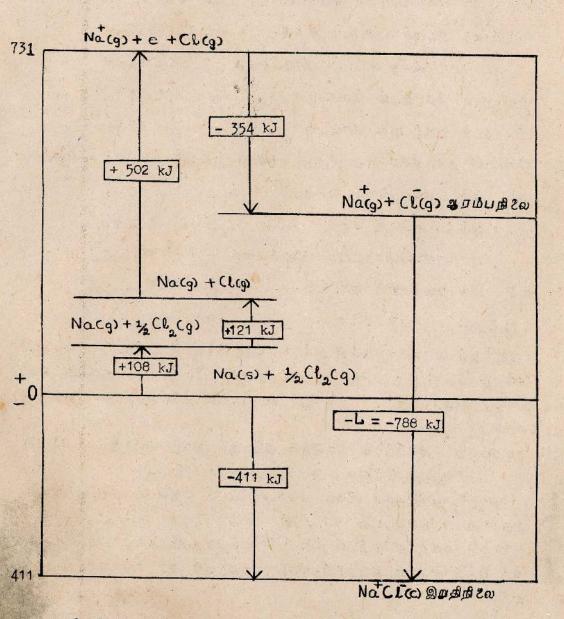
பரிசோதூலப் பெழமாகங்கள் AH,S,D,I,E என்பவற்றிலிஞந்த L. ஐக் கணிப்பதற்குதாவும் சமன்பாட்டைப் பெழுவதைற்கான மேலுமொரு முறைவைய, ஒரு குறிப்பிட்ட உதாராணத்தின் மூலம் — NaCL – நாம் அடுத்த இங்கு தருகில்றேம்.

Nact பளங்கிற்குத் தரப்பட்ட தரவுகளே (AH,S,D,I,E)

175

பிவ்வருமாற வரைபட வடிவில் குறிப்பிடலாம்:

எசுவின் விதியைப் பயன்படுத்தும்போது தேவையான சமன்பாட்டை எந்த விதமாகப் பெற்றுலும் சக்தி மாற்றம் ஒத்ததாக இருத்தல் வேண்டும். இக் கருத்தைப் பயன்படுத்தி, மேலே குறிப்பிடப்பட்டுள்ள சக்தி மாற்றங்களின் குறிக£ளயும், அவற்றிற்கேற்ற சமன்பாடுகளின் திசைக£னயும் நி2னவிற் கொண்டு பின்வருமாற எழுதலாம்:


4.10 No.CL பளிங்கொக்றின் சாலகச் சக்தியை மதிப்பிடுவதற்கான வெப்பவள்ளுறைப் படம்.

பரிசோத 2வே முறையாகப் பெற்ற வெப்பவி ரசாயனத் த**ரவுக விலிருந்த** சாலகச் சக்தியைக் கூணிப்பதற்கு எசுவில் விதி (அல்லது போண் உேறபர் வெப்ப விரசாயனச் சக்கர வடிவில் அதன் தனிப்பட்ட பிரயோகம்)பயன் படக் கூடியதாக அமையும் மேலுமொரு சிறந்தமுறை வெப்பவுள்ளுறைப் படங்க 2வேப் பயன்பெருத்தும் முறையாகும்.

NaCl இற்குக் தேவையான என் பெறுமானங்கள் பின்வருமாற்.-NaCl இன் தோன்றல் வெப்பம் (AH) = -411 kJmol Na(s) இன் பதங்கமாதல் வெப்பம் (S) = 108 kJmol Cl₂(g) இன் கட்டப் பிரிவுச் சக்தி (D) = 242 kJmol Na(g) இன் அயகுக்கற் சக்தி (I) = 502 kJmol Cl(g) இன் அயகுக்கற் சக்தி (I) = 502 kJmol

> Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

மேலே தரப்பட்ட தரவுகூ 2 எப் பயன்படுத்தி ஏற்ற வெப்பவுள் குறைப் படத்தை இப்போது அமைத்தக் கொள்ளலாம் (படம் 4.5 ஐப் பார்க்க). (இவ் வெப்பவுள்குறைப் படத்திலிருந்து) NaCl பளிங்கின்சால கச் சக்தி 788 kJ எனக் காட்டலாம்.

படம் 4.5 NoCl இன் சாலகச் சக்தியைக் கணிப்பதற்குரிய வெப்பவுள்ஞறைப்படம்

பயிற்கிகள்

1. பிவ்வரும் தறவுகளிலிருந்த Mn F2 (5) இற்கான சாலகச் சக்தியைக் கணிக்க.

Mn இன் பதங்கமாதல் வெப்பம் = 281 kJ mol¹ Mn, Mn ஆக அய**ருக்**கமடையும் சக்தி = 2226 kJ mol¹ புளோரீன்னத கட்டப் பிரிவுச்சக்தி = 158 kJ mol¹

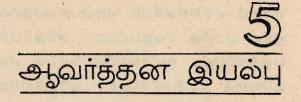
Mn F25இன் தோன்றல் வெப்பம் = -791 kJ mol

F இவ் இலத்திரவ் நாட்டம் = -333 kJ atom

2. பிவ்வரும் தரவுகளிலிருந்த Na F(5) இவ் தோன்றல் வெப்பத்தைக்குவிக்க-

Na இவ் பதங்கமாதல் வெப்பம் = 108 kJmol¹

Na இன் அய**ூக்**கற் சக்தி = 502 kJmol¹ புளோரீனினதை கட்டப் பிரிவுச்சக்தி = 158 kJmol¹


F இன் இலக்கான் நாட்டம் = -333 kJ atom

NaFagad சாலகச் சக்த = 910 kJ mot

3. NaCl@maternesse சக்தி 788kJ mot⁻¹. NaCl (பணிங்கு) கரைசலா தல், 5 kJ mot⁻¹ வெப்ப மாற்றக்கை உட்பருக்கும், ஒருபுற வெப் பறிகழ் முறையாகும். ஒரு மூல் NaCl இன் நீரேற்றல் வெப்பம் என்ன?

(குறிப்பு: – நீரேற்றல் வெப்பம் பின்வரும் நிகழ் முறையைக்குறிக்கும்). Na(g) + Cl(g) → Na(aq) + Cl(aq)

4. NH_LNO₃ பனிங்குகள் நீ**ரில்** கரையும்போத வெப்பம் உறிஞ்சப்படுகி றது என அறியப்பட்டது (பகுதி 3.10.1). NH₄NO₃ இன் சாலகச் சக்தி நீரேற்றல் வெப்பம் என்பவற்றின் சார் பெறுமானன் கள் பற்றி எக2ன உய்க்கறியலாம்? இதற்குக் காரணம் காட்டி விளக் குக.

5.0 அறிமுகம்

இரசாயனம் பற்றிக் கற்கும் போத நாம் சா ற்றுக்கும் அதிகமான மூலகங்கீளயும் அம்மூலகங்கள் ஒன்றுடொன்ற சேர்ந்து உண்டாக்கும் சேர்வைகளின் தன்மைகூ வயும் படித்தல் வேண்டும். அதோடு நாம் இம் மூலைகங்கள் யாவற்றினதும் பல்வகைப்பட்ட இரசாயன இயல்புகள் பற்றியும் தாபகத்தில் வைத்திருத்தல் வேண்டும். இப் பதார்த்தங்களின் நடத்தை பற்றிய தகவல்கீள உலகில் உள்ள பல்வேற வித்தானிகளும் தொடர்ந்த சேகரித்தவண்ணையிருந்தனர். இத்தகவல்கள் பெருமளவினதாகவிருந்ததால், எவராலம் அவற்றை முழுவதாக ஞாபகத்தில் வைத்திருக்க ருக்கிறைவுறை சாத்தியமற்றதாக விருந்தது. விஞ்ஞானிகள் கொல்டு பிடித்த இத்தகவல்கூறன ஒரளஷிற்காவது கொருக்கியளிக்கக் கூடியை ஏதாவகிகொரு முறை இருப்பின்,அது விஞ்ஞாவிகளுக்கு மட்டுமேன்றி விஞ்ஞானம் பற்றிய கல்வியில் சம்பந்தப்பட்ட யாவருக்கும் மிகப் பயறுடையதாகவிருக்கும் என்பற நிச்சயம். இப் பிரச் சீவலைத் தீர்க்குமுகமாக, விஞ்ஞானத்தின் ஒரு துறையாக இரசாயனம், விருத்தியுற்ற காலம் தொடங்கி, மூலகங்கள் பற்றிய இயல்பு க 2ளயும் அவற்றின் நடத்தைக உளயும் குருக்கியளிக்கக் கூடிய பொதுமைப்பாடுகள் இருக்கின்றனவா எனக் கண்டு பிடிக்கும் முயற்கிலாய இரசாயனவறி ஏதாவுக ஞர்கள் மேற் கொண்டனர். இத்தகைய முயற்கிகளின் கிறந்த பெழபேறே மூலகங்களின் ஆவர்த்தனப் பாகுபாடாகும். லலகங்க உள எமத தற்கால அறிவின்படி பொகுபடுத்த எத்தனிக்குமுன்," மேற்கூறிய பிரச்சீசனயைத் தீர்ப் பதில் ஆரம்ப விஞ்ஞாவிகள் மேற்கொண்ட முறைகைசீளச் கூருக்கமாகவாவத அறிந்த கொள்வத விரும்பத்தக்கது.

5.1 ஆவர்த்தனப் பாகுபாட்டின் வரலாற

ஆரம்பநிலேப் பாகுபாடு உலோகங்கஞக்கும் அல்லலை கங்கஞக்கும் இடையெயுள்ள வேழபாட்டை அறிந்த கொள்வதாயிருந்திரைக்கலாம்.பெரும் பாலான மூலகங்கீக் அவற்றின் பௌதிக இயல்புகஞக்கேற்ப உலோகங் கேள் எனவும் அல்வலோகங்கள் எனவும் பிரிக்கலாம் என நாம் அறிவாம். என்றமை உலோகங்கள் எனப்பாகுபடுத்தைப்பட்ட மூலகங்கள் ஒன்றில்ருந்த ஒன்ற பேரந்த வேறபட்டன. அதேபோன்ற அல்வலோகங்கள் எனப் பாக படுத்தப்பட்ட மூலகங்களிடையேயும் பரந்த வேறபொடு காணப்பட்டது. உலோக இயல்புகீச்ன்ஷம், அல்வலோக இயல்புக்கீன்ஷம் காட்டுகின்ற மூல கங்கஞம் இருந்தன. அவற்றை ஒரு குறிப்பிட்ட பிரிவில் அவைப்புக கடினமா யிருந்தது. ஆகவே இப்பாகுபாடு, கூடிய அர்த்தமுள்ல பாகுபோடு ஒன்றிற் கான ஒருபடியாக இருந்தேகேயன்றி, வேறுவிதமாக அவ்வைவை பயன் உடையதன்று.

1817ஆம் ஆண்டில் தொபரைனர் எதும் ஜேரீமனிய இரசாயனவறிஞர் அறியப்பட்ட பல மூலகங்கைஞள் ஒத்த இயல்புசு 2ளக் காட்டும் மூன்ற மூலகங் கீலக் கொண்ட கட்டங்கள் இருப்பதை அவதானித்தார். இவர் இக்கூட்டம் கீீள திரிதங்கள் எனவமைத்தார். திரிதம் ஒன்றிலள்ள மூலகங்கள் அதி ച്ചുഇാള്ട്ടിൽിഡെ ഖറിഞെടുംലിൽ ഒഡ്ൽക് പ്രൂള്ളപ്പയർ, 56 ഇസ கரிக்கும் சார் இறண்டு மூலகங்களின் இயல்புகள்ற்கு இடைப்பட்ட கம், மற்றைய இயல்ப எவக் காட்டிறைர். திரிதங்கஞக்கான குறிப்பிடத்தக்க கீள உடையத உதா பனங்கள் Cl₂Br₂.I₂,Ca,Sr,Ba முதலியன. சில மூலகங்கள் மட்டுமே திரி தங்கீா உண்டாக்குவதாலும் பல மூலகங்கள் திரிதங்கீள உண்டாக்காத தாஷம், இம்முறையானது ஒரு பாகுபாட்டு முறையென ஏற்றக் கொள்ளப் படவில் 2ல.

1864 இல் நியூலந்த எேலும் ஆங்கிலேயே விஞ்ஞானி, மூலைகங்கீ வே அதி காரிக்கும் சார் அணுத்தினிஷை வரிசையில் ஒழுங்கு படுத்திறைர். ஆப்படிச் செய்தபோது ஒத்த இயல்புக் வேயலைடய மூலைகங்கள் மீண்டும் மீண்டும் தோன் றக்காண்டார். உதாருணமாக எட்டாவத மூலகம் முதலாவத மூலைகத்தையிம், ஒன்பதாவத மூலகம் இராண்டாலத மூலைகத்தையிய் ஒத்திருந்தன.அதேபோன்ற பிறவும். நியூலந்த இதே வே இசை அளவிடையின் அட்டமகுரத்தாடன் ஒப்பிட்டு இத்தொடர்பை அட்டமகுரவிதி எனவழைத்தார்.

நியூலந்தின் பாகூபாடு லெட்டைன் இரசாயனச் சங்கத்தினரால் அங்கீக ரிக்கப்படவில் 2லே. உண்மையில் இவர் பரிசுசிக்கப்பட்டார்.இதுஒல் நியூலந்த நேமீபிக்கையிழந்த விரக்தியுற்ற வித்தான ஆராய்ச்சியிலிருந்த ஓய்ஷ பெற்றுர். எனிழம், மென்டலீவ் தனது ஆவரீத்தன அட்டவடீணமை நிழலியதும் 1887இல் ரேயேல் சபையினர் டேவிப் பதக்கத்தை நியூலந்திற்கு வழங்கி அவரைக் லகளரவித்தனர்.

1869 இல் தவித்ரி இவானைவிச் மென்டலீவ் எதும் ரஉத்உதிய வில்ஞானி நியூலந்த செய்ததபோன்ற மேலகங்கீ 2எ, அவற்றின் சார் அறைத் திணிவு அதிகரிக்கும் ஒழுங்கில் ஒழுங்குபடுத்திறைர். நியூலந்தைப் போன்ற எட்டு மூலகங்கீவக் கொண்ட வரிசைகளில் மூலகங்கீஎ ஒழுங்குபடுத்தாது, மென்டலீவ் ஒத்த இயல்புக்காயடைய மூலகம் மீண்டும் தோன்றும்வரை மூல கங்கீள ஒருவரிகசையில் ஒழுங்குபடுத்தி முதலாவத மூலகத்தடன் ஒத்த இயல் புடைய மூலகம் தோன்றியபோது அம்மூலகத்தடன் அடுத்த வரிசையை ஆரம் பித்தார். இவ்வாழ மூலகங்கள் ஒழுங்குபடுத்தப்படும்போத. ஒத்த இயல் மூலகங்கள் நிலேக்குத்த வரிசையில் கட்டங்களாக LIJJO அமையும். மென்டலீவ் மூலகங்களின் இயல்புகள் ஒரு குறிப்பிட்ட கோலத்தில் வேழபடு கிவ்றன என அவதானித்த, அதீன தமத ஆவரீத்தனவிதியில் பொழிப்பாகக் கழவைதாவத மூலகங்களின் இயல்புகள் அம்மூலகங்களின் මූඛ්ඛ්න්, கற்றா. சார் அஹுதீதிணிவுகளிவீ ஆவர்த்தனச் சார்பாகும்.

இவ்வடிப்படையில் மென்டலீவ் மூலகங்களின் அட்டவ²ண ஒன்னறத் தயாரித்தார். இவ்வட்டல²ண ஆவர்த்தன அட்டவ²ண என அழைக்கப்படுகி றேச. இதில் ஆழ கிடையான வரிசைகள் காணப்பட்டன. இவ்வரிசைக்க மென்டலீவ் தொடர்கள் என அழைத்தார். தற்போத இவ்வரிசைகள் ஆவர்த்தலங்கள் எனப்படுகின்றன. சடத்தல வாயிக்கள் கண்டறியப்பட்டதும் மேஷமொரு கூட்டம், கூட்டம் O, ஆவர்த்தன அட்டவ²ணையில் சேர்க்கப் பட்டத.

1870இல் ஜேரீமானிய இரசாயனவறிஞரான லோதரிமேயர் என்ப வர் மூலகங்கலின் அணுக்கனவளவை (ஒரு மூல் மூலகத்தின் களவளவை) அவற்றின் சார்பணுத்திணிவுகளுக்கு எதிராக ஒரு வரைப்படத்தில் குறித்தார் என்பதை இவ்விடத்தில் கூறவேண்டும். இவ்வியல்பில் ஓர் ஒழுங்கான வேற பாடு இருப்பதை அவர் அவதானித்தார். மென்டலீவுடன் எவ்வித தொடர் பிறின்றி தனிப்பட்ட முறையில் ஆராய்ச்சி செய்து வந்த லோதர்மேயர் இவ்வாவர்த்தன வேழபாட்டை ஆதாரமாக வைத்து மூலகங்க்உளப் பாகு படுத்தி,மென்டலீவ் பெற்ற பாகுபாட்டை ஒத்தவொரு போகுபோட்டைப் பெற்றூ.

மென்டலீவின் ஆவர்த்தனப் பாகுபாடு உடனடியாக ஏற்றக்கொள்ளப் பட்டத. இப்பாகுபாடு, இதுவரை கூள்டேறியப்படாத மூலகங்கே?ன எதிர்வு குற உதவியது. இப்பாகுபாடு, மூலகங்களின் இயல்புகள் பற்றி பெருமளவி லான தகவ2லப் பொழிப்பு வடிவில் கொடுத்தது. இதில், ஒத்த இயல்பு டைய மூலகங்கள் ஒரே நிரல்களில் அல்லது கூட்டங்களில் சேர்க்கப்பட்டன (உ–ம் Na,K,Rb,Cs ஆகியவை கூட்டம் I இலம் Cl_{2,}Br_{2,}I₂ ஆகியவை கூட்டம் VII இலம் இடம் பெற்றன), ஒரு கூட்டத்திறைளைஞம், ஓர் ஆவர்த்த னத்திலம் இயல்புகளில் படிமுறை காணப்படுகின்றது.

மைன்டலீலினது அட்டவ வோயின் பயன்பாடுகள்

ஆவர்த்தனவட்டவ ஊயின் ஒரு பயன்பாடு, இதுவைறை கொட்டைறியப்படாத மூலகங்கள் இருத்த 2ல எதிர்வு கூறியமையாகும்; இவற்றிற்கொன மென்டலீவ் தனத அட்டவ சீனையில் வெற்றிடங்க சீள ஒதுக்கியிருந்தார். அவரால் இய்மூல கங்களின் இயல்புகூீள எதிர்வுகூற முடிந்தது. இம்மூலைகங்கள் கொட்டைறியப்பட்ட போத இவற்றின் இயல்புகள் இவற்றிற்கொன எதிரீவுகூறப்பட்ட இயல்புகளுடன் இசைவாக இருந்தன. (விஞ்ஞானம்–8ஆம் தரத்தில் நீர் இதுபற்றி ஏற்கன வே கற்றறிந்தாள்ளீர்.) ஆவரத்தனாவட்டவ 2ணாயின் பிறிதொரு முக்கிய பயன் பாடு யாதெனில், அச்சமயத்தில் தவறதலாகக் கணக்கிடப்பட்ட र ग मे பஹுத்திணிஷப் பெழுமானங்கீசாத் திருத்தவதற்கு உதவியமையாகும். உதார அமாக இந்தியத்திற்கு அச்சமயத்தில் ஏற்றக்கொள்ளப்பட்ட சார்பஹுத் திணிஷ 76 ஆகும். இவ்வதுதை திணிவுடைப மூலகத்திற்கு மென்டலீவின் ALL வ ீணையில் ஓர் இடத்தை அளிக்கமுடியவில் 2ல. இந்தியத்தின் பௌதிக இயல் புகீா ஆராய்ந்த மென்டலீவ், அவீவியல்புகளின்படி இந்தியம் கட்டம் III இன் மேலகங்கீல ஒத்திருப்பதை அறிந்தார். எனவே மென்டலீல் கூட்டம் III இல் விடப்பட்டிருந்த வெற்றிடத்தில் இந்தியத்தை அமைத்தார். இந்தி யத்தின் அஹுத்திணிஷை 114 என அழமொனிக்கப்பட்டது. பின்பு இந்தியத்தின் அஹுத்திணிஷ தணியப்பட்டபோத பெறப்பட்ட பெழமொனம் 110 ஆகும்.

இம்முறைப் பாகுபாட்டின் குறைபாடுகள்

இவ்வட்டவ வேயில் Ar= 39.94 ஆனத, K= 39.09 இற்கு முன்றலை இடப்பெற்றத. இப்மூலைகங்களின் அஹுத்திணிஷகள் சந்தேகத்திற்கிடையின்றித்

182

திரத்தமானவை அமை ஏற்றக்கொள்ளப்பட்டன. எனவே,அதிகரிக்கும் அஹுத் திகிஷை வரிகசையின் அடிப்படையில் ஆகன் பொற்றுகியத்திற்குப் பின்றல் இடம் பெறவேண்டும்; ஆயின் இவ்வொழுங்கு ஆவர்த்தனத்தன் மையைக் கு 2லேக்கின்றது. கோபாலூற், நிக்கல் சம்பந்தமாகவும்,தெலா ரியம், அயடீன் சம்பந்த மாகவூம் இதேபோன்ற முற்றப்போடான இடங்கள் காணப்படுகின்றன.

இம்மூன்ற சோடி மூலகங்கூ சோயும் அதிகரிக்கும் அஹுத்திணிஷை வரினசுப் படி ஒழுங்குபெடுத்திதல் ஆவரித்தனவியல்பில் குருலவு ஏற்படுவதை நாம் காடாலாம். எனவே, மென்டலீவ் அஹுத்திணிஷை அதிகரிக்கும் ஒழும்தில் மூல கங்கீீள ஒழும்குபடுத்தும் முறைவையக் அகுவிட்டு, இச்சோடி மூலகங்கீீன இடம் மாற்றம் செய்த, அட்டவீணயில் அவற்றிற்குத் தகுந்த இடங்கீளக் கொடுத்தார்.

5.2 அணுவெண்படி மூலகங்களின் பாகுபாடு

மூலகங்களின் சார்பஹுத்தினிஷ் அதிகரிக்கும்போது, அவற்றின் இயல் பூகள் ஓர் ஒழுங்கான முறையில் மாற்றமடைதல் மிக முகேப்பாகவிரைப்ப தால், அது தற்செயலாக நிகழ்ந்திருக்கக் கூடியதொன்றல்ல.மூலகங்களின் அணுக்களின் நடத்தையைத் தோனியும் ஏதோவொரு அடிப்படை இயல்பு அணுக்களிற்கு இருக்கக்கூடுமெனக் கருதப்பட்டது. மூலகங்களின் இவ்வடிப் படை இயல்பு அணுவெண் எனக் காண்டறியப்பட்டது; அணுவெண் என்பது ஒரு மூலகத்தின் அணுக்கருஷிவளை பிரோத்தன்களின் எண்ணிக்கையைன வரையறைக் கைப்படும். இவ்வெண்ணிக்கை கருவைச் சுற்றிச் சுழலும் இலத்திரைக்களின் என் இக்கைக்கும் சமமாகும்.

மூலகங்கள், அதிகரிக்கும் அஹுவென் வெரிசைப்படி ஒழுங்குபடுத்தப் பட்டபோத மென்டலீவின் அட்டவ 2்ணயில் தோன்றிய முரான்பொடுகளிற் பல தாமாகவே மறைந்தன. அணுவெண் 2்ணப் பயன்படுத்திப் பெற்ற ஒழுங்கு முறையை ஏறக்குறைய ஒத்த ஒழுங்கு முறையை, மென்டலீல் பெற்றதற்குக் காராணம் யாதெனில், அதிகரிக்கும் சாரீபணுத்திணிஷை வெரிசையானத அதி கேரிக்கும் அணுவைன் வெரிசையை ஏறக்குறைய ஒத்திரைத்தலாகும்.

மூலேகங்களின் இயல்புகள், அவற்றின் அஹு க்களிலைள்ள இலத்திரன்களின் நி2லேயகுமப்பிக்களிலும் அத்தோடு அவற்றின் எண்ணிக்கையிலும், தங்கியிள்ளன வென அணு க்கட்டலைப்பூ ஆராய்ச்சிகள் காட்டியென, எனவேஇயல்புகளின் ஆவர்த்தனத்தன்மை, இலத்திரேன்களின் நி2லேயமைப்புக்களின் ஆவர்த்தனவியல் பின் வி2ளவானது எனக் கொள்ளலாம். எனவே இன்ற ஆவர்த்தன விதியைப் பின்வருமாற கேறலாம்.– மூலைகுங்களின் இயல்புகள் தன்னிச்சையாக இராமல் அஹுக்கட்டலைப்பில் தங்கியிருப்பதோடு அணுவெண்ணிற்கேற்ப ஒர் ஒழுங்கான முறையில் மாற்றமடையும்.

5.3 நவீன ஆவர்த்தன அட்டல வே.

சக்தி மட்டங்களில் இலத்திரைக்கைள் படிப்படியாக நிரப்பப்பட்டுக் கருஷிஸ் புரோத்தன்களின் (நியூத்திரவ்களினதம்) எண்ணிக்கை தகுந்தவாற அதிகரிப்பதால் பல்வேற மூலகங்களின் அஹுக்கள் உண்டாகின்றன எனக்கர தப்படலாம் என இந்தாலின் இரண்டாவத அலகில் நீங்கள் கற்றீர்கள். மூல கங்களின் அணுக்கஞக்கான இலத்திரனிலையமைப்பை எழுததல் பயறமைடயதும் ஆர்வறுட்டுவதுமான ஒரு அப்பியாசமாகும். இயலுமானவளவு அதிக ണൽ ணிக்கத மலகங்களுக்கான இலத்திரனி 2லயலமப்புக்க2வ எழுதகை. பிரதான சக்தி மட்டங்கள் (K, L, M, N, ...), அவற்றுரு சம்பந்தப்பட்ட 2.1 சக்தி மட்டங்கள் (s,p,d,f) ஆகியவற்றின் எண்ணிக்கை, அவை கொள்ஞம் இலத்திரேவ்களின் உச்ச எண்ணிக்கை ஆகியன பற்றி நீர் முன்பு கற்றவற்றை நிலேவு கூர்தல் மிகுந்த பயற்டையது. ஒல்வொரு பிரதான சக்தி மட்டத் திழமுள்ள உபசக்தி மட்டங்களின் எண்ணிக்கையையும், ஒவ்வொரு உபசக்தி மட்டத்தினதும் மிகக்கூடிய இலத்திரன் கொள்ளளவையும் அட்டவ வே 5-1 கொடுக்கின்றது.

பிரதான சக்தி மட்டம்	K	L		м				N	
உப சக்தி மட்டம்	8	s p	6	p	d	8	P	đ	£
இலத்தி பன்களின் எனினிக்கை:	0 0	0 000 0 000	0		00000 00000	00	000	00000	0000000
மூலகம் 1							(Citalle		and the
மூலகம் 2	•				1				
மூலகம் 3	•	•	Sec. 20						

ALLa 20 5.1

சக்தி மட்டங்கஞன் இலத்திரவ்கள் நூலேவதற்கான பொதுவிதியொன்ற உண்டு. அதாவத இருக்கும் சக்தி மட்டங்கஞள் மிகக் குறைந்த சக்தியோடு சம்பந்தப்பட்ட சக்தி மட்டத்தள் இலத்திரன் புகுந்த நிரப்பிய பின்னரே அடுத்த சக்திமட்டத்தள் இலத்திரன் புகும். 1s மட்டம் மிகக் குறைந்த சக்தியையூடையத. எனவே முதல் இலத்திரன் இச்சக்தி மட்டத்திதளை புகு கின்றத. இச்சக்தி மட்டம் நிரம்பியதம் 2s மட்டம் நிரப்பப்படும்.அத் தியாயம் 2 இல் உப மட்டங்களின் சக்தி

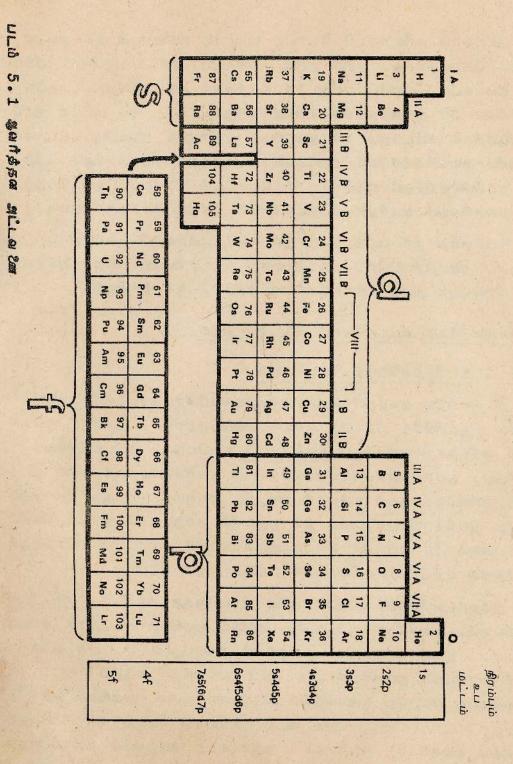
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p

எதும் ஒழுங்கில் அதிகரிக்கின்றத எனப் படித்தன்ளீர்கள்.

15 மட்டக்தன் ஒரு இலத்திரன் புதுவதால் முதல் மூலகமாகிய ஐத ரசன் பெறப்படுகின்றது. இதே மட்டத்திலுள் இன்றுமோர் இலத்திரன் பூது வதால் மூலகம் ஈலியம் உண்டாகும். ஈலியத்தில் K ஓடு பூரணமாக நிரம் பியுள்ளதால் L ஓட்டின் 25 உபசக்தி மட்டத்திலுள் அடுத்த இலத்திரன் செல்லும். இதன் வி?னவாக மூன்றுவது மூலகம் இலிதியம் உண்டாகும். 25, ²p உப சக்தி மட்டங்கள் படிப்படியாக இலத்திரன்களால் நிரப்பப்படுவ தால் எல்லாமாக எமக்கு எட்டு மூலகங்கள், Li,Be,B,C,N,O,F,Ne என்பன, கிடைக்கின்றன. நேயனில் 2 p மட்டம் பூரணமாக நிரம்பியுள்ளது. அடுத்த நிரப்பப்படவிருக்கும் உபசக்தி மட்டம் 35 மட்டம் ஆகும். 35,3p மட்டங்கள் படிப்பப்படுவதன் வி?னவாக சோடியம் முதல் ஆகன் வரையுள்ள இன்றைமொரு எட்டு மூலகங்கள் பெறப்படுகின்றன.அடுத்த நிரப்பப்படலிருக்கும் உபசக்தி மட்டம் 45 ஆகும்.3 d அல்ல.

நாம் இதுவரை ஆராய்ந்த மூலகங்களின் இலத்திரனிலேயமைப்புக்கள் பற்றி இப்போது உங்களுக்கு நேன்கு தெரிந்திருக்கும். மூலகங்கலோ ஒரே யொரு வரிசையில் ஒழுங்குபடுத்தாத அவற்றைப் பிரித்த கூற கூற வரிசை கனில் ஒழுங்குபடுத்துவோம். 1s மட்டத்திலை ஒரு இலத்திரன் மட்டும் புகுவதால் உண்டாகும் மூலகத்தைக் கொண்டு முதலாம் வரிசையையும் 1s மட்டம் முற்றுக நிரம்பியபின் 2s மட்டத்துள் ஒரு இலத்திரன் மட்டும் செல்வதால் உண்டாகும் மூலகத்தைக் கொண்டு இரண்டாம் வரிசையையும் தொடங்குவோம். இவ்வாறே பிற வரிசைகளுக்கும்.

முதலாம் வரிசை H, He


இரண்டாமீ வரிசை	Li	Be	B	C	N	0	F	Ne
றுவீரும் வரிசை	Na	Mg	Al	Si	P	S	Cl	Ar

இரண்டாம், மூன்றும் வரினசக2்ளச் சற்றக் கவனிப்போம். இங்கு ஒரே நிரீல்யாகீகும் சோடி மூலகங்கள் ஒத்திருப்பதை நாம் காண்கிறேம். அவற் றின் இலத்திரனி லேயமைப்புப் பற்றிய எமத அறிவிலிருந்த இம்மூலகங்களில் ஒத்த உபசக்தி மட்டங்களில் உள்ள இலத்திரன்களின் எண்ணிக்கையில் ஒற்று மை யைக் காண்கிறேம். உதாரணமாக இவிதியத்தில் 2s உபமட்டம் ஒரு தனி இலத்திரதூலம் (2s^t) சோடியத்தில் 3s உப மட்டம் ஒரு தனி இலத் திரதையும் (2s^t) சோடியத்தில் 3s உப மட்டம் ஒரு தனி இலத் திரதையும் (3s^t) நிரப்பப்பட்டுள்ளது. நேயனில் 2p உப மட்டமும்(2p⁶) ஆகனில் 3p உபமட்டமும் (3p⁶) முற்றுக நிரப்பப்பட்டுள்ளன. இதவே மூலகங்க2்ள ஒழுங்கு படுத்ததற்கான அடிப்படைக் கொள்கையாகும். முத லாம் வரிசையில் நாம் இக்கொள்கையைக் கையாளாத H+ ஐ அத2்ன யொத்த இயல்புகளுடைய Ne உடலும் Ar உடலும் ஒரே நிரலில் வைப்போம்.

நான்காம் வரிசைக்குச் செல்லம்போத அங்கு அணு என் 19உடைய K ஐப் பெழவோம். 4s உப மட்டம் நிரப்பப்பட்ட பின்னர் 3d உபமட் டம் நிரப்பப்பட்டுப் பத்த மூலகங்கள் உண்டாகும். இத2்வத் தொடர்ந்த 4p உப மட்டம் நிரப்பப்படுதலால் ஆழ மூலகங்களும் உண்டாகின்றேன. எல் வாமாக இவ்வரிசை பதினொட்டு மூலகங்க2்ளக் கொண்டிருக்கும். 3^d மட் டம் நிரப்பப்பட்டுப் பெறப்படும் பத்த மூலகங்க2்ள ஒத்த மூலகங்கள் 2ஆம் 3ஆம் வரிசைகளில் இல்2ல. எனவே நாம் கீழேயுள்ள அட்டவ2்ண யில் காட்டியுள்ளவாற நிரல் 2 இற்கும் 3 இற்கும் இடையில் இப் பத்த மூலகங்க2்ளயும் சேரிப்போம். அப்போ மூலகங்கள் பின்வருமாற அமையும்:

H																	He
Li	Be											В	с	N	0	F	Ne
Na	Mg			-	1		-					Al	Si	P	S	c1	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

Digitized by Noolaham Foundation.

187

64

நான்காம் வரிசையைப் போன்ற ஐந்தாம் வரிசையும் 18 மூலகங் கேீஎக் கொண்டுள்ளத. ஆயின் ஆறும் வரிசையில், இலந்தனத்திற்குப் பின்னர் 4f உப மட்டம் நிரப்பப்பட்டு 14 மூலகங்கள் உண்டாகின்றன. ஆகவே இவ்வரிசை 32 மூலகங்கீீஎக் கொண்டிருக்கும். 4f உப மட்டம் நிரப் பப்படுவதால் உண்டாகும் 14 மூலகங்கள் ஏற்கனவே குறிப்பிடப்பட்ட வரி சைகளின் மூலகங்கீீளயொத்திருப்பதில் 2லே. இப்மூலகங்களும் 7ஆம் வரிசை யில் அத்தினியத்திற்குப் பின்னர், 5f உபமட்டம் நிரப்பப்பட்டுப் பெற்ற 14 மூலகங்கைகும் ஆவர்த்தன அட்டவிசினயில் வேறுக வைத்திருக்கப்படும்.

இப்போது நீர் படம் 5.1 இல் காட்டியுள்ளதைப் போக்ற ஓர்அட்ட வு 2ண்கைய அமைத்திருப்பீர். நீர் அமைத்த அட்டவ 2ணேயே நவீன ஆவர்த்தன அட்டவு 2ணேடையைன அறிய உமக்குப் பெரு மேகிழ்ச்சியாக இருக்கும்.

5.4 ஆவர்த்தன அட்டவ வோயின் சில அம்சங்கள்

5.4.1 ஆவர்த்தனங்களும் கட்டங்களும்

மூலகங்கீா அவற்றின் இலத்திரணி இலைக்கிரணி இலைகங்கீறப் வரிசைகளில் ஒழுங்கு பெடுத்தின்ரீ; நீர் ஏழு வரிசை மூலகங்கீறப் பெற்றீர். மூலகங் களின் ஒவ்வொரு வரிசையில் <u>ஆவரித்தனம்</u> எனப்படும். அட்டவ ணேயைப் பாரீத்த, ஆவர்த்தனங்கீளயில் ஒவ்வொரு ஆவரீத்தனத்திலும் உள்ள மூலகங் களின் எண்ணிக்கைகமையில் உம்மால் கண்டறிய முடியில். ஒர் ஆவரித்தனத்தின் வழியே இலத்திரனி இலையலைப்பி ஒர் ஒழுங்கில் மாறவதால் அம்மூலகங்களின் இயல்பூகதும் ஒர் ஒழுங்கில் மாறவேண்டுமென நீர் எதிர்பாரிக்கலாம்.இம் மாறலிகள் பற்றி இவ்வத்தியாயத்தில் பின்னர் நீர் கற்பீர்.

இவ்வட்டவ 2ணயிலுகள் மூலகங்களின் நி 2லக்குத்த நிரல்கள் <u>கட்டங்கள்</u> எனப்படும். மூலகங்கள் H, Li, Na, K...ஆகியன முதலாம் கூட்டத்தை அமைக் கின்றன. இவை கூட்டம் IA மூலகங்கள் எனப்படும். Be ஐக் கொண் டூள்ள நிரலிலுள்ள மூலகங்கள் IIA கூட்ட மூலகங்கள் எனவும் B, C, N, O, F ஆகியவற்றை மூறையே கொண்டுள்ள நிரல்களில் உள்ள மூலகங்கள் முறையே IIIA, IVA, VA, VIA, VIIA கூட்ட மூலகங்கள் எனவும் அழைக்கப்படும். கடத்தல மூலகங்கள் He, Ne, Ar முதலியன O கூட்டத்தை அமைக்கின்றன. Fe, Co, Ni ஆகிய மூலகங்க2னக் கொண்டுள்ள நிரல் VIII ஆம் கூட்டம் எனப்படும். மேலே குறிப்பிடப்பட்ட A கூட்ட மூலகங்கள்வையாத்த B கூட்ட மூலைகங்கூீளயில் ஆவரீத்தன அட்டவூசீனையைப் பாரிக்குமீபோது கொண் பீரீ. இக்கூட்டங்கள் பற்றி, மேலீவரும் அத்தியாயங்களில் விளிவாக ஆரா யப்படும். ஒர கொட்டத்தில் மேலிருந்து கீழ்நோக்கிச் செல்லமைபோது அவற்றின் இயல்புகளில் ஒரு படிமுறை அவதானிக்கப்படும். இவ்வத்தியாயத் தின் பிற்பகுதியில் சில இயல்புகளின் படிமுறை மாற்றம் பற்றி ஆராயப்படும்.

5.4.2 தாண்டல் மூலகங்கள்

முற்றுக நிரப்பப்படாத d- உப மட்டத்தைக் கொண்டுள்ள மூலகங்கள் <u>தாண்டல் மூலகங்கள்</u> எனப்படும். நான்காம் ஆவர்த்தனத்தில் Ca ஐ, அடுத்த இத்தகைய ஒன்பத மூலகங்களும் ஐந்தாம் ஆவர்த்தனத்தில் La (அணு மேலும் ஒன்பத மூலகங்களும் உள்ளன. ஆறும் ஆவர்த்தனத்தில் La (அணு எண் 57) உம், Hf (அணு எண் 72)இல் தொடங்கி வேற ஒன்பத மூல கங்களும், மேற்கறியவாற உண்டாகின்றன. இவை ஏழாம் ஆவர்த்தனத்தில் Ac (அணு எண் 89) உடன் இதுவரை அறியப்பட்ட தாண்டல் மூலகங் கீளேக் கொடுக்கின்றன. கொள்கைவழி அத்தினியத்தையடுத்த மேலும் ஒன் பத தோண்டல் மூலகங்கள் இருத்தல் வேண்டும். இவை இதுவரை இன்றைப் கண்டுபிடிக்கப்படலில் லே. இவை ஒருநாள் தயாரிக்கப்படலாம்.

ஆறும் ஆவர்த்தனத்தில் இலந்தனத்தையடுத்தம், ஏழாம் ஆவர்த்தனத்தில் அத்திணியைத்தையடுத்தும் ஒவ்வொரு ஆவர்த்தனத்திலும் அணுவவெண்கள் முறையே 58–71, 90–103 உடைய 14 மூலகங்கள் f உபமட்டம் நிரப்பப்படு தலால் உண்டாகின்றன. இம்மூலேகங்கள் அகத்தாண்டல் மூலைகங்கள் எனப்படும்.

La (அஹ்ஹை எண் 57) முதல் Lu (அஹு எண் 71) வரையுள்ள மூலகங் கள் இலந்த2னட்டுக்கள் எனப்படும். கூல சமயங்களில் இலை அருமண் மூலகங்கள் எனவும் அழைக்கப்படும். மற்றைய அகத் தாண்டல் மூலகங் கள் (அஹு எண் 90–103) <u>அத்தி2னட்டுக்கள்</u> எனப்படும். சிலவே 2ள களில் பாரமண் மூலகங்கள் எனவும் அழைக்கப்படும். இம்மூலைகங்கள் யாவும் ஒத்த இயல்புக2்ளக் கொண்டிருப்பதால் இலை ஒரு தனி மூலகம் எனக் கருதைப்படலாம்.

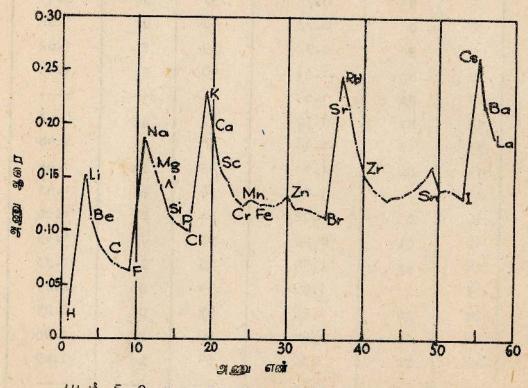
5.4.3 காண்ட மூலகங்கள்

நிரல்கீகள ஆக்கும் மூலகங்கீச்ன சற்ற அவதானியுங்கள்.ஒரே நிரலி அள்ள இம் மூலகங்கள் ஏதாவதொரு பொது இயல்பைக் கொண்டுள்ளனவா? முதலாம் நிரவிஷள்ள H,Li,Na,K ஆகிய மூலகங்கீச்எ எடுப்போம். இய்மூலகங்கள் ஒவ்வொன்றும் அதன் இறுதி இலத்திரன் உ உப மட்டத்திறைக் புதுவதால் உண்டாகின்றன. இரண்டாம் இலக்கிரன் இந்த க மட்டங்க 2வ அடைவதால் இரண்டாம் நிரல் மூலகங்கள் Be,Mg,Ca ஆகியவற்றை நாம் பெறுவோம். இவ்விரு நிரல்களிலுள்ள மூலகங்கள் s மட்டத்தை 9.05 இலத்திரன்கள் அடைவதன் விசீளவாக உண்டாகின்றன. இவ்விரு நிரல் OON கங்களும் ஒன்றை சேர்நீது s காண்ட மூலகங்கள் எனவுழைக்கப்படுகின்றன. உப மட்டத்தை அவற்றின் இழதி இவ்வாற, மூலகங்களில் p <u>ක</u>බය් නි 1 ශ් அடைவதால் உண்டாகும் மூலகங்கள் யாவும் P காண்ட மூலகங்கள் எனவழைக் இவ்வாறே, d உப மட்டங்களும், f உப மட்டங்களும் நிரப் கப்படும். பப்படுவதால் பெறப்படும் மூலகங்கள் முறையே d சாண்ட மூலகங்கள் என வும் f காண்ட மூலகங்கள் எனவும் அழைக்கப்படுகின்றன. இம் மூலகங்களின் இரசாயனம் அத்தியாயம் 7 இல் ஆராயப்படும்.

5.5 ஆவரித்தன அட்டவ சோயின் கில கோலங்கள்.

5.5.1 ஆணு ஆளைதன்.

அறிமுறை ரீதியில் ஆறுவைவச் கூற்றியுள்ள இலத்திரன் முகில் முடிவின்றிப் பரந்திருக்கக் கூடுமானகயால் ஓர் அணுவின் பருமேீனச் செய்மையாகத் தேவியைமுடியாத. என்றும் பிற அணுக்கஞடன் சேரீந்திருக்கையில் அணுவா னத, தீட்டவட்டமான பருமன் உடையதுபோல் நடந்த கொள்ஞம்.எனவே அதற்கு குறிப்பிட்டவொரு பெறுமானத்தைக் கொடுக்கலாம். சேரீக்கையி வீருக்கும் நடுநிீல்யணுவொன்றின் பருமன், அதன் பங்கீட்டுவலுவளவு ஆறை யால் அல்லத அணுவாரையால் எடுத்திக் காட்டப்படும்; அணுவானரேக குக்கான பெறுமானங்கள் X- கதிர் கோணல் முறையாலும் வேலு பலமுறை களாலும் தணியப்பட்டுன. இப்பெறுமானங்கள் அட்டவீன5.2இல் கொடுக் கைப்பட்டுன.


भ हाछ। हा क	மூலகம்	அணு ஆரை	ଅ ଛହା ଗର୍ଭ	ருல கம்	அணு ஆரை
1	Н	0.37	4	Во	1.30
2	Не	0.93	5	В	0.82
3	Li	1.34	6	C	0.77

aLLa 200 5.2

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org அட்டல வே 5.2 (தொடர்ச்சி)

.अ.क्या तत्वे	மூலகம்	அணு ஆரை	<u>भ खा</u> छ त क्षे	லைகம்	9.50 3.60 5
7	N	0.75	37	Rb	2.11
8	0	0.73	38	Sr	1.92
9	F	0.72	39	Y	1.62
10	Ne	1.31	40	Zr	1.48
11	Na	1.54			
12	My	1.30	47	Ag	1.53
13	A1	1.18	48	Cd	1.48
14 .	Si	1.11	49	In	1.44
15	P	1.06	50	Sn	1.41
16	S	1.02	51	Sb	1.38
17	Cl	0.99	52	Je	1.35
18	Ar	1.74	53	I	1.33
19	X	1.96	54.	Xe	2.09
20	Ca	1.74	55	Cs	2.25
21	Sc	1.44	56	Ba	1.98
.55	Ti	1.36	57	La	1.69
		+			
29	Cu	1.38	79	Au	1.50
30	Zn	1.31	80	Hg	1.49
31	Ga	1.26	81	Tl	1.48
32	Ge	1.22	82	Pb	1.47
33	As	1.19	83	Bi	1.46
34	Sc	1.16	:		
35	Br	1.14	86	Rn	2.14
36	Kr	1.89	Lan and	a sector days	i (el seguidente

அணு வெண்ணீற்கெதிராகப் பங்கீட்டு வேலுவைளவாறையைக் குறிக்கும்போது எமக்குக் கிடைக்கும் வரைபு படம் 5.2 இல் காட்டப்பட்டிருக்கும் வடி வைத்தை ஒத்திருக்கும்.

படம் 5.2 அணு ஆரை அணு என்னுடன் மாறம் விதம்

அஹவைன் அதிகரிக்கும்போத பங்கீட்டு வலுவளவாரை ஆவர்த்தன முறையில் மாற்றமடைவதை நாம் வரைபடத்திலிருந்த அறியலாம். இச மேலம் தெளிவாக படம் 5.3 இல் காட்டப்பட்டுளத; இதில் கருநிற வட்டங்கள் பங்கீட்டு வலுவளவு ஆரைப் பெறுமானங்களேப் பருமட்டமாகக் குறிக்கும். படத்திலிருந்த நாம் அவதானிப்பத யாதெனில், பெருமளவு எண்ணிக்கையில் இலத்திரன்க2ளக் கொண்டுள்ள அணுவைருக்கு, குறைந்தளவு எண்ணிக்கையில் இலத்திரன்க2ளக் கொண்டுள்ள அணுவைக் காட்டிலும் பெரி தாக இருக்கவேண்டிய நியதியில்2ல என்பதாகும். உதாரணமாக (அணு வெண் 11 ஆகவுள்ள) Na அணு, (அணுவெண் 17 ஆகவுள்ள)பே அணு வைக்காட்டிலும் பெரியதாகும்.

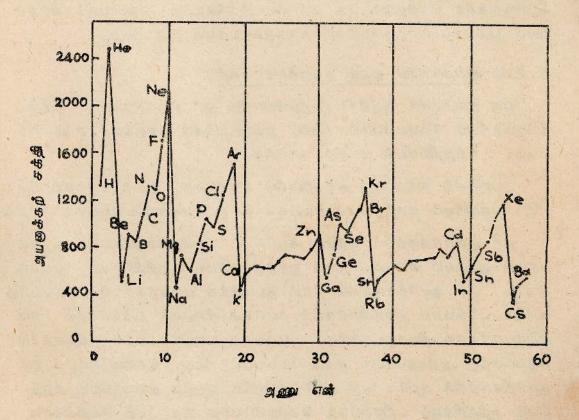
			ω	N	
N N		- 0			о.37 • Н
Cs 2.25	Rb 2.11	1.96	Na 1.54	1.34	37 · P
Ba	sr 1.92	Ca 1.74	Mg 1.30	B. •	₽
i.8	1.62	Sc 1.44	IIB		
× Ħ	2r 1.48	1.36	IVB		
Та	Nb	<	S B		
¥	Mo	ę	VIB		
Re	Tc	Ma	BIIA		
0 ⁰	R	70	19.27		
-	P	ç	E		Nation provides
ra	Pa	<u>z</u>			out the
1 E0	Ag 1.53	1.38	88		the second
1 Hg	1.48	1.31	B	A STATE	
1.48	1.44	Ga 1.26	1.18	0. m	
Pb	Sn 1.41	G.	1 SI	0.77	IVA
1.46	1.38	1.19	1.06	0.75	XA
Po	Te 1.35	Se 1.16	\$ 1.02	0.73	VIA
2	1.33	Br 1.14	0.99 0.0	• • 0.72	VIIA • •
Rn 2.14	2.09	1.89		138 ()	0.93 0.93

படம் 5.3 மூலகங்களின் அது ஆமைகள்

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org 193

அஹுக்களின் பருமன்கள், ஒன்றிற்கொன்ற எதிரான இரு காரணிகளால் பிரதானமாகத் தேணியைப்படுகின்றன. முதலாவதாக, கருவேற்றமானத, இலத் திரைக்கைசீள இயன்றவரையில் கருவிற்கு அண்ணித்தாக இழுக்கும் தன்வமையது. இரண்டாவதாக உள்ளோட்டில் இருக்கும் இலத்திரன்கள் வெலியோட்டில் இருக்கும் இலத்திரன்கடீளக் கருவிலிருந்த வெகு தா ரத்திற்குத் தல்தும் போக்குடையன. உள்ளோட்டில் இருக்கும் இலத்திறல்களால் ஏற்படுத்தப் படும் தளிஞகை விசீளவு, ஒரு திரையீட்டு விசீளவை ஏற்படுத்துகீறது. 95 மூலைகத்தின் அஹுவின் கருவேற்றம், ஒன்றுல் அதிகரிப்பதாலும், கிடைக்கக் பிகத் தாழ்ந்த சக்தி மட்டத்தில் கருதலாக ஓர் இலத்திரன் சேர் SEN U வதாலும் இம்மூலகத்தக்கு அடுத்த மூலகம் உண்டாகின்றதெனக் கருதக்கூடு மாகையால், மேற்கூறிய ஒன்றிற்கொன்ற எதிரான இரு விசீனவுகளும், அஹு வெண் அதிகரிக்கும் ஒவ்வொருதடவையும் இடம்பெறகின்றன. எர் ஆவர்க்க னத்தின் வழியே செல்லும்போது சேர்க்கப்படும் இலத்திரன் ஒரே 5445 சொட்டு ஓட்டை அடைவதால் உயர் கருவேற்றத்தால் ஏற்படும் கவர்ச்சு யானது உள்ளோடுகளின் தள்ளல் விசீளவைக் காட்டியைம் முசீவப்பாகவிருக்கும். இலத்திரன்கள் மேலும் நெருக்கமாகக் கட்டப்படும்; அத்தோடு GOAGA . ஆமைபில் அளவு குறைவதையும் எதிர்பார்க்கலாம். இத இவ்வாறே இருக் கின்றதென்பதை வரைபடத்தில் கானக்கூடியதாக இருக்கிறது. நால்காவத ஆவரத்தனத்தில் கட்டம் IIA இல் Ca (அனுவென் 20) இற்குப் பிற் (அ. and Galain 29) UП(h Cu ஐ அடையும்வரை மேலதிக இலத்திரக், உல் உபமட்டத்தை அடைந்த 2 காண்ட மூலகங்க 2வத் தோற்றவிக்கும். d எனவே,இங்கு கருவால் ஏற்படும் கவர்ச்சியானது, உல்ளோட்டால் ஏற்ப டுத்தப்படும் வெளியோட்டின் மீதான திரையீட்டு வி?ளவு அதிகரிப்பதால் ஏறக்குஅறய முற்றுக ஈடுசெய்யப்படுகிறது, இதன் விசீளவாக ஆறையில் குறிப்பிடத்தகுந்தைவவு மாற்றமேதம் ஏற்படுவதில் 2வ.

ஒரு கூட்டத்தில் அடுத்தடுத்தவரும் மூலகங்கள் மேலதிகமானவார் இலத்திரன் ஓட்டைக் கொண்டிருக்கும். எனவே, உயர் கருவேற்றத்தால் ஏற்படுத்தப்படும் கவர்ச்சி விசைகளின் அதிகரிப்பு, ஈற்றயலோடு பூதவைளி யோட்டில் ஏற்படுத்தும் தள்ஞகைவிசையிலும் குறைவானது. எனவே வெளி யோடானது கருவிலிருந்த அப்பால் நகர்த்தப்படும். எனவே, ஒரு கூட்டத் தில் கீழ் நோக்கிச் செல்லும்போது பங்கீட்டு வலுவளவாறை பெருமளவில் அதிகரிக்குமென நாம் எதிர்பார்ப்போம். 5 காண்டத்திலிரை கேட்டத்திலும் p காண்டமூலகங்களிலும் இவ்வுன்மையைக் கோணலாம்.


சடத்தவை வாயுக்கள் சேர்வைகூசன உண்டோக்குவதில் 2லே, ஆகையால், நேர் அளவீடுகள் மூலமாக அவ்வாயுக்களின் பங்கீட்டு வைவளவு ஆறைகீகளத் அணிய முடியாக. ஆயிதும், இவற்றிற்கான பெழமொனங்கீல மறைமுகமான முறைகளால் கணித்தைப் பெறமுடியும். மேலுள்ள அட்டவடுணையில் கொடுக்கப் பட்டுள்ள பெறுமானங்கள் இவ்வாற கணித்துப் பெற்றவையாகும். FLERON வாயக்கஞக்கு முன்தாள்ள மலகங்களின் (அலசன்களின்) பங்கீட்டுவைவனவு 1 ஆறைகஞக்கான பெறுமானங்கள் மிகச் கீறியனவாக இருக்க, சடத்தவ வாயூக்கவின் ஆறைகள் அதிஉயர்வாக இருத்தல் ஷியக்கத்தக்கதொக்றதும். வெளிப்புற ஓட்டின் பூரானமாக்கப்பட்ட ஜட்டகம் விசேட உறுதித் தன்னம உடையதாக இருத்தல் இதற்குக் காரணமாக இருக்கலாம். இக்கட்டத்தில் கீழ்நோக்கிச் செல்லம்போத பிற கட்டங்களிடையே காணப்படும் சாதா ரணப் படிமுறை மாற்றங்க 2வக் காணக்கடியதாக இருக்கிறது.

5.5.2 மலகங்களின் முதல் அயதைக்கற் சக்தி

ஒரு மூலகத்தின் நடுநிலே அணுவிலிருந்த ஓர் இலத்திரலே மூற்றுக நீக்குவதற்குத் தேவைப்படும் சக்தி, அம்மூலகத்தின் அயறுக்கற் சக்திஎனப் படும். (அத்தியாயம் 2 ஐப் பார்க்க).

அயறக்கேற் சக்தி இரு காரணிகளில் தங்கியூளது. (1) கரு ஏற்றம். (11) கருவிற்கும் அகற்றப்பட வேண்டியை இலத்திரதைக்குமிடையெயுள்ள தாரம்.

ஓர் ஆவர்த்தனத்தின் வழியே கருவேற்றம் அதிகரிக்கும்போத அணுப் பருமன் குறையும் என்பதை நாம் இதற்கு முந்திய பகுதியில் கண்டுள்ளோடு. எனவே, ஓர் ஆவர்த்தனத்தில் நாம் இடமிருந்த வலமாகச் செல்லும்போத கருவின் பக்கமாக இலத்திரன்களின் கவர்ச்சி விசைகள் அதிகரிக்கும் ST CH இவ்வாற கேருஷின் கவர்ச்சி விசைக 2வ எதிர்பார்த்தல் நியாயமானதே. விஞ்சுவதற்கு அதிகவளவில் சக்தி தேவைப்படுகிறது. இதன்வி 2வவாக, ஓர் ஆவர்த்தனத்தின் வழியே ஒரு மூலகத்திலிருந்த அடுத்த மூலகத்திற்கு அணு வெண் அதிகரிக்கும் வரிசைப்படி செல்லம்போத அயறுக்கற் சக்திக்கான பெறுமானங்கள் மேலும் மேலும் உயர்ந்த போகின்றன. அத்தோடு மேலும் நாம் அவதானிப்பத யாதெனில், அணு, எவ்வளவிற்கெவ்வளவு பெரிதாக இருக்கீறதோ அவ்வளவிற்கவ்வளவு அதனிலிருந்த ஒர் இலத்திர 2ன வெளியேற் ழவதற்குத் தேவைப்படும் சக்தியும் குறைவாக இருக்கும் என்பதாகும்.ஒரு கட்டத்தில், கீழ் நோக்கிச் செல்லம்போத அணுயக்களின் பருமன் படிப் படியாக அதிகளிக்குமென்பதை முன் பேனைய பகுதியில் கற்றறிந்தோம்.எனவே ஒரு கட்டத்தில் கீழ் நோக்கிச் செல்லம்போத அயறுக்கற் சக்திகுறைந்த கொண்டுபோகுமென நாம் எதிர்பார்ப்போம். இவ்விவாதத்தை மேலும் ஒரு படி நீடித்து, மிகக் குறைநீத அயறுக்கற் சக்தியுடைய மூலகம்,ஆவரித் தனவட்டவடுகையின் இடத புறமுள்ள கீழ்மூ லேயில் காணப்படுமெனவும் உயர் அயறுக்கற் சக்தியுடைய மூலகம் அட்டவடு வைதைபுறமுள்ள மேல்மூ லேயில் காணப்படுமெனவும் நாம் முடிவாக கறலாம்.

படம் 5.4 மூலகங்களின் முதல் அயறுக்கற் சக்தி அஹு எண்ஹைடன் மாறும் விதம்

படம் 5.4, அணுவெண்ணிற்கொதிராகக் குறிக்கப்பட்ட முதல் அயகைக்கற்சக்தி வைறைகோட்டைக் காட்டுகிறது. இருண்டாவத ஆவரித்தனத்தில் Be இலிருந்த B இற்குச் செல்ஷம்போதம் N இலிருந்த O இற்குச் செல்ஷம் போதும் ஒழுங்கு முறை குரேலவதை இவ்வரை கோட்டிவிருந்த அவதானிக்கலாம். இதேபோன்ற குரேலவுகள் இதற்கு அடுத்த ஆவரித்தனத்திஷம் இவற்றை ஒத்த இடங்களில் மீன்டும் தோன்றகின்றன.

பெரிவியத்தினதம் (15² 25²), போரணினதம் (15² 25² 2p¹) இலத்திரன் நிலேயமைப்புக்கலன ஒப்பிடும்போது, 25 உப மட்டத்திலள்ள இரு இலத்திரன்களில் ஒன்றே வெளியேற்றப்படுகிறுதென்பதைக் காணமுடியும் நிறைவுபெற்ற உபவோடொன்ற நிறைவுபெறுத உபவோட்டைக் காட்டிலும் கூடுதலான உறுதிநிலே உடையதென அறியப்பட்டுளது. எனவே, பெரிலிய வணு மேலதிக உறுதித் தன்மையை உடையது. இதன் விலேவாக எதிர் பார்த்ததிலும் பார்க்கக் கூடிய அயறைக்கற் சக்தியைக் கொண்டிருக்கும்.

எனவே, பெரிலியத்திலிருந்த போரன் வரையும் நைதரசனிலிருந்த ஒட்சிசன் வரையும் செல்லும்போது வழமையான போச்சில் காணப்படும் குடூலவூகஞக்குக் காரணம், அடுத்த வரும் அணுவின் குறைந்த உழுதிநிலே பைக் காட்டிலும் முன்வரும் அணுவின் விசேட உறுதிநிலேயே என விளக்சிக் கூறலாம்.

தாக்டல் மூலகத் தொடரிஷம் (காண்டம் d) இப்பொதுப் போக்கு மேஷு மொரு முறை குஜேல வடைகூறது. அணு வாரை சம்பந்தமாகக் காணப் பட்டத போலவே இங்கும், அதிகரிக்கப்படும் கருவேற்ற விஜேவி, சேர்க் கப்படும் இலத்திறன், உள்சக்திச்சொட்டின் உபமட்டத்தை அடைவதால் ஏற் படும் கூடுதலான திரையீட்டு விஜீ வைரல் எதிரீடு செய்யப்படுகின்றது. எனவே இம்மூலைகங்களின் அயறைக்கற் சக்திகள் ஒன்றிலிருந்து ஒன்ற அதிகம் வேழுபடு வதில் 2லே. கூடுதலாகச் சேர்க்கப்படும் இலத்திறன்கள் மேலும் உள்ளே யுள்ள மட்டத்தை அடைவதாகவுள்ள காண்டம் 1 ஐச் சேர்ந்த மூலகங்களிடை யே முதல் அயறைக்கற் சக்தி வித்தியாசம் புறக்கணிக்கேக் கூடியதாகவுனது.

ஒரு கட்டத்தைச் சேர்ந்த மூலகங்களிடையே அணுவென் அதிகரிக்கும் போது அயறுக்கற் சக்தி படிப்படியாகக் குறையும். இத 2ன எளிதில் விளக்கிக் கூறலாம். ஒரு கட்டத்தில் ஒரு மூலகத்தைலிட்டு அடுத்ததிற்குச் செல்லும்போது கூடுதலான ஒரு சக்திச் சொட்டோடு சேர்க்கப்படுகிறது;

0		2381	0	Ne 2079	•	Ar 152	0	Kr 1352	•	Xe 1172	•	Rn 1042
VIIA	•	1315	•	F 1688	•	CI 1256	•	Br 1147	•	1012		Ra 512
	1. 16	VIA	•	1319	•	s 1004	•	Se 345	•	Te 847		Po
		VA	•	N 1365	•	P 1063	•	As 1016	•	S b 836	•	Bi 819
		IVA	•	C 1092	•	5i 790	•	Ge 785	•	Sn 710	•	Pb 718
		MA	•	B 802		AI 580	0	Ga 580	•	ln 559	•	TI 592
		1			124	81	•	Zn 907	•	Cd 869	•	Hg 1008
		•				8		Cu 748	•	Ag 735	•	Au 895
					21.00		•	Ni 739	•	P d 806	•	Pt 869
		Ŧ				VIIIB	•	Co 764	•	Rh 743	•	lr 890
								Fe 760		Ru 727		0s 844
						VIIB	œ	Mn 718	ø	Tc. 167	•	Re 756
						VIB	•	Cr 655	•	Mo 714	۲	W 773
						VB	0	V 651	•	Nb 655		Ta
						IVB	0	Ti 664		Zr 672	•	łŧ
				t.		IIIB	•	Sc 647	•	¥ 638	•	La 542
		AII		Be 903		Mg 739	•	Ca 592	•	Sr 550	•	Ba 504
6	. 0	H - 1315		Li 521	. •	Na 496	•	420		Rb 403	•	Cs 378
-								all and the second second	1.000	and the second of the		

പപർ 5.5 തയക്കുകൽ സുമർ എലങ്ങർ കുഷ്കുക

இத்தூல் அஹுக்கருவிலிருந்த வெளியேயுள்ள இலத்திரன்களிற்கிடையான இடைத் தாரம் அதிகரிக்கிறத. எனவே கருவின் கவர்ச்சி விசை குறைகிறது. இததலை இலத்திரீன இலகுவாக வெளியேற்றலாடு.

மூலகங்களின் முதலாம் அயனுக்கற் சக்திகள் வரைப்பட வடிஷில் படம் 5.5 இல் தரப்பட்டுள. கருநிற வட்டங்கள் அயஞைக்கற் சக்திகஞுக்கு ஷிகிதசமமானவை. அயஞுக்கற் சக்திப் பெறுமானங்கள் kJmol⁻¹ இல் தரப்பட்டுன.

ஒரணு எவ்வளவு இலகுவாகத் தனது இலத்திரன்கீன இழந்த நேரயன் கீீள உண்டாக்கும் எவ்பதை அயதுக்கற் சக்கி குறிப்பிடும். ଗେମ୍ବର , ଅକ୍ଷ மலைகங்களின் டிவினேரீகமையின் ஓர் அளவீடாகும். அயனுக்கற் சக்தி எவ்வ ளஷிற்கொவ்வளவு உயரிவாக இருக்கிறதோ அவ்வளஷிற்கவ்வளவு இலத்திரன்க ீளக் கைவிடுவதற்கான போக்கும் குறைவாகவிருக்கும். இவீவாற குறைந்த அயஞக்கற் சக்கிலையலடைய அஹுக்கள் உயர் அயஞக்கற்சக்திலைய யனடய அதுதக்கீகக் காட்டிலைம் கூடிய உடையனவாகவி டின்னோ மை இதற்கேற்ப நாம் ஒரு கூட்டத்தில் கீழ்நோக்கிச் செல்லம் ருக்கும். போத மில்வேர்மை அதிகரிக்கிறதொனவும் ஓர் ஆவர்த்தனத்தின் வழியே மின் <u>மி</u>வீகோரீலை வோர்மை குறைந்து செல்லமொவும் முடிவாகக் கூறலாம். மலகங்களின் தன்மையோடு நேரடித் தொடர்புடையதாக இருப்பதால், ஒரு கூட்டத்தில் கீழ்நோக்கிச் செல்லம்போத உலோகவியல்ப ஆத்க**ரிக்கு**மெவ ஆ கிய நாம் எதிர்பார்க்க வேண்டும்... இவ்வாற, கட்டங்கள் IV, V, VI அது வெண் அதிகரித்தச் செல்ல, மூலகங்கள் அல்ஷுலோகங்களில் வற்றில் ருந்த உலோகங்களாக மாழுவதை அவதாலிக்க முடிகிறது.

5.5.3 மலகங்களின் மின்னெதிர்மை

மின்வொதிர்லமை என்பத, உழதியான சடத்தாவவாயூ நி2வுயைகைப்பைப் பெ**துவைத**ற்கொன, ஒர் அணு, இலத்திரேன்க 2ளக் கவரும் தன்மையின் அள வீடாகும். கில மூலகங்களின் மின்வொதிர்மைப் பெறுமானங்கள் படம் 5.6 இல் கொடுக்கப்பட்டுள. இப்பெறுமானங்க 2ளப் பார்க்கும்போத பின்வ ரேவன பூலகுகைம்.

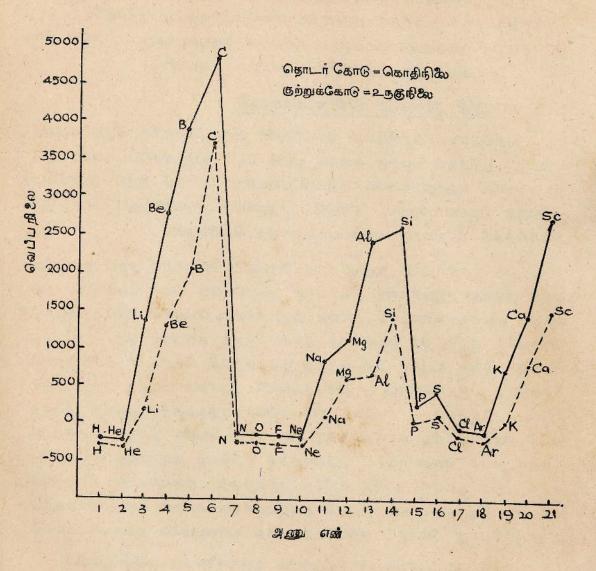
(1) காரவுலாகங்களிற் (கட்டம் IA). மின்னெதிர்மை ஒப்பீட்டன வில் மிகக் குறைவாகும். எனவே இம் மூலகங்கள் மிகக்குறைந்த

VIIA O H He 3.55 5.75 5.75 6.75 6.75 4.93 8.4.43 8.4.43 8.4.43 8.4.443 8.4.4444444444	£
	At
VIA 521 521 521 55 6 56 56 56 56 56 56 56 56 56 56 56 5	Po
333 334 448 448 448 448 448 448 448 448	Bi 3.14
1 IX 3 379 3 59 3 59 3 59 3 59 3 59 3 59 3 79 3 79	Pb 3.06
IIIA IIIA IIIA IIIA IIIA IIIA IIIA III	TI 3.02
C Cd 2.84	Hg 2.93
Ad 2.30	Au 2.88
ž Z	đ
<u>الم</u>	lr.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0s
A Market A	Re
Mo Cr VIB	3
8 > 4	Ta
11 IVB	Ŧ
1. × 1.86	La 1.90
HIA IIA IIA IIA IIA IIA IIA IIA IIA IIA	Ba 1.02
IA H A B B C C C C C C C C C C C C C	Cs 0.49
- ~ ~ ~ ~ ~	•

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

200

இலத்திரன் ஏற்கும் தன்மையுடையவை.


- (2) ஓர் ஆவர்த்தனத்திரைடே மின்னெதிர்மை அதிகரிக்கும்.
- (3) அலசன்கள் மிகக்கூடிய மின்னெதிர்குமயிடையவை. எனவே இவை மிகக் கூடிய இலத்திரன் நாட்டம் உடையவை.

5.5.4 உருகு நிலேகளும் கொதி நிலேகளும்

ஏறக்குறைய முதலிருபத மூலகங்களின் உருகுநிசீலகசீள அணுவெண்ணிற் கொதிரே குறித்தப் பெற்ற வலரபு படம் 5.7 இல் தரப்பட்டுளத. இம் மூலகங்களின் உருகுநிசீலகளில் குறிப்பிட்டவொரு கோலம் இருப்பத இப்படத் திலிருந்த தெளிவாகிறது. எனிதம், அணுவெண் அதிகைரிக்கும்போத, இக் கோலத்தில் சீர்குறைவு காணப்படுவதாகத் தெரிகிறது.

ஒரு பதார்த்தம் உருதவதற்கு திக்மைநிலையிலிருக்கும் அதன் மூலக்கும களின் அல்லத அஹைக்களின் ஒழுங்கான அமைப்பைப் பிரிக்கவேண்டும். திண் மத்தள் மூலக்கூறகளிடையே அல்லத அணுக்களிடையெயுள்ள பல்வேறகவர்ச்சி விகைகளே திண்மத்தின் ஒழுங்கான அகமைப்பிற்குக் காரணமாகும். 9B பதார்த்தத்தை உருகச் செய்வதற்கு இக்கவர்ச்சி விசைக்கள மேற்கொக்ள இதற்பொருட்டு திண்மத்திற்குப் போதுமானவனவு சக்தி வழங் வேண்டும். என்வே. திண்மத்தில் மூலைக்குழக் இல்லத அணுக் கப்படல் வேண்டும். கீீள ஒன்றசேரீத்த வைதீதிருக்கும் விசைகளின் வலாவின் அளவே உருகுநிலே இவீவிசைகள் பல்லேற வைகையினவாக இருப்ப யாகும் எனக் கருதலாம். தால், ஓர் ஆவர்த்தனத்தின் வழியே காணப்படும் மூலகங்களின் உருகுநிலே கள் ஓர் ஒழுங்கான முறையில் வேறுபடுவதில் 2ல, எனிலும் உருகு நி2லக2ன ஆராயும்போத பின்வரும் குறிப்பிடத்தகுந்த உண்மைகை 2ன அவதானிக்கலாம்.-

- (1) காறவுலாகக் கட்டத்தின் உருகுநிலேகள் ஒப்பீட்டளவில் தாழ்வாக இருப்பதோடு, அஹுவென் அதிகரிக்க, அதி கரிக்கின்றன.
- (2) அலசும் கூட்டத்தினதம் சடத்தல வாயுக் கூட்டத்தினதும் உருகு நிலேகள் மிகத் தாழ்வானவை, அத்தோடு அணுவெண் அதி கரிக்க உருகு நிலேக்கும் அதிகரிக்கும்.
- (3) B, N உடன் ஒப்பிடும்போத C, Si ஆகியலை மிகவுயர்ந்த வெப்பநி2லகளில் உருகுகின்றன.

படம் 5.7 உருகு நிலேகளும், கொதி நிலேகளும்

<u>உருகு நிலேகள்</u> ப் காண்ட மூலகங்கள் ஏறக்குறைய உயர் உருகு நிலேகஞடையன. ப் உபவோடு நிரப்பப்பட உருகுதிலே உயர ஆரம்பித்த அத பாதி நிரப்பப்பட்டதம் உருகுநிலே மீன்டும் கீழிறங்குகிறது.

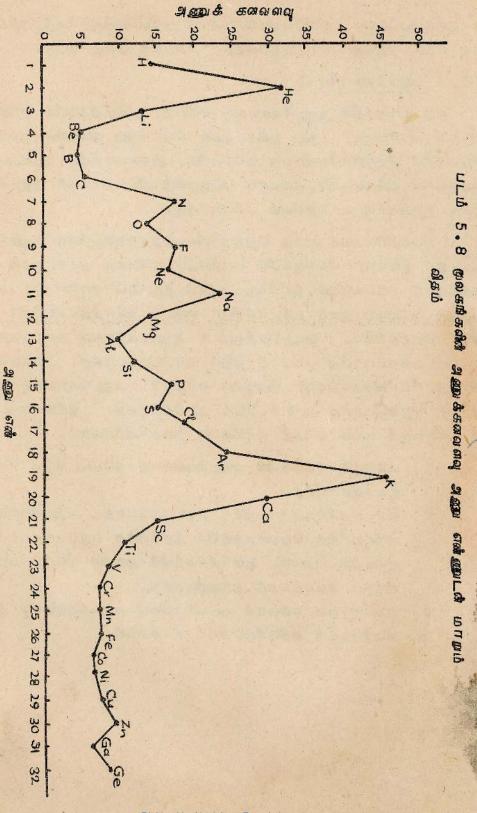
<u>கொதிற்</u> 2லகள். முதலிருபத மூலகங்களின் கொதிற் 2லக 2ள அணு வெண்ணிற்கைதிறே குறித்தப் பெற்ற வரைபு, படம் 5.7 இல் தரப்பட்டுளது உருகுற் 2ல மாறபடும் முறையை ஒத்தவொரு முறையில் கொதிற் 2லயும் மாறபடுவதை இதில் அவதானிக்க முடிகிறது. ஆயின், அணுவெண் அதிகரிக் கும்போது இம்மூலகங்களின் கொதிற் 2லகள் ஓர் ஒழுங்கான கோலத்தில் மாறுததை அவதானிக்க முடிகிறது. எனிறும் பின்வரும் உண்மைகள் விசேட மான முக்கியத்துவமுடையன;

- (1) காரவுலோகங்களின் கொதிநி2லகள் ஒப்பீட்டளவில் தாழ்வானவை; அத்தோடு அணுவென் அதிகரிக்கும் போச குறைந்த செல்அம்.
- (2) d காண்ட மூலகங்களின் கொதிநிலேகள் ஏறக்குறைய உயரிவானவை. d – உபவோடு பாதி நிரப்பப்படும் வரை கொதிநிலே அதிகரிப்பு காணப்படுகிறத;பின்னர் ஓர் இறக்கம் பருமட்டமாகக் காணப்படுகிறத.
- (3) அணு வெண் அதிகரிக்க, அலசன்களின் கொதிறி 2லயும் அதிகரிக்கிறத.
- (4) சடத்துவ வாயுக்கள் யாவும் மிகத் தாழ்வான கொதி நிலேயுடைய மூலகங்கள்; அத்தோடு அணுவென் அதிக ரிக்க அவற்றின் கொதிநிலேயும், உயரீகிறத.
- (5) கூட்டம் IVA ஐச் சேர்ந்த காபனின் கொதிநிலேயுடன் ஒப்பிரும்போது, அதை அருத்து வரும் மூலகமான நைதர சனின் கொதிநிலே மிகத் தாழ்வாக இருக்கிறது.இதற்குக் காரணம் திரவநிலேயில் காபனஹுக்களிடையேயுள்ள கவர்ச்சி நைதரசனஹுக்களிடையேயுள்ள சுவர்ச்சியைக் காட்டிஷம் அதிகமாகஇருப்பதாகும். இக்கோலத்தை Si உம் P உம், Ge உம் As உம், Sn உம் Gb உம், Fb உம் Bi உம் போன்ற மூலகங்களிடையேயும் காணலாம்.

மலகங்களின் உருகுநிலேகளும் கொதிநிலைகளும் அட்டவடுண 5.3இல்

	2394-	e.B	கொ. நி	an in the second		2.月	கொ. நி
1	H	-259	-252	29	Cu	1083	2595
5	Не	-269	-268	30	Zn	419	906
3	Li	180	1530	31	Ga	29.8	2237
4	Be	1277	2770	32	Ge	937	2830
5	В	2030	-	33	As	817	-
6	Ċ	3727	4830	34	Se	217	685
7	N	-210	- 196	35	Br	-7	58
8	0	-219	-183	36	Kr	-157	-152
9	F	-219	- 188	37	Rb	39	688
10	Ne	-248	-246	38	Sr	768	1380
11	Na	98	892		·		
12	Mg	650	1107	47	Ag	961	2210
13	Al	660	2450	48	Cd	320	765
14	Si	1410	2680	50	Sn	232	2270
15	P	44	280	51	Sb	630	1380
16	S	119	444	52	Te	450	990
17	Cl	-101	-35	53	I	113	183
18	Ar	-189	-186	54	Xe	-111	-108
19	K	63	760	55	Cs	28	690
20	Ca	838	1440	56	Ba	714	1640
21	Sc	1539	2730				
22	Ti	1668	3260	78	Pt	1769	4530
23	V	1900	3450	79	Au	1063	2970
24	Cr	1875	2665	80	hg	-38	357
25	Mn	1245	2150			·	
26	Fe	1536	3000	82	Pb	327	1725
27	Co	1495	2900	83	Bi	271	1560
28	Ni	1453	2730	84	Po	254	-

ALLA 200 5.3


கொடுக்கப்பட்டுள. இப்பெழமானங்க 2்**ள அணு வெண்ணிற்கொதிராகக்குறித்**த வேழ ஏதம் ஒழுங்கு முறை இருக்கிறதா என்பதை அவதானிக்க.

5.5.5 அணுக்களவளவு

ஒரு மூலகத்தின் அணு க்கனவளவு என்பத, திக்மைநி 2லயில் அம்மூலகத் தின் ஒரு கிராமணு தீ (ஒரு மூல்) திணிஷ கொள்ஞம் கனவளவாகும்.இம்கே கோபகத்தில் கொள்ளவேண்டியத யொதெனில், இக்கனவளவில் அடங்குவத அணு க்களின் உண்மையான கனவளவு மட்டுமன்றி திண்மைநி 2லயில் அணு க்களி டையே இருக்கக்கூடிய வெளியூம் என்பதாகும்.

லோதரிமேயர் என்ற ஜெரீமானிய இரசாயனவறிஞர் அணுக்கன வளவு ஓர் ஆவர்த்தனவொழுங்கில் மாறுபடும் என்பதை முதன் முதல் அவ தானித்தார் என்பதையும், இவ்வேறுபாட்டில் ஆதாரமாகவுள்ள ஓர் ஆவர்த் தன அட்டவ²காயை அவர் உண்டாக்கிறூர் எனவும் இவ்வத்தியாயத்தின் முற்ப குதியில் படித்தள்ளீர். அணுவெண்ணுடன் அணுக்கனவளவு மாறுவதைக் காட்டும் வரைபொன்ற படம் 5.8இல் காட்டப்பட்டுளதா. இவ்வரைபடத் திவிருந்த நீர் ஊகிக்கக்கூடிய முடிபுகள் யாவை? அணுக்கனவளவுகளின் வரைபட வடிவமொன்ற படம் 5.9இல் தரப்பட்டுனதா. இவ்வரைபடத் திவிருந்த பின்வரும் உண்மைகைகளத் தெளிவாக அவதானிக்கலாம்.

- (1) காரவுலாகங்களின் அணுக்களவைளவு ஒப்பீட்டளவில் மிக வயர்வாகவுளத.
- (2) ஓர் ஆவர்த்தனம் வழியே செல்ஷம்போது, அணுக்கனவளவு மிகவுயர்ந்த பெழமானத்தில் ஆரம்பித்து படிப்படியாகக் குறைந்த சென்ற, ஆவர்த்தனத்தின் முடிவில் மீண்டும் அதிக ரிக்கும் போக்கைக் காணமுடிகிறது.
- (3) ஏறக்குறைய எல்லாக் கட்டங்களிலும் அணுக்கனவளவு அணு வென்ணுடன் அதிகரிப்பதைக் கானலாம்.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

0	Un		63		
				N	
200	Rb 65.9	45.3	Na 23.7	• •	14.1 H 0
80 39.2	Sr 33.7	• • • • • • • • • • • • • • • • • • •	Mg 14.0	Be	IIA
• La 22.6	¥ •	• Sc 18.0	116		
Ŧ	• 2r 14.3	10.6	IVB		
• Ta 10.9	10.8	8.5	VB		
905 € •	9.4 ·	7.3 Cr •	VIB		1
80 F	To	• Mn 7.6	VIIB		
0s •	8. H	Ге 7.1		•	
8.5	Rh •	5. C •	≦		
Pt •	Pd •	00 Z •			
• Au 10.2	Ag .	22	5		
e Hg 14.1	13.1	e 2n 9.2	100		
• 11 17.3	• In 15.7	6 11.8	10.0	4 ₃ œ .	IIIA
• Pb 18.2	• Sn 16.2	13.5 •	e Si 11.7	50 ·	IVA
8 i 21.3	• Sb 18.2	• As	P 17.0	17,3	X
	• Te 20.4	• 5e 16.5	15.5 ®	14.0	VIA
	-	• Br 23.5	e CI 18.7	тт е	VIIA H + IA
Rn 50.5	Xa 42.9	Kr 32.2	Ar 0	16.8 9	31.8 • O

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org 207

urb 5.9 pastadd gortaang

