

Electronics Matter & Radiation

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

20

துணைநூல் வரிசை - 04

பௌதிகவியல்

பயிற்சி விணாக்களும் விடைகளும்

G.C.E.(A/L)

Varnam BSc(Hons), Dip-in-Ed.

Physics Centre, Viyaparimoolai, Point Pedro.

முகவுரை

க.பொ.த (உயர்தரம்) பாடத்திட்டத்தில் புதிதாக சேர்க்கப்பட்ட இலத்திரனியல், சடமும் கதிர்ப்பும் ஆகிய பகுதிகளுக்குரிய பல்தேர்வு வினாக்களைக் கொண்ட இந்நூல் தமிழ்மொழிமூல மாணவர்களுக்கு பெரிதும் உதவியாக இருக்கும் என எண்ணுகிறேன்.

இதேபோல ஏனைய பகுதிகளுக்கான பல்தேர்வு வினாக்களுக்குரிய நூல்கள் விடைகளுடன் விரைவில் வெளிவரும்.

மாணவர்கள் ஒவ்வொரு வினாவையும் வாசித்து அதற்குரிய விடையைத் தெரிவு செய்த பின்னர் பின்னாலுள்ள விடைகளைப் பார்த்து சரியா என்பதை உறுதிப்படுத்திக் கொள்ளலாம்.

இந்நூலைச் சிறந்த முறையில் அழகுற கணினியில் வடிவமைப்புச் செய்த திரு. சு. கிருஷ்ணமூர்த்தி அவர்களுக்கு எனது நன்றிகள்.

15. 03. 2001

வர்ணம்

பதிப்பு	:	பங்குனி 2001
திருத்திய பதிப்பு	ġ	நவம்பர் 2010
பதிப்புரிமை	:	ஆசிரியர்
தலைப்பு		பௌதிகவியல்
ஆக்கம்	:	வர்ணம்
ക്ങ്ങിങ്ങി ഖെറ്റഖ്തഥല്പ	:	கார்த்தியாயினி சர்மா பவானி கிருஷ்ணமூர்த்தி
நூல் வடிவமைப்பு	1	சு. கிருஷ்ணமூர்த்தி

இலத்திரனியல் Electronics

Lieber of the second second

இலத்திரனியல் Electronics

இலத்திரனியல்

Electronics

- 1. தனிப்பூச்சிய வெப்பநிலையில் நிறைகாவலியாக இருப்பது
 - 1. உலோகங்கள்

2. உள்ளீட்டு அரைக்கடத்திகள்

மீகடக்கிகள்

- 3. வெளியீட்டு அரைக்கடத்திகள்
- 5. கலப்புலோகங்கள்
- ஒரு p வகை அரைக்கடத்தியில்
 - 1. தேறிய ஏற்றம் நேரேற்றமாக இருக்கும்.
 - 2. தேறிய ஏற்றம் மறை ஏற்றமாக இருக்கும்.
 - 3. சுயாதீன இலத்திரன்களைவிட துளைகளின் எண்ணிக்கை கூடவாக இருக்கும்.

4.

- துளைகளின் எண்ணிக்கையைவிட சுயாதீன இலத்திரன்களின் எண்ணிக்கை கூடவாக இருக்கும்.
- தூய அரைக்கடத்தியை வலுவளவு 5 ஆகவுள்ள மூலகத்தினால் மாசுபடுத்து வதன் மூலம் ஆக்கப்படும்.
- உள்ளீட்டு அரைக்கடத்தியொன்றுக்குக் குறுக்கே ஒர் மாறா அழுத்தவேறுபாடு பிரபோகிக்கப்படுகிறது. அரைக்கடத்தி வெப்பமாக்கப்பட்டபோது அரைக் கடத்தி யினூடாக மின்னோட்டம் அதிகரிக்கிறது. ஏனெனில்
 - 1. அணுக்கள் கூடுதலாக அதிர்கின்றன.
 - 2. சுயாதீன இலத்திரன்கள் விரைவாக நகர்கின்றன.
 - 3. சுயாதீன இலத்திரன்களின் எண்ணிக்கை அதிகரிக்கிறது.
 - 4. கடத்தியின் குறுக்குவெட்டுப்பரப்பு அதிகரிக்கிறது.
 - கடத்திக்குக் குறுக்கேயான மின்புலவலிமை அதிகரிக்கிறது.
- n வகைக் குறைகடத்திகள் பற்றிய பின்வரும் கூற்றுக்களைக் கருதுக.
 - A இவை ஒரு திசையில் மட்டுமே மின்னோட்டத்தைக் கடத்துகின்றன.
 - B அவை வெளியீட்டு அரைக்கடத்திகளாகும்.
 - C மறையான தடைவெப்பநிலைக் குணகம் உடையவை.

5.

- இவற்றுள் சரியானவை,
- 1. A மட்டும் 2. B மட்டும்
- 3. A, B மட்டும்

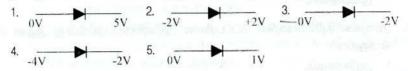
- 4. B, C மட்டும்
- A, B, C எல்லாம்

- 5. பின்வரும் கூற்றுக்களில் சரியானது?
 - 1. தாய சிலிக்கன் றேடியோச் சுற்றுகளில் பயன்படும்.
 - 2. வெப்பநிலை கூடும்போது தூயசெப்பின் தடை குறையும்.
 - 3. தூய சிலிக்கனும் தூய செம்பும் சர்வசமனான ஏற்றங்காவிகளைக் கொண்டன.
 - வெப்பநிலை கூடுகின்றபோதும் தூய செம்பு அதேயளவான ஏற்றங் காவி களையே கொண்டிருக்கும்.
- பை 5. வெப்பநிலை கூடுகின்றபோது தூய சிலிக்கன் ஏற்றக்காவிகளை மாற்று கின்றது.
- சிலிக்கனுக்கு சிறிதளவு இந்தியம் சேர்க்கப்படின்
 - 1. அதன் தடை பெருமளவு அதிகரிக்கும்.
 - 2. ஒரு n வகைக் குறைகடத்தி உண்டாகும்.
 - இங்கு இந்தியம் கொடுப்பான்வகை (Donor type) மாசாக இருக்கும்.
 - உண்டாக்கப்பட்ட குறைகடத்தியில் துளைகளைவிட சுயாதீன இலத்திரன் களின் எண்ணிக்கை கூடவாக இருக்கும்.
 - உண்டாக்கப்பட்ட குறைகடத்தியில் துளைகளைவிட சுயாதீன இலத்திரன் களின் எண்ணிக்கை குறைவாக இருக்கும்.
- p வகைக் குறைகடத்தியில் உள்ள சிறுபான்மைக் காவிகளின் (Minority Carriers) எண்ணிக்கை பிரதானமாகத் தங்கியிருப்பது
 - 1. மாசுவின் வகையிலாகும்.
 - 2. மாசுவின் அளவிலாகும்.
 - 3. மாசுபடுத்தப்படும் வகையிலாகும்.
 - 4. வெப்பநிலையிலாகும்.
 - பயன்படுத்தப்படும் வோல்ற்றளவிலாகும்.
- 8. உள்ளீட்டுக்குறைகடத்தி ஒன்றைப்பற்றிய பின்வரும் கூற்றுகளைக் கருதுக.
 - A. வெப்பநிலை அதிகரிக்க மின்கடத்து திறனானது குறையும்.
 - B. வெப்பநிலை அதிகரிக்க சுயாதீன இலத்திரன்களின் எண்ணிக் கைக்கும் துளைகளின் எண்ணிக்கைக்கும் உள்ள விகிதம் மாறாதிருக்கும்.
 - C. மின்கடத்தல் முறைக்கு சுயாதீன இலத்திரன்கள், துளைகள் ஆகிய இரண்டும் பங்களிப்புச் செய்யும்.

மேலுள்ள கூற்றுக்களில்

- A மாத்திரமே உண்மையானது.
- 2. B மாத்திரமே உண்மையானது.
- C மாத்திரமே உண்மையானது.
- 4. B யும் C யும் மாத்திரமே உண்மையானவை.
- 5. A, B, C எல்லாமே உண்மையானவை.

- 9. உள்ளீட்டு அரைக்கடத்தியொன்றுக்கு மில்லியனில் ஒரு பங்கு மாசுக்களைச் சேர்த்து வெளியிட்டு அரைக்கடத்தி ஆக்கப்படும்போது கடத்துதிறன் அதிகரிக் கும் காரணி
 - 1. 10^2 2. 10^4 3. 10^5 4. 10^6 5. 10^8
- 10. ஏற்பான் வகை (Acceptor type) மாசுக்கள்
 - 1. மேலதிகமான சுயாதீன இலத்திரன்களை உருவாக்கும்.
 - ஐந்து வலுவளவு இலத்திரன்களைக் கொண்டிருக்கும்.
 - மூன்று வலுவளவு இலத்திரன்களைக் கொண்டிருக்கும்.
 - நான்கு வலுவளவு இலத்திரன்களைக் கொண்டிருக்கும்.
 - ஜெர்மானியத்துக்குச் சேர்க்கப்படலாமே தவிர சிலிக்கனுக்குச் சேர்க்கப்பட முடியாதவை.
- அரைக்கடத்தியொன்றின் வெப்பநிலை அதிகரிக்கப்படும்போது அதன் மின் கடத்துதிறன்
 - 1. அதிகரிக்கும்.
 - 2. மாறாதிருக்கும்.
 - 3. குறைவடையும்.
 - முதலில் அதிகரித்துப் பின்னர் குறைவடையும்.
 - முதலில் குறைவடைந்து பின்னர் அதிகரிக்கும்.
- 12. N என்பது அவகாதரோ எண் ஆகவும் M அணுத்திணிவு ஆகவும் d அடர்த்தி ஆகவும் இருப்பின் ஒரு வலுவுள்ள உலோகப் பளிங்கொன்றின் ஒரலகுக் கனவளவிலுள்ள சுயாதீன இலத்திரன்களின் எண்ணிக்கை


dN	N	MN	d	
і. М	2. dM	ana 3. su mma ara d	4	5. MNd

- 13. பின்வரும் அரைக்கடத்திகளைக் கருதுக.
 - Λ. ஆசனிக்கினால் மாசுபடுத்தப்பட்ட சிலிக்கன் பளிங்கு
 - B. அலுமினியத்தினால் மாசுபடுத்தப்பட்ட சிலிக்கன் பளிங்கு
 - C. போரனினால் மாசுபடுத்தப்பட்ட ஜெர்மானியப் பளிங்கு
 - D. பொசுபரசினால் மாசுபடுத்தப்பட்ட ஜெர்மானியப் பளிங்கு

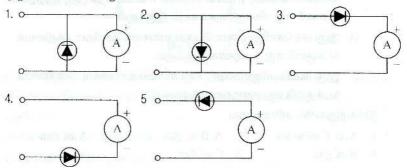
இவற்றுள் p - வகை அரைக்கடத்திகள்

- 1. A, B மட்டும் 2. B, C மட்டும் 3. A, D மட்டும்
- 4. A மட்டும் 5. A, B, C எல்லாம்
- p வகை அரைக்கடத்தியொன்றில் சிறுபான்மைக் காவிகள் இருப்பதற்கான காரணம்
 - 1. கோடல் அழுத்தம் 2. வெப்ப அருட்டல்
 - மாசுக்களின் சேர்க்கை
 4. மாசுக்களின் அயனாக்கல்
 - 5. மாசுக்கள் 5ம் கூட்டமாக இருத்தல்

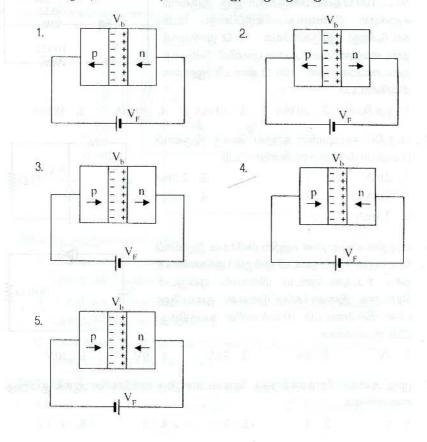
- 15. உள்ளீட்டு அரைக்கடத்தியொன்றில்
 - 1. இலத்திரன்கள் மட்டுமே மின்பாய்ச்சலில் பங்குகொள்கின்றன.
 - 2. துளைகள் மட்டுமே மின்பாய்ச்சலில் பங்குகொள்கின்றன.
 - இலத்திரன்களும் துளைகளும் மின்பாய்ச்சலில் பங்கு கொள்கின்றன. அவற்றினது எண்ணிக்கைகள் சமனாகும்.
 - இலத்திரன்களும் துளைகளும் மின்பாய்ச்சலில் பங்கு கொள்கின்றன. ஆனால் இலத்திரன்கள் பெரும்பான்மைக் காவிகளாகும்.
 - இலத்திரன்களும் துளைகளும் மின்பாய்ச்சலில் பங்கு கொள்கின்றன. ஆனால் துளைகள் பெரும்பான்மைக் காவிகளாகும்.
- 16. முன்முகக் கோடலில் உள்ள இருவாயி பின்வருவனவற்றுள் எதுவாகும்?

17. ஒரு சிலிக்கன் மாதிரியை மாசுபடுத்துவதன் மூலம் p - வகை அரைக்கடத்தி ஆக்கப்பட்டுள்ளது. 5 x 10⁷ சிலிக்கன் அணுக்களுக்கு ஒரு இந்தியம் அணு என்றவாறு அது மாசுபடுத்தப்பட்டுள்ளது. சிலிக்கன் மாதிரியிலுள்ள அணு அடர்த்தி 5 x 10²⁸ அணுக்கள் / m³ ஆகும். 1 cm³ இலுள்ள ஏற்பான் அணுக் களின் எண்ணிக்கை

1. 2.5×10^{30} 2. 1.0×10^{13} 3. 1×10^{15} 4. 2.5×10^{36} 5. 2.5×10^{40}


- 18. ஒரு n வகை அரைக்கடத்தி
 - மேலதிகமான சுயாதீன இலத்திரன்களைக் கொண்டிருப்பதுடன் நேரேற்றப் பட்டதாகும்.
 - மேலதிகமான சுயாதீன இலத்திரன்களைக் கொண்டிருப்பதுடன் மறையேற் றப்பட்டதாகும்.
 - மேலதிகமான சுயாதீன இலத்திரன்களைக் கொண்டிருப்பதுடன் நடுநிலை யானதாகும்.
 - 4. மேலதிகமான இலத்திரன்களைக் கொண்டது.
 - 5. மேலதிகமான துளைகளைக் கொண்டது.
- 19. எப்பொழுதும் பின்முகக்கோடலில் பயன்படுத்தப்படுபவை
 - A. செனர் இருவாயி (Zener Diode)
 - B. ஒளிகாலும் இருவாயி (LED)
 - C. ஒளி இருவாயி (Photo Diode)

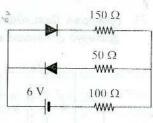
இவற்றுள் சரியானவை


- 1. A மட்டும் 2. B மட்டும்
- 4. A, B மட்டும்
- 5. A, Cமட்டும்

3. CIDLAD

20. ஓர் அசையும் சுருள் அம்பியர்மானியை சிறிய ஆடலோட்ட மின்னோட்டங்களை உணரக்கூடியதாக மாற்றவேண்டியுள்ளது. இவ்வாறு மாற்றுவதற்குச் சரியான ஒழுங்கைக் காட்டுவது.

21. முன்முகக் கோடலில் உள்ளபோது p - n சந்தி இருவாயியில் ஏற்றங்காவிகள் இயங்கும் திசையைச் சரியாக வகை குறிப்பது எதுவாகும்?


22. p - n சந்தியினூடான மின்னோட்டம் பற்றிய பின்வரும் கூற்றுக்களைக் கருதுக.

- A. n வகை சார்பாக p வகை நேர் அழுத்தத்தில் உள்ளபோது மிகக்கூடவாகவும் p வகை சார்பாக n வகை நேர் அழுத்தத்தில் உள்ளபோது மிகக்குறைவாகவும் இருக்கும்.
- B. இருபக்கங்களிலுமுள்ள பெரும்பான்மைக் காவிகள் சந்தியைக் கடக்கும்போது உயர்வாக இருக்கும்.
- C. இருபக்கங்களிலுமுள்ள சிறுபான்மைக்காவிகள் சந்தியைக் கடக்கும்போது குறைவாக இருக்கும்.

இக்கூற்றுகளில் சரியானவை

1.	A, B, C எல்லாம்	2.	A, B மட்டும்	3.	A மட்டும்
4.	B மட்டும்	5.	C மட்டும்		

 23. 6 V மின்னியக்கவிசையும் புறக்கணிக்கத்தக்க உட்தடையும் உடைய மின்கலமொன்று 150 Ω, 50 Ω, 100 Ω தடையிகளுக்கும் இரு இருவாயி களுக்கும் இணைக்கப்பட்டிருப்பதைப் படம் காட்டுகிறது. இருவாயிகள் 50 Ω முன்முகத் தடையையுடையன. அவை முடிவிலி பின்முகத் தடையையுடையன. 100 Ω தடையியினூடான மின்னோட்டம்

www

200 Ω

5. 48 mA

2 kΩ ₹

1. பூச்சியம் _____ 20 mA

3. 30 mA 4.

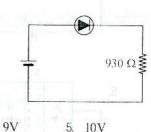
2.5mA

4.

4. 2

4. 5mA

4. 36 mA


 படத்தில் காட்டியுள்ள சுற்றில் செனர் இருவாயி (Zener diode) ஊடான மின்னோட்டம்

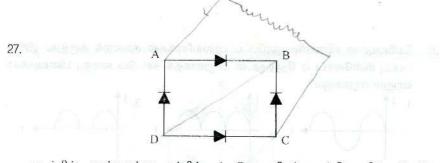
- 1. 2mA
- 3. 3 mA
- 5. 7.5 mA

25. படத்தில் காட்டியுள்ள சுற்றில் சிலிக்கன் இருவாயி யொன்றும் 930 Ω தடையி ஒன்றும் புறக்கணிக்கத் தக்க உட்தடையுடைய மின்கலம் ஒன்றுடன் தொடராக இணைக்கப்பட்டுள்ளன. தடையினூ டான மின்னோட்டம் 10 mA எனின் கலத்தினது மின்னியக்கவிசை

2. 6V

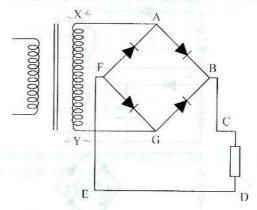
2. 4

5. 1


 முழு அலைச் சீராக்கத்திற்குத் தேவையான இரு வாயிகளின் ஆகக் குறைந்த எண்ணிக்கை

3. 3.8V

3. 3


1. 5

1. 4V

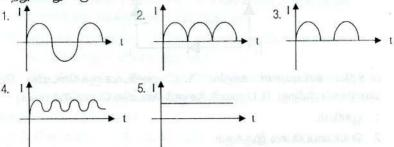
படத்தில் காட்டியுள்ள சுற்றில் A, C முடிவிடங்களுக்கிடையில் பெய்ப்பு கொடுக்கப்படுகிறது. B, D முடிவிடங்களுக்கிடையில் பெறப்படும் பயப்பு

- 1. பூச்சியம்.
- 2. பெய்ப்பைப்போல இருக்கும்.
- 3. முழு அலைச்சீராக்கமாகும்.
- 4. அரை அலைச்சீராக்கமாகும்.
- 5. சீராக்கம் உண்டாகாது.
- 28. பாலச்சீராக்கல் சுற்றொன்றைப் படம் காட்டுகிறது.

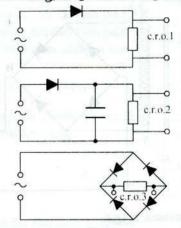
பின்வரும் கூற்றுக்களைக் கருதுக.

- A. Y சார்பாக X நேராக உள்ளபோது XABCDEFGYX என்ற பாதையில் மின்னோட்டம் பாயும்.
- B. Y சார்பாக X மறையாக உள்ளபோது YGBCDEFAXY என்ற பாதையில் மின்னோட்டம் பாயும்.
- C. சுமைத்தடையுடன் ஒரு கொள்ளளவி தொடராக இணைக்கப் படின் பயப்பு ஒப்பமாக்கப்படும்.

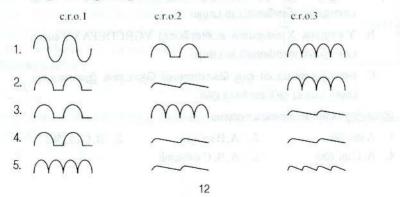
இக்கூற்றுகளில் உண்மையானவை

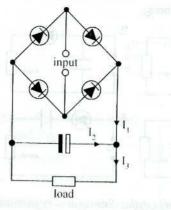

1. A மட்டும் 4. A, C மட்டும்

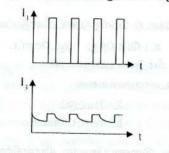
2.) A, B மட்டும்

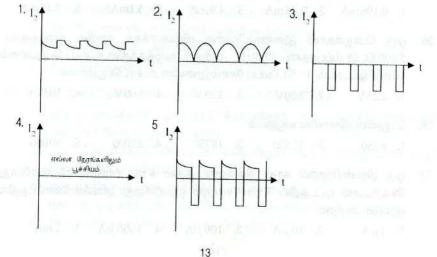

5. A, B, C எல்லாம்

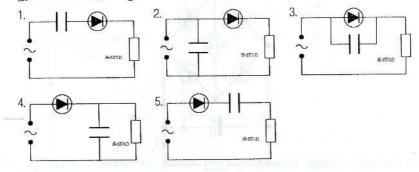
3. B.C மட்டும்


29. மேலேயுள்ள வினாவில் தரப்பட்ட பாலச்சீராக்கல் சுற்றைக் கருதுக. இங்கு பயப்பு மின்னோட்டம் நேரத்துடன் மாறுவதைக் காட்டும் வரைபு பின்வருவன வற்றுள் எதுவாகும்?


30. ஆடலோட்ட மின்னோட்டத்தைச் சீராக்குவதற்கான மூன்று சுற்றுகள் கீழே காட்டப்பட்டுள்ளன. நேரஅடியும் (Time base), y நயமும் (y gain) மாறாது செப்பம் செய்யப்பட்டுள்ள கதோட்டுக் கதிர் அலைவுகாட்டியொன்றுக்கு (CRO) ஒன்றன் பின் ஒன்றாகப் பின்வரும் ஒழுங்கில் காட்டப்பட்டுள்ளது போல் இணைக்கப் படுகின்றன. அவை வெவ்வேறு சுவடுகளைக் காட்டுகின்றன.


பின்வருவனவற்றுள் எது சுவடுகளை திறம்பட வகை குறிக்கிறது.


 ஒப்பமாக்கும் கொள்ளளவியுடனான முழுஅலைச் சீராக்கல் சுற்றைப் படம் காட்டுகிறது.


மின்னோட்டங்கள் I₁, I₃ கீழே காட்டப்பட்டுள்ளதுபோல் மாறுபடுகின்றன.

I, ஆனது நேரத்துடன் மாறுபடுவதைத் திறம்பட வகை குறிக்கும் வரைபு பின்வருவனவற்றுள் எதுவாகும்.

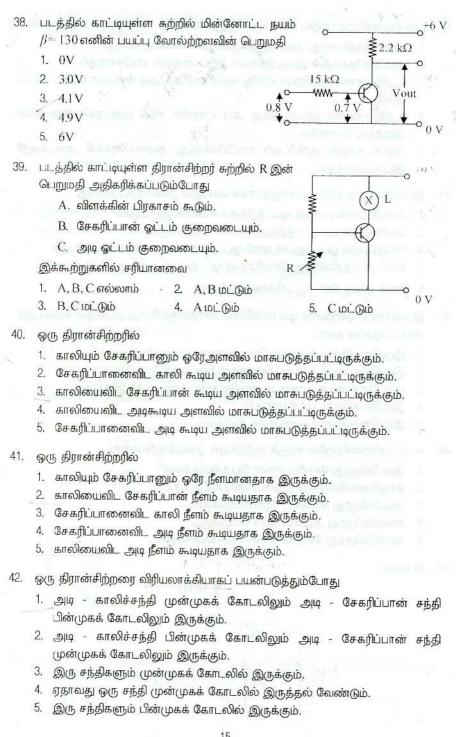
32. அரை அலைச் சீராக்கியொன்றை ஒப்பமாக்குவதற்கு ஒரு கொள்ளளவியை இணைக்கவேண்டியுள்ளது. பின்வருவனவற்றுள் எதில் கொள்ளளவி சரியாக இணைக்கப்பட்டுள்ளது.

- 33. p n சந்தி இருவாயி பற்றிய பின்வரும் கூற்றுகளைக் கருதுக.
 - A. பின்முகக்கோடலில் உள்ளபோது ஒரு காவலி போலத் தொழிற் படும்.
 - B. பின்முகக்கோடல் மெலித்தபடையின் தடிப்பைக் கூட்டுகிறது.
 - C. இதனை உபயோகித்து ஆடலோட்ட மின்னோட்டத்தை நேரோட்ட மின்னோட்டமாக்கலாம்.

இக்கூற்றுகளில் உண்மையானவை

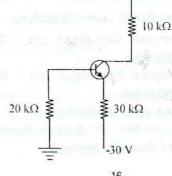
1. A மட்டும் 2. B மட்டும் 3. /	A, B மட்டும்
--------------------------------	--------------

A. C மட்டும்	5.	A. B.	Cஎல்லா	ib
	Э.	A. D.	C 616060	u


34. ஒரு பொது - அடி இணைப்பிலுள்ள திரான்சிற்றர் சுற்றில் மின்னோட்டநயம் 0.98 ஆகும். காலி ஒட்டத்தை 5 mA ஆல் மாற்றும்போது சேகரிப்பான் ஒட்டத்தில் ஏற்படும் மாற்றம்

1. 0.196mA 2. 2.45mA 3. 4.9mA 4. 5.1mA 5. 7.45mA

- 35. ஒரு பொதுக்காலி இணைப்பிலுள்ள விரியலாக்கச் சுற்றில் சுமைத்தடை 5 000 Ω. பெய்ப்புத்தடை 1 000 Ω. அறிகுறி அழுத்தத்தின் உச்சப் பெறுமானம் 10 mV. ஓட்டநயம் β= 50. பயப்பு வோல்ற்றளவின் உச்சப்பெறுமானம்
 - 1. 1.25V 2. 2.50V 3. 3.75V 4. 5.00V 5. 10.00V
- 36. மேலுள்ள வினாவில் வலுநயம்


1. 6250 2. 12500 3. 18750 4. 25000 5. 50000

- 37. ஒரு திரான்சிற்றரில் காலி மின்னோட்டத்தில் 8 mA மாற்றம் ஏற்படும்போது சேகரிப்பான் ஒட்டத்தில் 7.9 mA மாற்றம் ஏற்படுகிறது. அடிமின்னோட்டத்தில் ஏற்படும் மாற்றம்
 - 1. $1\mu A$ 2. $10 \mu A$ 3. $100 \mu A$ 4. $1000 \mu A$ 5. 1 m A

- 43. pnp திரான்சிற்றர் பற்றிய பின்வரும் கூற்றுகளில் எது உண்மையானது அல்ல?
 - 1. காலிப்பகுதியானது அடிப்பகுதிக்குள் துளைகளைத் தள்ளும்.
 - 2. அடிப்பிரதேசத்தில் இலத்திரன்கள் சிறுபான்மைக் காவிகளாகும்.
 - உயிர்ப்பான தொழிற்பாட்டுக்கு காலி சார்பாக அடி மறையாக கோடலிடப் படும்.
 - உயிர்பான தொழிற்பாட்டுக்கு அடி காலிச் சந்தி முன்முகக் கோடலில் இருத்தல் வேண்டும்.
 - அதன் சுற்றுக் குறியீட்டில் காலியிலிருந்து அடியைநோக்கி அம்புக்குறி இடப்பட்டிருக்கும்.
- 44. திரான்சிற்றர் ஒன்றில் அடியினூடாகச் செல்லும் மின்னோட்டமானது
 - 1. சேகரிப்பானில் பாயும் ஒட்டத்திற்குச் சமனாக இருக்கும்.
 - 2. காலியில் பாயும் ஓட்டத்திற்குச் சமனாக இருக்கும்.
 - 3. சேகரிப்பான் ஒட்டத்துடன் காலி ஒட்டத்தைக் கூட்டுவதால் பெறப்படும்.
 - 4. காலி ஒட்டத்திலிருந்து சேகரிப்பான் ஒட்டத்தைக் கழிப்பதால் பெறப்படும்.
 - 5. காலி ஓட்டத்தின் ¹/₁₀ பங்காக இருக்கும்.
- 45. திரான்சிற்றர் ஒன்றினை ஒம் மானியால் சோதிக்கும்போது அடிக்கும் காலிக்கும் இடையிலுள்ள தடை
 - 1. இருதிசையிலும் உயர்வுப் பெறுமானமுடையதாயிருக்கும்.
 - 2. இருதிசையிலும் தாழ்வுப் பெறுமானமுடையதாயிருக்கும்.
 - 3. ஒரு திசையில் உயர்வாயும் மறுதிசையில் தாழ்வாயும் இருக்கும்.
 - 4. இருதிசையிலும் பூச்சியமாகும்.
 - 5. இருதிசையிலும் முடிவிலியாக இருக்கும்.
- 46. n p n திரான்சிற்றரின் சுற்றுக் குறியீட்டில் அம்புக்குறியானது
 - 1. அடியிலிருந்து சேகரிப்பானை நோக்கியிருக்கும்.
 - 2. சேகரிப்பானிலிருந்து அடியை நோக்கியிருக்கும்.
 - 3. அடியிலிருந்து காலியை நோக்கியிருக்கும்.
 - 4. காலியிலிருந்து அடியை நோக்கியிருக்கும்.
 - 5. காலியிலிருந்து சேகரிப்பானை நோக்கியிருக்கும்.

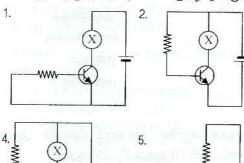
47 - 49 வரை

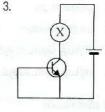
16 Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

30 V

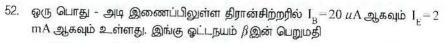
படத்தில் காட்டியுள்ள சுற்றில் ஓட்டநயம் β = 100 ஆகும். அடிகாலி வோல்ற் றளவைப் புறக்கணிக்க.

47.	I _ட இன் பெர	றமதி						
	1. 5mA	2. 4 n	nA 3.	3 mA	4.	2mA	5.	1 mA
48.	I ₈ இன் பெர	றமதி						
	1. 1 <i>u</i> A	2. 10	μA 3.	100 <i>µ</i> A	4.	1 mA	5.	10mA
49.	V _{CE} இன் പെ	றுமதி அ	ண்ணளவாச	5		4		
	1. 5V	2. 10	V 3.	15V	4.	20V	5.	60 V
50	கியான்கிற்று	റർത	விரியலார்	ถึงเสลาว่า เม	ر مندر		۱ <i>۰۰۰</i> ۰۰	0

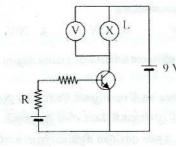

- 50. திரானசிற்றர் ஒன்று விரியலாக்கியாகப் பயன்படுத்தப்படுகிறது. பின்வரும் கூற்றுகளைக் கருதுக.
 - Λ. சேகரிப்பான் அடி சந்தி முன்முகக் கோடலில் இருக்கும். 🚿
 - B. காலி அடி சந்தி முன்முகக் கோடலில் இருக்கும்.
 - C. அடிமின்னோட்டத்தில் ஏற்படும் சிறியமாற்றம் காலி மின்னோட்-டத்தில் பெரிய மாற்றத்தை ஏற்படுத்தும்.


இக்கூற்றுகளில் சரியானவை.

- 1. A மட்டும்
- 4. B, C மட்டும்
- 5. A, B, C எல்லாம்


2. Bமட்டும்

51. பின்வரும் சுற்றுகளில் எதில் மின்குமிழ் ஒளிரும்?



3. A, B மட்டும்

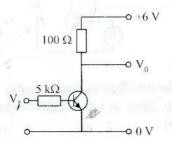
1. 0.99 2. 99 3. 100 4. 1000 5. 0.98

- 53. பொது அடி இணைப்பிலுள்ள திரான்சிற்றர் விரியலாக்கச் சுற்று பற்றிய பின்வரும் கூற்றுகளில் எது உண்மையானதன்று
 - அதன் ஒட்டநயம் I இலும் குறைவாக இருக்கும்.
 - 2. அதன் அழுத்தநயம் 1 இலும் கூடவாக இருக்கும்.
 - 3. அதன் வலுநயம் 1 இலும் கூடவாக இருக்கும்.
 - பெய்ப்பிற்கும் பயப்பிற்கும் உள்ள அவத்தை வித்தியாசம் 180° ஆகும்.
 - 5. மிகக்குறைந்த பெய்ப்புத்தடை உடையது.

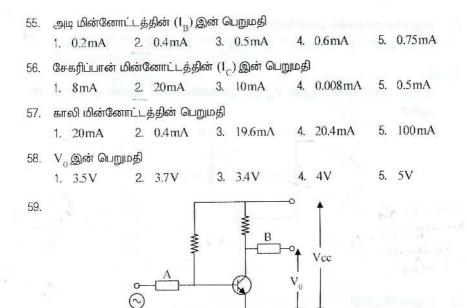
பின்வரும் சுற்றில் மின்குமிழுக்குக் குறுக்கே ஓர் வோல்ற்றுமானி இணைக்கப் பட்டுள்ளது. தடை R இன் பெறுமதி குறைக்கப்படின் மின்குமிழுக்கும் வோல்ற்று மானியின் வாசிப்புக்கும் என்ன நிகழும்?

விளக்கு L

1. அணையும்


54.

- 2. அணையும்
- 3. மாற்றமில்லை
- 4. எரியத் தொடங்கும்
- 5. எரியத்தொடங்கும்


V மானியின் வாசிப்பு குறையும் அதிகரிக்கும் மாற்றமில்லை குறையும் அதிகரிக்கும்

55 - 58 வினாக்கள்

படத்தில் காட்டியுள்ள விரியலாக்கச் சுற்றில் அடி-காலி வோல்ற் அளவைப் புறக்கணிக்கலாம். சுற்றின் மின்னோட்டநயம் 50 ஆகும். V₁=2V ஆகும்.

18

பொதுக்காலி இணைப்பில் உள்ள எளிய திரான்சிற்றர் விரியவாக்கச் சுற்றொன் றைப் படம் காட்டுகிறது. இங்கு A, B என்பன

- 1. இரண்டும் தடையிகளாகும்.
- 2. இரண்டும் கொள்ளளவிகளாகும்.
- 3. A தடையியும் B கொள்ளளவியுமாகும்.
- 4. A கொள்ளளவியும் B தடையியும் ஆகும்.
- 5. இரு திரான்சிற்றாகளாகும்.
- திரான்சிற்றர் ஒன்று பொதுக்காலி இணைப்பில் விரியலாக்கியாகப் பயன் படுத்தப்படுகிறது.

A. மின்னோட்டநயமும் அழுத்த நயமும் இருக்கும்.

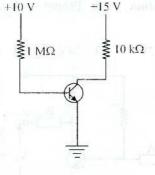
- B. பெய்ப்புச் சமிக்ஞைக்கும் பயப்புச் சமிக்ஞைக்கும் உள்ள அவத்தை வித்தியாசம் 180° ஆகும்.
- C. அடிமின்னோட்டம் பயப்பாகவும் சேகரிப்பான் மின்னோட்டம் பெய்ப்பாகவும் இருக்கும்.

இவற்றுள் சரியானவை

- 1. A மட்டும் 2. B மட்டும் 3. A, B மட்டும்
- 4. B, C மட்டும் 5. A, B, C எல்லாம்

61. ஒரு பொதுக்காலி இணைப்பில் $\alpha = \frac{l_C}{l_E} = 0.98$ $I_B = 5\mu A$ எனின் அதன் ஒட்டநயம்

1. 100 2. 50 3. 98 4. 49 5. 30


19

62. மேலுள்ள வினாவில் காலிமின்னோட்டம்

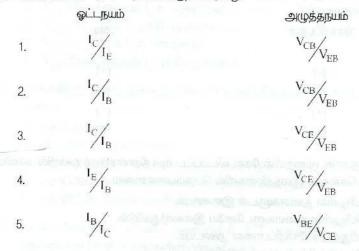
1. 0.25mA 2. 0.5mA 3. 1mA 4. 2mA 5. 3mA

63 - 65

படத்தில் காட்டியுள்ள சுற்றில் V_{BE} ஐப் புறக்கணிக்கலாம். சுற்றின் ஒட்டநயம் 100 ஆகும்.

_63. I_ந இன் பெறுமதி

1. 10μA 2. 100μA 3. 200μA 4. 5μA 5. 50μΛ 64. I_c இன் பெறுமதி


1. $1 \mu A$ 2. $100 \mu A$ 3. $1000 \mu A$ 4. 10 m A 5. 100 m A

65. V_{CE} இன் பெறுமதி 1. IV 2. 2V 3. 3V 4. 4V 5. 5V

66. பொது - அடி இணைப்பிலுள்ள திரான்சிற்றர் விரியலாக்கியில் ஓட்ட நயத்தையும் அழுத்தநயத்தையும் சரியாகக் குறிப்பிடுவது

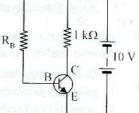
ஒட்டநயம் அழுத்தநயம் I_C VCB 1. FP IE/ 2. VCB 1_c $I_{B/C}$ 3. EB $^{l}C_{h_{B}}$ 4. 5.

67. ொதுக்காலி இணைப்பிலுள்ள திரான்சிற்றர் விரியலாக்கியின் ஒட்டநயத்தையும் அழுத்தநயத்தையும் சரியாகக் குறிப்பிடுவது

- திரான்சிற்றர் ஒன்று பொதுக்காலி இணைப்பிலுள்ளபோது V_{CE} இன் பெறுமதி பற்றிய பின்வரும் சு.ற்றுகளைக் கருதுக.
 - A. திரான்சிற்றர் நிரம்பல் நிலையிலுள்ளபோது $\mathrm{V_{CE}}{}^{\simeq}0$
 - B. திரான்சிற்றர் துண்டித்த நிலையிலுள்ளபோது V_{CE} $^{\simeq}V_{CC}$
 - C. திரான்சிற்றர் உயிர்ப்பு நிலையில் தகுந்த கோடலில் உள்ள போது $V_{\rm CE} = rac{1}{2} V_{\rm CC}$

இவற்றுள் உண்மையானவை

- 1. A மட்டும்
 2. A, B மட்டும்
 3. B, C மட்டும்


 4. A, C மட்டும்
 5. A, B, C எல்லாம்
- ஒரு திரான்சிற்றர் விரியலாக்கியின் வலுநயம் 20 000 மின்னோட்டநயம் 100எனி ன் அதன் அழுத்தநயம்

2. $200 k\Omega$

4. 500 Ω

1. 200 2. 2×10^6 3. 100 4. 2×10^4 5. 2000

70. படத்தில் காட்டியுள்ள சுற்றில் திரான்சிற்றரின் நயம் β = 100 ஆகும். V_{CE} = 5 V ஆக இருப்பதற்கு கோடல்தடை R_B இன் பெறுமதி என்னவாக இருத்தல் வேண்டும்? (V_{BE} ஐப் புறக்கணிக்க)

3. 1 MΩ
 5. 200Ω

1. $2k\Omega$

71. npn திரான்சிற்றர் ஒன்று வேலை செய்யும்போது காலி சார்பாக அடியினதும் சேகரிப்பானினதும் அழுத்தங்களைச் சரியாக வகைகுறிப்பது பின்வருவன வற்றில் எதுவாகும்?

	சேகரிப்பான்	হাবি
1.	(+)	(-)
2.	(-)	(+)
3.	(-)	(-)
4.	(+)	(+)
5.	(+)	0

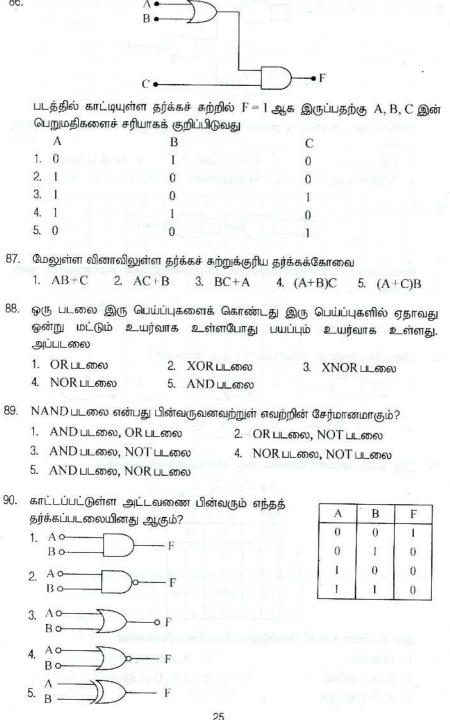
- 72. பொருத்தமான முறையில் கோடலிடப்பட்ட npn திரான்சிற்றர் ஒன்றில் காலியி லிருந்து செல்லும் இலத்திரன்களில் பெரும்பாலானவை
 - 1. அடியிலுள்ள துளைகளுடன் இணையும்.
 - 2. காலியிலுள்ள துளைகளுடனேயே இணைந்துவிடும்.
 - 3. அடியினூடாக சேகரிப்பானை அடையும்.
 - 4. சந்தித் தடுப்பில் நிறுத்தப்பட்டுவிடும்.
 - 5. அடியினூடாக வெளியேறிவிடும்.
- 73. ஒரு திரான்சிற்றரின் காலி அடிச்சந்தி முன்முகக் கோடலிலும் அடி சேகரிப்பான் சந்தி பின்முகக்கோடலிலும் உள்ளது அடிமின்னோட்டம் அதிகரிக்கப்படின்
 - 1. சேகரிப்பான் ஓட்டம் I குறைவடையும்.
 - 2. V_{CE} அதிகரிக்கும்.
 - 3. சேகரிப்பான் ஒட்டம் I, அதிகரிக்கும்.
 - 4. V_{CC} அதிகரிக்கும்.
 - 5. சேகரிப்பான் ஒட்டம் I_C மாறாதிருக்கும்.
- 74. ஒரு திரான்சிற்றர் முழுவதாக மூடியுள்ள (ON)போது திரான்சிற்றர்
 - 1. குறுஞ்சுற்றாக்கப்பட்டுள்ளது எனப்படும்.
 - 2. நிரம்பியுள்ளது எனப்படும்.
 - 3. திறந்துள்ளது எனப்படும்.
 - 4. துண்டித்த நிலையிலுள்ளது எனப்படும்.
 - 5. அவதி நிலையிலுள்ளது எனப்படும்.
- 75. அடிமின்னோட்டத்தில் ஏற்படும் மாற்றம் சேகரிப்பான் ஓட்டத்தில் மாற்றம் ஏற்பட வில்லை எனின், திரான்சிற்றர் விரியலாக்கி
 - 1. நிரம்பியுள்ளது எனப்படும்.
 - 2. துண்டித்த நிலையிலுள்ளது எனப்படும்.
 - 3. அவதிநிலையிலுள்ளது எனப்படும்.
 - 4. திறந்துள்ளது எனப்படும்.
 - குறுஞ்சுற்றாக்கப்பட்டுள்ளது எனப்படும்.

- 76. ஒரு npn திரான்சிற்றர் நிரம்பியுள்ளபோது அதன்
 - 1. V_{CE} பூச்சியமும் I_C பூச்சியமுமாகும்.
 - 2. V_{CE} மிகக்குறைவும் I_C உயர்வுமாகும்.
 - 3. V_{CE} = V_{CC} உம் I_C பூச்சியமுமாகும்.
 - 4. $V_{CE} = V_{CC}$ உம் I_C உயர்வுமாகும்.
 - 5. V_{CE} மிகக்குறைவும் I_C பூச்சியமுமாகும்.
- 77. திரான்சிற்றர் ஒன்று துண்டித்தநிலை (Cut off) இல் உள்ளபோது பயப்பு வோல்ற் அளவு
 - 1. பூச்சியமாகும்.
 - 2. கிட்டத்தட்டப் பூச்சியமாகும்.
 - பற்றரியின் மின்னியக்கவிசைக்குச் சமனாகும்.
 - பற்றரியின் மின்னியக்கவிசையின் அரைமடங்காகும்.
 - 5. பற்றரியின் மின்னியக்கவிசையின் இருமடங்காகும்.
- 78. NOR படலையை மட்டும் பயன்படுத்தி OR படலையை அமைப்பதற்குத் தேவையான NOR படலைகளின் எண்ணிக்கை
 - 1. ஒன்று 2. இரண்டு 3. மூன்று 4. நான்கு 5. ஐந்து
- 79. அளவியல்படலை ஒன்றின் உண்மை அட்டவணை அருகில் தரப்பட்டுள்ளது. இவ் அட்டவணை எப் படலைக்குரியது?

அருகில் தரப்பட்டுள்ள உண்மை அட்டவணையைத்

- 1. OR പ∟லை
- 2. AND പ്രക്ക
- 3. EOR(XOR) പ്രത്സെ
- 4. NAND പ്രക്ക
- 5. ENOR LILONO

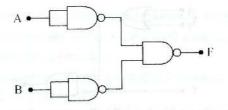
80.


தரக்கூடிய சுற்று எதுவாகும்? AO 1. Ro AO 2. Bo 0 3 AO Ro 0 4 AO Bo 5 AO Bo

GLI	பெய்ப்பு			
Α	В	Q		
0	0	0		
0	I	0		
1	0	1		
1	1	0		

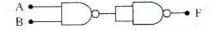
ାର୍ଯ୍ୟ	பெய்ப்பு			
А	В			
0	0	0		
0	10 126	1		
1	0	I		
1	1	0		

- 81. அளவியற் படலைகள் பற்றிய பின்வரும் கூற்றுக்களைக் கருதுக.
 - A. NAND படலைகளை மட்டும் பயன்படுத்தி ஏனைய எல்லாப் படலைகளையும் ஆக்கலாம்.
 - B. NOR படலைகளை மட்டும் பயன்படுத்தி ஏனைய எல்லாப் படலைகளையும் ஆக்கலாம்.
 - C. NOT படலை ஒரு பெய்ப்பை மாத்திரம் கொண்டது.
 - இக்கூற்றுகளில் உண்மையானவை
 - 1. A மட்டும் 2. B மட்டும் 3. A, B மட்டும்
 - 4. B, C மட்டும் 5. A, B, C எல்லாம்
- 82. பின்வருவனவற்றுள் எது / எவை அகிலப்படலை / படலைகள் ஆகும்.
 - 1. AND படலை மட்டும் 2. AND, OR படலைகள் மட்டும்
 - NOT படலை மட்டும்
 A. NAND, NOR படலைகள் மட்டும்
 - 5. OR படலை மட்டும்
- இரு பெய்ப்புகளைக் கொண்ட OR படலைக்கு பயப்பு 0 ஆக இருக்கும். எப்போ தெனில்,
 - ஏதாவது ஒரு பெய்ப்பு 1 ஆக உள்ளபோது
 - 2. ஏதாவது ஒரு பெய்ப்பு 0 ஆக உள்ளபோது
 - இரு பெய்ப்புகளும் 1 ஆக உள்ளபோது
 - 4. இரு பெய்ப்புகளும் 0 ஆக உள்ளபோது
 - இரு பெய்ப்புகளும் ஒரே மாதிரி உள்ளபோது
- 84. NOT படலையின் செயற்பாடு
 - 1. ஒரு சமிக்ஞையை (அறிகுறியை) நிறுத்துவதாகும்.
 - 2. ஒரு சமிக்ஞையை நிரப்புவதாகும்.
 - ஒரு சமிக்ஞையை நேர்மாறாக்குவதாகும்.
 - 4. ஒரு சமிக்ஞையை விரியலாக்குவதாகும்.
 - 5. ஒரு அகிலப்படலையாக செயற்படுவதாகும்.
- 85. ஒரு படலையின் உண்மை அட்டவணையின் ஒரு பகுதி தரப்பட்டுள்ளது. இப்படலை
 - XOR ப∟லை
 - 2. AND പ്രക്ക
 - 3. NOR ⊔∟லை
 - 4. OR പ്രക്ക
 - 5. NAND ⊔∟லை


A	В	F
0	0	1
0	1	1
1	0	1 24
1	1	

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

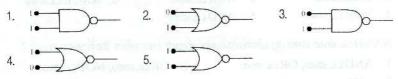
91.

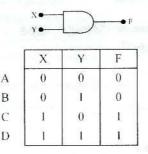


மேலேயுள்ள NAND படலைகளின்சேர்மானத்திற்குச் சமவலுவான தனிப் படலை

- 1. OR പ്രത്യെ 2. AND പ്രത്യെ 3. NOI
 - 4. NAND ⊔∟லை
- 5. XOR പடலை

. NOR പ്രക്ക


92.


மேலேயுள்ள NAND படலைகளின் சேர்மானத்திற்குச் சமவலுவான தனிப் படலை

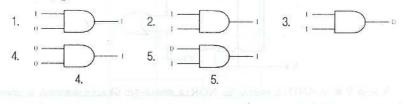
- 1. OR പ്ര. മ. AND പ്ര. 3. NOR പ്ര. തെ
- 4. NAND படலை 5. XOR படலை

93. பின்வருவனவற்றுள் எதில் பயப்பு 1 ஆக இருக்கும்?

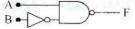
94. இரு பெய்ப்புகளைக் கொண்ட ஒரு AND படலையைக் கருதுக.

தரப்பட்டுள்ள A, B, C, D என்னும் பதிவுகளில் சரியானவை

1. எல்லாம்

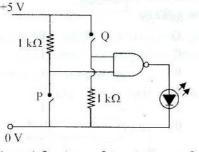

5

- 3. A, B, C மட்டும்
- 5. A, B, D மட்டும்


A, B ю: Gю
 A, C, D ю: Gю

26 Digitized by Noolaham Foundation. noolaham.org | aavanaham.org 36

பின்வருவனவற்றுள் எது AND படலையின் (கதவத்தின்) இயல்தகு நிலையைக் 95. காட்டுகிறது.


96.

படத்தில் காட்டப்பட்டுள்ள தர்க்கச் சுற்றிற்கான உண்மை அட்டவணை

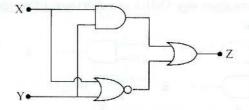
			2				2			
A	В	F] 2.	А	В	F] ^{3.} [А	В	F
 0	0	1		0	0	0	162	0	0	0
0	1	1	121036	0	a ge	1	598.4	0	POT M	0
lag	0	0		1	0	0	4	I on	0	1
1	1	0		1	104 ja 8	-1		1	1	0
1997 - 1997 - 19			, 5. r				_			
A	В	F		А	В	F				
0	0	0] [0	0	1				
0	1	2 P-	0	0	1	1				
1	0	1		1	0	0				
1	1	0		1	T	1-				

97.

காட்டப்பட்டுள்ள சுற்றிலுள்ள ஒளிகாலும் இருவாயி ஒளிரும் எப்போதெனில்

- A. ஆளிகள் P, Q இரண்டும் திறந்துள்ளபோது
- B. ஆளிகள் P, Q இரண்டும் மூடப்பட்டுள்ளபோது

5.


C. ஆளி P மூடப்பட்டும் ஆளி Q திறந்தும் உள்ளபோது

இவற்றுள் சரியானவை

- 1. A. B. C எல்லாம்
- 2. A. B மட்டும் CIDLIGIÓ
- 3. B. C LLAD

4. A மட்டும்

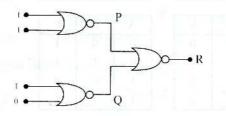
27

X உம் Y உம் AND படலைக்கும் NOR படலைக்கும் பெய்ப்புக்களாக உள்ளன. OR படலையிலிருந்தான பயப்பு Z ஆகும். Z உயர்வாக(1) உள்ளது. பின்வருவன வற்றைக் கருதுக.

A. AND படலையிலிருந்தான பயப்பு இழிவாக (0) இருக்கும்.

B. X, Y ஆகிய இரு பெய்ப்புகளும் உயர்வானவை. (1)

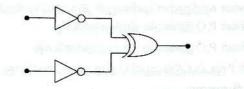
C. X, Y ஆகிய இரு பெய்ப்புகளும் இழிவானவை. (0)

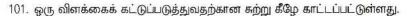

இக்கூற்றுகளில் உண்மையாக இருக்கக்கூடியவை

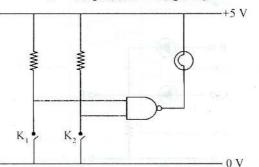
1. A, B, C எல்லாம்

4. A மட்டும்

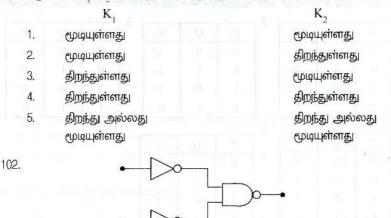
- 2. A, C மட்டும் 5. B மட்டும்
- 3. B, C மட்டும்


99.

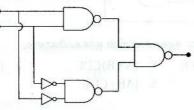

மூன்று NOR படலைகளைப் படம் காட்டுகிறது. P, Q, R ஐச் சரியாக வகை குறிப்பது


	Р	Q	R
1.	0	0	1
2.	1	0	1
3.	0	1	0
4.	0	1	1
	0	0	0

100.

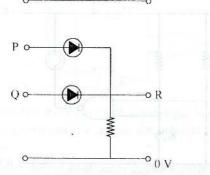


மேலேயுள்ள படலைகளாலான சேர்மானத்திற்குச் சமவலுவான தனிப்படலை 1. XNOR 2. XOR 3. NAND 4. NOR 5. OR

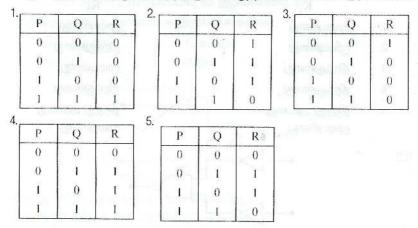


ஆளிகள் K₁, K, இன் எந்நிலைகளுக்கு விளக்கு எரியும்

படத்தில் காட்டியுள்ள சுற்றில் NAND படலை ஒன்றின் இருபெய்ப்புகளுக்கும் ஒவ்வொரு NOT படலை இணைக்கப்பட்டுள்ளது. இத்தொகுதி பின்வரும் எத்தனிப்படலைக்கு சமவலுவானது


1. AND 2. NOR 3. NOT 4. OR 5. NAND

தர்க்கவலை வேலைப்பாடொன்றைப் படம் காட்டுகிறது. இது பின்வருவன வற்றுள் எத்தனிப்படலைக்குச் சமவலுவானது? 1. AND 2. NAND 3. XNOR 4. OR 5. XOR


29

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

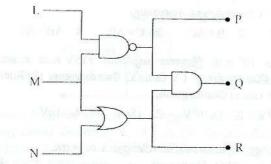


+5 V

P,Q ஐ +5 V இற்கு அல்லது OV இற்கு இணைப்பதன் மூலம் பயப்பு R கட்டுப்படுத்தப்படுகிறது. இச்சுற்றிற்குப் பொருத்தமான உண்மை அட்டவணை

105. B

படத்தில் காட்டியுள்ள தர்க்கச்சுற்றின் தர்க்கக்கோவை


1. (A+B)(C+D)+E2. (A+B)CDE [AB+C+D]+E3. [AB+C+D]E 4. 5. [AB+CD]E

106. ஒரு AND படலையின் பெய்ப்புகள் A, B உம் பயப்பு F உம் ஆகும். A = 101011 உம் B=110101 உம் எனின் F இன் பெறுமதி 1. 101011

2. 110101 3. 110110 4. 111111 100001 5.

30

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

L, M, N ஆகிய எல்லாம் தர்க்கநிலை 'I' இல் இருப்பின் P, Q, R இன் தர்க்க நிலைகள்

	Р	Q	R
1.	0	1	I
2.	0	0	1
З.	0	0	. 0
4.	1	0	0
5.	1	0	1

108. ஒரு ORபடலையின் பெய்ப்புகள் A, B உம் பயப்பு F உம் ஆகும். A = 100101, B = 110110 எனின் F சமன்

1. 110111 2. 100001 3. 111111 4. 110110 5. 111110

109. A + A என்பதற்குச் சமனானது

1. 0 2. 1 3. A 4. A 5. A

- 110. (A+B)(A+B) என்பதற்குச் சமவலுவானது
- 1. A 2. A 3. B 4. \overrightarrow{B} 5. $\overrightarrow{A} + \overrightarrow{B}$

111. A (A + B) என்பதற்குச் சமவலுவானது

1. A 2. B 3. AB 4. AB 5. AB 112. A +A B என்பதற்குச் சமனானது

1. A 2. B 3. AB 4. A 5. B

113. NANDபடலைக்கான பூலியன் சமன்பாடு

1.	$F \coloneqq \overline{\mathbf{A}} + \mathbf{B}$	2.	$F = \overline{A} - \overline{B}$	3.	F = A + B
4.	$F = \overline{A} + \overline{B}$	5.	F=A B		

031 Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

114. (A + B)(A + C)என்பதற்குச் சமனானது

1. A + BC 2. B + AC 3. C + AB 4. AB + AC 5. AC + BC

115. திறந்தநயம் 10⁶ உம் இருமை வழங்கல் ±15V உம் உடைய செயற்பாடு விரியலாக்கியொன்றிற்கு 1 V பெய்ப்பு வோல்ற்றளவு பிரயோகிக்கப்படுகிறது. பெறப்படும் பயப்பு வோல்ற்றளவு

 $4 - 10^{-3}$

1. $15 \times 10^6 \text{V}$ 2. $1 \times 10^6 \text{V}$ 3. $15 \mu \text{V}$ 4. $1 \mu \text{V}$ 5. 15 V

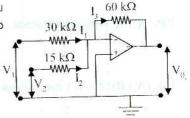
116. ஒரு நேர்மாறு விரியலாக்கியில் பின்னூட்டல் தடை R_F = 2 MΩ, R_A = 2 kΩ. இதன் நயம் 1. 1000 2. -1000

- 3 10⁻³
- 5. 4×10^8

117. ஒருங்கிணைந்த சுற்றின்நயம் அல்லாதது

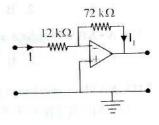
- 1. அளவில் சிறியவை
- 2. நம்பகத்தன்மை கூடியவை
- 3. குறைந்தவலு நுகர்வுடையவை
- இலகுவாக மாற்றப்படக்கூடியவை.
- 5. கூடிய வெப்பத்தையும் தாங்கக்கூடியவை.

118. படத்தில் காட்டியுள்ள விரியலாக்கி இலட்சிய


மானது பெய்ப்புகள் V₁ = +30 m V உம் V₂ = +20 mV உம் ஆகும்.

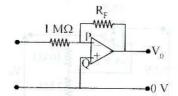
பயப்பு வோல்ற்றளவு V₀ இன் பெறுமதி

- 1. +0.28V
- 2. -0.28V
- 3. +0.14V
- 4. -0.14V
- 5. +0.42V

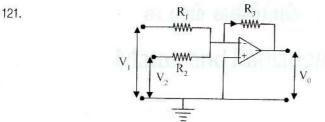

119. படத்தில் காட்டியுள்ள சுற்றில் விரியலாக்கி இலட்சியமானதாகக் கொள்ளலாம். 12 kΩ தடையினூடான மின்னோட்டம் J ஆகும். 72 kΩதடையினூடான மின்னோட்டம்

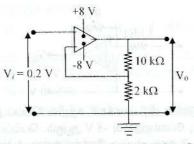
- I, இன் பெறுமதி
- 1. -6I
- 3. $\frac{1}{6}$
- 5. 61

R_F


R

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org


- 61


படத்தில் காட்டப்படுள்ள விரியலாக்கச் சுற்றில் பெய்ப்பு வோல்ற்றளவு +2 V ஆகும்போது பயப்பு வோல்ற்றளவு -8 V ஆகும். பெய்ப்பு வோல்ற்றளவு +1 V இற்கு மாற்றப்பட்டபோது பயப்பு வோல்ற்றளவு -4 V ஆகிறது. பின்வரும் சுற்றுகளில் எது உண்மையானதல்ல.

- 1. அழுத்தநயம் -4 ஆகும்.
- பெய்ப்பு வோல்ற்றளவு 2 V ஆகும்போது P இல் வோல்ற்றளவு 2 V ஆக இருக்கும்.
- பெய்ப்பு வோல்ற்றளவு 2 V ஆகும்போது R_F, இனுடான மின்னோட்டம் 2 μA ஆகும்.
- 4. R_F இன் பெறுமதி 4 M Ω .
- பெய்ப்பு வோல்ற்றளவு I V ஆகும்போது பயப்பு வோல்ற்றளவு +4 V ஆகும்.

செயற்பாட்டு விரியலாக்கச் சுற்றைப் படம் காட்டுகிறது. பயப்பு வோல்ற்றளவு V₀ இன் பருமனைச் சரியாகத் தருவது பின்வருவனவற்றுள் எதுவாகும்? 1. V₁ + V₂

- $2. \quad V_1 \left(\frac{R_1}{R_3}\right) + V_2 \left(\frac{R_2}{R_3}\right)$
- 3. $V_1\left(\frac{R_3}{R_1}\right) + V_2\left(\frac{R_3}{R_2}\right)$
- $4. \left(V_1 + V_2\right) \left(\frac{R_3}{R_1 + R_2}\right)$
- 5. $\left(V_1 + V_2\right)\left(\frac{R_1 + R_2}{R_3}\right)$

படத்தில் காட்டியுள்ளதுபோல் இணைக்கப்பட்டுள்ள செயற்பாட்டு விரியலாக்-கிக்கு 0.2 V பெய்ப்பு வோல்ற்றளவு பிரயோகிக்கப்படுகிறது. பயப்பு வோல்ற்றளவு V₀ இன் பெறுமதி

1. 0.2V 2. 0.8V 3. 1.0V 4. 1.2V 5. 8.0V

Digitized by Nooraham Foundation. noolaham.org | aavanaham.org

சடமும் கதிர்ப்பும் Matter and Radiation

சுடரும் கதிர்ப்பும் Matter and Radiation

அம்பைக் அழுப்படுக்குப்பாகை காறில் உலருமுற்ற நாகத்துக்கு வருக்குக் கடிக்குத்துக்கு கார் தாலைக்குற்கு வருக்குக் கடிக்கு பட்டி நாட்க தாலைக்குற்கு வருக்குப்பாகை காறில் உலருமுறி கிறைக்கு கடிக்குப்பாகை காறில் உலருமுறி கிறைக்கு காற்ப்பத்துப்பாகை காறில் உலருமுறி கிறைக்கு காற்ப்பத்து

சடமும் கதிர்ப்பும்

Matter and Radiation

123. கழியூதா ஒளிமுதலொன்று நாகத்தகடொன்றிலிருந்து ஒளி இலத்திரன்களைக் காலுகின்றது. அதே அலைநீளமுடைய மேலும் செறிவான முதல் பாவிக்கப் படின் காலப்படும் ஒளி இலத்திரன்கள் பற்றிய சரியான முடிவு

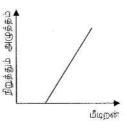
	உயர்சக்தி / இலத்திரன்	இலத்திரன்கள் / செக்கன்
1. 1.	கூடும்	மாறாது
2.	் பொறாது	கூடும்
3.	ഥന്വന്നപ്പ	மாறாது
4.	சுடும்	கூடும்
5.	குறையும்	கூடும்

124. தரப்பட்ட உலோகமொன்றினால் காலப்படும் ஒளி இலத்திரன்களின் அதியுயர் இயக்கச்சக்தி தங்கியிருப்பது

- 1. படும் கதிர்ப்பின் மீடிறனிலாகும்.
- 2. படும் கதிர்ப்பின் வேகத்திலாகும்.
- 3. படும் கதிர்ப்பின் செறிவிலாகும்.
- 4. படும்கதிர்ப்பின்படுகோணத்திலாகும்.
- 5. மேற்கூறிய எதிலுமல்ல.
- 125. பொருத்தமான கதிர்ப்பினால் ஒளிராக்கப்படும்போது ஒரு குறித்த உலோக மேற்பரப்பிலிருந்து காலப்படும் இலத்திரன்களின் உயர்சக்தி தங்கியுள்ள காரணிகள்
 - Λ. கதிர்ப்பின் செறிவு
 - B. கதிர்ப்பின் மீடிறன்
 - C. உலோகத்தின் வேலைச்சார்பு

இவற்றுள் சரியானவை

- 1. A, B, C எல்லாம்
- 2. A, B மட்டும்


5.

3. B, C மட்டும்

4. A மட்டும்

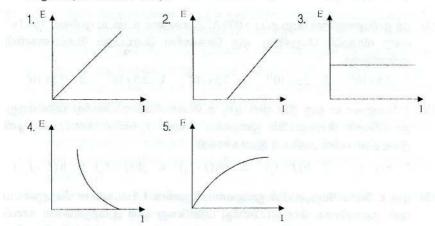
C மட்டும் 37

126. ஒரு நிற ஒளியினால் ஒளிராக்கப்படும் உலோக மேற்பரப்பொன்றினால் காலப்படும் ஒளி இலத்திரன் களின் உயர் இயக்கச்சக்தியை ஆராய்வதற்கான பரிசோதனையொன்றில் நிறுத்தும் அழுத்தமானது மீடிறனுக்கு எதிராக வரைபுபடுத்தப்பட்டது. வரைபு அருகிலுள்ளதுபோல் அமைகின்றது. இவ்வரைபின் படித்திறன்,

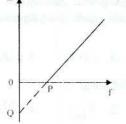
- மேற்பரப்பின் வேலைச்சார்ப்புக்குச் சமன். 1.
- 2. மேற்பரப்பின் வேலைச்சார்பை இலத்திரன் ஏற்றத்தால் பெருக்க வருவதற்குச் சமன்.
- 3. பிளாங்கின் மாறிலியை இலத்திரன் ஏற்றத்தால் பெருக்க வருவதற்குச் HIDENT.
- 4. பிளாங்கின் மாறிலிக்குச் சமன்.
- 5. பிளாங்கின் மாறிலியை இலத்திரன் ஏற்றத்தால் பிரிக்க வருவதற்குச் சமன்.
- 127. ஒளிமின்காலல் பற்றிய தொடர் பரிசோதனைகளில் வெவ்வேறு உலோகங்கள் வித்தியாசமான போட்டன் சக்திகளையும் வித்தியாசமான செறிவுகளையும் உடைய ஒரு நிற ஒளியால் ஒளிராக்கப்படுகின்றது. இப்பரிசோதனைகளின் மாறிகள் பின்வருவனவாக இருக்கும்.
 - 2_லோகங்களின் வேலைச்சார்பு
 - B. போட்டன் சக்கி
 - C. ஒளிச்செறிவு
 - ஒவ்வொரு பரிசோதனையின்போதும் காலப்படும் இலத்திரன்கள் குறித்த உயர்பெறுமானம் வரையுள்ள இயக்கச்சக்திகளை உடையனவாக இருந்தன. இவ்வுயர் இயக்கச்சக்தி தங்கியிருப்பது
 - 2. A, B இல் மட்டும் 3. A, C இல் மட்டும் 1. 🗛 இல் மட்டும்
 - 5. A, B, C எல்லாவற்றிலும் B, C இல் மட்டும் 4.
- 128. சுத்தமான நாகத்தகட்டின்மீது ஒரு நிற ஒளிக்கதிர்ப்பு விழுகின்றது. பின்வரும் கூற்றுக்களைக் கருதுக.
 - Λ. கதிர்ப்பின் அலைநீளம் போதுமான குறைவாக இருப்பின் இலத்திரன்கள் காலப்படும்.
 - B. குறித்த ஒரு படு அலைநீளத்திற்கு காலப்படும் எந்த இலத்திரன்களும் ஒரே சக்தியைக் கொண்டிருக்கும்.
 - C. இலத்திரன்கள் காலப்படின் அவற்றினுடைய எண்ணிக்கை கதிர்ப்பின் செறிவில் தங்கியிராது.

இவற்றுள் சரியானவை

- 1. <u>А. В. С எல்லாம்</u>
- 2. A, BIDLGID டமட்டும்
- 3. B.C.DLAD


4. ALDLIGIO

10


Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

5.

129. வெற்றிடத்தில் வைக்கப்பட்டுள்ள சுத்தமான உலோக மேற்பரப்பொன்றின்மீது ஒரு நிற ஒளியின் வெவ்வேறு செறிவு படும்போது காலப்படும் ஒளி இலத்திரன்களின் உயர் இயக்கச்சக்தியானது (E) படும் செறிவு 1 உடன் மாறுவதைக் காட்டும் வரைபு

130. படும் கதிர்ப்பின் மீடிறனுடன் (f) காலப்படும் இலத்திரன்களின் உயர்சக்தி (E) ஆனது மாறுபடுவதைக் கீழேயுள்ள வரைபு காட்டுகின்றது.

கூடிய வேலைச்சார்புடைய உலோகம் பயன்படுத்தப்படின்

- A. Y அச்சை வரைபு வெட்டும்புள்ளி Q இற்குக்கீழ் இருக்கும்.
- B. X அச்சை வரைபு வெட்டும்புள்ளி P இற்கு இடப்பக்கமாக இருக்கும்.
- C. வரைபின்படித்திறன் கூடவாக இருக்கும்.

இவற்றுள்

- 1. A, B மட்டும் உண்மையானவை. 2. B, C மட்டும் உண்மையானவை.
- 3. A, C மட்டும் உண்மையானவை.
- 4. A மட்டும் உண்மையானது.
- 5. டமட்டும் உண்மையானது.

131. 15 x 10¹⁴ Hz மீடிறனுடைய கழியூதாக் கதிர்ப்பின் ஒரு போட்டனின் ஏகபரிமாண உந்தம் (C=3 x 10⁸ m s⁻¹, h = 6.6 x 10⁻³⁴ Js)

1.	1.3 x 10 ⁻²⁴ N s	2. $3.3 \times 10^{-27} \mathrm{Ns}$	$-3. 1.3 \times 10^{-30} \text{ Ns}$
4.	3.3 x 10 ⁻³³ N s	5. $1.3 \times 10^{-34} \text{ Ns}$	

132. ஒர் ஒளியுணர்திறன் மேற்பரப்பு 5 000 A^o அலைநீளம் உடைய ஒளியை 10⁻⁷ J s⁻¹ என்ற வீதத்தில் பெறுகிறது. ஒரு செக்கனில் பெறப்படும் போட்டன்களின் எண்ணிக்கை

1. 2.5×10^{12} 2. 2.5×10^{11} 3. 2.5×10^{10} 4. 2.5×10^{9} 5. 2.5×10^{8}

133. ƒ மீடிறனுடைய ஒரு நிற ஒளி ஒரு உலோக மேற்பரப்பின்மீது படுகின்றது. அவ்வுலோக மேற்பரப்பின் நுழைவாய் மீடிறன் ƒ₀ எனின் காலப்படும் ஒளி இலத்திரன்களின் அதியுயர் இயக்கச்சக்தி

1. $h(f-f_0)$ 2. $h(f+f_0)$ 3. $\frac{1}{2}h(f-f_0)$ 4. $\frac{1}{2}h(f+f_0)$ 5. $h(f^2-f_0^2)$

- 134. ஒரு உலோக மேற்பரப்பின் நுழைவாய் மீடிறனின் 1.5 மடங்கான மீடிறனுடைய ஒளி அவ்வுலோக மேற்பரப்பின்மீது படும்போது ஒளி இலத்திரன்கள் காலப் படும்வீதம் x ஆகும். மீடிறன் அரைமடங்காக்கப்பட்டு ஒளியின்செறிவு இரு மடங்காக்கப்படின் ஒளி இலத்திரன் காலப்படும்வீதம்
 - 1. x 2. 2x 3. x/2 4. x/4 5. பூச்சியம்

135. ஒரு உலோக மேற்பரப்பின் நுழைவாய் அலைநீளம் 6 000 A° படும் ஒளியின் அலைநீளம் 5 000 A° காலப்படும் ஒளி இலத்திரன்களின் அதியுயர் இயக்கச் சக்தி

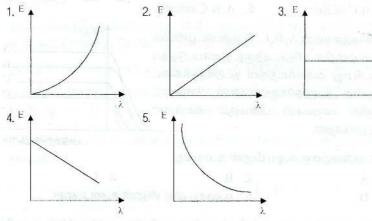
1. 0.041eV 2. 0.41eV 3. 4.1eV 4. 0.82eV 5. 8.2eV

- 136. λ அலைநீளமுடைய போட்டனின் சக்தி
 - 1. $hc\lambda$ 2. hc'_{λ} 3. λ'_{hc} 4. $h\lambda'_{c}$ 5. $c'_{h\lambda}$

137. 4 eV சக்தியுடைய இலத்திரன் 2 eV வேலைச்சார்பு உடைய ஒரு உலோக மேற் பரப்பின்மீது படுகின்றது. காலப்படும் ஒளி இலத்திரன்களின் அதியுயர் இயக்க சக்தி

1. 1eV 2. 2eV 3. 3eV 4. 4eV 5. 6eV

- 138. / மீடிறனுடைய ஒரு போட்டனின் உந்தம்
 - 1. $\frac{hf}{c^2}$ 2. $\frac{hf}{c}$ 3. hfc 4. hfc^2 5. $\frac{1}{2}hfc^2$


139. ஒரு உலோக மேற்பரப்பின் நுழைவாய் அலைநீளம் 2 000 A°. அவ்வுலோகத் தின் வேலைச்சார்பு

1. 6.2.J 2. 6.2 eV 3. 6.2 MeV 4. 6.2 keV 5. 6.2 meV

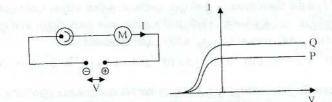
140. 3.5 x 10⁻¹⁹ J சக்திச் சொட்டுடைய ஒளி ஒரு ஒளிக்கலத்தின் கதோட்டில் படுகிறது. 0.25 V நிறுத்தும் அழுத்தத்தைப் பிரயோகிப்பதன்மூலம் கலத்தினூடான ஒட்டம் மட்டுமட்டாகப் பூச்சியமாக்கப்பட்டது. கதோட்டின் வேலைச்சார்பு

1. 2.9×10^{-19} J 2. 3.1×10^{-19} J 3. 3.5×10^{-19} J 4. 3.9×10^{-19} J 5. 6.4×10^{-19} J

- 141. ஒரு உலோக மேற்பரப்பானது ஒரு நிற ஒளியினால் ஒளிராக்கப்படும்போது ஒளி இலத்திரன்கள் காலப்படுகின்றன. பின்வரும் கூற்றுகளில் எது உண்மையானது?
 - ஒரு குறித்த அலைநீளமுள்ள ஒளிக்குக் காலப்படும் ஒளி இலத்திரன்களின் அதியுயர் இயக்கசக்தியானது மேற்பரப்பின் வேலைச் சார்பில் தங்கியிராது.
 - ஒரு குறித்த அலைநீளமுள்ள ஒளிக்குக் காலப்படும் ஒளி இலத்திரன்களின் அதியுயர் இயக்கசக்தி ஒளியின் செறிவில் தங்கும்.
 - ஒரு குறித்த அலைநீளமுள்ள ஒளிக்கு ஒளி இலத்திரன்களின் காலல் வீதமானது ஒளிச்செறிவுக்கு நேர்விகிதசமன்.
 - ஒளி இலத்திரன்களின் அதியுயர் இயக்கசக்தி ஒளியின் சக்திச் சொட்டிற்கு சமனாகும்.
 - ஒளியின் அலைநீளம் குறையும்போது ஒளி இலத்திரன்களின் அதியுயர் இயக்கசக்தியும் குறைவடையும்.
- 142. மின்காந்தக் கதிர்ப்பின்சக்தி E இனதும் அலைநீளம் λ் இனதும் மாறலைத் திறம்பட வகைகுறிப்பது

143. பின்வரும் சக்திகளைக் கருதுக.

A. 3 m அலைநீள ரேடியோ அலையின் போட்டனின் சக்தி


B. X - கதிர்ப் போட்டனின் சக்தி

C. சோடியம் விளக்கிலிருந்து வரும் மஞ்சள் ஒளியின் சக்தி

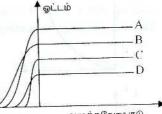
இச்சக்திகளைப் பருமன் அதிகரிக்கும் வரிசையில் ஒழுங்கு செய்தால் கிடைப்பது

1. A,B,C 2. A,C,B 3. B,A,C 4. B,C,A 5. C,B,A

41

ஒரு குறித்த அலைநீளமுடைய ஒருநிறஒளியினால் ஒரு உலோகம் ஒளிராக்கப் படும்போது மின்னோட்டம் I ஆனது அழுத்தவேறுபாடு V உடன் மாறுபடுவதை வரைபு காட்டுகிறது. வெவ்வேறு செறிவுடைய ஆனால் ஒரே அலைநீளமுடைய ஒரு நிற ஒளி படும்போது இரு சந்தர்ப்பங்களில் வரைபு வரையப்பட்டுள்ளது. பின்வரும் கூற்றுகளைக் கருதுக.

- A. P, Q ஆகிய இரு சந்தர்ப்பங்களிலும் நிறுத்தும் அழுத்தங்கள் சமனாகும்.
- B. P ஐ விட Q இல் படும் ஒளியின் செறிவு கூடவாகும்.
- C. P ஐ விட Q இல் காலப்படும் ஒளி இலத்திரன்களின் எண்ணி க்கை கூடவாகும்.


BULGIO

இக்கூற்றுகளில் சரியானவை

- 2. ∧மட்டும் 1.
- A, B, C எல்லாம் 5. B.Cமட்டும் 4.

3. A, B மட்டும்

145. ஒளிக்கற்றைகள் A, B, C, D என்பன ஒளிமின் கலம் ஒன்றின் கதோட்டிற்குத் திசைப்படுத்தப் பட்டபோது ஒளிக்கலத்தின் தட்டுகளுக்கிடை யிலுள்ள அழுத்தவேறுபாட்டுடன் மின்னோட் டத்தின் மாறலைப் பின்வரும் வரைபுகள் காட்டுகின்றன.

அழுத்தவேறுபாடு

எவ் ஒளிக்கற்றை கூடிய மீடிறன் உடையது.

1. A

3. C

B எல்லாம் ஒரே மீடிறன் உடையவை. 5. 4. D

2.

146. ஐதரசன் இறக்கக் குழாயிலிருந்து வரும் ஒளியானது (13.6 eV) ஒரு ஒளி மின் கலத்தின் கதோட்டின்மீது படுகிறது. கதோட் மேற்பரப்பின் வேலைச்சார்பு 4.2 eV. ஒளிமின்னோட்டத்தைப் பூச்சியமாக்குவதற்கு கதோட் சார்பான அனோட்டின் அழுத்தம் என்னவாக்கப்படல் வேண்டும்?

+18.8V +9.4V 5. +4.2V 4. 2. -9.4V 3. 1. -4.2V

147. ஒரே அலைநீளமுடைய இரு கற்றைகள் P, Q ஒரே உலோக மேற்பரப்பின்மீது பட்டு ஒளிமின் காலலை ஏற்படுத்துகின்றன. P இனால் ஏற்படுத்தப்பட்ட

> 42 Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

144.

ஒளிமின்னோட்டம் Q இனால் ஏற்படுத்தப்பட்ட ஒளிமின்னோட்டத்தின் நான்கு மடங்காக இருந்தது.

கற்றை P இனது அலைவீச்சம்

கற்றை Q இனது அலைவீச்சம்

என்னும் விகிதத்தைத் தருவது

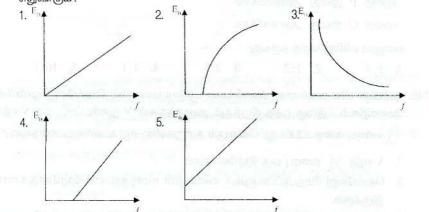
1. 1:4 . 2. 1:2 3. 2:1 4. 4:1 5. 16:1

148. ஒளிமின் விளைவுக்கான மில்லிக்கன் பரிசோதனையில் வெவ்வேறு ஒளியின் அலைநீளம் λ இற்கு ஒத்த நிறுத்தும் அழுத்தங்கள் V துணியப்பட்டன. V எதிர் 1⁄λ வரைபு வரையப்பட்டது. பின்வரும் கூற்றுகளில் எது உண்மையானதல்ல?

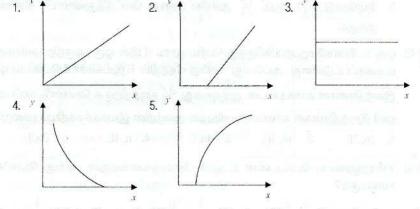
- V எதிர் ¹/_λ வரைபு ஒரு நேர்கோடாகும்.
- வெவ்வேறு மேற்பரப்புகளுக்கு வரைபுகள் சமாந்தரமான நேர்கோடுகளாக இருக்கும்.
- நேர்கோடு எப்போதும் V அச்சில் நேரான வெட்டுத்துண்டைக் கொண்டி ருக்கும்.
- 4. வரைபின் படித்திறன் hc/ ஐத் தரும்.
- நேர்கோடு எப்போதும் ¹/_λ அச்சில் நேரான வெட்டுத்துண்டைக் கொண்டி ருக்கும்.
- 149. ஒரு உலோகமேற்பரப்பிலிருந்து பெரிய தூரம் d இல் ஒரு ஒருநிற ஒளிமுதல் வைக்கப்பட்டுள்ளது. அப்போது n என்ற வீதத்தில் E இயக்கச்சக்தியுடைய ஒளி

இலத்திரன்கள் காலப்பட்டன. முதலானது $\frac{d}{2}$ தூரத்திற்குக் கொண்டு வரப்படின் ஒளி இலத்திரன்கள் காலப்படும் வீதமும் அவற்றின் இயக்கச்சக்தியும் முறையே

1. 2n,2E 2. 4n,4E 3. 4n,E 4. n,4E 5. 2n,E


150. *f* மீடிறனுடைய போட்டனின் உந்தம் பின்வருவனவற்றுள் எதற்கு நேர்விகித சமனாகும்?

f


-

- 151. ஒரு ஒளிமின்காலல் பரிசோதனையில் இலக்கில்படும் ஒளியின் அலைநீளம் அதிகரிக்கப்பட்டது. காலப்படும் ஒளி இலத்திரன்களின் இயக்கச்சக்திக்கு யாது நிகமும்?
 - 1. சராசரி இயக்கச்சக்தி குறைவடையும்.
 - 2. சராசரி இயக்கச்சக்தி அதிகரிக்கும். 👘
 - 3. அதியுயர் இயக்கச்சக்தி அதிகரிக்கும்.
 - 4. அதியுயர் இயக்கச்சக்தி குறைவடையும்.
 - 5. இழிவு இயக்கச்சக்தி அதிகரிக்கும்.

152. ƒ மீடிறனுடைய கதிர்ப்பினால் காலப்படும் ஒளி இலத்திரன்களின் இயக்கச்சக்தி E₀ ஆனது ƒ உடன் மாறுவதைத் திறம்பட வகைகுறிப்பது பின்வருவனவற்றுள் எதுவாகும்?

153. ஒரு ஒளிமின்காலல் பரிசோதனையில் தூய உலோக கதோட்டுடனான ஒளிமின் கலம் பயன்படுத்தப்பட்டது. படும் ஒளியின் மீடிறன் x உடன் மின்னோட்டத்தைத் தடுப்பதற்கான இழிவு அழுத்த வித்தியாசம் y மாறுவதைக் காட்டும் வரைபு 1. ¹↑ 2. ¹/ ↑ 3. ¹/ ↑

- 154. ஒரு ஒளிமின் விளைவுப் பரிசோதனையில் வெவ்வேறு உலோகங்கள் மாறும் மீடிறனும் மாறும் செறிவும் உடைய ஒரு நிற ஒளிமுதலால் ஒளிராக்கப்படு கின்றன. ஒவ்வொரு உலோகத்திற்கும் ஒரு குறித்த உயர்பெறுமானம்வரை வெவ்வேறு இயக்கச்சக்தியுடைய இலத்திரன்கள் காலப்படுகின்றன. அதியுயர் இயக்கச்சக்தி
 - உலோகத்தில் தங்கும். மீடிறனிலோ, செறிவிலோ தங்குவதில்லை.
 - 2. உலோகத்திலும் செறிவிலும் தங்கும். மீடிறனில் தங்காது.
 - 3. உலோகத்திலும் மீடிறனிலும் தங்கும் செறிவில் தங்காது.
 - மீடிறனிலும் செறிவிலும் தங்கும் உலோகத்தில் தங்காது.
 - உலோகத்திலும் செறிவிலும் மீடிறனிலும் தங்கும்.

- 155. வெற்றிடத்தில் உள்ள ஒரு சுத்தமான உலோகம் கழியூதாக் கதிர்ப்பினால் ஒளிராக்கப்படுகிறது. அப்போது ஒளி இலத்திரன்கள் காலப்படுகின்றன. கழியூதாக் கதிர்ப்பின் செறிவு இருமடங்காக்கப்படின் பின்வருவனவற்றுள் எது இருமடங்காகும்?
 - 1. இலத்திரன்களின் அதியுயர் கதி
 - 2. இலத்திரன்களின் அதியுயர் இயக்கச்சக்தி
 - 3. இலத்திரன்கள் காலப்படும் வீதம்
 - 4. உலோக மேற்பரப்பின் நுழைவாய் மீடிறன்
 - 5. உலோக மேற்பரப்பின் வேலைச்சார்பு
- 156. மின்காந்தக் கதிர்ப்பின் போட்டனின் உந்தம் $3.3 \ge 10^{-29}$ Ns. பிளாங்கின் மாறிலி $h = 6.6 \ge 10^{-34}$ Js ஆகவும் வளியில் ஒளியின் வேகம் $C = 3 \ge 10^8$ m s⁻¹ ஆகவும் இருப்பின் இதனுடன் சம்பந்தப்பட்ட அலையின் மீடிறன்

1.	3×10^3 Hz	2.	6×10^3 Hz	3.	7.5 x 10 ¹² Hz
4.	$1.5 \times 10^{13} \text{Hz}$	5.	6 x 10 ¹³ Hz		

157. E இயக்கச்சக்தியுடன் இயங்கும் m திணிவுடைய துணிக்கைகளின் டி - புறொக்லி யின் அலைநீளம் (பிளாங்கின் மாறிலி h)

1. $\sqrt{\frac{h}{2mE}}$ 2. $\frac{h}{\sqrt{2mE}}$ 3. $\frac{h}{2mE}$ 4. $\frac{\sqrt{h}}{2mE}$ 5. $\sqrt{\frac{2h}{mE}}$

158. ஒரு இலத்திரனின் இயக்கச்சக்தி 10 eV. பிளாங்கின் மாறிலி 6.63 x 10⁻³⁴ J s. இலத்திரனின் ஏற்றம் 1.6 x 10⁻¹⁹ C. ஒரு இலத்திரனின் திணிவு 9.11 x 10⁻³¹ kg இதனுடன் சம்பந்தப்பட்ட டி புறொக்லியின் அலைநீளம்

1.	$4.1 \times 10^{-10} \text{ m}$	2.	$3.9 \mathrm{x} 10^{-10} \mathrm{m}$	3.	$5.5 \times 10^{-10} \text{m}$
4.	$2.3 \mathrm{x} 10^{14} \mathrm{m}$	5.	4.5 x 10 ¹⁴ m		

159. மின்காந்தக் கதிர்ப்பானது அலையாகவும், துணிக்கையாகவும் கருதப்படலாம். அலை இயக்கம் என்பதைக் காட்டுபவை,

2. BIDL GID

4. A, CLOLGIO

- A. கோணல்
- B. முனைவாக்கம்
- C. ஒளிமின்காலல்

இவற்றுள் சரியானவை

- 1. A மட்டும்
- 3. А, В மட்டும்
- 5. A, B, C எல்லாம்

- 160. பின்வருவனவற்றுள் எதனை அல்லது எவற்றை அலைகள் பற்றிய கருத்துக் களைக் கொண்டு விளக்கலாம்?
 - A. மிகவும் சிறிய பொருட்களின் விம்பங்களை உண்டாக்குவதற்கு இலத்திரன் நுணுக்குக்காட்டியில் இலத்திரன் கற்றையைப் பயன்படுத்துதல்.
 - B. அணுக்களுக்கு வெளியே இலத்திரன்களைத் தட்டுவதற்கு γ-கதிர்ப்பைப் பயன்படுத்துதல்.
 - C. காந்தப்புலத்தைப் பயன்படுத்தி இலத்திரன் கற்றையை திரும்பச்செய்தல்.

இவற்றுள் சரியானவை

1.	A, B, C எல்லாம்	2.	A, B மட்டும்	3.	B, C மட்டும்
4.	A மட்டும்	5.	C மட்டும்		

161. q ஏற்றமுடையதும் m திணிவுடையதுமான ஒரு துணிக்கை ஒய்விலிருந்து V அழுத்தவேறுபாட்டினால் ஆர்முடுக்கப்படுகின்றது. h என்பது பிளாங்கின் மாறிலி. இத்துணிக்கையுடன் சம்பந்தப்பட்ட டிபுறொக்லியின் அலைநீளம்

1. h	2. ^{mV}	3. <u>h</u> 4.	$\sqrt{2}$ qmV	5^{h^2}
mV	h	$\sqrt{2 qm V}$	h	2qmV

162. X கதிர்கள் பற்றிய பின்வரும் கூற்றுகளில் எது உண்மையானதல்ல.

- 1. அவை பதார்த்தத்தினால் உறிஞ்சப்படும்போது வெப்பத்தைப் பிறப்பிக்கும்.
- 2. உயர்கதியுடன் செல்லும் இலத்திரன்கள் ஒரு உலோக இலக்கை அடிக்கும்போது X கதிர்கள் பிறப்பிக்கப்படும்.
- 3. மெல்லிய அலுமினியத் தகட்டினூடு ஊடுருவக்கூடியவை.
- 4. காந்தப்புலத்தில் வட்டப்பாதையில் செல்லும்.
- 5. கட்புல ஒளியை விடக் குறைந்தளவில் முறிவடைகின்றன.
- 163. V அழுத்தவேறுபாட்டில் செயற்படும் X கதிர்க்குழாயால் காலப்படக்கூடிய X கதிரின் ஆகக் குறைந்த அலைநீளம் (பிளாங்கின் மாறிலி h, ஒளியின் வேகம் c, இலத்திரன் ஏற்றம் c)

- 1. $\frac{ch}{cV}$ 2. $\frac{hc}{eV}$ 3. $\frac{eV}{hc}$ 4. $\frac{cc}{hV}$ 5. $\frac{cV}{eh}$
- 164. ஒரு கதிர்த்தொழிற்பாடுடைய மூலகம் தரப்பட்ட ஒரு அளவின் $\frac{7}{8}$ பங்கு 12 நாட்களில் சிதைவடையக் கூடிய அளவில் அரைவாழ்வுக் காலத்தைக் கொண்டது. 24 நாட்களின்பின் என்ன பின்னம் சிதைவடையாதிருக்கும்?

2. $\frac{1}{128}$ 3. $\frac{1}{64}$ 4. $\frac{1}{32}$ 5. 1/16 1. 0

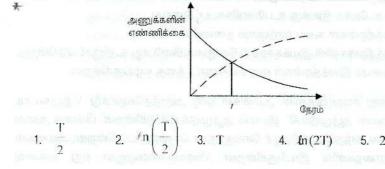
165. தங்குதன் இலக்கொன்று உயர்சக்தி இலத்திரன்களால் மோதப்படும்போது சூடாகின்றது. ஏனெனில்,

- 1. X கதிர்கள் காலப்படுகின்றன.
- 2. ஒரு உலோக இலக்கு உபயோகிக்கப்பட்டுள்ளது.
- 3. இலத்திரன்கள் கூடிய ஊடுருவும் தன்மை உடையன.
- 4. இலத்திரன்களின் இயக்கச்சக்தி மோதுகையின்போது உறிஞ்சப்படுகின்றது.
- 5. அசையும் இலத்திரன்கள் ஒரு மின்னோட்டத்தை வழங்குகின்றன.
- 166. வெவ்வேறு சமதானிகளின் அயன்கள் ஒரே அழுத்தவேறுபாடு V இற்கூடாக "ஒரு அயன் ஆர்முடுக்கி" இனால் ஆர்முடுக்கப்படுகின்றன. பின்னர் அவை ஒரு சீரான காந்தப்புலத்திற்குச் செங்குத்தாக செலுத்தப்படுகின்றன. அயன்கள் வட்டப்பாதைகளில் இயங்குகின்றன. பின்வருவனவற்றுள் எது வளைவு குறைந்த பாதையில் இயங்கும்?

1. $\frac{16}{8}O^+$ 2. $\frac{16}{8}O^{2+}$ 3. $\frac{14}{7}N^{2+}$ 4. $\frac{6}{3}Li^+$ 5. $\frac{14}{7}N^{2+}$

167. X கதிர்களும் γ கதிர்களும்

- A. ஒரே வரிசையுள்ள அலைநீளங்களைக் கொண்டிருக்கலாம்.
- B. கைகர் (Geiger Counter) எண்ணியால் உணரப்படலாம்.
- C. அணுவின் கருவில் உற்பத்தியாவன.


இவற்றுள்

- 1. A, B, C எல்லாம் உண்மையானவை.
- 2. A, B மட்டும் உண்மையானவை.
- 3. B, C மட்டும் உண்மையானவை.
- 4. A மட்டும் உண்மையானது.
- 5. டமட்டும் உண்மையானது.

168. X – கதிர்களைப் பின்வருவனவற்றுள் எதிலிருந்து வேறுபடுத்துவது கடினம்

- 1. உயர்வேக இலத்திரன்கள்
- 2. நீள அலைநீள றேடியோ அலைகள்
- 3. இலேசான நேர் அயன்கள்
- 4. நீள் அலைநீள γ கதிர்கள்
- 5. உயர்சக்தி ஈலியம் கரு
- 169. ஒரு கதிர்த்தொழிற்பாட்டுச் சமதானியின் அரைவாழ்வுக்காலம் 32 மணித்தியா லங்கள் ஆகும். 16 மணித்தியாலங்களின் பின் மாதிரியின் என்ன பின்னம் எஞ்சியிருக்கும்.
 - 1. 0.25 2. 0.29 3. 0.50 4. 0.71 5. 0.75

170. X என்னும் கதிர்த்தொழிற்பாடுடைய நியூக்கிளைட் உறுதியான கரு Y ஆக சிதை வடைகிறது. X இன் அரைவாழ்வுக்காலம் T ஆகும். Y இன் வளர்ச்சி வளையி X இன் தேய்வு வளையியை நேரம் t இல் வெட்டுகிறது. இங்கு t இன் பெறுமதி

171. புதைபொருள் ஆராய்ச்சியில் பெறப்பட்ட ஒரு மாதிரியின் வயதைத் துணிவ தற்கு ¹⁴C தேதியிடல் பயன்படுத்தப்பட்டது. மூன்று நிலைமைகளில் அளவீடுகள் பெறப்பட்டன. பின்வரும் எண்ணிக்கை வீதங்கள் (Count rates)பெறப்பட்டன.

மாதிரி

எண்ணிக்கைவீதம்

A. உயிர்வாழும் அதேமரத்தின்
 1 தமாதிரி

80 எண்ணிக்கை / நிமிடம்

- B. புதைபொருள் ஆராய்ச்சியில்
 - பெறப்பட்ட மரத்தின்
 - l g மாதிரி

35 எண்ணிக்கை / நிமிடம்

C. மாதிரி எதுவும் இல்லாதபோது

20 எண்ணிக்கை / நிமிடம்

¹⁴C இன் அரைவாழ்வுக்காலம் 5 700 வருடங்கள் எனின் புதைபொருள் ஆராய்ச்சி யில் பெறப்பட்ட மாதிரியின் அண்ணளவான வயது

- 1. 2 500 வருடங்கள் 2. 7 000 வருடங்கள் 3. 11 000 வருடங்கள்
- 13 000 வருடங்கள்
 23 000 வருடங்கள்
- 172. 5 கருத்துணிக்கைகளின் சில இயல்புகளை அட்டவணை காட்டுகிறது. எத் துணிக்கை ஒரு நியூத்திரன் ஆகும்?

மின், காந்தப்புலங்களால்	புரோத்தன் திணிவு m _p எனின்
பாதிக்கப்படுகிறதா	துணிக்கையின் திணிவு

1.	ஆம்	4 m _p
2.	ஆம்	0
3.	ஆம்	mp
4.	இல்லை	0
5.	இல்லை	mp

173. லிதியம் கருவை புரோத்தனுடன் மோதச் செய்வதன்மூலம் ஈலியம் கரு பெறப் படலாம்.

 $\frac{7}{3}$ Li + $\frac{1}{1}$ p $\rightarrow 2$ $\frac{4}{1}$ He + θ is s

ஒளியின் வேகம் C ஆகும். லிதியம், ஈலியம், புரோத்தன் என்பவற்றின் திணிவுகள் முறையே m_L, m_H, m_p எனின் இத்தாக்கத்தின்போது வெளிவிடப்படும் சக்தி

- 1. $[2m_{\rm H} (m_{\rm L} + m_{\rm p})]C^2$ 2. $[(m_{\rm L} + m_{\rm p}) - 2m_{\rm H}]C^2$ 4. $\frac{(m_L + m_p) - 2m_H}{2}$
- 3. $[2m_{\rm H} + m_{\rm L} + m_{\rm p}]C^2$

5. $\frac{2m_{\rm H} - (m_{\rm L} + m_{\rm p})}{C^2}$

1. 4

174. இரு கதிர்த்தொழிற்பாட்டு மூலகங்கள் X, Y என்பவற்றின் அரைவாழ்வுக் காலங்கள் முறையே 50 நிமிடங்கள், 100 நிமிடங்கள் ஆகும். அவற்றினது மாதிரிகள் A, B ஆரம்பத்தில் சமஎண்ணிக்கையான அணுக்களைக் கொண்டுள் ளன. 200 நிமிடங்களின் பின்

மாறாதிருக்கும் X இன் அணுக்களின் எண்ணிக்கை

மாறாதிருக்கும் Y இன் அணுக்களின் எண்ணிக்கை

3.

- 175. 🟅 Li கருவானது ஒரு குறித்த துணிக்கைகளுடன் மோதுவதால் இரு அல்பாத் துணிக்கைகள் மட்டுமே உண்டாகியது. மோதிய துணிக்கை
 - இலத்திரன்கள் 3. நியூத்திரன்கள் 1. 2. புரோத்தன்கள்
 - 4. போட்டன்கள் 5. டியூத்திரன்கள்

2. 2

- 176. ஒரு கதிர்த்தொழிற்பாட்டு சமதானியின் அரைவாழ்வுக்காலம் பின்வருவன வற்றில் எதில் தங்கும்
 - 1. வெப்பநிலை 2. அமுக்கம் பதார்த்தத்தின் தன்மை பதார்த்தத்தின் அளவு 5. அது வைக்கப்பட்டுள்ள ஊடகம்
- 177. கதிர்தொழிற்பாட்டு ஈயம் _ $^{210}_{82}$ Pb ஆனது பிரித்தழிந்து $^{206}_{82}$ Pb உருவாகின்றது. இப் பிரித்தழிதலின்போது நடைபெற்ற தொடர்ச்சிதைவு
 - 1. $\alpha, \alpha, \beta^{-}$ 2. β, β, α 3. $\alpha, \alpha, \alpha, \alpha$ 4. $\beta, \beta, \beta, \beta$ 5. $\alpha, \beta, \alpha, \beta$
- 178. கதிர்த்தொழிற்பாடுடைய ஒரு நியூக்கிளைட்டின் அரைவாழ்வுக்காலம 8 s ஆகும். மாதிரியின் 7/8 பங்கு சிதைவடைவதற்கு எடுக்கும் நேரம்

1. 1s 2.7s 3. 16s 4. 24 s 5. 56s 179. ஒரு மூலகத்தின் சமதானிகள்

A. ஒரே நியூத்திரன் எண்ணைக் கொண்டிருக்கும்.

B. ஒரே இரசாயன இயல்புகளைக் கொண்டிருக்கும்.

C. ஒரே நியூக்கிளியோன் எண்ணைக் கொண்டிருக்கும்.
 இவற்றுள் சரியானவை

- 1. A, B, C எல்லாம் 2. A, B மட்டும் 3. B, C மட்டும்
- 4. A மட்டும் 5. B மட்டும்

180. ஒரு சமதானியின் அரைவாழ்வுக்காலம் 10 வருடங்கள் ஆகும். இதிலிருந்து தரப்படுவது

A. 1 வருடமுடிவில் 0.9 பங்கு சமதானி எஞ்சியிருக்கும்.

B. 5 வருடமுடிவில் 0.75 பங்கு சமதானி எஞ்சியிருக்கும்.

C. 20 வருடமுடிவில் 0.25 பங்கு சமதானி எஞ்சியிருக்கும்.

இவற்றுள் சரியானவை

1.	A, B, C எல்லாம்	2.	A, B மட்டும்	3.	B, C மட்டும்
Δ	A INI Din	5	CIDI DID		

181. பொசுபரசின் சமதானி ³⁰₁₅ P ஆனது பொசித்திரனைக் காலுவதன் மூலம் சிலிக்கன் சமதானியாக சிதைவடைகின்றது. பொசித்திரன் β துணிக்கையின் திணிவுடையது. ஆனால் எதிரான ஏற்றமுடையது. சிலிக்கன் சமதானியின் சரியான குறியீடு

1. ${}^{31}_{15}$ Si 2. ${}^{31}_{14}$ Si 3. ${}^{30}_{14}$ Si 4. ${}^{30}_{16}$ Si 5. ${}^{29}_{15}$ Si

- 182. ஒரு கதிர்த்தொழிற்பாடுடைய சமதானி 20 நிமிடங்கள் அரைவாழ்வுக்காலம் உடையது. இச்சமதானியின் ஒரு குறித்த மாதிரி ஒருநாள் பி.ப. 2.00 மணிக்கு 3 200 பிரிந்தழிதல் / செக்கன் என்னும் வீதத்தில் சிதைவடைகின்றது. அந்நாளில் எந்நேரத்தில் அதன் சிதைவுவீதம் 200 பிரிந்தழிதல் / செக்கனாக இருக்கும்? 1. பி.ப. 3.00 2. பி.ப. 3.20 3. பி.ப. 3.40 4. பி.ப. 4.40 5. பி.ப. 7.20
- 183. இரு கதிர்த்தொழிற்பாட்டுச் சமதானிகள் P, Q என்பன முறையே 10 நிமிடங்கள், 15 நிமிடங்கள் அரைவாழ்வுக்காலங்களை உடையன. புதிதாகத் தயாரிக்கப்பட்ட ஒவ்வொரு சமதானியினதும் மாதிரிகள் சமஎண்ணிக்கையான அணுக்களைக் கொண்டுள்ளன. 30 நிமிடத்தின் பின்

4. 3.0

5. 0.25

P இன் அணுக்களின் எண்ணிக்கை என்னும் விகிதம்

3. 1.0

Digitized by Noolaham Foundation. noolaham.org | aaganaham.org

Q இன் அணுக்களின் எண்ணிக்கை

2. 2.0

1. 0.5

- 184. கதிர்த்தொழிற்பாடுடைய நியூக்கிளைட்டின் ஒரு மாதிரியில் நிகழும் செக்கனுக் கான பிரித்தழிவுகளின் எண்ணிக்கை தங்கியிருப்பது
 - Λ. நியூக்கிளைட்டின் Ι மூல் இலுள்ள அணுக்களின் எண்ணிக்கை
 - B. மாதிரியிலுள்ள அணுக்களின் எண்ணிக்கை
 - C. நியூக்கிளைட்டின் அரைவாழ்வுக்காலம்

இவற்றுள் சரியானவை

- 1. A, B, C எல்லாம் சரியானவை.
- 2. A, Bமட்டும் சரியானவை.
- 3. B, C மட்டும் சரியானவை.
- 4. A மட்டும் சரியானது.
- 5. ட மட்டும் சரியானது.

1. $^{234}_{90}$ Y 2. $^{236}_{90}$ Y

1841

185. கதிர்த்தொழிற்பாடுடைய ஒரு நியூக்கிளைட் Q ஆனது அதன் கருவில் N நியூத்திரன்களையும், P புரோத்தன்களையும் கொண்டது. அது தொடர்காலல் களின் பின் உறுதி மூலகம் R ஆகச் சிதைவடைகின்றது. Q ஆனது R ஆக மாறும்போது இரண்டு α துணிக்கைகளையும் ஒரு β துணிக்கையையும் காலுகின்றது. மூலகம் R ஐச் சரியாகக் குறிப்பிடுவது

1. $\sum_{P=4}^{N-4} R$ 2. $\sum_{P=3}^{N-4} R$ 3. $\sum_{P=3}^{P+N-4} R$ 4. $\sum_{P=3}^{P+N-8} R$ 5. $\sum_{P+1}^{P+N-8} R$

186. ²³²₉₀Th உடன் ஆரம்பிக்கும் ஒரு கதிர்த்தொழிற்பாட்டுத் தொடரில் அல்பா, பீற்றா, பீற்றா, காமா, அல்பா காலல்கள் நடைபெறுகின்றன. இத்தொடரின் இறுதி விளைபொருள்

1. $\frac{224}{88}$ Ra 2. $\frac{230}{82}$ Pb 3. $\frac{226}{86}$ Rn 4. $\frac{227}{85}$ At 5. $\frac{225}{97}$ Fr

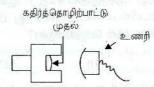
- 187. ஒரு சமதானியின் அரைவாழ்வுக்காலம் 8 வருடங்கள் ஆகும். 24 வருடங்களின் பின் எஞ்சியிருக்கும் சமதானியின் பின்னம்
 - 1. $\frac{2}{3}$ 2. $\frac{1}{3}$ 3. $\frac{1}{4}$ 4. $\frac{1}{8}$ 5. Literation
- 188. ஒரு நிலையான தோறன் (Thoron) கரு (Z=90, A = 220) பிரிந்தழியும்போது α துணிக்கையைக் காலுகின்றது. பிரிந்தழிதல் சக்தி E ஆனது α துணிக்கைக்கு பின்னதையும் கருவுக்குமிடையில் பங்கிடப்படுகின்றது. பிரித்தழிதல் சக்தியின் என்ன பின்னத்தை α துணிக்கைகள் பெறுகின்றன?
 - 1. $\frac{4}{216}$ 2. $\frac{4}{220}$ 3. $\frac{4}{110}$ 4. $\frac{216}{220}$ 5. $\frac{106}{220}$
- 189. மூலகம் X அணுத்திணிவெண் 238 ஐயும் அணுவெண் 92 ஐயும் கொண்டது. அது ஒரு α துணிக்கையைக் காலுவதால் மூலகம் Y உருவாகிறது. மூலகம் Y ஐச் சரியாகக் குறிப்பிடுவது

3. $^{235}_{91}$ Y 4. $^{238}_{92}$ Y 5. $^{238}_{93}$ Y

11.1

- 190. ஒரு கதிர்த்தொழிற்பாட்டுத்தொடர் ஒன்றில் பல அடுத்தடுத்த சிதைவுகளின் பின் நியூக்கிளியோன் எண் 4 ஆல் குறைகின்றது. புரோத்தன் எண் மாறவில்லை. காலப்பட்ட துணிக்கைகள்
 - 1. ஒரு α துணிக்கையும், ஒரு β துணிக்கையும்
 - 2. ஒரு α துணிக்கையும், இரு β துணிக்கைகளும்
 - 3. இரு α துணிக்கைகளும், ஒரு β துணிக்கையும்
 - 4. இரு α துணிக்கைகளும், ஒரு β துணிக்கையும்
 - 5. நான்கு α துணிக்கைகள்
- 191. கதிர்த்தொழிற்பாட்டின் யூரேனியம் தொடர் திணிவெண் 238 உம் அணுவெண் 92 உம் உள்ள யூரேனியத்தின் சமதானியில் ஆரம்பிக்கின்றது. தொடரான சிதைவுகளின்போது அது 3 α துணிக்கைகளையும், 1 β துணிக்கையையும் காலுகின்றது. தற்போதுள்ள சமதானியின் திணிவெண்ணும் அணுவெண்ணும் முறையே

	திணிவெண்	அணுவெண்
1.	226	85
2.	226	87
3.	230	85
4.	230	87
5.	231	86


192. கதிர்த்தொழிற்பாடுடைய சமதானி X ஆனது ஆரம்பத்தில் X இன் 10²⁰ அணுக்களைக் கொண்டது. அதன் சிதைவு விளைபொருள் Y இன் அணுக்கள் எதுவும் இருக்கவில்லை. Y ஆனது உறுதியான கருவையுடையது. X இன் ஒவ்வொரு அணுவும் சிதைவின்போது 8 x 10⁻¹³ J சக்தியை வெளிவிடுகிறது. X இன் அரைவாழ்வுக்காலம் 4 மணித்தியாலங்கள் ஆகும். முதல் 12 மணித்தியா லங்களின்போது வெளிவிடப்படும் சக்தி

 $6 \times 10^{7} J$

3

1.	8 x 10 ⁷ J	2. $4 \times 10^7 J$	
4.	$7 \times 10^7 J$	5. $14 \times 10^7 J$	

193 - 194

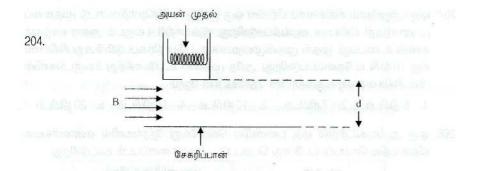
படத்தில் காட்டியுள்ளதுபோல் கதிர்த்தொழிற்பாட்டு முதல் ஒன்றுக்கு முன்னால் கதிர்தொழிற்பாட்டு உணரியொன்று வைக்கப்பட்டுள்ளது. முதலுக்கும் உணரிக் கும் இடைப்பட்டதூரம் 5 cm இலும் குறைவாக இருக்கும்போது மட்டுமே கதிர்ப்பை உணரக்கூடியதாக உள்ளது.

- 193. முதலால் காலப்படுவது
 - 1. அல்பா கதிர்ப்பு மட்டும்
 - 2. பீற்றா கதிர்ப்பு மட்டும்
 - 3. காமா கதிர்ப்பு மட்டும்
 - 4. அல்பா கதிர்ப்பும் பீற்றா கதிர்ப்பும்
 - 5. அல்பா, பீற்றா, காமாக் கதிர்ப்புகள்
- 194. முதல் மாற்றப்பட்டது ஒரு கடதாசித்தாள் முதலுக்கும் உணரிக்கும் இடையில் வைக்கப்பட்டது. எண்ணிக்கை வீதம் குறையக் காணப்பட்டது ஒரு அலுமினி யத்தகடு வைக்கப்பட்டபோது கதிர்ப்பு முற்றாக நிறுத்தப்பட்டது. முதலால் காலப்படுவது
 - 1. γகதிர்ப்பு மட்டும் 2. β, γகதிர்ப்புகள் மட்டும்
 - 3. α, γ கதிர்ப்புகள் மட்டும்
- 4. α, βகதிர்ப்புகள் மட்டும்

- 5. α, β, γ கதிர்ப்புகள்
- 195. மூலகம் P ஆனது 239 அணுத்திணிவையும் அணுவெண் 92 ஐயும் கொண்டது. ஒரு βதுணிக்கையைக் காலுவதன்மூலம் மூலகம் Q உருவாகிறது. மூலகம் Q ஐச் சரியாகக் குறிப்பிடுவது
 - 1. $\frac{239}{91}Q$ 2. $\frac{239}{92}Q$ 3. $\frac{239}{93}Q$ 4. $\frac{238}{92}Q$ 5. $\frac{239}{90}Q$

196. கதிர்த்தொழிற்பாட்டு முதலொன்று இரு பொருட்களைக் கொண்டது. அவற்றுள் ஒன்று α துணிக்கைகளைக் காலுகின்றது. அதன் அரைவாழ்வுக்காலம் 4 நாட்கள் ஆகும். மற்றையது β துணிக்கைகளைக் காலுகின்றது. அதன் அரைவாழ்வுக் காலம் 3 நாட்கள் ஆகும். ஆரம்பத்தில் அதனை உணரும் எண்ணிக்கைவீதம் 176 s⁻¹ ஆகவும் ஒரு துண்டு வாலைத்தாள் (Tissue paper) உணரிக்கும் முதலுக்குமிடையில் வைக்கப்படும்போது எண்ணிக்கைவீதம் (Count rate) 80 s⁻¹ ஆகவும் காணப்பட்டது. 12 நாட்களின் பின் வாலைத்தாள் இல்லாதபோது எண்ணிக்கைவீதம்

- 1. $5 s^{-1}$ 2. $11 s^{-1}$ 3. $12 s^{-1}$ 4. $17 s^{-1}$ 5. $22 s^{-1}$
- 197. கதிர்த்தொழிற்பாட்டு அணு X ஆனது βகாலலின்பின் அணு Y ஆகிறது. பின் அது α காலலின்பின் அணு Z ஆகிறது.
 - A. X இன் அணுஎண் Z இன் அணுஎண்ணைவிடச் சிறியது.
 - B. Y இன் அணுஎண் Z இன் அணுஎண்ணைவிடச் சிறியது.
 - C. X இன் திணிவெண்ணும் Y இனது திணிவெண்ணும் சமமானவை.


இவற்றுள்

- 1. A, B, C எல்லாம் சரியானவை.
- 2. A, Bமட்டும் சரியானவை.
- 3. B, C மட்டும் சரியானவை.
- 4. A மட்டும் சரியானது
- 5. C மட்டும் சரியானது.

- 198. ஒரு கதிர்த்தொழிற்பாடுடைய நியூக்கிளைட் ஒரு αதுணிக்கையையும் இரண்டு β் துணிக்கைகளையும் காலுகின்றது. ஆரம்ப நியூக்கிளைட் உடன் ஒப்பிடும் போது விளைவு நியூக்கிளைட்
 - 1. கூடிய நியூக்கிளியோன் எண்ணைக் கொண்டிருக்கும்.
 - 2. அதே நியூக்கிளியோன் எண்ணைக் கொண்டிருக்கும்.
 - 3. அதே புரோத்தன் எண்ணைக் கொண்டிருக்கும்.
 - 4. குறைந்த புரோத்தன் எண்ணைக் கொண்டிருக்கும்.
 - 5. கூடிய புரோத்தன் எண்ணைக் கொண்டிருக்கும்.
- 199. ஒரு கதிர்த்தொழிற்பாடுடைய நியூக்கிளைட்டுகளின் எண்ணிக்கை 60 s இல்
 - 1/64 பங்கு ஆகிறது. நியூக்கிளைட்டின் அரைவாழ்வுக் காலம்

1. 5 s 2. 10 s 3. 20 s 4. 30 s 5. 60 s

- 200. ஒரு கதிர்த்தொழிற்பாட்டு சமதானி X இன் அரைவாழ்வுக்காலம் 1.4 x 10⁹ வருடங்கள். அது நிலையான கரு Y ஆக சிதைவடைகிறது. ஒரு பாறையின் மாதிரியில் X இற்கும் Y இற்கும் உள்ள விகிதம் 1:7 ஆகக் காணப்பட்டது. பாறையின் வயது
 - 1. $1.96 \ge 10^8$ வருடங்கள் 2. $3.92 \ge 10^9$ வருடங்கள் 3. $4.2 \ge 10^9$ வருடங்கள்
 - 4. 8.40×10^9 வருடங்கள் 5. 5.6×10^9 வருடங்கள்
- 201. பின்வரும் சாதனங்களுள் எதில் ஒரு கதோட்டுக் கதிர்க்குழாய் காணப்படும்
 - 1. ஒரு கூட்டு நுணுக்குக்காட்டி
- ஒரு வானொலிப்பெட்டி
 ஒரு சலவை இயந்திரம்
 - ஒரு தொலைக்காட்சிப்பெட்டி
 ஒரு இழை மின்விளக்கு
- 🔹 202. கதோட்டுக்கதிர்கள் என்பது
 - 1. இலத்திரன்களின் அருவியாகும்.
 - 2. நேரேற்றப்பட்ட துணிக்கைகளின் அருவியாகும்.
 - 3. ஏற்றப்படாத துணிக்கைகளின் அருவியாகும்.
 - 4. ஒரு பொறிமுறை அலையாகும்.
 - 5. ஒரு மின்காந்த அலையாகும்.
 - 203. கதோட்டுக்கதிர்கள் துணிக்கை என்பதைக் காட்டும் வலிமையான சான்று
 - 1. அவை புளரொளிர்வை ஏற்படுத்துவதாகும்.
 - 2. வெற்றிடத்தினூடு செல்வதாகும்.
 - 3. அவை மின்புலங்களாலும் காந்தப்புலங்களாலும் திருப்பப்படுவதாலாகும்.
 - 4. அவை நிழல்களை உண்டாக்குவதாலாகும்.
 - 5. அவை தெறிப்படைவதாகும்.

தட்டையான சேகரிப்பானிலிருந்து அயன்முதல் ஒன்று d தூரத்தில் உள்ளது. முதலும் தட்டையான சேகரிப்பானும் ஒரே அழுத்தத்தில் உள்ளன. முதலுக்கும் சேகரிப்பானுக்கும் இடையில் சீரான காந்தப்புலம் B உள்ளது. q ஏற்றமும் m திணிவுமுடைய அயன் நிலைக்குத்தாக V கதியுடன் காலப்படுகிறது. என்ன நிபந்தனைகளின் கீழ் அயன் சேகரிப்பானை அடையும்?

1.
$$V > \sqrt{\frac{2Bq}{m}}$$

2. $V < \sqrt{\frac{2Bq}{m}}$
3. $V > \frac{dBq}{m}$
4. $V < \frac{dBq}{m}$
5. $V = \sqrt{\frac{dBq}{m}}$

205. சூரிய சக்திக்கான காரணம்

- 1. கதிர்த்தொழிற்பாடு
- 3. கருப்பிளவு
- 5. இரசாயனத்தாக்கம்

2. கரு ஒன்றல் தாக்கம்

4. எரிபொருள் எரிதல்

206. ஒரு கதிர்த்தொழிற்பாட்டு முதல் ஒரு கைகர் எண்ணிக்கு முன்னால் வைக்கப் பட்டது. முதலுக்கும் கைகர் எண்ணிக்கும் இடையே வெவ்வேறு உறிஞ்சிகள் வைக்கப்பட்டு எண்ணிக்கை வீதங்கள் துணியப்பட்டன.

	உறிஞ்சி	நிமிடத்திற்கான எண்ணிக்கை
1.	உறிஞ்சி இல்லாதபோது	711
2.	ஒரு கடதாசி	508
З.	5 mm தடிப்புடைய அலுமினியத்தக	ъ() 493
4.	25 mm தடிப்புடைய ஈயம்	218
முத	லினால் காலப்பட்ட கதிர்ப்பு	

 1. α, γ கதிர்கள் மட்டும்
 2. β, γ கதிர்கள் மட்டும்
 3. α கதிர்கள் மட்டும்

 4. β கதிர்கள் மட்டும்
 5. γ கதிர்கள் மட்டும்

207. ஒரு புற்றுநோய் சிகிச்சைப் பிரிவில் ஒரு குறித்த கதிர்தொழிற்பாட்டு முதலைப் பயன்படுத்தி சிகிச்சை வழங்கப்படுகிறது. இம்மாதிரி 4 வருடம் அரை வாழ்வுக் காலம் உடையது. முதல் முதன்முறையாக உபயோகிக்கப்படும்போது சிகிச்சை க்கு 10 நிமிடம் தேவைப்படுகிறது. அதே முதலை உபயோகித்து 2 வருடங்களின் பின் சிகிச்சை வழங்குவதாயின் தேவையான நேரம்

1. 5 நிமிடம் 2. 7 நிமிடம் 3. 10 நிமிடம் 4. 14 நிமிடம் 5. 20 நிமிடம்

208. ஒரு ஆய்வுகூடத்தில் ஒரு புள்ளியில் வெவ்வேறு நேரங்களில் எண்ணிக்கை வீதம் பதிவு செய்யப்பட்டபோது பெறப்பட்ட முடிவுகளைப்படம் காட்டுகிறது.

நாட்கள்	எண்ணிக்கை வீதம்			
entre o theory entropy	முதல்	முதல்		
	உடன்	இல்லாதபோது		
8 P 10 P 2 8 P	60	20		
30	30	20		
90	20	20		

முதலின் அரைவாழ்வுக்காலம்

1. 10 நாட்கள் 2. 15 நாட்கள் 3. 20 நாட்கள் 4. 30 நாட்கள் 5. 50 நாட்கள்

209. ஒரு கதிர்த்தொழிற்பாட்டுத்தொடரின் தொடரான சிதைவுகளால் ஒரு சமதானி யின் நியூக்கிளியோன் எண் 4 ஆல் குறைவடைகிறது. புரோத்தன் எண் மாறவில்லை. எத்தனை α துணிக்கைகளும் βதுணிக்கைகளும் காலப்பட்டன.

	α കൃങ്ങിക്കെ	eta துணிககை
1.	1	original data provide a company
2.	2 ag gainger spect	2
3.	and a hamilton the	4 marshines
4.	2	down I discussing
5.		og mang Blond ² navarian av
210.	GM குழாய்	hindus parat dophigno, ig id antish amalianan () i is an
	s • •	
	← d →	என்னிக்கு
	805-	公式 あっていた 「一般知道」にも思いないとう。

ஒரு எண்ணிக்கு (Counter) இணைக்கப்பட்ட கைகர் முல்லர் குழாயைப் படம் காட்டுகிறது. குழாயிலிருந்து d தூரத்தில் ஒரு கதிர்த்தொழிற்பாட்டு முதல் வைக்கப்பட்டுள்ளது. அது எல்லாத் திசைகளிலும் கதிர்ப்பைச் சமமாகக் காலுகிறது. முதல் இரு கதிர்தொழிற்பாட்டு சமதானிகளைக் கொண்டது. அவற்றின் அரைவாழ்வுக்காலங்கள் 1h, 2h ஆகும். ஆரம்பத்தில் எண்ணிக்கை

	1.	40			50 s ⁻¹		3. 80 s ⁻	க வீதம் ¹ 4.	100 s	-1	5. 170	s ⁻¹
1.	ଇ(୩	58	சாத்திய	பமான	ត ៩(ក្រ	ப்பிளவு	த்தாக்க	ம் [ப] வ்	கீழே	தரப்	பட்டுள்ளத	து. ஒர
								நன்மூலம்				
		92	2^{LI+}	$n \rightarrow$	· ₉₂ 0	$\rightarrow _{40}Z$	r + 52	$Te + 2_0^{1}n$	~+ 2	00 IV.	ie v	
		A.	²³⁶ U	መ (ኩ6	வின் கட்	டும்சக்	தி 206 N	4eV				
									oution	÷n∩~	റിലെത്താം	
		D.							ം എന്നാണ്	ခံသူမှာ	ளிவானது	
			²⁰⁰ ₉₂ U	இன்	ஒய்வுத	த் திணி	வுக்குச்	சமன்.				
		C.	கருப்ப	ிளவு	କ	சயன்பு	றறையி	ன்போது	நியு	டக்கி	ளியோன்	
					று வ							
	96	ນມູ່ເ	றுள் சர்	ിഡாൽ	வை							
	1.	Α,	B, C at	ல்லா	á	2. A	, B மட்டு	ND	З.	B,C	மட்டும்	
	4.	Αı	மட்டும்			5. C	மட்டும்					
				4			25				15	41
2.											ு ஒரு நியு	
										ы A	ஐயும் பு	ராத்தன்
	6160	01 2	் ஐயும்	சரிய	ான மு	றையில்	റ ഖങ്ങ	குறிப்பத	1			
				А						Z		
	1.			5						1		
	2.			5						2		
	3.			4						1		
	4.			4						2		
	5.			3						2		

கிறது. உண்டாக்கப்படும் ஏனைய துணிக்கைகள்

- 1. ஒரு α துணிக்கை
- 2. ஒரு டியூட்டேரியம் அணு
- 3. ஒரு டியூட்டேரியம் அணுவும் ஒரு புரோத்தனும்
- 4. இரு நியூத்திரன்கள்
- 5. மூன்று நியூத்திரன்கள்

விடைகள்

இலத்திரனியல் (Electronics)

வினா	ഖിതല	வினா	விடை	வினா	விடை	வினா	ഖിതല
1. 0	2	32.	4	63.	1	94.	5
2.	3	33.	5	64.	3	95.	2
3.	3	34.	3	65.	5	96.	5
4.	4	35.	2	66.	1	97.	1
5.	4	36.	2	67.	3	98.	1
6.	5	37.	a = 3	68.	5	99.	1
7.	4	38.	3	69.	1	100.	2
8.	4	39.	4	70.	2	101.	4
9.	2	40.	2	71.	4	102.	4
10.	3	41.	2	72. 👘	3	103.	3
11.	1	42.	1	73.	3	104.	4
12.	1 100	43.	2	74.	2	105.	2
13.	2	44.	4	75.	1	106.	5
14.	2	45.	3	76.	2	107.	2
15.	3	46.	3	77.	3	108.	1
16.	3	47.	5 8 Bag	78.	2	109.	3
17.	3	48.	2	79.	3	110.	1
18.	3	49.	4	80.	5	111.	3
19.	5	50.	4	81.	5	112.	1
20.	3	51.	4	82.	4	113.	4
21.	4	52.	1	83.	4	114.	1
22.	1	53.	4	84.	3	115.	5
23.	2	54.	5	85.	5	116.	2
24.	2	55.	2	86.	3	117.	5
25.	5	56.	2	87.	4	118.	4
26.	4	57.	4	88.	2	119.	4
27.	3	58.	4 4	89.	3	120.	2
28.	2	59.	2	90.	4	121.	3
29.	2	60.	3	91.	1	122.	4
30.	2	61.	4	92.	2		
31.	5	62.	1	93.	3		

விடைகள்

சடமும் கதிர்ப்பும் (Matter and Radiation)

வினா	ഖി <mark>ഞ</mark> ്	வினா	விடை	வினா	ഖിതല	வினா	ഖിത്ഥ
123.	2	146.	2	169.	4	192.	. 4
124.	1	147.	3	170.	3	193.	1
125.	3	148.	3	171.	3	194.	4
126.	5	149.	3	172.	5	<u>195.</u>	3
127.	2	150.	1	173.	2	196.	4
128.	4	151.	4	174.	5	197.	5
129.	3	152.	4	175.	2	198.	3
130.	4	153.	2	176.	3	199.	2
131.	2	154.	3	177.	· 2	200.	3
132.	2	155.	3	178.	4	201.	3
133.	1	156.	4	179.	5	202.	1
134.	5	157.	2	180.	5	203.	3
135.	2	158.	2	181.	3	204.	3
136.	2	159.	3	182.	2	205.	2
137.	2	160.	4	183.	1	206.	1
138.	2	161.	3	184.	3	207.	4
139.	2	162.	4	185,	4	208.	1
140.	2	163.	2	186.	1	209.	2
141.	3	164.	3	187.	4	210.	2
142.	5	165.	4	188.	4	211.	5
143.	2	166.	1	189.	1	212.	4
144.	5	167.	2	190.	2	213.	4
145.	2	168.	4	191.	2		

Tints Table of

and the solution (Matter, Ind Radiation).

e.,

ŀ

Price : 125.00