
க.பொ.த உயர்தரம்

இணைந்த கணிதம்

(தூய கணிதப்பகுதி)

அட்சரகணிதம்

பகுத் - I

G. C. E ADVANCED LEVEL

COMBINED MATHEMATICS

(Pure Mathematics Component) Algebra Part - I

கா. கணேசலிங்கம்

க. பொ. த உயர்தரம்

இணைந்த கணிதம்

(தூய கணிதப்பகுதி)

அட்சர கணிதம்

பகுதி - I (திருத்திய பதிப்பு)

K. GANESHALINGAM. B.Sc, Dip-in-Ed.

SAI EDUCATIONAL PUBLICATION

36/4 - B, Pamankada Road, Colombo - 06. T. P: 2366707

BIBLIOGRAPHICAL DATA

Title : INNAINTHA KANITHAM

[PURE MATHEMATICS - COMPONENT]

ALGEBRA PART - I

Language : Tamil

Author : Karthigesu Ganeshalingam. B. Sc; Dip-in-Ed.

Puttalai, Puloly

Publication : Sai Educational Publication

36/4 -B, Pamankada Road, Colombo - 06.

Date of issue : Revised Edition - August 2007

No. of Pages : 264

Copyright : Sai Educational Publication

Type Setting : Miss. Mathivathani.A, Colombo - 06.

நூலின் விபரம்

தலைப்பு : க. பொ. த. உயர்தரம்

இணைந்த கணிதம் (தூயகணிதப் பகுதி)

அட்சரகணிதம் - பகுதி - I (திருத்திய பதிப்பு)

மொழி : தமிழ்

ஆசிரியர் : கார்த்திகேசு கணேசலிங்கம்

புற்றளை, புலோலி.

வெளியீடு 🚺 📜 சாயி கல்வி வெளியீட்டகம்

36/4 -B, பாமன்கட வீதி, கொழும்பு - 06.

பிரசுரத் திகதி : திருத்திய பதிப்பு - ஆகஸ்ட் 2007.

பக்கங்கள் : 264

பதிப்புரிமை : சாயி கல்வி வெளியீட்டகம்

கணணிப்பதிவு : செல்வி. மதிவதனி.ஆ, கொழும்பு - 06.

என்னுரை

ஏற்கனவே வெளியிடப்பட்ட **கணைந்த கணிதம்** தூயகணிதப் பகுதியில் **அட்சர கணிதம்** எனும் நூல், மீள் புதுப்பிக்கப்பட்டு இரு பகுதிகளாக ஆக்கப்பட்டு பகு**த**- I இப்போது வெளிவருகிறது.

மேலும் அட்சரகணிதத்தை மாணவர்கள் இலகுவாக விளங்கிக் கொள்ளவும், உத்திக் கணக்குகள் மூலம் தாமாகவே பயிற்சிக்கணக்குகளைச் செய்து பார்க்கவும் கூடிய விதத்தில் இந்நூல் வெளியிடப்படுகின்றது. பழைய நூலை விட இதில் அதிக பயிற்சிக் கணக்குகள் சேர்க்கப்பட்டுள்ளன. மாணவர்கள் கற்பதில் நாட்டம் காட்டவும், கற்றலை இலகுவாக்கவும் முடிந்தளவு எனது கற்பித்தல் அனுபவத்தையும் இணைத்து இந்நூலை உருவாக்கியுள்ளேன்.

இந்நூலை மாணவ உலகமும், ஆசிரிய உலகமும், பெற்றுப் பயன் அடைவார்கள் என எதிர்பார்க்கிறேன். நிறைவுகள் ஏற்று குறைவுகள் சுட்டி **அட்சர கணிதம்** ப**குதி - 2** ஐ வெளியிட ஆக்கமும், ஊக்கமும் தருவார் களென மாணவர்களையும், ஆசிரியர்களையும் கேட்டு இந்நூலை திருத்திய பதிப்பாக புத்தக உருவில் கொணர்ந்த சாயி கல்வி வெளியீட்டகத்தினருக்கும் எனது நன்றியைத் தெரிவித்துக் கொள்கிறேன்.

நன்றி

ஆகஸ்ட் - 2007

1

ஆசிரியர்.

பொருளடக்கம்

1.	சமன்பாடுகள் தீர்த்தல், மடக்கை 01
2.	பல்லுறுப்புச் சார்புகள்49
3.	இருபடிச் சமன்பாடுகள்97
4.	இருபடிச் சார்புகள்147
5.	சமனிலிகள்178
	மீட்டல் பயிற்சி225
	பலவினப் பயிற்சி241
	விடைகள்

1. மீட்டல், சமன்பாடுகள் தீர்த்தல், மடக்கை

1.1 அட்சரகணிதக் கோவைகளின் விரிவுகள்

(1)
$$(a + b)^2 = (a + b)(a + b)$$
 $a + b$
 $= a(a + b) + b(a + b)$ $a + b$
 $= a^2 + ab + ab + b^2$ $a^2 + ab$
 $= a^2 + 2ab + b^2$ $ab + b^2$
 $a^2 + 2ab + b^2$

(2)
$$(a-b)^2 = (a-b)(a-b)$$
 $a-b$
 $= a(a-b)-b(a-b)$ $a-b$
 $= a^2 - ab - ab + b^2$ $a^2 - ab$
 $= a^2 - 2ab + b^2$ $a^2 - 2ab + b^2$

(3)
$$(a+b)^3 = (a+b)(a+b)^2$$

 $= (a+b)(a^2+2ab+b^2)$
 $= a(a^2+2ab+b^2) + b(a^2+2ab+b^2)$
 $= a^3+2a^2b+ab^2+a^2b+2ab^2+b^3$
 $= a^3+3a^2b+3ab^2+b^3$
 $a^2+2ab+b^2$
 $a^3+2a^2b+ab^2$
 $a^3+2a^2b+3ab^2+b^3$
 $a^3+3a^2b+3ab^2+b^3$

(4)
$$(a-b)^3 = (a-b)(a-b)^2$$

 $= (a-b)(a^2 - 2ab + b^2)$
 $= a(a^2 - 2ab + b^2) - b(a^2 - 2ab + b^2)$
 $= a^3 - 2a^2b + ab^2 - a^2b + 2ab^2 - b^3$
 $= a^3 - 3a^2b + 3ab^2 - b^3$

(5)
$$(a+b+c)^2 = [a+(b+c)]^2$$

$$= a^2 + 2a(b+c) + (b+c)^2$$

$$= a^2 + 2ab + 2ac + b^2 + 2bc + c^2$$

$$= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

பின்வருவனவற்றை விரித்தெழுதுக.

(i)
$$(2x+3y)^2$$
 (ii) $\left(3x-\frac{2}{5y}\right)^2$ (iii) $(3x-2y)^3$

(iv)
$$\left(x + \frac{1}{x}\right)^3$$
 (v) $\left(a + b - 2c\right)^2$ (vi) $\left(\frac{1}{a} - \frac{2}{b} + \frac{1}{c}\right)^2$

(i)
$$(2x+3y)^2 = (2x)^2 + 2 \times (2x) \times (3y) + (3y)^2$$

= $4x^2 + 12xy + 9y^2$

(ii)
$$\left(3x - \frac{2}{5y}\right)^2 = \left(3x\right)^2 - 2 \times \left(3x\right) \times \left(\frac{2}{5y}\right) + \left(\frac{2}{5y}\right)^2$$

$$= 9x^2 - \frac{12x}{5y} + \frac{4}{25y^2}$$

(iii)
$$(3x - 2y)^3 = (3x)^3 - 3(3x)^2(2y) + 3(3x)(2y)^2 - (2y)^3$$

= $27x^3 - 54x^2y + 36xy - 8y^3$

(iv)
$$\left(x + \frac{1}{x}\right)^3 = x^3 + 3x^2 \times \frac{1}{x} + 3x \times \frac{1}{x^2} + \frac{1}{x^3}$$

= $x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}$

(v)
$$(a+b-2c)^2 = a^2+b^2+4c^2+2ab-4bc-4ac$$

(vi)
$$\left(\frac{1}{a} - \frac{2}{b} + \frac{1}{c}\right)^2 = \frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} - \frac{4}{ab} - \frac{4}{bc} + \frac{2}{ac}$$

x + y = 5, xy = 6 எனின், $x^2 + y^2$, $x^3 + y^3$ என்பவற்றின் பெறுமானங்களைக் காண்க.

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x + y)^{2} - 2xy = x^{2} + y^{2}$$

$$x^{2} + y^{2} = (x + y)^{2} - 2xy$$

$$= 5^{2} - 2 \times 6$$

$$= 25 - 12 = 13$$

$$(x + y)^3 = x^3 + 3x^2 y + 3xy^2 + y^3$$

$$x^3 + y^3 = (x + y)^3 - 3x^2 y - 3xy^2$$

$$= (x + y)^3 - 3xy (x + y)$$

$$= 5^3 - 3 \times 6 \times 5$$

$$= 125 - 90 = 35$$

அல்லது

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$= (x + y)(x^{2} + y^{2} - xy)$$

$$= 5[13 - 6]$$

$$= 5 \times 7$$

$$= 35$$

உதாரணம் 3

$$x = \frac{a}{2} \left(t + \frac{1}{t} \right)$$
, $y = \frac{b}{2} \left(t - \frac{1}{t} \right)$ எனின், t ஐச் சாராது x, y, a, b என்பவற்றிற்கிடையே தொடர்பு ஒன்றைப் பெறுக.

$$x = \frac{a}{2}\left(t + \frac{1}{t}\right) \qquad y = \frac{b}{2}\left(t - \frac{1}{t}\right)$$

$$\frac{2x}{a} = \left(t + \frac{1}{t}\right) \qquad \frac{2y}{b} = \left(t - \frac{1}{t}\right)$$

$$\frac{4x^2}{a^2} = t^2 + 2 + \frac{1}{t^2} \qquad \frac{4y^2}{b^2} = t^2 - 2 + \frac{1}{t^2}$$

$$\frac{4x^2}{a^2} - 2 = t^2 + \frac{1}{t^2} \qquad (1) \qquad \frac{4y^2}{b^2} + 2 = t^2 + \frac{1}{t^2} \qquad (2)$$

$$(1), (2) \text{ and Gibbs}, \quad \frac{4x^2}{a^2} - 2 = \frac{4y^2}{b^2} + 2, \quad \frac{4x^2}{a^2} - \frac{4y^2}{b^2} = 4$$

$$\frac{x^2}{a^2} - \frac{y^2}{t^2} = 1$$

04

1.2 காரணிகளாக்குதல்

 $ax^2 + bx + c$, $a^2 - b^2$, $a^3 + b^3$, $a^3 - b^3$ என்ற வடிவிலான கோவைகளைக் காரணிகளாக்குதல்.

$$a^{2} - b^{2} = (a - b)(a + b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

உதாரணம் 4 காரணியாக்குக.

(i)
$$18x^2 - 33x - 216$$

(ii)
$$a^4 - b^4$$

(iii)
$$x^4 + x^2 - y^4 - y^2$$

(iv)
$$1-a^2-b^2+2ab$$

(v)
$$(a^2 + b^2 - c^2)^2 - 4a^2b^2$$

(vi)
$$a^4 + 4b^4$$

(i)
$$18x^2 - 33x - 216$$
 (ii) $a^4 - b^4$

$$= 3 \left[6x^2 - 27x + 16x - 72 \right] = \left(a^2 - b^2 \right) \left(a^2 + b^2 \right)$$

$$= 3 \left[6x^2 - 27x + 16x - 72 \right] = (a - b) (a + b) \left(a^2 + b^2 \right)$$

$$= 3 \left[3x(2x - 9) + 8(2x - 9) \right]$$

$$= 3 (2x - 9) (3x + 8)$$

$$= 3 (2x - 9) (3x + 8)$$

(iii)
$$x^4 + x^2 - y^4 - y^2$$

 $= x^4 - y^4 + x^2 - y^2$
 $= (x^2 - y^2)(x^2 + y^2) + (x^2 - y^2)$
 $= (x^2 - y^2)(x^2 + y^2 + 1)$
 $= (x - y)(x + y)(x^2 + y^2 + 1)$
(iv) $1 - a^2 - b^2 + 2ab$
 $= 1 - [a^2 - 2ab + b^2]$
 $= 1^2 - (a - b)^2$
 $= [1 - (a - b)][1 + (a - b)]$
 $= (x - y)(x + y)(x^2 + y^2 + 1)$
 $= (1 - a + b)(1 + a - b)$

(v)
$$(a^2 + b^2 - c^2)^2 - 4a^2b^2$$

$$= (a^2 + b^2 - c^2)^2 - (2ab)^2$$

$$= [(a^2 + b^2 - c^2) - 2ab] [(a^2 + b^2 - c^2) + 2ab]$$

$$= [a^2 - 2ab + b^2 - c^2] [a^2 + 2ab + b^2 - c^2]$$

$$= [(a - b)^2 - c^2] [(a + b)^2 - c^2]$$

$$= (a - b - c)(a - b + c)(a + b - c)(a + b + c)$$

(vi)
$$a^4 + 4b^4$$

$$= a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2$$

$$= (a^2 + 2b^2)^2 - (2ab)^2$$

$$= (a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab)$$

உதாரணம் 5 காரணியாக்குக.

(i)
$$8x^3 + 27y^3$$

(ii)
$$16x^4y - 2xy^4$$

(iii)
$$(a-b)^3 + 8b^3$$

(iv)
$$a^6 - b^6$$

(i)
$$8x^3 + 27y^3$$

= $(2x)^3 + (3y)^3$
= $(2x + 3y)(4x^2 - 6xy + 9y^2)$

(ii)
$$16x^4 y - 2xy^4$$

= $2xy (8x^3 - y^3)$
= $2xy [(2x)^3 - y^3]$
= $2xy(2x - y) (4x^2 + 2xy + y^2)$

06

(iii)
$$(a-b)^3 + 8b^3$$

$$= (a-b)^3 + (2b)^3$$

$$= [(a-b)+2b] [(a-b)^2 - 2b(a-b) + (2b)^2]$$

$$= (a+b)(a^2 - 4ab + 7b^2)$$

(iv)
$$a^6 - b^6$$

 $= (a^3)^2 - (b^3)^2$
 $= (a^3 - b^3)(a^3 + b^3)$
 $= (a - b)(a^2 + ab + b^2)(a + b)(a^2 - ab + b^2)$

1.3 அட்சரகணிதப் பின்னங்களைச் சுருக்குதல்

உதாரணம் 6 சுருக்குக.

(i)
$$\frac{1}{a+b} - \frac{a}{(b-a)^2} + \frac{b}{a^2-b^2}$$

(ii)
$$\frac{1}{(a-b)(b-c)} + \frac{1}{(b-c)(c-a)} + \frac{1}{(a-c)(a-b)}$$

(iii)
$$\frac{3}{x^2+x-2} - \frac{2}{x^2+2x-3} + \frac{1}{x^2+5x+6}$$

(iv)
$$\frac{x^2-1}{x^2+x-2} \times \frac{x^3+8}{x^2+x} = \frac{x^2-2x+4}{x^3+2x^2}$$

(i)
$$\frac{1}{a+b} - \frac{a}{(a-b)^2} + \frac{b}{(a-b)(a+b)}$$
$$= \frac{(a-b)^2 - a(a+b) + b(a-b)}{(a-b)^2 (a+b)}$$

$$= \frac{a^2 - 2ab + b^2 - a^2 - ab + ab - b^2}{(a - b)^2 (a + b)} = \frac{-2ab}{(a - b)^2 (a + b)}$$
(ii)
$$\frac{1}{(a - b)(b - c)} + \frac{1}{(b - c)(c - a)} + \frac{1}{(a - c)(a - b)}$$

$$= \frac{1}{(a - b)(b - c)} + \frac{1}{(b - c)(c - a)} - \frac{1}{(c - a)(a - b)}$$

$$= \frac{(c - a) + (a - b) - (b - c)}{(a - b)(b - c)(c - a)}$$

$$= \frac{c - a + a - b - b + c}{(a - b)(b - c)(c - a)}$$

$$= \frac{-2(b - c)}{(a - b)(b - c)(c - a)} = \frac{-2}{(a - b)(c - a)}$$

$$= \frac{2}{(a - b)(a - c)}$$

(iii)
$$\frac{3}{x^2 + x - 2} - \frac{2}{x^2 + 2x - 3} + \frac{1}{x^2 + 5x + 6}$$

$$= \frac{3}{(x+2)(x-1)} - \frac{2}{(x+3)(x-1)} + \frac{1}{(x+2)(x+3)}$$

$$= \frac{3(x+3) - 2(x+2) + (x-1)}{(x+2)(x-1)(x+3)}$$

$$= \frac{2x+4}{(x+2)(x-1)(x+3)}$$

$$= \frac{2(x+2)}{(x+2)(x-1)(x+3)} = \frac{2}{(x-1)(x+3)}$$

(iv)
$$\frac{x^2 - 1}{x^2 + x - 2} \times \frac{x^3 + 8}{x^2 + x} \div \frac{x^2 - 2x + 4}{x^3 + 2x^2}$$
$$= \frac{(x - 1)(x + 1)}{(x + 2)(x - 1)} \times \frac{(x + 2)(x^2 - 2x + 4)}{x(x + 1)} \times \frac{x^2(x + 2)}{(x^2 - 2x + 4)}$$
$$= x(x + 2)$$

1.4 சுட்டிகள்

$$a^{m} \times a^{n} = a^{m+n}$$

$$a^{m} \div a^{n} = a^{m-n}$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^{m} = a^{m} \cdot b^{m}$$

உதாரணம் 7

பெறுமானம் காண்க.

(ii)
$$(-5)^2$$

(iv)
$$8^{-\frac{2}{3}}$$

2. (i)
$$4^{-\frac{1}{2}} + \left(\frac{1}{27}\right)^{\frac{1}{3}}$$
 (ii) $\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{2^{\frac{1}{6}} \times 2^{\frac{2}{3}}}$

(ii)
$$\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{\frac{1}{3}^{\frac{1}{6}} \times 3^{-\frac{3}{3}}}$$

(iii)
$$\left[3^2 + 4^2\right]^{-\frac{1}{2}}$$

3. x இன் பெறுமானங் காண்க.

(i)
$$2^x \times 8^x = 64$$

(ii)
$$(3^x)^{-\frac{1}{2}} = \frac{1}{27}$$

(iii)
$$16^{-x} = 64$$

1. (i)
$$5^2 = 5 \times 5 = 25$$

(ii)
$$(-5)^2 = (-5) \times (-5) = 25$$

(iii)
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

(iv)
$$8^{-\frac{2}{3}} + (2^3)^{-\frac{2}{3}} = 2^{-2} = \frac{1}{2^2} = \frac{1}{4}$$

2. (i)
$$4^{-\frac{1}{2}} + \left(\frac{1}{27}\right)^{\frac{1}{3}} = \left(2^{2}\right)^{-\frac{1}{2}} + \left[\left(\frac{1}{3}\right)^{3}\right]^{\frac{1}{3}}$$

$$= 2^{-1} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{5}{6}$$

(ii)
$$\frac{9^{\frac{1}{3}} \times 27^{-\frac{1}{2}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}} = \frac{\left(3^2\right)^{\frac{1}{3}} \times \left(3^3\right)^{-\frac{1}{2}}}{3^{-\frac{1}{6}} \times 3^{-\frac{2}{3}}} = 3^{\frac{2}{3} - \frac{3}{2} + \frac{1}{6} + \frac{2}{3}} = 3^0 = 1$$

(iii)
$$\left[3^2 + 4^2\right]^{-\frac{1}{2}} = \left(9 + 16\right)^{-\frac{1}{2}}$$

= $25^{-\frac{1}{2}} = \left(5^2\right)^{-\frac{1}{2}} = 5^{-1} = \frac{1}{5}$

3. (i)
$$2^x \times 8^x = 64$$

(ii)
$$(3^x)^{-\frac{1}{2}} = \frac{1}{27}$$

$$2^x \times \left(2^3\right)^x = 2^6$$

$$3^{-\frac{1}{2}x} = \frac{1}{3^3}$$

$$2^x \times 2^{3x} = 2^6$$

$$3^{-\frac{1}{2}x} = 3^{-3}$$

$$2^{4x} = 2^6$$

$$-\frac{1}{2}x = -3$$

$$4x = 6$$

$$x = 6$$

$$x=\frac{3}{2}$$

$$x = 6$$

10

(iii)
$$16^{-x} = 64$$

$$\left(2^4\right)^{-x}=2^6$$

$$2^{-4x} = 2^6$$

$$-4x = 6$$

$$x = -\frac{3}{2}$$

1.5 சமன்பாடுகள் தீர்த்தல்

- ★ ஒரு மாறியிலான சமன்பாடுகள். (Equations in one Variable)
- 🛨 பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி மாறிகளை மாற்றுதல்.

$$x^{\frac{1}{4}} - x^{-\frac{1}{4}} = \frac{3}{2}$$

$$y = x^{\frac{1}{4}}$$
 என்க.

$$y - \frac{1}{y} = \frac{3}{2}$$

$$2y^2 - 3y - 2 = 0$$

$$(2y+1)(y-2)=0$$

$$y=-\frac{1}{2}\,,\,2$$

$$y = x^{\frac{1}{4}} > 0$$
 ஆகும். எனவே $y = 2$

$$x^{\frac{1}{4}} = 2$$

$$x = 2^4 = 16$$

$$\frac{5}{x^2 + 6x + 8} = \frac{1}{x^2 + 6x + 5} + \frac{4}{x^2 + 6x + 9}$$

$$y = x^2 + 6x \quad \text{stoins.}$$

$$\frac{5}{y + 8} = \frac{1}{y + 5} + \frac{4}{y + 9}$$

$$5(y + 5)(y + 9) = (y + 8)(y + 9) + 4(y + 8)(y + 5)$$

$$5(y^2 + 14y + 45) = y^2 + 17y + 72 + 4(y^2 + 13y + 40)$$

$$70y + 225 = 69y + 232$$

$$y = 7$$

$$x^2 + 6x = 7$$

$$x^2 + 6x - 7 = 0$$

$$(x + 7)(x - 1) = 0$$

$$x = -7.1$$

$$x+rac{1}{x}=y$$
 என்னும் பிரதியீட்டைப் பயன்படுத்துதல். $2\left(x^2+rac{1}{x^2}
ight)-9\left(x+rac{1}{x}
ight)+14=0$ $y=x+rac{1}{x}$ என்க. $2\left(y^2-2\right)-9\,y+14=0$ $2\,y^2-9\,y+10=0$ $(2\,y-5)\left(y-2\right)=0$ $y=rac{5}{2}$, 2

$$y=rac{5}{2}$$
 எனின், $y=2$ எனின், $x+rac{1}{x}=rac{5}{2}$ $x+rac{1}{x}=2$ $2x^2-5x+2=0$ $x^2-2x+1=0$ $(2x-1)(x-2)=0$ $(x-1)^2=0$ $x=rac{1}{2},2$ $x=1,1$

 $ax^4-bx^3+cx^2-bx+a=0$ என்ற வடிவிலமைந்த சமன்பாடுகள் $x\neq 0$; x=0 ஒரு தீர்வு எனின் a=0. எனவே $x\neq 0$. சமன்பாட்டை x^2 ஆல் பிரிக்க,

$$ax^{2} - bx + c - \frac{b}{x} + \frac{a}{x^{2}} = 0$$

$$a\left(x^{2} + \frac{1}{x^{2}}\right) - b\left(x + \frac{1}{x}\right) + c = 0$$

$$y=x+rac{1}{x}$$
 என்ற பிரதியீட்டைப் பயன்படுத்தி சமன்பாட்டினைத் தீர்க்கலாம்.
$$8x^4-42x^3+29x^2+42x+8=0$$
 $x\neq 0\;;\quad x^2$ ஆல் பிரிக்க.
$$8x^2-42x+29+rac{42}{x}+rac{8}{x^2}=0$$

$$8\left(x^2 + \frac{1}{x^2}\right) - 42\left(x - \frac{1}{x}\right) + 29 = 0$$

$$y = x - \frac{1}{x}$$
 எனப் பிரதியிட $8(y^2 + 2) - 42y + 29 = 0$
 $8y^2 - 42y + 45 = 0$
 $(2y - 3)(4y - 15) = 0$

$$y=rac{3}{2}$$
 தல்லது $y=rac{15}{4}$ $y=rac{3}{2}$ எனின், $y=rac{15}{4}$ எனின், $x-rac{1}{x}=rac{3}{2}$ $x-rac{1}{x}=rac{15}{4}$ $2x^2-3x-2=0$ $4x^2-15x-4=0$ $(2x+1)(x-2)=0$ $(4x+1)(x-4)=0$ $x=-rac{1}{2},\ 2$ $x=-rac{1}{4},\ 4$

தீர்வுகள்
$$-\frac{1}{2}$$
, 2, $-\frac{1}{4}$, 4

சேடுகளைக் கொண்ட சமன்பாடுகள்

பொருத்தமாக எழுதி வா்க்கிப்பதன் மூலம் சேடுகளை இல்லாமல் செய்யலாம். இவ்வாறான முறைகளில், பெறப்படும் தீா்வுகளைத் தரப்பட்ட சமன்பாட்டில் பிரதியிட்டுப் பாா்த்து சாியான விடையைத் தொிவு செய்ய வேண்டும்.

$$\sqrt{3x+1} - \sqrt{2-x} = \sqrt{2x-1}$$

இருபக்கமும் வர்க்கிக்க
$$(3x+1) + (2-x) - 2\sqrt{(3x+1)(2-x)} = (2x-1)$$
$$2 = \sqrt{(3x+1)(2-x)}$$

இருபக்கமும் வர்க்கிக்க
$$4 = (3x+1)(2-x)$$
 $3x^2 - 5x + 2 = 0$ $(3x-2)(x-1) = 0$ $x = \frac{2}{3}$, 1

$$x=rac{2}{3}$$
 எனின், இ. கை. ப $=\sqrt{3}-\sqrt{rac{4}{3}}=\sqrt{3}-rac{2}{\sqrt{3}}=rac{1}{\sqrt{3}}$ வ. கை. ப $=\sqrt{rac{4}{3}-1}=rac{1}{\sqrt{3}}$ $x=1$ எனின், இ. கை. ப $=\sqrt{4}-\sqrt{1}=2-1=1$ வ. கை. ப $=\sqrt{1}=1$

$$\sqrt{x-2} - \sqrt{x-3} = \sqrt{2x-5}$$

இருபக்கமும் வர்க்கிக்க $(x-2) + (x-3) - 2\sqrt{x-2} \cdot \sqrt{x-3} = 2x-5$ $\sqrt{x-2} \cdot \sqrt{x-3} = 0$ $x=2,3$

$$x = 2$$
 எனின்,

இ. கை. ப
$$= 0 - \sqrt{-1} = -\sqrt{-1}$$

வ. கை. ப $= \sqrt{4-5} = \sqrt{-1}$
 $x = 2$, பொருத்தமற்றது.

$$x = 3$$
 எணின், இ. கை. ப = $\sqrt{3-2} - \sqrt{3-3}$

$$=\sqrt{1}-0=1$$

வ. கை. ப $=\sqrt{6-5}=1$
.. தீர்வு 3 ஆகும்.

$$(x-2)(x+3)(x+6)(x+1)+56=0$$

 $(x-2)(x+6)(x+3)(x+1)+56=0$
 $(x^2+4x-12)(x^2+4x+3)+56=0$
 $y=x^2+4x$ எனப் பிரதியிடுக.
 $(y-12)(y+3)+56=0$
 $y^2-9y+20=0$
 $(y-5)(y-4)=0$
 $y=5$ அல்லது $y=4$

$$x^{2} + 4x = 5$$
 $x^{2} + 4x = 4$ $x^{2} + 4x - 5 = 0$ $x^{2} + 4x - 4 = 0$ $(x + 5)(x - 1) = 0$ $x = \frac{-4 \pm \sqrt{32}}{2}$ $x = -5, 1$ $x = -2 \pm 2\sqrt{2}$

$$(x+a)^4+(x+b)^4=c$$
 என்ற வடிவிலான சமன்பாடுகள் $(x+1)^4+(x-3)^4=256$ $y=rac{1}{2}\left[(x+1)+(x-3)
ight]$ என்க. $y=x-1$

எனவே தரப்பட்ட சமன்பாடு
$$(y+2)^4 + (y-2)^4 = 256$$

$$(y^4 + 8y^3 + 24y^2 + 32y + 16) + (y^4 - 8y^3 + 24y^2 - 32y + 16) = 256$$

$$2y^4 + 48y^2 + 32 = 256$$

$$y^4 + 24y^2 - 112 = 0$$

$$(y^2 + 28)(y^2 - 4) = 0$$

$$y = \pm \sqrt{-28}, \qquad y = \pm 2$$

$$y = x - 1$$

ஆகவே தீர்வுகள் 3, -1, $1 \pm \sqrt{-28}$

$$4^{x+1} + 2^{4x+2} = 80$$

$$4^{x+1} + (2^{2})^{2x+1} = 80$$

$$4^{x+1} + 4^{2x+1} = 80$$

$$4 \cdot 4^{x} + 4 \cdot 4^{2x} = 80$$

$$4^{x} + 4^{2x} = 20$$

$$y = 4^{x} \text{ sissibs.}$$

$$y + y^{2} = 20$$

$$y^{2} + y - 20 = 0$$

$$(y + 5)(y - 4) = 0$$

$$y = -5, 4$$

$$y = 4^{x} > 0 \text{ sissiffed} \qquad y = 4$$

$$4^{x} = 4$$

$$x = 1$$

$$17$$

இருமாறிகளிலான சமன்பாடுகள் (Equations in two variables) சமன்பாடுகளை தீர்க்க

வகை I

ലമെ II

$$x^2 + xy - 2y^2 = 0$$

 $x^2 + 2xy + 3y^2 + 4x + 5y = 15$
 $x^2 + xy - 2y^2 = 0$ (1), $x^2 + 2xy + 3y^2 + 4x + 5y = 15$ (2)
 $x^2 + xy - 2y^2 = 0$
 $x^2 + xy - 2y^2 = 0$
 $x = -2y$ அல்லது y
 $x = -2y$ என (2) இல் பிரதியிட
 $4y^2 - 4y^2 + 3y^2 - 8y + 5y = 15$
 $3y^2 - 3y - 15 = 0$

$$y^2 - y - 5 = 0$$

$$y = \frac{1 \pm \sqrt{21}}{2}$$

$$y = \frac{1 + \sqrt{21}}{2}$$
 எனின், $x = -1 - \sqrt{21}$

$$y = \frac{1 - \sqrt{21}}{2}$$
 or softsin, $x = -1 + \sqrt{21}$

$$x = y$$
 என (2) இல் பிரதியிட

$$y^{2} + 2y^{2} + 3y^{2} + 4y + 5y = 15$$

$$6y^{2} + 9y - 15 = 0$$

$$2y^{2} + 3y - 5 = 0$$

$$(2y + 5)(y - 1) = 0$$

உகாணம் 19

$$x^2 + xy + 4y^2 = 16$$
$$3x^2 + 8y^2 = 14$$

$$x^{2} + xy + 4y^{2} = 6$$
(1)
$$3x^{2} + 8y^{2} = 14$$
(2)
$$(1) \times 7$$

$$7x^{2} + 7xy + 28y^{2} = 42$$
(2)
$$\times 3$$

$$9x^{2} + 24y^{2} = 42$$

$$9x^{2} + 24y^{2} = 7x^{2} + 7xy + 28y^{2}$$

$$2x^{2} - 7xy - 4y^{2} = 0$$

$$(2x + y)(x - 4y) = 0$$

 $x = -\frac{y}{2}$ அல்லது $x = 4y$

$$x=-rac{y}{2}$$
 என (2) இல் பிரதியிட, $x=4y$ என (2) இல் பிரதியிட $3y^2$

$$\frac{3y^2}{4} + 8y^2 = 14$$

$$35y^2 = 56$$

$$48y^2 + 8y^2 = 14$$

$$56y^2 = 14$$

$$5y^{2} = 8$$

$$y^{2} = \frac{1}{4}$$

$$y = \pm \frac{2\sqrt{2}}{\sqrt{5}}$$

$$y = \pm \frac{1}{2}$$

$$y = \pm \frac{2\sqrt{10}}{5}$$

$$y = \frac{2\sqrt{10}}{5}$$
 எனின், $x = \frac{-\sqrt{10}}{5}$ $y = \frac{1}{2}$ எனின், $x = 2$ $y = \frac{-2\sqrt{10}}{5}$ எனின், $x = \sqrt{10}$ $y = -\frac{1}{2}$ எனின், $x = -2$

மூன்று மாறிகளிலான சமன்பாடுகள் (Equations in three Variables) பின்வரும் ஒருங்கமை சமன்பாடுகளைத் தீர்க்க.

உதாரணம் 20

x + y + z = 4

$$2x + y + 3z = 4$$

$$3x + 4y + 5z = 13$$

$$x + y + z = 4$$

$$2x + y + 3z = 4$$

$$(1) \times 4, \ 4x + 4y + 4z = 16$$

$$3x + 4y + 5z = 13$$

$$(2) - (1) \quad x + 2z = 0$$

$$(4) - (3) \quad x - z = 3$$

(4) - (3)

$$x + 2z = 0 x - z = 3$$
 $\Rightarrow z = -1, x = 2,$
$$x + y + z = 4, 2 + y - 1 = 4, y = 3$$

$$x = 2, y = 3, z = -1$$

$$yz = 4z - 3y$$
$$zx = 2z - 3x$$

$$2xy = 2x + y$$

மூன்று சமன்பாடுகள் உள்ளன. சமன்பாடு (1) இல் y=0 எனின் z=0 சமன்பாடு (2) இல் z=0 எனப்பிரதியிட x=0 எனவே தீர்வுகளில் ஒன்று x=0, y=0, z=0 ஆகும்.

$$x, y, z \neq 0$$
 sisints, $xy \neq 0, yz \neq 0, zx \neq 0$

$$yz = 4z - 3y$$
, yz ஆல் பிரிக்க, $1 = \frac{4}{y} - \frac{3}{z}$ — (4)

$$2xy = 2x + y$$
, xy ஆல் பிரிக்க, $2 = \frac{2}{y} + \frac{1}{x}$ — (6)

$$\frac{4}{y} - \frac{3}{z} = 1$$
 ———(4)

$$\frac{2}{x} - \frac{3}{z} = 1$$
 (5)

எனவே தீர்வுகள்.

$$x = 0, y = 0, z = 0$$

$$x = 1$$
, $y = 2$, $z = 3$

உதாரணம் 22

$$(x+5) (y+5) = 72$$

$$(y+5) (z+5) = 90$$

$$(z+5) (x+5) = 80$$

$$x+5 = u, \quad y+5 = v, \quad z+5 = w \text{ steints.}$$

$$(x+5) (y+5) = 72, \quad uv = 72 \qquad (4)$$

$$(y+2) (z+5) = 90, \quad vw = 90 \qquad (5)$$

$$(z+5) (x+5) = 80 \qquad wu = 80 \qquad (6)$$

$$(4) \times (5) \times 6, \quad u^2 v^2 w^2 = 72 \times 90 \times 80 = 72^2 \times 10^2$$

$$uvw' = \pm 720$$

uvw = 720 என்க.

uvw = -720 என்க.

(4) இலிருந்து
$$w=10$$
, $z=5$, (4) இலிருந்து $w=-10$, $z=-15$

(5) இலிருந்து
$$u=8$$
 $x=3$ (5) இலிருந்து $u=-8$ $x=-13$

(6) இலிருந்து
$$v=9$$
, $y=4$ (6) இலிருந்து $v=-9$ $y=-14$

$$x = 3$$
, $y = 4$, $z = 5$; $x = -13$, $y = -14$, $z = -15$

1.6 விகிதம், விகிதசமம்

உதாரணம் 23

$$a:b=3:4$$
 எனின்,

(i)
$$2a - 3b : 3a - 2b$$

(ii)
$$a^2 - ab - 2b^2 : a^2 - 4b^2$$
 gais as sansons.

$$\frac{a}{b} = \frac{3}{4}$$
, $a = \frac{3b}{4}$ Augi.

(i)
$$\frac{2a-3b}{3a-2b} = \frac{\frac{3b}{2}-3b}{\frac{9b}{4}-2b} = \frac{\frac{-3b}{2}}{\frac{b}{4}} = \frac{-6}{1}$$

$$2a - 3b : 3a - 2b = -6 : 1$$

(ii)
$$a^2 - ab - 2b^2 = \frac{9b^2}{16} - \frac{3b^2}{4} - 2b^2 = \frac{-35b^2}{16}$$

 $a^2 + 4b^2 = \frac{9b^2}{16} - 4b^2 = \frac{-55b^2}{16}$
 $a^2 - ab - 2b^2 : a^2 - 4b^2 = 7:11$

(i)
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
 எனின் ஒவ்வொரு விகிதமும் $\frac{la + mc + ne}{lb + md + nf}$ இற்கு சமமெனக் காட்டுக.

(ii)
$$3x - 4y = 0$$

 $2x + 5y = 46$ எனின், x, y ஐக் காண்க.

(i)
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$
 என்க.
$$a = kb, \quad c = kd, \quad e = kf$$
 ஆகும்.
$$\frac{la + mc + ne}{lb + md + nf} = \frac{lkb + mkd + nkf}{lb + md + nf}$$
$$= \frac{k\left(lb + md + nf\right)}{\left(lb + md + nf\right)} = k$$
 ஆகவே $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{la + mc + ne}{lb + md + nf}$ ஆகும்.

(ii)
$$3x - 4y = 0$$
, $2x + 5y = 46$
 $3x = 4y$, $\frac{x}{4} = \frac{y}{3}$
 $\frac{x}{4} = \frac{y}{3} = \frac{2x + 5y}{2 \times 4 + 5 \times 3} = \frac{2x + 5y}{23} = \frac{46}{23} = 2$
 $x = 8$, $y = 6$

$$rac{x+y}{2a+b} = rac{y+z}{2b+c} = rac{z+x}{2c+a}$$
 எனின், $rac{x+y+z}{a+b+c} = rac{(b+c)x+(c+a)y+(a+b)z}{2(ab+bc+ca)}$ எனக் காட்டுக. $k = rac{x+y}{2a+b} = rac{y+z}{2b+c} = rac{z+x}{2c+a}$

$$k = \frac{(x+y) + (y+z) + (z+x)}{(2a+b) + (2b+c) + (2c+a)} = \frac{2(x+y+z)}{3(a+b+c)}$$

$$\frac{x+y+z}{a+b+c} = \frac{3k}{2}$$

$$k = \frac{x+y}{2a+b} = \frac{y+z}{2b+c} = \frac{(x+y) - (y+z)}{(2a+b) - (2b+c)} = \frac{x-z}{2a-b-c}$$

$$k = \frac{x-z}{2a-b-c} = \frac{z+x}{2c+a} = \frac{2x}{3a-b+c}$$

$$k = \frac{2x}{3a-b+c} = \frac{2y}{3b-c+a}, \qquad k = \frac{2z}{3c-a+b}$$

$$k = \frac{2x}{3a-b+c} = \frac{2y}{3b-c+a} = \frac{2z}{3c-a+b}$$

$$k = \frac{2x(b+c)}{(3a-b+c)(b+c)} = \frac{2y(c+a)}{(3b-c+a)(c+a)} = \frac{2z(a+b)}{(3c-a+b)(a+b)}$$

$$k = \frac{2x(b+c) + 2y(c+a) + 2z(a+b)}{[3a-(b-c)](b+c) + [3b-(c-a)](c+a) + [3c-(a-b)(a+b)]}$$

$$k = \frac{2[x(b+c) + y(c+a) + z(a+b)]}{3a(b+c) - (b^2-c^2) + 3b(c+a) - (c^2-a^2) + 3c(a+b) - (a^2-b^2)}$$

$$= \frac{2[x(b+c) + y(c+a) + z(a+b)]}{3[2ab+2bc+2ca]}$$

$$\frac{3k}{2} = \frac{x(b+c) + y(c+a) + z(a+b)}{2ab+2bc+2ca}$$

$$\frac{3k}{2} = \frac{x(b+c) + y(c+a) + z(a+b)}{2ab+2bc+2ca}$$

1.7 மடக்கை (Logarithm)

$$10^1=10$$
, $10^2=100$, $10^3=1000$, $10^{-1}=\frac{1}{10}$, $10^{-2}=\frac{1}{10^2}=\frac{1}{100}$, $10^{-3}=\frac{1}{10^3}=\frac{1}{1000}$, $3^1=3$, $3^2=9$, $3^3=27$, $3^{-1}=\frac{1}{3}$, $3^{-2}=\frac{1}{3^2}=\frac{1}{9}$, $3^{-3}=\frac{1}{3^3}=\frac{1}{27}$ a , 1 இலும் பெரிதான மெய்யெண் என்க. $a\in R$, $a>1$

 $y = a^x$ இன் வரைபை நோக்குவோம்.

$$x = 0$$
 எனின் $a^x = a^0 = 1$
 $x > 0$ எனின் $a^x > 1$
 $x < 0$ எனின் $0 < a^x < 1$

x இன் எல்லாப் பெறுமானங்களுக்கும் $a^x>0$ ஆகவும்,

x அதிகரிக்க, a^x அதிகரித்துச் செல்வதையும் காணலாம்.

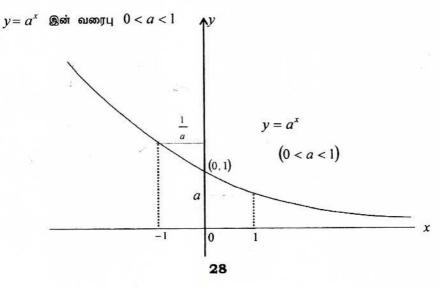
$$10^{1} = 10$$
 sign@au $\log_{10} 10 = 1$
 $10^{2} = 100 \Leftrightarrow \log_{10} 100 = 2$
 $10^{3} = 1000 \Leftrightarrow \log_{10} 1000 = 3$
 $2^{5} = 32 \Leftrightarrow \log_{2} 32 = 5$
 $2^{-5} = \frac{1}{32} \Leftrightarrow \log_{2} \frac{1}{32} = -5$
 $y = a^{x} (a > 1)$

$$a^x = y$$
 எனின், $\log_a y = x$ ஆகும்.

$$a^x = y \Leftrightarrow \log_a y = x$$

0 < a < 1 sissis.

$$\left(\frac{1}{2}\right)^0 = 1,$$
 $\left(\frac{1}{2}\right)^1 = \frac{1}{2},$ $\left(\frac{1}{2}\right)^2 = \frac{1}{4},$ $\left(\frac{1}{2}\right)^3 = \frac{1}{8},$ $\left(\frac{1}{2}\right)^{-1} = \frac{1}{\frac{1}{2}} = 2,$ $\left(\frac{1}{2}\right)^{-3} = 8$


0 < a < 1 எனின் x > 0 எனின், $0 < a^x < 1$

0 < a < 1 எனின், x < 0 எனின், $a^x > 1$

0 < a < 1 எனின், x = 0 எனின், $a^x = 1$

0 < a < 1 எனின் x இன் எல்லாப் பெறுமானங்களுக்கும் $a^x > 0$

0 < a < 1 எனின் x அதிகரிக்க a^x குறையும்.

மடக்கை விதிகள் x, y > 0 ஆகவும் $a > 0, a \ne 1$ ஆகவுமிருக்க.

$$\log_a xy = \log_a x + \log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a x^n = n \log_a x$$

மடக்கையின் அடியை மாற்றுதல்

a, b, c என்பன நேர் எண்களாகும்.

$$\log_a b = \frac{\log_c b}{\log_c a} \quad \text{a.s.}$$

$$\log_a b = x$$
 என்க. — (1)

$$\log_a b = x \iff b = a^x$$

$$\log_c b = \log_c a^x$$

$$\log_c b = x \log_c a$$

$$x = \frac{\log_c b}{\log_c a} \tag{2}$$

$$(1),(2)$$
 இலிருந்து
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 (1)

$$c = b$$
 எனின், $\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$ ஆகும்.

$$\log_a b = \frac{1}{\log_b a} \tag{2}$$

29

உதாரணம் 26

- (i) a,b என்பன நேர் மெய்யெண்களாக இருக்க, $\log_a b = rac{1}{\log_b a}$ எனக் காட்டுக.
- (ii) $y = \log_x 4$ எனப் பிரதியீடு செய்து அல்லது வேறு வழியாக $4\log_{16} x 1 = \log_x 4$ ஐத் தீர்க்க
 - (i) $\log_a b = x$ என்க. $\log_a b = x \iff b = a^x$ $\log_b b = \log_b a^x$ $1 = x \cdot \log_b a$ $x = \frac{1}{\log_b a}$ $\log_a b = \frac{1}{\log_b a}$ ஆகும்.

(ii)
$$4\log_{16} x - 1 = \log_x 4$$

 $4 \times \frac{1}{\log_x 16} - 1 = \log_x 4$
 $4 \times \frac{1}{2\log_x 4} - 1 = \log_x 4$
 $\frac{2}{\log_x 4} - 1 = \log_x 4$
 $\log_x 4 = y$ state.

 $\frac{2}{v} - 1 = y$

 $v^2 + v - 2 = 0$

$$(y+2)(y-1)=0$$
 $y=-2$ ঞাই কান্স বিষয়ে 1
 $\log_x 4=-2$ ঞাই কান্স 1
 $\log_x 4=1$
 $x^{-2}=4$
 $x^1=4$
 $(x^{-2})^{\frac{1}{2}}=4^{\frac{1}{2}}$
 $x=4$
 $x=1$
 $x=2$

∴
$$\sharp$$
ńω $x = \frac{1}{2}$, 4

(i) a,b என்பன நேரெண்களாக இருக்க, $\frac{1}{\log_a ab} + \frac{1}{\log_b ab} = 1 \ \text{ எனக் காட்டுக}.$

(ii) தீர்க்க : (a)
$$\log_2 x = \log_4 (x+6)$$

(b) $\log_8 \frac{x}{2} = \frac{\log_8 x}{\log_8 2}$

(i)
$$\frac{1}{\log_a ab} + \frac{1}{\log_b ab}$$
$$= \log_{ab} a + \log_{ab} b$$
$$= \log_{ab} ab = 1$$

(ii) (a)
$$\log_2 x = \log_4 (x+6)$$

 $\log_2 x = \frac{\log_2 (x+6)}{\log_2 4}$

log₂
$$x = \frac{\log_2(x+6)}{\log_2 2^2}$$

 $2\log_2 x = \log_2(x+6)$
 $\log_2 x^2 = \log_2(x+6)$
 $x^2 = x+6$
 $x^2 - x - 6 = 0$
 $(x-3)(x+2) = 0$
 $x = 3, -2$
 $x > 0$, ஆகவே $x = 3$

(b)
$$\log_8 \frac{x}{2} = \frac{\log_8 x}{\log_8 2}$$

 $\log_8 x - \log_8 2 = \frac{\log_8 x}{\log_8 2}$

$$\log_8 x = y$$
 என்க. மேலும் $\log_8 2 = \log_8 8^{\frac{1}{3}} = \frac{1}{3}$ $y - \frac{1}{3} = \frac{y}{\frac{1}{3}}$

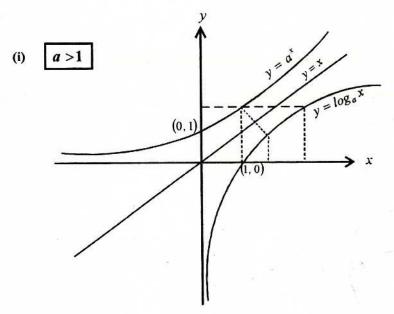
$$y - \frac{1}{3} = 3y$$

$$y = -\frac{1}{6}$$
, $x = 8^{-\frac{1}{6}} = (2^3)^{\frac{-1}{6}} = 2^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

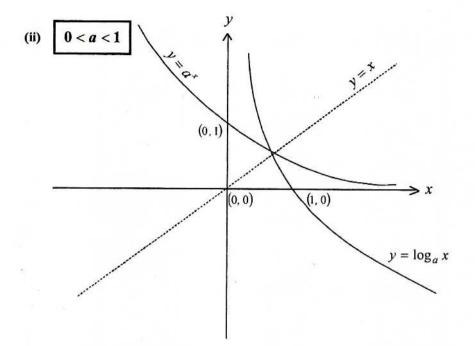
$$y = a^x$$
 இன் வரைபு $x \mid \longrightarrow a^x \ (a > 0, a \ne 1)$

$$x=0$$
 எனின் $y=1$; $x=1$ எனின் $y=a$, $x=-1$ எனின் $y=\frac{1}{a}$

$$A \equiv (0, 1), \quad B \equiv (1, a), \quad C \equiv \left(-1, \frac{1}{a}\right)$$
 similar


 $y = a^x$ இல் உள்ள புள்ளிகளாகும்.

$$y = \log_a x$$
 இன் வரைபு $x \mid \longrightarrow \log_a x$


$$x=1$$
 எனின், $y=0$, $x=a$ எனின் $y=1$, $x=\frac{1}{a}$ எனின் $y=-1$

$$P \equiv (1, 0), \qquad Q \equiv (a, 1), \qquad R \equiv \left(\frac{1}{a}, -1\right)$$
 என்பன

 $y = \log_a x$ இல் உள்ள புள்ளிகளாகும்.

y=x இன் மேல் $y=a^x$ இன் விம்பம் $y=\log_a x$ ஆகும்.

பயிற்சி 1.1 - அட்சரகணிதக் கோவைகளின் விரிவுகள்

பின்வருவனவற்றை விரித்து எழுதுக.

1.
$$(2x+5)^2$$

2.
$$(3x-2)^2$$

3.
$$(a-4)^2$$

4.
$$(3a-4b)^2$$

5.
$$\left(\frac{2x}{3} + \frac{3y}{2}\right)^2$$

6.
$$\left(\frac{1}{x} - \frac{1}{y}\right)^2$$

$$7. \qquad (2xy+z)^2$$

8.
$$(x^2 + y^2)^2$$

9.
$$(x^3 - y^3)^2$$

$$10. \quad (ax - by)^2$$

11.
$$\left(x+\frac{1}{x}\right)^2$$

12.
$$\left(x-\frac{1}{x}\right)^2$$

13.
$$(x+1)^3$$

14.
$$(x-1)^3$$

15.
$$(2x+3)^3$$

16.
$$(3x + 4y)^3$$

17.
$$(3x + 4y)^3$$

18.
$$\left(\frac{x}{2} + \frac{y}{3}\right)^3$$

19.
$$(ab-2c)^3$$
 20. $(3ab+2cd)^3$ 21. $\left(x+\frac{1}{x}\right)^3$

22.
$$\left(x-\frac{1}{x}\right)^3$$
 23. $\left(x^2+y^2\right)^3$ 24. $\left(x^3-y^3\right)^3$

25.
$$(a+b-c)^2$$
 26. $(a-b-c)^2$ **27.** $(a+2b-c)^2$

28.
$$(2a+b-c)^2$$
 29. $(a+2b-3c)^2$ **30.** $(2a-b-3c)^2$

31.
$$\left(\frac{1}{a} - \frac{1}{b} + \frac{1}{c}\right)^2$$
 32. $\left(\frac{1}{a} - \frac{1}{b} - \frac{1}{c}\right)^2$ 33. $\left(\frac{1}{a} + \frac{2}{b} - \frac{1}{c}\right)^2$

- 34. x + y = 7, xy = 12 எனின், $x^2 + y^2$ இன் பெறுமானம் யாது?
- 35. x + y = 9, xy = 20 எனின், $x^2 + y^2$, $x^3 + y^3$, $x^4 + y^4$ என்பவற்றின் பெறுமானங்களைக் காண்க.
- 36. $x + \frac{1}{x} = 3$ எனின், $x^2 + \frac{1}{x^2}$, $x^3 + \frac{1}{x^3}$, $x^4 + \frac{1}{x^4}$ என்பவற்றின், பெறுமானங்களைக் காண்க.
- 37. x + y = 4, xy = 7 எனின், $x^2 + y^2$, $x^3 + y^3$, $x^4 + y^4$ என்பவற்றின், பெறுமானங்களைக் காண்க.
- $x = t + \frac{1}{t}, \quad y = t \frac{1}{t}$ எனின் x இற்கும் y இற்குமிடையே t ஐச் சாராது தொடர்பு ஒன்றைப் பெறுக.
- 39. $x=a\left(t+\frac{1}{t}\right), \quad y=a\left(t^2+\frac{1}{t^2}\right)$ எனின், t ஐச் சாராது x, y, a என்பவற்றிற்கிடையே தொடர்பொன்றினைக் காண்க.
- **40.** $x = at^2$, y = 2at எனின், t ஐச் சாராது x, y, a என்பவற்றிற்கிடையே தொடர்பு ஒன்றைப் பெறுக.

பயிற்சி 1.2 - காரணிகளாக்குதல்

காரணியாக்குக.

1.
$$x^2 + 5x + 6$$

3.
$$x^2 + x - 6$$

5.
$$x^2 + 5x - 6$$

7.
$$x^2 - 9x + 18$$

9.
$$x^2 + 3x - 18$$

11.
$$3-2r-r^2$$

13.
$$15 + 2r - r^2$$

15.
$$x^2 + x - (a-1)(a-2)$$

17.
$$x^2 - (2a-3)x + (a-1)(a-2)$$

19.
$$x^2 + 2x - (a^2 - 1)$$

21.
$$2x^2 - 3x - 2$$

23.
$$5x^2 + 14x - 3$$

25.
$$6x^2 - 11x - 72$$

27.
$$6x^2 - 55x + 126$$

29.
$$x^3 + 8y^3$$

31.
$$1 - 125x^3$$

33.
$$x^3 - \frac{1}{r^3}$$

35.
$$\frac{a^3}{8} - \frac{b^3}{27}$$

37.
$$a^4 - a^3b - ab^3 + b^4$$

2.
$$x^2 - 5x + 6$$

4.
$$x^2 - x - 6$$

6.
$$x^2 - 5x - 6$$

8.
$$x^2 + 9x + 18$$

10.
$$x^2 - 3x - 18$$

12.
$$6 - x - x^2$$

14.
$$21 - 4x - x^2$$

16.
$$x^2 - x - (a-1)(a-2)$$

18.
$$x^2 - 2x - (a^2 - 1)$$

20.
$$2x^2 - x - 1$$

22.
$$2x^2 + x - 6$$

24.
$$6x^2 + x - 15$$

26.
$$6x^2 - x - 35$$

28.
$$18x^2 + 13x - 21$$

30.
$$a^3b^3-64c^3$$

32.
$$x^3 + \frac{1}{x^3}$$

34.
$$x^3 y^3 - 216z^3$$

36.
$$16x^3 - 54y^3$$

38.
$$a^4 + a^3 b - ab^3 - b^4$$

39.
$$8a^3-b^3-a(2a^2-5ab+2b^2)$$
 40. $x^4+x^2y^2+y^4$

41.
$$x^4 + 2x^2y^2 + 9y^4$$
 42. $x^6 - 9x^3y^3 + 8y^6$

43.
$$1-9x^2+12xy-4y^2$$
 44. a^6-b^6

45.
$$a^6 + b^6$$

காரணி அறிவை உபயோகித்துச் சுருக்குக

46.
$$103 \times 97$$
 47. $100 \cdot 3 \times 99 \cdot 7$ **48.** $12 \cdot 5^2 - 12 \times 13$

49.
$$\sqrt{140 \times 148 + 16}$$
 50. $(a+b)(a-b)(a^2+b^2)(a^4+b^4)$

பயிற்சி 1.3 - அட்சரகணிதப் பின்னங்களைச் சுருக்குதல்

சுருக்குக

1.
$$\frac{a}{1-a^2} + \frac{1}{a-1}$$
 2. $\frac{x}{x-y} - \frac{y}{x+y} + \frac{xy}{y^2 - x^2}$

3.
$$\frac{2}{1+x} + \frac{1}{x-1} + \frac{3x}{1-x^2}$$
 4. $\frac{1}{(1-x)^2} - \frac{1}{1-x^2}$

5.
$$\frac{1}{x^2 - 4} + \frac{1}{x^2 + x - 6} - \frac{2}{x^2 + 5x + 6}$$

6.
$$\frac{2}{1-x} - \frac{1}{(x-1)^2} + \frac{3}{1-x^2}$$

7.
$$\frac{1}{(x-3)^2} + \frac{1}{2x^2 - 5x - 3} - \frac{6}{4x^2 - 1}$$

8.
$$\frac{2}{3x^2 - 14x + 8} - \frac{8}{13x - 6x^2 - 6} - \frac{4}{2x^2 - 11x + 12}$$

9.
$$\frac{1}{(x-y)(y-z)} + \frac{1}{(y-z)(z-x)} + \frac{1}{(z-x)(x-y)}$$

10.
$$\frac{a^2}{(a-b)(a-c)} + \frac{b^2}{(b-c)(b-a)} + \frac{bc}{(c-a)(c-b)}$$

11.
$$\frac{x+1}{x^2-5x+6} \div \frac{1+x}{4-x^2}$$
 12.
$$\frac{\left(x^2-9\right)(x+2)}{\left(x^2-x-12\right)\left(x^2-x-6\right)}$$

13.
$$\left(\frac{x}{y} + \frac{y}{x}\right) \div \left(\frac{x}{x-y} - \frac{y}{x+y}\right)$$

14.
$$\left(\frac{1}{a+b} - \frac{1}{b}\right) \left(\frac{1}{a-b} - \frac{1}{a}\right) \left(\frac{1}{a^2} - \frac{1}{b^2}\right)$$
 15. $\frac{\frac{1}{a} - 4a}{4 - 4a - \frac{1}{a}}$

பயிற்சி 1.4 - கட்டிகள்

பெறுமானங் காண்க

1. (i) 50° (ii)
$$64^{-\frac{2}{3}}$$
 (iii) $(2^4)^{-\frac{3}{2}}$ (iv) $16^{-\frac{1}{2}}$

2. (i)
$$32^{-\frac{2}{5}} \div 125^{\frac{2}{3}}$$
 (ii) $\frac{32^{-\frac{2}{5}} \times 216^{\frac{2}{3}}}{81^{\frac{3}{4}} \times 27^{-\frac{2}{3}}}$

(i)
$$x = \frac{3}{2}$$
 (ii) $x = -3$ எனின், y ஐக் காண்க.

(iii)
$$y = 32$$
 (iv) $y = \frac{1}{8}$ எனின், x ஐக் காண்க.

(b) பெறுமானங் காண்க.

$$\left(\sqrt{8}\right)^8 \times \frac{1}{\sqrt{27}} \times 6^{-\frac{5}{2}}$$

x = 9, y = 16 எனின், பின்வருவனவற்றின் பெறுமானங்களைக் காண்க.

(i)
$$x^{\frac{1}{2}} y^{\frac{3}{4}}$$
 (ii) $\left(\frac{6y}{y}\right)^{\frac{1}{3}}$ (iii) $(4xy)^{-\frac{1}{2}}$ (iv) $(x+y)^{-\frac{1}{2}}$

x இன் பெறுமானத்தைக் காண்க.

(a)
$$4^{-x} = 32$$

(a)
$$4^{-x} = 32$$
 (b) $x^{-\frac{1}{2}} = 4$

(c)
$$4^x = \sqrt{512}$$

(d)
$$2^x \times 8^{x-1} = 4^3$$

பயிற்சி 1.5 - சமன்பாடுகள்

A. ஒரு மாறியிலான சமன்பாடுகள்

1.
$$x^4 - 12x^2 + 27 = 0$$

2.
$$x + 3\sqrt{5x} = 50$$

$$3. \quad 8\left(x^3 + x^{-3}\right) = 65$$

4.
$$3\left[(x+7)^{\frac{1}{2}}+(x+7)^{-\frac{1}{2}}\right]=10$$

5.
$$x^{-1} + x^{-\frac{1}{2}} = \frac{3}{4}$$

6.
$$x^{\frac{1}{2}} + x^{\frac{1}{4}} = 6$$

7.
$$\frac{5}{x^2 + 6x + 2} = \frac{3}{x^2 + 6x + 1} - \frac{4}{x^2 + 6x + 8}$$

8.
$$\left(x + \frac{2}{x} - 1\right) \left(x + \frac{2}{x} + 4\right) = 6$$

9.
$$\frac{x^2}{x^2 + 3x + 2} + \frac{2(x^2 + 3x + 2)}{x^2} = 12\frac{1}{6}$$

10.
$$6\left(x^2 + \frac{1}{x^2}\right) + 5\left(x + \frac{1}{x}\right) - 38 = 0$$

11.
$$\left(x - \frac{1}{x}\right)^2 + 7\left(x - \frac{1}{x}\right) = 12\frac{3}{4}$$
 12. $x^2 + \frac{1}{x^2} + x + \frac{1}{x} = 4$

13.
$$9x^{\frac{2}{3}} + 4x^{\frac{-2}{3}} = 37$$

14.
$$(x^2 9x + 15)(x^2 - 9x + 20) = 24$$

15.
$$6x^4 + 7x^3 - 36x^2 - 7x + 6 = 0$$

16.
$$x^4 + x^3 - 4x^2 + x + 1 = 0$$

17.
$$3x^4 - 20x^3 - 94x^2 - 20x + 3 = 0$$

18.
$$5\sqrt{x-3} + 2\sqrt{x+1} = \sqrt{x+13}$$

19.
$$4\sqrt{x-1} - \sqrt{x+4} = \sqrt{x+20}$$

20.
$$3\sqrt{x} + 2\sqrt{5-x} = 8$$

21.
$$(x+3)(x+5)(x-2)(x-4)=120$$

22.
$$(x+1)(2x-7)(2x+1)(x-3)=96$$

23.
$$2^{x+1} + 2^{2x} = 8$$

24.
$$2^{x^2}$$
: $2^{3x} = 16:1$

25.
$$2^{2x} - 3 \cdot 2^{x+2} + 32 = 0$$

26.
$$(1-x)^4 + (1+x)^4 = 82$$

27.
$$(x+1)^4 + (x+5)^4 = 82$$

B. இரு மாறிகளிலான சமன்பாடுகள்

1.
$$ax - by = bx - ay = a^2 - b^2$$

2.
$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{2x+2y}{9}$$
 3. $x+y=1$; $2(x^2+y^2) = 17$

4.
$$2x^2 - 3xy = 36$$
, $4x + 5y = 2$

5.
$$x + 2y = 3$$
; $3x^2 + 4y^2 + 12x = 7$

6.
$$4x^2 - 5y^2 = 16$$
; $9x^2 + 10y = 101$

7.
$$x^2 - 4xy + 3y^2 = 0$$
; $2x^2 - 2x + y = 13$

8.
$$8x^2 - 6xy + y^2 = 0$$
; $x^2 + y^2 + x = 6$

9.
$$x^2 + 2xy + 2y^2 = 3x^2 + xy + y^2 = 5$$

10.
$$2x^2 + 3xy = 26$$
; $3y^2 + 2xy = 39$

11.
$$x^2 - xy = 6$$
; $x^2 + y^2 = 61$

12.
$$x^2 + 2xy = 45$$
; $xy + 3y^2 = 22$

13.
$$x^2 + y^2 = 2y$$
; $2xy - y^2 = y$

14.
$$x^2 - x - y = 0$$
; $2x^2 + xy + 2y^2 = 5(x+y)$

15.
$$xy + y^2 = 4x + y$$
; $5xy + 2y^2 = 8x + 5y$

16.
$$2x^2 = x + y$$
; $2xy + y^2 = 3x$

17.
$$x + y = 5$$
; $x^3 + y^3 = 35$

18.
$$x - y = 3$$
; $x^3 - y^3 = 117$

19.
$$x + y = 10$$
; $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{10}{3}$

20.
$$x^4 + x^2 y^2 + y^4 = 133$$
; $x^2 + xy + y^2 = 19$

21.
$$\frac{1}{x^2} + \frac{1}{xy} = \frac{1}{16}$$
; $\frac{1}{y^2} + \frac{1}{xy} = \frac{1}{9}$

22.
$$xy - \frac{x}{y} = 5$$
; $xy - \frac{y}{x} = \frac{1}{5}$

23.
$$x^2 + xy + 3x = 6$$
; $y^2 + xy + 3y = 12$

24.
$$\frac{3}{x+1} + \frac{2}{y-4} = 2$$
; $\frac{4}{x+1} - \frac{9}{y-4} = 5$

25.
$$(x + y)^2 + (x + y) = 6$$

 $x - y = 1$

26.
$$\frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{10}{3}$$
; $x^2 + xy = 6$

27.
$$(x+y)^{\frac{2}{3}} + 6(x-y)^{\frac{2}{3}} = 5(x^2-y^2)^{\frac{1}{3}}$$

 $x-y=2$

28.
$$x^3 + y^3 = 28$$
; $x^2y + xy^2 = 12$

29.
$$x^2 + 15xy - 4y^2 = 6$$

 $x^2 + y^2 = 1$

30.
$$xy - 3x - 3y + 12 = 0$$

 $2xy + 4x + 4y = 56$

С. மூன்று மாறிகளிலான சமன்பாடுகள்

தீர்க்க

1.
$$x + y + z = 1$$

 $x + 2y + 3z = 4$
 $x + 4y + 9z = 16$

2.
$$x + 2y + z = 2$$

 $2x - 3y - 3z = 6$
 $3x + y + 2z = 4$

3.
$$3y + 2z = 2yz$$
$$4z + x = zx$$
$$3x + 2y = xy$$

4.
$$(x+3)(y+5) = 24$$

 $(y+5)(z+7) = 48$
 $(z+7)(x+3) = 32$

5.
$$(x + y)(y + z) = 9$$

 $(y + z)(z + x) = 25$
 $(z + x)(x + y) = 1$

6.
$$ax + y + z = a + 1$$

 $x + ay + z = a + 2$
 $x + y + az = a + 3 \quad (a \ne 1)$

7.
$$4x(x + 2y + 4z) = 21$$

 $y(x + 2y + 4z) = 10\frac{1}{2}$
 $z(x + 2y + 4z) = 21$

8.
$$(y+z)(x+y+z)=1$$

 $(z+x)(x+y+z)=3$
 $(x+y)(x+y+z)=4$

9.
$$\frac{y+z}{3} = \frac{z+x}{5} = \frac{x+y}{6}$$
$$x^2 + y^2 + z^2 = 21$$

10.
$$2xy = 15$$
, $3yz = 50$, $xy = 5$

- 11. $x^2 + y^2 + z^2 = 1$, 4x + 3y + z = 5, 2x + 3y z = 3 எனின் x, y, z ஐக் காண்க. பெற்ற தீர்வுகள் $9(y + z x)^2 = 1$ எனும் சமன்பாட்டைத் திருப்தி செய்யும் என வாய்ப்புப் பார்க்க.
- 12. $a^2 + b^2 + c^2 ab bc ca = \frac{1}{2} [(a b)^2 + (b c)^2 + (c a)^2]$ எனக் காட்டுக. $a^2 + b^2 + c^2 = (a + b + c)^2 2(ab + bc + ca)$ $a^3 + b^3 + c^3 3abc = (a + b + c)[a^2 + b^2 + c^2 ab bc ca]$ எனக் காட்டுக.

$$x + y + z = 1$$
, $x^2 + y^2 + z^2 = 13$, $x^3 + y^3 + z^3 = 19$ எனின் x, y, z ஐக் காண்க.

13.
$$x + y = a$$
, $z + x = 2b$, $y + z = 3c$ எனின் $x^2 + y^2 + z^2 - xy - yz - zx$ இன் பெறுமானத்தை a, b, c இல் காண்க.

14.
$$\frac{1}{(a-b)(b-c)} + \frac{1}{(b-c)(c-a)} + \frac{1}{(c-a)(c-b)} = 0$$
 என நிறுவுக
இதிலிருந்தோ அல்லது வேறு வழியாகவோ,

$$rac{1}{(a-b)^2} + rac{1}{(b-c)^2} + rac{1}{(c-a)^2}$$
 என்பது நிறைவர்க்கமெனக் காட்டுக.

பயிற்சி 1.6 - விகிதம், விகிதசமம்

1.
$$a:b=10:3$$
 எனின், $2a-5b:a-3b$ ஐக் காண்க.

- 2. a:b=c:d எனின்,
 - (i) a+b: b=c+d: similarity
 - (ii) a+b: a-b=c+d; c-d என நிறுவுக.
- 3. a:b=x-2y:y+2x எனின், x:y=a+zb:b-2a எனக் காட்டுக.
- 4. $\frac{a}{b} = \frac{c}{d}$ எனின், $\frac{a}{b} = \frac{c}{d} = \frac{ma + nc}{mb + nd}$ என நிறுவுக.

இம் முடிவைப் பிரயோகித்து பின்வரும் சமன்பாடுகளைத் தீர்க்க.

(i)
$$3x - 5y = 0$$
; $2x + 3y = 38$

(ii)
$$2x + 3y = 0$$
; $4x + 5y = -4$

(iii)
$$ax + by = 0$$
; $bx - ay = a^2 + b^2$

(iv)
$$(a + b)x - by = 0$$
; $bx - (a + b)y = a + 2b$

$$5. \quad \frac{x}{b-c} = \frac{y}{c-a} = \frac{z}{a-b} \quad \text{ordinoi},$$

(i)
$$x + y + z = 0$$

(ii)
$$(b+c)x + (c+a)y + (a+b)z = 0$$
 எனக்காட்டுக.

6.
$$\frac{x}{lm-n^2} = \frac{y}{mn-l^2} = \frac{z}{nl-m^2}$$
 ersoflesit,

(i)
$$lx + my + nz = 0$$

(ii)
$$mx + ny + lz = 0$$
 எனக்காட்டுக.

7.
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
 எனின், ஓவ்வொரு பின்னமும் $\frac{2a + 7c - 3e}{2b + 7d - 3f}$ இற்கு சமமெனக் காட்டுக. மேலும் $\frac{a^2 - ac + e^2}{b^2 + bd + f^2} = \frac{a^2 - c^2 - e^2}{b^2 - d^2 - f^2}$ எனவும் $\frac{c^3 - a^2 ef}{d^3 - b^2 f^2} = \frac{ace}{bdf}$ எனவும் காட்டுக.

8.
$$a:b=c:d$$
 similar, $\frac{ab+cd}{ab-cd}=\frac{a^2+c^2}{a^2-c^2}$ similar siniths.

9.
$$\frac{x}{y} = \frac{a}{a+b}$$
 எனின், $\frac{x^2 - xy + y^2}{a^2 + ab + b^2} = \frac{x^2}{a^2}$ எனக்காட்டுக.

10.
$$\frac{y+z-x}{a} = \frac{z+x-y}{b} = \frac{x+y-z}{c}$$
 எனின்,
$$\frac{x}{b+c} = \frac{y}{c+a} = \frac{z}{a+b}$$
 எனநிறுவுக.

11.
$$\frac{x+y}{3a-b} = \frac{y+z}{3b-c} = \frac{z+x}{3c-a}$$
 எனின், $\frac{x+y+z}{a+b+c} = \frac{ax+by+cz}{a^2+b^2+c^2}$ எனக்காட்டுக.

6.

பயிற்சி 1.7 - மடக்கை

தீர்க்க

- 1. $\log_2 4 + 2\log_2 x \log_2 (2x 1) = 2$
- 2. $\log_{10}(x^2+9)-2\log_{10}x=1$
- 3. (i) $\left(a+\sqrt{b}\right)^2$ இன் விரிவை எழுதுக. இதிலிருந்து $9+4\sqrt{5}$ இன் வர்க்க மூலத்தைக் காண்க.

(ii)
$$\log_{10}(x+y)^2 = 4$$
; $\log_{10}(x^2-y^2) = 3$

- 4. xy = 80; $\log_{10} x 2\log_{10} y = 1$
- 5. xy = 8; $\log_{x} y = 2$
- 6. $\log(x + y) = 0$, $2\log x = \log(y + x)$
- 7. $2\log y = \log 2 + \log x$; $2^y = 4^x$
- 8. $\log_2 x + \log_2 y = 3$; $\log_y x = 2$
- 9. $\log_2(x-5y+4)=0$; $\log_2(x+1)-1=2\log_2 y$
- 10. $\log(x-2) + \log 2 = 2\log y$; $\log(x-3y+3) = 0$
- 11. $\log_a \left(a^2 x^2 \right) = 2 + \log_a \left(1 \frac{x^2}{a^2} \right)$
- 12. $a^2 + b^2 = 23 \, ab$ எனின், $\log a + \log b = 2 \log \left(\frac{a+b}{5} \right)$ எனக் காட்டுக.

- 13. $\log_b a = \frac{1}{\log_a b}$ எனவும், $\log_b a \cdot \log_c b \cdot \log_a c = 1$ எனவும் காட்டுக.
- 14. $2\log_y x + 2\log_x y = 5$ எனின், $\log_y x = 2$ அல்லது $\frac{1}{2}$ எனக்காட்டுக. இதிலிருந்து மேலே தரப்பட்ட சமன்பாட்டையும் xy = 27 என்ற சமன்பாட்டையும் திருப்தி செய்யும் x,y இன் பெறுமானங்களைக் காண்க.
- 15. தீர்க்க : $\log_3 x 4\log_x 3 + 3 = 0$
- 16. தீர்க்க : $\log_y x = 2$, $5y = x + 12\log_x y$
- 17. தீர்க்க : $\log_3 x 2\log_x 3 = 1$
- 18. மடக்கை வாய்ப்பாடுகளை உபயோகியாது சுருக்குக.
 - (i) $\log_4 8\sqrt{2}$
- (ii) $\log_5 49 \times \log_7 125$
- 19. (i) $\log_a b^2 \times \log_b a^3 = 6$ எனக் காட்டுக.
 - (ii) a, b என்பன நேராகவும், சமமற்றதாயும் இருப்பின் $\log_a b + \log_b a^2 = 3$ எனின், b ஐ a இல் காண்க.
- 20. $y = \log_a x^3$, $z = \log_x a$ எனின், yz = 3 எனக்காட்டுக. இதிலிருந்து $\log_a \left(3\log_a x\right) \log_a \left(\log_x a\right) = \log_a 27$ ஆகும் போது y,z இன் பெறுமானங்களைக் காண்க.
- 21. $\log_{16} xy = \frac{1}{2}\log_4 x + \frac{1}{2}\log_4 y$ எனக்காட்டுக. இதிலிருந்தோ அல்லது வேறுவழியாகவோ $\log_{16} xy = 3\frac{1}{2}$, $\frac{\log_4 x}{\log_4 y} = -8$ ஆகிய ஒருங்கமை சமன்பாடுகளைத் தீர்க்க.

22. தீர்க்க :
$$\log_3 x = y = \log_9 (2x - 1)$$

23. தீர்க்க :
$$\log_2 x = \log_4 (x + 6)$$

24. Sinds: (a)
$$9\log_x 5 = \log_5 x$$
 (b) $\log_8 \frac{x}{2} = \frac{\log_8 x}{\log_8 2}$

25. ghása :
$$\log_9 xy = \frac{5}{2}$$
, $\log_3 x \cdot \log_3 y = -6$

26.
$$x = \log_a b$$
 எனின், b இற்கான ஒரு கோவையை a, x இல் காண்க. இதிலிருந்து $\log_s t = \frac{\log_r t}{\log_s s}$ என நிறுவுக.

27. s, t என்பன 1 இற்கு சமமற்ற நேர் எண்களாக இருக்க,

(a)
$$\log_s t = \frac{1}{\log_t s}$$
 எனவும், (b) $\log_s t + \log_{\frac{1}{s}} b = 0$ எனவும் காட்டுக.

28. $\log_c b = \log_a c = \log_b a$ எனின், a = b = c என நிறுவுக. $p^2 = qr$ எனின், $\log_q p + \log_r p = 2\log_q p \cdot \log_r p$ எனக்காட்டுக.

29.
$$\alpha(\beta-\delta)+\beta(\delta-\alpha)+\delta(\alpha-\beta)=0$$
 எனக்காட்டுக. $\alpha=\log a$, $\beta=\log b$, $\delta=\log c$ என இடுவதால்
$$\left(\frac{b}{c}\right)^{\log a}\cdot\left(\frac{c}{a}\right)^{\log b}\cdot\left(\frac{a}{b}\right)^{\log c}=1$$
 எனக்காட்டுக.

30. u, v, s, t என்பன எல்லாம் நேராக இருக்க,

$$\log\left(\frac{u}{v}\right) \cdot \log\left(\frac{s}{t}\right) = \log\left(\frac{u}{s}\right) \cdot \log\left(\frac{v}{t}\right) - \log\left(\frac{u}{t}\right) \cdot \log\left(\frac{v}{s}\right)$$
 ετοπάσεπι∟΄ (β.σ.)

மெய்யெண்கள், பல்லுறுப்பிகள், மீதித்தேற்றம், காரணித்தேற்றம், விகிதமுறு சார்புகள்

(i) நேர் நிறை எண்கள் (Positive integers)

1, 2, 3, 4, ----- நேர் நிறை எண்களாகும். நேர் நிறை யெண்களின் தொடை Z⁺ எனக் குறிக்கப்படும்.

$$Z^+ = \{1, 2, 3, 4, -----\}$$

(ii) முழு எண்கள் (Whole Numbers)

0, 1, 2, 3, 4,----- முழு எண்களாகும். முழுவெண்களின் தொடை Zo⁺ எனக் குறிக்கப்படும்.

$$Zo^+ = \{0, 1, 2, 3, -----\}$$

(iii) மறை நிறையெண்கள் (Negative integers)

----3, -2, -1 . மறை நிறையெண்களாகும். மறை நிறையெண்களின் தொடை Z^- எனக் குறிக்கப்படும்.

$$Z^- = \{----, -4, -3, -2, -1\}$$
 ஆகும்.

(iv) நீறையெண்கள் (Integers)

நேர்நிறையெண்கள், மறை நிறையெண்கள், பூச்சியம் என்பன நிறையெண்கள் ஆகும். நிறையெண்களின் தொடை Z எனக் குறிக்கப்படும்.

$$Z = \{---, -2, -1, 0, 1, 2, ---\}$$

(v) விகிதமுறு எண்கள் (Rational numbers)

a, b என்பன நிறையெண்களாகவும், $b \neq 0$ ஆகவுமிருக்க $\frac{a}{b}$ என்னும் வடிவில் எழுதப்படக்கூடிய எண்கள் விகிதமுறு எண்கள் ஆகும். விகிதமுறு எண்களின் தொடை Q ஆல் குறிக்கப்படும்.

$$Q = \left\{ x : x = \frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0 \right\}$$

 $0, \frac{2}{3}, 1, 5, -2, 6\frac{2}{5}$ என்பன விகிதமுறு எண்களாகும்.

விகிதமுறு எண்களைத் தசமத்திலும் வகை குறிக்கலாம்.

 $0.3 = \frac{3}{10}$, ஆகவே 0.3 விகிதமுறு எண்ணாகும். தசம எண்களை (decimals) இரு வகைகளாகப் பிரிக்கலாம்.

- (a) முடிவுள்ள தசமங்கள் (Finite decimals)
- (b) முடிவில் தசமங்கள் (Infinite decimals)

உதாரணம்

(a) முடிவுள்ள தசமங்கள்

(i) 0·3 (ii) 0·47 (iii) 0·125 (iv) 0·7897 முடிவுள்ள தசமங்களை விகிதமுறு எண்களாக எழுதலாம்.

(i)
$$0.3 = \frac{3}{10}$$

(ii)
$$0.47 = \frac{47}{100}$$

(iii)
$$0.125 = \frac{125}{1000} = \frac{1}{8}$$

(iv)
$$0.7897 = \frac{7897}{10000}$$

(b) முடிவில் தசமங்கள்

$$\frac{1}{3} = 0.3333 - - - = 0.\overline{3}$$
 என எழுதப்படும்.

$$\frac{1}{7} = 0.142857 \ 142857 = 0.\overline{142857}$$
 என எழுதப்படும்.

$$\frac{51}{90} = 0.56666 - - - = 0.5\overline{6}$$
 என எழுதப்படும்.

மேலே தரப்பட்ட $0.\overline{3}$, $0.\overline{142857}$, $0.\overline{56}$ என்பவை முடிவில் தசமங்கள் ஆகும். குறித்த எண்கள் ஒரே கோலத்தில் மீண்டும், மீண்டும் வருவதால் மீளும் தசமங்கள் (recurring decimals) எனப்படும்.

முடிவுள்ள தசமங்களும், முடிவில் தசமங்களில் மீளும் தசமங்களும் விகிதமுறு எண்கள் ஆகும்.

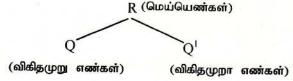
(vi) விகிதமுறா எண்கள் (Irrational Numbers)

a,b என்பன நிறையெண்களாகவும் $b \neq 0$ ஆகவுமிருக்க $\dfrac{a}{b}$ எனும் வடிவில் எழுதமுடியாத மெய்யெண்கள் விகிதமுறா எண்கள் எனப்படும்.

உதாரணம்

 $\sqrt{2}$, $\sqrt{3}$, π என்பன விகிதமுறா எண்களாகும்.

$$\sqrt{2} = 1.41421356 - -$$


$$\sqrt{3} = 1.73205080 - -$$

$$\pi = 3.141592653 - - -$$

இங்கு $\sqrt{2}$, $\sqrt{3}$, π என்பவற்றைத் தசமங்களாக எழுதும்போது இவை முடிவில் தசமங்களாக அமைகின்றன. இவை மீளும் தசமங்கள் அல்ல. இவை மீளாத்தசமங்கள் (Non - recurring decimals) எனப்படும். மெய்யெண் தொடை R எனவும்,

விகிதமுறு எண்களின் தொடை Q எனவும், குறிப்பிடின் விகிதமுறா எண்களின் தொடை Q^1 ஆகும்.

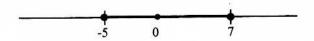
 $R=Q\cup Q^1$ ஆகவும் $Q\cap Q^1=\phi$ ஆகவும், இருப்பதை அவதானிக்கலாம்.

ஆயிடைகள் (Intervals)

a,b என்பன மெய்யெண்கள் a < b ஆகும். ஆயிடைகள், பின்வருமாறு வரையறுக்கப்படும்.

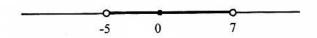
$$[a,b] = \{x : a \le x \le b, x \in R\}$$

$$[a,b] = \{x : a \le x \le b, x \in R\}$$


$$(a,b] = \{x : a \le x \le b, x \in R\}$$

$$(a,b] = \{x : a < x \le b, x \in R\}$$

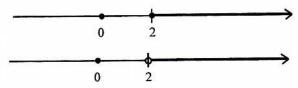
$$(a,b) = \{x : a < x < b, x \in R\}$$


ig[a,big] என்பது மூடிய ஆயிடை எனவும், ig(a,big) திறந்த ஆயிடை எனவும் கூறப்படும்.

[-5,7] என்ற ஆயிடை எண்கோட்டில் பின்வருமாறு குறிக்கப்படும்.

இவ்வாயிடையின் மிகப் பெரிய எண் 7. மிகச்சிறிய எண் -5 ஆகும்.

(-5, 7) என்ற ஆயிடை எண் கோட்டில் பின்வருமாறு குறிக்கப்படும்.

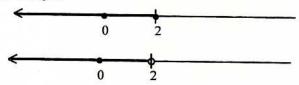


இவ்வாயிடைக்கு மிகப் பெரிய மெய்யெண் இல்லை. மிகச்சிறிய மெய்யெண் இல்லை.

மிகப் பெரிய நிறையெண் 6. மிகச்சிறிய நிறையெண் -4 ஆகும். a ஒரு மெய்யெண்ணாக இருக்க, $x \geq a$ என்பது $\left[a,\infty\right)$ என்ற ஆயிடை யாலும், x>a என்பது $\left(a,\infty\right)$ என்ற ஆயிடையாலும் குறிக்கப்படும்.

$$[a,\infty) = \{x: x \ge a, x \in \mathbb{R}\}$$

 $(a,\infty) = \{x: x > a, x \in \mathbb{R}\}$ ஆகும்.


 $[2,\infty),(2,\infty)$ என்பன எண்கோட்டில் முறையே பின்வரும் முறைகளில் குறிக்கப்படும்.

 $x \leq a$ என்பது $\left(-\infty, a\right]$ என்ற ஆயிடையாலும், x < a என்பது $\left(-\infty, a\right)$ என்ற ஆயிடையாலும் குறிக்கப்படும்.

$$(-\infty, a] = \{x : x \le a, x \in \mathbb{R}\}$$

 $(-\infty, a) = \{x : x < a, x \in \mathbb{R}\}$ ஆகும்.

 $(-\infty, 2]$, $(-\infty, 2)$ என்பன எண்கோட்டில் முறையே பின்வரும் முறைகளில் குறிக்கப்படும்.

மெய்யெண்களின் பண்புகள் (Properties of real numbers) மெய்யெண்கள் பற்றிய அடிப்படைப் பண்புகள் இங்கு தரப்பட்டுள்ளன.

1. கூட்டலிற்கான அடைத்தற் பண்பு (Closure property for addition)

 $a,\ b$ மெய்யெண்கள் எனின், (a+b) ஒரு மெய்யெண் ஆகும்.

$$a, b \in \mathbb{R} \Rightarrow a + b \in \mathbb{R}$$

பெருக்கலிற்கான அடைத்தற் பண்பு (Closure property for multiplication)

 $a,\,b$ மெய்யெண்கள் எனின், ab ஒரு மெய்யெண் ஆகும்.

$$a, b \in \mathbb{R} \Rightarrow ab \in \mathbb{R}$$

2. பரிவர்த்தனைப் பண்பு (Commutative property)

a, b மெய்யெண்கள் எனின், a+b=b+a (கூட்டல்)

a, b மெய்யெண்கள் எனின், ab = ba (பெருக்கல்)

3. சேர்த்திப்பண்பு (Associative property)

a, b, c மெய்யெண்களாக இருக்க

$$a + (b + c) = (a + b) + c$$
 (கூட்டல்) $a \cdot (bc) = (ab) \cdot c$ (பெருக்கல்)

4. பரம்பற் பண்பு (Distributive property)

a, b, c என்பன மெய்யெண்களாக இருக்க

$$a(b+c)=ab+ac$$
 ஆகும்.

5. சர்வசமன்பாட்டுப் பண்பு (Identity property)

a ஒரு மெய்யெண்ணாக இருக்க.

$$a+0=a=0+a$$
 ஆகுமாறு $0\in\mathbb{R}$ உண்டு (கூட்டல்)

$$a \cdot 1 = a = 1 \cdot a$$
 ஆகுமாறு $1 \in \mathbb{R}$ உண்டு (பெருக்கல்)

6. நேர்மாற்றுப் பண்பு (Inverse property)

a ஒரு மெய்யெண்ணாக இருக்க.

$$a + (-a) = 0 = (-a) + a$$
 ஆகுமாறு $-a \in R$ உண்டு (கூட்டல்)

a ஒரு மெய்யெண்ணாகவும், $a \neq 0$ ஆகவுமிருக்க,

$$a, \frac{1}{a} = 1 = \frac{1}{a} \cdot a$$
 ஆகுமாறு $\frac{1}{a} \in \mathbb{R}$ உண்டு.

7. பூச்சியத்தின் பெருக்கற்பண்பு (Multiplicative property of zero)

a ஒரு மெய்யெண்ணாக இருக்க.

$$a \cdot 0 = 0 = 0 \cdot a$$
 ஆகும்.

பல்லுறுப்பிகள் (Polynomials)

n என்பது பூச்சியம் அல்லது நேர் நிறையெண் ஆகவும். a_0 , a_1 , a_2 a_n என்பன மெய்யெண்களாகவும் இருக்க,

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n x^{n-r} + \dots + a_{n-1} x + a_n$$

என்பது மாறி x இலான ஒரு பல்லுறுப்பி எனப்படும்.

$$a_0\,x^n$$
 , $a_1\,x^{n-1}$, – – – , $a_{n-1}\,x$, a_n என்பன பல்லுறுப்பியின் உறுப்புக்கள்

ஆகும். a_0 , a_1 , a_2 ——— a_n என்பன **குணகங்கள்** (coefficients) எனப்படும்.

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + --- + a_n; a_0 \neq 0$$
 ஆகும்.

பல்லுறுப்பியின் படி n ஆகும். மாறியின் அதி உயர் படி, பல்லுறுப்பியின் படி ஆகும்.

அதி உயர் படியைக் கொண்ட உறுப்பின் குணகம் முந்துறு குணகம் (Leading coefficient) எனப்படும்.

உதாரணம்

- (i) $2x^3 3x^2 + 5x 2$ x இலான பல்லுறுப்பி, பல்லுறுப்பியின் படி 3 ஆகும். x^3 இன் குணகம் 2, x^2 இன் குணகம் -3, x இன் குணகம் 5, ஒருமை உறுப்பு -2, முந்துறு குணகம் 2 ஆகும்.
- (ii) $x^7 \frac{1}{2}x^6 + 3x \sqrt{5}$. இது x இல் 7 ஆம் படியிலான ஒரு பல்லுறுப்பி ஆகும்.

பல்லுறுப்பிகள் அல்லாதவை (Non - Polynomials)

(i)
$$2x^2 - 5x + 3 + \frac{7}{x}$$

(ii)
$$\sqrt{x^2 - 5x + 2}$$

(iii)
$$x + 2\sqrt{x} + 3$$

(iv)
$$\frac{x^2 - 3x + 2}{x - 3}$$

என்பவை பல்லுறுப்பிகள் அல்ல.

ஒருறுப்பி (monomial)

ஓர் உறுப்பை மட்டும் கொண்ட பல்லுறுப்பி ஒருறுப்பி எனப்படும்.

உதாரணம்

$$3x^2$$
. x இலானது படி 2

$$-\frac{1}{2}y^4$$
. y இலானது படி 4

 $5=5\cdot 1=5\cdot \chi^\circ$ படி 0 இங்கு 5. ஒருமை ஆகும்.

பூச்சியம் (0) ஒரு பல்லுறுப்பி ஆகும். ஆனால் இதற்குப் படி இல்லை.

ஈருறுப்பி (Binomial)

இரு உறுப்புக்களை மட்டும் கொண்ட பல்லுறுப்பிகள் ஈருறுப்பிகள் எனப்படும்.

உதாரணம்

$$1 + 2x$$

$$5x^4 - x^7$$

மூவுறுப்பி (Trinomials)

மூன்று உறுப்புக்களை மட்டும் கொண்ட பல்லுறுப்பிகள் மூவுறுப்பிகள் எனப்படும்.

உதாரணம்

$$2x^2 - 5x - 3$$
 ug 2

$$1 - 6x^2 + x^5$$
 Lug 5

பல மாறிகளிலான பல்லுறுப்பிகள்

$$4x^3 + 3y^2 - xy$$
 இரு மாறி (x, y) யிலான பல்லுறுப்பி - படி 3 $x^3 + y^3 + z^3 - 3xyz$ மூன்றுமாறி (x, y, z) யிலான பல்லுறுப்பி - படி 3 $5x^4 - 12x^2y^3 - x^2y$ இரு மாறி (x, y) யிலான பல்லுறுப்பி - படி 5

ஒரு மாறியிலான (x என்க) பல்லுறுப்பிகளின் பொதுவடிவம்

$$a_0 x^2 + a_1 x + a_2 \qquad (a_0 \neq 0)$$

$$a_0 x^3 + a_1 x^2 + a_2 x + a_3 \qquad (a_0 \neq 0)$$

சர்வசமமான பல்லுறுப்பிகள்

$$P(x) = a_0 + a_1 x + a_2 x^2 + ---- + a_n x^n$$

$$Q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$
 sising.

(ii)
$$0 \le i \le n$$
 ஆக $a_i = b_i$ ஆகவும் இருப்பின்

P(x), Q(x) என்பன சர்வசமமான பல்லுறுப்பிகள் எனப்படும்.

பல்லுறுப்பிகளின் கூட்டல்

இரு பல்லுறுப்பிகளைக் கூட்டும் போது, ஒத்த உறுப்புக்களைக் கூட்ட வேண்டும்.

உதாரணம்

$$P(x) = 3x^4 - 7x^3 - 3x^2 + 2x + 5$$
 $Q(x) = 2x^3 + 4x^2 - 5x - 2$ என்க.
$$P(x) + Q(x) = (3x^4 - 7x^3 - 3x^2 + 2x + 5) + (2x^3 + 4x^2 - 5x - 2)$$

$$= 3x^4 - 5x^3 + x^2 - 3x + 3$$
 နှေး(தம்.

அல்லது

$$P(x) = 3x^4 - 7x^3 - 3x^2 + 2x + 5$$

$$Q(x) = 2x^3 + 4x^2 - 5x - 2$$

$$P(x) + Q(x) = 3x^4 - 5x^3 + x^2 - 3x + 3$$
 ஆகும்.

உதாரணம்

$$P(x) = 9x^{3} - 3x^{2} + 6x + 5$$

$$Q(x) = 2x^{3} + 5x^{2} - 3x - 5$$

$$P(x) + Q(x) = 11x^{3} + 2x^{2} + 3x$$

உதாரணம்

$$P(x) = 2x^4 - 3x^3 + 5x^2 - 6x + 2$$

$$\frac{Q(x) = -2x^4 + 3x^3 + x^2 + 2x + 1}{P(x) + Q(x)} = 6x^2 - 4x + 3$$

$$\frac{Q(x) = -2x^4 + 3x^3 + x^2 + 2x + 1}{2x^2 + 2x^2 + 3}$$

பல்லூறுப்பி P(x) இன்படி m ஆகவும், Q(x) இன்படி n ஆகவும் உள்ளது என்க.

 $m \neq n$ எனின் P(x) + Q(x) இன்படி m, n என்பவற்றில் எது பெரியதோ அதன்படியைக் கொண்டிருக்கும். m = n எனின், P(x) + Q(x) இன்படி n ஆகவோ அல்லது n இலும் குறைவாகவோ இருக்கும்.

பல்லுறுப்பிகளின் கழித்தல்

பல்லுறுப்பி ஒன்றிலிருந்து இன்னொரு பல்லுறுப்பியைக் கழிக்கும்போது ஒத்த உறுப்புக்களைக் கழித்தல் வேண்டும்.

உதாரணம்

$$P(x) = 5x^3 - 7x^2 + 2x, Q(x) = 4x^4 - 2x^3 + 3x^2 + 1 \text{ of soits.}$$

$$P(x) - Q(x) = (5x^3 - 7x^2 + 2x) - (4x^4 - 2x^3 + 3x^2 + 1)$$

$$= -4x^4 + 7x^3 - 10x^2 + 2x - 1$$

அல்லது

$$P(x) = 5x^{3} - 7x^{2} + 2x$$

$$Q(x) = 4x^{4} - 2x^{3} + 3x^{2} + 1$$

$$P(x) - Q(x) = -4x^{4} + 7x^{3} - 10x^{2} + 2x - 1$$

பல்லுறுப்பி P(x) இன்படி m , பல்லுறுப்பி Q(x) இன்படி n என்க . $m \neq n$ எனின், P(x) - Q(x) இன்படி = உயர்வு (m,n) m = n எனின், P(x) - Q(x) இன்படி $\le n$ ஆகும்.

இருபல்லுறுப்பிகளின் பெருக்கம்

இருபல்லுறுப்பிகளைப் பெருக்கும்போது முதலாவது பல்லுறுப்பியின் ஒவ்வொரு உறுப்பையும், இரண்டாவது பல்லுறுப்பியின் ஒவ்வொரு உறுப்பாலும் பெருக்குதல் வேண்டும்.

உதாரணம்

$$P(x) = 3x^{2} - x + 4, Q(x) = x^{3} - 3x + 7$$

$$P(x) \times Q(x) = (3x^{2} - x + 4)(x^{3} - 3x + 7)$$

$$= 3x^{2}(x^{3} - 3x + 7) - x(x^{3} - 3x + 7) + 4(x^{3} - 3x + 7)$$

$$= 3x^{5} - 9x^{3} + 21x^{2} - x^{4} + 3x^{2} - 7x + 4x^{3} - 12x + 28$$

$$= 3x^{5} - x^{4} - 5x^{3} + 24x^{2} - 19x + 28$$

அல்லது

$$3x^{2} - x + 4$$

$$x^{3} - 3x + 7$$

$$3x^{5} - x^{4} + 4x^{3}$$

$$-9x^{3} + 3x^{2} - 12x$$

$$21x^{2} - 7x + 28$$

$$3x^{5} - x^{4} - 5x^{3} + 24x^{2} - 19x + 28$$

பல்லுறுப்பி P(x) இன்படி m , $\mathrm{Q}(x)$ இன்படி n எனின், $P(x) \times \mathrm{Q}(x)$ இன்படி m+n ஆகும்.

இரு பல்லுறுப்பிகளைக் கூட்டும்போது, கழிக்கும்போது, பெருக்கும்போது பெறப்படுவதும் ஒரு பல்லுறுப்பி ஆகும்.

பல்லுறுப்பிகளின் வகுத்தல்

நிறையெண்கள் 115, 7 என்பவற்றைக் கருதுக. 115 ஐ 7 ஆல் வகுக்கும்போது, ஈவு 16 ஆகவும், மீதி 3 ஆகவும் இருப்பதைக் காணலாம்.

$$\frac{115}{7} = 16 + \frac{3}{7}$$
 ஆகும். $115 = 7 \times 16 + 3$ என எழுதலாம்.

 $115 = 7 \times 16 + 3$ என்பதில் மீதி 3, 7 இலும் சிறிதாக இருக்கும்.

அட்சரகணித நெடும் வகுத்தல் (Algebraic long division)

உதாரணம் 1

 $5 + 4x^3 - 3x$ ஐ (3 + 2x)ஆல் வகுக்க.

நெடும்பிரித்தலின் போது கவனிக்கப்பட வேண்டியவை

(i) இருபல்லுறுப்பிகளின் உறுப்புக்களையும் அவற்றின் அடுக்குகள் இறங்கு வரிசையில் அமையும் வண்ணம் ஒழுங்குபடுத்தி எழுதுதல் வேண்டும்.

$$5 + 4x^3 - 3x = 4x^3 - 3x + 5$$

 $3 + 2x = 2x + 3$

$$2x^{2} - 3x + 3$$

$$2x + 3\sqrt{4x^{3}} - 3x + 5$$

$$4x^{3} + 6x^{2}$$

$$-6x^{2} - 3x$$

$$-6x^{2} - 9x$$

$$6x + 5$$

$$6x + 9$$

$$\frac{4x^3 - 3x + 5}{2x + 3} = \left(2x^2 - 3x + 3\right) + \frac{-4}{2x + 3}$$

$$4x^3 - 3x + 5 = (2x + 3)(2x^2 - 3x + 3) + (-4)$$
 ஆகும்.

இங்கு,

$$P(x) = 4x^3 - 3x + 5$$
 வகுப்பான் (dividend) $2x - 3$ வகுத்தி (divisor) $2x^2 - 3x + 3$ ஈவு (quotient) -4 மீதி (remainder) எனப்படும்.

 இங்கு மீதி பூச்சியமாக இருக்கலாம். அல்லது மீதி இருப்பின் மீதியின்படி < வகுத்தியின்படி ஆகும்.

பொதுவாக $\dfrac{P(x)}{\mathrm{Q}(x)}$ ஒரு பல்லுறுப்பி அல்ல.

உதாரணம் 2

 $x^6 - 2x^4 + x^2 - 2$ ஐ $x^2 - x - 2$ ஆல் வகுக்க. மீதியைக் காண்க.

$$x^{4} + x^{3} + x^{2} + 3x + 6$$

$$x^{2} - x - 2)x^{6} - 2x^{4} + x^{2} - 2$$

$$\frac{x^{6} - x^{5} - 2x^{4}}{x^{5}}$$

$$\frac{x^{5} - x^{4} - 2x^{3}}{x^{4} + 2x^{3} + x^{2}}$$

$$\frac{x^{4} - x^{3} - 2x^{2}}{3x^{3} + 3x^{2}}$$

$$\frac{3x^{3} - 3x^{2} - 6x}{6x^{2} + 6x - 2}$$

$$\frac{6x^{2} - 6x - 12}{12x + 10}$$

மீதி
$$(12x+10)$$
 ஆகும்.

$$\frac{x^6-2x^4+x^2-2}{x^2-x-2} = \left(x^4+x^3+x^2+3x+6\right) + \frac{12x+10}{x^2-x-2}$$

$$x^{6} - 2x^{4} + x^{2} - 2 = (x^{2} - x - 2)(x^{4} + x^{3} + x^{2} + 3x + 6) + (12x + 10)$$

தொகுப்பு முறை வகுத்தல் (Synthetic division)

P(x) என்ற பல்லுறுப்பியை (x+a) என்பதால் வகுக்கும் போது பெறப்படும். ஈவு, மீதி என்பவற்றைக் காணல்.

கவனிக்க வேண்டிய படிகள்.

- 1. பல்லுறுப்பி P(x) இன் குணகங்களை x இன் வலுக்களின் இறங்கு வரிசையில் எழுதுக. x இன் வலுக்கள் இல்லாத விடத்து குணகங்களுக்கு பூச்சியம் (0) இடுக.
- 2. வகுத்தியை (x-r) எனும் வடிவில் எழுதுக. r ஐப் பயன்படுத்தி இரண்டாம் மூன்றாம் வரிசையிலுள்ள எண்களைப் பின்வரும் முறையில் பெறுக.

வகுப்பானின் முதலாவது குணகத்தைக் கீழே கொண்டு வருக. இதனை r ஆல் பெருக்கி இரண்டாவது குணகத்தின் கீழ் எழுதி அதனுடன் கூட்டுக. கூட்டிப் பெற்ற பெறுமானத்தை r ஆல் பெருக்கி மூன்றாவது குணகத்தின் கீழ் எழுதி அதனுடன் கூட்டுக.

இம்முறையினை மாறிலி உறுப்புக்குக் கூட்டும் வரை தொடர்ந்து செய்க.

 மூன்றாம் வரிசையிலுள்ள கடைசி எண் மீதியைத் தரும் ஏனைய எண்கள் சுவின் குணகங்களாகும்.

உதாரணம் 3

 $2x^4 + 3x^3 - x - 5$ ஐ (x + 2) ஆல் வகுக்கும்போது பெறப்படும் ஈவையும், மீதியையும் தொகுப்பு முறை வகுத்தல் மூலம் காண்க.

$$P(x) = 2x^4 + 3x^3 \quad x - 5$$

P(x) இன் உறுப்புக்களின் குணகங்கள் 2, 3, 0, -1, -5 ஆகும். $x+2=x-\left(-2\right)$ இங்கு r=-2 ஆகும்.

ஈவு
$$2x^3 - x^2 + 2x - 5$$
, மீதி 5

உதாரணம் 4

$$4x^3 - 3x + 5$$
 gg $(2x - 3)$ ஆல் வகுக்க.

$$P(x) = 4x^3 - 3x + 5$$

$$P(x)$$
 இன் உறுப்புக்களின் குணகங்கள் $4, 0, -3, 5$

$$2x - 3 = 2\left(x - \frac{3}{2}\right)$$
 gains $r = +\frac{3}{2}$

$$\frac{3}{2}$$
 $)4 + 6 + 6 + 14$ \longleftrightarrow $6 + 6 + 6$

மீதித் தேற்றம் (Remainder Theorem)

P(x) என்பது x இன் ஒரு பல்லுறுப்பி என்க. a ஒரு மாறிலியாக இருக்க P(x) என்பது (x-a) ஆல், x ஐச் சாராத ஒரு மீதி பெறப்படும் வரை வகுக்கப்படும் போது மீதி P(a) ஆகும்.

P(x) ஐ (x-a) ஆல் வகுக்கும்போது ஈவு Q(x), மீதி R என்க.

$$P(x) = (x - a)Q(x) + R$$

$$P(a) = (a - a) Q(a) + R$$

$$P(a) = R$$

ஆகவே மீதி P(a) ஆகும்.

பல்லுறுப்பி ஒன்றின் பூச்சியம் (Zero of a polynomial)

பல்லூறுப்பி ஒன்றினைப் பூச்சியமாக்கும் எந்த ஒரு எண்ணும் அப்பல்லுறுப்பியின் பூச்சியம் ஆகும்.

$$P(x) = x^3 - 5x^2 - 2x + 24$$
 sissibs.

$$P(-2) = -8 - 20 + 4 + 24 = 0$$

ஆகவே -2, P(x) இன் ஒரு பூச்சியம் ஆகும்.

காரணித்தேற்றம் (Factor Theorem)

P(x) என்பது x இன் ஒரு பல்லூறுப்பி. a ஒரு மாறிலி. P(a)=0 எனின், (x-a) என்பது P(x) இன் ஒரு காரணி ஆகும்.

$$P(x) = (x - a)Q(x) + R$$
 steints.

$$P(a) = 0 + R$$

$$P(a) = 0$$
 என்பதால் $R = 0$

எனவே
$$P(x) = (x - a) Q(x)$$

ஆகவே, (x-a) என்பது P(x) இன் ஒரு காரணி ஆகும்.

உதாரணம் 5

(a)
$$4x^3 + 10x^2 - 19x + 5$$
 ஐ $(x - 3)$ ஆல் வகுக்கும்போது மீதி யாது?

(b)
$$x^6 \cdot 2x^4 + x^2 - 2$$
 ஐ $(x^2 - x - 2)$ ஆல் வகுக்கும் போது மீதி யாது?

(c)
$$6x^3 + 11x^2 - 5x - 12$$
 இன் ஒரு காரணி $(x - 1)$ எனக் காட்டி ஏனைய காரணிகளைக் காண்க.

(a)
$$4x^3 + 10x^2 - 19x + 5$$
 ஐ $(x - 3)$ ஆல் வகுக்கும் போது மீதி R என்க.

$$P(x) = 4x^3 + 10x^2 - 19x + 5 = (x - 3)Q(x) + R$$

 $P(3) = 4 \times 3^3 + 10 \times 3^2 - 19 \times 3 + 5 = 0 + R$
 $= 108 + 90 - 57 + 5 = R$
 $R = 146$ Up 146 show.

(b)
$$x^6 - 2x^4 + x^2 - 2$$
 ஐ $x^2 - x - 2$ ஆல் வகுக்கும் போது மீதி $Ax + B$ என்க.
$$P(x) = x^6 - 2x^4 + x^2 - 2 = \left(x^2 - x - 2\right)Q(x) + Ax + B$$

$$P(x) = x^6 - 2x^4 + x^2 - 2 = (x - 2)(x + 1)Q(x) + Ax + B$$

$$P(-1) = 1 - 2 + 1 - 2 = 0 \qquad -A + B$$

$$-A+B=-2 \qquad ----- (1)$$

$$P(2) = 2^{6} - 2 \times 2^{4} + 2^{2} - 2 = 0 + 2A + B$$

$$= 64 - 32 + 4 - 2 = 0 + 2A + B$$

$$2A + B = 34$$
 (2)

(1), (2) இலிருந்து
$$A = 12$$
, $B = 10$ ஆகவே மீதி $12x + 10$

(c)
$$P(x) = 6x^2 + 11x^2 - 5x - 12$$
 என்க. $P(1) = 6 + 11 - 5 - 12 = 0$ $P(1) = 0$; ஆகவே $(x-1)$, $P(x)$ இன் ஒரு காரணி ஆகும். $6x^3 + 11x^2 - 5x - 12 = (x-1)(Ax^2 + Bx + c)$ என எழுதலாம்.

 χ^3 இன் குணகத்தை இருபக்கமும் சமப்படுத்த A=6

மாறிலி **உறுப்பை** இருபக்கமும் சமப்படுத்த C=12

$$6x^3 + 11x^2 - 5x - 12 = (x - 1)(6x^2 + Bx + 12)$$

 x^2 இன் குணகத்தை சமப்படுத்த $B - 6 = 11$, $B = 17$
 $6x^3 + 11x^2 - 5x - 12 = (x - 1)(6x^2 + 17x + 12)$
 $= (x - 1)(2x + 3)(3x + 4)$

- (a) $x^3 + ax^2 + bx 8$ இன் காரணிகள் (x+1), (x+2) ஆகும். a, b இன் பெறுமானங்களைக் காண்க.
- (b) $x^3 + 3x^2 + mx + n$ ஐ (x+1), (x-2) என்பவற்றால் வகுக்கும் போது மீதிகள் முறையே 3, 15 எனின், தரப்பட்ட பல்லுறுப்பியை (x+1) (x-2) ஆல் வகுக்கும் போது மீதி யாது?

(b)
$$P(x) = x^3 + 3x^2 + mx + n = (x + 1)Q(x) + 3$$

 $P(-1) = -1 + 3 - m + n = 3$
 $-m + n = 1$ (1)
 $P(x) = x^3 + 3x^2 + mx + n = (x - 2)H(x) + 15$
 $P(2) = 8 + 12 + 2m + n = 0 + 15$
 $2m + n = -5$ (2)

$$P(x)$$
 ஐ $(x+1)(x-2)$ ஆல் வகுக்கும் போது மீதி $Ax+B$ என்க. $P(x) = (x+1)(x-2)Q(x) + Ax + B$

(1), (2) இலிருந்து m = -2, n = -1 ஆகும்.

- (a) $ax^4 + x^2 1$ இன் காரணி $(x^2 + 1)$ ஆகுமாறு a இன் பெறுமானத்தைக் காண்க.
- (b) $x^4 mx^2 + n$ ஐ $(x+1)^2$ ஆல் வகுக்கும்போது மீதி (5x-2) எனின் m, n இன் பெறுமானங்களைக் காண்க.

(a)
$$ax^4 + x^2 - 1 = (x^2 + 1)h(x)$$
 என்க. $h(x)$, இரண்டாம் படியிலான பல்லுறுப்பி ஆதல் வேண்டும். $ax^4 + x^2 - 1 = (x^2 + 1)(lx^2 + mx + n)$ இருபக்கங்களிலும் உறுப்புக்களைக் கருதுக. மாறிலி : $n = -1$ x இன் குணகம்: $m = 0$ x^2 இன் குணகம்: $l + n = 1$, $l = 2$ x^4 இன் குணகம்: $l = a$, $a = 2$ $a = 2$ ஆகும். $2x^4 + x^2 - 1 = (x^2 + 1)(2x^2 - 1)$

(b)
$$x^4 - mx^2 + n = (x+1)^2 \ Q(x) + 5x - 2$$

இங்கு $Q(x)$, இரண்டாம் படியில் இருத்தல் வேண்டும்.
$$x^4 - mx^2 + n = \left(x^2 + 2x + 1\right)\left(ax^2 + bx + c\right) + \left(5x - 2\right)$$
குணகங்களைச் சமப்படுத்த

$$x^4$$
 இன் குணகம் : $a = 1$

$$x^3$$
 இன் குணகம் : $2a + b = 0$, $b = -2a = -2$

$$x^2$$
 இன் குணகம் : $a + 2b + c = -m$ _______(1)

$$x$$
 இன் குணகம் : $b + 2c + 5 = 0$ _______(2)

ယားကါလို :
$$c-2=n$$
 — (3)

(2) இலிருந்து
$$c = -\frac{3}{2}$$

(3) இலிருந்து
$$n = -\frac{3}{2} - 2 = -\frac{7}{2}$$

(1) இலிருந்து
$$m = -\left[1 - 4 - \frac{3}{2}\right] = -\frac{9}{2}$$
 $m = -\frac{9}{2}$, $n = -\frac{7}{2}$

(a)
$$x^4 - 6x^3 + 3x^2 + 26x - 24$$
 ஐக் காரணியாக்குக.

(b)
$$P(x) = 12x^3 - 32x^2 + x + 10$$
 ஆகும்.

$$P\left(-rac{1}{2}
ight)$$
 ஐக் காண்க. இதிலிருந்து $P\left(x
ight)=0$ என்ற சமன்பாட்டைத் தீர்க்க.

(a)
$$x^4 - 6x^3 + 3x^2 + 26x - 24$$
 பல்லூறுப்பி 4 ஆம் படியிலுள்ளது. 24 இன் காரணிகளைக் கருதுக. (நேர், மறை இரண்டும்) $\{\pm\,1,\,\,\pm\,2,\,\,\pm\,3,\,\,\pm\,4,\,\,\pm\,6,\,\,\pm\,8,\,\,\pm\,12,\,\,\pm\,24\}$ $P(x) = x^4 - 6x^3 + 3x^2 + 26x - 24$ $P(1) = 1 - 6 + 3 + 26 - 24 = 0$ ஆகவே $(x-1)$ ஒரு காரணி $P(x)$, 4 ஆம் படியிலுள்ளது. ஈவு மூன்றாம் படியில் இருக்கும்.

$$P(x) = (x-1) \left(x^3 - 5x^2 - 2x + 24\right)$$
 $Q(x) = x^3 - 5x^2 - 2x + 24$
 $Q(-2) = -8 - 20 + 4 + 24 = 0$
ஆகவே $(x+2)$, $Q(x)$ இன் ஒரு காரணி
 $x^3 - 5x^2 - 2x + 24 = (x+2) \left(x^2 - 7x + 12\right)$
 $x^4 - 6x^3 + 3x^2 + 26x - 24 = (x-1)(x+2)(x^2 - 7x + 12)$
 $= (x-1)(x+2)(x-3)(x-4)$

(b)
$$P(x) = 12x^3 - 32x^2 + x + 10$$

$$P\left(-\frac{1}{2}\right) = 12 \times \left(-\frac{1}{8}\right) - 32 \times \frac{1}{4} - \frac{1}{2} + 10$$

$$= -\frac{3}{2} - 8 - \frac{1}{2} + 10 = 0$$
எனவே $(2x+1)$, $P(x)$ இன் ஒரு காரணி ஆகும்.
$$12x^3 - 32x^2 + x + 10 = (2x+1)\left(6x^2 - 19x + 10\right)$$

$$= (2x+1)\left(3x-2\right)\left(2x-5\right)$$

$$P(x) = 0$$
 எனின்,
$$(2x+1)\left(3x-2\right)\left(2x-5\right) = 0$$

$$x = -\frac{1}{2}, \frac{2}{3}, \frac{5}{2}$$
 ஆகும்.

ஏகபரிமாணக் காரணிகள் இரண்டினைக் காண்பதன் மூலம் $(a-x)^4+(x-1)^4-(a-1)^4$ ஐக் காரணியாக்குக.

$$P(x) = (a-x)^4 + (x-1)^4 - (a-1)^4$$
 ensoines. ______(1)

$$P(1) = (a-1)^4 + 0 - (a-1)^4 = 0$$

ஆகவே (x-1), P(x) இன் ஒரு காரணி

$$P(a) = 0 + (a-1)^4 - (a-1)^4 = 0$$

ஆகவே (x-a), P(x) இன் ஒரு காரணி

P(x), x இல் 4 ஆம் படி. எனவே எஞ்சியிருப்பது 2 ஆம் படி $P(x) = (x-a)(x-1)\left(lx^2 + mx + n\right)$

_x4 இன் குணகத்தைக் கருத

$$P(x) = (x - a)(x - 1)(2x^{2} + mx + n)$$
 (2)

இங்கு m , n என்பவற்றை a இல் காண வேண்டும்.

$$x = 0$$
 ஆக, $P(0) = a^4 + 1 - (a - 1)^4$
= $(a^4 + 1) - (a^4 - 4a^3 + 6a^2 - 4a + 1)$
= $4a^3 - 6a^2 + 4a$

(2) இலிருந்து
$$4a^3 - 6a^2 + 4a = an$$

$$n = 4a^2 - 6a + 4$$
 (3)

(1), (2) இல் x இன் குணகத்தைக் கருத,

$$-4a^{3} - 4 = -n(a+1) + am$$

$$-4a^{3} - 4 = -(a+1)(4a^{2} - 6a + 4) + am$$

$$-4a^3 - 4 = -4a^3 + 2a^2 + 2a - 4 + am$$

$$-2a^2 - 2a = am$$
$$m = -2(a+1)$$

$$P(x) = (x-1)(x-a) [2x^2 - 2(a+1)x + 4a^2 - 6a + 4]$$

= 2(x-1)(x-a)[x^2 - (a+1)x + (2a^2 - 3a + 2)]

பொதுக் காரணி (common factor)

P(x), Q(x) எனும் இரு பல்லுறுப்பிகளுக்கு (x-a) ஒரு பொதுக்காரணி எனின், k_1 , k_2 என்பன மாறிலிகளாக இருக்க, (x-a) என்பது $k_1 P(x) + k_2 \, Q(x)$ இன் ஒரு காரணியாகவும் அமையும்.

$$(x-a)$$
 என்பது $P(x)$, $Q(x)$ என்பவற்றின் காரணியாதலால்,
$$P(x) = (x-a)\,g(x), \quad Q(x) = (x-a)h(x) \quad \text{ஆகம்}.$$
 $k_1\cdot P(x) + k_2\cdot Q(x) = k_1\,(x-a)g(x) + k_2\,(x-a)\,h(x) = (x-a)\,\left[k_1\cdot g(x) + k_2\,h(x)\right]$ ஆகவே $(x-a)$ ஆனது, $k_1\,P(x) + k_2\,Q(x)$ இன் ஒரு காரணியாகும்.

உதாரணம் 10

 x^3+ax^2+b , ax^3+bx^2+x-a ஆகிய இரு பல்லுறுப்பிகளுக்கு ஒரு பொதுக்காரணி இருப்பின் இப் பொதுக்காரணி $\left(b-a^2\right)x^2+x-a\left(1+b\right)$ என்ற பல்லுறுப்பியினதும் காரணியாகும் எனக் காட்டுக.

 $ax^3 + bx + c$ இன் ஒரு காரணி $x^2 + px + 1$ எனின் $a^2 - c^2 = ab$ எனக் காட்டுக. மேலும் $x^2 + px + 1$ என்பது $cx^3 + bx^2 + a$ என்பதன் ஒரு காரணியாகவும் அமையும் எனவும் காட்டுக.

 $ax^3 + bx + c$ என்பது x இல் மூன்றாம் படியில் உள்ளது.

 $x^2 + px + 1$ என்பது x இல் இரண்டாம் படி ஆகும். எனவே மீதியான காரணி x இல் முதலாம் படியில் அமைந்திருக்கும்.

$$ax^3 + bx + c = (x^2 + px + 1)(bx + m)$$

x³ இன் குணகத்தையும், மாறிலி உறுப்பையும் கருதுவதால்,

$$l=a$$
, $m=c$ ஆகும்.

$$ax^3 + bx + c = (x^2 + px + 1)(ax + c)$$

$$x^2$$
 இன் குணகம் : $ap + c = 0$ ______(1)

$$x$$
 இன் குணகம் : $cp + a = b$ ______(2)

இரண்டு சமன்பாடுகளிலுமிருந்து p ஐ நீக்குவதால்,

(1) இலிருந்து
$$p = -\frac{c}{a}$$
;

(2) இல் பிரதியிட
$$c\left(\frac{-c}{a}\right) + a = b$$

$$a^2 - c^2 = ab$$

$$ax^3 + bx + c = \left(x^2 + px + 1\right)\left(ax + c\right)$$

$$x = \frac{1}{y} \quad \text{எனப் பிரதியிட,}$$

$$a\left(\frac{1}{y}\right)^3 + b\left(\frac{1}{y}\right) + c = \left(\frac{1}{y^2} + \frac{p}{y} + 1\right)\left(\frac{a}{y} + c\right)$$

$$a + by^2 + cy^3 = \left(1 + py + y^2\right)\left(cy + a\right)$$

$$a + bx^{2} + cx^{3} = (1 + px + x^{2})(cx + a)$$

$$cy^{3} + by^{2} + a = (y^{2} + py + 1)(cy + a)$$

$$cx^{3} + bx^{2} + a = (x^{2} + px + 1)(cx + a)$$

எனவே $\left(x^2+px+1\right)$ என்பது cx^3+bx^2+a இன் ஒரு காரணியாகும்.

மீளும் காரணிகள் (Repeated Factors)

$$(x-a)^2$$
 என்பது பல்லுறுப்பி $P(x)$ இன் காரணி எனின், $(x-a)$

என்பது $P^1(x) \left[\frac{d}{dx} \ P(x) = P^1(x) \right]$ இன் ஒரு காரணியாகும் எனக் காட்டுக.

$$P(x) = (x - a)^2 Q(x)$$

இருபக்கமும் *x* ஐக் குறித்து வகையிட

$$P^{1}(x) = (x - a)^{2} \cdot Q^{1}(x) + 2(x - a)Q(x)$$
$$= (x - a)[(x - a)Q^{1}(x) + 2 \cdot Q(x)]$$
$$= (x - a)H(x)$$

ஆகவே $\left(x-a
ight)$ என்பது $P^1(x)$ இன் ஒரு காரணியாகும்.

உதாரணம் 12

 $x^3 - 5x^2 + 7$ ஐ $(x - 1)^2$ ஆல் வகுக்கும்போது பெறப்படும் மீதியைக் காண்க.

முறை I

 x^3-5x^2+7 , x இல் மூன்றாம் படியும் $(x-1)^2$, x இல் இரண்டாம் படியும் ஆகும். எனவே ஈவு x இல் முதலாம் படியிலும் மீதி முதலாம் படியிலும் அமையும்.

$$x^{3} - 5x^{2} + 7 = (x - 1)^{2} (x + m) + ax + b$$
$$= (x^{2} - 2x + 1)(x + m) + ax + b$$

குணங்களைச் சமப்படுத்த

$$x^2$$
: $m-2=-5$ (1)

$$x: 1-2m+a=0$$
 (2)

மாறிலி :
$$m + b = 7$$
 ______(3)

- (1) இலிருந்து m = -3
- (2) இலிருந்து a = -7
- (3) இலிருந்து b=10 ஆகவே மீதி =-7x+10

முறை II

உதாரணம் 13

 $2x^3 - 9x^2 + 12x + p$ இற்கு மீளும் காரணிகள் இருப்பின் p இன் இயல்தகு பெறுமானங்களைக் காண்க.

முறை I

$$2x^3 - 9x^2 + 12x + p = (x - k)^2 (2x + m)$$
 என எழுதலாம்.
 $2x^3 - 9x^2 + 12x + p = (x^2 - 2kx + k^2)(2x + m)$

குணகங்களைச் சமப்படுத்த

$$x^2$$
: $m-4k=-9$ _____(1)

$$x: 2k^2 - 2mk = 12$$

$$k^2 - mk = 6 - (2)$$

மாறிலி :
$$k^2 m = p$$
 ______(3)

(1), (2) இலிருந்து,

$$k^{2} - k(4k - 9) = 6$$
$$-3k^{2} + 9k - 6 = 0$$
$$k^{2} - 3k + 2 = 0$$

$$(k-2)(k-1)=0$$

$$k=2$$
 அல்லது $k=1$

$$m=-1$$
 $m=-5$

$$p = -4 p = -5$$

முறை II

$$P(x) = 2x^3 - 9x^2 + 12x + p$$
 6166165.

$$P(x)$$
 இற்கு மீளும் காரணிகள் இருப்பதால், அக்காரணி

 $P^{1}\left(x
ight)$ இனதும் காரணியாகவும் இருக்கும்.

$$P^{1}(x) = 6x^{2} - 18x + 12$$

$$=6\left(x^2-3x+2\right)$$
 $=6\left(x-1\right)\left(x-2\right)$ எனவே மீளும் காரணி $(x-1)$ அல்லது $(x-2)$ ஆக இருத்தல் வேண்டும். $(x-1)$ எனின், $P(x)=2x^3-9x^2+12x+p$ என்பதில் $P(1)=2-9+12+p=0$ $p=-5$ $(x-2)$ எனின், $P(2)=16-36+24+p=0$ $p=-4$ எனவே $p=-5$ அல்லது -4

இரு மாறிகளிலான இருபடிக்கோவைகள்

இரு மாறிகளிலான இருபடிக் கோவைகளின் பொதுவடிவம் $ax^2 + by^2 + 2hxy + 2gx + 2fy + c$ என்ற வடிவில் அமையும். இவ்வாறான கோவைகளை (முடியுமெனின்) x, y இல் இரு ஏகபரிமாணக் காரணிகளின் பெருக்கமாக எழுதும் முறையை இங்கு பார்ப்போம்.

உதாரணம் 14

 $2x^2 - 5xy - x - 25y - 3y^2 - 28$ ஐ x, y இல் ஏகபரிமாணக் காரணி கள் இரண்டின் பெருக்கமாக எழுதுக.

$$2x^2 - 5xy - x - 25y - 3y^2 - 28 \equiv (lx + my + n)(l^1x + m^1y + n^1)$$
 $E = 2x^2 - 5xy - x - 25y - 3y^2 - 28$
 $y = 0$ எனின், கோவை $2x^2 - x - 28$ ஆகும்.
 $2x^2 - x - 28 = (2x + 7)(x - 4)$ ஆகும்.
 $2x^2 - 5xy - x - 25y - 3y^2 - 28 \equiv (2x + my + 7)(x + m^1y - 4)$

குணகங்களைச் சமப்படுத்த,

$$y: 7m^1 - 4m = -25$$
 (1)

$$xy: 2m^1 + m = -5$$
 ———(2)

$$y^2: mm^1 = -3$$
 (3)

$$(1), (2)$$
 இலிருந்து, $m^1 = -3, m = 1$ ஆகும்.

ஆகவே,
$$E = (2x + y + 7)(x - 3y - 4)$$
 ஆகும்.

அல்லது

$$E = 2x^2 - 5xy - x - 25y - 3y^2 - 28$$
 $x = 0$ எனின் கோவை $-3y^2 - 25y - 28$
 $-3y^2 - 25y - 28$
 $= -(3y^2 + 25y + 28)$
 $= -(3y + 4)(y + 7)$
 $= (-3y - 4)(y + 7)$
 $2x^2 - 5xy - x - 25y - 3y^2 - 28$

$$\equiv (lx-3y-4)(l^1x+y+7)$$

குணகங்களைச் சமப்படுத்த,

$$x$$
 இன் குணகம் : $7l - 4l^1 = -1$

$$xy$$
 இன் குணகம் : $l - 3l^1 = -5$

$$x^2$$
 இன் குணகம் : $ll^1 = 2$

(1), (2) இலிருந்து
$$l^1 = 2$$
, $l = 1$

$$E = (x - 3y - 4)(2x + y + 7)$$

 $2x^2 - 3xy - 7xz - 2y^2 + 4yz + 6z^2$ என்பதை x, y, z இன் ஏகபரிமாணக் காரணிகள் இரண்டின் பெருக்கமாக எழுதுக.

$$E = 2x^2 - 3xy - 7xz - 2y^2 + 4yz + 6z^2$$

E, என்பது மாறிகள் x, y, z இல் இரண்டாம் படியிலுள்ள கோவை ஆகும்.

$$E \equiv (lx + my + nz) (l^1x + m^1y + n^1z)$$
 $z = 0$ எனின், $E = 2x^2 - 3xy - 2y^2$ $= (2x + y)(x - 2y)$ $E = (2x + y + nz)(x - 2y + n^1z)$ ஆகும்.

குணகங்களைச் சமப்படுத்த,

$$xz$$
 இன் குணகம் : $n + 2n^1 = -7$ — (1)

$$yz$$
 இன் குணகம் : $2n + n^1 = 4$ — (2)

$$z^2$$
 இன் குணகம் : $nn^1 = +6$

(1), (2) இலிருந்து
$$n=-3$$
 $n^1=-2$ எனவே $E=\left(2x+y-3z\right)\left(x-2y-2z\right)$ ஆகும்.

விகிதமுறு சார்புகள் (Rational Functions)

P(x), Q(x) என்பன x இன் இருபல்லுறுப்புச் சார்புகளாகவும், $Q(x) \neq 0$ ஆகவும் இருக்க, $\dfrac{P(x)}{Q(x)}$ என்பது x இல் விகிதமுறு சார்பு எனப்படும்.

P(x) இன்படி < Q(x) இன்படி எனின், $\frac{P(x)}{Q(x)}$ முறைமை விகிதமுறு சார்பு (proper rational function) எனப்படும்.

P(x) இன்படி $\geq Q(x)$ இன்படி எனின் $\dfrac{P(x)}{Q(x)}$ முறைமையில் விகிதமுறு சார்பு எனப்படும்.

உதாரணம்

$$\frac{3x+4}{(x-1)(x-2)}$$
, $\frac{x^2-x+1}{x^3+3x^2-4}$ முறைமை விகிதமுறு சார்புகள்.

$$\frac{x^2 - 2x + 5}{x^2 - 3x + 4}$$
, $\frac{2x^2 - 3x - 5}{x + 2}$ முறைமையில் விகிதமுறு சார்புகள் ஆகும்.

பகுதிப்பின்னங்கள் (Partial Fractions)

$$\frac{P(x)}{Q(x)}$$
 ஐ பகுதிப்பின்னங்களாக எழுதுதல்.

வகை I

$$P(x)$$
 இன்படி $< \mathrm{Q}(x)$ இன்படி

$$\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$$
 என எழுதி

ஒருமைகள் A, B, C ஐக் காணலாம்.

(b)
$$Q(x) = (x-a)(x-b)(px^2+qx+r)$$
 எனின் $\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{cx+D}{px^2+qx+r}$ என எழுதி ஒருமைகள் A, B, C, D ஐக் காணலாம்.

(c)
$$Q(x) = (x-a)^3$$
 எனின்
$$\frac{P(x)}{Q(x)} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3}$$
 என எழுதி ஒருமைகள் A, B, C ஐக் காணலாம்.

பின்வருவனவற்றைப் பகுதிப்பின்னங்களாக எழுதுக.

(i)
$$\frac{x+7}{x^2-x-6}$$
 (ii) $\frac{3x^2-7}{x^3+2x^2-8x}$

(iii)
$$\frac{3x^2 + 9x + 13}{(x-1)(x^2 + 2x + 5)}$$

(i)
$$\frac{x+7}{x^2-x-6} = \frac{x-7}{(x+2)(x-3)} = \frac{A}{x+2} + \frac{B}{x-3}$$
$$\frac{x+7}{x^2-x-6} = \frac{A(x-3)+B(x+2)}{(x+2)(x-3)}$$
$$x+7 = A(x-3)+B(x+2) \qquad (1)$$
$$x+7 = (A+B)x + (2B-3A)$$

குணகங்களைச் சமப்படுத்த,

$$x$$
 இன் குணகம் $A + B = 1$ மாறிலி $A + B = 7$

இரு சமன்பாடுகளையும் தீர்க்க,
$$A=-1$$
 $B=2$

ஆகவே,
$$\frac{x+7}{x^2-x-6} = \frac{-1}{x+2} + \frac{2}{x-3}$$

அல்லது

$$(1)$$
 இல், $x+7=A(x-3)+B(x+2)$ என்பதில் $x=3$ எனப்பிரதியிட, $10=B(3+2)$ $10=5B$ $B=2$ $x=-2$ எனப்பிரதியிட, $5=-5A$ $A=-1$

കൂടങ്ങ
$$\frac{x+7}{x^2-x-6} = \frac{-1}{x+2} + \frac{2}{x-3}$$

(ii)
$$\frac{3x^2 - 7}{x^3 + 2x^2 - 8x} = \frac{3x^2 - 7}{x(x^2 + 2x - 8)} = \frac{3x^2 - 7}{x(x + 4)(x - 2)}$$
$$\frac{3x^2 - 7}{x^3 + 2x^2 - 8x} = \frac{A}{x} + \frac{B}{x + 4} + \frac{C}{x - 2}$$
$$= \frac{A(x + 4)(x - 2) + Bx(x - 2) + Cx(x + 4)}{x(x + 4)(x - 2)}$$

$$3x^2 - 7 = A(x+4)(x-2) + Bx(x-2) + Cx(x+4)$$
 (1)

குணகங்களைச் சமப்படுத்த,

 χ^2 இன் குணகம் : A + B + C = 3

x இன் குணகம் : 2A - 2B + 4C = 0

மாறிலி : -8A = -7

மூன்று சமன்பாடுகளிலிருந்தும் $A=\frac{7}{8}, \quad B=\frac{41}{24}, \quad C=\frac{5}{12}$

$$\frac{3x^2 - 7}{x^3 + 2x^2 - 8x} = \frac{7}{8x} + \frac{41}{24(x+4)} + \frac{5}{12(x-2)}$$

அல்லது

$$3x^2 - 7 = A(x+4)(x-2) + Bx(x-2) + Cx(x+4)$$
 @\ddo

 $A = \frac{7}{9}$

$$x=0$$
 எனின், $-7=-8A$,

$$x = -4$$
 stabilism, $41 = 24B$ $B = \frac{41}{24}$

$$x = 2$$
 எனின், $5 = 12C$ $C = \frac{5}{12}$

$$\frac{3x^2-7}{x^3+2x^2-8}=\frac{7}{8x}+\frac{41}{24(x+4)}+\frac{5}{12(x-2)}$$

(iii)
$$\frac{3x^2 + 9x + 13}{(x - 1)(x^2 + 2x + 5)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 2x + 5}$$
$$= \frac{A(x^2 + 2x + 5) + (Bx + C)(x - 1)}{(x - 1)(x^2 + 2x + 5)}$$
$$3x^2 + 9x + 13 = A(x^2 + 2x + 5) + (Bx + C)(x - 1)$$
(1)

குணகங்களைச் சமப்படுத்த,

$$x^2$$
 இன் குணகம் : $A + B = 3$

$$x$$
 இன் குணகம் : $2A - B + C = 9$

மாறிலி :
$$5A - C = 13$$

சமன்பாடுகளிலிருந்து
$$A = \frac{25}{8}$$
, $B = -\frac{1}{8}$ $C = \frac{21}{8}$

$$\frac{3x^2 + 9x + 13}{(x-1)(x^2 + 2x + 5)} = \frac{25}{8(x-1)} - \frac{x-21}{8(x^2 + 2x + 5)}$$

அல்லது

சமன்பாடு (1) இல்

$$3x^2 + 9x + 13 = A(x^2 + 2x + 5) + (Bx + c)(x - 1)$$

x = 1 எனப்பிரதியிட,

$$25 = 8A$$
, $A = \frac{25}{8}$

x=0 எனப்பிரதியிட

$$13 = 5A - C$$
, $C = 5A - 13 = \frac{21}{8}$

x = -1 எனப்பிரதியிட,

$$7 = 4A + 2B - 2C$$

$$B=-\frac{1}{8}$$

$$\frac{3x^2 + 9x + 13}{(x-1)(x^2 + 2x + 5)} = \frac{25}{8(x-1)} - \frac{x-21}{8(x^2 + 2x + 5)}$$

உதாரணம் 16

பகு**திப்பின்னங்களா**க்குக.

(i)
$$\frac{9}{(x-1)(x+2)^2}$$
 (ii) $\frac{3x^2-5}{(x+2)^3}$

(i)
$$\frac{9}{(x-1)(x+2)^2} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$
$$= \frac{A(x+2)^2 + B(x-1)(x+2) + C(x-1)}{(x-1)(x+2)^2}$$
$$9 = A(x+2)^2 + B(x-1)(x+2) + C(x-1) - (1)$$

குணகங்களைச் சமப்படுத்த,

$$x^2$$
 இன் குணகம் : $A+B=0$

$$x$$
 இன் குணகம் : $4A + B + C = 0$

மாறிலி :
$$4A - 2B - C = 9$$

சமன்பாடுகளைத் தீர்க்க A=1, B=-1, C=-3

$$\frac{9}{(x-1)(x+2)^2} = \frac{1}{(x-1)} - \frac{1}{(x+2)} - \frac{3}{(x+2)^2}$$

அல்லது

சமன்பாடு (1) இல்

$$9 = A(x+2)^2 + B(x-1)(x+2) + C(x-1)$$

$$x=1$$
 எனின், $9=9A$,

$$x = -2$$
 எனின், $9 = -3C$; $C = -3$

$$x = 0$$
 signifies, $9 = 4A - 2B - C$; $B = -1$

$$\frac{9}{(x-1)(x+2)^2} = \frac{1}{x-1} - \frac{1}{x+2} - \frac{3}{(x+2)^2}$$

(ii)
$$\frac{3x^2 - 5}{(x+2)^3} = \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3}$$
$$= \frac{A(x+2)^2 + B(x+2) + C}{(x+2)^3}$$
$$3x^2 - 5 = A(x+2)^2 + B(x+2) + C$$
(1)

குணகங்களைச் சமப்படுத்த,

$$\chi^2$$
 இன் குணகம் : $A=3$

$$x$$
 இன் குணகம் : $4A + B = 0$; $B = -12$ மாரிலி : $4A + 2B + C = -5$. $C = 7$

$$\frac{3x^2 - 5}{(x+2)^3} = \frac{3}{x+2} - \frac{12}{(x+2)^2} + \frac{7}{(x+2)^3}$$

சமன்பாடு (1) இல்,

$$3x^2-5=A\left(x+2\right)^2+B\left(x+2\right)+C$$
 $x=-2$ எனின், $7=0+0+C$; $C=7$ $x=1$ எனின் $-2=9A+3B+C$; $9A+3B=-9$ $x=0$ எனின் $-5=4A+2B+C$; $4A+2B=-12$

சமன்பாடுகளைத் தீர்க்க A=3, B=-12 ஆகும்.

$$\frac{3x^2 - 5}{(x+2)^3} = \frac{3}{x+2} - \frac{12}{(x+2)^2} + \frac{7}{(x+2)^3}$$

வகை II

$$rac{P(x)}{\mathrm{Q}(x)}$$
 இங்கு $P(x)$ இன்படி $\geq \mathrm{Q}(x)$ இன்படி

பகுதிப்பின்னங்களாக்குக.

(i)
$$\frac{2x^2}{x^2-1}$$
 (ii) $\frac{x^2+7x-14}{x^2+2x-15}$ (iii) $\frac{x^3+4x^2-x-17}{x^2+x-6}$

(i)
$$\frac{2x^2}{x^2 - 1} = A + \frac{bx + c}{x^2 - 1} = A + \frac{B}{x - 1} + \frac{C}{x + 1}$$
$$\frac{2x^2}{x^2 - 1} = \frac{A(x - 1)(x + 1) + B(x + 1) + C(x - 1)}{(x - 1)(x + 1)}$$
$$2x^2 = A(x^2 - 1) + B(x + 1) + C(x - 1)$$

குணகங்களைச் சமப்படுத்த

$$\mathbf{r}^2$$
 இன் குணகம் : $A=2$

$$x$$
 இன் குணகம் : $B+C=0$

மாறிலி
$$:-A+B-C=0$$

சமன்பாடுகளைத் தீர்க்க :
$$A=2$$
, $B=1$, $C=-1$

കൂടെബേ
$$\frac{2x^2}{x^2-1}=2+\frac{1}{x-1}-\frac{1}{x+1}$$

அல்லது

$$\frac{2x^2}{x^2 - 1} = \frac{2x^2 - 2 + 2}{x^2 - 1} = \frac{2x^2 - 2}{x^2 - 1} + \frac{2}{x^2 - 1}$$
$$= 2 + \frac{B}{x - 1} + \frac{C}{x + 1}$$
$$= 2 + \frac{1}{x - 1} - \frac{1}{x + 1}$$

86

(ii)
$$\frac{x^2 + 7x - 14}{x^2 + 2x - 15} = \frac{x^2 + 7x - 14}{(x+5)(x-3)} = A + \frac{B}{x+5} + \frac{C}{x-3}$$
$$x^2 + 7x - 14 = A(x^2 + 2x - 15) + B(x-3) + C(x+5)$$

குணகங்களைச் சமப்படுத்த,

$$x^2$$
 இன் குணகம் : $A=1$

$$x$$
 இன் குணகம் $:2A+B+C=7$

மாறிலி :
$$-15A - 3B + 5C = -14$$

சமன்பாடுகளைத் தீர்க்க
$$A=1,\ B=3,\ C=2$$

$$\frac{x^2 + 7x - 14}{x^2 + 2x - 15} = 1 + \frac{3}{x + 5} + \frac{2}{x - 3}$$

அல்லது

$$\frac{x^2 + 7x - 14}{x^2 + 2x - 15} = \frac{x^2 + 2x - 15 + 5x + 1}{x^2 + 2x - 15}$$

$$= \frac{x^2 + 2x - 15}{x^2 + 2x - 15} + \frac{5x + 1}{x^2 + 2x - 15}$$

$$= 1 + \frac{L}{(x+5)} + \frac{M}{(x-3)}$$

$$= 1 + \frac{3}{(x+5)} + \frac{2}{(x-3)}$$

(iii)
$$\frac{x^2 + 4x^2 - x - 17}{x^2 + x - 6} = (Ax + B) + \frac{C}{x + 3} + \frac{D}{x - 2}$$
$$3 = \frac{(Ax + B)(x + 3)(x - 2) + C(x - 2) + D(x + 3)}{(x + 3)(x + 2)}$$

$$x^3 + 4x^2 - x - 17 = (Ax + B)(x + 3)(x - 2) + C(x - 2) + D(x + 3)$$

$$x=2$$
 ஆக, $8+16-2-17=5D$ $.5=5D$ $D=1$

$$x=-3$$
 24.5, $-27+36+3-17=-5C$
 $-5=-5C$
 $C=1$

$$x=0$$
 எனின், $-17=-6B-2C+3D$
$$-18=-6B$$

$$B=3$$

$$x=1$$
 ଗର୍ଜ୍ଞାରୀ,
$$1+4-1-17=-4\left(A+B\right)-C+4D$$

$$-13=-4A-12-1+4$$

$$-4=-4A$$

$$A=1$$

$$\frac{x^3 + 4x^2 - x - 17}{x^2 + x - 6} = (x + 3) + \frac{1}{x + 3} + \frac{1}{x - 2}$$

பயிற்சி 2 (a)

 பின்வருவனவற்றை (a) அட்சரகணித நெடும் பிரித்தல் (b) தொகுப்பு முறை வகுத்தல் மூலம், ஈவு, மீதி என்பவற்றைக் காண்க.

i.
$$x^2 + 3x - 7 \div (x - 2)$$

ii.
$$2x^3 - 3x + 1 \div (x - 2)$$

iii.
$$2x^4 - 5x^3 - 4x^2 + 13 \div (x - 3)$$

iv.
$$4x^5 - 30x^3 - 50x - 2 \div (x+3)$$

v.
$$4x^4 + 12x^3 - 21x^2 - 65x - 9 \div (2x + 3)$$

- 2. i. $3x^4 16x^2 3x + 7$ ஐ (x + 2)ஆல் வகுக்கும் போது மீதியைக் காண்க. ii. $x^6 2x^4 + x^2 2$ ஐ $x^2 x 2$ ஆல் வகுக்கும் போது மீதியைக் காண்க.
- 3. i. $2x^6 x^5 2x^3 2$ ஐ (x-1)(x+1)(2x-1) ஆல் வகுக்கும் போது மீதியைக் காண்க.
 - ii. x^5-7x^3+4x-2 ஐ (x-1)(x+1)(x-3) ஆல் வகுக்கும் போது மீதியைக் காண்க.
- 4. $x^3 px + q$ ஐ $x^2 3x + 2$ ஆல் வகுக்கும் போது மீதி 4x 1 எனின் p, q ஐக் காண்க.
- 5. $f(x) = 2x^4 + ax^2 + bx 60$ என்க. f(x) ஐ (x-1) ஆல் வகுக்கும் போது மீதி -94 ஆகும். மேலும் (x-3) f(x) இன் ஒரு காரணி எனின், ஒருமைகள் a, b ஐக் காண்க.
- 6. மீதித் தேற்றத்தைக் கூறி நிறுவுக.
 - i. f(x) என்பது x இன் ஒரு பல்லுறுப்பிச் சார்பாகவும் f(1) = a f(-1) = b, f(0) = c ஆகவும் இருக்க, f(x) ஐ $(x^2 1)$ ஆல்

வகுக்க வரும் மீதி $\frac{1}{2}(a-b)x+\frac{1}{2}(a+b)$ எனக் காட்டுக. f(x) ஐ $\left(x^3-x\right)$ ஆல் வகுக்க வரும் மீதியைக் காண்க.

- ii. $ax^3 + bx^2 + cx + d$ என்ற பல்லுறுப்புச் சார்பு, $(x^2 1)$, $(x^2 4)$ என்பவற்றால் வகுக்கப்படும்போது மீதிகள் முறையே 5x 2, 11(x 1) எனின் a, b, c, d என்பவற்றைக் காண்க.
- 7. i. f(x) என்பது x இன் ஒரு பல்லூறுப்பி. a,b என்பன ஒருமைகளாயிருக்க $f\left(x\right)$ ஐ $\left(x-a\right)\left(x-b\right)$ என்பதால் வகுக்கும்போது பெறப்படும் மீதி $\left[\frac{f\left(a\right)-f\left(b\right)}{a-b}\right]x+\frac{a\,f\left(b\right)-b\,f\left(a\right)}{a-b}$ என நிறுவுக. $\left(a\neq b\right)$
 - ii. $f(x) = x^7 + lx^2 + mx + n$ என்பது x + 1, $x^2 x$ என்பவற்றால் வகுக்கப்படும்போது மீதிகள் முறையே 2, x + 2 ஆகும். l, m, n என்பவற்றைக் காண்க.
- 8. i. $2x^4 + x^3 x^2 + ax + b$ என்பதை $x^2 1$ ஆல் வகுக்கும்போது a மீதி 2x + 3 ஆயின் a, b இன் பெறுமானத்தைக் காண்க.
 - ii. $x^4 5x^3 + 8x^2 5x + 1 = 0$ என்னும் சமன்பாட்டின் மூலகங்களைக் காண்க.
- 9. (i) $x^8 + 2x^7 + ax^2 + bx + c$ என்பது $x^2 + x 2$ ஆல் சரியாக வகுபடக் கூடியதாகவும், (x+1) ஆல் வகுக்கப்படும் போது -8 மீதியைக் கொடுக்கக் கூடியதாகவும் இருப்பின் a,b,c என்பவற்றைக் காண்க.
 - (ii) $3x^2 + 5xy 2y^2 5x + 4y + k \equiv (lx + my + n)(l'x + m'y + n')$ ஆகும் வண்ணம் $k, l, m, n, l^1, m^1, n^1$ என்னும் ஒருமைகளைக் காண்க.

- 10. பல்லுறுப்பி f(x) ஆனது, (x-1)(x-2)(x-3) ஆல் வகுக்கப்படும் போது மீதி a(x-2)(x-3)+b(x-3)(x-1)+c(x-1)(x-2) ஆகும். ஒருமைகள் a,b,c ஐ f(1),f(2),f(3) இல் காண்க. k ஓர் ஒருமையாக இருக்க. $\left(x^5+kx^2\right)$ ஐ (x-1)(x-2)(x-3) ஆல் வகுக்கும்போது மீதியில் உறுப்பு $\not=x^2$ இல்லாதிருப்பதற்கான k இன் பெறுமானத்தைக் காண்க.
- 11. பல்லுறுப்பி f(x) ஆனது x^2-a^2 ஆல் வகுக்கப்படும்போது $(a \neq 0)$ மீதி $\frac{1}{2a} \left[f(a) f(-a) \right] x + \frac{1}{2} \left[f(a) + f(-a) \right]$ எனக்காட்டுக. $x^n a^n \quad \boxtimes \quad x^2 a^2 \quad$ ஆல் வகுக்கும்போது

i. n இரட்டை ii. n ஒற்றை ஆகிய சந்தர்ப்பங்களில் மீதியைக் காண்க.

காரணித்தேற்றத்தைக் கூறுக.
 பின்வரும் பல்லுறுப்பிகளைக் காரணிகளாக்குக.

i.
$$x^4 - 5x^3 - 13x^2 + 53x + 60$$

ii.
$$x^4 - 16x^3 + 86x^2 - 176x + 105$$

iii.
$$x^3 - (5+a)x^2 + (6+5a)x - 6a$$
 ($a -$ ф(Беоц)

13. பின்வரும் சமன்பாடுகளைத் தீர்க்க.

i.
$$x^3 - 7x^2 + 19x - 13 = 0$$

ii.
$$x^3 - 15x^2 + 74x = 120$$

iii.
$$5x^3 + 31x^2 + 31x + 5 = 0$$

iv.
$$x^5 - 4x^4 + 3x^3 + 3x^2 - 4x + 1 = 0$$

$$x^4 + x^3 - 4x^2 + x + 1 = 0$$

- 14. $(x+1)^2$ ஆனது x^5+2x^2+mx+n என்பதன் ஒரு காரணி எனின் நிறை எண்கள் m, n ஐக் காண்க.
- 15. $x^3 5x^2 + 6x 2$ ஐ $(x 2)^2$ ஆல் வகுக்க மீதி யாது?
- 16. $x^4 mx^2 + n$ ஐ $(x+1)^2$ ஆல் வகுக்கும் போது மீதி (5x-2) ஆகுமாறு ஒருமைகள் m, n என்பவற்றைக் காண்க.
- 17. $\left(x^2+1\right)$ என்பது x^4+px^3+3x+q என்பதன் ஒரு காரணி எனின் p, q என்பவற்றின் பெறூரனங்களைக் காண்க. p, q இன் இப்பெறுமானங்களுக்கு $x^4+px^3+x^2+3x+q+1=0$ எனும் சமன்பாட்டின் மெய்மூலங்களைக் காண்க.
- 18. $f(x) = 2x^3 + 3x^2 3x + q$; இங்கு q பூச்சியமில்லாத நிறையெண் ஆகும். (x-q) என்பது f(x) இன் ஒரு காரணி எனின் q இன் பெறுமானத்தைக் காண்க. q இன் இப்பெறுமானத்திற்கு f(x) ஐ ஏகபரிமாணக் காரணிகளின் பெருக்கமாகத் தருக. f(x) = (x-a)(2x-1)(x+1) + bx + c ஆகுமாறு a,b,c ஆகிய ஒருமைகளைக் காண்க.
- 19. $f(x) = x^4 bx^3 11x^2 + 4(b+1)x + a$ ஆகும். இங்கு a, b என்பன மாறிலிகள் ஆகும்.
 - i. $f\left(x
 ight)$, இருபடிக் கோவை ஒன்றின் நிறைவர்க்கம் எனவும் அத்துடன்
 - ii. f(x) இன் ஒரு காரணி (x+2) எனவும், தரப்படின் a,b என்பவற்றைக் காண்க. அத்துடன் f(x) இன் எல்லாக் காரணிகளையும் எழுதுக.
- **20.** f(x), g(x) என்பன x இலான பல்லூறப்பிகளாகும். f(x) ஐ $3x^2+x-2$ இனாலும் g(x) ஐ $\left(x^2-1\right)$ இனாலும் வகுக்கும் போது மீதிகள் முறையே (2x+1) உம் (x+2) உம் ஆகும்.

பல்லுறுப்பி f(x) + g(x) இன் ஏகபரிமாணக் காரணி ஒன்றைக் காண்க. $f(x) \cdot g(x)$ ஐ இந்த ஏகபரிமாணக் காரணியினால் வகுக்கும்போது மீதியைக் காண்க.

- 21. i. x^3-3x^2+5x-7 என்ற பல்லுறுப்பியை $Ax\left(x+1\right)\left(x+2\right)+Bx\left(x+1\right)+cx+D$ என்னும் வடிவில் உணர்த்துக. இங்கு A,B,C,D துணியப்படவேண்டிய எண்கள்.
 - ii. $2x^3 + bx^2 + cx + 18$ இன் காரணிகள் (x-2)(x+3) எனின், b, c ஐக் கண்டு, தரப்பட்ட பல்லுறுப்பியைக் காரணியாக்குக.
- 22. $x^3 + 1$ என்பது $x^6 + ax^4 + bx^3 + cx^2 + 3x + 2$ இன் ஒரு காரணி எனின் a, b, c ஐக் காண்க.
- 23. $x^3 + 4x^2 + x + p$ என்பது (x+q) இனால் சரியாக வகுபடக்கூடியதெனின் p,q ஆகிய மெய்யெண்களுக்கிடையேயான தொடர்பொன்றினைப் பெறுக. இத் தொடர்பிலிருந்து q=-1 ஆகும்போது p இன் பெறுமானத்தைக் காண்க. p இன் இப் பெறுமானத்திற்கு $x^3 + 4x^2 + x + p$ இன் காரணிகளைக் காண்க.
- 24. $4x^3 (3p+2)x^2 (p^2-1)x+3$ என்பதன் ஒரு காரணி (x-p) எனின் p யின் பெறுமானங்களைக் காண்க. p யின் ஒவ்வொரு பெறுமானத்திற்கும் ஒத்த மற்றைய காரணியைக் காண்க.
- 25. $(x-k)^2$ என்பது $x^3+3px+q$ என்பதன் ஒரு காரணி எனின் $4p^3+q^2=0$ என நிறுவுக. மற்றைய காரணி (x+2k) எனவும் காட்டுக.
- **26.** காரணியாக்குக. $x^6 + x^5 4x^4 + 4x^3 + 8x^2 32x 32$

- 27. $f(x) = x^5 + 3x^4 2x^3 + 2x^2 3x + 1$ ஆகும்.
 - i. (x-1) அல்லது (x+1), f(x) இன் ஒரு காரணியல்ல எனக்காட்டுக.
 - ii. f(x) ஆனது (x^2-1) இனால் வகுக்கப்படும்போது கிடைக்கும் மீதியைக் காண்க.
 - iii. f(x) ஆனது (x^2+1) இனால் வகுக்கப்படும்போது கிடைக்கும் மீதி 2 எனக் காட்டி, இதிலிருந்து f(x) -2 இன் ஏகபரிமாணக் காரணி ஒன்றைப் பெறுக.
- 28. (x+t) என்பது, x^3+px^2+q , ax^3+bx+c ஆகியவற்றின் ஒரு பொதுக்காரணி எனின், அது $apx^2-bx+qa-c$ என்ற சார்பினதும் பொதுக்காரணியாகும் எனக் காட்டுக.

 $x^3+\sqrt{7}\,x^2-14\sqrt{7}$, $2x^3-13x-\sqrt{7}$ என்ற இரு சார்புகளுக்கும் பொதுக்காரணி ஒன்று உண்டெனக் காட்டுக. இதிலிருந்து $2x^3-13x-\sqrt{7}=0$ என்ற சமன்பாட்டின் எல்லா மூலகங்களையும் காண்க.

- **29.** $P\left(x\right),Q\left(x\right)$ என்னும் இரு பல்லுறுப்பிகளுக்கு (x-p) ஒரு பொதுக் காரணி எனின், (x-p) என்பது $\left[P\left(x\right)-Q\left(x\right)\right]$ இன் ஒரு காரணியாகும் எனநிறுவுக. $a\,x^3+4x^2-5x-10,\ a\,x^3-9x-2$ ஆகிய பல்லுறுப்பிகளுக்கு ஒரு பொதுக் காரணி இருப்பின் a=2 அல்லது a=11 எனக் காட்டுக.
- 30. (2x+1) ஆல் சரியாக வகுபடக் கூடியதும், (x-1), (x-2) என்பவற்றால் வகுக்கப்படும் போது மீதிகள் முறையே -6, -5 ஐத் தருவதுமான இருபடிச் சார்பு f(x) ஐக் காண்க.

 $g(x) = (px+q)^2 \ f(x)$ ஆக வரையறுக்கப்பட்டுள்ளது. இங்கு $p\,,q\,$ என்பன ஒருமைகள்

g(x) ஐ $(x-2)^2$ ஆல் வகுக்கும் போது மீதி -39 -3x எனின், g(x) ஐக் காண்க.

- 31. $2x^3 ax^2 12x 7$ எனும் சார்பு மீளும் காரணியைக் கொண்டிருப்பதற்கான a இன் பெறுமானத்தைக் காண்க.
- 32. $3x^4 + 2x^3 + 6x^2 6x p$ எனும் பல்லுறுப்பி x இல் முதலாம் படியிலான மீளும் காரணிகளைக் கொண்டுள்ளது. p இன் சாத்தியமான பெறுமானங்களைக் காண்க.
- 33. $f(x) = ax^2 + 2x 1$, $g(x) = x^2 + 4x + a$ என்ற இரு சார்புகளுக்கும் பொதுக்காரணி ஒன்று இருப்பின் மாறிலி a இன் பெறுமானத்தைக் காண்க.
- 34. $x^3 + mx + 1$ $x^3 3x m$ எனும் இரு பல்லுறு**ப்பிக**ளுக்கும் பொதுக்காரணி ஒன்று இருப்பின் m இன் பெறுமானத்தைக் காண்க.
- 35. c இன் எப்பெறுமானங்களுக்கு $3x^3 5x^2 + 7x + c$, $2x^3 7x^2 + 22x + c$ என்பவற்றிற்கு ஒரு பொதுக்காரணி இருக்குமெனக் காண்க.
- 36. i. x இலான ஒரு இருபடிக் கோவையை (x-1), (x-2), (x-3) என்பவற்றால் வகுக்கும் போது மீதிகள் முறையே k, 2k, 4k எனின், கோவையை (x-4) ஆல் வகுக்கும் போது பெறப்படும் மீதியை k இல் காண்க.
 - ii. $f(x) = 12x^3 4x^2 13x 4$ ஆகும். காரணித்தேற்றத்தைப் பயன்படுத்தி (2x+1), f(x) இன் ஒரு காரணி எனக் காட்டி, f(x) ஐக் காரணியாக்குக.
 - iii. m,n என்பன நிறையெண்களாக இருக்க, $x^m + nx$ ஐ $x^2 x 2$ ஆல் வகுக்க வரும் மீதி 2x + 6 ஆயின் m,n ஐக் காண்க.

காரணிகளாக எழுதுக.

37.
$$2x^2 - 5xy - x - 25y - 3y^2 - 28$$

38.
$$x^2 + xy - 2y^2 - 11yz + 2xz - 15z^2$$

$$39. \quad 2x^2 + xz - 2y^2 - 3yz - z^2$$

40.
$$2x^2 - 3xy - 7xz - 2y^2 + 4y^2 + 4yz + 6z^2$$

பயிந்சி 2 (b)

பகுதிப்பின்னங்களாக்குக.

1.
$$\frac{3}{x^2-1}$$

2.
$$\frac{x+1}{x^2-5x+4}$$

3.
$$\frac{x+3}{x^2+x}$$

4.
$$\frac{x^2-2x+4}{2x(x-3)(x+1)}$$
 5. $\frac{6}{(x^2-1)(x-4)^2}$ 6. $\frac{3x-1}{(x^2-9)(x^2-1)}$

5.
$$(x^2-1)(x-4)^2$$

6.
$$\frac{3x-1}{(x^2-9)(x^2-1)}$$

7.
$$\frac{2}{(x-1)(x^2+1)}$$
 8. $\frac{2x^2+x+1}{(x-3)(2x^2+1)}$ 9. $\frac{x^2+3}{x(x^2+1)}$

8.
$$\frac{2x^2+x+1}{(x-3)(2x^2+1)}$$

9.
$$\frac{x^2+3}{x(x^2+1)}$$

10.
$$\frac{x^2-1}{x^2(2x+1)}$$

10.
$$\frac{x^2-1}{x^2(2x+1)}$$
 11. $\frac{x^2+x+1}{(x^2-1)(x^2+1)}$ 12. $\frac{x}{(x-1)(x-2)^2}$

12.
$$\frac{x}{(x-1)(x-2)^2}$$

13.
$$\frac{9x}{(2x+1)^2(1-x)}$$
 14. $\frac{7x+4}{(x-3)(x+2)^2}$ 15. $\frac{x+1}{(x^2+1)(x-1)^2}$

14.
$$\frac{7x+4}{(x-3)(x+2)^2}$$

15.
$$\frac{x+1}{(x^2+1)(x-1)^2}$$

16.
$$\frac{x^2 + 4x - 7}{(x+1)(x^2 + 4)}$$

16.
$$\frac{x^2 + 4x - 7}{(x+1)(x^2+4)}$$
 17. $\frac{x^2 + 2}{(x^2 + 2x + 3)(2x + 1)}$ 18. $\frac{x^2}{(x+1)^3}$

18.
$$\frac{x^2}{(x+1)^3}$$

19.
$$\frac{2x^3 + 2x^2 + 2}{(x+1)^2 (x^2+1)}$$

20.
$$\frac{2x+1}{(x+1)^2(2x-5)}$$

21.
$$\frac{3x^2 - 4x + 5}{(x+1)(x-3)(2x-1)}$$

22.
$$\frac{4+3x+2x^2}{(1-2x)(1-x^2)}$$

23.
$$\frac{4x}{x^4-1}$$

B. பகுதிப்பின்னங்களாக்குக.

1.
$$\frac{5x^2 - 71}{(x+5)(x-4)}$$

2.
$$\frac{3x^4 + 7x^3 + 8x^2 + 53x - 186}{(x+4)(x^2+9)}$$

3.
$$\frac{2x^2 + x - 5}{(x+2)(x+1)}$$

4.
$$\frac{x^4 + x^3 - 19x^2 - 44x - 21}{(x+1)(x+2)(x+3)}$$

3. இருபடிச் சமன்பாடுகள் (Quadratic Equation)

இருபடிச்சமன்பாடுகளும், அதன்மூலங்களும்

இருபடிச் சமன்பாட்டின் பொதுவடிவம் $ax^2+bx+c=0$; $a,\ b,\ c$ மெய்யெண்கள் $a\neq 0$ ஆகும்.

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx = -c$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \frac{\pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

எனவே சமன்பாட்டின் மூலங்கள்

$$\frac{-b+\sqrt{b^2-4ac}}{2a}, \frac{-b-\sqrt{b^2-4ac}}{2a}$$
 ஆகும்.

மூலங்கள் lpha,eta எனக் கொள்க.

$$\alpha + \beta = -\frac{2b}{2a} = -\frac{b}{a}$$

$$\alpha \beta = \left[\frac{-b + \sqrt{b^2 - 4ac}}{2a} \right] \left[\frac{-b - \sqrt{b^2 - 4ac}}{2a} \right]$$

$$= \frac{b^2 - \left(b^2 - 4ac\right)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a} \text{ Subjb.}$$

மூலங்கள் தரப்படின் இருபடிச்சமன்பாடொன்றை அமைத்தல்

 $\lambda,\,\mu$ என்பவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு

$$(x-\lambda)(x-\mu)=0$$

 $x^2-(\lambda+\mu)x+\lambda\mu=0$ ஆகும்.

 $ax^2 + bx + c = 0$ இன் மூலங்கள் α , β எனின் $\alpha + \beta$, $\alpha\beta$ என்பவற்றின் பெறுமானங்களைக் காண்க.

$$ax^2 + bx + c = 0$$
 $(a \neq 0)$ $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ (1) α, β என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு $(x - \alpha)(x - \beta) = 0$

$$x^2 - (\alpha - \beta)x + \alpha\beta = 0$$
 (2) இலிருந்து குணகங்களைச் சமப்படுத்த

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$
 ஆகும்.

மேலும் lpha, eta என்பன $ax^2+bx+c=0$ இன் மூலங்கள் என்பதால் $alpha^2+blpha+c=0$, $aeta^2+beta+c=0$ ஆகும்.

உதாரணம்

$$3x^2+5x-2=0$$
 இன் மூலங்கள் α , β எனின் $\alpha+\beta=-\frac{5}{3}$, $\alpha\beta=-\frac{2}{3}$ ஆகும்.

$$3x^2 + 5x - 2 = 0$$
, $(3x - 1)(x + 2) = 0$
 $x = \frac{1}{3}$, -2

மூலங்களின் கூட்டுத்தொகை
$$\frac{1}{3} + (-2) = -\frac{5}{3}$$
 மூலங்களின் பெருக்குத்தொகை $\frac{1}{3} \times (-2) = -\frac{2}{3}$

3, -5 என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு

$$(x-3)[x-(-5)] = 0$$
$$(x-3)(x+5) = 0$$
$$x^{2} + 2x - 15 = 0$$

$$\left(1+\sqrt{3}\right),\left(1-\sqrt{3}\right)$$
 என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு

$$ax^2 + bx + c = 0$$
; a, b, c மெய்யெண்கள் $a \neq 0$ ஆகும்.

மூலங்கள்
$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 ஆகும்.

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \ \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \quad \text{signlike},$$

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$

$$lpha,eta,\;\; ax^2+bx+c=0$$
 இன் மூலங்கள் என்பதால்

$$a\alpha^2 + b\alpha + c = 0$$
, $a\beta^2 + b\beta^{-1} + c = 0$

 λ,μ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு

$$(x - \lambda)(x - \mu) = 0$$

$$x^{2} - (\lambda + \mu)x + \lambda\mu = 0$$

 $ax^2 + bx + c = 0$ இன் மூலங்கள் α, β எனின்,

(i)
$$\alpha^2 + \beta^2$$

(ii)
$$\alpha^3 + \beta^3$$

(iii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
 என்பவந்றின்

பெறுமானங்களை காண்க.

$$ax^2 + bx + c = 0$$
 இன் மூலங்கள் α, β ஆகும்.

ஆகவே
$$\alpha + \beta = -\frac{b}{a}$$
, $\alpha\beta = \frac{c}{a}$

(i)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \frac{b^2}{a^2} - \frac{2c}{a}$$
$$= \frac{b^2 - 2ac}{a^2}$$

(ii)
$$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$$

$$= (\alpha + \beta)[(\alpha^2 + \beta^2) - \alpha\beta]$$

$$= -\frac{b}{a}\left[\frac{b^2 - 2ac}{a^2} - \frac{c}{a}\right] = \frac{-b^3}{a^3} + \frac{3bc}{a^2}$$

அல்லது

$$(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$$

$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - (3\alpha^2\beta + 3\alpha\beta^2)$$

$$= \left(\frac{-b}{a}\right)^3 - 3\alpha\beta(\alpha + \beta)$$

$$= \frac{-b^3}{a^3} - \frac{3c}{a}\left(\frac{-b}{a}\right)$$

$$= \frac{-b^3}{a^3} + \frac{3bc}{a^2}$$

(iii)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$
$$= \frac{b^2}{\alpha^2} - \frac{2c}{a}$$
$$= \frac{\frac{c}{a^2} - \frac{2ac}{a}}{\frac{c}{a}}$$
$$= \frac{b^2 - 2ac}{\frac{ac}{a}}$$

 $x^2 - ax + b = 0$ இன் மூலங்கள் α, β எனின்,

(i)
$$\alpha^2, \beta^2$$

(ii)
$$\alpha + 2\beta$$
, $2\alpha + \beta$

(iii)
$$\alpha^2 + \beta$$
, $\beta^2 + \alpha$

(iv)
$$\left(\alpha + \frac{1}{\alpha}\right), \left(\beta + \frac{1}{\beta}\right)$$

என்பவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடுகளைக் காண்க.

$$x^2 - ax + b = 0$$
 இன் மூலங்கள் α, β ஆகும். $\alpha + \beta = a, \quad \alpha\beta = b$

(i)
$$\alpha^2, \beta^2$$
 & Cuponius attracts General function $(x-\alpha^2)(x-\beta^2)=0$ $x^2-(\alpha^2+\beta^2)x+\alpha^2\beta^2=0$ $x^2-[(\alpha+\beta)^2-2\alpha\beta]x+(\alpha\beta)^2=0$ $x^2-(\alpha^2-2b)x+b^2=0$

(ii)
$$(\alpha + 2\beta)$$
, $(2\alpha + \beta)$ \mathfrak{B} The definition of $[x - (\alpha + 2\beta)][x - (2\alpha + \beta)] = 0$ $x^2 - (3\alpha + 3\beta)x + (\alpha + 2\beta)(2\alpha + \beta) = 0$ $x^2 - 3(\alpha + \beta)x + (2\alpha^2 + 5\alpha\beta + 2\beta^2) = 0$ $x^2 - 3(\alpha + \beta)x + [2(\alpha + \beta)^2 + \alpha\beta] = 0$ $x^2 - 3\alpha + (2\alpha^2 + b) = 0$.

(iii)
$$\alpha^2 + \beta$$
, $\beta^2 + \alpha$ go openius the standard substitute
$$\left[x - \left(\alpha^2 + \beta \right) \right] \left[x - \left(\beta^2 + \alpha \right) \right] = 0$$

$$x^2 - \left[\alpha^2 + \beta^2 + \alpha + \beta \right] x + \left(\alpha^2 + \beta \right) \left(\beta^2 + \alpha \right) = 0$$

$$x^2 - \left[\alpha^2 + \beta^2 + \alpha + \beta \right] x + \left(\alpha^3 + \beta^3 + \alpha^2 \beta^2 + \alpha \beta \right) = 0$$

இப்பொழுது

$$\alpha^{2} + \beta^{2} + \alpha + \beta = (\alpha + \beta)^{2} - 2\alpha\beta + (\alpha + \beta)$$

$$= a^{2} - 2b + a$$

$$\alpha^{3} + \beta^{3} + \alpha^{2}\beta^{2} + \alpha\beta = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2}) + \alpha^{2}\beta^{2} + \alpha\beta$$

$$= (\alpha + \beta)[(\alpha + \beta)^{2} - 3\alpha\beta] + \alpha^{2}\beta^{2} + \alpha\beta$$

$$= a(a^{2} - 3b) + b^{2} + b$$

எனவே சமன்பாடு

$$x^{2} - (a^{2} - 2b + a)x + (a^{3} - 3ab + b^{2} + b) = 0$$
 ஆகும்

(iv)
$$\alpha + \frac{1}{\alpha}$$
, $\beta + \frac{1}{\beta}$ by Europeiasatinas Gaussin. Fidefiliang.
$$\left[x - \left(\alpha + \frac{1}{\alpha} \right) \right] \left[x - \left(\beta + \frac{1}{\beta} \right) \right] = 0$$

$$x^2 - \left(\alpha + \beta + \frac{1}{\alpha} + \frac{1}{\beta} \right) x + \left(\alpha \beta + \frac{1}{\alpha \beta} + \frac{\alpha}{\beta} + \frac{\beta}{\alpha} \right) = 0$$

$$x^2 - \left(\alpha + \beta + \frac{\alpha + \beta}{\alpha \beta} \right) x + \left(\alpha \beta + \frac{1}{\alpha \beta} + \frac{\alpha^2 + \beta^2}{\alpha \beta} \right) = 0$$

$$x^2 - \left(\alpha + \frac{a}{b} \right) x + \left(b + \frac{1}{b} + \frac{a^2 - 2b}{b} \right) = 0$$

$$bx^2 - \left(ab + a \right) x + \left(b^2 - 2b + 1 + a^2 \right) = 0$$

- (i) $3x^2 5x + 7 = 0$ இன் மூலங்கள் α, β எனின், $3(\alpha^5 + \beta^5) 5(\alpha^4 + \beta^4) + 7(\alpha^3 + \beta^3)$ இன் பெறுமானத்தைக் காண்க.
- (ii) $x^2 + k(2x+3) 3 = 0$ என்னும் சமன்பாட்டின் மூலங்களின் வித்தியாசம் 2 எனின் k இன் பெறுமானங்களைக் காண்க.. k இன் பெறுமானங்களுக்கு மூலங்களைக் காண்பதன் மூலம் உமது விடையை வாய்ப்பு பார்க்க.
 - (i) $3x^2 5x + 7 = 0$ இன் மூலங்கள் α, β . ஆகவே, $3\alpha^2 - 5\alpha + 7 = 0$ — (1) $3\beta^2 - 5\beta + 7 = 0$ — (2) $3(\alpha^5 + \beta^5) - 5(\alpha^4 + \beta^4) + 7(\alpha^3 + \beta^3)$ $= (3\alpha^5 - 5\alpha^4 + 7\alpha^3) + (3\beta^5 - 5\beta^4 + 7\beta^3)$ $= \alpha^3(3\alpha^2 - 5\alpha + 7) + \beta^3(3\beta^2 - 5\beta + 7)$ $= \alpha^3 \times 0 + \beta^3 \times 0 = 0$

(ii)
$$x^2 + k(2x+3) - 3 = 0$$
 $x^2 + 2k x + (3k-3) = 0$ மூலங்கள் α, β எனின், $\alpha + \beta = -2k$, $\alpha\beta = 3k-3$ மூலங்களின் வித்தியாசம் 2 என்பதால், $\alpha - \beta = 2$ அல்லது $\beta - \alpha = 2$ $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ $4 = 4k^2 - 4(3k-3)$ $1 = k^2 - (3k-3)$ $k^2 - 3k + 2 = 0$ $(k-1)(k-2) = 0$ $k = 1$ அல்லது $k = 2$

$$k=1$$
 எனின், சமன்பாடு $x^2+2x=0$ $x(x+2)=0$ $x=0,-2$ $k=2$ எனின், சமன்பாடு $x^2+4x+3=0$ $(x+3)(x+1)=0$ $x=-3,-1$

$$t+rac{1}{t}=T+rac{1}{T}$$
 எனின், $t=T$ அல்லது $rac{1}{T}$ என நிறுவுக.

lpha,eta என்பன $px^2+qx+r=0$ என்னும் சமன்பாட்டின் மூலங்களாகும்.

$$\frac{\alpha}{\beta}=\lambda$$
 எணின், $\lambda+\frac{1}{\lambda}=\frac{q^2-2pr}{pr}$ எனக் காட்டுக.

$$a_1b_2^2c_1=a_2b_1^2c_2$$
 எனத்தரப்படின் $lpha_1,eta_1$ என்பன

$$a_1x^2+b_1x+c_1=0$$
 என்ற சமன்பாட்டினதும் $lpha_2,oldsymbol{eta}_2$ என்பன

$$a_2 x^2 + b_2 x + c_2 = 0$$
 என்ற சமன்பாட்டினதும் மூலங்கள் எனின்,

$$\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2}$$
 அல்லது $\frac{\beta_2}{\alpha_2}$ என நிறுவுக.

$$t + \frac{1}{t} = T + \frac{1}{T}$$

$$\frac{t^2+1}{t} = \frac{T^2+1}{T}$$

$$Tt^2 - (T^2 + 1)t + T = 0;$$
 இது t யில் ஓர் இருபடிச்சமன்பாடு.

$$(Tt-1)(t-T)=0$$

$$t=rac{1}{T}$$
 அல்லது $t=T$ ஆகும்.

104

$$px^2+qx+r=0$$
 இன் மூலங்கள் $lpha,eta$ என்க. $lpha+eta=rac{-q}{p},\ lphaeta=rac{r}{p}$ ஆகும். $\lambda=rac{lpha}{eta}$ எனின் $\lambda+rac{1}{\lambda}=rac{lpha}{eta}+rac{eta}{lpha} = rac{lpha^2+eta^2}{lphaeta} = rac{(lpha+eta)^2-2lphaeta}{lphaeta}$

$$a_1x^2+b_1x+c_1=0$$
 இன் மூலங்கள் $lpha_1,\,eta_1$

$$a_2 x^2 + b_2 x + c_2 = 0$$
 இன் மூலங்கள் α_2, β_2

$$\lambda_2 = \frac{\alpha_2}{\beta_2} \quad \text{errorlies} \quad \lambda_2 + \frac{1}{\lambda_2} = \frac{b_2^2 - 2a_2c_2}{a_2c_2} = \frac{b_2^2}{a_2c_2} - 2 \quad (2)$$

தரவின் படி
$$a_1b_2^2c_1=a_2b_1^2c_2$$

$$\frac{b_2^2}{a_2 c_2} = \frac{b_1^2}{a_1 c_1}$$

$$\frac{b_1^2}{a_1 c_1} - 2 = \frac{b_2^2}{a_2 c_2} - 2$$

$$\lambda_1 + \frac{1}{\lambda_1} = \lambda_2 + \frac{1}{\lambda_2}$$

ஆகவே
$$\lambda_1 = \lambda_2$$
 அல்லது $\lambda_1 = \frac{1}{\lambda_2}$

$$\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2}$$
 and $\frac{\alpha_1}{\beta_1} = \frac{\beta_2}{\alpha_2}$ and $\frac{\beta_2}{\beta_1} = \frac{\beta_2}{\alpha_2}$

 $x^2+px+q=0$ எனும் சமன்பாட்டின் மூலங்கள் lpha,eta ஆகும்.

$$S_n = \alpha^n + \beta^n$$
 ஆக இருக்க ${S_n}^2 - S_{2n}$, $S_n \cdot S_{n+1} - S_{2n+1}$

என்பவற்றை $lpha,oldsymbol{eta}$ இல் எழுதி,

$$S_{2n} = S_n^2 - 2 \cdot q^n$$
 எனவும், $S_{2n+1} = S_n \cdot S_{n+1} + p.q^n$ எனவும் காட்டுக.

 S_7 இற்கு p,q இல் ஒரு கோவையைப் பெறுக.

$$x^2+px+q=0$$
 இன் மூலங்கள் α, β $\alpha+\beta=-p, \ \alpha\beta=q$

$$S_{2n} - S_n^2 = (\alpha^{2n} + \beta^{2n}) - (\alpha^n + \beta^n)^2$$
$$= \alpha^{2n} + \beta^{2n} - \alpha^{2n} - 2\alpha^n \beta^n - \beta^{2n}$$
$$= -2(\alpha\beta)^n = -2q^n$$

$$S_{2n} - S_n^2 = -2q^n$$

$$S_{2n+1} - S_n . S_{n+1}$$

$$= (\alpha^{2n+1} + \beta^{2n+1}) - (\alpha^n + \beta^n) (\alpha^{n+1} + \beta^{n+1})$$

$$= \alpha^{2n+1} + \beta^{2n+1} - \alpha^{2n+1} - \beta^{2n+1} - \alpha^n \beta^n (\alpha + \beta)$$

$$= -(\alpha \beta)^n (\alpha + \beta) = p.q^n$$

$$S_{2n+1} - S_n . S_{n+1} = pq^n$$

$$S_{2n+1} = S_n . S_{n+1} + p.q^n$$

$$n = 3$$
 Que, $S_7 = S_3 \cdot S_4 + p.q^3$ (1)

$$n=1$$
 ஆக, $S_3 = S_1S_2 + pq$
= $-p(p^2 - 2q) + pq$
= $-p^3 + 3pq$ (2)

$$S_{2n} = S_n^2 - 2q^n$$
 என்பதில் $n=2$ எனப்பிரதியிட

$$S_4 = S_2^2 - 2q^2$$

$$= (p^2 - 2q)^2 - 2q^2$$

$$= p^4 - 4p^2q + 2q^2 \qquad (3)$$

(1), (2), (3) இலிருந்து

$$S_7 = S_3 S_4 + pq^3$$

$$= (-p^3 + 3pq)(p^4 - 4p^2q + 2q^2) + pq^3$$

$$= -p^7 + 7p^5q - 14p^3q^2 + 7pq^3$$

பிரீத்துக்காட்டி (Discriminant)

$$ax^2 + bx + c = 0$$
 இன் மூலங்கள் $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

இங்கு b^2-4ac என்பது பிரித்துக்காட்டி எனப்படும்.

 b^2-4ac என்பது, Δ என்னும் குறியீட்டால் குறிக்கப்படும்.

$$\Delta = b^2 - 4ac$$
.

 $ax^2+bx+c=0$ என்னும் சமன்பாடு மெய்மூலங்களைக் கொண்டிருக்க $\Delta\!\geq\!0$ ஆதல் வேண்டும்.

மறுதலையாக $\Delta \ge 0$ ஆயின் மட்டுமே $\sqrt{b^2-4ac}$ இற்கு மெய்ப் பெறுமானம் உண்டு. எனவே $ax^2+bx+c=0$ இற்கு மெய்மூலங்கள் உண்டு. $\Delta \! < \! 0$ எனின் மூலங்கள் கற்பனை மூலங்கள் ஆகும்.

$$ax^2+bx+c=0$$
 என்னும் இருபடிச்சமன்பாட்டிற்கு $\Delta \geq 0 \Leftrightarrow$ மெய்மூலங்கள் உண்டு $\Delta > 0 \Leftrightarrow$ இருவேறு மெய்மூலங்கள் உண்டு $\Delta = 0 \Leftrightarrow$ பொருந்தும் (சம) மெய்மூலங்கள் உண்டு $\Delta = 0 \Leftrightarrow$ கற்பனை மூலங்கள் உண்டு

பின்வரும் உதாரணங்களை அவதானிக்க.

1.
$$2x^2 + 5x + 1 = 0$$

$$\Delta = 25 - 8 = 17 > 0$$

எனவே, தரப்பட்ட சமன்பாட்டிற்கு இருவேறு மெய்மூலங்கள் உண்டு.

$$2x^2 + 5x + 1 = 0$$
 $x = \frac{-5 \pm \sqrt{17}}{4}$ மூலங்கள் மெய்யானவை.

மூலங்கள்,
$$\frac{-5+\sqrt{17}}{4}$$
, $\frac{-5-\sqrt{17}}{4}$ ஆகும்.

$$2. \quad 4x^2 - 20x + 25 = 0$$

$$\Delta = 400 - 16 \times 25 = 0$$

ஆகவே சமன்பாட்டிற்குப் பொருந்தும் மெய்மூலங்கள் உண்டு.

$$4x^{2} - 20x + 25 = 0$$

$$(2x - 5)(2x - 5) = 0$$

$$x = \frac{5}{2}, \frac{5}{2}$$

$$\frac{5}{2},\, \frac{5}{2}$$
 என்பன பொருந்தும் (சம) மெய்மூலங்கள் ஆகும்.

3.
$$x^2 + x + 1 = 0$$

$$\Delta = 1 - 4 = -3 < 0$$

ஆகவே, சமன்பாட்டிற்கு கற்பனை மூலங்கள் உண்டு.

$$x^2+x+1=0$$

$$x=\frac{-1\pm\sqrt{-3}}{2}$$
 $\frac{-1+\sqrt{-3}}{2}$, $\frac{-1-\sqrt{-3}}{2}$ என்பன கற்பனை மூலங்கள் ஆகும்.

உதாரணம் 6

- (i) a,b,c என்பன மெய்யாக இருக்க $(x-a)(x-b)=c^2$ என்ற சமன்பாட்டிற்கு மெய்மூலங்கள் உண்டு எனக் காட்டுக.
- (ii) $ax^2 + bx + c = 0$ என்ற சமன்பாட்டின் மூலங்கள் கற்பனையானவை எனின், $ax^2 2(a+b)x + (a+2b+4c) = 0$, இன் மூலங்களும் கற்பனையானவை என நிறுவுக.
- (iii) a,b,c என்பன மெய்யாக இருக்க, $3x^2-2(a+b+c)x+(ab+bc+ca)=0$ என்னும் சமன்பாட்டின் மூலங்கள் மெய்யானவை என காட்டுக. மூலங்கள் இரண்டும் பொருந்து வனவாயிருக்க a,b,c இற்கிடையே தொடர்பு ஒன்றைக் காண்க.

(i)
$$(x-a)(x-b) = c^2$$

 $x^2 - (a+b)x + (ab-c)^2 = 0$
 $\Delta = \left[\frac{1}{2} (a+b)^2 - 4(ab-c^2) \right]$
 $= (a+b)^2 - 4ab + 4c^2$
 $= (a-b)^2 + 4c^2$

 $(a-b)^2 \geq 0, \ 4c^2 \geq 0$. எனவே $a,\,b,\,c$ இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் $\Delta \geq 0$.

ஆகவே சமன்பாட்டிற்கு மெய்மூலங்கள் உண்டு.

(ii)
$$ax^2 + bx + c = 0$$
 இன் மூலங்கள் கற்பனை என்பதால் $b^2 - 4ac < 0$ ஆகும். $ax^2 - 2(a+b)x + (a+2b+4c) = 0$
$$\Delta = 4(a+b)^2 - 4a(a+2b+4c)$$

$$= 4\left[a^2 + 2ab + b^2 - a^2 - 2ab - 4ac\right]$$

$$= 4\left(b^2 4ac\right) < 0$$

 $\Delta < 0$. எனவே சமன்பாட்டீன் மூலங்கள் கற்பனையானவை ஆகும்.

(iii)
$$3x^2 - 2(a+b+c)x + (ab+bc+ca) = 0$$

$$\Delta = 4(a+b+c)^2 - 12(ab+bc+ca)$$

$$= 4[(a+b+c)^2 - 3(ab+bc+ca)]$$

$$= 4[a^2+b^2+c^2-ab-bc-ca]$$

$$= 4[\frac{1}{2}(a-b)^2 + \frac{1}{2}(b-c)^2 + \frac{1}{2}(c-a)^2]$$

$$= 2[(a-b)^2 + (b-c)^2 + (c-a)^2] \ge 0$$

 $\Delta \geq 0$; எனவே சமன்பாட்டிற்கு மெய்மூலங்கள் உண்டு. மூலங்கள் சமமாக இருக்க $\Delta = 0$ ஆதல் வேண்டும். a = b = c அயின் மட்டுமே $\Delta = 0$ ஆகும்.

உதாரணம் 7

- (i) $x^2 px + p = 0$ என்னும் சமன்பாடு
 - (a) மெய்மூலங்களைக் கொண்டிருப்பதற்கு
 - (b) இருவேறு மெய்மூலங்களைக் கொண்டிருப்பதற்கு p இன் பெறுமானங்களைக் காண்க.
- (ii) x(kx+2)+4k-3=0 என்னும் சமன்பாடு மெய்மூலங்களைக் கொண்டிருப்பதற்கான k இன் பெறுமானங்களைக் காண்க.

(i)
$$x^2 - px + p = 0$$

 $\Delta = p^2 - 4p$

(a) பொருந்தும் மெய்மூலங்களைக் கொண்டிருப்பதற்கு $\Delta=0$ ஆகும்.

$$p^{2}-4p=0$$
 $p(p-4)=0$
 $p=0$ அல்லது $p=4$

(b) இருவேறு மெய்மூலங்களைக் கொண்டிருப்பதற்கு $\Delta > 0$ ஆகும்.

$$p^2 - 4p > 0$$
 $p(p-4) > 0$ ஆதல் வேண்டும்.

$$p < 0$$
 எனின் $p(p-4) > 0$
 $p = 0$ எனின் $p(p-4) = 0$
 $0 எனின் $p(p-4) < 0$
 $p = 4$ எனின் $p(p-4) = 0$
 $p > 4$ எனின் $p(p-4) > 0$$

p < 0 அல்லது p > 4 எனின் சமன்பாடு இருவேறு மெய் மூலங்களைக் கொண்டிருக்கும்.

(ii)
$$x(kx+2)+4k-3=0$$

 $kx+2x+(4k-3)=0$
 $\Delta = 4-4k(4k-3)$
 $= 4[1-k(4k-3)]$
 $= -4[k(4k-3)-1]$
 $= -4[4k^2-3k-1]$

x இன் மெய்ப்பெறுமானங்களுக்கு $\Delta\!\geq\!0$ ஆதல் வேண்டும்.

$$-4[4k^2-3k-1] \ge 0$$
 $4k^2-3k-1 \le 0$
 $(4k+1)(k-1) \le 0$
 $-\frac{1}{4}$
 $k < -\frac{1}{4}$ எனின், $(4k+1)(k-1) > 0$
 $k = -\frac{1}{4}$ எனின், $(4k+1)(k-1) = 0$
 $-\frac{1}{4} < k < 1$ எனின், $(4k+1)(k-1) = 0$
 $k = 1$ எனின், $(4k+1)(k-1) = 0$
 $k > 1$ எனின், $(4k+1)(k-1) > 0$
எனவே $-\frac{1}{4} \le k \le 1$ ஆதல் வேண்டும்.

உதாரணம் 8

ax(x+1)+2-3x=0 என்னும் சமன்பாடு மெய்மூலங்களைக் கொண்டிருப்பதற்கான a இன் பெறுமானங்களைக் காண்க.

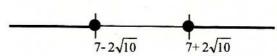
$$ax(x+1)+2-3x=0$$

$$ax^{2}+(a-3)x+2=0$$

$$\Delta = (a-3)^{2}-8a$$

$$= a^{2}-14a+9$$

x இன் மெய்ப் பெறுமானங்களுக்கு $\Delta \! \geq \! 0$ ஆதல் வேண்டும்.


$$a^{2} - 14a + 9 \ge 0$$

$$(a - 7)^{2} - 40 \ge 0$$

$$(a - 7)^{2} - \left(2\sqrt{10}\right)^{2} \ge 0$$

$$\left(a - 7 - 2\sqrt{10}\right)\left(a - 7 + 2\sqrt{10}\right) \ge 0$$

$$\left[\left(a - 7 + 2\sqrt{10}\right)\right]\left[\left(a - 7 - 2\sqrt{10}\right)\right] \ge 0$$

$$a \le 7 - 2\sqrt{10}$$
 அல்லது $a \ge 7 + 2\sqrt{10}$

பொதுமூலம் ஒன்றைக் கொண்டுள்ள இரண்டு இருபடிச்சமன்பாடுகள்

 $ax^2+bx+c=0,\ px^2+qx+r=0$ இருசமன்பாடுகளுக்கும் ஒரு பொதுமூலம் உண்டென்க.

$$ax^2 + bx + c = 0$$
 மூலங்கள் α , β $px^2 + qx + r = 0$ மூலங்கள் α , γ

பொது மூலம் α ஆகும்.

$$a\alpha^{2} + b\alpha + c = 0$$

$$p\alpha^{2} + q\alpha + r = 0$$

$$(1) \times q - (2) \times b, \qquad \alpha^{2} = \frac{br - qc}{aq - bp}$$

$$(1) \times p - (2) \times a, \qquad \alpha = \frac{ar - pc}{bq - aq}$$

$$\frac{br - qc}{aq - bp} = \left(\frac{ar - pc}{bq - aq}\right)^{2}$$

$$(ar - pc)^2 = (ag - bp)(br - gc)$$
 . Algorithm

 $x^2+ax+bc=0,\ x^2+bx+ca=0,\ \left(a\neq b\right)$ ஆகிய சமன்பாடுகளுக்கு ஒரு பொதுமூலம் இருப்பின் மற்றைய மூலங்கள் $x^2+cx+ac=0$ என்னும் சமன்பாட்டைத் திருப்தி செய்யும் எனக் காட்டுக.

$$x^2+ax+bc=0$$
 இன் மூலங்கள் $\alpha\,,eta$ $x^2+bx+ca=0$, இன் மூலங்கள் $\alpha\,,\gamma\,$ என்க.

$$\alpha + \beta = -a \quad ---- \quad (1) \qquad \alpha + \gamma = -b \quad ---- \quad (3)$$

மேலும்
$$\alpha^2 + \alpha x + bc = 0$$
 _______ (5)

$$\alpha^2 + b\alpha + ca = 0 \quad ---- \qquad (6)$$

(5) - (6)
$$(a-b)\alpha = c(a-b)$$

ഒങ്ങവേ $\alpha = c$

$$\alpha = c$$
 என (2) இல் பிரதியிட, $\beta = b$

$$\alpha = c$$
 என (4) இல் பிரதியிட, $\gamma = a$

eta , γ ஐ மூலங்களாகக் கொண்ட சமன்பாடு

$$(x-\beta)(x-\gamma)=0$$

$$(x-b)(x-a)=0$$

$$x^2 - (a+b)x + ab = 0$$

(7) இலிருந்து
$$a+b=-c$$

எனவே, சமன்பாடு $x^2+cx+ab=0$

114

 $f(x)=x^2+bx+c$, $g(x)=x^2+qx+r$ என்க. இங்கு $b,c,q,r\in R$ உம் $c\neq r$ உம் ஆகும். g(x)=0 இன் மூலங்கள் α, β என்க.

$$f(\alpha).f(\beta)=(c-r)^2-(b-q)(cq-br)$$
 எனக் காட்டுக.

இதிலிருந்தோ அல்லது வேறு வழியாலோ f(x)=0, g(x)=0 என்பவற்றிக்கு ஒரு பொதுமூலம் இருப்பின் $b-q\,,\,c-r,\,cq-br$ என்பன பெருக்கல் விருத்தி ஒன்றில் அமையும் எனக் காட்டுக.

 $lpha,\gamma$ என்பன f(x)=0 இன் மூலங்கள் எனின் eta,γ ஐ மூலங்களாகக் கொண்ட சமன்பாடு $x^2 - \frac{(c+r)(q-b)}{c-r}x + \frac{cr(q-b)^2}{(c-r)^2} = 0$ எனக் காட்டுக.

$$\alpha^{2} + q\alpha + r = 0 \qquad (1) \qquad \alpha + \beta = -q$$

$$\beta^{2} + q\beta + r = 0 \qquad (2) \qquad \alpha\beta = r$$

$$f(\alpha) \cdot f(\beta) = (\alpha^{2} + b\alpha + c)(\beta^{2} + b\beta + c)$$

$$= \alpha^{2}\beta^{2} + b\alpha\beta(\alpha + \beta) + c(\alpha^{2} + \beta^{2}) + bc(\alpha + \beta) + c^{2} + b^{2}\alpha\beta$$

$$= r^{2} - bqr + c(q^{2} - 2r) - bcq + c^{2} + b^{2}r$$

$$= (c-r)^2 + q(cq-br) - b(cq-br)$$

 $=(c^2-2cr+r^2)-bar+ca^2-bca+b^2r$

$$= (c-r)^2 + (cq-br)(q-b)$$

g(x)=0, $x^2+qx+r=0$ மூலங்கள் α , β ஆகும்.

$$=(c-r)^2-(b-q)(cq-br)$$

f(x)=0 இன் மூலங்கள் α,γ என்க.

எனவே
$$\alpha$$
 என்பது $f(x)=0$, $g(x)=0$ என்பவற்றின் பொதுமூலம் ஆகும். $f(\alpha)=0$. ஆகவே $f(\alpha)$. $f(\beta)=0$

$$(c-r)^2 - (b-q)(cq-br) = 0$$

$$(c-r)^2 = (b-q)(cq-br)$$

$$\frac{c-r}{b-q} = \frac{cq-br}{c-r}$$

எனவே $b-q,\,c-r,\,cq-br$ என்பன ஒரு பெருக்கல் விருத்தியில் அமையும்.

$$f(x) = x^2 + bx + c = 0$$
 இன் மூலங்கள் α, β $\alpha + \gamma = -b$ $\alpha \gamma = c$ (4)

$$\alpha^2 + b\alpha + c = 0$$

$$\frac{\alpha^2 + q\alpha + r = 0}{(b-q)\alpha + (c-r) = 0}$$

$$\alpha = \frac{c - r}{q - b} \tag{5}$$

$$\alpha \gamma = c$$
 என்பதால் $\gamma = \frac{c}{\alpha} = \frac{c(q-b)}{c-r}$

$$\alpha\beta = r$$
 என்பதால் $\beta = \frac{r}{\alpha} = \frac{r(q-b)}{c-r}$

 eta, γ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு.

$$(x-\beta)(x-\gamma)=0$$

$$x^2 - (\beta + \gamma)x + \beta\gamma = 0$$

$$x^{2} - \frac{(c+r)(q-b)}{c-r}x + \frac{cr(q-b)^{2}}{(c-r)^{2}} = 0$$

116

 $ax^2+a^2x+1=0,\ bx^2+b^2x+1=0$ ஆகியவற்றிற்கு ஒரு பொதுமூலம் உண்டெனின், இவற்றின் மற்றைய மூலங்கள் $abx^2+x+a^2b^2=0$ என்னும் இருபடிச் சமன்பாட்டைத் திருப்தியாக்குமெனக் காட்டுக. $\left(a\neq b\right)$.

$$ax^2+a^2x+1=0$$
 இன் மூலங்கள் α,β $bx^2+b^2x+1=0$ இன் மூலங்கள் α,γ என்க.

$$\alpha + \beta = -a$$

$$\alpha \beta = \frac{1}{a}$$

$$\alpha + \gamma = -b$$

$$\alpha \gamma = \frac{1}{b}$$

$$\alpha \gamma = \frac{1}{b}$$

$$\alpha \gamma = \frac{1}{b}$$

$$\alpha \gamma = \frac{1}{b}$$

$$alpha^2+a^2lpha+1=0$$
 $(lpha$, மூலம் என்பதால்) $blpha^2+b^2lpha+1=0$

$$ab\alpha^{2} + a^{2}b\alpha + b \stackrel{.}{=} 0 \qquad (3)$$

$$ab\alpha^{2} + ab^{2}\alpha + a = 0 \qquad (4)$$

$$ab(a-b)\alpha = a-b$$

$$\alpha = \frac{1}{a}$$

$$lpha=rac{1}{ab}$$
 எனின் (1) இலிருந்து $eta=b.$

$$\alpha = \frac{1}{ab}$$
 எனின் (2) இலிருந்து $\gamma = a$.

 eta,γ ஐ மூலங்களாகக் கொண்ட சமன்பாடு

$$(x - \beta)(x - \gamma) = 0$$

$$x^{2} - (\beta + \gamma)x + \beta\gamma = 0$$

$$x^{2} - (a + b)x + ab = 0 \longrightarrow *$$

மேலும் (1) இல்
$$\alpha+\beta=-a$$

$$\frac{1}{ab}+b=-a$$
 ஆகவே $-\frac{1}{ab}=(a+b)$
$$a+b=-\frac{1}{ab} \quad \text{ எனப்பிரதியிட}$$

சமன்பாடு $abx^2 + x + a^2b^2 = 0$ அகம்.

உதாரணம் 12

 $(x-1)^2=a^2(x+a)$ என்னும் இருபடிச் சமன்பாட்டைத் தீர்க்க. a இன் எப் பெறுமானங்களுக்கு மேற்படி சமன்பாட்டிற்கும் $(x-a)^2=x\left(a-1
ight)^2$ என்ற இருபடிச் சமன்பாட்டிற்கும் பொதுமூலம் இருக்கும் எனக் காண்க.

$$(x-1)^{2} = a^{2}(x+a)$$

$$x^{2} - 2x + 1 = a^{2}x + a^{3}$$

$$x^{2} - (a^{2} + 2)x - (a^{3} - 1) = 0$$

$$[x + (a-1)][x - (a^{2} + a + 1)] = 0$$

$$x = -(a-1)=1-a$$
 அல்லது $1+a+a^2$ ஆகும்.

x=1-a பொதுமூலம் எனின், இரண்டாம் சமன்பாட்டில் x=1-aஎனப்பிரதியிட.

$$(1-2a)^2 = (1-a)(a-1)^2$$
 $1-4a+4a^2 = 1-3a+3a^2-a^3$
 $a^3+a^2-a=0$
 $a(a^2+a-1)=0$
 $a=0$ அல்லது $a^2+a-1=0$

 $x=1+a+a^2$ பொது மூலம் எனின், இரண்டாம் சமன்பாட்டில் பிரதியிட

$$(1+a^2)^2 = (1+a+a^2)(a-1)^2$$

$$1+2a^2+a^4 = (1+a+a^2)(1-2a+a^2)$$

$$1+2a^2+a^4=1-a-a^3+a^4$$

$$a^3+2a^2+a=0$$

$$a(a^2+2a+1)=0$$

$$a(a+1)^2=0$$

$$a=0, -1$$

a எடுக்கும் பெறுமானங்கள் 0, -1 ஆகும்.

உதாரணம் 13

 $x^2 + xy - 2y^2 - 3x + 3y + 9 = 0$ எனின் x எந்த ஒரு மெய்ப் பெறுமானத்தையும் எடுக்கும் எனவும், y ஆனது -1 இந்கும் 3 இந்குமிடையிலுள்ள பெறுமானங்களை எடுக்காது எனவும் காட்டுக.

$$x^{2} + xy - 2y^{2} - 3x + 3y + 9 = 0$$
$$x^{2} + (y - 3)x + (9 + 3y - 2y^{2}) = 0$$

இது x இல் ஓர் இருபடிச் சமன்பாடு. x இன் மெய்ப் பெறுமானங்களுக்கு $\Delta \! \geq \! 0$ ஆகும்.

$$\Delta = (y-3)^2 - 4(9+3y-2y^2)$$

$$= 9y^2 - 18y - 27$$

$$= 9(y^2 - 2y - 3)$$

$$= 9(y-3)(y+1)$$

x இன் மெய்ப் பெறுமானங்களுக்கு $\Delta \! \geq \! 0$ ஆதல் வேண்டும்.

$$9(y-3)(y+1) \ge 0$$
 $(y-3)(y+1) \ge 0$ $y \le -1$ அல்லது $y \ge 3$

ஆகவே y,-1 இற்கும் 3 இற்குமிடையில் எப் பெறுமானத்தையும் எடுக்காது.

$$x^{2} + xy - 2y^{2} - 3x + 3y + 9 = 0$$
$$-2y^{2} + (x+3)y + (x^{2} - 3x + 9) = 0$$

இது y இல் ஓர் இருபடிச் சமன்பாடு.

$$\Delta = (x+3)^2 + 8(x^2 - 3x + 9)$$

$$= 9x^2 - 18x + 81$$

$$= 9[x^2 - 2x + 9]$$

$$= 9[(x-1)^2 + 8] = 9(x-1)^2 + 72 \ge 72 > 0$$

x இன் எல்லாப் பெறுமானங்களுக்கும் $\Delta \ge 0$ என்பதால் x எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கும்.

$$ax^2+2bx+c=0$$
 இன் மூலங்கள் $lpha$, eta எனின், $acx^2+2b(c+a)x+ig(a+cig)^2=0$ இன் மூலங்களை $lpha$, eta இல் காண்க.
$$ax^2+2bx+c=0$$

$$x^2+\frac{2b}{a}x+\frac{c}{a}=0$$

$$lpha+eta=-\frac{2b}{a}, \quad lphaeta=\frac{c}{a}$$
 $acx^2+2b(c+a)x+(c+a)^2=0$

இருபக்கமும் *ac* யாற் பிரிக்க

$$x^{2} + \frac{2b(c+a)}{ac}x + \frac{(c+a)^{2}}{ca} = 0$$

$$x^{2} + \left(\frac{2bc + 2ab}{ac}\right)x + \frac{c^{2} + 2ca + a^{2}}{ca} = 0$$

$$x^{2} + \left(\frac{2b}{a} + \frac{2b}{c}\right)x + \left(\frac{c}{a} + 2 + \frac{a}{c}\right) = 0$$

$$x^{2} - \left(\frac{-2b}{a} - \frac{2b}{c}\right)x + \left(\frac{c}{a} + 2 + \frac{a}{c}\right) = 0$$

$$x^{2} - \left(\alpha + \beta + \frac{\alpha + \beta}{\alpha\beta}\right)x + \left(\alpha\beta + 2 + \frac{1}{\alpha\beta}\right) = 0$$

$$x^{2} - \left(\alpha + \beta + \frac{1}{\alpha} + \frac{1}{\beta}\right)x + \left(\alpha\beta + 2 + \frac{1}{\alpha\beta}\right) = 0$$

$$\left[x - \left(\alpha + \frac{1}{\beta}\right)\right]\left[x - \left(\beta + \frac{1}{\alpha}\right)\right] = 0$$

$$x = \alpha + \frac{1}{\beta}$$
 அல்லது $\beta + \frac{1}{\alpha}$

சமன்பாட்டின் மூலங்கள் $lpha+rac{1}{eta}$, $eta+rac{1}{lpha}$ ஆகும்.

உதாரணம் 15

பின்வரும் சமன்பாடுகளைத் தீர்க்காது, பிரித்துக்காட்டியைப் பயன்படுத்தி, மூலங்களின் தன்மையைக் கூறுக.

(i)
$$3x^2 - 17x + 21 = 0$$

(ii)
$$2x^2 + 5x + 2 = 0$$

(iii)
$$5x^2 + 8x - 2 = 0$$

(iv)
$$2x^2 - 6x - 1 = 0$$

(v)
$$x^2 + 6x + 9 = 0$$

(vi)
$$x^2 - x + 1 = 0$$

(i)
$$3x^2 - 17x + 21 = 0$$

 $\Delta = 17^2 - 4 \times 3 \times 21$
 $= 289 - 252 = 37 > 0$

- (a) மெய்மூலங்கள் உண்டு. மூலங்கள் $lpha,\,eta$ என்க.
- (b) $\sqrt{37}$ விகிதமுறா எண். மூலங்கள் விகிதமுநாதவை.

(c)
$$\alpha + \beta = \frac{17}{3} > 0$$
, $\alpha\beta = \frac{21}{3} = 7 > 0$. மூலங்கள் இரண்டும் நேரானவை.

(ii)
$$2x^2 + 5x + 2 = 0$$

 $\Delta = 25 - 16 = 9 > 0$

- (a) $\Delta > 0$ மெய்மூலங்கள் உண்டு.
- (b) $\sqrt{9} = 3$ விகிதமுறு எண். மூலங்கள் விகிதமுறு எண்களாகும்.
- (c) $\alpha + \beta = \frac{-5}{2}$, $\alpha\beta = 1$ இரண்டு மூலங்களும் மறையானவை.

(iii)
$$5x^2 + 8x - 2 = 0$$

$$\Delta = 64 + 40 = 104 > 0$$

- (a) $\Delta > 0$ மெய் மூலங்கள் உண்டு.
- **(b)** $\sqrt{104} = 2\sqrt{26}$ விகிதமுறா எண். மூலங்கள் விகிதமுறாதவை.

(c)
$$\alpha + \beta = -\frac{8}{5}$$
, $\alpha\beta = -\frac{2}{5}$

ஒரு மூலம் நேராகவும், மற்றையது மறையாகவும் அமையும்.

(iv)
$$2x^2 - 6x - 1 = 0$$

$$\Delta = 36 + 8 = 44 > 0$$

- (a) $\Delta > 0$ மூலங்கள் மெய்யானவை.
- (b) $\sqrt{44} = 2\sqrt{11}$ விகிதமுறா எண். மூலங்கள் விகிதமுறாதவை.

(c)
$$\alpha + \beta = 3$$
, $\alpha\beta = -\frac{1}{2}$

ஒரு மூலம் நேராகவும், மற்றையது மறையாகவும் அமையும்.

(v)
$$x^2 + 6x + 9 = 0$$

$$\Delta = 36 - 36 = 0$$

- (a) $\Delta = 0$ சமமான மெய் மூலங்கள், விகிதமுறுபவை.
- (b) $\alpha + \beta = -6 < 0, \, \alpha\beta = 9 > 0$ இரண்டு மூலங்களும் மறையானவை.

(vi)
$$x^2 - x + 1 = 0$$

$$\Delta = 1 - 4 = -3 < 0$$

(a) Δ < 0 கற்பனை மூலங்கள்.

 $k(x^2+x+1)=2x+1$ என்னும் சமன்பாட்டின் இருமூலங்களும் நேராயின், k எடுக்கக்கூடிய பெறுமானங்களைக் காண்க.

$$k(x^{2} + x + 1) = 2x + 1$$

$$k x^{2} + (k - 2)x + (k - 1) = 0 \quad (k \neq 0)$$

$$\Delta = (k - 2)^{2} - 4k(k - 1)$$

$$= k^{2} - 4k + 4 - 4k^{2} + 4k$$

$$= 4 - 3k^{2}$$

இரு மூலங்களும், மெய்யானதாக இருத்தல் வேண்டும்.

$$\Delta \ge 0, \quad 4 - 3k^2 \ge 0$$

$$3k^2 - 4 \le 0$$

$$k^2 - \frac{4}{3} \le 0$$

$$\left(k - \frac{2}{\sqrt{3}}\right) \left(k + \frac{2}{\sqrt{3}}\right) \le 0$$

$$-\frac{2}{\sqrt{3}} - 1 \qquad 0 \qquad 1 \qquad \frac{2}{\sqrt{3}}$$

$$-\frac{2}{\sqrt{3}} \le k \le \frac{2}{\sqrt{3}} \qquad (1)$$

மெய்மூலங்கள் lpha, eta எனின்,

$$\alpha + \beta = \frac{-(k-2)}{k}, \quad \alpha\beta - \frac{k-1}{k}$$

lpha,eta இரண்டும் நேராக $lpha+eta>0,\ lphaeta>0$ ஆகவேண்டும்.

$$\frac{-(k-2)}{k} > 0, \quad \frac{k-1}{k} > 0$$
$$k(k-2) < 0, \quad k(k-1) > 0$$

$$\Theta_{\overline{0}}$$

$$-\Phi_0$$
 Φ_1

$$k(k-2) < 0$$
 stables in $0 < k < 2$

$$k(k-1)>0$$
 எனின், $k<0$ அல்லது $k>1$

இரு சமனிலிகளையும் திருப்தி செய்யும் k இன் பெறுமானங்கள்

(1),(2) என்பவற்றைத் திருப்தி செய்யும் k இன் பெறுமானங்கள்

$$1 < k \le \frac{2}{\sqrt{3}}$$
 ஆகும்.

ஆள்கூற்றுக் கேத்திர கணிதத்தில் பிரயோகம்

 $ax^2 + 2hxy + by^2 = 0$ என்னும் சமன்பாட்டைக் கருதுக.

இது x,y மாநிகளில் இரண்டாம் படியில் உள்ள சமன்பாடு $a,\,b,\,h$ ஒருமைகள்.

$$by^2 + 2hxy + ax^2 = 0$$

$$y^2 + \frac{2h}{b}xy + \frac{a}{b}x^2 = 0$$

$$(y-m_1x)(y-m_2x)=0$$

$$y^2 - (m_1 + m_2)xy + m_1m_2x^2 = 0$$

இங்கு
$$m_1 + m_2 = -\frac{2h}{b}, \quad m_1 m_2 = \frac{a}{b}$$

 $y-m_1x=0,\ y-m_2x=0$ என்பன உந்பத்தியினூடு செல்லும் இரு நேர் கோடுகள் ஆகும். இருகோடுகளுக்குமிடைப்பட்ட கூரங்கோணம் lpha எனின்,

$$\begin{aligned} \tan \alpha &= \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \\ &= \left| \frac{\sqrt{(m_1 + m_2)^2 - 4m_1 m_2}}{1 + m_1 m_2} \right| \\ &= \left| \frac{\sqrt{\frac{4h^2}{b^2} - \frac{4a}{b}}}{1 + \frac{a}{b}} \right| = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right| \quad \text{a.s.} \end{aligned}$$

a=-b எனின், இருகோடுகளும் செங்குத்தானவை.

உதாரணம் 17

 $3x^2 - 5xy + y^2 = 0$ என்பதால் தரப்படும் இருநேர்கோடுகளுக்கிடையிலுள்ள கோணத்தைக் காண்க.

$$y^{2} - 5xy + 3x^{2} = 0$$

 $(y - m_{1}x)(y - m_{2}x) = 0$
 $m_{1} + m_{2} = 5, m_{1}m_{2} = 3$

இருகோடுகளுக்குமிடையிலான கோணம் lpha எனின்,

$$\tan \alpha = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\sqrt{(m_1 + m_2)^2 - 4m_1 m_2}}{1 + m_1 m_2} \right|$$
$$= \left| \frac{\sqrt{25 - 12}}{1 + 3} \right| = \frac{\sqrt{13}}{4}$$
$$\alpha = \tan^{-1} \left(\frac{\sqrt{13}}{4} \right)$$

 $ax^2 + 2hxy + by^2 + 2gx + 2hx + c = 0$; இங்கு a,h,b,f,g,c என்பன ஒருமைகள். இது x,y இல் இரண்டாம் படியிலுள்ள சமன்பாடு.

$$by^2 + (2hx + 2f)y + (ax^2 + 2gx + c) = 0$$

இது *y* இல் ஓர் இருபடிச் சமன்பாடு.

$$y = \frac{-(2hx + 2f) \pm \sqrt{(2hx + 2f)^2 - 4b(ax^2 + 2gx + c)}}{2b}$$
$$= \frac{-(hx + f) \pm \sqrt{(hx + f)^2 - b(ax^2 + 2gx + c)}}{b}$$

இங்கு $(hx+f)^2-b\left(ax^2+2gx+c\right)$ ஒரு நிறை வர்க்கமாக இருப்பின் மட்டுமே $ax^2+2hxy+by^2+2gx+2fy+c=0$ இரு நேர் கோடுகளைக் குறிக்கும்.

உதாரணம் 18

 $2x^2 - xy - y^2 - 3x + 6y - 5 = 0$ என்ற சமன்பாட்டைக் கருதுக. இச்சமன்பாடு குறிக்கும் இரு நேர்கோடுகளினதும் சமன்பாடுகளைக் காண்க.

$$2x^2 - xy - y^2 - 3x + 6y - 5 = 0$$

$$y^2 + y(x - 6) - (2x^2 - 3x - 5) = 0$$

$$y = \frac{-(x - 6) \pm \sqrt{(x - 6)^2 + 4(2x^2 - 3x - 5)}}{2}$$

$$= \frac{-(x - 6) \pm \sqrt{9x^2 - 24x + 16}}{2}$$

$$= \frac{-(x - 6) \pm (3x - 4)}{2}$$

$$y = \frac{-(x - 6) + (3x - 4)}{2}$$
Algebra $y = \frac{-(x - 6) - (3x - 4)}{2}$

$$=\frac{2x+2}{2}$$
 அல்லது $\frac{-4x+10}{2}$
 $=x+1$ அல்லது $-2x+5$
 $y-x-1=0$ அல்லது $y+2x-5=0$ ஆகும்.

1. இருபடிச்சமன்பாடு ஒன்றிற்கு இருமூலங்கள் மட்டும் உண்டு

$$ax^2 + bx + c = 0$$
 $(a, b,$ மெய்யெண்கள் $a \neq 0$)
இன் மூலங்கள் α, β, γ என்க.

$$a\alpha^2 + b\alpha + c = 0$$
 (1)

$$a\beta^2 + b\beta + c = 0 \quad ----(2)$$

$$a\gamma^2 + b\gamma + c = 0 \quad ----(3)$$

(1) – (2)
$$a(\alpha^2 - \beta^2) + b(\alpha - \beta) = 0$$

$$\alpha \neq \beta$$
 sissings. $a(\alpha + \beta) + b = 0$ (4)

இதே போல (1), (3) இலிருந்து

$$a(\beta + \gamma) + b = 0 \quad ---- \quad (5)$$

$$(4)-(5) a(\beta-\gamma)=0$$

lpha
eq 0 என்பதால் $eta = \gamma$

எனவே இருபடிச் சமன்பாடொன்றிற்கு இருமூலங்கள் மட்டும் உண்டு.

2. $ax^2 + bx + c = 0$; $px^2 + qx + r = 0$ ஆகிய இருசமன்பாடுகளும் ஒரே மூலங்களைக் கொண்டிருப்பதற்கான நிபந்தனை.

$$ax^2 + bx + c = 0$$
 இன் மூலங்கள் α , β $px^2 + qx + r = 0$ இன் மூலங்கள் α , β என்க.

$$\alpha + \beta = -\frac{b}{a}$$
 (1) $\alpha + \beta = -\frac{q}{p}$ (3)

$$\alpha\beta = \frac{c}{a} \qquad (2) \qquad \alpha\beta = \frac{r}{p} \qquad (4)$$

(1), (3) இலிருந்து,
$$\frac{b}{a} = \frac{q}{p} \Rightarrow \frac{a}{p} = \frac{b}{q}$$

(2), (4) இலிருந்து,
$$\frac{c}{a} = \frac{r}{p} \Rightarrow \frac{a}{p} = \frac{c}{r}$$

ஆகவே
$$\frac{a}{p} = \frac{b}{q} = \frac{c}{r}$$
 ஆகும்.

 $a=p,\ b=q,\ c=r$ ஆக இருக்க வேண்டியதில்லை என்பதைக் கவனிக்கவும்.

உதாரணம்
$$2x^2 + 7x - 15 = 0$$

$$(2x-3)(x+5)=0$$

$$x=-5,\frac{3}{2}$$

மூலங்கள்
$$-5, \frac{3}{2}$$
 ஆகும்.

$$2x^2 + 7x - 15 = 0$$

$$4x^2 + 14x - 30 = 0$$

$$-6x^2 + 21x - 45 = 0$$

$$x^2 + \frac{7}{2}x - \frac{15}{2} = 0$$
 ஆகிய எல்லா சமன்பாடுகளினதும் மூலங்கள் -5 , $\frac{3}{2}$ ஆகும்.

(3) இருபடிச் சமன்பாடு ஒன்றின் மூலங்கள் lpha,eta எனின் lpha+k,eta+k என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு.

$$ax^2 + bx + c = 0$$
 மூலங்கள் α, β என்க.

$$\alpha + \beta = -\frac{b}{a}, \quad \alpha\beta = \frac{c}{a}$$

$$lpha + k$$
, $eta + k$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு. $[x - (lpha + k)][x - (eta + k)] = 0$ $x^2 - (lpha + eta + 2k)x + [lpha eta + k(lpha + eta) + k^2] = 0$ $x^2 - \left(-\frac{b}{a} + 2k\right)x + \left[\frac{c}{a} + k\left(-\frac{b}{a}\right) + k^2\right] = 0$ $ax^2 + (b - 2ka)x + (c - kb + ak^2) = 0$

வேறுமுறை

$$ax^2 + bx + c = 0$$
 இன் மூலங்கள் α , β என்க. $x = \alpha$, β $y = x + k$ என்க. இப்பொழுது $x = y - k$ ஆகும். $ax^2 + bx + c = 0$ இல் $x = y - k$ எனப்பிரதியிட, $a(y - k)^2 + b(y - k) + c = 0$ $ay^2 + (b - 2ak)y + (c - bk + ak^2) = 0$ ஆகும். y ஐ x ஆல் மாற்றீடு செய்ய .

 $ax^2 + (b - 2ak)x + (c - bk + ak^2) = 0$ என்பது தேவையான சமன்பாடாகும்.

குறிப்பு : $ax^2 + bx + c = 0$ இன் மூலங்கள் எனின் $\alpha + k, \beta + k$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டைப் பெறுவதற்கு $x \to (x - k)$ என தரப்பட்ட சமன்பாட்டில் பிரதியிடவேண்டும்.

(4) இருபடிச்சமன்பாடொன்றின் மூலங்கள் α , β எனின் $m\alpha$, $m\beta$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு.

$$ax^2 + bx + c = 0$$
 இன் மூலங்கள் α , β என்க. $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ ஆகும்.

mlpha, meta என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு.

$$(x - m\alpha)(x - m\beta) = 0$$

$$x^{2} - m(\alpha + \beta)x + m^{2}\alpha\beta = 0$$

$$x^{2} - m\left(-\frac{b}{a}\right)x + m^{2}\frac{c}{a} = 0$$

$$ax^{2} + mbx + m^{2}c = 0$$

$$\text{24.56}$$

வேறுமுறை

$$ax^2+bx+c=0$$
 இன் மூலங்கள் $lpha$, eta என்க. $x=lpha$, eta ஆகும். $y=mx$ எனின், $x=\dfrac{y}{m}$ என $ax^2+bx+c=0$ இல் பிரதியிட $\dfrac{ay^2}{m^2}+\dfrac{by}{m}+c=0$ $ay^2+bmy+m^2c=0$ இன் மூலங்கள் $y=mlpha$, $meta$ ஆகும்.

$$m\alpha$$
, $m\beta$ ஐ மூலங்களாகக் கொண்ட சமன்பாடு $ax^2 + bmx + m^2c = 0$ அகும்.

குறிப்பு : $ax^2+bx+c=0$ இன் மூலங்கள் எனின் lpha,eta எனின் mlpha,meta என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டைக் காண்பதற்கு $x o rac{x}{m}$ என $ax^2+bx+c=0$ இல் பிரதியீடு செய்யவேண்டும்.

(5) இருபடிச்சமன்பாடொன்றின் மூலங்கள் α , β எனின் $\frac{1}{\alpha}$, $\frac{1}{\beta}$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு

$$ax^2+bx+c=0$$
 இன் மூலங்கள் $lpha$, eta என்க. $lpha+eta=-rac{b}{a},\ lphaeta=rac{c}{a}$ ஆகும். $rac{1}{lpha},rac{1}{eta}$ ஐ மூலங்களாகக் கொண்ட சமன்பாடு.

$$\left(x - \frac{1}{\alpha}\right)\left(x - \frac{1}{\beta}\right) = 0$$

$$x^2 - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)x + \frac{1}{\alpha\beta} = 0$$

$$\alpha\beta x^2 - (\alpha + \beta)x + 1 = 0$$

$$\frac{c}{a}x^2 - \left(-\frac{b}{a}\right)x + 1 = 0$$

$$cx^2 + bx + a = 0$$
Algebra.

வேநுமுறை

$$ax^2+bx+c=0$$
 இன் மூலங்கள் $lpha$, eta என்க $x=lpha$, eta .
$$y=\frac{1}{x}$$
 என்க. இப்பொழுது $x=\frac{1}{y}$ ஆகும்.
$$ax^2+bx+c=0$$
 இல், $x=\frac{1}{y}$ எனப்பிரதியிட,
$$a\left(\frac{1}{y}\right)^2+b\left(\frac{1}{y}\right)+c=0$$
 $a+by+cy^2=0$

$$cy^2 + by + a = 0$$
 இன் மூலங்கள் $y = \frac{1}{\alpha}, \frac{1}{\beta}$ ஆகும்.

$$\frac{1}{\alpha}, \frac{1}{\beta}$$
 ஐ மூலங்களாகக் கொண்ட சமன்பாடு.

$$cx^2 + bx + a = 0$$
 ஆகும்.

குறிப்பு: $ax^2+bx+c=0$ இன் மூலங்கள் lpha, eta எனின் $\dfrac{1}{lpha}$, $\dfrac{1}{eta}$ ஐ மூலங்களாகக் கொண்ட சமன்பாட்டைக் காண்பதற்கு $x \to \dfrac{1}{x}$ என $ax^2+bx+c=0$ இல் பிரதியிடவேண்டும்.

(6) இருபடிச் சமன்பாடு ஒன்றின் மூலங்களின் தன்மை

 $ax^2 + bx + c = 0$ எனும் இருபடிச் சமன்பாட்டின் மூலங்கள் α, β என்க. மூலங்கள் மெய்யானவையாக இருப்பின் மட்டுமே அவை நேரானவையா, மறையானவையா என்பதை ஆராயலாம். அதாவது பிரித்துக்காட்டி நேராக அல்லது பூச்சியமாக இருக்கும்போதே மூலங்கள் நேர், மறை என்பதைக் கூறலாம்.

(a) இருமூலங்களும் நேராக இருப்பதற்குரிய நிபந்தனை

(i)
$$\Delta = b^2 - 4ac \ge 0$$
 ஆதல் வேண்டும்.

$$(ii)$$
 $\alpha+\beta=-rac{b}{a},\ \ lphaeta=rac{c}{a}$ என்பதில் $lpha+eta>0,\ \ lphaeta>0$ ஆகவேண்டும்.

$$-\frac{b}{a} > 0, \quad \frac{c}{a} > 0$$

$$\frac{b}{a}$$
 < 0, $\frac{c}{a}$ > 0

a,c நேராகவும் b மறையாகவும் (a, c>0, b<0) அல்லது a,c மறையாகவும், b நேராகவும் (a, c<0, b<0) ஆக இருத்தல்வேண்டும்.

(b) இருமூலங்களும் மறையாக இருப்பதற்குரிய நிபந்தனை

(i)
$$\Delta = b^2 - 4ac \ge 0$$
 ஆதல் வேண்டும்

(ii)
$$\alpha+\beta=-\frac{b}{a},\ \alpha\beta=\frac{c}{a}$$
 என்பதில், $\alpha+\beta<0$ ஆகவும், $\alpha\beta>0$ ஆகவும் இருத்தல்வேண்டும். $-\frac{b}{a}<0,\ \frac{c}{a}>0$ $\frac{b}{a}>0,\ \frac{c}{a}>0$

a,b,c மூன்றும் நேராக அல்லது a,b,c மூன்றும் மறையாக இருத்தல்வேண்டும். a,b,c>0 அல்லது a,b,c<0 ஆகும்.

(c) இருமூலங்களில் ஒன்றும் நேராகவும், மற்றையது மறையாகவும்இருப்பதற்குரிய நிபந்தனை

(i)
$$\Delta = b^2 - 4ac \ge 0$$
 ஆதல் வேண்டும் $\alpha\beta = \frac{c}{a} < 0$ ஆகும்.

ஆகவே a யும் , c யும் ஒன்றுக்கொன்று எதிரான குறிகளை கொண்டிருத்தல் வேண்டும்

 $a>0,\ c<0$ ஆக **அல்லது** $a<0,\ c>0$ ஆதல்வேண்டும். மேலும் ac<0 எனின் $b^2-4ac\ge0$ ஆகும். ஆகவே ac<0 எனின் மூலங்கள் மெய்யாகவும், ஒன்று நேர், மற்றையது மறையாக இருக்கும்.

$$ax^2 + 2bx + c = 0$$
, $y = x + \frac{1}{x}$ எனின் $acy^2 + 2b(c+a)y + (a-c)^2 + 4b^2 = 0$ என நிறுவுக.

 $ax^2 + 2bx + c = 0$ இன் மூலங்கள் α , β எனின்,

$$\left(\alpha + \frac{1}{\alpha}\right)^2 + \left(\beta + \frac{1}{\beta}\right)^2 = \frac{\left[4b^2\left(a^2 + c^2\right) - 2ac\left(a - c\right)^2\right]}{a^2c^2}$$
 எனவும் நிறுவுக. $ax^2 + 2bx + c = 0$ (1)

$$x \neq 0$$
, x^2 ஆல் பிரிக்க, $a + \frac{2b}{x} + \frac{c}{x^2} = 0$ (2)

$$x$$
 ஆல் பிரிக்க, $ax + 2b + \frac{c}{r} = 0$ (3)

$$(1) \times c \qquad acx^2 + 2bcx + c^2 = 0$$

$$(2) \times a \qquad \frac{ac}{x^2} + \frac{2ab}{x} + a^2 = 0$$

өлі: (Полья от
$$ac\left(x^2 + \frac{1}{x^2}\right) + 2b\left(cx + \frac{a}{x}\right) + c^2 + a^2 = 0$$

$$ac\left(x^2 + \frac{1}{x^2}\right) + 2b\left(cx + \frac{a}{x} + \frac{c}{x} + ax - \frac{c}{x} - ax\right) + \left(c^2 + a^2\right) = 0$$

$$ac\left(x^2 + \frac{1}{x^2}\right) + 2b\left[c\left(x + \frac{1}{x}\right) + a\left(x + \frac{1}{x}\right) - \left(\frac{c}{x} + ax\right)\right] + \left(c^2 + a^2\right) = 0$$

(3) இலிருந்து
$$ac\left(x^2 + \frac{1}{x^2}\right) + 2b\left[c\left(x + \frac{1}{x}\right) + a\left(x + \frac{1}{x}\right) + 2b\right] + \left(c^2 + a^2\right) = 0$$

$$y=x+rac{1}{x}$$
 என்பதால் $x^2+rac{1}{x^2}=y^2-2$ ஆகும். என்வே சமன்பாடு $ac\left(y^2-2\right)+2b\left[(c+a)y+2b\right]+c^2+a^2=0$ $acy^2+2b(c+a)y+(a-c)^2+4b^2=0$ (A) $ax^2+bx+c=0$ இன் மூலங்கள் a , β ஆகும். மேலும் $y=x+rac{1}{x}$ என்பதால் (A) இன் மூலங்கள். $p=a+rac{1}{a},\ q=\beta+rac{1}{\beta}$ ஆகும். $p+q=rac{-2b(c+a)}{ac}$ $pq=rac{(a-c)^2+4b^2}{ac}$ $p^2+q^2=(p+q)^2-2pq$ $=rac{4b^2(c+a)^2}{a^2c^2}-rac{2(a-c)^2+4b^2}{ac}$ $=rac{4b^2(c^2+a^2)-2ac(a-c)^2-2ac\cdot4b^2}{a^2c^2}$ $=rac{4b^2(c^2+a^2)-2ac(a-c)^2}{a^2c^2}$

$$\left(\alpha + \frac{1}{\alpha}\right)^2 + \left(\beta + \frac{1}{\beta}\right)^2 = \frac{4b^2(c^2 + a^2) - 2ac(a - c)^2}{a^2c^2}$$

பயிற்சி 3

- 1. பின்வரும் சமன்பாடுகளின் மூலங்களை வாய்பாட்டைப் பயன்படுத்திக் காண்க.
 - (i) $3x^2 8x 16 = 0$

(ii) $2x^2 + 6x - 1 = 0$

(iii) $x^2 + x + 1 = 0$

- (iv) $4x^2 20x + 25 = 0$
- 2. $x^2 + x + 1 = 0$ இன் மூலங்கள் α , β எனின்,
 - (i) $\alpha^2 + \beta^2$
- (ii) $\alpha^3 + \beta^3$
- (iii) $\alpha^4 + \beta^4$
- என்பவற்றின் பெறுமானங்களைக் காண்க.
- 3. $x^2 + ax + b = 0$ இன் மூலங்கள் α , β எனின், $\alpha^3 + \beta^3 = 3ab a^3$ எனக் காட்டுக. $(\alpha 1)^2$, $(\beta 1)^2$ ஐ மூலங்களாகக் கொண்ட சமன்பாடு $x^2 (a^2 2b + 2a + 2)x + (a + b + 1)^2 = 0$ எனக் காட்டுக.
- **4.** $x^2+px+q=0$ இன் மூலங்கள் a,b ஆகவும், $x^2+rx+s=0$ இன் மூலங்கள் c,d ஆகவும் இருப்பின் பின்வருவனவற்றை $p,q,r\,s$ இல் காண்க.
 - (i) a(b+c+d)+b(c+d)+cd
 - (ii) $(a-c)^2 + (b-d)^2 + (b-c)^2 + (a-d)^2$
- 5. (i) $ax^2+bx+c=0$ இன் மூலங்கள் α , β எனின், $\frac{\alpha^2}{\beta},\frac{\beta^2}{\alpha}$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டைக் காண்க.
 - (ii) $x^2 + px + q = 0$ இன் மூலங்களுக்குகிடையேயான வித்தியாசம் 1 எனின் $p^2 = 4q + 1$ எனக் காட்டுக.
- 6. $x^2+x-1=0$ இன் மூலங்கள் α , β எனின், $\alpha^2=\beta+2$, $\beta^2=\alpha+2$ என நிறுவுக.. $\frac{\alpha+1}{\beta+1}$, $\frac{\beta+1}{\alpha+1}$ என்பவற்றை மூலங்களாக கொண்ட இருபடிச் சமன்பாடு $x^2+3x+1=0$ எனக் காட்டுக.

- 7. (i) $x^2 + px + q = 0$ இன் மூலங்கள் α, β ஆகும். $\alpha^2 + \beta^2 - \alpha\beta = \alpha^3 + \beta^3 = 61$ ஆகம்போது p,q இன் பெறுமானங் களைக் காண்க.
 - (ii) $x^2 + mx + n = 0$ இன் மூலங்கள் x_1, x_2 எனின் பின்வருவனவற்றைக் காண்க.

(a)
$$(x_2 + m)^{-1} + (x_1 + m)^{-1}$$

(a)
$$(x_2 + m)^{-1} + (x_1 + m)^{-1}$$
 (b) $(x_2 + m)^{-2} + (x_1 + m)^{-2}$

(c)
$$(x_2 + m)^{-3} + (x_1 + m)^{-3}$$

(c)
$$(x_2 + m)^{-3} + (x_1 + m)^{-3}$$
 (d) $\frac{x_1^2}{x_2 + m} + \frac{x_2^2}{x_1 + m}$

- (i) $x^2 + ax + 1 = 0$ என்னும் சமன்பாட்டின் இருசமமற்ற மூலங்கள் b உம் c உம் ஆகும். (b+a), (c+a) என்பவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $x^2 - ax + 1 = 0$ எனக்காட்டுக.
 - (ii) $ax^2 + bx + c = 0$ என்ற சமன்பாட்டின் மூலங்கள் m:n என்னும் விகிதத்திலிருப்பின் $\frac{m}{n} + \frac{n}{m} = \frac{b^2 - 2ac}{ac}$ எனக் காட்டுக. இதிலிருந்து $x^2 + 6x + 12 = 0$ என்னம் சமன்பாட்டின் மூலங்கள் m:n என இருப்பின் $m^2 + n^2 = mn$ என உய்க்களிக.
- 9. $(7p+1)x^2 + (5p-1)x + p = 1$. என்னும் சமன்பாடு சமமான மெய் மூலங்களைக் கொண்டிருப்பின் $\,p\,$ இன் பெறுமானங்களைக் காண்க
- $(a-1)x^2-2x+(a-1)=0$ எனும் சமன்பாடு மெய் மூலங்களைக் கொண்டிருப்பதற்கான *a* இன் உயர்வுப் பெறுமானம் யாது?
- $x^2-ig(4+kig)x+9=0$. மெய் மூலங்களைக் கொண்டிருப்பதற்கான k இன் 11. பெறுமானங்களைக் காண்க.

- 12. $x^2 (3p+1)x + p^2 1 = 5p$ என்னும் சமன்பாடு மெய் மூலங்களைக் கொண்டிருப்பதற்கான p இன் பெறுமானங்களைக் காண்க.
- 13. a,b என்பன நிறையெண்களாயிருக்க, $x^2+2x=ig(2a+2b+1ig)ig(2a+2b-1ig)$ இன் மூலங்கள் நிறையெண்களாகும் எனக்காட்டுக.
- 14. $px^2 6qx (9p 10q) = 0$ இன் மூலங்கள் முறையே $2\alpha 3$, $2\beta 3$ எனின் α, β ஐ மூலங்களாகக் கொண்ட சமன்பாட்டைக் காண்க.
- 15. $x^2-3px+p^2=0$ இன் மூலங்கள் α , β ஆகும். இங்கு $\alpha>\beta$, p>0 ஆகும். $\alpha^2+\beta^2$, $\alpha-\beta$ என்பவற்றைக் காண்க. $\frac{\alpha^3}{\beta}, \frac{-\beta^3}{\alpha}$ என்பவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாட்டைக் காண்க.
- **16.** $x^2 + (k-3)x + k = 0$ என்னும் சமன்பாடு
 - (i) மெய் மூலங்களைக் கொண்டிருப்பதற்கு,
 - (ii) மூலங்கள் இரண்டும் ஒரே குறியை உடையனவாயிருப்பதற்குk இன் பெறுமானங்களைக் காண்க.
- 17. $x^2 + k x 6k = 0$, $x^2 2x k = 0$ ஆகிய சமன்பாடுகளுக்கு ஒரு பொது மூலம் இருப்பின் k இன் பெறுமானங்களைக் காண்க.
- $x^2 + ax + b = 0, \ x^2 + bx + a = 0 \ (a \neq b)$ என்பவற்றிக்கு ஒரு பொது மூலம் இருப்பின் $2x^2 + (a+b)x = (a+b)^2$ இன் மூலங்கள் $x = 1, \ x = -\frac{1}{2}$ எனக் காட்டுக.

- 19. $x^2 cx + d = 0$, $x^2 ax + b = 0$ என்னும் சமன்பாடுகள் பொது மூலம் ஒன்றை உடையதெனவும், இரண்டாம் சமன்பாடு சமமூலங்களைக் கொண்டதெனவும் தரப்படின் 2(b+d)=ac எனக்காட்டுக.
- $2x^2+bx-15=0,\ 2x^2-bx+6=0$ என்பவற்றிற்குப் பொது மூலம் உண்டெனின் b இன் சாத்தியமான பெறுமானங்களைக் காண்க. b இன் பெறுமானங்களுக்கு சமன்பாடுகளைத் தீர்க்க.
- 21. $x^2 + ax + b = 0$, $x^2 + px + q = 0$ என்னும் சமன்பாடுகள் பொதுமூலம் ஒன்றைக் கொண்டுள்ளன. $x^2 + bx + a = 0$, $x^2 + qx + p = 0$ ஆகிய சமன்பாடுகளும் பொதுமூலம் ஒன்றைக் கொண்டுள்ளன. a + b = p + q = -1 எனக்காட்டுக.
- 22. a, b, c மெய்யெண்காளக இருக்க,

(i)
$$(b-c)x^2 + (c-a)x + (a-b) = 0$$

(ii)
$$a(b-c)x^2 + b(c-a)x + c(a-b) = 0$$

ஆகிய இருசமன்பாடுகளும் மெய்மூலங்களையுடையன என நிறுவுக.

- a,b,c என்பன கூட்டல் விருத்தியில் இருப்பின் (i) இன் மூலங்கள் சமம் எனவம்.
- $a,\,b,\,c$ என்பன இசை விருத்தியில் இருப்பின் (ii) இன் மூலங்கள் சமம் எனவும் காட்டுக.
- $px^2+qx+r=0$ இன் மூலங்களின் விகிதம் λ எனின், $\left(\lambda^2+1\right)pr=\lambda\left(q^2-2\,pr\right)$ எனக் காட்டுக. இதிலிருந்து $ax^2+bx+c=0$ எனும் சமன்பாட்டின் மூலங்களின் விகிதமும் $lx^2+mx+n=0$ எனும்

சமன்பாட்டின் மூலங்களின் விகிதமும் சமமெனின், $\dfrac{b^2-2ac}{ac}=\dfrac{m^2-2\ln n}{\ln n}$ எனக் காட்டுக.

- 24. $ax^2 + bx + c = 0$ இன் மூலங்கள் மெய்யானதும், நேரானதும் எனத் தரப்படின் $a^2x^2 + \left(2ac b^2\right)x + c^2 = 0$ இன் மூலங்களும் மெய்யானவையும் நேரானவையும் எனக் காட்டுக.
- **25.** $ax^2 + bx + c = 0$ இன் மூலங்கள் $a^1x^2 + b^1x + c^1 = 0$ இன் மூலங்களின் நிகர்மாறு எனின் $ab^1 = bc^1$ எனவும், $aa^1 = cc^1$ எனவும் காட்டுக.
- பின்வரும் சமன்பாடுகளின் மூலங்களின் நிகர்மாற்றினை மூலங்களாகவுடைய இருபடிச் சமன்பாட்டை எழுதுக.

(i)
$$5x^2 - 20x + 17 = 0$$
 (ii) $qx - r = px^2$ (iii) $ax^2 + bx + c = 0$

- **27.** $x^2 + 7x + 8 = 0$ இன் மூலங்களிற்கு பருமனில் சமமாகவும் குறிகளில் எதிராகவும் உடைய மூலங்களைக் கொண்ட சமன்பாட்டைக் காண்க.
- $ax^2+bx+c=0$ இன் மூலங்கள் $bx^2+cx+a=0$ இன் மூலங்களின் மூன்றுமடங்கெனின் a,b,c இற்கிடையே தொடர்பொன்றைப் பெறுக.
- $px^2+qx+r=0$ இன் மூலங்கள் $rx^2+qx+p=0$ இன் மூலங்களின் $rac{r}{p}$ மடங்கெனக் காட்டுக.
- 30. a,b,c என்பன மெய்யாக இருக்க, $\left(a^2+b^2\right)\!x^2-2b\left(a+c\right)\!x+\left(b^2+c^2\right)\!=0 \quad \text{இன் மூலங்கள் மெய் எனின்,}$ இரு மூலங்களும் சமம் எனக் காட்டுக.
- 31. $lpha,lpha^1$ என்பன $(x-eta)ig(x-eta^1ig)=\gamma$ என்னும் சமன்பாட்டின் மூலங்கள் எனின் $(x-lpha)ig(x-lpha^1ig)+\gamma=0$ என்னும் சமன்பாட்டின் மூலங்கள் eta,eta^1 எனக் காட்டுக.

- 32. $x^2+bx+c=0$ இன் மூலங்கள் α , β ஆகவும் $x^2+\lambda bx+\lambda^2 c=0$ இன் மூலங்கள் , δ ஆகவும் இருப்பின்
 - (i) $(\alpha \gamma + \beta \delta)(\alpha \delta + \beta \gamma) = 2\lambda^2 c(b^2 2c)$
 - (ii) $(\gamma + \beta \delta)$, $(\alpha \delta + \beta \gamma)$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு $x^2 - \lambda b^2 x + 2\lambda^2 c (b^2 - 2c)$ எனக்காட்டுக.
- 33. k ஒரு மெய் மாறிலியாக இருக்க $9x^2 + 6x + 1 = 4kx$ எனும் சமன் பாட்டின் மூலங்கள் α, β எனின்,
 - (a) $\frac{1}{\alpha}$, $\frac{1}{\beta}$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு $x^2 + 6x + 9 = 4kx$ எனக்காட்டுக.
 - (b) α, β மெய்யாக இருக்கும் k இன் பெறுமானங்களைக் காண்க.
 - (\mathbf{c}) α, β நேராகும் வண்ணம் k இன் பெறுமானங்களைக் காண்க.
- 34. $x^2 + px + q = 0$ இன் மூலங்கள் α , β ஆகும்.
 - (i) மூலங்களின் வித்தியாசம் $2\sqrt{3}$ எனவும், மூலங்களின் தலைகீழ்ப் பெறுமானங்களின் கூட்டுத்தொகை 4 எனவும் தரப்படின் p, q என்பவற்றின் சாத்தியமான பெறுமானங்களைக் காண்க.
 - (ii) $\alpha' + \frac{2}{\beta}$, $\beta + \frac{2}{\alpha}$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டைக் காண்க.
- 35. $f(x) = x^2 + (k+2)x + 2k$ sissinas.
 - (a) k இன் எல்லாமெய்ப் பெறுமானங்களுக்கும், f(x) = 0 இன் மூலங்கள் மெய்யானவை எனக் காட்டுக.
 - (b) f(x-k)=0 இன் மூலங்களைக் காண்க.

(c) f(x-k)-2x=0 இன் மூலங்கள் x=0, 7 எனின், k இன் பெறுமானத்தைக் காண்க.

k இன் இப் பெறுமானத்திற்கு f(x-k) - 2x இன் இழிவுப் பெறுமானத்தைக் காண்க.

- (d) 2c = 2 k எனத்தரப்பட்டிருக்க, $f(x k) + c^2 = 0$ என்ற சமன்பாட்டின் மூலங்கள் சமமானவை எனக்காட்டுக. k = 1 ஆகும் பொழுது இச்சமமூலங்களைக் காண்க.
- 36. (i) $f_1(x) = x^2 + px + q$, $f_2(x) = x^2 + p'x + q'$ என்க. $f_1(x) = 0$ இன் ஒருமூலத்தினதும், $f_2(x) = 0$ இன் ஒரு மூலத்தினதும் கூட்டுத்தொகை பூச்சியமாவதற்குரிய நிபந்தனையைக் காண்க.
 - (ii) α , β என்பன $f_1\left(x\right)=0$ இனதும் α' , $\beta!$ என்பன $f_2\left(x\right)=0$ இனதும் மூலங்களாயிருக்க $f_1(\alpha')\,f_1(\beta')=f_2(\alpha)\,f_2(\beta)=\left(q-q'\right)^2+\left(p-p'\right)\left(pq'-p'q\right)$ எனக்காட்டுக.
- 37. (i) $a^2 x^2 + 6abx + ac + 8b^2 = 0$ எனும் சமன்பாடு சமமூலங்களைக் கொண்டிருப்பீன் $ac(x+1)^2 = 4b^2 x$ எனும் சமன்பாட்டின் மூலங்களும் சமமானவை எனக்காட்டுக.
 - (ii) $3x^2 5x = k$ இன் மூலங்கள் 4:3 எனும் விகிதத்திலிருப்பின் k இன் பெறுமானத்தைக் காண்க.
- 38. $ax^2+2bx+c=0$ இன் மூலங்கள் α , β எனின், $ax^2+2bx+c=\frac{8\left(b^2-ac\right)}{a}$ என்ற சமன்பாட்டின் மூலங்களை α , β இல் காண்க.

- 39. (i) α , β என்பன $ax^2 + bx + c = 0$ இன் மூலங்கள் எனின், $cx^2 2bx + 4a = 0$ இன் மூலங்களை α , β இல் காண்க.
 - பின்வரும் ஒருங்கமை சமன்பாடுகள் மெய்மூலங்களைக் கொண்டிருப் பதற்கான λ இன் மிகக்குறைந்த, மிகக்கூடிய பெறுமானத்தைக் காண்க.
 x² + xy + y² = λ
 x² xy + y² = 1
- 40. (i) α , β என்பன $k^2 x^2 + (k x + 1)(x + k) + 1 = 0$ இன் மூலங்களாகும். இங்கு $k \neq 0$, $-1 \cdot \alpha + \beta$, $\alpha\beta$ ஐ k இன் உறுப்புக்களில் காண்க. $\alpha^2 \beta^2 + (\alpha\beta + 1)(\alpha + \beta) + 1 = 0$ என நிறுவுக.
 - (ii) $x^2 kx + 4 = 0$ இன் மூலங்கள் மெய்யாக இருக்கும் k இன் பெறுமானங்களைக் காண்க.
 - (a) மூலங்கள் மெய்யாகவும், நேராகவும் இருக்கும் k இன் பெறுமானங்களைக் காண்க.
 - (b) மூலங்கள் மெய்யாகவும், நேராகவும், 3:1 எனவும் அமையும் k இன் பெறுமானங்களைக் காண்க.
- 41. a, b என்பன சமமற்ற நேர் எண்களாக இருக்க,

 $\frac{\lambda}{2x} = \frac{a}{x+1} + \frac{b}{x-1}$ எனும் சமன்பாட்டினால் தரப்படும் x இன் பெறுமானங்கள் சமமாக இருக்குமாறு λ இன் பெறுமானங்களை a,b இல் காண்க.

இது உண்மையாகுமாறுள்ள λ இன் இரு பெறுமானங்கள் λ_1 , λ_2 ஆகவும், இதற்கொத்த x இன் பெறுமானங்கள் x_1 , x_2 ஆகவும் இருப்பின் λ_1 $\lambda_2 = (a-b)^2$ எனவும் $x_1 x_2 = 1$ எனவும் நிறுவுக.

- **42.** $9x^2 + 2xy + y^2 92x 20y + 244 = 0$ எனின். $3 \le x \le 6$ எனவும், $1 \le y \le 10$ எனவும் நிறுவுக.
- 43. α , β என்பன $x^2 + px + q = 0$ என்ற இருபடிச்சமன்பாட்டின் மூலங்களாகும். இங்கு p, q மெய்யெண்கள் ஆகும். $\lambda = \alpha + \beta^2 \ , \ \mu = \beta + \alpha^2 \$ என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டைக் காண்க.

 α , β என்பன கற்பனையானவையெனின். p = -1 எனின் மட்டும் λ உம் μ உம் மெய்யாகும் என நிறுவுக.

இவ்வகையில் $\lambda = \mu = 1 - q$ என நிறுவுக.

- 44. $2x^2-qx+r=0$ என்ற சமன்பாட்டின் மூலங்கள் $\alpha+1$, $\beta+2$ ஆகும்; இங்கு α , β என்பன $x^2-bx+c=0$ என்ற சமன்பாட்டின் மெய் மூலங்களாகவும். $\alpha\geq\beta$ ஆகவும் உள்ளது. q,r என்பவற்றை b,c இல் காண்க. $\alpha=\beta$ ஆகும்போது $q^2=4\left(2r+1\right)$ எனக்காட்டுக.
- 45. (i) α , β என்பன இரண்டும் நேராகவும், α^2 , β^2 என்பன $x^2-bx+c=0$ இன் மூலங்களாகவும் இருப்பின், (இங்கு b>2c>0), α , β ஐ மூலங்களாகக் கொண்ட சமன்பாட்டைக் காண்க.
 - (ii) $px^2 8x + p 6 = 0$ என்னும் சமன்பாட்டின் மூலங்கள் மெய்யானவை எனின் p இன் வீச்சுயாது? $x^2 px + p = 0$ என்ற சமன்பாட்டின் மூலங்களும் மெய்யானவை எனத்தரப்படின் p இன் புதியவீச்சு யாது?
- 46. $f(x) \equiv (x-b)(x-c) + (x-c)(x-a) + (x-a)(x-b)$ ஆகும். [இங்கு a, b, c மெய்யெண்கள் எல்லாம் வேறுவேறானவை] $f(x) = 0 \quad \text{என்ற சமன்பாடு மெய்யான வேறுவேறான } (p, q \quad \text{என்க}) இரு மூலங்களைக் கொண்டிருக்கும் எனக் காட்டுக. <math display="block">p+q, p \quad q \quad \text{என்பவற்றை} \quad a, b, c \quad \text{@ல் காண்க}.$

145

- (i) p, b, q என்பன கூட்டல் விருத்தியில் இருப்பின் c, b, a கூட்டல் விருத்தியில் இருக்கும் எனவும் f(a) = f(c) = -2 f(b) எனவும் காட்டுக.
- (ii) c, b, a என்பன பெருக்கல் விருத்தியில் இருப்பின் $\frac{1}{p}, \frac{1}{b}, \frac{1}{a}$ என்பன கூட்டல் விருத்தியில் அமையும் எனவும் காட்டுக.
- 47. பின்வரும் ஒவ்வொரு சோடிக் கோடுகளுக்கிடையேயுமான கோணத்தைக் காண்க.

(i)
$$3x^2 + 2xy - 2y^2 = 0$$

(i)
$$3x^2 + 2xy - 2y^2 = 0$$
 (iii) $2x^2 + xy - 4y^2 = 0$

(ii)
$$x^2 + xy - 5y^2 = 0$$

(ii)
$$x^2 + xy - 5y^2 = 0$$
 (iv) $x^2 - 3xy - y^2 = 0$

48. பின்வரும் சோடிக் கோடுகளின் சமன்பாடுகளைத் தனித்தனியாகக் காண்க...

(i)
$$3x^2 + xy - 2y^2 + 5x - 15y - 28 = 0$$

(ii)
$$2x^2 + xy - y^2 + 3x - 3y - 2 = 0$$

- 49. (i) $3x^2 8x \nu 3\nu^2 = 0$ ஆல் தரப்படும் நேர் கோடுகளின் சமன்பாடுகளைத் தனித்தனியாகக் காண்க.
 - (ii) $a x^2 + 2h x v + b v^2 = 0$ எனும் சமன்பாட்டினால் தரப்படும் நேர்கோடுகளில் ஒன்று (1,2) இற் கூடாகவும், மற்றையது (-3,4) இற் கூடாகவும் செல்கின்றது. a:h:b ஐக் காண்க.
 - (iii) $x^2 + 2hxv v^2 = 0$ எனும் சமன்பாட்டினால் தரப்படும் இரு நேர்கோடுகளும் ஒன்றுக்கொன்று செங்குத்தானவை எனக் காட்டுக.
- 50. (i) $x^2 xy ky^2 + 2y + x 1 = 0$ எனும் சமன்பாடு ஒருசோடி நேர்கோடுகளைக் குறிக்குமெனின் k இன் பெறுமானம் யாது?
 - (ii) $y^2 4xy + x^2 = 0$ என்னும் சமன்பாட்டினால் தரப்படும் இரு நேர்கோடுகளும் ஒன்றையொன்று 60° இல் இடைவெட்டுகின்றன எனக்காட்டுக. அவற்றுள் ஒருநோகோடு x அச்சுடன் 15° ஐ அமைக்கின்றது எனக்காட்டி, ஒவ்வொரு நேர்கோட்டுடனும் 60° ஐ அமைப்பதும், உற்பத்தியினூடு செல்வதுமான நேர்கோட்டின் சமன்பாட்டைக் காண்க.

4. இருபடிச் சார்புகள் விகிதமுறு சார்புகள்

டூருபடிச்சார்புகள் (Quadratic Functions)

 $a,\, b,\, c$ என்பன மெய்யெண்களாகவும், $a \neq 0$ ஆகவுமிருக்க

$$f(x) \equiv a x^2 + b x + c$$
 என்பது, மாறி x இலான இருபடிச் சார்பு ஆகும்.

$$f(x) = ax^{2} + bx + c$$

$$= a \left[x^{2} + \frac{b}{a}x + \frac{c}{a} \right]$$

$$= a \left[x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} \right]$$

$$= a \left[\left(x + \frac{b}{2a} \right)^{2} + \frac{4ac - b^{2}}{4a^{2}} \right]$$

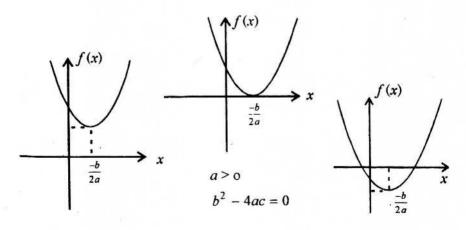
$$= a \left(x + \frac{b}{2a} \right)^{2} + \frac{4ac - b^{2}}{4a}$$

வகை I: a > 0

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$
 $x = -\frac{b}{2a}$ இல் $f(x) = \frac{4ac - b^2}{4a}$
 $x \neq -\frac{b}{2a}$ எனின், $a\left(x + \frac{b}{2a}\right)^2 > 0$

$$a>0$$
 எனின் $x=\frac{h}{2a}$ இல் $f(x)$ இற்கு இழிவு உண்டு.

ஓழிவுப்பெறுமானம்
$$\frac{4ac-b^2}{4a}$$
 ஆகும்.


(i)
$$b^2 - 4ac < 0$$
 எனின் $f'(x)$ இன் இழிவுப் பெறுமானம் $= 0$ $\frac{4ac - b}{4a} > 0$

f(x) இன் இழிவுப் பேறுமானம் \geq o

(iii)
$$b^2 - 4ac > 0$$
 எனின்

$$\frac{4ac \cdot b^2}{4a} < 0$$

f(x) இன் இழிவுப் பெறுமானம் < o

$$a > 0$$

$$\Delta = b^2 - 4ac < 0$$

$$a > 0$$

$$b^2 - 4ac > 0$$

- (i) $b^2-4ac<0$ எனின், y=f(x) எனும் வளையி x அச்சை வெட்டாது.
- (ii) $b^2-4ac=0$ எனின், y=f(x) எனும் வளையி x அச்சைத் தொடும்.
- (iii) $b^2-4ac>0$ எனின். y=f(x) எனும் வளையி x அச்சை இரு புள்ளிகளில் வெட்டும்.

உதாரணம்

(i)
$$f(x) = x^2 + x + 1$$

இங்கு
$$a=1>0$$
, $\Delta=1-4=-3<0$

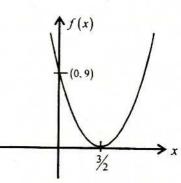
$$f(x) = x^2 + x + 1$$

$$=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}$$

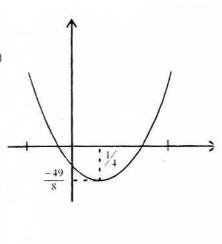
$$x = -\frac{1}{2}$$
 gai $f(x) = \frac{3}{4}$

$$x \neq -\frac{1}{2}$$
 எனின் $f(x) > \frac{3}{4}$

$$x=-rac{1}{2}$$
 இல் $f(x)$ இன் இழிவுப்பெறுமானம் $rac{3}{4}$



(ii) $f(x) = 4x^2 - 12x + 9$ a = 4 > 0, $\Delta = 144 - 144 = 0$ $f(x) = 4x^2 - 12x + 9$ $= (2x - 3)^2$


$$x = \frac{3}{2} \quad \text{(a)} \quad f(x) = 0$$

$$x \neq \frac{3}{2}$$
 எனின் $f(x) > 0$

$$x = \frac{3}{2}$$
 இல் இழிவு. இழிவுப்பெறுமானம் $= 0$

(iii)
$$f(x) = 2x^2 - x - 6$$

 $a = 2 > 0$, $\Delta = 1 + 48 = 49 > 0$
 $f(x) = 2x^2 - x - 6$
 $= 2\left[x^2 - \frac{1}{2}x - 3\right]$
 $= 2\left[\left(x - \frac{1}{4}\right)^2 - \frac{1}{16} - 3\right]$
 $= 2\left(x - \frac{1}{4}\right)^2 - \frac{49}{8}$

$$x = \frac{1}{4}$$
 giá $f(x) = -\frac{40}{8}$

$$x \neq \frac{1}{4}$$
 எனின் $f(x) > -\frac{49}{8}$. $x = \frac{1}{4}$ இல் இழிவுப்பெறுமானம் $= \frac{-49}{8}$

வகை II

a < 0

$$f(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$

$$x = -\frac{b}{2a}$$
 (2) $f(x) = \frac{4ac - b^2}{4a}$

$$x \neq -\frac{b}{2a}$$
 signifies $a\left(x + \frac{b}{2a}\right)^2 < 0$

ஆகவே
$$x \neq -\frac{b}{2a}$$
 எனின் $f(x) < \frac{4ac - b^2}{4a}$

150

a < 0 எனின்,

$$x = -\frac{b}{2a}$$
 இல் $f(x)$ இற்கு உயர்வு உண்டு.

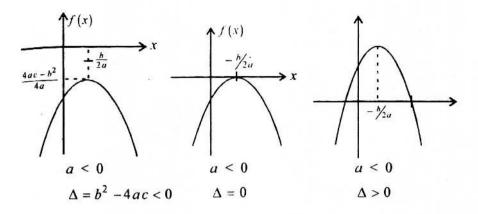
உயர்வுப் பெறுமானம் $\frac{4ac-b^2}{4a}$ ஆகும்.

a < 0

(i) $b^2 - 4ac < 0$ என்க.

$$f(x) = ax^{2} + bx + c = a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

$$\frac{4ac - b^{2}}{4a} < 0$$

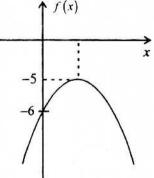

f(x) இன் உயர்வுப்பெறுமானம் < 0 ஆகும்.

(ii)
$$b^2 - 4ac = 0$$
 என்க. $\frac{4ac - b^2}{4a} = 0$ $f(x)$ இன் உயர்வுப் பெறுமானம் 0 ஆகும்.

(iii) $b^2 - 4ac > 0$ என்க.

$$\frac{4ac - b^2}{4a} > 0$$

f(x) இன் உயர்வுப்பெறுமானம் >0 ஆகும்.



- (i) $b^2-4ac<0$ எனின், y=f(x) என்னும் வளையி x அச்சை வெட்டாது.
- (ii) $b^2 4ac = 0$ எனின், y = f(x) என்னும் வளையி x அச்சைத் தொடும்.
- (iii) $b^2-4ac>0$ எனின், y=f(x) என்னும் வளையி x அச்சை இருபுள்ளிகளில் வெட்டும்.

உதாரணம்

(i)
$$f(x) = -x^2 + 2x - 6$$
; $a = -1 < 0$. $\Delta = 4 - 24 = -20 < 0$
 $= -[x^2 - 2x + 6]$
 $= -[(x - 1)^2 + 5]$
 $= -(x - 1)^2 - 5$

$$x=1$$
 எனில் $f(x)=-5$ $x \ne -1$ எனில், $f(x)<-5$ $x=-1$ இல் உயர்வுப் பெறுமானம் $=-5$

(ii)
$$f(x) = -x^2 - 4x - 4$$

 $a = -1$, $\Delta = 16 - 16 = 0$
 $f(x) = -(x + 2)^2$
 $x = -2$ இல் $f(x) = 0$
 $x \neq -2$ எனில் $f(x) < 0$
 $x = -2$ இல் உயர்வுப் பெறுமானம் $x = 0$

(iii)
$$f(x) = -x^2 + 5x + 6$$

 $= -\left[x^2 - 5x - 6\right]$
 $= -\left[\left(x - \frac{5}{2}\right)^2 - \frac{25}{4} - 6\right]$
 $= -\left(x - \frac{5}{2}\right)^2 + \frac{49}{4}$
 $x = \frac{5}{2}$ (0, 6)
 $x = \frac{5}{2}$ (2) $x = \frac{49}{4}$
 $x = \frac{5}{2}$ (3) $x = \frac{5}{2}$ (4) $x = \frac{5}{2}$ (4) $x = \frac{5}{2}$ (5) (2) $x = \frac{49}{4}$

 $y = ax^2 + bx + c$ இன் வடிவம் பரவளைவாகும்.

a>0 ஆகவும், $b^2-4ac<0$ ஆகவும் இருப்பின் x இன் எல்லாப்பெறுமானங்களுக்கும் ax^2+bx+c நேரானது ஆகும் $f(x)=ax^2+bx+c$

$$= a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a^2} \right]$$
$$= a \left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a}$$

a > 0, $b^2 - 4ac < 0$ ஆகையால் $\frac{4ac - b^2}{4a} > 0$ ஆகும்.

a>0 ஆதலால் x இன் எல்லாப்பெறுமானங்களுக்கும் $a\left(x+rac{b}{2a}
ight)^2\geq 0$ ஆகவே x இன் எல்லாப் பெறுமானங்களுக்கும் $ax^2+bx+c>0$ ஆகும். அதாவது, $a>0,\ b^2-4ac<0$ எனின், x இன் எல்லாப் பெறுமானங்களுக்கும் $ax^2+bx+c>0$ ஆகும்.

மேலும் $x=-rac{b}{2a}$ இல் f(x) இன் இழிவுப்பெறுமானம் $rac{4ac-b^2}{4a}$ ஆகும்.

a < 0 ஆகவும், $b^2 - 4ac < 0$ ஆகவும் இருப்பீன் x இன் எல்லாப் பெறுமானங்களுக்கும் $ax^2 + bx + c < 0$ ஆகும்

$$f(x) = ax^{2} + bx + c$$

$$= a \left[\left(x + \frac{b}{2a} \right)^{2} + \frac{4ac - b^{2}}{4a^{2}} \right]$$
154

$$= a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$

$$a < 0, b^2 - 4ac < 0$$
 ஆகையால் $\frac{4ac - b^2}{4a} < 0$

$$a < 0$$
 ஆதலால் x இன் எல்லாப் பெறுமானங்கட்கும் $a \left(x + \frac{b}{2a} \right)^2 \leq 0$

ஆகவே x இன் எல்லாப் பெறுமானங்களுக்கும் $ax^2+bx+c<0$ ஆகும்.

மேலும் $x=\frac{-b}{2a}$ இல் f(x) இன் உயர்வுப் பெறுமானம் $\frac{4ac-b^2}{4a}$ ஆகும்.

உதாரணம் 1

x இன் எல்லாப் பெறுமானங்களுக்கும் $2\,x^2\,+\,2x\,+\,3\,$ நேரானது எனக்காட்டுக.

$$2x^{2} + 2x + 3 = 2\left[x^{2} + x + \frac{3}{2}\right]$$

$$= 2\left[\left(x + \frac{1}{2}\right)^{2} + \frac{5}{4}\right]$$

$$= 2\left(x + \frac{1}{2}\right)^{2} + \frac{5}{2}$$

$$\geq \frac{5}{2} > 0$$

$$\left[x$$
 இன் மெய்ப்பெறுமானங்களுக்கும் $\left(x+rac{1}{2}
ight)^{2}\geq0$ $\left[x+rac{1}{2}
ight]$

x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் $2x^2 + 2x + 3$ நேரானதாகும்.

155

உதாரணம் 2

 $y=3x^2+5x+k$ என்ற சார்பின் இழிவுப் பெறுமானத்தைக் காண்க.

- (i) வளையி *x* அச்சைத் தொடுமெனின்
- (ii) வளையி x அச்சை வெட்டுமெனின், k இன் பெறுமானத்தைக் காண்க.

$$y = 3x^{2} + 5x + k$$

$$= 3\left[x^{2} + \frac{5}{3}x + \frac{k}{3}\right]$$

$$= 3\left[\left(x + \frac{5}{6}\right)^{2} + \frac{k}{3} - \frac{25}{36}\right]$$

$$= 3\left[\left(x + \frac{5}{6}\right)^{2} + \frac{12k - 25}{36}\right]$$

$$= 3\left(x + \frac{5}{6}\right)^{2} + \frac{12k - 25}{12}$$

$$\therefore x = -\frac{5}{6} \text{ softsoft} \qquad y > \frac{12k - 25}{12}$$

$$x \neq -\frac{5}{6} \text{ steafisor} \qquad y > \frac{12k - 25}{12}$$

$$\therefore$$
 சார்பின் இழிவுப் பெறுமானம் $\frac{12k-25}{12}$

(i) வளையி
$$x$$
 அச்சைத் தொடுமெனின் $\frac{12k-25}{12}=0$

$$\vec{k} = \frac{25}{12}$$

(ii) வளையி
$$x$$
 அச்சை வெட்டுமெனின் $\frac{12k-25}{12} < 0$

$$k < \frac{25}{12}$$

[குறிப்பு : இருபடிச்சார்பு வளையி
$$y = ax^2 + hx + c$$

$$x$$
 அச்சைத் தொடுவதற்கு $b^2 - 4ac = 0$

 $y = 3x^2 + 5x + k$, x அச்சைத் தொடும் எனின்.

$$\Delta = 25 - 12k = 0, \qquad k = \frac{25}{12}$$

x அச்சை வெட்ட வேண்டுமெனின் $\Delta>0$ ஆதல் வேண்டும்.

$$25 - 12k > 0$$

$$k < \frac{25}{12}$$

உதாரணம் 3

$$f(x) = 9 + 2(k+4)x + 2kx^{2} (k \neq 0)$$

x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் f(x) நேராகுமாறு k இன் பெறுமானவீச்சைக் காண்க.

$$f(x) = 9 + 2(k+4)x + 2kx^{2}$$
$$= 2kx^{2} + 2(k+4)x + 9$$

x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் $f\left(x
ight)>0$ ஆவதற்கு

(i) x^2 இன் குணகம் $2\,k\!>\!0$ ஆதல் வேண்டும். (ii) $\Delta < 0$ ஆதல் வேண்டும்

(i)
$$2k > 0 \implies k > 0 - - - - - - (1)$$

(ii)
$$\Delta < 0 \implies 4(k+4)^2 - 72k < 0$$

 $(k+4)^2 - 18k < 0$
 $k^2 - 10k + 16 < 0$
 $(k-2)(k-8) < 0$
 $\therefore 2 < k < 8 - - - - (2)$

$$\therefore 2 < k < 8 --- - (2)$$

(1), (2) இலிருந்து, 2 < k < 8 ஆகும்.

157

உதாரணம் 4

p, x என்பவற்றின் மெய்ப் பெறுமானங்களுக்கு

$$f(x) = (2p^2 + 1)x^2 + 2(4p^2 - 1)x + (2p^2 + 1)$$
 ஆகும்.

_{சார்}பு இழிவாக இருக்கும் p,x இன் பெறுமானங்களையும், சார்பின் இழிவும் etaபறுமானத்தையும் காண்க.

$$(2p^{2} + 1)x^{2} + 2(4p^{2} - 1)x + 4(2p^{2} + 1)$$

$$= 2p^{2}(x^{2} + 4x + 4) + (x^{2} - 2x + 4)$$

$$= 2p^{2}(x + 2)^{2} + (x - 1)^{2} + 3$$

$$p,x$$
 இன் எல்லாப் மெய்ப் பெறுமானங்களுக்கும் $2\,p^2\,ig(x+2ig)^2\geq 0$

$$\left(x-1\right)^2 \ge 0$$

$$p=0, \ x=1$$
 ஆகும் போது மட்டும் $2p^2\left(x+2\right)^2+\left(x-1\right)^2=0$ $\therefore p=0, \ x=1$ ஆக சார்பின் இழிவுப் பெறுமானம் 3 ஆகும்.

விகிதமுறு சார்புகள் (Rational Functions)

 $P(x),\,Q\left(x
ight)$ என்பன x இன் இருபல்லுறுப்புச் சார்புகளாக இருக்க $\dfrac{P(x)}{Q(x)}$ என்பது

 $Q(x) \neq 0$, x இல் விகிதமுறு சார்பு எனப்படும்.

P(x)இன்படி $\leq Q(x)$ இன்படி எனின், $\dfrac{P(x)}{Q(x)}$ முறைமை விகிதமுறு சார்பு P(x) (proper rational function) எனப்படும்.

 $\mathbb{P}(x)$ இன் படி $\geq Q(x)$ இன் படி எனின் $\dfrac{P(x)}{Q(x)}$ முறைமையில் விகிதமுறுசார்பு p(x) (improper rational function) எனப்படும்.

உதாரணம்

$$\frac{x+4}{x^2+x+1}$$
, $\frac{x^2-x+1}{x^3+2x^2-4}$ - முறைமை விகிதமுறு சார்புகள்

$$\frac{2x^2 - 3x - 5}{x + 2}$$
 . $\frac{x^2 - x + 1}{x^2 + x + 1}$ - முறைமையில் விகிதமுறு சார்புகள் ஆகும்.

உதாரணம் 5

$$x$$
 இன் மெய்ப் பெறுமானங்களுக்கும் $\frac{6x+5}{3x^2+4x+2}$ எனும் சார்பு $-\frac{3}{2}$ இற்கும்

3 இற்கும் வெளியேயுள்ள எந்த ஒரு பெறுமானத்தையும் எடுக்காதெனக் காட்டுக.

$$\frac{6x+5}{3x^2+4x+2} = y \text{ sisins.}$$

$$3yx^2 + (4y-6)x + (2y-5) = 0$$

$$\Delta = (4y-6)^2 - 4 \times 3y(2y-5)$$

$$= -8y^2 + 12y + 36$$

$$x$$
 இன் மெய்ப்பெறுமானங்களுக்கு $\Delta \geq 0$

$$-8y^{2} + 12y + 36 \ge 0$$
$$2y^{2} - 3y - 9 \le 0$$
$$(2y + 3)(y - 3) \le 0$$

$$\therefore \quad -\frac{3}{2} \le y \le 3$$

.. சார்பு $-\frac{3}{2}$ இற்கும், 3 இற்கும் வெளியேயுள்ள எந்த ஒரு பெறுமானத்தையும் எடுக்காது.

x இன் மெய்ப்பெறுமானங்களுக்கு $\dfrac{x^2-12}{2x-7}$ எனும் சார்பு 3 இற்கும் 4 இற்குமிடையிலுள்ள எந்தவொரு பெறுமானத்தையும் எடுக்காது எனக்காட்டுக.

$$\frac{x^2 - 12}{2x - 7} = y \quad \text{signifies.}$$

$$x^2 - 2yx + (7y - 12) = 0$$

$$\Delta = 4y^2 - 4(7y - 12)$$

$$= 4\left[y^2 - 7y + 12\right]$$

x இன் மெய்ப்பெறுமானங்களுக்கு $\Delta \geq 0$

$$4[y^{2} - 7y + 12] \ge 0$$
$$y^{2} - 7y + 12 \ge 0$$
$$(y - 4)(y - 3) \ge 0$$

 $y \le 3$ அல்லது $y \ge 4$

். சார்பு 3 இற்கும் 4 இற்குமிடையில் எந்தவொரு பெறுமானத்தையும் எடுக்காது.

உதாரணம் 7

x மெய்யாக இருக்க $\frac{\left(x-2\right)^2+16}{2\left(x+2\right)}$ என்னும் சார்பு

 $-4\left(\sqrt{2}+1\right)$ இற்கும் $4\left(\sqrt{2}-1\right)$ இற்குமிடையிலுள்ள எந்தவொரு பேறுமானத்தையும் எடுக்காது எனக்காட்டுக.

$$\frac{\left(x-2\right)^2+16}{2\left(x+2\right)}=y \quad \text{sissins.}$$

$$x^{2} - (4 + 2y) x + (20 - 4y) = 0$$
 160

$$\Delta = (4 + 2y)^{2} - 4(20 - 4y)$$

$$= 4[y^{2} + 4y + 4 - 20 + 4y]$$

$$= 4[y^{2} + 8y - 16]$$

x இன் மெய்ப்பெறுமானங்களுக்கு $\Delta \geq 0$

$$y^{2} + 8y - 16 \ge 0$$
 $(y + 4)^{2} - (4\sqrt{2})^{2} \ge 0$
 $(y + 4 - 4\sqrt{2})(y + 4 + 4\sqrt{2}) \ge 0$
 $[y - 4(\sqrt{2} - 1)][y - {-4(\sqrt{2} + 1)}] \ge 0$
 $y \le -4(\sqrt{2} + 1)$ அல்லது $y \ge 4(\sqrt{2} - 1)$

். தரப்பட்ட கோவை $-4\left(\sqrt{2}+1\right)$ இற்கும், $4\left(\sqrt{2}-1\right)$ இற்குமிடையில் எந்தவொரு பெறுமானத்தையும் எடுக்காது.

உதாரணம் 8

$$\frac{x^2+3x-4}{5x-k}$$
 எனும் சார்பு பொருத்தமான x இன் எல்லாப் பெறுமானங்களுக்கும்

எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்குமெனின் k இன் இயல்தகு பெறுமானங்களைக் காண்க.

$$\frac{x^2 + 3x - 4}{5x - k} = y \quad \text{sistings.}$$

$$x^2 + (3 - 5y)x - 4(ky - 4) = 0$$

$$\Delta = (3 - 5y)^2 - 4(ky - 4)$$

$$= 25y^2 - (4k + 30)y + 25$$

 χ இன் மெய்ப்பெறுமானங்களுக்கு $\Lambda \geq 0$ ஆதல் வேண்டும்.

$$25y^2 - (4k + 30)y + 25 \ge 0$$

y இன் எல்லாப் பெறுமா**னங்களு**க்கும்

$$25y^2 - (4k + 30)y + 25 \ge 0$$
 ஆக இருக்க

- (i) y^2 இன் குணகம் > 0
- (ii) $\Delta \leq 0$ ஆதல் வேண்டும்.

$$y^2$$
 இன் குணகம் 25 > 0

$$\Delta = (4k + 30)^{2} - 4 \times 25 \times 25 \le 0$$

$$k^{2} + 15k - 100 \le 0$$

$$(k + 20)(k - 5) \le 0$$

$$-20 < k < 5$$

உதாரணம் 9

a>4 எனின், $\dfrac{x^2-a}{x-2}$ என்னும் சார்பு, x இன் வேறுவேறான பெறுமானங்களுக்கு யாதுமொரு தரப்பட்ட பெறுமானத்தை எடுக்கும் எனக்காட்டுக.

a < 4 எனின் குறித்த இரு பெறுமானங்களுக்கிடையில் யாதுமொரு பெறுமான ந்தையும் சார்பு எடுக்காது எனவும் காட்டுக.

$$\frac{x^2 - a}{x - 2} = y \quad \text{6160165.}$$

$$x^2 - yx + (2y - a)$$

$$\Delta = y^2 - 4(2y - a)$$

$$= y^2 - 8y + 4a$$

(i) y இன் எல்லாப் பெறுமானங்களுக்கும் $\Delta>0$ ஆதல் வேண்டும்.

$$y^2 - 8y + 4a$$

இங்கு
$$y^2$$
 இன் குணகம் $1>0$ $\Delta=64-16a<0$ ஆதல் வேண்டும். $a>4$ ஆதல் வேண்டும்.

a>4 எனின் சார்பு எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கும்.

(ii) a < 4 sistings.

$$x$$
 இன் மெய்ப்பெறுமானங்களுக்கு $\Delta \geq 0$ $y^2 - 8y + 4a \geq 0$ $y^2 - 8y + 16 + 4a - 16 \geq 0$ $(y - 4)^2 - \left(2\sqrt{4-a}\right)^2 \geq 0$ $\left[y - 4 - 2\sqrt{4-a}\right]\left[y - 4 + 2\sqrt{4-a}\right] \geq 0$ $\left[y - \left\{4 + 2\sqrt{4-a}\right\}\right]\left[y - \left\{4 - 2\sqrt{4-a}\right\}\right] \geq 0$ $y \leq 4 - 2\sqrt{4-a}$ அல்லது $y \geq 4 + 2\sqrt{4-a}$ சார்பு $4 - 2\sqrt{4-a}$ இற்கும் $4 + 2\sqrt{4-a}$ இற்குமிடையில் எப்பெறுமானத்தையும் எடுக்காது.

உதாரணம் 10

$$p(x) = (\lambda - 2)x^2 - 3(\lambda + 2)x + 6\lambda;$$
 இங்கு $\lambda \in R$ ஆகும்.

- (i) எல்லா $x \in R$ இற்கும் p(x) நேராக இருக்கும் λ இன் மிகக் குறைந்த நிறையெண் பெறுமானத்தைக் காண்க.
- (ii) λ இன் எப்பெறுமானங்களுக்கு p(x) = 0 என்னும் சமன்பாடு இருவேறு மெய் மூலங்களைக் கொண்டுள்ளது.
- (iii) p(x) = 0 இன் மூலங்கள் மெய்யானதாகவும், மூலங்களின் வித்தியாசம் 3 ஆகவும் இருப்பின் λ ஐக் காண்க.

$$p(x)=(\lambda-2)x^2-3(\lambda+2)x+6\lambda.$$

(i) $\lambda=2$ எனின், p(x)=-12x+12 இது x இல் முதலாம் படிச் சார்பு x>1 எனின், p(x)>0, x=1 எனின் p(x)=0; x<1 எனின் p(x)<0.

ஆகவே $\lambda=2$ எனின், x இன் எல்லாப் பெறுமானங்களுக்கும் p(x)<0 அல்ல.

 $\lambda \neq 2$ எனின்.

$$p(x) = (\lambda - 2)x^2 - 3(\lambda + 2)x + 6\lambda$$
 ஓர் இருபடிச்சார்பு. x இன் எல்லாப்பெறுமானங்களுக்கும் $p(x) > 0$ ஆக,

(i) x^2 இன் குணகம் $(\lambda-2)>0$

(ii)
$$\Delta = 9(\lambda + 2)^2 - 24\lambda(\lambda - 2) < 0$$
 ஆதல் வேண்டும்.

(i)
$$\lambda > 2$$
 _____ (1)
(ii) $-15\lambda^2 + 84\lambda + 36 < 0$
 $5\lambda^2 - 28\lambda - 12 > 0$ [-3 ஆல் பிரிக்க]
 $(5\lambda + 2)(\lambda - 6) > 0$
 $\lambda < -\frac{2}{5}$ அல்லது $\lambda > 6$

இலிருந்து λ>2
 எனவே λ>6

எனவே λ வின் மிகச்சிறிய நிறையெண் பெறுமானம் 7 ஆகும்.

(ii)
$$(\lambda - 2)x^2 - 3(\lambda + 2)x + 6\lambda = 0$$
 $\Delta = -15\lambda^2 + 84\lambda + 36$ இருவேறு மெய்மூலங்களைக் கொண்டிருப்பதற்கு $\Delta > 0$ ஆதல் வேண்டும்.

$$-15\lambda^2 + 84\lambda + 36 > 0$$
 $5\lambda^2 - 28\lambda - 12 < 0$
 $(5\lambda + 2)(\lambda - 6) < 0$
 $-\frac{2}{5} < \lambda < 6$ ஆதல்வேண்டும்.
தீர்வுத்தொடை $\left\{ x : -\frac{2}{5} < x < 6, x \in R \right\}$

(iii)
$$p(x) = (\lambda - 2)x^2 - 3(\lambda + 2)x + 6\lambda = 0$$

(position α , β states.

$$\alpha + \beta = \frac{3(\lambda + 2)}{\lambda - 2}, \quad \alpha\beta = \frac{6\lambda}{\lambda - 2}$$

$$|\alpha - \beta| = 3$$

$$(\alpha - \beta)^2 = 3^2$$

$$(\alpha - \beta)^2 = 9$$

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$$

$$9 = \frac{9(\lambda + 2)^2}{(\lambda - 2)^2} - \frac{24\lambda}{\lambda - 2}$$

$$(\lambda - 2)^2 = 9(\lambda + 2)^2 - 24\lambda(\lambda - 2)$$

$$24\lambda^2 - 120\lambda = 0$$

$$\lambda(\lambda - 5) = 0$$

ஆகவே $\lambda=0$ அல்லது $\lambda=5$

உதாரணம் 11

x மெய்யாக இருக்க, $b^2 > (a+c)^2$ எனின், $\dfrac{ax^2+bx+c}{cx^2+bx+a}$ எனும் சார்பு எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கும் எனக் காட்டுக.

$$y = \frac{ax^2 + bx + c}{cx^2 + bx + a}$$
$$y (cx^2 + bx + a) - (ax^2 + bx + c) = 0$$
$$(yc - a)x^2 + (by - b)x + (ay - c) = 0$$

$$\Delta = (by - b)^{2} - 4(cy - a)(ay - c)$$

$$= b^{2}(y^{2} - 2y + 1) - 4(cay^{2} - a^{2}y - c^{2}y + ac)$$

$$= (b^{2} - 4ac)y^{2} - (2b^{2} - 4a^{2} - 4c^{2})y + (b^{2} - 4ac)$$

y எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கும் எனின்,

y இன் எல்லாப் பெறுமானங்களுக்கும் $\Delta \geq 0$ ஆதல் வேண்டும்.

y இன் எல்லாப் பெறுமானங்களுக்கும்,

$$(b^2 - 4ac)y^2 - (2b^2 - 4a^2 - 4c^2)y + (b^2 - 4ac) \ge 0$$
 ஆவதற்கு

(ii)
$$\Delta_1 = (2b^2 - 4a^2 - 4c^2)^2 - 4(b^2 - 4ac)^2$$

$$= [2b^2 - 4a^2 - 4c^2 - 2(b^2 - 4ac)][2b^2 - 4a^2 - 4c^2 + 2(b^2 - 4ac)]$$

$$= [-4a^2 + 8ac - 4c^2][4b^2 - 4a^2 - 8ac - 4c^2]$$

$$= -16[a^2 - 2ac + c^2][b^2 - (a^2 + 2ac + c^2)]$$

$$= -16(a - c)^2[b^2 - (a + c)^2]$$

$$\leq 0 \qquad [b^2 > (a + c)^2 \text{ signily field}]$$
(B)

(A), (B) இலிருந்து y இன் எல்லாப் பெறுமானங்களுக்கும் $\Delta \geq 0$ எனவே தரப்பட்ட சார்பு $\dfrac{ax^2+bx+c}{cx^2+bx+a},\ b^2>(a+c)^2$ எனின், எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கும்.

உதாரணம் 12

$$S=3x^2-28x+60$$
 எனவும், $S^1=5x^2-32x+56$ எனவும் இருப்பின் $ps=qs^1=r\left(x-lpha
ight)^2$ எனும் வடிவில் இருப்பதற்கான $\frac{p}{q}$ இன்

பெறுமானங்களைக் காண்க, இதிலிருந்து

$$3x^2 - 28x + 60 = l(x - h)^2 + m(x - k)^2$$
 ஆகவும் $5x^2 - 32x + 56 = l^1(x - h)^2 + m^1(x - k)^2$ ஆகவும் இருக்குமாறு l, m, l^1, m^1, h, k என்பவற்றைக் காண்க.

$$(28p - 32q)^{2} - 4(3p - 5q)(60p - 56q) = 0$$

$$(7p - 8q)^{2} - (3p - 5q)(15p - 14q) = 0$$

$$(49p^{2} - 112pq + 64q^{2}) - (45p^{2} - 117pq + 70q^{2}) = 0$$

$$4p^2 + 5pq - 6q^2 = 0$$
 $(4p - 3q)(p + 2q) = 0$
 $4p - 3q = 0, \quad p + 2q = 0$
 $\frac{p}{q} = \frac{3}{4}$ அல்லது -2

$$p=3,\ q=4$$
 எனின், (1) இலிருந்து $35-4S^1=-11x^2+44x-44=-11ig(x-2ig)^2$ $p=-2,\ q=1$ எனின், $-2S-S^1=-11x^2+88x-176=-11ig(x-4ig)^2$

$$3S - 4S^{1} = 11(x - 2)^{2}$$

$$-2S - S^{1} = -11(x - 4)^{2}$$

$$11S = -11(x - 2)^{2} + (x - 4)^{2}$$

$$S = -(x - 2)^{2} + 4(x - 4)^{2}$$

$$11S^{1} = -22(x - 2)^{2} - 33(x - 4)^{2}$$

$$S = -2(x - 2)^{2} - 3(x - 4)^{2}$$
(3)

பயிற்சி 4

1. பின்வரும் சார்புகளின் பரும்படியான வரைபுகளை வரைக. அவற்றின் உயர்வு அல்லது இழிவுப்புள்ளியின் ஆள்கூறுகளையும் எழுதுக. இங்கு $a,\ b>0$ உம் c<0 உம் ஆகும்.

(i)
$$f(x) = (x-a)^2 + b$$

(ii)
$$f(x) = (x + a)^2 + b$$

(iii)
$$f(x) = (x-a)^2 - b$$

(iv)
$$f(x) = (x+a)^2 - b$$

(v)
$$f(x) = b - (x - a)^2$$

(vi)
$$f(x) = b - (x + a)^2$$

(vii)
$$f(x) = c - (x - a)^2$$

(viii)
$$f(x) = c - (x + a)^2$$

- 2. x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் $3x^2 + 6x + 20$ நேரானது எனக்காட்டுக.
- 3. $5 + 6x x^2$ இன் உயர்வுப் பெறுமானத்தைக் காண்க.
- **4.** $12x^2 + 24x + 13$ இன் இழிவுப்பெறுமானத்தைக் காண்க.
- 5. $y = 2x^2 3x + c$ என்ற வளையி
 - (i) *x* அச்சைத் தொடுவதற்குரிய
 - (ii) x அச்சை வெட்டுவதற்குரிய c இன் பெறுமானங்களைக் காண்க.
- 6. வளையி $y = a x^2 + (a x + b) + b$ x அச்சைத் தொடுவதற்கு a, b இற்கிடையேயான தொடர்பைக் காண்க.
- 7. எல்லா மெய் x இற்கும் $2x^2 + 4x 22 + m(x+5) > 0$ ஆக இருப்பதற்கான m இன் பெறுமான வீச்சைக் காண்க.
- 8. a, x இன் மெய்ப் பெறுமானங்களுக்கு $\left(a^2+1\right)x^2-2a^2x+\left(a^2-1\right)$, எனும் சார்பின் பெறுமானம் ஒருபோதும் -1 இலும் குறையாதென நிறுவுக.

- 9. $y = (a b c) x^2 + a x + b + c$ என்பதால் தரப்படும் வளையி x அச்சை. இரு வேறு புள்ளிகளில் வெட்டும் அல்லது x அச்சைத் தொடும் என நிறுவுக. வளையி x அச்சைத் தொடுவதற்கு a, b, c இற்கிடையேயான தொடர்பு ஒன்றினைக் காண்க.
- 10. $k(x+2)^2 (x-1)(x-2)$, $(k \ne 1)$ என்னும் இருபடிச்சார்பு x இன் ஒரு பெறுமானத்திற்கு மட்டும் பூச்சியமாகுமாறு k இன் பெறுமானத்தைக் காண்க.
 - (a) சார்பு இழிவுப்பெறுமானத்தைக் கொண்டிருப்பதற்கான k இன் பெறுமான வீச்சைக் காண்க.
 - (b) சார்பின் பெறுமானம் $\frac{25}{2}$ இலும் அதிகரிக்காமலிருக்கும் k இன் பெறுமான வீச்சைக் காண்க.
 - (c) $k = \frac{1}{2}$, $k = \frac{5}{2}$ ஆகிய வகைகளில் வளையியைப் பருமட்டாக வரைக.
- 11. $ax^2 + bx + c \equiv a(x+p)^2 + q$ $(a \neq 0)$ எனின், q ஐ, a, b, c இன் உறுப்புக்களில் காண்க.

 $b^2 < 4ac$ எனின், தரப்பட்ட கோவை $ax^2 + bx + c$ ஆனது x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் a இன் குறியையே கொண்டிருக்குமென உய்த்தறிக.

 $g(x) = (k-6) + (k-3)x - x^2$ எனின், g(x) எப்போதும் மறையாக இருக்குமாறு k இன் பெறுமானவீச்சைக் காண்க.

12. $f(x) \equiv 3x^2 - 5x - k$, x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் 1 இலும் பெரிதாக இருப்பதற்கான k இன் பெறுமானங்களைக் காண்க.

k இன் எல்லாப் பெறுமானங்களுக்கும் $x=rac{5}{6}$ ஆகும்போது f(x) இற்கு இழிவுப் பெறுமானம் உண்டெனக் காட்டுக.

இழிவுப் பெறுமானம் பூச்சியமெனின் k ஐக் காண்க.

- $a>0, \quad b^2<4\,a\,c$ எனின் x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் $a\,x^2\,+b\,x\,+c>0$ என நிறுவுக.
 - x இன் மெய்ப்பெறுமானங்களுக்கு $x^2 + kx + 3 + k$ நேராக இருக்கும் k இன் பெறுமானங்களைக் காண்க.
 - x இன் மெய்ப்பெறுமானங்களுக்கு $k\left(x^2+k\,x+3+k\right)$ நேராக இருக்கும் k இன் பெறுமானங்களை உய்த்தறிக.
- **14.** (a) $f(x) = nx^2 mx + (m-n)$ என்ற சார்பின் வளையியானது
 - (i) m=2 n எனின், x அச்சைத் தொடும் எனக்காட்டுக. x அச்சை $(\alpha,0)$ எனும் புள்ளியில் தொடுமெனின் α இன் பெறுமானத்தைக் காண்க.
 - (ii) m ≠ 2n எனின், வளையி x அச்சை இரு வேறுபுள்ளிகளில் வெட்டுமெனக்காட்டுக.
 - (b) $y = ax^2 + 2bx + c + k(x^2 + 1)$ இனால் தரப்படும் வளையியைக் கருதுக. a = c ஆகவும், b = 0 ஆகவும் இருந்தாலன்றி k இன் இரு வேறு பெறுமானங்களுக்கு வளையி x அச்சைத் தொடும் என நிறுவுக.

 $y=ax^2+2b\,x+c$ என்னும் வளையி x அச்சைத் தொடும் எனின், மேலே தரப்பட்ட வளையி x அச்சைத் தொடுவதற்கான \overline{k} இன் பெறுமானங்களைக் காண்க.

15. x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் சார்பு $\frac{x+2}{x^2+3x+6}$, $-\frac{1}{5}$

இலும் குறைவாகவோ அல்லது $\frac{1}{3}$ இலும் கூடுதலாகவோ இருக்க முடியாது எனக்காட்டுக.

x இன் எப்பெறுமானங்களுக்கு, (ஏதும் இருப்பின்) சார்பு இப்பெறுமானங்களை எடுக்கும் எனக்காண்க.

- **16.** $p,\ q$ என்பன மெய்யாகவும், q>4 ஆகவும் இருப்பின், $\dfrac{x^2+px+p}{x^2+qx+q}$ எனும் சார்பு $\dfrac{p}{q}$ இற்கும் $\dfrac{p-4}{q-4}$ இற்குமிடையில் இருக்காது எனக்காட்டுக.
- 17. α , β இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் $\dfrac{x^2-\alpha\beta}{2x-\alpha-\beta}$ என்னும் சார்பின் பெறுமானம் α இற்கும் β இற்கும் இடையே இருக்காது எனக்காட்டுக. $(\alpha \neq \beta)$
- 18. x மெய்யாக இருக்க, சார்பு $\dfrac{x^2-1}{(x-2)(x+k)}$ எல்லா மெய்ப்பெறுமானங் களையும் எடுக்கக் கூடியதாக k இன் பெறுமான வீச்சுக்களைக் காண்க.
- 19. x மெய்யாகவும், $y=\frac{x^2+2x+\lambda}{2x-3}$ எனவும் தரப்பட்டிருக்க, y எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கக்கூடிய λ இன் அதிஉயர் பெறுமானத்தைக் காண்க.
- 20. x மெய்யாக இருக்க $\dfrac{k\,x^2-6\,x+4}{4\,x^2-6\,x+k}$ என்பது, எந்த ஒரு மெய்ப் பெறுமானத்தையும் எடுக்கக்கூடிய k இன் பெறுமான வீச்சைக் காண்க.
- **21.** x மெய்யாக இருகக் $\dfrac{x^2+p}{x-1}$ எந்த ஒரு மெய்ப் பெறுமானத்தையும் எடுக்கக்கூடிய p இன் இயல்தகு பெறுமானங்களைக் காண்க. p=3 ஆகும் போது $\dfrac{x^2+p}{x-1}$ எடுக்கக்கூடிய பெறுமானங்களின் வீச்சுயாது?

- 22. x மெய்யாகவும் $y = \frac{x+\lambda}{(x+2)(x+3)}$ ஆகவும் இருக்க,
 - (i) $\lambda = 1$ ஆக, y ஆனது $3 2\sqrt{2}$ இற்கும் $3 + 2\sqrt{2}$ இற்குமிடையிலுள்ள எப்பெறுமானத்தையும் எடுக்காது எனக்காட்டுக.
 - (ii) $\lambda=1$ ஆக y நேராக இருக்கும் x இன் பெறுமானங்களைக் காண்க.
 - (iii) y எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கக்கூடியதான λ இன் பெறுமானங்களைக் காண்க.
- 23. மாறிலி a இன் பெறுமானம், இருபடிச்சார்பு $f(x) = x^2 + 4x + a + 3$ ஒருபோதும் மறையாகாதவாறு உள்ளது.

 $a f(x) = (x^2 + 2)(a - 1)$ எனும் சமன்பாட்டின் மூலங்களின் தன்மையைத் தீர்மானிக்க.

சமன்பாடு சமமான மூலங்களைக் கொண்டிருப்பதற்கான a இன் பெறுமானம் யாது?

- 24. $\frac{ax^2+1}{x^2+x+a}=2$ எனின், a இன் பெறுமானத்தின் எல்லைகளைக் காண்க.
- 25. 3x² 6xy + 10y 3 = 0 என்னும் x இலான சமன்பாடு மெய்மூலங்களைக் கொண்டிருப்பதற்கான நிபந்தனையைக் காண்க. இந்நிபந்தனை திருப்தி செய்யப்படின் மூலங்கள் சமமாக இருப்பதற்கான நிபந்தனை யாது?
- 26. (i) a, b, c என்பன மெய் ஒருமைகளாகவும், $a \neq 0$ ஆகவும் இருக்க $lpha, \ eta$ என்பன $a \, x^2 + b \, x + c = 0$ என்னும் இருபடிச்சமன்பாட்டின் மூலங்களாகும்.

 λ என்பது யாதுமொரு ஒருமையாக இருக்க $\alpha + \lambda, \ \beta + \gamma$ என்பவற்றை மூலங்களாக உடைய இருபடிச் சமன்பாட்டைக் காண்க.

இதிலிருந்து $\alpha + \frac{b}{2a}$, $\beta + \frac{b}{2a}$ என்னும் இரு எண்கள்

ஒன்றுக்கொன்று எதிர்க்குறிகளை உடையன எனவும் அவை இரண்டும் மெய்யாகவோ அல்லது முற்றாகக் கற்பனையாகவோ உள்ளன எனவும் காட்டுக.

(ii) m=3 அல்லது m-1 என இருந்தால் - அவ்வாறிருந்தால் m=3 அல்லது m-1 என இருந்தால் - அவ்வாறிருந்தால் மாத்திரமே m=3 4 m=3 6 வருந்தும் மூலங்களைக் கொண்டிருக்கும் எனக்காட்டுக.

 $y=x^2+x+1$ எனும் சார்பின் பரும்படியான வரைபை வரைக. $y=3x,\ y=-x$ ஆகிய நேர்கோடுகள் இரண்டினதும் வரைபுகளை அதேபடத்தில் தெளிவாகக் குறித்துக் காட்டுக.

m>3 அல்லது m<-1 ஆக இருந்தால் - அவ்வாறிருந்தால் மாத்திரமே $x^2+x+1=mx$ என்னும் இருபடிச்சமன்பாடானது இரு மெய்மூலங்களைக் கொண்டிருக்குமென்பதை இவ்வரைபுகளிலிருந்து உய்த்தறிக.

- 27. (i) $f(x) \equiv ax^2 + 2bx + c$, g(x) = 2(ax + b) என்க; இங்கு a, b, c என்பன மெய் ஒருமைகள். பின்வரும் இருபடிக்கோவையின் பிரித்துக் காட்டியை எழுதுக. $F(x) \equiv f(x) + \lambda \ g(x)$; இங்கு λ மெய் ஒருமை ஆகும்.
 - f(x)=0 இன் மூலங்கள் மெய்யாகவும் வேறுவேறாகவும் இருப்பின் F(x)=0 இன் மூலங்களும் மெய்யாகவும் வேறு வேறாகவும் இருக்கும் என உய்த்தறிக.
 - (ii) $y=x^2-x-2$, $y=2\,x-1$, $y=-2\,x+1$ ஆகிய சமன்பாடுகளுக்குரிய வளையியையும், நேர்கோடுகளையும் ஒரே வரிப்படத்தில் பரும்படியாக வரைக.

$$x^2 - x - 2 + (2x - 1) = 0$$

 $x^2-x-2-(2x-1)=0$ ஆகிய சமன்பாடுகள் ஒவ்வொன்றினதும் ஒருமூலம் தான் $x^2-x-2=0$ என்னும் சமன்பாட்டின் மூலங்களுக்கிடையில் அமையும் என உய்த்தறிக.

- p < -1 எனின், பொருத்தமான x இன் மெய்ப்பெறுமானங்களுக்கு $\frac{x+1}{\left(x-p\right)\left(x-1\right)}$ யாதுமொரு தரப்பட்ட பெறுமானத்தை எடுக்கும் எனக்காட்டுக.
- **29.** a<-2 அல்லது a>1 ஆயின், பொருத்தமான x இன் பெறுமானங்களுக்கு $\frac{ax+1}{\left(x-1\right)\left(2x+1\right)}$ என்பது யாதுமொரு மெய்ப்பெறுமானத்தை எடுக்கும் எனக்காட்டுக.
- **30. (a)** x=2 என்பது $\lambda^2 x^2 + 2(2\lambda 5)x + 8 = 0$ எனும் சமன்பாட்டின் ஒரு மூலம் எனின் λ இன் பெறுமானங்களையும் அவற்றிற் கொத்த மற்றைய மூலங்களையும் காண்க.
- 31. a>0 ஆகவும், $b^2-4ac<0$ ஆகவும் இருப்பின் x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் ax^2+bx+c நேரானது எனக்காட்டுக.
 - (i) x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் $2x^2 + 6x + 1 + k\left(x^2 + 2\right)$ நேராகுமாறு k இன் பெறுமானங்களின் வீச்சைக் காண்க.
 - (ii) $f(x) = 4x^2 + 4px (3p^2 + 4p 3)$ என்பது x இன் எல்லாப் பெறுமானங்களுக்கும் நேராக இருக்குமாறு p இன் பெறுமானங்களின் வீச்சைக் காண்க.

 $p=0,\;p=1$ ஆக இருக்கையில் வளையிகளை வரைந்து முடிவினை விளக்குக.

32. a, b, c ஆகியன மெய்யாக இருக்க $f(x) \equiv ax^2 + bx + c$ என்னும் கோவையை $f(x) \equiv a(x-\alpha)(x-\beta)$ என்னும் வடிவில் எப்போதும் எழுதலாம் எனக்காட்டுக. இங்கு α , β ஆகிய இரண்டும் (i) மெய்யாக அல்லது சிக்கலாக இருக்கும்.

а யை ஒரு நேர் மாறிலியாகக் கொண்டு மேலே குறிப்பிட்ட இரு சந்தர்ப்பங்களை எடுத்துக் காட்டுவதற்கு வரைபுகள் வரைக. а ஒரு மறைமாறிலியாக இருக்கும்போது இவ்வரைபுகளில் ஏற்படும் மாற்றம் யாது?

x=p ஆக இருக்கும்போது $f\left(x\right)>0$ ஆகவும், $x=q\left(q>p\right)$ ஆக இருக்கும் போது $f\left(x\right)<0$ ஆகவும் இருப்பின், $f\left(x\right)=0$ என்னும் சமன்பாடானது இரு மெய்யான வேறு வேறான மூலங்களைக் கொண்டிருக்குமெனவும், அவற்றுள் ஒன்று மாத்திரமே p யிற்கும் q விற்கும் இடையில் இருக்கும் என்பதையும் மேலே எடுத்து நோக்கிய வரைபுகளைக் கொண்டு அல்லது வேறுவிதமாகக் காட்டுக.

 $x^2+b_1x+c_1=0;$ $x^2+b_2x+c_2=0$ என்னும் சமன்பாடுகளின் மூலங்கள் முறையே $\alpha_1,\ \beta_1$ உம் $\alpha_2,\ \beta_2$ உம் ஆகும்.

 $lpha_1 < lpha_2 < eta_1 < eta_2$ ஆயின் $f\left(x\right) \equiv 2x^2 + \left(b_1 + b_2\right)x + c_1 + c_2 = 0$ என்னும் சமன்பாடானது இரு மெய்யான வேறுவேறான மூலங்களைக் கொண்டிருக்கும் எனக்காட்டுக.

33. (i) a, b, c என்பன மெய்யெண்களாகவும், $a \neq 0$ ஆகவும் இருக்க $f\left(x\right) \equiv ax^2 + bx + c \quad \text{ஆனது ஒன்றில்} \quad a\left[\left(x - p\right)^2 + q^2\right]$ ஆகவோ, அன்றி $a\left[\left(x - p\right)^2 - r^2\right]$ ஆகவோ எடுத்துரைக்கப் படலாம் எனக் காட்டுவதோடு, இவ்விரு சந்தர்ப்பங்களையும் வேறுபடுத்திக் காட்டுக.

இங்கு $p,\,q,\,r$ என்பன மெய்யெண்களாகும். $b^2-4\,a\,c=0$ ஆகும்போது யாது நிகமும்?

- (ii) $f_1(x) \equiv -x^2 + 2x + 3$ என்பதை மேற்கூறப்பட்ட வடிவங்களுள் ஒன்றில் எடுத்துரைத்து, இதிலிருந்து $y = f_1(x)$ என்னும் சார்பின் வரைபைப் பரும்படியாக வரைக.
 - f(x) இன் மிகப்பெரிய பெறுமானத்தை இப்படத்திலே தெளிவாகக் காட்டுக.
- (c) (i) d > 5 இற்கும் (ii) d < 5 இற்கும் $y = f_2(x) \equiv x^2 2x + d$ என்பதன் வரைபுகளை மேலுள்ள அதே படத்தில் பரும்படியாக வரைக.

 $f_1(x) = f_2(x)$ என்னும் இருபடிச் சமன்பாடானது d > 5 ஆயிருக்கையில் மெய் மூலங்கள் எதையும் கொண்டிருக்கவில்லை எனவும் d < 5 ஆயிருக்கையில் இரு மெய்யான வேறு வேறான மூலங்களைக் கொண்டிருக்கும் எனவும் உய்த்தறிக. d = 5 ஆயிருக்கையில் யாது நிகழும்?

34. a, b, c என்பன மாறிலிகளாகவும் a < 0 ஆகவும் இருப்பின் x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் $a x^2 + b x + c$ ஆனது மறைக் குறியை உடையதாயிருப்பதற்கான நிபந்தனை ஒன்றைப் பெறுக.

$$f(x) \equiv px^2 - 2x + 3p + 2 \quad \text{ensolution},$$

- (i) f(x) = 0 என்னும் சமன்பாடானது பொருந்தும் மெய்மூலங்களைக் கொண்டிருப்பதற்கான p இன் இரு பெறுமானங்களையும் காண்க.
- (ii) x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் f(x) < 0 ஆயிருப்பதற்கான p யின் பெறுமான வீச்சுக்களைக் காண்க. $p = -2, \quad p = 1$ ஆகிய வகைகளில் y = f(x)இன்வரைபைப் பருமட்டாக வரைக.

5. சமனிலிகள் (Inequalities)

a,b என்பன இரு மெய்யெண்கள் என்க. a>b அல்லது a=b அல்லது a < b ஆக இருக்கும். a > b எனின், a = b + x என எழுதலாம். இங்கு x > 0. எனவே a - b > 0. a-b=x. a = b எனின் a - b = 0 ஆகும். a < b எனின் a = b - x, இங்கு x > 0. a - b = -x < 0 ஆகும்.

வரைவிலக்கணம் (Definition)

- $a-b \ge 0$ எனின் $a \ge b$ எனப்படும். i.
- a-b < 0 எனின் a < b எனப்படும். $a, b \in R$

எடுப்புக்கள் (Propositions)

$$a > b$$
 எனின் $a+c > b+c$ $a-c > b-c$

- **2.** a > b : m > 0 எனின், ma > mbn < 0 எனின், na < nb
- 3. a > b, c > d எனின்.
- **4.** a > b > 0; c > d > 0 எனின் ac > bd

- $1. \ a < b$ எனின் a + c < b + c $a-c \le b-c$
- 2. a < b, m > 0 எணின் ma < mbn < 0 எனின் na > nb
- 3. a < b, c < d எனின் a+c < b+d
- **4.** 0 < a < b, 0 < c < d significant ac < bd.

நிறுவல்:

1. a > b என்க. ഒങ്ങവേ a-b>0(a + c) - (b + c) = a - b > 0

$$(a + c) - (b + c) = a - b > 0$$

அதாவது (a + c) - (b + c) > 0കുകவേ, a + c > b + c

$$(a-c)-(b-c)=a-b>0$$

அதாவது
$$(a-c)-(b-c)>0$$

ஆகவே $a-c>b-c$.

$$a > b$$
; $m > 0$ என்க $a > b$ ஆதலால் $(a - b) > 0$; $m > 0$ ஆகவே, $m(a - b) > 0$ $ma - mb > 0$ $ma > mb$. $a > b$; $n < 0$ என்க.

ศสเลน
$$(a-b) > 0$$
, $n < 0$
 $n(a-b) < 0$
 $n = n + 0$ ค ศสเลน $n = 0$

$$a > b$$
 ; $c > d$ என்க. $a > b$; ஆகவே $(a - b) > 0$ $c > d$ ஆகவே $(c - d) > 0$. $(a - b) + (c - d) > 0$ $(a + c) - (b + d) > 0$ ஆகவே $a + c > b + d$.

4.
$$a > b > 0$$
; $c > d > 0$
 $a > b$; $c > 0$. $c(a - b) > 0$
 $ac - ab > 0$; $ac > bc$ (1)
 $c > d$, $b > 0$; $b(c - d) > 0$
 $bc - bd > 0$; $bc > bd$ (2)

உதாரணம் 1 தீர்க்க

(a)
$$2(1-2x)+x<3(1+x)-7$$
 (b) $\frac{3}{4}x-3>\frac{1}{2}+x$ $2(1-2x)+x<3(1+x)-7$ இருபக்கமும் 4 ஆல் பெருக்க $2-4x+x<3+3x-7$ $3x-12>2+4x$ $3x-4x>2+12$ $-6x<-6$ $-x>14$ $x<-1$

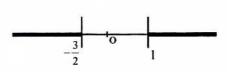
(c)
$$x - 1 < 3x + 1 \le x + 5$$

 $x - 1 < 3x + 1$ $3x + 1 \le x + 5$
 $x - 3x < 1 + 1$ $3x - x \le 5 - 1$
 $-2x < 2$ $2x \le 4$
 $x > -1$ $x \le 2$

$$-1 < x \le 2$$

பின்வரும் சமனிலிகள் திருப்திப்படுத்தும் x இன் பெறுமானங்களைக் காண்க.

(a)
$$(2x+3)(x-1) \ge 0$$


(b)
$$x^2 - 5x \le 6$$

(c)
$$x(2x+1)(x-3) \ge 0$$

(d)
$$(x-1)(x-2) < (x-2)(x-3) \le 20$$

(a)
$$(2x + 3) (x - 1) \ge 0$$

 $E = (2x + 3) (x - 1)$ sisits.

$$E = 0$$
 61601601, $x = -\frac{3}{2}, 1$

$$x < -\frac{3}{2}$$
 எனின் $E > 0$

$$x = -\frac{3}{2}$$
 எனின் $E = 0$

$$-\frac{3}{2} < x < 1$$
 எனின் $E < 0$

$$x \le -\frac{3}{2}$$
 அல்லது $x \ge 1$

$$x=1$$
 எனின் $E=0$

$$x > 1$$
 எனின் $E > 0$

(b)
$$x^2 - 5x \le 6$$

 $x^2 - 5x - 6 \le 0$

$$(x-6) (x+1) \le 0$$

 $E = (x-6) (x+1)$
 $E = 0$ substitute $x = -1, 6$

$$x<$$
 - எனின் $E>0$ $x=$ -1 எனின் $E=0$ $-1< x<6$ எனின் $E<0$ $x=6$ எனின் $E=0$ $-1\le x\le 6$ $x>6$ எனின் $E>0$

(c)
$$x (2x + 1) (x - 3) \ge 0$$

 $E = x (2x + 1) (x - 3)$ steints.

$$E=0$$
 எனின் $x=-rac{1}{2},\ 0\ ,\ 3$ $x<-rac{1}{2}$ எனின் $E<0$

$$x = \frac{1}{2}$$
 எனின் $E = 0$

$$-\frac{1}{2} < x < 0$$
 எனின் $E > 0$

$$x = 0$$
 எனின் $E = 0$

$$0 < x < 3$$
 எனின் $E < 0$ எனவே தீர்வு $-\frac{1}{2} \le x \le 0$; $x \ge 3$

$$x = 3$$
 எனின் $E = 0$

$$x > 3$$
 எனின் $E > 0$

(d)
$$(x-1)(x-2) < (x-2)(x-3) \le 20$$

 $(x-1)(x-2) < (x-2)(x-3)$
 $(x-1)(x-2) - (x-2)(x-3) < 0$
 $(x-2)[(x-1) - (x-3)] < 0$

$$2(x-2) < 0$$

$$x < 2$$

$$(x-2)(x-3) \le 20$$

$$x^2 - 5x - 14 < 0$$

$$(x-7)(x+2) \le 0$$

$$-2 \le x \le 7$$
(2)

$$(1)$$
, (2) இலிருந்து, $-2 \le x < 2$

பின்வரும் சமனிலிகள் திருப்திப்படுத்தும் x இன் பெறுமானங்களைக் காண்க.

i.
$$\frac{2x-5}{x} < 0$$
 ii. $\frac{3-4x}{2-x} \le 2$ iii. $\frac{x-1}{x-2} \ge \frac{x-2}{x-3}$

iv.
$$\frac{x^2+8}{x} > 9$$
 v. $-3 \le \frac{(x-1)(x-5)}{(x-3)} \le 3$

$$(i) \ \frac{2x-5}{x} < 0$$

எனவே
$$x(2x-5) < 0$$
. $\left[\frac{2x-5}{x} \times x^2 < 0; x^2 > 0\right]$

$$0 < x < \frac{5}{2}$$

$$(ii) \quad \frac{3-4x}{2-x} \le 2$$

$$\frac{3-4x}{2-x} \le 2, \ \frac{3-4x}{2-x} - 2 \le 0 \cdot (x \ne 2)$$

$$\frac{3 - 4x - 2(2 - x)}{2 - x} \le 0$$

$$\frac{-\left(1+2x\right)}{2-x} \le 0$$

$$\frac{1+2x}{(x-2)} \le 0$$

இருபக்கமும்
$$\left(x-2\right)^2$$
 ஆல் பெருக்க, $\left(1+2x\right)\left(x-2\right)\leq0$ $-\frac{1}{2}\leq x<2$ $\left(x\neq2\right)$

(iii)
$$\frac{x-1}{x-2} \ge \frac{x-2}{x-3}$$

 $\frac{x-1}{x-2} - \frac{x-2}{x-3} \ge 0 \qquad (x \ne 2, 3)$
 $\frac{(x-1)(x-3) - (x-2)^2}{(x-2)(x-3)} \ge 0$
 $\frac{-1}{(x-2)(x-3)} \ge 0$
 $(x-2)(x-3) \le 0$
 $2 < x < 3 \qquad (x \ne 2, 3)$

(iv)
$$\frac{x^2 + 8}{x} > 9$$

 $\frac{x^2 + 8}{x} > 9$; $\frac{x^2 + 8}{x} - 9 > 0$
 $\frac{x^2 - 9x + 8}{x} > 0$

$$\frac{(x-1)(x-8)}{x} > 0$$

$$\frac{x(x-1)(x-8)}{x^2} > 0 \quad (x \neq 0)$$

$$x(x-1)(x-8) > 0 \quad \therefore 0 < x < 1; x > 8$$

$$\frac{(x-1)(x-5)}{(x-3)} \le 3$$

$$\frac{(x-1)(x-5)}{(x-3)} - 3 \le 0$$

$$\frac{(x-1)(x-5) - 3(x-3)}{(x-3)} \le 0$$

$$\frac{x^2 - 9x + 14}{(x-3)} \le 0$$

$$\frac{(x-2)(x-7)}{(x-3)} \le 0$$

$$(x-2)(x-7)(x-3) \le 0$$

$$x \le 2; \quad 3 < x \le 7$$
(B)

(A) , (B) இரண்டையும் திருப்திப்படுத்தும் x இன் பெறுமானங்கள். $-1 \le x \le 2$; $4 \le x \le 7$

உதாரணம் 4

 $a,\ b,\ c$ என்பன மெய்யெண்கள் எனின்,

i.
$$a^2 + b^2 \ge 2ab$$

ii.
$$a^2 + b^2 + c^2 \ge ab + bc + ca$$

iii.
$$(a^2 + b^2)(a^4 + b^4) \ge (a^3 + b^3)^2$$
 என நிறுவுக.

i.
$$(a-b)^2 \ge 0$$

 $a^2 - 2ab + b^2 \ge 0$
 $a^2 + b^2 \ge 2ab$

அல்லது

$$a^{2} + b^{2} + c^{2} - ab - bc - ca$$

$$= \frac{1}{2} \left[(a - b)^{2} + (b - c)^{2} + (c - a)^{2} \right] \ge 0$$

$$\therefore a^{2} + b^{2} + c^{2} \ge ab + bc + ca$$

iii.
$$(a^2 + b^2) (a^4 + b^4) - (a^3 + b^3)^2$$

$$= a^6 + a^2 b^4 + a^4 b^2 + b^6 - a^6 - 2a^3 b^3 - b^6$$

$$= a^2 b^4 + a^4 b^2 - 2a^3 b^3$$

$$= a^2 b^2 (b^2 - 2ab + a^2)$$

$$= a^2 b^2 (a - b)^2 \ge 0$$

$$\therefore (a^2 + b^2) (a^4 + b^4) \ge (a^3 + b^3)^2$$

a, b, c, d என்பன நேரெண்களாயிருக்க,

i.
$$\frac{a+b}{2} \geq \sqrt{ab}$$
 எனக் காட்டுக.

ii.
$$\frac{a+b+c+d}{4} \ge (abcd)^{\frac{1}{4}}$$
 எனக் காட்டுக.

$$d = \frac{a+b+c}{3}$$
 எனப்பிரதியிட்டு

$$\frac{a+b+c}{3}$$
 $\ge (abc)^{\frac{1}{3}}$ என உய்த்தறிக.

(i)
$$a,\,b,\,c,\,d \geq 0$$

எனவே \sqrt{a} , \sqrt{b} என்பன மெய்யானவை

$$\left(\sqrt{a} - \sqrt{b}\right)^2 \ge 0$$

இரு எண்களின் (நேர்) கூட்டல் இடை \geq பெருக்கல் இடை.

ii.
$$\frac{x+y}{2} \ge \sqrt{xy} \qquad (x, y, >0)$$

$$x=\frac{a+b}{2}$$
, $y=\frac{c+d}{2}$ signs

$$\frac{a+b}{2} + \frac{c+d}{2} \ge \sqrt{\left(\frac{a+b}{2}\right)\left(\frac{c+d}{2}\right)}$$

$$\frac{a+b+c+d}{4} \geq \sqrt{\left(\frac{a+b}{2}\right)\left(\frac{c+d}{2}\right)} \geq \sqrt{\sqrt{ab}\cdot\sqrt{cd}}$$

$$\therefore \frac{a+b+c+d}{4} \ge (abcd)^{\frac{1}{4}} \qquad (2)$$

நான்கு எண்களின் கூட்டல் இடை > பெருக்கல் இடை

(2) இல்
$$d = \frac{1}{3} \left(a + b + c \right)$$
 எனப்பிரதியிட,
$$\frac{a + b + c + \frac{a + b + c}{3}}{4} \ge \left(abc \right)^{\frac{1}{4}} \left(\frac{a + b + c}{3} \right)^{\frac{1}{4}}$$

$$\frac{a + b + c}{3} \ge \left(abc \right)^{\frac{1}{4}} \left(\frac{a + b + c}{3} \right)^{\frac{1}{4}}$$

$$\frac{a + b + c}{3} \ge \left(abc \right)^{\frac{1}{4}} \left(\frac{a + b + c}{3} \right)^{\frac{1}{4}}$$

$$\frac{a + b + c}{3} \ge \left(abc \right)^{\frac{1}{4}} \left(\frac{a + b + c}{3} \right)^{\frac{1}{4}}$$

$$\frac{a + b + c}{3} \ge \left(abc \right)^{\frac{1}{3}}$$

மூன்று எண்களின் கூட்டல் இடை > பெருக்கல் இடை.

உதாரணம் 6

இரு மாறும் மெய்யெண்களின் கூட்டுத்தொகை ஒரு மாறிலி எனின், அவை சமனாயிருக்கும் போதே, அவற்றின் பெருக்கம் உயர்வாக இருக்கும் எனக் காட்டுக. இதிலிருந்தோ அல்லது வேறுவிதமாகவோ

$$\left(11 - \frac{2}{x} + \frac{1}{2x^2}\right) \left(7 + \frac{2}{x} - \frac{1}{2x^2}\right)$$
 இன் மிகக்கூடிய பெறுமானத்தைக்

காண்க. எண்கள் x, y என்க. x + y = k மாறிலி

$$xy = x(k - x)$$

$$= -x^{2} + kx$$

$$= -\left[\left(x - \frac{k}{2}\right)^{2} - \left(\frac{k}{2}\right)^{2}\right]$$

$$= -\left(x - \frac{k}{2}\right)^{2} + \left(\frac{k}{2}\right)^{2}$$

$$x = \frac{k}{2}$$
 ஆக, xy இன் உயர்வு பெறப்படும்.

$$xy$$
 இன் உயர்வு = $\left(\frac{k}{2}\right)^2$

$$x=rac{k}{2}$$
 எனின், $y=rac{k}{2}$ $\therefore x=y$ ஆகும் போது உயர்வு பெறப்படும்.

$$a = 11 - \frac{2}{x} + \frac{1}{2x^2}$$
 $b = 7 + \frac{2}{x} - \frac{1}{2x^2}$
 $a + b = 18$

$$ab$$
 இன் உயர்வுப் பெறுமானம் $\left(\frac{18}{2}\right)^2=81$

u, v, w என்பன நேராகவும், u+v+w=1 ஆகவும் இருப்பின்,

$$8 \ uvw \le (1-u) (1-v) (1-w) \le \frac{8}{27}$$
 என நிறுவுக.

$$1-u = v + w > 0$$
 $1-v = w + u > 0$

$$1 - w = u + v > 0$$

$$(1 - u) (1 - v) (1 - w) = (v + w) (w + u) (u + v)$$

$$\geq 2\sqrt{v w} \cdot 2\sqrt{w u} \cdot 2\sqrt{u v}$$

$$= 8 uvw$$

எனவே 8
$$uvw \le (1-u)(1-v)(1-w)$$
 ______(1)

$$1-u,\ 1-v,\ 1-w$$
 ஒவ்வென்றும் நேரானவை $\left[\frac{a+b+c}{3}\geq \left(abc\right)^{\frac{1}{3}}\right]$

$$(1-u)(1-v)(1-w) \leq \left[\frac{(1-u)+(1-v)+(1-w)}{3}\right]^3$$

$$(1-u) (1-v) (1-w) \leq \left[\frac{3-(u+v+w)}{3}\right]^3$$

$$(1-u)(1-v)(1-w) \le \left(\frac{2}{3}\right)^3$$
 (1)

(1), (2) இலிருந்து,

$$8 \ u \vee w \le (1-u) (1-v) (1-w) \le \frac{8}{27}$$

உதாரணம் 8

a , b என்பன நேரெண்களாகவும் a+b=4 ஆகவும் இருப்பின் $a^2+b^2+rac{1}{a^2}+rac{1}{b^2}\geqrac{17}{2}$ எனக் காட்டுக.

ii. a, b என்பன நேரெண்களாயின்,

$$a + \frac{b}{2a} > \sqrt{a^2 + b}$$
 எனக்காட்டுக.

(i)
$$a, b > 0$$
. $\frac{a+b}{2} \ge \sqrt{ab} > 0$
 $a+b=4$. $0 \le \sqrt{ab} \le 2$

$$0 \le ab \le 4$$

$$a^{2} + b^{2} = (a + b)^{2} - 2ab = 16 - 2ab$$

= $16 + (-2ab)[-ab \ge -4]$
 ≥ 8

$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{a^2 + b^2}{a^2 b^2} \ge \frac{8}{16} = \frac{1}{2} \begin{bmatrix} a^2 + b^2 \ge 8 > 0 \\ \frac{1}{a^2 b^2} \ge 16 > 0 \end{bmatrix}$$

$$a^{2} + b^{2} + \frac{1}{a^{2}} + \frac{1}{b^{2}} \ge 8 + \frac{1}{2}$$

$$a^{2} + b^{2} + \frac{1}{a^{2}} + \frac{1}{b^{2}} \ge \frac{17}{2}$$

(ii)
$$a, b, > 0$$

$$a + \frac{b}{2a} > \sqrt{a^2 + b}$$

$$x = a + \frac{b}{2a} > 0$$

$$y = \sqrt{a^2 + b} > 0$$

$$x^2 - y^2 = \left(a + \frac{b}{2a}\right)^2 - \left(a^2 + b\right)$$

$$= a^2 + b + \frac{b^2}{4a^2} - a^2 - b$$

$$= \frac{b^2}{4a^2} > 0$$

$$x^2 - y^2 > 0$$

$$(x - y)(x + y) > 0$$

$$x > 0, y > 0 \text{ Geod Gal } x + y > 0$$

$$x > y$$

$$a + \frac{b}{2a} > \sqrt{a^2 + b} \text{ Algebio.}$$

a, b என்பன மெய்யெண்கள் **எனி**ன்.

$$\left(a^2+b\right)^2 + \left(b^2+a\right)^2 < \left(a^2+b^2+1\right)^2 \text{ storish destricus}.$$

$$\left(a^2+b^2+1\right)^2 - \left(a^2+b\right)^2 - \left(b^2+a\right)^2$$

$$= a^4+b^4+1+2a^2b^2+2a^2+2b^2-a^4-2a^2b-b^2-b^4-2b^2a-a^2$$

$$= a^2+b^2+1+2a^2b^2-2a^2b-2ab^2$$

$$= \left(ab-a-b\right)^2+a^2b^2-2ab+1$$

$$= \left(ab-a-b\right)^2+\left(ab-1\right)^2 \ge 0$$

$$\ge 0 \qquad \ge 0$$

$$\left(a^2+b^2+1\right)\left(a^2+b^2\right)-\left(b^2+a\right)^2 \ge 0$$

$$\left(a^2+b^2+1\right) \ge \left(a^2+b\right)^2+\left(b^2+a\right)^2$$

உதாரணம் 10

$$x,\ a,\ b>0$$
 ஆகவும், $a>b$ ஆகவும், $x^2>ab$ ஆகவும், இருப்பின்
$$\frac{x+a}{\sqrt{x^2+a^2}}-\frac{x+b}{x^2+b^2}>0$$
 எனக் காட்டுக.

x, a, b > 0 என்பதால்,

$$\frac{x+a}{\sqrt{x^2+a^2}} > 0 \frac{x+b}{\sqrt{x^2+b^2}} > 0$$
 ஆகும்.
$$\frac{(x+a)^2}{x^2+a^2} - \frac{(x+b)^2}{x^2+b^2}$$
 ஐக் கருதுக.

$$= \frac{(x+a)^2 (x^2+b^2) - (x+b)^2 (x^2+a^2)}{(x^2+a^2)(x^2+b^2)}$$

$$= \frac{(x^2+2ax+a^2)(x^2+b^2) - (x^2+2bx+b^2)(x^2+a^2)}{(x^2+a^2)(x^2+b^2)}$$

$$= \frac{2ax(x^2+b^2) - 2bx(x^2+a^2)}{(x^2+a^2)(x^2+b^2)}$$

$$= \frac{2x[a(x^2+b^2) - b(x^2+a^2)]}{(x^2+a^2)(x^2+b^2)}$$

$$= \frac{2x[(a-b)x^2 - ab(a-b)]}{(x^2+a^2)(x^2+b^2)}$$

$$= \frac{2x(a-b)(x^2-ab)}{(x^2+a^2)(x^2+b^2)} > 0 \begin{bmatrix} a>b, x^2>ab \\ x>0 \end{bmatrix}$$

$$= \frac{(x+a)^2}{x^2+a^2} > \frac{(x+b)^2}{x^2+b^2}$$

$$= \frac{x+a}{\sqrt{x^2+a^2}} - \frac{x+b}{\sqrt{x^2+b^2}} > 0$$

$$= \frac{x+a}{\sqrt{x^2+a^2}} - \frac{x+b}{\sqrt{x^2+b^2}} > 0$$
Section.

$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)[x^2 + y^2 + z^2 - xy - yz - zx]$$

இதிலிருந்து எவையேனும் மறையல்லா $x,\ y,z$ இற்கு

$$x^{3} + y^{3} + z^{3} \ge 3xyz$$
 என உய்த்தறிக.

நேரான p, q, r இற்கு

(i)
$$\frac{1}{3}(p+q+r) \ge \sqrt[3]{pqr}$$

(ii)
$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge \frac{9}{p+q+r}$$

(iii)
$$\frac{p}{q+r}+\frac{q}{r+p}+\frac{r}{p+q}\geq \frac{3}{2}$$
 என்பவற்றை உய்த்தறிக.

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z) \left[x^{2} + y^{2} + z^{2} - xy - yz - zx \right]$$

$$= (x + y + z) \left[\frac{1}{2} (x - y)^{2} + \frac{1}{2} (y - z)^{2} + \frac{1}{2} (z - x)^{2} \right]$$

$$= \frac{1}{2} (x + y + z) \left[(x - y)^{2} + (y - z)^{2} + (z - x)^{2} \right]$$

$$x$$
, y , $z \ge 0$ என்பதால் $x+y+z \ge 0$

மேலும்
$$(x-y)^2$$
, $(y-z)^2$, $(z-x)^2 \ge 0$

കൃത്യേ
$$x^3 + y^3 + z^3 - 3xyz \ge 0$$

$$x^3 + y^3 + z^3 \ge 3xyz$$
 ஆகும்.

$$x^3 + y^3 + z^3 \ge 3xyz$$
 என்பதில்,

(i)
$$x = p^{\frac{1}{3}}, \ y = q^{\frac{1}{3}}, \ z = r^{\frac{1}{3}}$$
 எனப் பிரதியிட, $p + q + r \ge 3\sqrt[3]{pqr}$ $\frac{1}{3}(p + q + r) \ge \sqrt[3]{pqr}$ (1)

(1) இல்
$$p,\,q,\,r$$
 இற்குப் பதிலாக $\dfrac{1}{p},\,\dfrac{1}{q},\,\dfrac{1}{r}$ எனப்பிரதியிட,

(ii)
$$\frac{1}{3} \left(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \right) \ge \sqrt[3]{\frac{1}{pqr}} \ge \frac{1}{\frac{1}{3} (p+q+r)}$$

$$[x, y > 0; (1)$$
 இலிருந்து $x > y$ எனின் $\frac{1}{y} > \frac{1}{x}$ ஆகும்]

$$\frac{1}{3} \left(\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \right) \ge \frac{3}{p+q+r}$$

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge \frac{9}{p+q+r}$$
 (2)

(iii) (2) இலிருந்து
$$p \to q+r$$
, $q \to r+p$, $r \to p+q$ எனப் பிரதியிட,

$$\frac{1}{q+r} + \frac{1}{r+p} + \frac{1}{p+q} \ge \frac{9}{2(p+q+r)}$$

$$p + q + r \ge 0 \text{ grivers}$$

$$p+q+r>0$$
 என்பதால்,

$$(p+q+r)\frac{1}{q+r}+\frac{1}{r+p}+\frac{1}{p+q} \ge (p+q+r)\cdot \frac{9}{2(p+q+r)}$$

$$\frac{p+q+r}{q+r} + \frac{p+q+r}{r+p} + \frac{p+q+r}{p+q} \ge \frac{9}{2}$$

$$\left(\frac{p}{q+r}+1\right)+\left(\frac{q}{r+p}+1\right)+\left(\frac{r}{p+q}+1\right)\geq\frac{9}{2}$$

$$\frac{p}{q+r} + \frac{q}{r+p} + \frac{r}{p+q} \ge \frac{9}{2} - 3$$

കൂട്ടവേ
$$\frac{p}{q+r} + \frac{q}{r+p} + \frac{r}{p+q} \ge \frac{3}{2}$$

எந்த ஒரு நேர் x இற்கும் $x+rac{1}{x}\geq 2$ எனக் காட்டுக.

 $a,\ b,\ c$ நேர் எண்களாக இருக்க, மேலே உள்ள முடிபைப் பயன்படுத்தி

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9$$
 எனக் காட்டுக.

a+b+c=1 எனின், (2-a), (2-b), (2-c) என்பவை நேரானவை எனக் காட்டுக.

$$\frac{a}{2-a}+\frac{b}{2-b}+\frac{c}{2-c}\geq \frac{3}{5}$$
 என்பதை உய்த்தறிக.

x>0 என்பதால் \sqrt{x} வரையறுக்கப்பட்டுள்ளது. \sqrt{x} – ஒரு மெய்யெண்.

$$\left(\sqrt{x-\frac{1}{\sqrt{x}}}\right)^{2} \ge 0$$

$$x-2+\frac{1}{x} \ge 0$$

$$x+\frac{1}{x} \ge 2$$

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$$

$$=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)$$

$$\ge 3+2+2+2$$

$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 9 \qquad (1)$$

$$a,b,c>0, a+b+c=1$$

$$2-a = 1 + (1-a) = 1 + b + c > 1 > 0$$

$$2-b = 1 + (1-b) = 1 + c + a > 1 > 0$$

$$2-c = 1 + (1-c) = 1 + a + b > 1 > 0$$

முடிபு (1) ஐப் பயன்படுத்த,

$$[(2-a)+(2-b)+(2-c)]\left[\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\right] \ge 9$$

$$5\left[\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\right] \ge 9$$

$$\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c} \ge \frac{9}{5}$$

$$\frac{2}{2-a}+\frac{2}{2-b}+\frac{2}{2-c} \ge \frac{18}{5}$$

$$\left(\frac{2}{2-a}-1\right)+\left(\frac{2}{2-b}-1\right)+\left(\frac{2}{2-c}-1\right) \ge \frac{18}{5}-3$$

$$\frac{a}{2-a}+\frac{b}{2-b}+\frac{c}{2-c} \ge \frac{3}{5}$$

உதாரணம் 13

A, B இன் எல்லாப் பெறுமானங்களுக்கும்,

$$\sin A \cdot \sin B \le \sin^2 \left(\frac{A+B}{2}\right)$$
 என நிறுவுக.

 $0 < A, B, C, D < \pi$ signless,

$$\sin A \cdot \sin B \cdot \sin C \cdot \sin D \leq \sin^4 \left(\frac{A + B + C + D}{4} \right)$$
 எனக் காட்டுக.

ஆகவே,
$$\sin A \sin B \leq \sin^2\left(\frac{\Delta + \Delta}{2}\right)$$
 — (1) $0 < A, B, C, D < \pi$ எனின், $\sin A, \sin B, \sin C, \sin D > 0$ ஆகும்.

$$(1)$$
 இலிருந்து, $0 \le \sin A \sin B \le \sin^2 \left(\frac{A+B}{2} \right)$ $0 \le \sin C \sin D \le \sin^2 \left(\frac{C+D}{2} \right)$

எனவே

$$0 \le \sin A \sin B \sin C \sin D \le \sin^2 \left(\frac{A+B}{2}\right) \sin^2 \left(\frac{C+D}{2}\right)$$
 (2)

இலிருந்து,

$$\sin\left(\frac{A+B}{2}\right) \cdot \sin\left(\frac{C+D}{2}\right) \le \sin^2\left(\frac{A+B+C+D}{4}\right)$$

$$0<rac{A+B}{2}<\pi$$
, $0\leqrac{C+D}{2}<\pi$ என்பதால், $\sinigg(rac{A+B}{2}igg)$, $\sinigg(rac{C+D}{2}igg)>0$ ஆகும். $0<\sinigg(rac{A+B}{2}igg)$, $\sinigg(rac{C+D}{2}igg)\leq\sin^2igg(rac{A+B+C+D}{4}igg)$

வர்க்கிக்க

$$0 < \sin^2\left(\frac{A+B}{2}\right) \sin^2\left(\frac{C+D}{2}\right) \le \sin^4\left(\frac{A+B+C+D}{4}\right)$$
 (3) இலிருந்து,

$$\sin A \sin B \sin C \sin D \le \sin^4 \left(\frac{A+B+C+D}{4} \right)$$

மட்டு (Modulus)

வரைவிலக்கணம் :

$$x$$
 ஒரு மெய்யெண்ணாயிருக்க, $\left| x \right| = x \; ; \; x \geq 0$ எனின், $= -x \; ; \; x < 0$ எனின்,

உதாரணம்:

$$|2| = 2$$

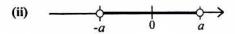
 $|-2| = -(-2) = 2$ ஆகும்.

(i)
$$a>0$$
 ஆயிருக்க $|x|=a$ எனின், $x=a$ அல்லது $-a$ ஆகும். $|x|=a \Leftrightarrow x=a$ அல்லது $x=-a$

-x < a என்பது x > -a என வரும். ஆகவே -a < x

(1),(2) இலிருந்து -a < x < a ஆகும்.

(iii) a>0 ஆயிருக்க, |x|>a என்பதன் கருத்து |x|>a x>0 எனின், |x|=x<a ஆகும். x<0 எனின், |x|=-x>a ஆகும். ஆகவே x<-a ஆகும்.


(1),(2) இலிருந்து |x|>a எனின், x<-a அல்லது x>a ஆகும்.

a > 0 ஆயிருக்க,

(i)
$$|x| = a \Leftrightarrow x = a$$
 அல்லது $x = -a$

(ii)
$$|x| < a \Leftrightarrow -a < x < a$$

(iii) $|x| > a \Leftrightarrow x < -a$ அல்லது x > a ஆகும்.

a < 0 எனின்,

- (i) |x|=a பொருந்தாது.
- (ii) |x| < a என்பது பொருந்தாது. |x| < a ஆகுமாறு x இற்குப் பெறுமானங்கள் இல்லை.
- (iii) |x|>a என்பது, x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் பொருந்தும்.

தீர்க்க.

(i)
$$|2x+1|=3$$

(ii)
$$|3 - 5x| = 2$$

(iii)
$$x^2 - 5|x| + 6 = 0$$

(iv)
$$x^2 + |x| - 6 = 0$$

(v)
$$x^2 + 5|x| + 6 = 0$$

(i)
$$|2x + 1| = 3$$

 $2x + 1 = 3$

அல்லது

$$2x + 1 = -3$$

$$2x = 2$$

$$2x = -4$$
$$x = -2$$

$$x = 1$$

தீர்வு x=-2 , 1 ஆகும்.

(ii)
$$|3-5x|=2$$

 $3-5x=2$

அல்லது

$$3-5x=-2$$

$$x=\frac{1}{5}$$

1 = 5x

$$-5x = -5$$

x = 1

தீர்வு
$$\frac{1}{5}$$
, 1 ஆகும்.

(iii)
$$x^2 - 5|x| + 6 = 0$$

$$x \geq 0$$
 எனின், $\left|x\right| = x$ ஆகும். $x < 0$ எனின், $\left|x\right| = -x$ ஆகும்.

$$x < 0$$
 எனின், $|x| = -x$ ஆகும

$$x^2 - 5|x| + 6 = 0$$

$$x^2 - 5|x| + 6 = 0$$

$$x^2 - 5x + 6 = 0$$

$$x^2 + 5x + 6 = 0$$

$$(x-2)(x-3)=0$$

$$(x+2)(x+3)=0$$

$$x=2$$
 அல்லது 3

$$x = -2, -3$$

தீர்வுகள் -3, -2, 2, 3 ஆகும்.

(iv)
$$x^2 + |x| - 6 = 0$$
 $x \ge 0$ எனின், $|x| = x$ ஆகும். $x < 0$ எனின், $|x| = -x$ ஆகும். $x^2 + |x| - 6 = 0$ $x^2 + x - 6 = 0$ $x^2 - x - 6 = 0$ $(x + 3)(x - 2) = 0$ $(x - 3)(x + 2) = 0$ $x = -2$, $x \ge 0$ என்பதால், $x = 2$ $x = -2$

(v)
$$x^2 + 5|x| + 6 = 0$$
 $x \ge 0$ எனின், $|x| = x$ ஆகும். $x < 0$ எனின், $|x| = -x$ ஆகும். $x^2 + 5|x| + 6 = 0$ $x^2 + 5x + 6 = 0$ $x^2 - 5x + 6 = 0$ $x = -3, -2$ $x \ge 0$ என்பதால், $x \le 0$ என்பதால்,

பின்வரும் சமனிலிகளின் தீர்வுகளைக் காண்க.

(i)
$$|3x - 5| > -2$$

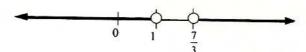
(ii)
$$|3x-5|>2$$

(iii)
$$|x-2| < -4$$

(iv)
$$|x-2| < 4$$

(i)
$$|3x-5| > -2$$

x இன் எல்லாப் பெறுமானங்களுக்கும் $\left|3x-5\right|\geq 0$. எனவே, x இன் எல்லாப் பெறுமானங்களுக்கும் $\left|3x-5\right|\geq 0>-2$ ஆகும்.


(ii)
$$|3x - 5| > 2$$

முறை I

வரைவிலக்கணத்திலிருந்து |3x-5|>2 எனின்,

$$3x - 5 > 2$$
 அல்லது $3x - 5 < -2$ ஆகும். $3x > 7$ $3x < 3$ $x > \frac{7}{3}$ $x < 1$

ஆகவே x < 1 அல்லது $x > \frac{7}{3}$ ஆகும்.

முறை II

$$|3x-5|>2$$

x இன் எல்லாப் பெறுமானங்களுக்கும் $|3x-5| \ge 0$, 2>0 எனவே இருபக்கமும் வர்க்கிக்க,

$$(3x-5)^2 > 2^2$$

 $(3x-5)^2 - 2^2 > 0$
 $(3x-5-2)(3x-5+2) > 0$
 $(3x-7)(3x-3) > 0$
 $(3x-7)(x-1) > 0$
 $x < 1$ அல்லது, $x > \frac{7}{3}$ ஆகும்.

(iii)
$$|x-2| < -4$$

x இன் எல்லாப் பெறுமானங்களுக்கும் $|x-2| \ge 0$. |x-2| < -4 ஆக இருக்க முடியாது. எனவே சமனிலிக்கு தீர்வு இல்லை.

(iv)
$$|x-2| < 4$$

முறை I

வரைவிலக்கணத்திலிருந்து,

$$|x-2| < 4 \Leftrightarrow -4 < x-2 < 4$$

 $-4 < x-2 < 4$
 $-4 + 2 < x < 4 + 2$
 $-2 < x < 6$ ஆகும்.

முறை II

$$|x-2| < 4$$

x இன் எல்லாப் பெறுமானங்களுக்கும் $|x-2| \ge 0$, 4>0 எனவே இருபக்கமும் வர்க்கிக்க,

$$(x-2)^2 < 4^2$$

 $(x-2)^2 - 4^2 < 0$
 $(x-2-4)(x-2+4) < 0$
 $(x-6)(x+2) < 0$
 $-2 < x < 6$. Section.

தீர்க்க

(i)
$$|3x+2| > |2x-3|$$
 (ii) $|1-5x| \le |4x-3|$
 x இன் எல்லாப் பெறுமானங்களுக்கும் $|3x+2| \ge 0$, $|2x-3| \ge 0$
 $|3x+2| > |2x-3|$
இருபக்கமும் வர்க்கிக்க,
 $(3x+2)^2 > (2x-3)^2$
 $(3x+2)^2 - (2x-3)^2 > 0$
 $[(3x+2)-(2x-3)][(3x+2)+(2x-3)] > 0$
 $(x+5)(5x-1) > 0$
 $x < -5$ அல்லது $x > \frac{1}{5}$

(ii)
$$|1-5x| \le |4x-3|$$

x இன் எல்லாப் பெறுமானங்களுக்கும் $\left|1-5x\right|\geq 0$, $\left|4x-3\right|\geq 0$ இருபக்கமும் வாக்கிக்க,

$$(1-5x)^{2} \le (4x-3)^{2}$$

$$(1-5x)^{2} - (4x-3)^{2} \le 0$$

$$[(1-5x) - (4x-3)][(1-5x) + (4x-3)] \le 0$$

$$(4-9x)(-x-2) \le 0$$

$$(9x-4)(x+2) \le 0$$

$$-2 \le x \le \frac{4}{9}$$

தீர்க்க

(i)
$$|2x-5| < x-1$$

(ii)
$$|5-x|>2+2x$$

(iii)
$$3-2x > |x+2|$$

(iv)
$$|x-4|+|1-2x|>4$$

(i)
$$|2x-5| < x-1$$

$$x < \frac{5}{2}$$
 எனின், $|2x - 5| = -(2x - 5)$
 $|2x - 5| < x - 1$
 $-(2x - 5) < x - 1$
 $6 < 3x$
 $x > 2$

$$x \ge \frac{5}{2}$$
 લજીજો, $|2x-5| = 2x-5$
$$|2x-5| < x-1$$

$$2x-5 < x-1$$

$$x < 6$$

(ii)
$$|5-x| > 2 + 2x$$

 $x \le 5$ signifies, $|5-x| = 5 - x$
 $|5-x| > 2 + 2x$
 $5-x > 2 + 2x$
206

$$5 - x > 2 + 2x$$

$$3 > 3x$$

$$x < 1 \qquad (1)$$

$$x > 5 \text{ errolloin}, \quad |5 - x| = -(5 - x)$$

$$|5 - x| > 2 + 2x$$

$$-(5 - x) > 2 + 2x$$

$$-7 > x$$

$$x < -7$$

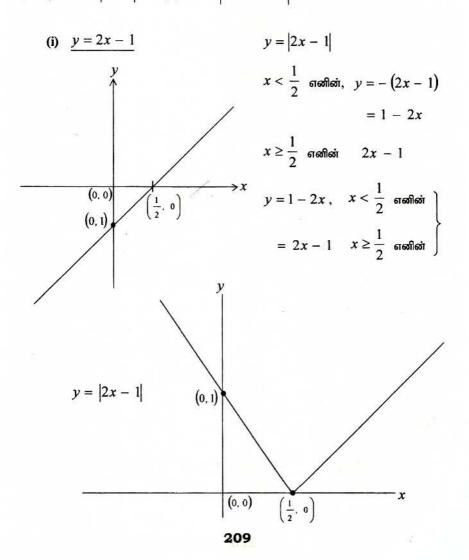
x>5 இல் தீர்வு x<-7 எனப் பெறப்படுவதால், x>5 இல் தீர்வு இல்லை. எனவே x<1 ஆகும்.

(iii)
$$3-2x>|x+2|$$
 $x<-2$ எனின், $|x+2|=-(x+2)$ $3-2x>|x+2|$ $3-2x>-(x+2)$ $5>x$ $x<5$ $x<-2$ ஆயிருக்க, $x<5$ என்பதால் தீர்வு $x<-2$ ஆகும்.——(1) $x\ge -2$ எனின், $|x+2|=x+2$ $3-2x>|x+2|$ $3-2x>x+2$ $1>3x$

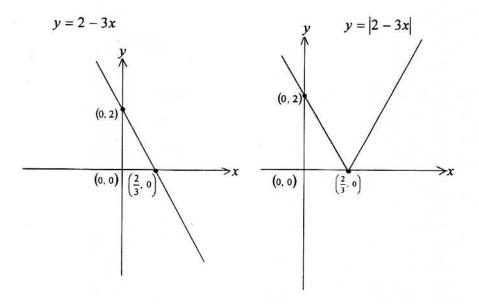
 $x < \frac{1}{3}$ ஆகும்.

மட்டு சம்பந்தப்பட்ட வரைபுகள்

பின்வரும் சார்புகளின் வரைபுகளை அவதானிப்போம்.

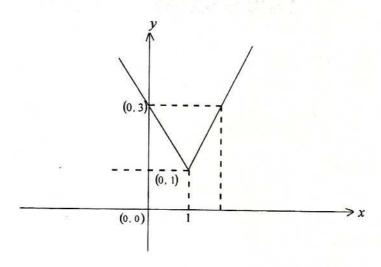

(i)
$$v = |2x - 1|$$

(ii)
$$y = |2 - 3x|$$

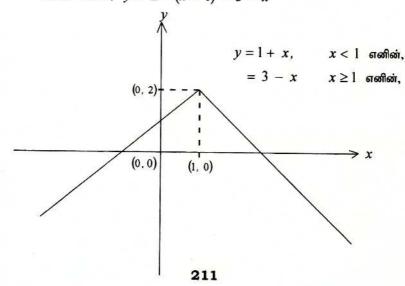

(i)
$$y = |2x - 1|$$
 (ii) $y = |2 - 3x|$ (iii) $y = 1 + 2|x - 1|$

(iv)
$$y = 2 - |x - 1|$$

(iv)
$$y = 2 - |x - 1|$$
 (v) $y = |x^2 - x - 6|$


(ii)
$$y = |2 - 3x|$$

 $x \le \frac{2}{3}$ signifies, $y = 2 - 3x$
 $x > \frac{2}{3}$ signifies, $y = -(2 - 3x) = 3x - 2$
 $y = 2 - 3x$, $x \le \frac{2}{3}$ signifies,
 $= 3x - 2$, $x \ge \frac{2}{3}$ signifies,


$$x < 1$$
 எனின், $y = 1 - 2(x - 1);$ $y = 3 - 2x$ $x \ge 1$ எனின், $y = 1 + 2(x - 1)$ $y = 2x - 1$

(ii) y = 1 + 2|x - 1|

$$y = 3 - 2x$$
, $x < 1$ soldisin,
= $2x - 1$, $x \ge 1$ soldisin,

(iv)
$$y = 2 - |x - 1|$$

 $x < 1$ stephen single, $y = 2 + (x - 1) = 1 + x$
 $x \ge 1$ stephen single, $y = 2 - (x - 1) = 3 - x$

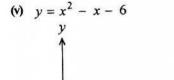
Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

(v)
$$y = x^2 - x - 6$$
 ஐக் கருதுக.

$$y = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4} - 6$$

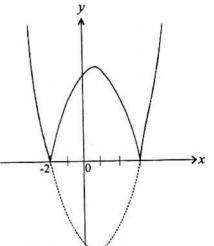
$$= \left(x - \frac{1}{2}\right)^2 - \frac{25}{4}$$

$$\left(\frac{1}{2}, -\frac{25}{4}\right)$$
 இழிவுப்புள்ளி


$$y=0$$
 எனின்,

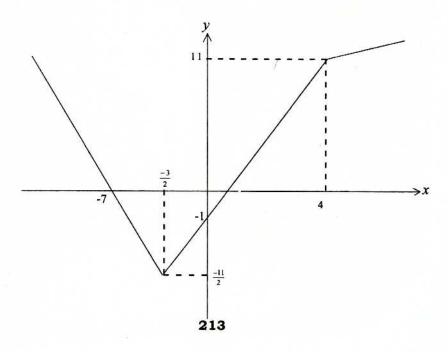
$$x^2-x-6=0$$

$$(x-3)(x+2)=0$$


$$x = -2.3$$

$$x = 0$$
 எனின், $y = -6$

$$y = \left| x^2 - x - 6 \right|$$

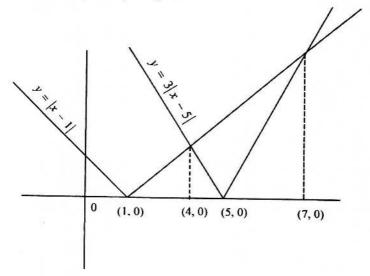


212

 $y=x^2-x-6$ என்ற வளையியில், x அச்சின் கீழ் உள்ள பகுதி, x அச்சில் தெறிப்படைவதால் பெறப்படும் வளையி $y=\left|x^2-x-6\right|$ ஆகும்.

உதாரணம் 18

$$y = |2x + 3| - |4 - x|$$
 $x < -\frac{3}{2}$ எனின், $y = -(2x + 3) - (4 - x) = -x - 7$
 $-\frac{3}{2} \le x < 4$ எனின், $y = (2x + 3) - (4 - x) = 3x - 1$
 $x \ge 4$ எனின், $y = (2x + 3) + (4 - x) = x + 7$

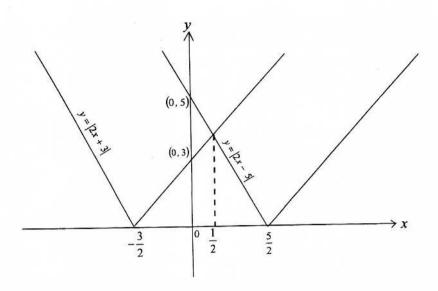

$$\left|2x+3\right|-\left|4-x\right|<0$$
 ஆகும். x இன் வீச்சு $-7< x<rac{1}{3}$ ஆகும். $x\in\left(-7,rac{1}{3}
ight)$

உதாரணம் 19

ஒரே ஆள்கூற்று அச்சுக்களில் $y=\left|x-1\right|, \quad y=3\left|x-5\right|$ என்பவற்றின் வரைபுகளை வரைந்து $\left|x-1\right|>3\left|x-5\right|$ ஆகுமாறுள்ள x இன் பெறுமானங்களின் தொடையைக் காண்க.

$$y = |x - 1|$$

 $x < 1$ எனின், $y = -(x - 1) = 1 - x$
 $x \ge 5$ எனின், $y = x - 1$


$$y = 3|x - 5|$$

 $x < 5$ எனின், $y = -3(x - 5) = -3x + 15$
 $x \ge 1$ எனின், $y = 3(x - 5) = 3x - 15$

உதாரணம் 20

ஒரே அச்சுக்களில் $y=\left|2x+3\right|$, $y=\left|2x-5\right|$ என்பவற்றின் வரைபுகளை வரைக. வரைபுகளைப் பயன்படுத்தி $\left|2x+3\right|<\left|2x-5\right|$ ஆகும். x இன் பெறுமானங்களைக் காண்க.

$$y=\left|2x+3\right|$$
 $x<-rac{3}{2}$ எனின், $y=-\left(2x+3\right)=-2x-3$ $x\geq -rac{3}{2}$ எனின், $y=2x+3$, $y=\left|2x-5\right|$ $x<rac{5}{2}$ எனின், $y=-\left(2x-5\right)=-2x+5$ $x\geq rac{5}{2}$ எனின், $y=\left(2x-5\right)$

y=-2x-3, y=-2x+5 இரண்டும் சமாந்தரமானவை. y=2x+3, y=2x-5 இரண்டும் சமாந்தரமானவை. எனவே இங்கு இரு வரைபுகளும் வெட்டும்புள்ளி ஒன்றுமட்டும் உள்ளது. y=2x+3, y=-2x+5 எனும் வரைபுகள் வெட்டும்புள்ளியில் 2x+3=-2x+5 $x=\frac{1}{2}$ ஆகும்.

வரைபிலிருந்து |2x+3|<|2x-5| ஆகும். x இன் பெறுமானங்கள் $x<\frac{1}{2}$ ஆகும்.

$$\left\{x: x<rac{1}{2}; \ x$$
 மெய்யெண் $\left\{x: x\in\left(-\infty,rac{1}{2}
ight) \right\}$ ஆகும்.

உதாரணம் 21

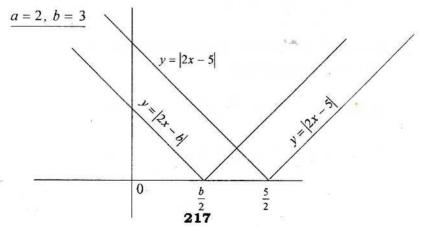
 $a,\ b$ என்பன நிறையெண்களாக இருக்க, $y=\left|ax-5
ight|,\ y=\left|2x-b
ight|$ எனத்தரப்பட்டுள்ளது. $\left|ax-5
ight|<\left|2x-b
ight|$ ஆகுமாறுள்ள x இன் தீர்வுத்

தொடை $\{x: x>2, x$ மெய்யெண் $\}$ எனின், a, b இன் பெறுமானங்களைக் காண்க.

தீர்வு $\left\{x:x>2,x\right\}$ மெய்யெண் $\left\{x:x>2,x\right\}$ எனதே தரப்பட்டுள்ளது. எனவே, $y=\left|2x-b\right|$ $y=\left|ax-5\right|$ இருவளையிகளும் ஒரு புள்ளியில் மட்டும் இடைவெட்டும். ஆகவே $y=\left|ax-5\right|,\ y=\left|2x-b\right|$ ஆகிய இரு சார்புகளின் வரைபுகளின் பகுதிகள் ஒன்றுக்கொன்று சமாந்தரமாக இருக்கும்.

(உதாரணம் 19, 20 வரைபுகளை அவதானிக்க)

எனவே $a=\pm 2$ ஆக இருத்தல் வேண்டும் a நேரெண் என்பதால் a=2இப்பொழுது $y=\left|2x-5\right|$ என்ற வளையியை வரைவோம்.


இது
$$x=rac{5}{2}$$
 இல், x அச்சை வெட்டும்.

$$y=\left|2x-b\right|$$
 என்ற வளையி $x=\frac{b}{2}$ இல் x அச்சை வெட்டும்.

$$b>0$$
 என்பதால் $\frac{b}{2}>0$ ஆகும்.

$$y = -(2x - 5)$$
 உம், $y = 2x - b$ உம் இடைவெட்டும்புள்ளி $x = 2 - (2x - 5) = 2x - b$

$$x=2$$
 syst $+1=4-b$, $b=3$

பயிற்சி 5

1. பின்வரும் சமனிலிகளைக் கீர்க்க

(a)
$$3(6x-5)-10(x-4) \ge 3(x-1)$$

(b)
$$2(x-3) - 3(5x-2) \le 6(3-2x)$$

(c)
$$\frac{1}{3}(x-2) - \frac{1}{2}(3x-1) > 2$$
 (d) $x-1 < 3x+1 \le x+5$

(e)
$$3x + 2 \ge 2x - 1$$
 sub $7x + 3 < 5x + 2$ sub

2. பின்வரும் சமனிலிகளைத் தீர்க்க

i.
$$(x-2)(x-1)>0$$

ii.
$$(2x - 1)(x + 1) \le 0$$

iii.
$$(2 - x)(2x + 3) \ge 0$$

iv.
$$(x-1)^2 > 9$$

v.
$$(x-1)(x-2) \le 4$$

vi.
$$x^2 > 3x$$

$$vii. \quad x^2 \quad x \leq 6$$

viii.
$$x^2 - 2x + 5 > 0$$

ix.
$$12 - 4x < x^2$$

$$x - x^2 - 4x - 3 < 0$$

xi.
$$2x^2 - 11x + 12 < 0$$

xii.
$$3x^2 \ge x - 1$$

3. தீர்க்க

i.
$$(x-1)(x+2)(x-3) > 0$$

iii.
$$x - 4 < x (x - 4) < 5$$

$$\mathbf{v}$$
. $3x + 4 < x^2 - 6x < 9 - 2x$

ii.
$$2x - 1 < x^2 - 4 < 12$$

iv.
$$x - 3 > x^2 - 9 > -5$$

4. பின்வரும் சமனிலிகள் திருப்திப்படுத்தும் *X* இன் பெறுமான வீச்சுக்களைக் காண்க?

i.
$$\frac{1}{x-3} < -1$$

ii.
$$\frac{3x+4}{x} \le 1$$

iii.
$$\frac{4-2x}{x} > 1$$

iv.
$$\frac{2x-4}{x-1} < 3$$

v.
$$\frac{x-2}{x} < 1$$

vi.
$$\frac{x-1}{2+x} < 1$$

${f 5.}$ பின்வரும் சமனிலிகள் திருப்திப்படுத்தும் ${f x}$ இன் பெறுமான வீச்சுக்களைக் காண்க.

i.
$$\frac{12}{x-3} < x+1$$

ii.
$$\frac{x}{x-2} < \frac{x}{x-1}$$

iii.
$$\frac{x-2}{(x-1)(x-3)} > 0$$

iv.
$$\frac{(x-1)(x-2)}{(x+1)(x-3)} < 0$$

$$v. \frac{x^2 + 12}{x} > 7$$

vi.
$$\frac{x^2 + 6}{x} > 5$$

vii.
$$\frac{(x+1)(x+3)}{x} > \frac{x+6}{3}$$

vii.
$$\frac{(x+1)(x+3)}{x} > \frac{x+6}{3}$$
 viii. $-2 \le \frac{3x-6}{(x-1)(x-3)} \le 2$

ix.
$$-3 \le \frac{(x-1)(x-5)}{(x-3)} \le 3$$

ix.
$$-3 \le \frac{(x-1)(x-5)}{(x-3)} \le 3$$
 x. $\frac{5x-4}{x^2+2} > \frac{1}{2} \left[\frac{1}{x-2} + \frac{5}{x+2} \right]$

xi.
$$\frac{2x^2 + 5x + 7}{3x + 5} \ge 2$$

xi.
$$\frac{2x^2 + 5x + 7}{3x + 5} \ge 2$$
 xii. $\frac{2x^2 - 3x - 5}{x^2 + 2x + 6} < \frac{1}{2}$

6.
$$x$$
 இன் எப் பெறுமானங்களுக்கு $0 \le \frac{x}{x-1} \le 2$

7.
$$\frac{1}{x+1} - \frac{1}{x+2} < \frac{1}{x}$$
 ஆகுமாறுள்ள x இன் பெறுமானங்களைக் காண்க.

8.
$$2 \ge \frac{x-1}{x+1} \ge 0$$
 எனின் x ஐக் காண்க.

9.
$$\frac{2}{x-1} < x < \frac{3}{x-2}$$
 ஐத் தீர்க்க.

10.
$$\frac{x+a}{b} > \frac{a}{x+b}$$

i.
$$a, b > o$$
 எனின் x இன் தீர்வுயாது?

 $ii. \ a < b < 0$ எனின் x இன் தீர்வு யாது?

a,b,c என்பன மெய்யெண்களாக இருக்க, பின்வருவனவற்றை நிறுவுக.

$$i. \quad a^2 + b^2 \ge 2ab$$

ii.
$$2(a^2 + b^2) \ge (a + b)^2$$

219

iii.
$$(a^2 + b^2 + c^2) \ge bc + ca + ab$$

iv.
$$3(a^2 + b^2 + c^2) - (a + b + c)^2 \ge 0$$

$$v. \quad a^3 \ b + ab^3 \le a^4 + b^4$$

vi.
$$\left(\frac{a+b+c}{3}\right)^2 \le \frac{a^2+b^2+c^2}{3}$$

vii.
$$(a + b + c)^2 \ge 3(ab + bc + ca)$$

viii.
$$(a^4+b^4+c^4)^2 \ge a^2b^2+b^2c^2+c^2a^2 \ge abc(a+b+c)$$

- 12. i. a>0 ஆகவும் x,y என்பன சமமற்ற நேர் அல்லது மறை நிறை எண்களாகவும் இருப்பின் $a^{3x}+a^{3y}$; $a^{2x+y}+a^{x+2y}$ என்னும் கோவைகளில் பெரியது யாது?
 - **ii.** x,y இன் எல்லாப் பெறுமானங்களுக்கும் $x^2 + xy + y^2 \ge 0$ எனக்காட்டுக. $(x+y)(x^3+y^3) \le 2(x^4+y^4)$ என உய்த்தறிக.
- 13. i. p மெய்யெண்ணாக இருக்க. $p(1-p) \leq \frac{1}{4}$ எனக்காட்டுக. இதிலிருந்தோ அல்லது வேறுவழியாகவோ p+q=1 ஆகவும் $0 ஆகவும் இருப்பின் <math>\frac{1}{p} + \frac{1}{q}$ இன் இழிவுப் பெறுமானம் யாது?
 - $b \leq c \leq 1$ எனின் $b(1-c) \leq \frac{1}{4}$ எனவும் நிறுவுக.
- **14. i.** $0 < x < 1, \ 0 < y < 1$ எனின் 0 < x + y xy < 1 எனக் காட்டுக.
 - $\mathbf{ii.}\ a < x < y$ உம் a > 0 உம் எனின் $\frac{y}{y-a} < \frac{x}{x-a}$ எனக் காட்டுக.
- 15. x, y என்பன நேர்எண்கள் எனின் $x^4 + y^4 \ge x^3 \ y + xy^3 \ge 2x^2y^2$ எனக் காட்டுக.

$$2(a^3 + b^3) \ge (a^2 + b^2)(a + b)$$

$$3\left(a^3+b^3+c^3\right) \geq \left(a^2+b^2+c^2\right)\left(a+b+c\right)$$
 எனக் காட்டுக.

 $17. \ a,b,c,d$ என்பன நேரெண்கள் எனின்

i.
$$a + b \ge 2\sqrt{ab}$$
 ii. $(a + b) (b + c) (c + a) \ge 8abc$

iii.
$$(ab + cd)(ac + bd) \ge 4abcd$$

iv.
$$ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 \ge 6abc$$

$$\mathbf{v.} \quad \left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right) \geq 4$$

vi.
$$(a + b + c + d) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right) \ge 16$$

vii.
$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge 6$$

viii.
$$(a + b + c)(a^2 + b^2 + c^2) \ge 9abc$$

ix.
$$(a^2 + b^2)(a^7 + b^7) \ge (a^4 + b^4)(a^5 + b^5)$$
 என நிறுவுக.

18.
$$x + y - 3z = 0$$
 எனின் $x^2 + y^2 - 3z^2 \ge 0$ எனநிறுவுக.

19.
$$x+y+z=a, \quad xy+yz+zx=0, \ a>0$$
 எனின் x,y,z ஒவ்வொன்றும் $-\frac{1}{3}$ a இற்கும் a இற்குமிடையில் கிடக்கும் எனக்காட்டுக.

20. i. x மெய்யெண்ணாக இருக்க, $x^3 - 2x^2 + 8 \ge 4x$ ஆகும். x இன் மிகக் குறைந்த பெறுமானம் யாது?

ii.
$$a, b, c > 0$$
 எனின் $(a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \ge 9$ எனக் காட்டுக.

$$a+b+c=1$$
 ஆகும்போது $\frac{\left(1-a\right)\left(1-b\right)\left(1-c\right)}{abc}$ யின்

ஆகக் குறைந்த பெறுமானத்தைக் காண்க.

21.
$$x, y, z > 0$$
 எனின், **i.** $(x + y + z)^3 \ge 27 \, xyz$ எனவும் **ii.** மேலும் $xyz = 8$ எனின் $xy + yz + zx \ge 12$ எனவும் காட்டுக.

22. a, b > 0 எனின்

i.
$$a+b=1$$
 எனின் $\left(a+rac{1}{a}
ight)^2+\left(b+rac{1}{b}
ight)^2\geq rac{25}{b}$ எனக்காட்டுக.

$$a + \frac{b}{2a} > \sqrt{a^2 + b} > a + \frac{b}{2a + 1}$$
 (இங்கு $2a + 1 > b$) எனக் காட்டுக.

iii.
$$\frac{1}{a^2} + \frac{1}{b^2} \ge \frac{8}{(a + b)^2}$$
 எனக் காட்டுக.

23.
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)$$

$$\left[a^2 + b^2 + c^2 - ab - bc - ca\right]$$
 எனக்காட்டுக.

a,b,c நேராக இருப்பின் $a^3+b^3+c^3\geq 3abc$ என உய்த்தறிக. l,m,n

என்பன எவையேனும் மூன்று நேர்எண்களாயின் $\dfrac{1}{3}\left(l+m+n
ight)\geq\ 3\sqrt{lmn}$

என இதிலிருந்து அல்லது வேறுமுறையில் காட்டுக.

ஒரு செங்கோண இணைகரப்பரவை வடிவத்தில் உள்ள முடியவொரு பெட்டியின் நீளம், அகலம், உயரம் ஆகியன முறையே $x,\ y,\ z$ அலகுகளாகும். அப்பெட்டியின் மேற்பரப்பின் பரப்பளவு A அலகுகளும் கனவளவு V அலகுகளும் ஆகும். அதன் நான்கு மூலைவிட்டங்கள் ஒவ்வொன்றின் நீளமும் p அலகுகளும் ஆகும்.

(i)
$$A \le 2p^2$$
 எனவும் (ii) $V \le \frac{A^{\frac{3}{2}}}{6\sqrt{6}}$ எனவும் (iii) $V \le \frac{p^3}{3\sqrt{3}}$ எனவும் நிறுவுக.

24. தீர்க்க:

i.
$$|x+3| = 2$$
 ii. $\left|\frac{1}{x+1}\right| = 1$ iii. $|x^2| - |x| - 6 = 0$

 ${f 25.}$ பின்வரும் சமனிலிகள் திருப்திப்படுத்தும் x இன் பெறுமான வீச்சுக்களைக் காண்க?

i.
$$|x-3| > 4$$
 ii. $|x+2| \le 1$ iii. $|2x+5| \ge 3$ iv. $|3-4x| < 3$ v. $|x+1| > 1$

$$f(x) = x^2 - x - 2$$
 எனின், $f(x) < |f(x)|$ ஆகுமாறுள்ள x இத

- **26.** $f(x) = x^2 x 2$ எனின், f(x) < |f(x)| ஆகுமாறுள்ள x இன் பெறுமானங்களைக் காண்க.
- 27. gritas.

i.
$$|2 + x| > |1 + 2x|$$
 ii. $|5 - x| < |1 + x|$

iii.
$$|3-2x| < |4+x|$$
 iv. $|x-1| > 3|x-2|$

28. i. |x-2| < 2x ஆகுமாறுள்ள x இன் பெறுமானங்களைக் காண்க.

ii. $x^2 < |x-2|$ ஆகுமாறுள்ள x இன் பெறுமானங்களைக் காண்க.

iii. $\frac{|x|}{x-1} \le 1$ ஆயின், x இன் பெறுமானங்களைக் காண்க.

29. (a) $\left| \frac{x-3}{x+1} \right| < 2$ எனின் x இன் பெறுமானங்களைக் காண்க.

(b) Shisas: i. $\left| \frac{2x+3}{x-1} \right| < 1$ ii. $\frac{2x+3}{x-1} < 1$

- ||30.|||2x+3||-||x+4||<2 எனின் |x|| இன் பெறுமானங்களைக் காண்க.
- 31. a, b, c என்பன நேரானவையெனின் $\frac{a+b}{2} \ge \sqrt{ab}$ எனக் காட்டுக.

இதிலிருந்து $\frac{a+b+c+d}{4} \geq (abcd)^{\frac{1}{4}}$ என்பதைப் பெறுக.

 $(a + 3b) (b + 3c) (c + 3a) \ge 64abc$ என்பதை உய்த்தறிக.

- **32.** a, b என்பன நேராயின் $(1-a)(1-b) \ge 1-a-b$ எனநிறுவுக. a, b, c என்பன நேராகவும் அவற்றுள் ஒன்றாவது 1 இலும் குறைவாகவும் இருப்பின், $(1-a)(1-b)(1-c) \ge 1-a-b-c$ என நிறுவுக.
- 33. i. x+y<2, x-y<4, 2x+y>2 ஆகும். 0< x<3 எனக்காட்டி y இற்கு ஒத்த சமனிலி ஒன்றைப் பெறுக.

ii. x, y இன் எல்லாப் பெறுமானங்களுக்கும் $x^2 + y^2 - 4x \ge 6y - 13$ எனக் காட்டுக.

34. A, B இன் எல்லாப் பெறுமானங்களுக்கும்

 $sin\ A\ sin\ B\le sin^2\ rac{1}{2}\ ig(A+Big)$ எனநிறுவுக.

 $A,\ B,\ C,\ D$ எல்லாம் 0 இற்கும் π இற்கும் இடையில் இருப்பின்

 $sin A \cdot sin B \cdot sin C \cdot sin D \leq \left\{ sin \frac{1}{4} \left(A + B + C + D \right) \right\}^4$ எனக் காட்டுக.

 $D = rac{1}{3} \, \left(A \, + B \, + \, C
ight)$ எனப் பிரதியிடுவதன் மூலம்

 $sin \ A \cdot sin \ B \ \cdot \ sin \ C \ \le \ sin \ \left\{ rac{1}{3} \ ig(A + \ B \ + \ C ig)
ight\}^3$ என உய்த்தறிக.

35. x, y, z என்பன நேரானவையெனின், $\left(\frac{x^3 + y^3}{2}\right)^2 \ge \left(\frac{x^2 + y^2}{2}\right)^3$

எனவும், $\left(\frac{2x^3+y^3}{3}\right)^2 \geq \left(\frac{2x^2+y^2}{3}\right)^3$ எனவும் காட்டுக.

 $x^2 + y^2 = 2 w^2$ எனப்பிரதியிடுவதன் மூலம் அல்லது வேறுவழியாக, x, y, z என்பன நேராயின்

$$\left(\frac{x^3 + y^3 + z^3}{3}\right)^2 \ge \left(\frac{x^2 + y^2 + z^2}{3}\right)^3$$
 என நிறுவுக.

மீட்டல் பயிற்சி

1. சமன்பாடுகள் தீர்த்தல், மடக்கைகள்

1. தீர்க்க

(i)
$$2\left(x^2 + \frac{1}{x^2}\right) - 9\left(x + \frac{1}{x}\right) + 14 = 0$$

(ii)
$$\frac{1}{x^2 - 3x - 10} + \frac{1}{x^2 - 3x + 2} = \frac{2}{x^2 - 3x + 1}$$

(iii)
$$\sqrt{3x+1} - \sqrt{2-x} = \sqrt{2x-1}$$

2. தீர்க்க

(i)
$$5x^4 - 19x^3 - 34x^2 + 19x + 5 = 0$$

(ii)
$$x^2 + xy = 24y$$
; $y^2 + xy = 6x$

(iii)
$$16^x - 6 \times 4^x + 2^3 = 0$$

3. தீர்க்க

(i)
$$x^2 - 2xy - y^2 = 14$$
; $2x^2 + 3xy + y^2 = -2$

(ii)
$$3^{y+3} - 2^{x+3} = 76$$
; $2^{x+4} - 3^{y+2} = 28$

(iii)
$$\frac{x^2 + y^2}{13} = \frac{x + y}{30} = \frac{xy}{6}$$

4. தீர்க்க

(i)
$$\frac{1}{x} + \frac{1}{y} = \frac{3}{4}$$
; $x^2 + y^2 = 20$

(ii)
$$xy + yz + zx = 26$$

 $xy + zx = 14$
 $xy + yz = 18$

5. தீர்க்க

(i)
$$\frac{x^2}{y} + \frac{y^2}{x} = 9;$$
 $\frac{1}{x} + \frac{1}{y} = \frac{3}{4}$

(ii)
$$x(y+z) = 33$$

 $y(z+x) = 35$
 $z(x+y) = 14$

- 6. (a) Sinds $2 \cdot 3^{2x+3} 7 \cdot 3^{x+1} 68 = 0$
 - (b) a,b,c என்பன நேரெண்களாயிருக்க $\log_b a \cdot \log_a b = 1$ எனக் காட்டுக.
 - (i) $\log_b a \cdot \log_c b \cdot \log_a c = 1$

(ii)
$$\frac{1}{\log_a abc} + \frac{1}{\log_b abc} + \frac{1}{\log_c abc} = 1$$
 என உய்த்தறிக.

- 7. **(a)** $(x+y)^3$ இன் விரிவை எழுதுக. x^3+y^3 ஐக் காரணியாக்குக. இம்முடிபுகளை உபயோகித்துக் காரணியாக்கல் மூலம் $x^3+y^3+z^3-3\,xyz=\big(x+y+z\big)\big(x^2+y^2+z^2-xy-yz-zx\big)$ என நிறுவுக.
 - (b) a, b, c என்பன அடுத்து வரும் நேர் நிறையெண்கள் எனின், $2\log b = \log (1+ac)$ எனக் காட்டுக.
 - (c) p,q,r,x,y,z என்பன நேரெண்களாகவிருக்க, $p^x=q^r=r^z$ ஆகவும், $q^2=p^r$ ஆகவுமிருப்பின் $y=\frac{2xz}{z+z}$ எனநிறுவுக.
- 8. (a) தீர்க்க $\log_2 x = \log_4 (x+6)$
 - (b) $\frac{1}{\log_2 x} + \frac{1}{\log_8 x} + \frac{1}{\log_{32} x} + ---$ என்பதை ஒரு கூட்டற்றொடராகக் கருதி முதல் 25 உறுப்புக்களின் கூட்டுத் தொகையை $\log_2 x$ இல் காண்க.

- (c) $\log_2 x + \log_4 x + \log_{16} x + ---$ என்பதை ஒரு பெருக்கல் தொடராகக் கருதி முதல் n உறுப்புக்களின் கூட்டுத் தொகையை $\log_2 x$, n என்பவற்றில் காண்க.
- 9. (a) கூட்டல் தொடர் ஒன்றின் முதலாம் உறுப்பு $\ln x$; r ஆம் உறுப்பு $\ln \left(x\cdot 2^{r-1}\right)$; இங்கு x>0. முதல் n உறுப்புக்களின் கூட்டுத்தொகை $n\cdot \ln x + \frac{n(n-1)}{2}\ln 2$ எனக் காட்டுக.
 - (b) a,b,c என்பன 1 இலும் பெரிதான எண்கள் எனின்,

$$\log_c a = \frac{\log_b a}{\log_b c}$$
 எனக் காட்டுக.

n $(\neq 1)$ ஒரு நேரெண் என்க. $a\neq b$ ஆயிருக்க.

$$x = \log_a n$$
, $y = \log_b n$ எனின்,

$$\frac{x+y}{x-y} = \frac{\log_c b + \log_c a}{\log_c b - \log_c a}$$
 எனக் காட்டுக.

- (c) a^2+b^2 , ab+bc, b^2+c^2 என்பன பெருக்கல் விருத்தியிலிருப்பின் a,b,c என்பனவும் பெருக்கல் விருத்தி ஒன்றில் அமையும் எனக் காட்டுக.
- 10 (a) $\frac{1}{\log_c ab + 1} + \frac{1}{\log_a bc + 1} + \frac{1}{\log_b ca + 1} = 1$ எனக் காட்டுக.
 - (b) $p = 2^{\frac{1}{3}} + 2^{\frac{2}{3}} + 2$ எனின், $p^3 6p^2 + 6p$ இன் பெறுமானத்தைக் காண்க.
 - (c) எண்கள் x,y இரண்டின் கூட்டலிடை, இருவேறு நேரெண்கள் p,q என்பவற்றின் பெருக்கலிடை ஒவ்வொன்றும் $\dfrac{px+qy}{x+y}$ இற்கு சமம் எனின், x,y என்பவற்றை p,q இன் உறுப்புக்களில் காண்க.

11. (a)
$$\frac{1}{a-b} + \frac{1}{b-c} + \frac{1}{c-a} = 0$$
 எனக் காட்டுக.

$$\frac{1}{(a-b)^2} + \frac{1}{(b-c)^2} + \frac{1}{(c-a)^2}$$
 நிறைவர்க்கம் எனக் காட்டுக.

- (b) log₂ 3 · log₃ 4 · log₄ 5 · log₅ 6 · log₆ 7 · log₇ 8 இன் பெறுமானம் யாது?
- (c) $\log_{b^2} a \times \log_{x^2} b = \frac{1}{4} \log_x a$ என நிறுவுக.
- 12. பெறுமானங் காண்க. (மடக்கை வாய்பாடுகளை உபயோகியாது)

(i)
$$\frac{\log \sqrt{27} + \log 8 - \log \sqrt{1000}}{\log 1.2}$$

(ii)
$$\frac{1}{6}\sqrt{\frac{3\log 1728}{\log 10 + \frac{1}{2}\log 0.36 + \frac{1}{3}\log 8}}$$

- 13. (i) $2 \times 27^x 5 \times 9^x + 3^{x+1} = 3^x$ எனும் சமன்பாட்டின் தீர்வு $x = \pm \log_3 2$ எனக் காட்டுக.
 - (ii) ஒருங்கமை சமன்பாடுகளைத் தீர்க்க.

$$18y^x - y^{2x} = 81;$$
 $3^x = y^2$

2. பல்லுறுப்புச் சார்புகள்

- 1. (a) $P(x) = (ax + b)^3$ என்னும் பல்லுறுப்பியை (x + 1) ஆல் வகுக்கும்போது மீதி -1 உம், (x 2) ஆல் வகுக்கும்போது மீதி 27 உம் எனின் a, b ஐக் காண்க. a, b மெய்யெண்கள் ஆகும்.
 - (b) $x^3 + px + r$, $3x^2 + p$ என்ற பல்லுறுப்பிகளுக்கு, ஏகபரிமாண பல்லுறுப்பி ஒன்று பொதுக் காரணியாக இருப்பின் $\frac{p^3}{27} + \frac{r^2}{4} = 0$ எனக் காட்டுக.
- 2. (a) $x^2 (2a+1)x + 2$ ஐ (x-3) ஆல் வகுக்கும்போது பெறப்படும் மீதியும் $ax^2 3x + 4$ ஐ (x-2) ஆல் வகுக்கும்போது பெறப்படும் மீதியும் சமமெனின் a ஐக் காண்க.
 - (b) ax^3+bx^2+cx+d எனும் பல்லுறுப்பியின் ஒருகாரணி $\left(x^2+k^2\right)$ எனின் $\frac{a}{b}=\frac{c}{d}$ எனக் காட்டுக.
- 3. (a) $P(x) = x^3 + 2x^2 x + 3$ ஐ $(x^2 + 1)$ ஆல் வகுக்கும்போது ஈவு Q(x) மீதி R(x) ஆகும். Q(x), R(x) என்பவற்றைக் காண்க.
 - (b) $F(x) = x^n + kx^2 4$ எனும் பல்லுறுப்பியை (x-1) ஆல் வகுக்கும்போது மீதி -6 ஆகும். (x+2), F(x) இன் ஒரு காரணி ஆகும். n, k இன் பெறுமானங்களைக் காண்க.
- 4. (a) a, b என்பன சமமற்ற மெய் ஒருமைகளாயிருக்க. பல்லுறுப்பி f(x) ஐ (x-a)(x-b) ஆல் வகுக்கும்போது மீதி A(x-a)+B(x-b) ஆகும்.

$$A = \frac{f(b)}{b-a}$$
, $B = \frac{-f(a)}{b-a}$ எனக் காட்டுக.

b=a+h என எழுதி h o 0 எனக் கொண்டு a=b ஆக மீதி $f\left(a\right)+\left(x-a\right)$ $f^{1}(a)$ எனக் காட்டுக.

இங்கு
$$x=a$$
 இல் $\frac{d}{dx}[f(x)]=f^1(a)$ ஆகும்.

- (b) $x^3 + 3px + q$ இன் ஒரு காரணி $(x a)^2$ எனும் வடிவில் இருப்பின் $q^2 + 4p^3 = 0$ என நிறுவுக. மற்றைய காரணி (x 2a) எனவும் காட்டுக.
- 5. (a) $ax^3 + bx^2 + cx + d$ என்பது ஒரு நிறை கனம் எனின், $b^2 = 3ac$, $c^2 = 3bd$ என நிறுவுக.
 - (b) $x^6 + 6x^5 40x^3 + px q$ என்பது ஒரு நிறைகனம் எனின், $p = 96, \ q = 64$ எனக் காட்டுக.
 - (c) $2x^2 3xy 7xz 2y^2 + 4yz + 6z^2$ = (ax + by + cz)(lx + my + nz) எனின் a, b, c, l, m, n என்பவற்றைக் காண்க.
- 6. (a) $x^2 + 1$ ஆல் வகுபடக் கூடிய ஆனால் $(x-1)^2(x+1)$ ஆல் வகுக்கும்போது -10x + 6 ஐ மீதியாகத் தரக்கூடிய x இன் நாலாம் படி மெய் பல்லுறுப்பி ஒன்றைக் காண்க.
 - (b) $x^3 x^2 + 6x + 24 = 0$, $x^2 x + b = 0$ ஆகிய இரு சமன்பாடு களுக்கும் ஒரு பொது மூலம் உண்டெனின் பொது மூலம், b என்பவற்றின் பெறுமானங்களைக் காண்க.
- 7. $(x^2 k)$ என்பது $f(x) \equiv 2x^4 + (3k 4)x^3 + (2k^2 5k 5)x^2 + (2k^3 2k^2 3k 6)x + 6$ இன் ஒரு காரணியாக இருக்கத் தக்கதாக k இன் பெறுமானங்களைக் காண்க.
 - k இன் ஒவ்வொரு பெறுமானத்திற்கும் $f\left(x\right)$ இன் எஞ்சிய காரணிகளைக் காண்க.

8. பகுதிப்பின்னங்களாக்குக.

(i)
$$\frac{4x^2}{(2x-1)^3}$$

(iii)
$$\frac{x}{x^4 - 1}$$
 (iv) $\frac{2x^3 - 18x - 14}{x^3 - 2x^2 - 5x + 6}$

(ii) $\frac{3x+6}{(x-1)(x^3-1)}$

9. (a) $a^3 + b^3 + c^3 - 3abc$ இன் ஒரு காரணி (a + b + c) ஆகுமெனக் காட்டுக. a + b + c = 0 எனின், $a^3 + b^3 + c^3 = 3abc$ என உய்த்தறிக. இதிலிருந்து $(x - y)^3 + (y - z)^3 + (z - x)^3$ இன் காரணிகளை எழுதுக.

(b)
$$\frac{x^2}{(x-a)(x-b)(x-c)} = \frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-c)}$$
ஆகுமாறு A, B, C என்பவற்றை a, b, c இல் காண்க. இதிலிருந்து
$$\frac{a}{(a-b)(a-c)} + \frac{b}{(b-c)(b-a)} + \frac{c}{(c-a)(c-b)} = 0$$
என உய்த்தறிக.

3. இருபடிச் சமன்பாடுகள்

1. $x^2-px+q=0$ எனும் சமன்பாட்டின் மூலங்கள் lpha, eta எனின்,

$$\alpha^2 \left(\frac{\alpha^2}{\beta} + \beta \right) + \beta^2 \left(\frac{\beta^2}{\alpha} + \alpha \right) = \frac{p}{q} (p^2 - 2q) (p^2 - 3q)$$

எனக் காட்டுக.

2. α , β என்பன $x^2 + px + 1 = 0$, γ , δ என்பன $x^2 + qx + 1 = 0$ இன் மூலங்களாக இருப்பின்

$$(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta) = q^2 - p^2$$
 எனக் காட்டுக.

3. α , β என்பன $x^2-px+q=0$ இன் மூலங்களாகவும், γ , δ என்பன $x^2-rx+s=0$ இன் மூலங்களாகவும் இருப்பின்,

$$(\alpha - \delta)(\beta - \delta) + (\beta - \delta)(\alpha - \delta) = 2(q + s) - pr$$
 எனக் காட்டுக.

4. $ax^2 + bx + c = 0$ இன் மூலங்கள் α, β எனின், $(\alpha, \beta \neq 0)$

$$(a\alpha + b)^{-3} + (a\beta + b)^{-3} = \frac{b^3 - 3abc}{a^3 c^3}$$
 எனவும்,

$$\alpha^4 - \alpha^2 \beta^2 + \beta^4 = \frac{b^4 - 4ab^2c + a^2c^2}{a^4}$$
 எனவும் காட்டுக.

5. α , β என்பன $ax^2+bx+c=0$ இன் மூலகங்களாகவும் $\alpha+k$, $\beta+k$ என்பன $px^2+qx+r=0$ இன் மூலங்களாகவும் இருப்பின்

$$\frac{b^2-4ac}{a^2}=\frac{q^2-4pr}{p^2}$$
 எனக் காட்டுக.

6. α , β என்பன $x^2 - p(x+1) - c = 0$ இன் மூலங்கள் எனின், $(\alpha+1)(\beta+1) = 1-c$ எனக் காட்டுக.

இதிலிருந்து
$$\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + c} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + c} = 1$$
 எனக் காட்டுக.

- 7. $x^2+px+q=0$, $x^2+ax+b=0$ எனும் சமன்பாடுகளுக்கு ஒரு பொதுமூலம் இருப்பின், அது $\dfrac{q-b}{a-p}$ அல்லது $\dfrac{pb-qa}{a-b}$ எனக் காட்டுக.
- 8. $ax^2 + bx + c = 0$ இன் ஒரு மூலம் மற்றையதன் வர்க்கமெனின்,

(i)
$$b^3 + a^2c + 3ac^2 - 3abc = 0$$

- (ii) $a(c-b)^3 c(a-b)^3 = 0$ எனக் காட்டுக.
- 9. $x^2-cx+d=0$, $x^2-ax+b=0$ என்பன பொதுமூலம் ஒற்றைக் கொண்டிருப்பின் a(b+d)=2bc என நிறுவுக.
- 10. $ax^2 + 2bx + c = 0$ எனும் சமன்பாடு மெய்மூலங்களையுடையது எனவும் m, n என்னும் மெய்யெண்கள் $m^2 > n > 0$ ஆகவும் உள்ளன எனத் தரப்படின் $ax^2 + 2mbx + nc = 0$ மெய்மூலங்களைக் கொண்டிருக்கும் என நிறுவுக.
- 11. (a) α , β என்பன $3x^2 + 2x + 5 = 0$ இன் மூலங்கள் எனின், $3(\alpha^3 + \beta^3) + 2(\alpha^2 + \beta^2) + 5$ இன் பெறுமானத்தைக் காண்க.
 - **(b)** $k(x^2 + 4) + 2x 3 = 0$ இன் மூலங்கள் மெய்யாகுமாறு இன் k பெறுமானங்களைக் காண்க.
- 12. $ax^2 + bx + c = 0$ இன் மூலங்கள் α , β எனின் $x + 2 + \frac{1}{x} = \frac{b^2}{ac}$ இன் மூலங்களை α , β இல் காண்க.
- 13. (a) $x^2 + 2(p+2)x + (2p+7) = 0$ என்னும் சமன்பாட்டின் மூலங்கள் α, β ஆகும்.

- (i) α, β மெய்யாக இருக்கத்தக்கதான P இன் பெறுமான வீச்சுக்களைக் காண்க.
- (ii) $\left\{\alpha^3 + 2(p+2)\beta^2\right\} + \left\{\beta^3 + 2(p+2)\alpha^2\right\}$ இன் பெறுமானத்தை p இன் உறுப்புக்களில் காண்க.
- 14. α , β என்பன $\lambda(x^2-x)+2(x+1)=0$, $\lambda \neq 0$ எனும் இருப்டிச் சமன்பாட்டின் மூலங்களாகும்.

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$
 ஐ λ இன் உறுப்புக்களில் காண்க.

$$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=-3$$
 ஆகுமாறு λ இன் இரு பெறுமானங்கள் λ_1 , λ_2 எனின்,

$$\lambda_1$$
 , λ_2 என்பவற்றைத் தனியாகக் காணாது $\frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1} = -1$ எனக் காட்டுக.

- 15. $(x-1)^2=a^2\,(x+a)$ என்னும் இருபடிச் சமன்பாட்டைத் தீர்க்க. a இன் எப் பெறுமானங்களுக்கு $(x-a)^2=x(a-1)^2=0$ என்னும் சமன்பாட்டுக்கும் மேலே தரப்பட்ட சமன்பாட்டுக்கும் பொது மூலங்கள் உண்டெனக் காண்க.
- 16. $ax^2 + 2bx + c = 0$; $y = x + \frac{1}{x}$ எனின், $acy^2 + 2b(c+a)y + (a-c)^2 + 4b^2 = 0$ என நிறுவுக.

$$\alpha$$
 , β என்பன $ax^2+2bx+c=0$ இன் மூலங்கள் எனின்

$$\left(\alpha + \frac{1}{\alpha}\right)^2 + \left(\beta + \frac{1}{\beta}\right)^2 = \frac{4b^2(a^2 + c^2) - 2ac(a - c)^2}{a^2c^2}$$

எனக் காட்டுக.

17. (a) α , β என்பன $(x-a)(x-b)+\lambda=0$ எனும் சமன்பாட்டின் மூலங்கள் எனின் a, b என்பன $(x-\alpha)(x-\beta)-\lambda=0$ இன் மூலங்கள் ஆகும் எனக் காட்டுக.

(b)
$$x+1=\lambda x\left(1-\lambda x\right)$$
 என்னும் சமன்பாட்டின் மூலங்கள் α , β ஆகவும்,
$$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\pi-2$$
 எனும் சமன்பாட்டிலிருந்து λ_1 , λ_2 இன் பெறுமானங்கள் தீர்மானிக்கப்படுகிறது எனின் $\left(\frac{\lambda_1}{\lambda_2}+\frac{\lambda_2}{\lambda_1}\right)=4\left(\frac{\pi+1}{\pi-1}\right)$ என நிறுவுக.

18.
$$ax^2+qx+r=0$$
 இன் மூலங்கள் γ , β எனவும் $a^1x^2+b^1x+c^1=0$ இன் மூலங்கள் α , δ எனவும் இருப்பின்,
$$\frac{\alpha}{r}+\frac{\beta}{\gamma}, \frac{\alpha}{\delta}+\frac{\beta}{\gamma}$$
 என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாடு
$$a^2c^{1^2}x^2-abb^1c^1x+a^1b^{1^2}c^1+ab^2c-4aa^1cc^1=0$$
 எனக் காட்டுக.

19. $px^2+qx+r=0$ இன் மூலங்கள் α , β எனவும் $qx^2+rx+p=0$ இன் மூலங்கள் γ , δ எனவும் இருப்பின்,

(i)
$$(\alpha - \gamma)(\alpha - \delta) = \frac{(q\alpha^2 + r\alpha + p)}{q}$$

(ii)
$$(\alpha - \gamma)(\alpha - \delta)(\beta - \gamma)(\beta - \delta) = \frac{p^3 + q^3 + r^3 - 3pqr}{pq^2}$$

எனக் காட்டுக.

இதிலிருந்து இரு சமன்பாடுகளும் பொதுமூலம் ஒன்றைக் கொண்டிருப்பதற்கான நிபந்தனை p+q+r=0 ஆகும் எனக் காட்டுக.

$$(p \neq q, \neq \gamma)$$

4. தெருபடிச் சார்புகள்

- 1. $f(x) = kx^2 + 2x + (4k 3)$ ஆகும். k ஒரு மாறிலி
 - (i) f(x) = 0 இன் மூலங்கள் மெய்யாக இருக்கத்தக்க k இன் பெறுமானங் களைக் காண்க.
 - (ii) x இன் எல்லா மெய்ப் பெறுமானங்களுக்கும் f(x) > 0 ஆயிருக்கும் k இன் பெறுமானங்களைக் காண்.
- 2. $g(x) = a 2x x^2$; இங்கு *a* ஒரு மபறிலி
 - (i) g(x) = 0. மெய் மூலங்களைக் கொண்டிருப்பதற்கான a இன் பெறுமானங் களைக் காண்க.
 - (ii) $g(x) = p\left\{(x+q)^2 + r\right\}$ எனும் வடிவில் எழுதி g(x) இன் உயர்வுப் பெறுமானத்தைக் காணக். இதிலிருந்து x இன் எல்லாப் பெறுமானங்களுக்கும் g(x) < 0 ஆகும் a இன் பெறுமானங்களைக் காண்க.
- 3. $p \ge \frac{1}{9}$ எனின், x இன் எல்லாப் பெறுமானங்களுக்கும் $\frac{x^2 + 3x}{px^2 1}$ எந்த ஒரு மெய்ப் பெறுமானத்தையும் எடுக்கும் எனக் காட்டுக.
- **4.** x மெய்யாக இருக்க $\dfrac{2x^2-5x+2}{x-1}$ எந்த ஒரு மெய்ப் பெறுமானத்தையும் எடுக்கும் எனக் காட்டுக.
- 5. $x^2 + y(2x + 3) + 4(x + 2) + (3y 5)$ ஒரு நிறை வர்க்கமெனின் y ஐக் காண்க.
- 6. x இலான இருபடிச் சார்பு ஒன்று x=2 ஆகும்போது பூச்சியமாகவும் x>2 ஆகும்போது நேராகவும், இழிவுப் பெறுமானம் -9 ஐ உடையதாகவும் இருக்குமாறு x^2+ax+b என்ற வடிவில் சார்பு ஒன்றினை அமைக்க.

- 7. எல்லா நேர்ப் பெறுமானங்கள் x,y இற்கும் $f(x,y) \equiv 2x^2 8xy + 11y^2 4x 4y + 14 \ge 0$ எனக் காட்டுக. x,y இன் எப் பெறுமானங்களுக்கு f(x,y) = 0 ஆகும்.
- 8. $\frac{x^2-2x+1}{\left(x^2-k\right)}$ எனும் சார்பின் உயர்வுப் பெறுமானம் 3 எனின், மாறிலி k இன் பெறுமானத்தைக் காண்க.

9.
$$F(x) = \frac{x(x+2)}{(x-2)(x-p)} (x \neq 2, p)$$

சார்பு $F\left(x
ight)$ எந்த ஒரு மெய்ப் பெறுமானத்தையும் எடுக்கக் கூடியதாக p இன் வீச்சைக் காண்க.

p=1 எனின், இன் $F\left(x\right)$ அதிஉயர், அதிகுறைந்த பெறுமானங்களைக் காண்க.

- 10 x மெய்யாக இருக்க $b^2 > (a+c)^2$ எனின், சார்பு $\frac{ax^2 + bx + c}{cx^2 + bx + a}$ எந்த ஒரு மெய்ப்பெறுமானத்தையும் எடுக்கும் எனக் காட்டுக.
- 11. $f(x) = x^2 2x + 2$, $g(x) = 6x^2 16x + 19$ ஆகும். $f(x) + \lambda g(x)$ ஆனது $a(x+b)^2$ என்னும் வடிவில் இருக்குமாறு λ வின் பெறுமானங்களைக் காண்க. a, b இங்கு ஆகியன மெய் மாறிலிகள். இதிலிருந்து $f(x) = A(x-3)^2 + B(x+c)^2$ எனும் வடிவில் எடுத்துரைத்து

 $A,\ B,\ C$ ஆகியவற்றின் பெறுமானங்களைத் தருக.

 $g(x) = 10 A(x-3)^2 + 5B(x+c)^2$ எனக் காட்டுக. அதோடு $\frac{f(x)}{g(x)}$ இன் மிகச் சிறிய பெறுமானத்தையும், மிகப் பெரிய பெறுமானத்தையுங் காண்க.

12. x மெய்யாகவும் $0 < \lambda < 1$ எனவும் இருப்பின் $\dfrac{x^2 + 2x + \lambda}{x^2 + 4x + 3\lambda}$ எந்த ஒரு மெய்ப் பெறுமானத்தையும் எடுக்கும் எனக் காட்டுக.

5. சமனிலிகள்

- 1. (a) $\frac{x-1}{x+1} > 2$ ஆக இருக்கும் x இன் பெறுமானங்களின் தொடையைக் காண்க.
 - (b) தீர்க்க : $|5x+1| < y \le x^2 + 5$ (அட்சரகணித முறையில்) $|5x+1| \le y \le x^2 + 5$ ஆக உள்ள பிரதேசத்தை வரிப்படம் ஒன்றில் நிழற்றுக.
- 2. (a) f(x) = x(x-1)(x-2) ஆகும். (i) f(x) > 0 (ii) f(x) > 2(x-2) ஆகுமாறுள்ள x இன் பெறுமானங்களின் தொடையைக் காண்க.
 - (b) ஒரே அச்சுக்களில் y = |x 1|, y = x என்பவற்றின் வரைபுகளை வரைக. இதிலிருந்து |x 1| > x ஆக அமையும் x இன் பெறுமானங் களின் தொடையைத் தீர்மானிக்க.
- 3. (a) f(x) = x 1, g(x) = x + 1 என்க. பின்வரும் ஒவ்வொருதொடையையும் ஆயிடை வடிவில் தருக.
 - (i) $\left\{ x \in R : f(x) < g\left(\frac{1}{2}\right) \right\}$
 - (ii) $\{x \in R : |f(x)| + |g(x)| = 2\}_{\hat{\xi}}$
 - (b) பிரதேசம் $\left\{ (x, y) \colon 2|x-1| \le y \le \sqrt{4-x^2} \right\}$ ஐ வரிப்படம் ஒன்றில் காட்டுக.
- 4 (a) $\frac{1}{x-1}+\frac{2}{x+1}\geq 1$ ஐத் திருப்தியாக்கும் x இன் பெறுமானங்களின் வீச்சைக் காண்க.
 - (b) ஒரே ஆள்கூற்றச்சுக்களைப் பயன்படுத்தி y=3 |x-1|, y=|x|+|x-1| என்பவற்றின் வரைபுகளை ஒரே வரிப்படத்தில் வரைக. $\left\{ \begin{pmatrix} x, & y \end{pmatrix} : 3 |x-1| \le y \le |x| + |x-1| \right\}$ என்பதால் தரப்படும் பிரதேசத்தின் பரப்பளவைக் காண்க.

- **4.** (a) $\frac{2}{x-3} \le \frac{1}{x-2}$ என்ற சமனிலி திருப்தியாக்கும் x இன் பெறுமானங்களின் தொடையைக் காண்க.
 - (b) y = |x| + 8, $y = x^2 4$ ஆகிய இருவரைபுகளும் இடைவெட்டும் புள்ளிகளின் ஆள்கூறுகளைக் காண்க. ஒரே ஆள்கூற்றச்சுக்களைப் பயன்படுத்தி மேலே தரப்பட்ட இரு வரைபுகளையும் வரைக. பிரதேசம் $\{(x, y): x^2 4 \le y \le |x| + 8\}$ ஐ நிழற்றுக.

 இரு நேரெண்களின் கூட்டலிடை, அவ்வெண்களின் பெருக்கலிடைக்கு சமமாகும் அல்லது பெரிதாகும் எனக் காட்டுக.

$$a,\ b,\ c>0$$
 ஆயிருக்க, $\Big(a+b+c\Big)\Big(rac{1}{a}+rac{1}{b}+rac{1}{c}\Big)\geq 9$ எனக் காட்டுக.

மேலும் a+b+c=1 எனின், (1-a), (1-b), (1-c) நேரானவை எனக் காட்டுக. மேலே பெற்ற முடிபைப் பயன்படுத்தி,

$$\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} \ge \frac{3}{2}$$
 என உய்த்தறிக.

6. (a) a, b என்பன மெய்யெண்கள் எனின்,

$$(a^2+b)^2+(b^2+a)^2<(a^2+b^2+1)^2$$
 எனக் காட்டுக.

(b) x, a, b>0 ஆகவும், a>b ஆகவும், $x^2>ab$ ஆகவும், இருப்பின்

$$\frac{x+a}{\sqrt{x^2+a^2}} - \frac{x+b}{\sqrt{x^2+b^2}} > 0$$
 எனக் காட்டுக.

- 7. (a) x, y நேரெனின் $\frac{x}{1+x} + \frac{y}{1+y} > \frac{x+y}{1+x+y}$ எனக் காட்டுக.
 - (b) $7-x>2\left|x^2-4\right|$ ஆக இருக்கும் x இன் பெறுமானங்களைக் காண்க.
 - (c) x>|3x-8| ஆகுமாறுள்ள x இன் பெறுமானங்களைக் காண்க.
- 8. (a) |5x-8| < 3x-2 ஆக இருக்கும் x இன் பெறுமானத் தொடையைக் காண்க.

- (b) y = |3x-2| -3x, y = |4-6x| -6x ஆகிய இரு வரைபுகளையும் ஒரே வரிப்படத்தில் வரைக. வரைபிலிருந்து |3x-2| -3x > |4-6x| -6x ஆக இருக்கும் x இன் பெறுமானங்களின் தொடையைக் காண்க.
- 9. (a) ஆள்கூற்று அச்சுக்களை வெட்டும் புள்ளிகளைத் தெளிவாகக் காட்டி $y=3-\left|1-2x\right|$ இன் வரைபை வரைக. இவ்வரைபினைப் பயன்படுத்தி $y=\left|3-\left|1-2x\right|\right|$ இன் வரைபை வேறோர் ஆள்கூற்றச்சுக்களில் வரைக. வரைபிலிருந்து $\left|3-\left|1-2x\right|\right|\geq 2$ ஆகும் x இன் பெறுமானங்களைக் காண்க.
 - (b) $x^2-x-1\leq 0$ ஆக இருக்கும் x இன் பெறுமானங்களைக் காண்க.
- 10. (a) $\frac{2}{x} \le x-1$ ஐத் திருப்தியாக்கும் x இன் பெறுமானங்களைக் காண்க. $\left[-1 \le x < 0, \text{ அல்லது } x \ge 2 \right]$
 - (b) ஒரே அச்சுக்கள் குறித்து y=x+1, $y=\left|x\right|-x-1$ என்பவற்றின் வரைபுகளை வரைக. வரைபிலிருந்து $\dfrac{\left|x\right|}{x+1}-1\leq 0$ ஆகும். x இன் பெறுமானங்களைக் காண்க. $\left[x<-1\right]$ அல்லது $x>-\frac{1}{2}$
- 11. (a) $\sqrt{3-2x} < \sqrt{3x-2}$ ஆக உள்ள x இன் பெறுமானங்களைக் காண்க.
 - (b) A , B இன் எல்லாப் பெறுமானங்களுக்கும் $\sin A \sin B \leq \sin^2 rac{1}{2} \left(A + B
 ight)$ என நிறுவுக.

 $A,\ B,\ C,\ D$ எல்லாம் 0 இற்கும் π இற்குமிடையில் இருப்பின் $\sin A \cdot \sin B \cdot \sin C \cdot \sin D \leq \left\{ \sin \left(\frac{A+B+C+D}{A} \right) \right\}^4$

எனக் காட்டுக.

பலவினப் பயிற்சி

ு. (i) α , β என்பன $x^2 + ax + b = 0$ என்னும் இருபடிச்சமன்பாட்டின் மூலங்கள் ஆகும், இங்கு a யும் b யும் ஒருமைகள்.

$$S_{\mathbf{o}}=2$$
 ஆகவும், $S_{n}=\alpha^{n}+\beta^{n}, \quad n=1,2,3...$ ஆகவுமிருப்பின் $S_{n}+a\cdot S_{n-1}+b\cdot S_{n-2}=0 \quad n=2,3...$ ஆகும் எனக்காட்டுக.

- இதிலிருந்து a,b இன் உறுப்புக்களில் $\alpha^5+\beta^5$ ஐயும் $\frac{1}{\alpha^5}$, $\frac{1}{\beta^5}$ என்பவற்றை மூலங்களாகவுடைய இருபடிச்சமன்பாட்டையும் காண்க.
- (ii) n > 2 என்பது ஒன்றை நேர்நிறைஎண் எனின், $x^n + 2$ என்பது, $x^2 1$ ஆல் வகுக்கப்படும்போது பெறப்படும் மீதி x + 2 ஆகும் எனக்காட்டுக. (1982)
- 2. (i) x இன் மெய்ப்பெறுமானங்களுக்கு $O எனின் <math>\dfrac{x-p}{x^2-2x+p}$ எனும் சார்பு எல்லா பெறுமானங்களையும் கொள்ள முடியும் எனக்காட்டுக. p=3/4 ஆகும்போது ஒரு வரைபால் விளக்குக.
 - (ii) x^2+1 ஆல் வகுபடக்கூடிய ஆனால் $(x-1)^2 (x+1)$ ஆல் வகுக்கும்போது -10x+6 ஐ மீதியாகத் தரக்கூடிய x இலான நாலாம்படி மெய்ப்பல்லூறுப்பியொன்றைக் காண்க.

(1983)

3. (i) x + y + z = 0 ax + by + cz = 0 $x^3 + y^2 + z^3 = 3(b - c)(c - a)(a - b)$ என அமையும் வண்ணம் x, y, z என்பன மெய்மாறிகள் எனின், மெய் a, b, c இற்கு $a \neq b \neq c$

என அமையுமெனின்
$$\frac{x}{b-c}=\frac{y}{c-a}=\frac{z}{a-b}=1$$
 எனக்காட்டுக.

$$\left[(b-c)^3 + (c-a)^3 + (a-b)^3 \right] \equiv 3(b-c)(c-a)(a-b)$$

என்பதைப் பயன்படுத்தலாம். ി

241

(ii)
$$f(x) = px^4 + qx^3 + rx^2 + sx + t$$
 ஆகும். $f(x)$ என்பது $\binom{x^2 + a}{2}$ ஆல் வகுக்கப்பட்டால் மீதி $\binom{x^2 + a}{2} = rx + t$ எனக்காட்டுக. $\binom{x^2 + a}{2} = rx + t$ எனக்காட்டுக. $\binom{x^2 + a}{2} = rx + t$ என்பதன் மூலங்கள் எனின், $\binom{x^2 + a}{2} = rx + t + t$ எனக்காட்டுக.

(1984)

- **4.** (ii) $x^2 + px + 1$ என்பது $ax^5 + bx^2 + c$ என்பதன் காரணி எனின் $(a^2 - c^2)(a^2 - c^2 + bc) = a^2b^2$ எனநிறுவுக.
 - இந்நிபந்தனை திருப்தி செய்யப்பட்டால் x^2+px+1 என்பது $c\,x^5+b\,x^3+a$ என்பதன் ஒரு காரணியாகும் எனவும் காட்டுக.

(1985)(i) ஓர் இருபடிச் சமன்பாட்டின் மூலங்களின் கூட்டுத்தொகை, பெருக்கம்

5. ஆகியவற்றிற்கான கோவைகளை அதன் குணகங்களில் பெறுக. α, β என்பன, $x^2+px+1=0$ என்னும் சமன்பாட்டின் மூலங்கள் ஆயின் $lpha + \lambda, \; eta + \lambda$ என்பவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாட்டைக் காண்க. இங்கு λ ஓர் ஒருமையாகும். மேலும் γ, δ என்பன $x^2 + qx + 1 = 0$ எனும் சமன்பாட்டின் மூலங்கள் எனின் $(\alpha + \gamma)(\beta + \gamma)(\alpha + \delta)(\beta - \delta) = q^2 - p^2$ ஆகுமென நிறுவுக.

(1987)

(i) இருபடிச் சமன்பாடு ஒன்றின் மூலங்களின் கூட்டுத்தொகைக்கும், பெருக்கத்திற்கும் உரிய கோவைகளை அதன் குணகங்களின் சார்பில் Quigues. (a+x)(b+x)-c(a+x)-d(b+x)=0 இன் மூலங்கள் α , β எனின், $(\alpha - \beta)^2 = (a - b + c - d)^2 + 4cd$ எனக்காட்டுக. a,b,c,d ஆகியன மெய்யாகவும் c,d ஆகிய இரண்டும் நேராகவும் அல்லது மறையாகவும் இருப்பின் lpha, eta ஆகியன மெய்யானவை என்பதை உய்த்தறிக். 242

(ii) a>0 ஆகவும். $b^2<4ac$ ஆகவுமிருப்பின் ax^2+bx+c என்னும் கோவையானது x இன் மெய்ப் பெறுமானங்கள் யாவற்றிற்கும் நேரானது எனக் காட்டுக.

$$(x^2 - x - 2)(x^2 + x + 1)(x - 3)$$
 என்னும் கோவை நேராக இருக்கும் x இனுடைய பெறுமானங்களின் வீச்சைக் காண்க.

(1988)

 (i) இரு நேர்எண்களின் கூட்டலிடையானது அவ்வெண்களின் பெருக் கலிடையிலும் பெரியது அல்லது பெருக்கலிடைக்குச் சமம் எனக்காட்டுக. இதிலிருந்து அல்லது வேறுவிதமாக n>r≥0 இற்கு
 n+1/2 ≥ √(n-r)(r+1) என நிறுவுக.

> யாதாயினும் ஒருநிறையெண் $n\geq 1$ இற்கு $\left(n+1\right)^n\geq 2^n$ n ! என்பதை உய்த்தறிக.

- (ii) $ac x^2 b(c + a)x + (c + a)^2 = 0$ எனும் சமன்பாட்டின் மூலங்களை, $ax^2 + bx + c = 0$ எனும் சமன்பாட்டின் மூலங்கள் α , β இன் சார்பில் எடுத்துரைக்க. இங்கு a,b,c ஆகியன மாறிலிகள்.
- (iii) $\frac{x^2 + 9x 20}{x^2 11x + 30} \ge -1$ என்னும் சமனிலி உண்மையாக இருக்கும் x இனுடைய் பெறுமானங்களின் வீச்சைக் காண்க.

(1989)

8. (i) (x^2-k) என்பது $f(x) \equiv 2x^4+(3k-4)x^3+(2k^2-5k-5)x^2+(2k^3-2k^2-3k-6)x+6$ இன் வகுத்தியாக இருக்கத் தக்கதாக k இன் பெறுமானங்களைக் காண்க. k இன் ஒவ்வொரு பெறுமானத்திற்கும் நேரொத்த f(x) இன் எஞ்சிய காரணிகளைக் காண்க.

(ii)
$$x^2 + y^2 + z^2 - yz - zx - xy = \frac{1}{2} \left\{ (y-z)^2 + (z-x)^2 + (x-y)^2 \right\}$$

$$x = b + c - a$$
, $y = c + a - b$, $z = a + b - c$ எனின் $x^3 + y^3 + z^3 - 3xyz = 4\left(a^3 + b^3 + c^3 - 3abc\right)$ என்பதைக் காட்டுக.

$$\left[x^{3}+y^{3}+z^{2}-3xyz\equiv\left(x+y+z\right)\left(x^{2}+y^{2}+z^{2}-xy-yz+zx\right)
ight.$$
 என்பதைப் பயன்படுத்தலாம். $\left]$ (1989)

- 9. (i) p,q என்பன $x^2 + 2kx + k + 2 = 0$ என்னும் சமன்பாட்டின் மூலங்கள். இங்கு k ஒரு மாறிலி.
 - (a) $(p-q)^2 = 4(k^2-k-2)$ எனக்காட்டுக. இதிலிருந்து மூலங்கள் 4 ஆல் வித்தியாசப்படும்படி உள்ள சமன்பாடுகளை மேற்தரப்பட்ட வடிவில் எழுதுக.
 - (b) $k \neq -2$ எனத்தரப்படின் $\frac{p^2}{q}$ ஐயும் $\frac{q^2}{p}$ ஐயும் மூலங்களாகக் கொண்ட சமன்பாட்டை அமைக்க.
 - $1+rac{p^2}{q}$ ஐயும் $1+rac{q^2}{p}$ ஐயும் மூலங்களாக உடைய சமன்பாட்டையும் எழுதுக.
 - (ii) $\frac{(x+2)(3x-1)}{4x^3-3x+1} \ge 0$ என்னும் சமனிலி உண்மையாக இருப்பதற்குரிய x இன் பெறுமானங்களின் வீச்சைக் காண்க.

(1990)

- i 0. (i) a,b,c ஆகியன மெய்யெண்கள் எனின் $\left(a^2+b^2\right)x^2+2\left(a^2+b^2+c^2\right)x+b^2+c^2=0$ என்னும் சமன்பாட்டின் மூலங்கள் மெய்யானவை என நிறுவுக.
 - (ii) $ax^2 + bx + c = 0$; $a^1x^2 + b^1x + c^1 = 0$ என்னும் சமன்பாடுகளின்

மூலங்களின் விகிதங்கள் சமமெனின் $\frac{b^2}{ac} = \frac{b^{1^2}}{a^1 c^1}$ எனக்காட்டுக.

(iii) பின்வரும் சமனிலி வலிதாக இருக்கும்
$$x$$
 இன் பெறுமானங்களைக் காண்க.

$$\frac{1}{x+1} + \frac{2}{x+3} > \frac{3}{x+2}$$
 (1990 special)

- 11. (i) $x-4 < x(x-4) \le 5$ ஆக இருக்கும் x இன் பெறுமானங்களின் வீச்சைக் காண்க.
 - (ii) $y = \frac{1}{2} \left(e^x e^{-x} \right) + \frac{1}{2} n \left(e^x + e^{-x} \right)$ ஆகும்;

இங்கு n ஒருமாறிலி $n \ge 2$

 $t=e^{x}$ என இட்டு அல்லது வேறுவிதமாக

- (a) y யின் இழிவுப்பெறுமானம் $\sqrt{n^2-1}$ எனக்காட்டுக.
- (b) $k > \sqrt{n^2 1}$ எனின், சமன்பாடு y = k ஆனது, t யிற்கு இரு மெய் மூலங்களைக் கொண்டிருக்குமெனக் காட்டி, இம் மூலங்களைக் காண்க.
- (c) $k = \sqrt{2n \, (n+1)}$ ஆக இருக்கும்போது மேலே குறிப்பிட்ட இரு மூலங்களிலும் பெரியது $1 + \sqrt{\frac{2n}{n+1}}$ எனக்காட்டி சிறியமூலத்தைக் காண்க. மேலே குறிப்பிட்ட சந்தர்ப்பத்தில் $n \, (\geq 2)$ இன் பெறுமானம் எதுவெனிலும், சமன்பாடு y = k ஐக் திருப்தியாக்கும் x இன் இருமெய்ப்பெறுமானங்களும் எப்போதும் $\ln\left(\frac{2}{\sqrt{3}}-1\right)$ இற்கும் $\ln\left(\sqrt{2}+1\right)$ இற்குமிடையே இருக்கும் என்பதை உய்த்தறிக.

(1991)

- 12. (i) |2x+5|-|x+6| < 2 ஆக இருக்கும் x இன் மெய்ப்பெறுமானங்களின் தொடையைக் காண்க.
 - (ii) f(x) என்னும் சார்பானது $f(x) = \frac{e^{2x}-1}{e^{2x}+1}$ என்பதால் வரையறுக்கப்பட்டுள்ளது.

(a) எல்லா
$$x$$
 இற்கும் $|f(x)| < 1$ எனவும்

(b)
$$x = f(y)$$
 எனின், $y = \frac{1}{2} ln\left(\frac{(1+x)}{1-x}\right)$ எனவும் காட்டுக.

அத்தோடு,
$$y=f\left(x\right),\ y=\frac{1}{2}\ln\left(\frac{\left(1+x\right)}{1-x}\right)$$
 என்பவற்றின் வரைபுகள் ஒன்றையொன்று உற்பத்தியில் தொடுகின்றன எனவும் காட்டுக.

(1991 special)

13. (i) a, b என்பன மெய்யெண்கள் எனின்,

$$\left(a^2+b\right)^2+\left(b^2+a\right)^2<\left(a^2+b^2+1\right)^2$$
 statistic (6.5).

- (ii) x மெய்யாக இருக்க $\dfrac{x^2+2x+3}{x^2+3x+2}$ என்பது இரு நிலையான பெறுமானங்களுக்கிடையேயுள்ள பெறுமானத்தைக் கொண்டிருக்க மாட்டாது எனக் காட்டுக.
- (iii) $S = 3x^2 28x + 60$ எனவும், $S^1 = 5x^2 32x + 56$ எனவும் இருப்பின் $ps qs^1$ என்பது $r(x \alpha)^2$ என்னும் வடிவத்திலே

இருப்பதற்கான $\dfrac{p}{q}$ இன் பெறுமானங்களைக் காண்க.

இதிலிருந்து அல்லது வேறுவிதமாக

$$3x^2 - 28x + 60 = l(x - h)^2 + m(x - k)^2$$
 ஆகவும் $5x^2 - 32x + 56 = l^1(x - h)^2 + m^1(x - k)^2$ ஆகவும் இருப்பதற்கு l, m, l^1, m^1, h, k என்பவற்றைக் காண்க.

(1991 special)

14. (i) $t = x + \frac{1}{x}$ என எழுதுவதன் மூலம் $x^4 - 5x^3 + 8x^2 - 5x + 1 = 0$ என்னும் சமன்பாட்டின் எல்லா மூலங்களையும் காண்க.

- (ii) $E=x^4-4x^3+9x^2-10x+7$ என்க. E என்பது y^2+y+a என்னும் வடிவில் எழுதப்படலாம் எனக்காட்டுக; இங்கு a ஒரு மாறிலி ஆகவும், y ஆனது x^2+bx+c என்னும் வடிவத்திலும் உள்ளன. இங்கு b,c ஆகியன மாறிலிகளாகும். இதிலிருந்து x இன் எல்லா மெய்ப்பெறுமானங்களுக்கும் $E\geq 3$ எனக்காட்டுக.
- (iii) $\frac{1}{(x-2)(x-1)^3} = \frac{k}{(x-2)} + \frac{f(x)}{(x-1)^3}$ ஆகுமாறு k என்னும் ஒரு மாறிலியையும், x இன் ஒரு சார்பு f ஐயும் காண்க. f(x) ஐ (x-1) இல் ஒரு பல்லூறுப்பியாக எடுத்துரைக்க.

இதிலிருந்து $\frac{1}{(x-2)(x-1)^3}$ இன் பகுதிப்பின்னங்களைக் காண்க.

(1992)

15. (a) $x, y \neq 0$ ஆயிருக்க, x, y, λ, μ என்னும் மெய்க்கணியங்கள் $\frac{1}{x} + \frac{1}{y} = 2$, $x + y = \lambda$, $\frac{y}{x} = \mu$ என்னும் தொடர்புகளினால் இணைக்கப்பட்டுள்ளன. λ, μ என்பவற்றிற்கிடையேயுள்ள ஒரு தொடர்பைப் பெற்று, μ மெய்யாக இருப்பதற்கு λ வின் பெறுமானங்களின் தொடையைக் காண்க.

இதிலிருந்து $\lambda=3$ ஆக இருக்கும்போது $\frac{y}{x}$ ஐத் துணிக.

- (b) x,a,b>0 ஆகவும் a>b ஆகவும் $x^2>ab$ ஆகவும் இருக்கும்போது $\frac{x+a}{\sqrt{x^2+a^2}}-\frac{x+b}{\sqrt{x^2+b^2}}>0$ எனக்காட்டுக.
- (c) |2x-1| < 3x+5 ஆக இருக்கும் x இனுடைய பெறுமானங்களின் தொடையைக் காண்க. (1992)

16. (a)
$$x^2 - 11x + 30 \neq 0$$
 ஆகவும் $\frac{x^2 + 9x - 20}{x^2 - 11x + 30} \geq -1$ ஆகவும்

இருக்கும் x இன் பெறுமானங்களின் வீச்சைக் காண்க.

- (b) a, b, c, p, q, r ஆகியவை எல்லாம் நேரெனி_{ல்} $\left(\frac{p}{a} + \frac{q}{b} + \frac{r}{c}\right) \left(\frac{a}{p} + \frac{b}{q} + \frac{c}{r}\right) \ge 9$ எனக்காட்டுக.
- (c) |5 3x| ≥ 2 3x ஆக இருக்கும் x இன் பெறுமானங்களின் வீச்சைத் காண்க. (1993)
- 17. (a) $\frac{x^3}{(x-a)(x-b)(x-c)}$ என்பதை $k+\frac{A}{(x-a)}+\frac{B}{(x-a)}+\frac{C}{(x-c)}$ என்றும் வடிவில் எடுத்துரைக்க; இங்கு a,b,c எல்லாம் வேறு வேறானவை k,A,B,C ஆகிய மாறிலிகளைத் துணிக. $a=b\neq c$ என்னும் வகையையும் ஆராய்க. a,b,c,d ஆகியன யாவும் வேறு வேறானவையாய் இருக்கும் போது

$$\frac{a^3}{(a-b)(a-c)(a-d)} + \frac{b^3}{(b-c)(b-d)(b-a)} + \frac{c^3}{(c-d)(c-a)(c-b)} + \frac{d^3}{(d-a)(d-b)(d-c)} = 1$$
 என்பதை உய்த்தறிக.

(b) ஏகபாிமாணக் காரணிகள் இரண்டைக் காணப்பதன் மூலம் $\left(a-x\right)^4+\left(x-1\right)^4-\left(a-1\right)^4$ ஐக் காரணிப்படுத்துக. (1993)

18. (a) $x^2 > |5x+6|$ ஆக இருக்கும் x இன் பெறுமானங்களைக் காண்க.

(b) $x^3 + y^3 + z^3 - 3xyz = (x + y + z)[x^2 + y^2 + z^2 - xy - yz - zx]$

இதிலிருந்து எவையேனும் மறையில்லா $x,\ y,\ z$ இற் \emptyset $x^3+y^3+z^3\geq 3x\,yz$ என உய்த்தறிக.

நேரான p, q, r இற்கு

(i)
$$\frac{1}{3}(p+q+r) \ge \sqrt[3]{pqr}$$
 (ii) $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} \ge \frac{9}{p+q+r}$

(iii)
$$\frac{p}{q+r} + \frac{q}{r+p} + \frac{r}{p+q} \ge \frac{3}{2}$$
 என்பவற்றை உய்த்தறிக.

(1994)

- 19. (a) $x^2 + bx + c = 0$ என்னும் சமன்பாட்டின் மூலங்கள் α , β ஆகும். இங்கு b, c மெய்யானவை. α^3 , β^3 என்பவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டைப் பெறுக. $b^3 6b + 9 = 0$ ஆகவும் c = 2 ஆகவும் இருப்பின் α , β என்பவற்றின் மெய்ப்பெறுமானங்களைக் காண்க. இதிலிருந்து $y^3 6y + 9 = 0$ இன் மெய்மூலத்தைக் காண்க.
 - (b) x உம் k உம் மெய்யெனில் எல்லா x இற்கும் $0 \le \frac{(x+k)^2}{x^2+x+1} \le \frac{4}{3} \Big(k^2-k+1\Big)$ எனக்காட்டி $\frac{(x+2)^2}{x^2+x+1}$ என்னும் கோவையானது அதன் ஆகவும் சிறிய பெறுமானத்தையும் ஆகவும் பெரிய பெறுமானத்தையும் எடுக்கும் x இன் பெறுமானங்களைக் காண்க. (1994)
- **20.** (i) 7-x>2 $|x^2-4|$ ஆக இருக்கும் x இன் பெறுமானங்களைக் காண்க.
 - (ii) எந்த ஒரு நேர் x இற்கும் $x+\frac{1}{x}\geq 2$ எனக் காட்டுக. $a,\ b,\ c$ என்பன நேர் எண்கள் ் மேற்போந்த முடிவைப் பயன்படுத்தி $\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9$ எனக்காட்டுக.

a+b+c=1 எனில் (2-a), (2-b), (2-c) என்பவை நேரானவை எனக்காட்டுக.

$$\frac{a}{2-a} + \frac{b}{2-b} + \frac{c}{2-c} \ge \frac{3}{5}$$
 என்பதை உய்த்தறிக.

(1995)

21. (i) x, y என்பன மெய்யாக இருக்க,

$$2x^2 + 4xy + y^2 - 12x - 8y + 15 = 0$$
 எனில் x ஆனது $1 - \frac{1}{\sqrt{2}}$

இற்கும் $1+\frac{1}{\sqrt{2}}$ இற்கும் இடையே கிடக்க முடியாதெனவும், y ஆனது 1 இற்கும் 3 இற்குமிடையே கிடக்க முடியாதெனவும் காட்டுக.

- (ii) (a+b) என்பது $x^3-3abx-\left(a^3+b^3\right)=0$ என்னும் சமன்பாட்டின் ஒரு மூலம் ஆகும் என்பதை வாய்ப்புப்பார்க்க. $a,b\left(a\neq b\right)$ என்பன மெய்யாக இருப்பின் மேற்போந்த சமன்பாடு ஒரேயொரு மெய்மூலத்தைக் கொண்டிருக்கும் எனநிறுவுக. $x^3-6x-6=0$ என்னும் சமன்பாட்டை மேற்போந்த வடிவத்தில் எடுத்துரைக்து, அதற்கு ஒரேயொரு மெய்மூலம் உண்டெனத் தரப்பட்டிருக்க அதனைக் காண்க.
- **22.** (ii) $z \ge x$ ஆகவும் $a,\ b,\ x,\ z$ ஆகியன எல்லாம் நேராகவும் இருக்க, $x^2y=az+bz^3$ எனின் $y\ge 2\sqrt{ab}$ என நிறுவுக.
 - (iii) |3x-4|>2-5x ஆக இருக்கும் x இனுடைய பெறுமானங்களின் தொடையைக் காண்க. (1996)
- 23. (i) $ax^2 + bx + c = 0$ என்னும் சமனபாட்டின் மூலங்களான α , β என்பன மெய்யாயிருப்பதற்கான நிபந்தனை ஒன்றைக் காண்க. $a \neq 0$ ஆயிருக்க a, b, c ஆகியன மெய்மாறிலிகளாகும்.

$$\alpha + \beta = -\frac{b}{a}$$
 எனவும் $\alpha \beta = \frac{c}{a}$ எனவும் காட்டுக.

அத்துடன்
$$(4\alpha - 3\beta)(4\beta - 3\alpha) = \frac{49ac - 12b^2}{a^2}$$
 எனவும் காட்டி

$$12b^2 < 49\,a\,c < rac{49\,b^2}{4}$$
 எனின் eta ஆனது $rac{3lpha}{4}$ இற்கும் $rac{4lpha}{3}$ இற்கும் இடையே கிடக்கும் என்பதை உய்த்தறிக.

- (ii) $p \neq 0$ என்பதுடன் p, q, r மெய்மாறிலிகளாக இருக்க. $px^4 + qx^3 + rx^2 qx + p = 0$ என்னும் சமன்பாடானது y இல் ஓர் இருபடிச் சமன்பாடாக ஒடுக்கப்படலாம் எனக் காட்டுக. இங்கு $y = x \frac{1}{x}$ இதிலிருந்து x இலுள்ள மேற்குறித்த ச*்*ன்பாடு மெய் மூலங்களைக் கொண்டிருப்பதற்கு p, q, r என்பன திருப்தி செய்யும் நிபந்தனை ஒன்றைக் காண்க. (1996)
- **24.** (a) மெய்யான எல்லா a, b இற்கும் $a^2 + b^2 \ge \frac{1}{2} \left(a + b \right)^2$ எனக்காட்டுக. மேலே பெற்ற முடிபைப் பயன்படுத்தி அல்லது வேறுமுறையில் a + b + x = 1 $a^2 + b^2 + x^2 = 3$

என்னும் இரு சமன்பாடுகளும், மெய்யாவ a, b இற்குத் திருப்திப் படுத்தப்படாத மெய்யான x இன் பெறுமானத் தொடையைக் காண்க.

- (b) |5x-8| < 3x-2 ஆக இருக்கும் x இன் பெறுமானத் தொடையைக் கணிக்க.
- (c) a, b என்பன நேர் மாறிலிகளாக இருக்க b > a எனில் $y = \frac{x-a}{x^2+b^2}$ என்னும் கோவையானது மெய்யான x இற்கு எந்தப் பெறுமானத்தையும் கொள்ளலாம் எனக் காட்டுக. அத்துடன் a > b ஆயிருக்கும் போது y ஆனது குறித்த ஓர் ஆயிடையிற் கிடக்கும் பெறுமானங்கள் தவிர்ந்த எந்தப் பெறுமானத்தையும் கொள்ளலாம் எனக் காட்டுக.

(1997)

25. (b) α, β என்பன $x^2+qx+l=0$ என்னும் சமன்பாட்டின் மூலங்களாகவும், γ, δ என்பன $x^2+x+q=0$ என்னும் சமன்பாட்டின் மூலங்களாகவும் இருக்கட்டும்.

$$(\alpha - \gamma)(\beta - \gamma)(\alpha - \delta)(\beta - \delta) = (\gamma^2 + q\gamma + 1)(\delta^2 + \delta q + 1)$$

தரப்பட்டிருக்கும் இருபடிச்சமன்பாடுகள் இரண்டும் குறைந்த பட்சம் ஒரு பொது மெய்மூலத்தையேனும் கொண்டிருப்பதற்கான q இன் எல்லாப் பெறுமானங்களையும் துணிக. (1997)

251

26. (i) பின்வரும் ஒவ்வொரு சமனிலிக்கும் அதனைத் திருப்தி செய்யும் x இன் பெறுமானத் தொடையைத் துணிக.

(a)
$$x^3 + 3x^2 < x + 3$$

(
$$\beta$$
) $|x+2| + |x-3| < 7$

- (ii) $y=x^2-4x+3$, $x^2+y^2=4$ ஆகிய வளையிகளை ஒரே வரிப் படத்தில் பரும்படியாக வரைந்து $y \le x^2-4x+3$, $x^2+y^2 \le 4$ ஆகிய இரு சமனிலிகளும் திருப்திப்படுத்தும் பிரதேசத்தை நிழற்றிக் காட்டுக.
 - (b) "எதிர்ம**றுப்பு நிறுவ**ல்" முறையைப் பயன்படுத்தி $x^3 + 2x^2 + 2x + 2$ என்பது $x \pm n$ என்னும் வடிவத்திலுள்ள ஒரு காரணியைக் கொண்டிருக்கவில்லை எனக்காட்டுக. (1997)
- 27. (a) $y = \frac{x^2 1}{(x 2)(x \lambda)}$ எனத்தரப்பட்டுள்ளது. x ஆனது மெய்யாகவும் 2 இலிருந்தும் λ இலிருந்தும் வேறுபட்டும் இருக்கும்போது y ஆனது யாதாயினும் ஒரு மெய்ப்பெறுமானத்தை எடுப்பதற்கு λ இற்கான பெறுமானங்களின் வீச்சைக் காண்க.
 - (b) (i) *x, y* நேரெனின்,

$$\frac{x}{1+x} + \frac{y}{1+y} > \frac{x+y}{1+x+y}$$
 எனக்காட்டுக.

- (ii) $\frac{7}{x-5} < x+1$ ஆகும் x இன் பெறுமானங்களின் தொடையைக் காண்க. (1998)
- **28.** (a) a, b, c என்பன சமமில்லாத மூன்று எண்கள். x, y, z என்பன $x^2 = a + yz, \quad y^2 = b + zx, \quad z^2 = c + xy$ எனத் தரப்பட்டிருப்பீன் ax + by + cz = 0 ஆக இருந்தால் மாத்திரம் x + y + z = 0 ஆக மெனக் காட்டுக.

$$\left[x^{3} + y^{3} + z^{3} - 3xyz = (x + yz) = (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx)\right]$$

என்ற முடிவைப் பயன்படுத்தலாம்

(b) சமன்பாடு $x^2 + bx + c = 0$ இன் மூலங்கள் α , β எனின் $\alpha + \beta = -b$, $\alpha\beta = c$ எனவும் காட்டுக. α இலிருந்தும் -1 இலிருந்தும் வேறுபட்டயாதாயினும் ஒரு மெய்யெண் $\alpha = 1 + \frac{1}{p}$ ஆகவும் $\beta = 1 + \frac{1}{p+1}$ ஆகவும் இருப்பின் $(1+b+c)^2 = b^2 - 4c$ எனவும் $\alpha = 1 + \frac{1}{p}$ ஆகவும் இருப்பின் $\alpha = 1 + \frac{1}{p}$ ஆகவும் $\alpha = 1 + \frac{1}{p}$ ஆகவும் இருப்பின் $\alpha = 1 + \frac{1}{p}$ ஆகவும் $\alpha = 1 + \frac{1}{p}$ ஆகவும் இருப்பின் $\alpha = 1 + \frac{1}{p}$ ஆகவும் இருப்பின் $\alpha = 1 + \frac{1}{p}$ ஆகவும் $\alpha = 1 + \frac{1}{p}$ ஆகவும் இருப்பின் $\alpha = 1 + \frac{1}{p}$ ஆகவும் இருப்பின் $\alpha = 1 + \frac{1}{p}$ ஆகவும் $\alpha = 1 + \frac{1}{p}$ ஆகவும் இருப்பின் $\alpha = 1 + \frac{1}{p}$ ஆகவும் $\alpha = 1 + \frac{1}{p}$ ஆக

(1998)

- 29. (i) $\frac{x}{x-1} < \frac{x}{x-2}$ ஆக இருக்கும் x இன் பெறுமானங்களின் தொடையைக் காண்க.
 - (ii) y=3-|x+2| இனாலும் $y=\left|2x-3x^2+x^3\right|$ இனாலும் தரப்படும் வளையிகளை ஒரே வரிப்படத்தில் பரும்படியாக வரைக. s மனிலிகள் $3-|x+2|\geq y\geq \left|2x-3x^2+x^3\right|$ திருப்தியாக்கும் பிரதேசத்தை நிழற்றுக.
 - (c) எல்லா மெய் x இற்கும் x² +2x + 3 > 0 எனக்காட்டுவதற்கு எதிர் மறுப்பு முறை நிறுவலைப் பயன்படுத்துக.
 (1998)
- $x^3+y^3+z^3=3\left(p-q\right)\left(q-r\right)\left(r-p\right)$ ஆகவும் px+qy+rz=0 ஆகவும் x+y+z=0 ஆகவும் $x=q-r,\;y=r-p,\;z=p-q$ எனக்காட்டுக.

$$\left[x^3 + y^3 + z^3 - 3xyz = (x + y + z)\left[x^2 + y^2 + z^2 - xy - yz - zx\right]\right]$$
 என்பதைப் பயன்படுத்தலாம்.

(b) (n > 1) என்பது தரப்பட்ட ஒருநிறையெண் எனவும் t > 0 எனவும் கொள்க. t மாறும் போது $\binom{n+1}{t} + \frac{n-1}{t}$ இன் மிகச்சிறிய பெறுமானம் l ஐக் காண்க.

k>l ஆகும்போது சமன்பாடு $(n+1)t+\frac{n-1}{t}=k$ யின் இருமூலங்களும் நேரானவை எனக்காட்டுக.

 $(n+1)t+rac{n-1}{t}=\sqrt{8n\left(n+1
ight)}$ இன் பெரியமூலத்தை n இன் சார்பில் காண்க.

(1998)

- 31. (a) சமனிலி $\left| \frac{x+2}{x-3} \right| > 4$ ஐத் தீர்க்க.
 - (b) $f(x) = x^2 2x + 2$ ஆகவும். $g(x) = 6x^2 16x + 19$ ஆகவும் இருக்கட்டும்.

 $f(x) + \lambda g(x)$ ஆனது $a(x+b)^2$ என்னும் வடிவில் இருக்குமாறு λ வின் பெறுமானங்களைக் காண்க: இங்கு a. b ஆகியன மெய்மாறிலிகள். இதிலிருந்து $f(x) = A(x-3)^2 + B(x+c)^2$ வடிவத்தில் எடுத்துரைத்து A, B, C ஆகியவற்றின் பெறுமானங்களைத் தருக.

$$g(x) = 10A(x-3)^2 + 5B(x+c)^2$$
 எனக்காட்டுக.

அதோடு $\dfrac{f\left(x\right)}{g\left(x\right)}$ இன் மிகச்சிறிய பெறுமானத்தையும் மிகப்பெரிய பெறுமானத்தையும் காண்க.

രിത്വ കൺ

பயிற்சி 1.1

(1)
$$4x^2 + 20x + 25$$

(2)
$$9x^2 - 12x + 4$$

(3)
$$a^2 - 8a + 16$$

(4)
$$9a^2 - 24ab + 16b^2$$

$$\sqrt{(5)} \frac{4x^2}{9} + 2xy + \frac{9y^2}{4}$$

(6)
$$\frac{1}{x^2} - \frac{2}{xy} + \frac{1}{y^2}$$

(7)
$$4x^2y^2 + 4xyz + z^2$$

(8)
$$x^4 + 2x^2y^2 + y^4$$

(9)
$$x^6 - 2x^3y^3 + y^6$$

(10)
$$a^2x^2 - 2abxy + b^2y^2$$
 (11) $x^2 + 2 + \frac{1}{x^2}$

(11)
$$x^2 + 2 + \frac{1}{x^2}$$

(12)
$$x^2 - 2 + \frac{1}{x^2}$$

(13)
$$x^3 + 3x^2 + 3x + 1$$

(14)
$$x^3 - 3x^2 + 3x - 1$$

$$(15) 8x^3 + 36x^2 + 54x + 27$$

(16)
$$27x^3 + 108x^2y + 144xy^2 + 64y^3$$

(17)
$$27x^3 - 108x^2y + 144xy^2 - 64y^3$$

(18)
$$\frac{x^3}{8} + \frac{x^2y}{4} + \frac{xy^2}{6} + \frac{y^3}{27}$$

(19)
$$a^3b^3 - 6a^2b^2c + 12abc^2 - 8c^3$$

(20)
$$27a^3b^3 + 54a^2b^2cd + 3babc^2d^2 + 8c^3d^3$$

(21)
$$x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}$$

(22)
$$x^3 - 3x + \frac{3}{x} - \frac{1}{x^3}$$

(22)
$$x^3 - 3x + \frac{3}{x} - \frac{1}{3}$$
 (23) $x^6 + 3x^4y^2 + 3x^2y^4 + y^6$

$$(24) 9 x^9 - 3x^6 y^3 + 3x^3 y^6 - y^9$$

(25)
$$a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$$

(26)
$$a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$$

(27)
$$a^2 + 4b^2 + c^2 + 4ab - 4bc - 2ca$$

(28)
$$4a^2 + b^2 + c^2 + 4ab - 2bc - 4ca$$

(29)
$$a^2 + 4b^2 + 9c^2 + 4ab - 12bc - 6ca$$

(30)
$$4a^2 + b^2 + 9c^2 - 4ab + 6bc - 12ca$$

(31)
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{2}{ab} - \frac{2}{bc} + \frac{2}{ac}$$

(32)
$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{2}{ab} + \frac{2}{bc} - \frac{2}{ca}$$

(33)
$$\frac{1}{a^2} + \frac{4}{b^2} + \frac{1}{c^2} + \frac{4}{ab} - \frac{4}{bc} - \frac{2}{ca}$$

$$(37) 2, -20$$

$$(38) \ x^2 - y^2 = 4$$

(39)
$$ay = x^2 - 2a^2$$

(40)
$$y^2 = 4ax$$

பயிற்சி 1.2

(1)
$$(x+2)(x+3)$$

(2)
$$(x-2)(x-3)$$

(3)
$$(x+3)(x-2)$$

(4)
$$(x-3)(x+2)$$

(5)
$$(x+6)(x-1)$$

(6)
$$(x-6)(x+1)$$

$$(7) (x-6)(x-3)$$

(8)
$$(x+6)(x+3)$$

(9)
$$(x+6)(x-3)$$

(10)
$$(x-6)(x+3)$$

(11)
$$(3+x)(1-x)$$

(12)
$$(3+x)(2-x)$$

$$(13) (5-x)(3+x)$$

(14)
$$(7+x)(3-x)$$

(15)
$$[x + (a - i)][x - (a - 2)]$$

(16)
$$[x-(a-1)][x-(a-2)]$$

(17)
$$[x-(a-1)][x-(a-2)]$$

(18)
$$[x + (a-1)][x - (a+1)]$$

(19)
$$(x-a+1)(x+a+1)$$

(20)
$$(2x+1)(x-1)$$

(21)
$$(2x+1)(x-2)$$

(22)
$$(2x-3)(x+2)$$

(23)
$$(5x-1)(x+3)$$

(24)
$$(2x-3)(3x+5)$$

(25)
$$(2x-9)(3x+8)$$

(26)
$$(3x+7)(2x-5)$$

(27)
$$(2x-9)(3x-14)$$

(28)
$$(9x-7)(2x+3)$$

(29)
$$(x+2y)(x^2-2xy+4y^2)$$

(30)
$$(ab-4c)(a^2b^2+4abc+16c^2)$$

(31)
$$(1-5x)(1+5x+25x^2)$$

(32)
$$\left(x + \frac{1}{x}\right) \left(x^2 - 1 + \frac{1}{x^2}\right)$$

(32)
$$\left(x + \frac{1}{x}\right) \left(x^2 - 1 + \frac{1}{x^2}\right)$$
 (33) $\left(x - \frac{1}{x}\right) \left(x^2 + 1 + \frac{1}{x^2}\right)$

(34)
$$(xy-6z)(x^2y^2+6xyz+36z^2)$$

(35)
$$\left(\frac{a}{2} - \frac{b}{3}\right) \left(\frac{a^2}{4} + \frac{ab}{6} + \frac{b^2}{9}\right)$$

(36)
$$2(2x-3y)(4x^2+6xy+9y^2)$$

$$(37) (a-b)^2 (a^2+ab+b^2)$$

$$(38)(a+b)(a-b)(a^2+ab+b^2)$$

(39)
$$(2a-b)(3a+b)(a+b)$$

(40)
$$(x^2 + y^2 - xy)(x^2 + y^2 + xy)$$

(41)
$$(x^2 + 3y^2 - 2xy)(x^2 + 3y^2 + 2xy)$$

(42)
$$(x-y)(x-2y)(x^2+xy+y^2)(x^2+2xy+4y^2)$$

(43)
$$(1-3x+2y)(1+3x-2y)$$

(44)
$$(a-b)(a+b)(a^2+ab+b^2)(a^2-ab+b^2)$$

(45)
$$(a^2 + b^2)(a^4 - a^2b^2 + b^4)$$

(50)
$$a^8 - b^8$$

பயிற்சி 1.3

(1)
$$\frac{1}{a^2-1}$$

(1)
$$\frac{1}{a^2-1}$$
 (2) $\frac{x^2-xy+y^2}{x^2-y^2}$ (3) $\frac{1}{1-x^2}$

(3)
$$\frac{1}{1-x^2}$$

$$(4) \frac{2x}{(1-x^2)(1+x)}$$

(5)
$$\frac{9}{(x-2)(x+2)(x+3)}$$
 (6) $\frac{4-4x-2x^2}{(1-x^2)(1+x)}$

(6)
$$\frac{4-4x-2x^2}{(1-x^2)(1+x)}$$

(7)
$$\frac{29x-52}{(x-3)^2(2x+1)(2x-1)}$$

(8)
$$\frac{-30}{(3x-2)(2x-3)(x-4)}$$
 (9) 0 (10) $\frac{ac}{(a-b)(a-c)}$

(11)
$$\frac{2+x}{3-x}$$

(12)
$$\frac{1}{x-4}$$

(13)
$$\frac{x^2 - y^2}{xy}$$
 (14) $\frac{1}{a^2b^2}$

(14)
$$\frac{1}{a^2b^2}$$

(15)
$$\frac{2a+1}{2a-1}$$

பயிற்சி 1.4

(1)
$$1, \frac{1}{16}, \frac{1}{64}, \frac{1}{4}$$

(2)
$$\frac{1}{100}$$
, 3

(3) (i) 8,
$$\frac{1}{64}$$
 (ii) $\frac{5}{2}$, $\frac{3}{2}$

(4) 24,
$$\frac{3}{2}$$
, $\frac{1}{24}$, $\frac{i}{5}$

$$(5) \ \frac{-5}{2}, \frac{1}{16}, \frac{9}{2}, \frac{3}{4}$$

பயிற்சி 1.5

A. (1)
$$\pm 3$$
, $\pm \sqrt{3}$

(3)
$$2, \frac{1}{2}$$
 (4) $2, \frac{-20}{9}$

(7) 0, 6,
$$-3 + \frac{3\sqrt{2}}{2}$$
, $-3 - \frac{3\sqrt{2}}{2}$

(8)
$$1 \pm \sqrt{-1}$$

(9)
$$1, \frac{-2}{5}, \frac{1}{11} \left(-18 + 2\sqrt{15}\right)$$
 (10) $-3, -\frac{1}{3}, \frac{1}{2}, 2$

(10)
$$-3, -\frac{1}{3}, \frac{1}{2}, 2$$

(11) 2,
$$-\frac{1}{2}$$
, $\frac{1}{4} \left(17 \pm \sqrt{305} \right)$

(12) 1,
$$\frac{1}{2} \left(-3 \pm \sqrt{5} \right)$$

(13)
$$\frac{1}{27}$$
, 8

(15)
$$-3, \frac{1}{3}, 2, -\frac{1}{2}$$

(16)
$$1, \frac{1}{2} \left(-3 \pm \sqrt{5} \right)$$

(17) 3,
$$-\frac{1}{3}$$
, $5 \pm \sqrt{24}$

(18) 3,
$$\frac{43}{6}$$

(19) 5,
$$\frac{4}{3}$$

(20) 4,
$$\frac{484}{169}$$

(21)
$$0, -1, \frac{1}{2} \left(1 \pm \sqrt{105}\right)$$
 (22) $\frac{1}{4} \left(5 \pm \sqrt{145}\right) \frac{1}{4} \left(5 \pm \sqrt{-15}\right)$ (23)

(24) 4, -1 (25) 2, 3 (26)
$$\pm 2, \pm \sqrt{-10}$$
 (27) $-2, -4, -3 \pm \sqrt{-5}$

B. (1)
$$x = a - b$$
, $y = b - a$ (2) $x = 5$, $y = 4$ (3) $x = \frac{5}{2}$, $y = -\frac{3}{2}$, $x = -\frac{3}{2}$, $y = -\frac{5}{2}$

(4)
$$x = 3$$
, $y = -2$, $x = -\frac{30}{11}$, $y = \frac{142}{52}$ (5) $x = -\frac{1}{2}$, $y = \frac{7}{4}$, $x = -1$, $y = 2$

(6)
$$x = \pm 3$$
, $y = 2$, $x = -3$, $y = 2$, $x = \pm \frac{1}{9}\sqrt{1169}$, $y = -\frac{26}{9}$

(7)
$$x = 3$$
, $y = 1$; $x = -\frac{13}{6}$, $y = -\frac{13}{18}$; $x = \frac{1}{4} \left(1 \pm \sqrt{105} \right)$ $y = \frac{1}{4} \left(1 \pm \sqrt{105} \right)$

(8)
$$x = 1, y = 2; \ x = -\frac{6}{5}, \ y = -\frac{12}{5}, \ x = \frac{1}{34} \left(-1 \pm \sqrt{409} \right) \ y = \frac{2}{17} \left(-1 \pm \sqrt{409} \right)$$

(9)
$$x = 1, y = 1; x = -1, y = -1$$
 (10) $x = \pm 2, y = \pm 3$ (11) $x = \pm 6, y = \pm 5$

(12)
$$x = \pm 5$$
, $y = \pm 2$, $x = \pm 9$, $y = \pm \frac{11\sqrt{3}}{3}$ (13) $x = 1$, $y = 1$, $x = 0$, $y = 0$, $x = \frac{3}{5}$, $y = \frac{1}{5}$

(14)
$$x = 2, y = 2, x = 0, y = 0, x = -\frac{1}{2}, y = \frac{3}{4}$$
 (15) $x = 0, y = 0, x = 1, y = \pm 2$

(16)
$$x = 1$$
, $y = 1$, $x = 0$, $y = 0$ (17) $x = 2$, $y = 3$, $x = 3$, $y = 2$

(18)
$$x = 5$$
, $y = 2$ $x = -2$, $y = -5$ (19) $x = 9$, $y = 1$, $x = 1$, $y = 9$

(20)
$$x = \pm 3$$
, $y = \pm 2$, $x = \pm 2$, $y = \pm 3$ (21) $x = 8$, $y = 2$, $x = 2$, $y = 8$

(22)
$$x = \pm \frac{\sqrt{26}}{5}$$
, $y = \pm \sqrt{26}$ (23) $x = 1$, $y = 2$; $x = -2$, $y = -4$ (24) $x = \frac{1}{4}$, $y = 1$

(25)
$$x = \frac{3}{2}$$
, $y = \frac{1}{2}$, $x = -1$, $y = 2$ (26) $x = \pm 2$, $y = \pm 1$

(27)
$$x = 9$$
, $y = 7$, $x = 28$, $y = 26$ (28) $x = 1$, $y = 3$; $x = 3$, $y = 1$

(29)
$$x = \pm \frac{2}{\sqrt{5}}, y = \pm \frac{1}{\sqrt{5}}, x = \pm \frac{1}{\sqrt{2}}, y = \pm \frac{1}{\sqrt{2}}$$
 (30) $x = 2, y = 6, x = 6, y = 2$

C. (1)
$$x = 1$$
, $y = -3$, $z = 3$ (2) $x = 2$, $y = \frac{2}{3}$, $z = -\frac{4}{3}$ (3) $x = 8$, $y = 4$, $z = 2$
 $x = 0$, $y = 0$, $z = 0$

(4)
$$x = 1$$
, $y = 1$, $z = 1$, $x = -7$, $y = -11$, $z = -15$ (5) $x = \frac{-191}{30}$, $y = \frac{209}{30}$, $z = \frac{241}{30}$

(7)
$$x = \frac{1}{2}$$
, $y = 1$, $z = 2$, $x = -\frac{1}{2}$, $y = -1$, $z = -2$

(8)
$$x = \frac{3}{2}, y = \frac{1}{2}, z = 0$$

 $x = -\frac{3}{2}, y = -\frac{1}{2}, z = 0$

(9)
$$x = \pm 4, y = \pm 2, z = \pm 1$$

(10)
$$x = \pm \frac{3}{2}$$
, $y = \pm 5$, $z = \pm \frac{10}{3}$

(12)
$$x = 0$$
 $y = 3$ $y = -2$ $y = 0$ $y = -2$ $y = 0$ $y = -2$ $y = 0$ $y =$

பயிற்சி 1.7

(1)
$$x = 1$$
,

(2)
$$x = 1$$

(2)
$$x=1$$
 (3) $2+\sqrt{5}$, $x=55$, $y=45$ (4) $x=40$, $y=2$

(4)
$$x = 40$$
, $y = 2$

(5)
$$x = 2$$
, $y = 4$

(6)
$$x = 1$$
, $y = 0$

(5)
$$x = 2$$
, $y = 4$ (6) $x = 1$, $y = 0$ (7) $x = \frac{1}{2}$, $y = 1$ (8) $x = 4$, $y = 2$

(8)
$$x = 4$$
, $y = 2$

$$(9) x = 1, y = 2$$
 (10)

10)
$$x = 10$$
, $y = 4$

(9)
$$x = 7$$
, $y = 2$ (10) $x = 10$, $y = 4$ (14) $x = 3$, $y = 9$, $x = 9$, $y = 3$ (15) $x = 3$, $\frac{1}{81}$

(15)
$$x = 3, \frac{1}{21}$$

(16)
$$x = 4$$
, $y = 2$, $x = 9$, $y = 3$ (17) $x = 9$, $y = 3$ (18) $\frac{7}{4}$, 6 (19) $b = a^2$

(17)
$$x = 9$$
, $y = 3$

(18)
$$\frac{7}{4}$$
, 6

(20)
$$y = 9$$
, $z = \frac{1}{3}$

(20)
$$y = 9$$
, $z = \frac{1}{2}$ (21) $x = 4^8$, $y = \frac{1}{4}$ (22) $x = 1$, $y = 0$ (23) $x = 3$

(23)
$$x = 3$$

(24)
$$x = 125, \frac{1}{125}, x = \frac{\sqrt{2}}{2}$$

(25)
$$x = 3^6$$
, $y = \frac{1}{3}$; $x = \frac{1}{3}$, $y = 3^6$

பயிழ்ச் 2 (a)

(1).(i)
$$+\omega_1(x+5)$$
, $\omega_2(x+5)$ (ii) $+\omega_1(x+5)$, $\omega_2(x+5)$ (iii) $+\omega_1(x+5)$, $\omega_2(x+5)$ (iii) $+\omega_1(x+5)$, $\omega_2(x+5)$

(iii)
$$2x^3 + x^2 - x - 3$$
, 6694

(iv)
$$\pi = 4x^3 - 12x^3 + 6x^2 - 18x + 4$$
; when -14 (v) $\pi = 2x^3 + 3x^2 - 15x - 10$, when -14

(v)
$$\pi = 2x^3 + 3x^2 - 15x - 10$$
, $1059 39$

(ii)
$$12x + 10$$

(3).(i)
$$x^2 - 3x - 1$$

(3).(i)
$$x^2 - 3x - 1$$
 (ii) $9x^2 - 2x - 11$

(4)
$$p = 3$$
, $q = 5$ (5) $a = 1$, $b = -37$ (6) (i) $\left[\frac{1}{2}(a+b)-c\right]x^2 + \frac{1}{2}(a-b)x + c$

(ii)
$$a = 2, b = -3, c = 3, d = 1$$
 (7) $l = \frac{1}{2}, m = -\frac{1}{2}, n = 2$ (8). (i) $a = 1, b = 2$

(ii) 1,
$$1\frac{3\pm\sqrt{5}}{2}$$
 (9).(i) $a=3, b=2, c=-8$

(10)
$$a = \frac{1}{2} f(1), b = -f(2), c = \frac{1}{2} f(3), -90$$
 (11).(i) 0 (ii) $a^{n-1}x - a^n$

(12).(i)
$$(x+1)(x+3)(x-4)(x-5)$$
 (ii) $(x-1)(x-3)(x-5)(x-7)$

(iii)
$$(x-2)(x-3)(x-a)$$
 (13) (i) 1, $3 \pm \sqrt{2}$ (ii) 4, 5, 6 (iii) $-1, -\frac{1}{5}, -5$

(iv) 1, 1, -1,
$$\frac{1}{2}(3 \pm \sqrt{5})$$
 (v) 1, 1, $\frac{1}{2}(-3 \pm \sqrt{5})$ (14) $m = -1$, $n = 2$

(15)
$$-2x + 2$$
 (16) $m = \frac{9}{2}, n = -\frac{7}{2}$ (17) $p = 3, q = -1; -3,0$

(18)
$$q = -2$$
, $(x-1)(x-2)(2x+1)$ $a = 0$, $b = -1$, $c = -2$ (19) $a = 36$, $b = 2$; $(x+2)^2(x-3)^2$

(20)
$$(x+1)$$
, -1 (22) $a=3$, $b=3$, $c=0$ (23) $p=-6$

(24)
$$p = -1$$
, $(x+1)(4x^2 - 3x + 3)$ $p = \frac{3}{2}$, $(x-\frac{3}{2})(4x^2 - \frac{1}{2}x - 2)$

(26)
$$(x+1)(x-2)(x+2)^2(x^2-2x+4)$$
 (28) $\sqrt{7}, \frac{1}{2}(-\sqrt{7}\pm\sqrt{5})$

(30)
$$2x^2 - 5x - 3$$
; $(x+1)^2 (2x^2 - 5x - 3)$ (31) $a = 3$ (32) 7, -1, $-\frac{23}{16}$

(33)
$$a = 3$$
 (34) $m = -2$ (35) $c = -57, 0, 535$ (36). (i) $7k$

(ii)
$$(2x+1)(2x+1)(3x-4)$$
 (iii) $m=4, n=-3$ (37) $(x-3y-4)(2x+y+7)$

(38)
$$(x-y-3z)(x+2y+5z)$$
 (39) $(2x-2y-z)(x+y+z)$ (40) $(x-2y-22)(2x+y-32)$

$$(1)\frac{3}{2(x-1)}-\frac{3}{2(x+1)}$$

(2)
$$\frac{5}{3(x-4)} - \frac{2}{3(x-1)}$$
 (3) $\frac{3}{x} - \frac{2}{x+1}$

(3)
$$\frac{3}{x} - \frac{2}{x+1}$$

(4)
$$\frac{7}{24(x-3)} + \frac{7}{8(x+1)} - \frac{2}{3x}$$

(4)
$$\frac{7}{24(x-3)} + \frac{7}{8(x+1)} - \frac{2}{3x}$$
 (5) $\frac{3}{25(x+1)} + \frac{1}{3(x-1)} - \frac{16}{75(x-4)} + \frac{2}{5(x-4)^2}$

(6)
$$\frac{1}{6|x-3|} + \frac{5}{24(x+3)} - \frac{1}{8(x-1)} - \frac{1}{4(x+1)}$$

(7)
$$\frac{1}{x-1} - \frac{x+1}{x^2+1}$$

(8)
$$\frac{22}{19(x-3)} + \frac{1-6x}{19(2x^2+1)}$$
 (9) $\frac{3}{2x} - \frac{x}{2(x^2+2)}$

(9)
$$\frac{3}{2x} - \frac{x}{2(x^2 + 2)}$$

(10)
$$\frac{3}{x} - \frac{1}{x^2} - \frac{3}{2x+1}$$

(11)
$$\frac{3}{4(x-1)} - \frac{1}{4(x+1)} - \frac{x}{2(x^2+1)}$$

(12)
$$\frac{1}{x-1} - \frac{1}{x-2} + \frac{2}{(x-2)^2}$$

$$\frac{1-x}{1-x} + \frac{1}{2x+1} - \frac{1}{(2x+1)^2}$$

$$x-3$$
 $x+2$ $(x+2)^2$

(13)
$$\frac{1}{1-x} + \frac{2}{2x+1} - \frac{3}{(2x+1)^2}$$
 (14) $\frac{1}{x-3} - \frac{1}{x+2} + \frac{2}{(x+2)^2}$ (15) $\frac{1}{x-1} - \frac{2}{(x-1)^2} - \frac{2x+1}{2(x^2+1)}$

$$(16) \frac{-2}{x+1} + \frac{3x+1}{x^2-4}$$

$$(17) \frac{1}{2x+1} - \frac{1}{x^2 + 2x + 3}$$

(16)
$$\frac{-2}{x+1} + \frac{3x+1}{x^2-4}$$
 (17) $\frac{1}{2x+1} - \frac{1}{x^2+2x+3}$ (18) $\frac{1}{x+1} - \frac{2}{(x+1)^2} + \frac{1}{(x+1)^3}$

(19)
$$\frac{2}{(x+1)} + \frac{1}{(x+1)^2} - \frac{1}{x^2+1}$$

$$(20) \frac{1}{7(x+1^2)} - \frac{1}{49(x+1)} + \frac{24}{49(2x-5)}$$

(21)
$$\frac{1}{(x+1)} + \frac{1}{(x-3)} - \frac{1}{2x-1}$$

(21)
$$\frac{1}{(x+1)} + \frac{1}{(x-3)} - \frac{1}{2x-1}$$
 (22) $\frac{8}{1-2x} - \frac{9}{2(1-x)} + \frac{1}{2(1+x)}$ (23) $\frac{1}{x+1} + \frac{1}{x-1} - \frac{2}{x^2+1}$

(1)
$$5 - \frac{6}{x+5} + \frac{1}{x-4}$$

(1)
$$5 - \frac{6}{x+5} + \frac{1}{x-4}$$
 (2) $3x-5 + \frac{2}{x+4} - \frac{x+6}{x^2+9}$ (3) $2 - \frac{1}{x+2} - \frac{4}{x+1}$

(3)
$$2 - \frac{1}{x+2} - \frac{4}{x+1}$$

(4)
$$x-5+\frac{2}{x+1}+\frac{1}{x+2}+\frac{3}{x+3}$$

பயிற்சி 3

(1).(i)
$$-\frac{4}{3}$$
, 4 (ii) $-3 \pm \sqrt{11}$

(iii)
$$\frac{-1 \pm \sqrt{-3}}{2}$$
 (iv) $\frac{5}{2} \cdot \frac{5}{2}$

(iv)
$$\frac{5}{2}$$
. $\frac{5}{2}$

(10) 2

(4).(i)
$$q + s + pr$$

(ii)
$$2(p^2 - pr + r^2 - 2q - 25)$$

(5)
$$a^2c^2x^2 + b(b^2 - 3ac)x + ac^2 = 0$$

(7).(i)
$$p = -1$$
, $q = -20$

(ii)
$$\frac{1}{n}$$
, $\frac{m^2 - 2n}{n^2}$, $\frac{m^3 - 3mn}{n^3}$, m (9) $-\frac{1}{3}$, 5

$$(9) -\frac{1}{3}$$

(14)
$$px^2 - 3(p+q)x + 7q = 0$$

(15)
$$7p^2$$
, $\sqrt{5}p$, $x^2 - 21\sqrt{5}p^2x - p^4 = 0$

(17) 0, 3, 8 (18) 1,
$$-\frac{1}{2}$$

(20)
$$b = -7, 7$$

(26)
$$17x^2 - 20x + 5 = 0$$
, $rx^2 - qx + p = 0$; $cx^2 + bx + a = 0$

$$(27) x^2 - 7x + 8 = 0$$

(28)
$$b = c = 3a$$

(11) $k \le -10$ அல்லது $k \ge 2$

(33)
$$k \le 0$$
 அல்லது $k \ge 3$, $k \ge 3$

(12) p ≤ - 5 அல்லது p ≥ - 1 s

(34)
$$p = -4, q = 1; p = 3, q = -\frac{3}{4}$$

(35)
$$0, k-2, k=7, \frac{-49}{4}, -\frac{1}{2}$$

(36)
$$\left(pp^{1} + 2q + 2q^{1}\right)^{2} = \left(p^{2} - 4q\right)\left(p^{1^{2}} - 4q^{1}\right)$$
 (37) $k = \frac{-100}{49}$

$$(37) \ k = \frac{-100}{49}$$

(38)
$$2\alpha - \beta$$
, $2\beta - \alpha$

(39)
$$-\frac{2}{\alpha}, -\frac{2}{\beta}, \frac{1}{3}, 3$$

(38)
$$2\alpha - \beta$$
, $2\beta - \alpha$ (39) $-\frac{2}{\alpha}$, $-\frac{2}{\beta}$, $\frac{1}{3}$, (40) $|k| \ge 4$, $k \ge 4$, $\frac{8}{\sqrt{3}}$

(41)
$$(\sqrt{a} \pm \sqrt{b})^2$$

(44)
$$q = 2b + 6$$
, $r = 2c + 3b + 4 + \sqrt{b^2 - 4c}$

(45).(i)
$$x^2 - (\sqrt{b+2c})x + c = 0$$

(48).(i)
$$3x-2y-7=0$$
, $x+y+4=0$ (ii) $2x-y-1=0$, $x+y+2=0$

(ii)
$$2x - y - 1 = 0$$
, $x + y + 2 = 0$

(49).(i)
$$3x + y = 0, x - 3y = 0$$
 (ii) $8:1:-3$ (50) $k = 1$, (ii) $y + x = 0$

(50)
$$k = 1$$
, (ii) $y + x = 1$

பயிற்சி 4

14 4. 1 5. (i)
$$c = \frac{9}{5}$$
 (ii) $c < \frac{9}{8}$ 6. $a = b$

$$c < \frac{9}{8}$$

7.
$$8 < m <$$

7.
$$8 < m < 24$$
 9. $a = 2(b + c)$

10.
$$k = -\frac{1}{48}$$
; (a) $k < 1$ (b) $k \le \frac{1}{2}$ 11. $-3 < k < 5$

a)
$$k < 1$$

(b)
$$k \le \frac{1}{2}$$

11.
$$-3 < k < 5$$

12.
$$k < -\frac{37}{12}$$
, $k = -\frac{25}{12}$

13.
$$-2 < k < 6$$
; $0 < k < 6$

14. (a)
$$\alpha = 1$$

(b)
$$k = 0$$
, $k = -(a + c)$ 15. 0, -4

18.
$$-1 \le k \le 1$$

19.
$$\lambda = \frac{-21}{4}$$
 20. $-10 \le k \le 2$

20.
$$-10 \le k \le 2$$

22. (ii)
$$-3 < x < -2$$
 அல்லது $x > -1$

(iii)
$$2 \le \lambda \le 3$$

23.
$$a = 1$$

23.
$$a = 1$$
 24. $a \le 1$ அல்லது $a \ge \frac{3}{2}$

25.
$$y \le \frac{1}{3}$$
 அல்லது $y \ge 3$

30.
$$\lambda = 1, -3; x = 4, \frac{4}{9}$$

31.
$$k > 1$$

$$\lambda < -\frac{5}{2}\left(\sqrt{2}+1\right), \ \lambda > \frac{5}{2}\left(\sqrt{2}-1\right)$$

பயிற்சி 5

(i)
$$x < 1$$
 அல்லது $x > 2$ (ii) $-1 \le x \le \frac{1}{2}$ (iii) $-\frac{3}{2} \le x \le 2$

(iv)
$$x < -2$$
 அல்லது $x > 4$ (v) $-3 \le x \le 2$ (vi) $x < 0$ அல்லது $x > 3$

(vii)
$$-2 < x < 3$$

(viii) R (ix)
$$x < -6$$
 அல்லது $x > 2$

(x)
$$x < -3$$
 அல்லது $x > -1$ (xi) $\frac{3}{2} < x < 4$

(xi)
$$\frac{3}{2} < x < 4$$

3. (i)
$$-2 < x < 1$$
; $x > 3$

(ii)
$$3 < x < 4$$
; $-4 < x < -1$

(iii)
$$4 < x < 5$$
: $-1 < x < 1$

(iv)
$$-2 < x < 3$$

(v)
$$-5 < x < -2$$

4. (i)
$$2 < x < 3$$

(ii)
$$-2 < x < 0$$

(iii)
$$0 < x < \frac{4}{2}$$

(v)
$$x < 0$$

(vi)
$$x > -2$$

5. (i)
$$-3 < x < 3; x > 5$$

(ii)
$$-1 < x < 2$$
; $x < 0$

(iii)
$$1 < x < 2$$
; $x = 3$

(iv)
$$-1 < x < 1$$
; $2 < x < 3$

(v)
$$0 < x < 3$$
; $x < 4$

(vi)
$$0 < x < 2$$
; $x > 3$

(vii)
$$x > 0$$

(viii)
$$x \le 0$$
; $\frac{3}{2} \le x \le \frac{5}{2}$, $x \ge 4$

(ix)
$$-1 \le x \le 2$$
, $4 \le x \le 7$

(ix)
$$-1 \le x \le 2$$
, $4 \le x \le 7$ (x) $-4 < x < -2$, $1 < x < 2$, $x > 3$

$$(xi)$$
 $-\frac{5}{3} - \le x \le -1$; $x \ge \frac{3}{2}$ (xii) $\frac{2}{3} < x < 2$

(xii)
$$\frac{2}{3} < x < 2$$

6.
$$x < 0, x \ge 2$$

7.
$$-2 < x < -1$$
; $x > 0$

8.
$$x \le -3$$
; $x \ge 1$

9.
$$2 < x < 3$$

10. (i)
$$-(a+b) < x < -b$$

(ii)
$$x < 0$$
; $-b < x < -(a+b)$

25. (i)
$$-5$$
, -1

(ii)
$$0, -2$$

(ii)
$$-3 \le x \le -1$$

(iii)
$$x \le -4$$
 அல்லது $x \ge -1$ (iv) $0 < x < \frac{3}{2}$ (v) $x < -2$, $x > 0$

$$(v) \quad 0 < x < \frac{3}{2}$$

(v)
$$x < -2$$
, $x > 0$

27. (i)
$$-1 < x < 1$$

(ii)
$$x > 2$$

(iii)
$$-\frac{1}{3} < x \ 7$$

(iv)
$$\frac{7}{4} < x < \frac{5}{2}$$
; $x \neq 2$

28. (i)
$$x > \frac{2}{3}$$

(ii)
$$-2 < x < 1$$
 (iii) $x < 1$

29. (a)
$$x < -5$$
, அல்லது $x > \frac{1}{3}$ (b) $-4 < x < -\frac{3}{2}$ 30. $-3 < x < 3$

(b)
$$-4 < x < -\frac{3}{2}$$

30.
$$-3 < x < 3$$

33.
$$-2 < y < 2$$

$$-4 < x < 1$$

சாயி கல்வி வெளியீடுகள்

க.டொ.த உயர்தரம்

1.	இணைந்த கணிதம்	-	அட்சரகணிதம் பகுதி - I
2.	இணைந்த கணிதம்	-	அட்சரகணிதம் பகுதி - II
3.	இணைந்த கணிதம்	. =	நுண்கணிதம்
4.	இணைந்த கணிதம்	2	திரிகோண கணிதம்
5.	இணைந்த கணிதம்	-	ஆள்கூற்றுக்கேத்திரகணிதம்
6.	பிரயோக கணிதம்	- 1	<u> </u>
7.	பிரயோக கணிதம்	2	இயக்கவியல் பயிற்சிகள் - 1
8.	பிரயோக கணிதம்	-	இயக்கவியல் பயிற்சிகள் - II

நிகழ்தகவும், புள்ளிவிபரவியலும்

(பரீட்சை வழிகாட்டி)

9. பிரயோக கணிகம்

10. சேதன இரசாயனம்

SAI EDUCATIONAL PUBLICATION

36/4 - B, Pamankada Road, Colombo - 06. T. P: 2366707