புள்ளிவிபரவியல்

விவரணப் புள்ளிவிபரவியலும் நிகழ்தகவும்

 77
 65
 83
 55
 58
 60
 33
 85
 52
 69

 63
 48
 74
 77
 67
 71
 78
 35
 50
 35

 85
 54
 59
 88
 45
 80
 43
 55
 91
 57

 73
 39
 68
 67
 75
 41
 66
 98
 48
 89

 65
 94
 65
 54
 88
 93
 42
 67
 66
 73

பாலசிங்கம் பத்மநாபன்

Digitized by Noolaham Foundation noolaham.org | aavanaham.org

STATISTICS

DESCRIPTIVE STATISTICS
&
PROBABILITY

B. PATHMANAPAN s. A., Dig-Is Maths

Asst. Lecturer
Dept. of Economics, Political Science,
Commerce & Statistics
University of Sri Lanka
Peradeniya Campus

First Edition: February 1977

Printers: Saiva Prakasa Press, Jaffna

Copyright Reserved

Price: 10/=

அனிந்துரை

திரு. பா. பத்மநாபன் எழுதிய புள்ளிவிபரவியல் பற்றிய நூலுக்கு அணிந்துரை எழுதுவதில் நான் பெருமிதமடைகின் நேன். திரு. பத்மநாபன் இலங்கைப் பல்கலேக்கழகப் பேரா தணே வளாகத்தின் முன்னோநாள் மாணவரும் இன்று பொருளி யற் துறையில் என் சகபாடியுமாவர். இந்நாட்டில் உயர் கல் விக்கு பேராதணே வளாகத்தின் பங்களிப்பாக திரு. பத்மநாபனின் நூல் விளங்குகிறது.

புள்ளிவிபரவியல் பற்றிய பாடநூல் எழுதுவது சுலபமல்ல.

பல கட்டுப்பாடுகள் பற்றிய உள்ளுணர்வும் பாடத்தின்பால் தீவிர
ஈடுபாடும் இதற்கு அத்தியாவசியம். இத்துறைக்கு திரு. பத்ம
நாபனின் பங்களிப்பு அவருடைய ஆர்வத்தினதும் தெளிந்த சிந்
தண்யினதும் விளேவாகும். அவர் பொருளாதாரம், கணிதம்
ஆகியவற்றில் பட்டதாரியாவர். அதுவே புள்ளிவிபரவியல்,
பொருளியலளவை ஆகிய விசேட துறைகள் பற்றிய விளக்கம்
அளிக்க அவரை தகைமையுடையதாக்கியது.

புள்ளிவிபரனியல் பற்றிய நூல் இந்நாட்டில் இல்லாத நீண்ட காலக் குறையை திரு. பத்மநாபனின் நூல் தீர்த்துவைக்கிறது. இது வாசிக்க இலகுவானதாகவும், பொருள் ஆழம் மிக்கதா யும், பரந்துபட்டதாகவும் எழுதப்பட்டுள்ளது. இப் பெரு முயற்சியை நான் பாராட்டுவதுடன் இதுபோன்ற பல நூல்கள் அவருடைய சீரான சிந்தனேயில் உருவாகும் என்றும் நம்புகிறேன்.

இலங்கைப் பல்கலேக் கழகம் பேராதனே வளாகம் பேராதனே எஸ். இராசரத்தினம் தஃலவர் பொருளியல்/புள்ளிவிபரவியற்றுறை

என்னுரை

இன்றைய சமுதாயம் நவீன தொழினுட்பவியலிற் திளேக்கி நது: துரித முன்னேற்றமடைந்து வருகிறது. புள்ளிவிபரவியல் இல்லேயென்றுல் நவீன தொழினுட்பவியலும் இல்லே. ஏன்? இயற்கை, பௌதிக, சமூக, விஞ்ஞான ஒழுங்குகள் யாவற்றி லும் புள்ளிவிபரவியல் வியாபித்து நிற்கிறது. இவ்வறிவு இன் றைய உலகில் அத்தியாவசியமானது.

புள்ளிவிபரவியல் கணிதத்தின் ஒருபகுதியாக பாடசாலேக னில் போதிக்சப்படுகிறது. ஆயினும் இது ஒரு தனித்துறையே யாகும். பாடசாலே மாணவருக்கு மாத்திரமன்றி, ஆசிரியர்கள், தொழில் நுட்டக்கல்லூரி மாணவர்கள், பல்கலேக்கழக மாணவர் கள், வெளிவாரிப் பட்டப்படிப்பு பயிலும் மாணவர் ஆகியோருக்கும் ஆசிரியரின் உதவியின்றி தாமாகவே பயில விரும்புவோருக்கும் தமிழ் மொழி மூலம் ஒரு நூலின் அவசியம் பற்றிய உணர்வு இந் நூலின் தோற்றத்துக்குக் காரணம்.

இந்நூலிற் கையாளப்பட்டுள்ள கீலச் சொற்கள் அரசகரும மொழித் திணேக்களத்தாரால் அங்கீகரிக்கப்பட்டவை. குழப்பங்களேத் தவிர்க்கவும் எல்லோரும் கையாளும் சொற்களின் ஒருமைப்பாடு கருதியும் இச் சொற்கள் பொருத்தமானவையாகக் கருதப்பட்டன.

புதிய துறையில் இக்கன்னி வெளியீட்டின்போது என்மனத் தில் நிழலாடும் சிலரை நினேத்துப்பார்ப்பது பொருத்தமாயிருக்கும்.

என் உடஃயும் உள்ளத்தையும் வளர்த்தெடுத்து, என் கல்வி முன்னேற்றத்திற்கு அத்திவாரத் தளமமைத்துக் கொடுத்து, என் முயற்சிகள் யாவற்றின் பலாபலன்களேயும் விளேவுகளேயும் கண் ணுங் கருத்துமாய் அவதானித்து உளம் மகிழும் அன்னே இச் சந்தர்ப்பத்தில் என் அஞ்சலிக்கு உரியவர்.

என்ளேச் சான்ருேஞக்க தியாகம்பல புரிந்தது மட்டுமல்லா மல், கொடுத்தால் குறையாத கல்விச் செல்வத்தை பிறரோடு பங்குபோட என்ஊே ஊக்கிய தந்தைக்கும் தஃ வணங்குகின் றேன்.

தாய் மொழி மூலம் கல்வி என்ற நிலே இந்நாட்டில் உருவான பின் அதைச் செயல்படுத்த உழைத்த கல்விமான்களுள் முன்னணி வரிசையில் இலங்கைப் பல்கஸேக்கழக யாழ்ப்பாண வளாக முன்னேநாள் விஞ்ஞான பீடத் தூல்வர், கணிதப் பேராசிரியர், அமரர் பே. கனகசபாபதி அவர்க‰ாச் சிறப்பாகக் குறிப்பிடலாம். தமிழ் இள ஞர் சமுதாயத்துக்கு அவர் ஒரு சற்குரு- வழிகாட்டி. பல்கலேக் கழக மாணவருக்கு ஒரு தந்தைபோல வாழ்ந்தவர். அவர் அன்பே உருவானவர், பண்பே வடிவானவர், சாந்தமும் தோற்றமானவர், பொறுப்புணர்ச்சி மிக்கார், வீண்பொழுது போக் கார், கடமையே கண்ணுயினர் ,சேவையையே யோகமாகக் கொண்ட வர், உல்லாசத்தை நோக்கார், ஆடம்பரத்தினேயும் அறியார். மாணவர் நலணேயே கருத்திற் கொண்டு பல உயர்ந்த இலட்சி யங்களுடன், நாள் பூராவும் அயராத தன்னலமற்ற சேவை புரிந்த பெரியார் அவர். பல்க‰க்கழகப் பணியாற்றிய பேராசி ரியர் பாடசாலேக் கல்வியிலும் சேவை செய்யத் தவறவில்ல; ''தமிழ் இளேஞன்'', ''ஊற்று'' ஆகிய அறிவியல் ஏடுகளில் சிக்கலான கணிதப் பகுதிகளே எளிமையாக வடித்துத் தந்தவர்.

தம்மிடம் உதவி நாடிச் சென்றவருக்கு இல்ஃபென்று சொல்லி யறியாத பேராகிரியர் இந்நூலாக்கத்திற்கும் உறுதுணேயாயிருந் தவர். அன்புரிமையோடு ''நீங்கள் உதவவேண்டும்'' என்று கேட்டதற்கமைய இந் நூலிலுள்ள ஒவ்வொரு வரியும் அவர் மேற்பார்வையில் உருவானவை. அவர்கூறிய அனுபவமுதிர்ச்சி மிக்க ஆலோசனேகள் இந்நூலுக்குத் தனிச் சிறப்பையளித்துள்ளன.

பெரியவருக்கே முதற் பிரதியைக் கையளிக்க இருந்தேன். ஆண்..... இப்படைப்பையே அவருக்குமாக அர்ப்பணிக்க வேண் டியதாகிவிட்டது. அவர் மறைவு மாணவர் மத்தியில் ஒரு வெற்றி டத்தை ஏற்படுத்தியுள்ளது. அவர் காட்டிய அன்பு, கொண்ட புகழ், ஆற்றிய சேவைகள் என்றென்றும் மாணவர் மத்தியில் நீங்கா நினேவாய் நிலேத்து நிற்கும். அவருக்கு இனி நன்றி கூறுவது அர்த்தமற்றது. அவருடைய இலட்சியப் பாதையில் அடியெடுத்து வைப்பது தான் நாம் அவருக்குச் செலுத்தக் கூடிய கைம்மாறு.

\$ 25 mg

அவர் வணங்கிய தெய்வம் அவரை அழைத்துக் கொண்டது. அவர் நித்தியானந்தப்பேறு பெற்றுக் கொண்டார்.

இந்நூலிற்கு அணிந்துரை தந்து கௌரவித்த இலங்கைப் பல் கலேக்கழக பேராதனே வளாக பொருளியல், புள்ளிவிபரவியற் றுறைத் தலேவர் எஸ். இராசரத்தினம், என்மொழி நடையைச் செம் மைப்படுத்திய பேராசிரியர் கலாநிதி ஆ. வேலுப்பிள்ளே, ஆலோ சணேகள் வழங்கிய விரிவுரையாளர்கள் செ. வே. காசிநாதன், சி. ஸ்ரீசரன் ஆகியோர், கையெழுத்துப் பிரதியாக்கம் செய்து தந்த பழைய மாணவர்கள், பலவித ஒத்தாசைகள் புரிந்த நண்பர்கள்-குறிப்பாக திரு. உருத்திரானந்தன்- எல்லோருக்குமே நான் கடமைப் பட்டவன்; நன்றியுடையேன்.

கூலிக்கு வேஃயென்றில்லாமல் அழகுற அச்சிடுவதில் அக்கறை காட்டிய சைவப்பிரகாச அச்சியந்திரசாஃயினருக்கும் என் நன்றி யுரியதாகும்.

இது முழுமையானதல்ல. குறைபாடுகள் அற்றதுமல்ல. நல்ல தைக் கண்டால் தட்டிக் கொடுங்கள், குற்றங்கண்டால் கூசா மல் சுறுங்கள். மறுபதிப்புகளிலோ, வேறு வெளியீடுகளிலோ அவற் றைக் களேய அறிஞர்களின் ஆலோசணே அவசியமன்றே!

எல்லாவற்றிற்கும் மேலாக என்னே ஆளாக்கியவர் என் சகோதரி. ஆரம்பக் கல்வியிலிருந்து உயர் கல்விவரை ஊக்கப் படுத்தியவர் அவர். அவரே எனக்கு எல்லாம்- அளவற்ற அன்பி ஞல் தாய், தந்தை, சகோதரர்களேப் பிணேத்தவர். இது வெளி யாவதைக்கண்டு பூரிப்பும் புளகாங்கிதமும் அடைய வேண்டிய அவர் இன்று இல்லே, அவருக்கு இந்நூலேக் காணிக்கையாக்குவ தில் பேருவகை யடைகிறேன்.

''பத்ம®ரி'' தலேயாழி

தல்யாழி கொக்குவில் — 22-2-77 மா. மத்யநாடின்

25/=

Appropriate Technology Services 121. POINT - PEDRO ROAD NALLUR, JAFFNA

No.

என்கோ இத்துறையில் கற்க வழிகாட்டிய என் அக்காள், பேராசியர் ஆஇய இருவருக்கும் Appropries Technicage Services

121. Policy of Controls

Walleting of Controls

the Visit of the Contract of the

Author based sela

பொருளடக்கம்

				பக்கப்
1.	புள்ளி	விபரவியல்: அறிமுகம்	•••	1
	1. 1:	புள்ளிவிபரவியலின் முக்கியத்துவம்	•••	4
2.	விவாவ	னப் புள்ளிவிபரவியல்		8
	2. 1:	தரவுகளின் வகுப்பாக்கலும் அட்டவணேப்படு	 க்கலு	
		2. 1. 1: அட்டவணேப்படுத்தல்		11
		2. 1. 2: மாறி அல்லது மாறலி		14
	2. 2:	வரைபுகளும் வரிப்படங்களும்		15
		2. 2. 1: காலத்தொடர் வரைபு	•••	16
		2. 2. 9: சித்திரவரையம்		19
		2. 2. 3: சலாகை வரிப்படம்		22
	2. 3:	மீடிறன் பரம்பல்கள்		24
				10000
2				31
		2. 3. 2: தொடர்பு மீடிறன் பரம்பல் 2. 3. 3: திரட்டு மீடிறன் பரம்பல்	•••	33
	2.		•••	
	2. 4:	மீடிறன் பரம்பல்களின் வரைபுவகைக் குறிப்ப	1	34
		2. 4. 1: இழைவரையம்	•••	34
		2. 4. 2: மீடிறன் பல்கோணியும்		
		மீடிறன் வசோயியும	D	41
	4 =	2. 4. 3: திரட்டு மீடிறேன் வீளாயி	•••	44
	2 5:	மீடிறன் பரம்பல்களின் ஒப்பீடு	•••	47
		2. 5. 1: இடங்காணல் அளவைகள்	•••	49
		2. 5. 2: பிரிகை அளவை≢ள்	***	80
		2. 5. 3: ஓராய அளவைகள்	***	99
		2. 5. 4: குடில அளவைகள்	•••	100
	2. 6:	பயிற்சிகள்		101
3.	நிகழ்த	Eat		107
٠.				
	3. 1:	நிகழ்த்கவுக் கொள்கை	•••	108
9:	3. 2:	மாதிரிவெளி	•••	110
	3. 3:	சமமாய் நேரக்கூடிய ஆரம்ப நிகழ்ச்சிகள்		119
	3 4:	நிகழ்ச்சிகளின் நிகழ்தகவு பற்றிய தேற்றங்க		123
	3. 5:	நிபந்தனே நிகழ்தகவு	•••	131
	3. 7:	பெயிகளின் தேற்றம்	•••	137
		புள்ளியியற் சாராமை	•••	
	3. 8:	வரிசை மாற்றமும் சேர்மானமும்	•••	148
		பயிற்சிகள்	• • •	
	Man a	rai		166

*குறியீடுகள்

 \overline{X} — X \mathcal{E}_{DI} (X Bar)

∑ – கூட்டுத்தொகை

U — ஒன்றிப்பு

3

റ — இடைவெட்டு

⊃,⊂ — உள்ளடக்கம்

ф — (f) பை

∠ — சிக்மா (Sigma)

X < Y - X இறிது Y

X > Y - X Guff gl Y

 $X \leq Y$ — X திறிது அல்லது சமன் Y

 $X \geq Y$ — X பெரிது **அல்ல**து சமன் Y

^{*} இந்நூலில் எடுத்தாளப்பட்ட குறியீடுகளுக்கான விளக்கம்.

புள்ளிவிபரவியல்: அறிமுகம்

STATISTICS: INTRODUCTION

அன்றுட வாழ்க்கையில் ஏற்படும் நிகழ்ச்சிகளெல்லாம் எண் அளவீடுகளுடனும் பிணேக்கப்பட்டிருப்பதால் ணிக்கையுடனும் ஆராய்ச்சியாளர்களும் நிர்வாகிகளும் விபரங்க பெருந்திரளான ளின் மத்தியிலிருந்து கொண்டேயே தமது ஆராய்ச்சிகளேயும் நிர் வாகத்தினேயும் மேற்கொள்வதைக் காணமுடிகின்றது. இவ்விபரங் கள் பற்றிய முடிபுகள் புள்ளியியல் முறைகளேக் கடைப்பிடித்தே பெறப்படுகின்றன. எனவே, மனிதனது செயல்களேயும் நியதிகளேயும் தொகுப்புகளாக வகைப்படுத்தியும், காரணகாரிய தொடர்புபடுத்தியும், தர்க்கரீ தியில் ஆராய்வகே பள்ளியியல் முறைகளின் அடிப்படைக் குறிக்கோளாகும். அதாவது, பெருந் திரளான விபரங்களின் செறிந்த பொழிப்பாகவே புள்ளிவிபரங் கள் புயன்படக் காண்கின்றேம். விபரங்கள் என்னும்போது அவை ஏதோ ஒரு பண்பினேக் குறிக்கும் வெவ்வேறு பெறுமானங்களா கும். புள்ளியியல் முறைகளேக் கையாண்டு அவ்விபரங்களேப் பற் றிய பொதுவான சில முடிபுகளே எவ்வாறு காண்பது என்டத?ன நோக்குமுன் மேற்குறிப்பிட்ட விபரங்கள் எவ்வாறு சேகரிக்கப்படு கின்றன என்பதையும் நோக்குதல் வேண்டும். விபரங்களேச் சேக ரிக்கழுன், சாத்தியமான விபரங்களுள் எமக்கு அவசியமான விப ரங்கள் எவையென நிர்ணயிப்பது, எவ்வாறு என்பதனேயும் புரிந்து கொள்ளல் வேண்டும்.

புள்ளிவிபரவியல் ஆராயும் எந்த விடயத்தையும், ஒரு முழுத் தொகுதியெனக் கொண்டால் அம்முழுத் தொகுதியிற் பல்வேறு உறுப்புகள் இருத்தல் இயல்பு. தொகுதியிலுள்ள உறுப்புகள் பெருந்திரளான பொருள்களாகவோ, நிகழ்ச்சிகளாகவோ இருக்க லாம், உதாரணமாக,

- (i) பல்கலேக்கழக மான்றிலே பயிலும் மாணவர்களின் எண் ணிக்கை,
- (ii) தாயக்காயொன்றைத் தொடர்ந்து எறியுப்போது பெறப் படூம் விளேவுகள்.

மேலே குறிப்பிட்ட முதலாம் உதாரணத்தில் முழுத் தொகு தியானது முடிவுள்ளதாகவும், இரண்டாம் உதாரணத்தில் முழுத் தொகுதி முடிவற்றதாகவும் காணப்படுகின்றது. மேலும் ஒரு முழுத் தொகுதி உண்மையான உறுப்புகளாலானதாயோ அன்றி கற்பணயாலுருவாக்கப்பட்டதாயோ இருக்கலாம். நடைமுறையில் நிகழ்ச்சிகளே உண்மையாகவே நிகழும்படி செய்து அவற்றைக் கற்பணயால் உருவாக்கக்கூடிய முழுத்தொகுதியின் பகுதிகளாகக் கொண்டு புள்ளியியல் ஆராய்ச்சிகள் நடைபெறுகின்றன.

புள்ளிஃபரவியலில் வரும் முழுத்தொகுதிகளிலடங்கிய தரவு கள் பெரும்பாலும் ஏராளமாயும், சிக்கலானவையாயும், வகுப் பாக்கப்படாதவையாயும் காணப்படுவதால் அத்தரவுகள் அனேத் தையும் சேகரித்தல் இயலாத காரியமாகும். அண்மைக் காலத் தில், தரவுகளேச் சிறந்த முறையிலே திரட்டுவதுபற்றிய கல்லியில் அதிக முன்னேற்றங்கள் ஏற்பட்டுள்ளன. அந்நாட்களில் பொது நிறுவனங்களாலும், தனியார் நிறுவனங்களாலும் கையாளப்பட்ட முறைகளே இன்று நாம் திட்டமில்லாத முறைகள் என்று கூறு கென்றேம். எவ்விபரங்கள் தனியார், பொதுத் துறைகளிலிருந்து எளிதாகக் கிடைத்தனவோ அவை யாவும் ஏற்றுக்கொள்ளப்பட் டன. அவற்றினே காணப்படும் பிழைகளேப்பற்றியோ, அன்றிக் குறித்த நோக்கத்திற்கு அவை தகுந்தனவா என்பதுபற்றியோ சிந் திக்காமலே திரட்டப்பட்டன. ஆனல், இப்பொழுது புள்ளியியல் ஆராய்ச்சிகள் பெறப்பட்ட தரவுகளுடன் மட்டும் நின்றுவிடாமல் நன்கு திட்டமிட்டுக் குறிக்கோள்களுக்கு ஏற்றவகையிற் திரட் டப்பட்ட விபரங்களேயும் பயன்படுத்துகின்றன.

இன்று ஆட்சியாளர்களாலும் சமூக, பொருளியல் அறிசூர் களாலும் கையாளப்படும் பலவிதப் புள்ளிவிபரங்கள் பெரும் பாலும் எழுமாற்று முறையீஞற் இரட்டப்பட்டவையாயிருக்கும். எழுமாற்று முறையின் பயன்பாட்டைப் பின்வருமாறு விளக்கலாம்: முழுத்தொகை மதிப்பீட்டு முறையில் உறுப்புகள் ஒவ்வொண்றையும் பரிசீலீனக்கெடுத்து அவற்றுக்குள்ள பண்புகளனேத்தையும் ஆராய்வர். மக்கட்கணிப்பு இதற்கு ஓர் எடுத்துக்காட்டாகும். இம்முறைக்கு மாருக மாதிரியெடுப்பு முறையில் ஒரு முழுத் தொகுதியின் தன்மைகளே அறிய அத்தொகுதியிலிருந்து உறுப்புகள் சிலவற்றை எழுமாருக எடுத்து முழுத்தொகுதியின் பண்புகள் சிலவற்றை எழுமாருக எடுத்து முழுத்தொகுதியின் பண்புகள் அறிய முயல்வர். இங்கு எழுமாருய் எடுக்கப்படும் கூறுமாதிரி (Sample) எனப்படும். இவ்வாறு மாதிரிக் கூறுகளேத் தேர்ந்தெடுத்து முழுத்தொகுதியின் பண்புகளே அறியமுயலும் முறை எழுமாற்று மாதிரியெடுப்பு முறை எனப்படும்.

நடைமுறையில் ஒரு முழுத் தொகுதியின் குணுதிசயங்களப் பற்றி அறிவதற்கு அதன் ஒவ்வோர் உறுப்பையும் பரீசீலணேசெய்து முடிவுக்கு வருவது இயலாத காரியம். ஏனெனில், இம்முறை அநிக பணச் செலலையும், காலதாமதத்தையும் ஏற்படுத்தும். அம்முழுத்தொகுதி பற்றிய தகவல்களே அத்தொகுதியிலிருந்து எடுக்கப்படும் மாதிரி, தெரிவிக்கும் என்று நாம் அனுபவத்தாலும் பகுத்தறிவாலும் அறிவோம். எனவே, நேரத்தை மிச்சப்படுத்து வதற்கும் பணச் செலவைக் குறைப்பதற்கும் நிர்வாகக் கஷ்டத் தைத் தவிர்ப்பதற்கும் நாம் அத்தொகுதியின் ஒரு வகை மாதி ரியை ஆராயலாம். இது ஒரு பாணே சோற்றிற்கு ஒரு சோறு பத மாவதுபோல. இக்காரணங்களே ஒட்டியே ஆராய்ச்சியாளர் மக் கட்கணிப்புத் தவிர்ந்த மற்றைய கணிப்புகளில் மாதிரி முறை யையே கையாண்டு முழுத்தொகுதி பற்றிய முடிபுகளே நிர்ணயிக் கின்முர்கள்.

ஒரு தொகுதியின் முழுக்கணிப்பு விபரம் எல்லா ஆராய்ச்டி களுக்கும் வேண்டியதில்லே. மாருக, நன்கு தேர்ந்தெடுக்கப்பட்ட பண்புக்கூறின் மூலம் முழுத்தொகுதியைப்பற்றிக் குறைந்த செல வில் புள்ளியியல் முறைகளேக் கடைப்பிடித்து அறிய முடியும். தவி ரவும் பல சமயங்களிலும் அநேக இடைக்காலங்களிலும் தகவல் களே மாதிரியெடுப்பு முறையினுல் அறிய முடிகீன்றது. மேலும், அவ்வக்காலத்திற்குரிய புதிய செய்திகளேயும் கணிப்பிற் சேர்த்துக் கொள்ள முடிகின்றது. முழுத்தொகுதியின் மாதிரியை ஆராய்வ தாற் பெறப்படும் அம்முழுத்தொகுதியின் மாதிரியை ஆராய்வ தாற் பெறப்படும் அம்முழுத்தொகுதி பற்றிய முடிபுகளிலே எப் பொழுதும் ஓரளவு தவறுதல்களே தாம் எதிர்பார்க்க வேண்டும். எனினும், முழுக்கணக்கெடுப்பில் செய்திகள் சரியாக அமையாமை

யாலும், அவை முடிவற்றதாயிருப்பதாலும் ஏற்படக்கூடிய பிழை கள்விட மாதிரியெடுப்புகளிஞல் ஏற்படும் பிழைகள் பொறுக்கக் கூடியனவாகும். இப்பிழைகளேக் கூடுபானவரையிற் குறைக்கவும் முடியும். பொதுவாக இவை ''மாதிரியெடுப்பு வழுக்கள்'' எனப் படும் எனவே, தகுந்த வகைப்படுத்திய மாதிரியைத் தேர்ந்தெடுத் தல் அவசியம் என்பது தெளிவாகின்றது.

மக்கள் விசாரணேயிலிருந்து நாட்டிலுள்ள தொழிலாளர்களின் எண்ணிக்கை, தொழிலற்றவர்களின் எண்ணிக்கை முதலியவற்றை யும் வருமானம் பற்றிய ஆய்விலிருந்து நுகர்வோன் சேமிப்பு, செலவு என்பவற்றையும் அறிய முடிகின்றது. அதேபோல, வரவு செலவுத் திட்டம் பற்றிய ஆராய்ச்சிகள் நுகர்வோன் விலேச் கட் டெண்ணுக்கு வேண்டிய தரவுகளேத் தருகின்றன. மேலும் நிறு வனத்தினது மொத்த உற்பத்திச் செலவு, இலாபங்கள் போன்றன இன்று மாதிரியெடுப்பு முறைகளாலேயே மதிப்பிடப்படு கின்றன. நுகர்வோனின் நோக்கம் எவ்வாறுள்ளது, எவ்வகையில் மாறுபடுகின்றது என்பதனே மதிப்பிடுவதற்கு ஆராய்ச்சிக் கூட் டங்கள், சந்தை பற்றிய மதிப்பிடுகள் பயன்படுத்தப்படுகின்றன. எனவே, அன்ருட வாழ்க்கையில் ஏற்படும் பல பிரச்சினேகளுக்குச் சீரான முறையிற் தீர்வுகாண இவை போன்ற மாதிரித் தீர்வுகள் பெரிதும் உதவுகின்றன. அத்துடன் அவை பொதுவாக எல்லாச் சமூகவியல் முன்னேற்றங்களுக்கும் உகந்தனவாகக் காணப்படு கிள்றன.

மேலும் சேகரிக்கப்படும் விபரங்கள் யாவும் எழுமாற்று மாதி ரியெடுப்பு முறைகளிஞல் எடுக்கப்பட்டவையாகவிருத்தல் அவசி யம். முடிவுகளே நிகழ்தகவுடன் இணேத்துக் கூறவேண்டுமாத வால், எழுமாற்று முறையிலே திரட்டப்பட்ட புள்ளி விபரங்களே வேண்டப்படுகின்றன. கூடிய அளவு நம்பதகவான புள்ளி விபரங் களேச் சேகரித்து அவற்றைப் புள்ளியியல் முறைகளிற் பயன்படுத் துவதே புள்ளியியலாளரின் கடமையாகும்.

1.1: புள்ளிவிபரவியலின் முக்கியத்துவம் (IMPORTANCE OF STATISTICS)

ஆரப்பத்திலிருந்து பொருளியீலக் கற்கும் ஒரு மாணவன் பொருளாதார மாறிகளிடையே தொடர்புகள் காணப்படுகின்றன என்பதை முதலில் அறிகின்முன். சந்தையிலுள்ள நுகர்வுப் பண்ட மொன்றிற்கான கேள்வியானது அதனது விஃமின் ஒரு தொழிற் பாடாகும். அதாவது, D = f(P). அதேபோல, உற்பத்திப் பொருட்களுக்கான செலவானது உற்பத்தி செய்யப்படும் தொகை மினதம், நுகர்வுச் செலவானது வருமானத்தினதும் தொழிற் பாடுகளாகும். ஆஞல், பொருளுள்ள தொடர்பை விளைக்குவதற்கு ஒவ்வொரு தொடர்பும் பல்வேறு மாறிகள் குறித்துக் கூறப்படல் வேண்டும் எனவே, பொருளொன்றிற்கான கேள்வியானது விஃல, நுகர்வோன் வருமானம், மற்றைய பொருட்களின் விஃலகள், உற் பத்தி வீதத்திலுள்ள மாறல்கள் போன்றவற்றினது தொழிற் பாடாயமையும்; நுகர்வானது வருமானத்தினதும் திரவச் சொத் துக்களினதும் முன்னேய நுகர்வு மட்டங்களினதும் தொழிற் பாடாகும்.

பொருளியற் கொள்கையானது பொருளியல் முறைமையை முழுமையாகவோ அன்றிப் பகுதிகளாகவோ விபரிக்கும் தொழிற் பாடுகளேக் கொண்ட வெவ்வேறு தொகுதிகளேப் பற்றிய ஆய்வா கும். மேற்படி தொடர்புகள் பொருளியலளவை (Econometrics) பற்றிய ஆய்வில் புள்ளியியல்ரீதியாகவே மதிப்பிடப்படுகின்றன.

முழுத்தொகுதியின் மாதிரியிலுள்ள உறுப்புகள் ஒவ்வொன் றும் சில குணுநிசயங்களே ஒரே சமயத்திற் பெற்றிருப்பதைக் காணமுடிகின்றது. புள்ளியியல் மாறிகளுக்கிடையேயுள்ள தொடர்பை அவற்றிற்கிடையேயுள்ள இஃணபைக்கொண்டு (Correlation) கறமுடிகின்றது. உதாரணமாக, குறிப்பிட்ட ஒரு மாதத் திற் பெய்யும் மழையின் அளவிற்கும் ஓர் ஏக்கருக்கான நெல்லின் விளேச்சலுக்குமி கடயே தொடர்பு காணப்படுகிறது. மாறிகள் நெருங்கிய தொடர்புடையன எனக் காணப்பட்டால். ஒன்றின் பெறுமானம் தரப்படின், மற்றையதன் பெறுமானத்தைப் பிற்செலவு ஆய்வு (Regression Analysis) முறையைப் பாவித்துக் காணமுடிகின்றது. உதாரணமாக. விளம்பரத்திற்கும் விற்பினக்கு மிடையே தொடர்பு காணப்படின் ஒரு குறிப்பிட்ட விளம்பரச் செலவிற்கான விற்பணேயின் எதிர்பார்த்த பெறுமானத்தைக் காண முடிகின்றது. பொருளியல்லே பொருளியற் கொள்கை, பொருளா தார வாழ்வு (சிக்கன வாழ்வு) முதலியனவற்றிற்குத் தேவையான பொருளியல் மாறிகளினது பெறுமானங்களே மதிப்பிட மேற்படி உதவுகின்றது. பிற்செலவு ஆய்வானது பள்ளியியற் கொள்கையிலே பரவலாக உபயோகிக்கப்படுவது மட்டுமல்லாமல் அநேகமாக எல்லா விஞ்ஞான ஒழுங்குகளிலும் உடயோகிக்கப் படுகின்றது.

கால வேறுபாட்டால் ஒரு குறிப்பிட்ட மாறி பல பெறுமானங் களேப் பெறுகின்றமையைக் காணமுடிகின்றது. சமூக, பொரு ளாதார விடயங்களிலும் தொழிற்றுறை நிர்வாகத்திலும் ஏற் படும் முக்கியமான பல சிக்கல்களிலும் காலம் இடம் பெறுகின் றது. பிறப்பு இறப்பு வீதங்கள், தேசிய வருமானம், உற்பத் திப் பொருட்களின் கொள்வனவு, வீற்ப‱ன, ஆதாயம் முதலிப வற்றிலே கால மாறுபாட்டிஞேலும் மாற்றங்கள் ஏற்படுகின்றன. இப்பேர்ப்பட்ட மாற்றங்கள் புள்ளிவிபரவியலிற் காலத் தொடர் பற்றிய ஆய்வு மூலமே (Tim? Series Analysis) விளக்கப்படுகின் றன.

மேலும் இன்று புள்ளியியல் முறைகளிலே கட்டெண்கள் மிக வும் பரந்தளவில் உபயோடிக்கப்படுகின்றன. விஃவிலுள்ள ஏற்ற இறக்கங்களே ஆராய்வதற்கே முக்கியமாகச் சுட்டெண்கள் பாவிக் கப்படுகின்றபோதிலும் அதன் உப யோகக் எல்லாப் புலங் களிலும் பிரயோகிக்கப்படுகின்றமையைக் காணமுடிகின்றது. அத் துடன் வெவ்வேறு கால இடைவேளேகளிலுள்ள விவசாய உற்பத்தி கனரக உற்பத்தி, ஏற்றுமதி இறக்குமதி, ஊதியங்கள் முதலிய வற்றை ஒப்பிடவும் முடிகின்றது,

இவற்றிலிருந்து, புள்ளினிபரவியலே குறிப்பிடத்தக்க அளவு பொருளியலிலும் வணிகளியலிலும் உபயோகிக்கப்படுகின்றமை யைக் காணமுடிகின்றது. புள்ளியியல் ஆய்வஎனது பொருளாதார, வர்த்தகத் துறைகளில் மாத்திரம் மட்டுப்படுத்தப்பட்டுள்ளதொன் றல்ல. மாருக, அதன் அனுமானம் அநேகமாக எல்லா இயற்கை, பௌதீக,சமூக விஞ்ஞானங்களிலும் விரிவுபடுத்தப்பட்டிருக்கின்ற மையைக் காணமுடிகின்றது.

புள்ளிவிபரவியஃப் பல்வேறு வரைவிலக்கணங்களால் வரை யறுக்க முடிகின்ற போதிலும் இங்கு நாம் அதஃப் பின்வருமாறு வரையறுப்போம்:

''புள்ளிவிபரவியல் என்பது தரவுகளேத் திரட்டி ஒழுங்கு படுத்தித் தொகுத்து, பின்னர் ஒப்புக்கொள்ளக்கூடிய முடிபு கணேப் இபற்று, அம்முடிபுகளிலிருந்து பொருத்தமான தீர்மா னங்களே மேற்கொள்ள உதவும் விஞ்ஞான முறையாகும்''

புள்ளிவிபரவிடல் பற்றிய ஆய்வானது, முக்கியமாகத் தரவு கீனயே அடிப்படையாகக் கொண்டுள்ளது. தரவுகளேனும் போது அவை நாட்டின் தேசிய வருமானம், மக்கள் தொகை, பொருட் களுக்கான கேள்வி, நிரம்பல் போன்றவைகளாகவிருக்கலாம். அதா வது, அவை குறப்பிட்ட பண்பிணக் குறிக்கும் வெவ்வேறு பெறு மானங்களாகும். சேகரிக்கப்பட்ட இத்தரவுகளே அப்படியே வைத் திருத்தல் அர்த்தமற்றதாகும். இவற்றிலிருந்து குறிப்பிட்ட பண்பு கள் பற்றிய முடிபுகள் எடுக்கப்படல் வேண்டும். இங்கு தரப்பட்ட தொகுதியின் மட்டும் விபரித்துப் பகுக்கும் புள்ளிவிபரவியற் பகுதி, ''விவரணப் புள்ளிவிபரவியல்'' அல்லது ''உய்த்தறி புள்ளினிபரவியல்'' எனப்படும். இப்பகுதி, தரவுகள் எவ்வாறு வகைப்படுத்தப்பட்டு அட்டவணேப்படுத்தப்படுகின்றன என்பதையும், பின்னர் அவை மீடிறன் பரம்பல்களாக உணர்த்தப் பட்டு அவற்றிலிருந்து தரப்பட்ட தரவுகள் பற்றிய மூடிபுகள் எவ் வாறு பெறப்படுகின்றன என்பதனேயும் மட்டுமே அடிப்படையாகக் கொண்டுள்ளது.

மாருக, தரப்பட்ட தரவுகள் குடியொன்றின் வகை மாதிரி யாரின் குடிபற்றிய முக்கிய முடிபுகளே அம்மாதிரியை ஆராய் வதால், அனுமானிக்க முடியும். மேற்கூறப்பட்ட அனுமானம் என்ன நிபந்தனேகளின் கீழ் ஒப்புக்கொள்ளக்கூடியது என்று ஆரா யப்படும் புள்ளிவிபரவியற் பகுதி, ''புள்ளியியல் அனுமானம்'' (Statistical Inference) அல்லது ''தொகுத்தறி புள்ளிவிபரவியல்'' (Inductive Statistics) எனப்படும். மாதிரித் தரவுகளிலிருந்து குடிப் பரமானங்களே மதிப்பிடுவதற்கு, எமக்கு மாதிரித் தரவுகளின் பரம் பல்கள் வேண்டப்படுகின்றன. மாதிரியெடுப்புப் பரம்பல் பற்றிய ஆய்விலிருந்து மாதிரித் தரவுகள் பற்றிய கேச்யதிகளேப் பெறமுடி கின்றது. மாதிரித் தரவுகளிலிருந்து எவ்வாறு ஒத்த குடிப் பர மானங்கள் மதிப்பிடப்படுகின்றன என்பது புள்ளியியல் அனுமானத் திலே ஒரு மூக்கிய பிரச்சினேயாகும்.

பலவேளேகளில் மாதிரி பற்றிய செய்திகளிலிருந்து குடி பற்றிய தீர்மானங்கள் எடுக்கவேண்டிய நிலே ஏற்படுகின்றது. இவ்வகை யான தீர்மானங்கள் புள்ளியியற் தீர்மானங்கள் எனப்படும். இங்கு தீர்மானங்கள் எடுக்கப்படுவதற்கு ஆராயப்படும் குடி பற்றிய சில எடுகோள்களே எடுத்துக் கொள்வது பயனுள்ளதாகும். இவ்வெடு உண்மையானவையாகவோ அன்றி உண்மையற்றவை யாகவோ இருக்கலா**ம். அலை** புள்ளியியற் கருதுகோள்கள் எனப் படும். பொதுவாக, அவை குடிப் பரமானங்களின் பரம்பல்களாகவே காணப்படும். மேலும் பல வேளேகளில் புள்ளியியற் கருதுகோள் மறுக்கப்படுவதற்கென்றே கின்றது, உதாரணமாக, ஒரு செய்முறை வேருரு செய்முறை யினும் சிறந்ததா எனத் தீர்மானிப்பதற்கு, அச் செய்முறைக ளிடையே வித்தியாசம் டாதும் இல்லே என்னும் கருதுகோள் அமைக்கப்படுகின்றது. இப்பேர்ப்பட்ட கருதுகோள்கள் புள்ளியியல் மூறைகளேக் கையாண்டு சோதிக்கப்பட்டு, பரமானங்கள் பற்றிய தீர்மானங்கள் எடுக்கப்படுகின்றன.

விவரணப் புள்ளிவிபரவியல் DESCRIPTIVE STATISTICS

புள்ளிவிபரவியல் பற்றிய ஆய்வானது முக்கியமாகத் களேயே அடிப்படையாகக் கொண்டுள்ளது என முன்னர் கறிப் பிட்டிருந்தோம். தரவுகளெனும்போது அவை நாட்டின் வருமானம், மக்கள் தொகை, மக்களின் தலாவருமானம், வேலே யர்ளேர் தொகை, பல்கலேக்கழக மாணவர்களது எண்ணிக்கை போன்றவையாக இருக்கலாம். இவையாவும் கடந்தகால நிகம் கால நிகழ்ச்சிகளுக்குரியவையேயாகும். தரவுகள் அல்லது புள்ளி விபரங்கள் எவ்வாறு சேகரிக்கப்பட வேண்டுமெனச் சென்ற அத்தி யாயத்திற் குறிப்பிட்டிருந்தோம். எமக்கு வேண்டிய முழுத் களேயும் சேகரிப்பது இயலாத, செயல்முறைக்கொவ்வாத ஒன்று கும். இதனை, வேண்டிய விபரங்கள் பற்றிய ஒரு குறிப்பிட்ட பகுடுத் தரவுகளே சேகரிக்கப்படுகின்றன. இவ்வாறு பெறப்படும் மாதிரித் தரவுகளிலிருந்து முழுத்தொகுதி பற்றிய முடிபுகள் எவ் வாறு அனுமானிக்கப்படுகின்றன என்பதை நாம் பின்னுள்ள சில அத்தியாயங்களில் அவதானிப்போம். இதற்கு மாருகப் பெரிய தொகுதிகளேப்பற்றிய அனுமானங்களேயோ முடிபுகளேயோ எடுப் பதை விட்டுத் தரப்பட்ட தொகுதியினே விபரித்துப் பகுக்கும் புள் ளிவிபுரவியற் பருதை, ''விவரணப் புள்ளிவிவரவியல்'' அல்லது ''உய்த்

தறி புள்ளிவிபரவியல்'' (Deductive Statistics) எனப்படும். எனவே தொகுத்தறி புள்ளிவிபரவியலுக்கும், உய்த்தறி புள்ளிவிபரவியலுக்கும், உய்த்தறி புள்ளிவிபரவியலுக்கும் உள்ள வேறுபாட்டை இங்கு மாணவர் புரிந்து கொள்ளல் வேண்டும். இங்கு கிடைக்கப்படும் தரவுகள் மட்டுமே பகுக்கப்படு அவற்றிலிருந்து தரவுகள் பற்றிய மூடிபுகள் எடுக்கப்படு கின்றன. உய்த்தறி புள்ளிவிபரவியலிலே தரவுகளே வகைப்படுத்தல், அறிமுகப்படுத்தல், பொழிப்பாக்கிக்குறல் என்பன அடங்கும்.

சேகரிக்கப்பட்ட தரவுகளிலிருந்து அவை பற்றிய கிறப்பியல் புகளே அறியவேண்டிய அவசியம் காணப்படுகின்றதெனினும் நாம் அவற்றை உடனடியாக அறியமுடியாது. புள்ளினிபரவியலாளனுற் குறிப்பிட்ட தேவைகளுக்காகச் சேகரிக்கப்படும் தரவுகள் பொது வாகப் பெரியனவாகவே காணப்படும். இவ்வாருன எண்ணுருவில் ஒருமுகப்படுத்தப்படாத தரவுகளின் கூட்டம் பச்சைத் தரவுகள் (Raw Data) அல்லது கூட்டமாக்கப்படாத தரவுகள் எனப்படும். கிடைக்கப்பெற்ற தரவுகளினது பொருளுண்மையைக் கிடைக்கப் பெற்றவாறே வைத்து நோக்குதல் இலகுவானதல்ல. சேகரிக்கப் படும் தரவுகளே எளிய வடிவினதாக்கி இலகுவான உருவில் விபரிப்பதே புள்ளிவிபரவியலாளனின் கடமையாகும். இவ்வாறு தொகுக்கப்பட்ட தரவுகளே அறிமுகப்படுத்துதல் இலகுவானதாகக் காணப்படும். எனவே, சேகரிக்கப்படும் தரவுகளே அல்லது தகவல் களே வகைப்படுத்தி அட்டவணேப்படுத்துவதன் மூலம் மேற்கூறிய நோக்கங்களே அடைய முடியும்.

2.1: தரவுகளின் வகுப்பாக்கலும் அட்டவணப்படுத் தலும் (CLASSIFICATION AND TABULATION OF DATA)

அட்டவண்ப்படுத்தலின் முதற்படியாக வகுப்பாக்கல் அமை கின்றது. முறைமையான வகுப்பாக்கமல்லாத தரவுகளே அட்ட வண்ப்படுத்துதல் கடினமானதாகும். எனவே, வகுப்பாக்கம் முறைமையான அட்டவணேப்படுத்தலுக்கு உதவுகின்றது. சேகரிக்கப்பட்ட புள்ளிவீபரங்களே ஆராய்த்தறிதற்காகவே அவை வகுப்பாக்கப்படுகின்றன. தரவுகளுக்கிடையே காணப்படும் ஒருமைப்பாடு களுக்கேற்ப அவை தொகுதிகளாகவோ அன்றி வகுப்புகளாகவோ ஒழுங்குபடுத்தப்படுகின்றன. அதாவது, பொதுவான சிறப்பியல்பு கண்க் கொண்ட அலகுகள் ஒன்றுசேர்க்கப்படுகின்றன. இவ்வாறு ஒரு தொகுதித் தரவுகளே வகுப்பாக்குவதால் பல தொகுதிகள் அல்லது வகுப்புகள் பெறப்படுகின்றன. தரவுகள் வகுப்புகளாக வகுப்பாக்கப்படுவதால் அது ஆய்விற்கு உறுதுணேயாக அமைவ தோடு, நோக்குபவர்களுக்கு எளிதாகப் புரியக்கூடியதாகவும் அமையும்.

நாட்டின் வேஃயின்மை நி ஃ மையை ஆராயும் நோக் கத்திற்கான புள்ளிவிபரங்களே வேலேயுள்ளோர், வேலேயற்றோர்; மேலும் அவர்களுள் கிராமவாசிகள், நகரவாசிகள்; ஆண்கள், பெண் கள் என்ற வகைகளாகப் பிரித்து அமைத்துக் காட்டுவதாலேதான் அதனே எம்மாற் தெளிவாகப் புரிந்துகொள்ள முடியும். போல, நாட்டு மக்களே அவர்களின் தொழில்களுக்கேற்ப (விவசாயம், வர்த்தகம்,...) வகைப்படுத்த முடியும். மேலும் பட்டப்படிப்புப் பயி லும் மாணவர்களே எவ்வெவ் பல்கலேக்கழகங்களேச் சேர்ந்தவர்க பல்கவேக்கழகத்திலுள்ள மாணவர்களே ஒவ்வொரு வெவ்வேறு பீடங்களேச் சார்ந்த மாணவர்களெனவோ, வெவ்வேறு விடுதி மண்டபங்களில் வதியும் மாணவர்களெனவோ, அன்றித் தமிழ், சிங்கள, ஆங்கில மொழிமூலம் கல்லி பயிலும் மாணவர்களெனவோ வகுப்பாக்க முடியும். இவ்வாளுன வகுப் பாக்கங்களினுலே குறிப்பிட்ட வகுப்புகளேச் சார்ந்த மாணவர்க ளது எண்ணிக்கை அறியப்படுவதுடன், வெவ்வேறு வகுப்புகளே பைபிடவும் முடியும். தபாற் கந்தோரொன்றில் தபால்கள் புவியி யல்ரீதியாகப் பாகுபடுத்தப்படுகின்றன. அதேபோல, புள்ளிவிபர வியலாளன் ஒரேவகையான சிறப்பியல்புகளேக் கொண்ட அலகு களே ஓவ்வொரு வகுப்பாக அமைக்கின்றுன்.

தரவுகள், மாறிகளினது பண்புகளினடிப்படையில் வகுப்பாக்கம் கப்படின் அவ்வகையான வகுப்பாக்கம் பண்புவகுப்பாக்கம் எனவும் அவை பெறுமானங்களினடிப்படையில் வகுப்பாக்கப்படின் அது பெறுமானவகுப்பாக்கம் எனவும் அழைக்கப்படும். உதாரண மாக, மக்களே அவர்களது பால், மொழி போன்றவற்றின் அடிப்படையில் வகுப்பாக்குவது பண்புவகுப்பாக்கமாகும்; மக்களே அவர்களது வருமானம், உயரம், நிறை முதலியவற்றின் அடிப்படையில் வகுப்பாக்குவது பெறுமானவகுப்பாக்கமாகும்.

இவ்வாறு வகுப்பாக்கப்படும் கூட்டமாக்கப்படாத தரவுகளி லிருந்து தேவையற்றவை புறக்கணிக்கப்படுவதால், அவை சுருக்க மாகவும், தெளிவாகவும் அமைந்திருக்கும். இதஞல், தரவுகளினி டையிலான ஒற்றுமையையும் ஒற்றுமையின்மையையும் வெளிக்காட்ட முடிகின்றது. வகுப்பாக்கலுக்குத் திட்டவட்டமான கணித ரீதியான விளக்கங்கள் கொடுக்க முடியாது. குறிப்பீட்ட விதி யினடிப்படையில் வகுப்பாக்கங்கள் நடைபெறுவதில்லே. அன்றிப் பொதுஅறிவினுலும் அனுபவத்தினுலும் மட்டுமே தரவுகள் வகுப் பாக்கப்படுகின்றன. மேலும், வகுப்பாக்கங்கள் நிச்சயமற்ற தன் மையைக் கொண்டனவாக இருத்தல் கூடாது. இவை நிலேயானவையாயும், நிலேமைகள் மாற்றமடையும்போது வளேதகவுடைய வையாயும், நிலேமைகள் மாற்றமடையும்போது வளேதகவுடைய வையாயும் இருத்தல் அவசியமாகும்.

புள்ளியியல் ஆய்விற்குப் பயன்படும் வண்ணமும், எளிதாக அவற்றைப் புரிந்து கொள்ளும் வண்ணமும் புள்ளிவிபரங்களே அமைத்தல், தரவுகளே அறிமுகப்படுத்தல் எனப்படும்.

2.1.1: அட்டவணேப்படுத்தல் (TABULATION)

சேகரிக்கப்பட்ட புள்ளிவிபரங்களது சிறப்பியல்புகளேத் தெளி வாகவும் சுருக்கமாகவும் வெளிப்படுத்துவதே, அட்டவணே அமைத் தலின் முக்கிய நோக்கமாகும். வகுப்பாக்கப்பட்ட தரவுகளே ஒப் பிட்டுப் பார்ப்பதற்காக அவற்றை அட்டவணேகளில் அமைக்கின் ரும். அட்டவணேகளும், வகுப்பாக்கங்களேப்போல, தரவுகளின் சிறப்பியல்புகள், பண்டிகளுக்கேற்றவாறு அமைக்கப்படுகின்றனவே தவிர அவற்றிற்கெனக் குறிப்பிட்ட விதிகளோ அன்றி கணிதரீதி யான விளக்கங்களோ கிடையாது. பொதுவாக, நாம் அனுபவத் தையும், பகுத்தறிவையும் கொண்டே அட்டவணேகளே அமைக் கின்ரும். அதிகூடிய தகவல்களேத் தெளிவாகவும், சுருக்கமாகவும் வெளிக்காட்டும் ஓர் அட்டவணேயே சிறந்த புள்ளிவிபர அட்ட வஃண எனப்படும்.

பின்வரும் அட்டவணேகளே தோக்குவோம்:

1961 ஆம் ஆண்டிலிருந்து 1970 ஆம் ஆண்டு வரையுள்ள நெல் லி ண் உற்பத்தியைக் கீழுள்ள அட்டவணே காட்டு கின்றது:

ஆண்டு	உற்பத்தி 10 இலட்சம் புசலில்
1961	41.4
覆 1962]	45.0
登 1963	48.9
1964	50.5
1965	36.4
1966	45.8
1967	54.9
1968	64.4
1969	65.9
1970	77.4

1964ஆம் ஆண் டிலிருந்து 1970ஆம் ஆண்டு வரை யுள்ள ஒவ்வோர் ஆண்டிலும் இலங் கைப் பல்கலேக்கழகத்திற்குப் புகுந்த மாணவர்களின் மொத்த எண்ணிக்கையைக் கீழுள்ள அட்ட வணே காட்டுகின்றது:

ஆண்டு	மாணவர்களின் மொத்த எண்ணிக்கை
1964	7,182
1965	10,723
1966	11,067
1967	10,316
1968	10,316
1969	8,029
1970	8,883

இரண்டாம் அட்டவணேயிலே தரப்பட்ட தரவுகள் மேலும் தெளிவாகக் கீழுள்ள அட்டவணேபிற் காட்டப்படுகின்றது. இங்கு வெவ்வேறு பீடங்களின்படி, வெவ்வேறு ஆண்டுகளிற் புகுந்த மாணவர்களின் எண்ணிக்கை குறிக்கப்பட்டுள்ளது.

இலங்கைப் பல்**க**ீலக்கழகம் (பேராதீனயும், கொழு**ம்பு**ம்) பீட ஒழுங்குப்படி அனுமதித்த மாணவர்களின் எண்ணிக்கை.

	1964	1965	9967	1961	1968	6961	1970
எல்லாப் பீடங்சளும்	7,182	10,723	11,067	10,316	10,316	8,029	8,883
கீழைத்தேயக்					0/5		
கல்லியும் கலேயும்	4,194	7,869	7,765	7,012	6,919	2.822	2,843
விஞ்ஞானம்	096	1,347	1,295	706	907	2,936	2,884
மருத்துவம்	1,708	1,640	1,528	1,601	1,601	1.417	1,454
பொறியியல்	320	307	419	919	919	551	551
விவசாயமும்	The second of						
மிருக வைத்தியமும்	1	1	1	186	180	217	217
#CLLin	1	1	1	1	93	86	720

அட்டவணே ஒன்று அமைக்கப்படும்போது அதீன் தலேயங்கம் சுருக்கமாகக் கொடுக்கப்படல் வேண்டும். இது அட்டவணேயிலுள்ள விபரங்களேப் பற்றிச் சுருக்கமாக விளக்கம் அளிப்பதாக அமையவேண்டும். அத்துடன் தரப்பட்ட தரவுகள் என்ன நோக்கத்திற்காக, எவ்விதத்தில், எப்போது சேக ரிக்கப்பட்டன என்பதும் கொடுக்கப்படல் வேண்டும். இல்லாவிடின் புள்ளிவிபரங்களே மட்டும் சேகரித்து வைத்திருத்தல் அர்த்தமற்ற தாகிப் போய்விடும். மேலும் வெவ்வேறு பந்தித் தரவுகள் வேறு படுத்தியும் காட்டப்படல் வேண்டும். முக்கியமாக அட்டவணே களிற் பயன்படுத்தப்படும் அலகுகள் தேவையான இடத்திற்தெளி வாகக் காட்டப்படல் வேண்டும். உதாரணமாக, முதலாம் அட்ட வணேயில் நெல்லின் உற்பத்தி 10 இலட்சம் புசல்களிற் கொடுக்கப் பட்டுள்ளது. அதாவது, அட்டவணேயிலுள்ள ஒவ்வோர் அலகும் 10 இலட்சம் புசல்களேக் குறிக்கும்.

மேலும் அட்டவஃண ஒரு மீடிறன் பரம்பலாக இருப்பின், அங்கு வகுப்பாக்கம் செய்யப்படும் மாறியைப் பற்றிய விளக்கம் தெளி வாகக் கொடுக்கப்படல் வேண்டும். இது பற்றிப் பின்னர் விரி வாக ஆராய்வோம்.

ஆஞல், அட்டவணப்படுத்தப்படவேண்டிய உறுப்புகள் டுபரிய எண்களாகவும், பெரிய தொகுதிகளாகவும் காணப்படின் அவற்றைக் கையால் அட்டவஃணப்படுத்துவதாஞல் காலம் விரயமாவ தோடு செய்மை குன்றியனவாகவும் காணப்படும். ஆதலால், தற்பொழுது புள்ளிவிபரங்களே அட்டவணேப்படுத்துவதற்கும் அவை பற்றிய புள்ளிவிபர மதிப்பீடுகளேச் செய்வதற்கும் எந்திர சாதனங்கள் உபயோகிக்கப்படுகின்றன. இவை போன்றவை, எண்கணித செய்கைகள், மதிப்பீடுகள் போன்றவற்றை மிக அதிகமான வேகத் தற் செய்து முடிக்கின்றன.

பயன்படுத்தப்படும் எந்திர சாதனங்களிலே தொடர்ந்து திருத் தங்கள் செய்யப்பட்டு வருகின்ற போடுலும், தற்பொழுது அநேக சமூக, பொருளாதார ஆராய்ச்சிகளிலே கணனி (Computer) மிக முக்கிய பங்கு வகிக்கின்றது. குறிப்பாக, புள்ளிவிபரக் சணிப்பீடு களே நொடிப்பொழுதில் செய்து முடிக்கக் கணனிகள் பயன்படுத் தப்பட்டு வருகின்றன. சுருக்கமாகக் கூறுவதாளுல், கணனியை மனிதனுல் உருவாக்கப்பட்ட வங்கி எனலாம். ஏனெனில், இதனுள் பெரிய தொகுதி தரவுகளேச் சேகரித்து (Store) வைத்திருக்கவும். தேவைப்படும்போது அவற்றை உபயோகிக்கவும் முடிகின்றது. மேலும் இவை எண்கணித செய்கைகளேத் தர்க்கரீதியான செய் கைகளுடன் அதிவேகத்திற் செய்து முடிக்கின்றன. கணனிகள், நாம் கொடுக்கும் தரவுகளே ஓவ்வொன்றுகவும், செம்மையாகவும் பதிவு செய்து, கூறப்பட்ட நெறிமுறைகளே ஒழுங்காகச் செய்து முடிக்கின்றன. இங்கு, அட்டவணேப்படுத்தப்படும் தரவுகள், விசேஷ மாக அமைக்கப்பட்ட அட்டைத்தாள்களிலே (Cards) துவாரமிடும் கருவிகளே (Punching Machines) உபயோகித்துப் பதியப்படுகின்றன. பின்னர் அவ்வட்டைகள் எந்திரத்தினுள் குறிப்பிட்ட ஒழுங்கிற் செலுத்தப்படுகின்றன. எந்திரமானது செலுத்தப்பட்ட அட்டை களேப் பாகுபாடு செய்வதுடன் வேண்டிய தரவுகளேப் பதிவு செய்து, முடிபுகளேயும் பதிவு செய்கின்றது. அத்துடன் அது நாம் விடும் பிழைகளேயும் சுட்டிக் காட்டுகின்றது,

பொதுவாகக் கணனியானது சுயமாக எதையும் சிந்திக்காது நிட்டமிடலாளரால் (Programmer) திட்டமிட்டுக் கொடுக்கப்படும் நெறிமுறைகவே அப்படியே பின்பற்றி ஒவ்வொரு நெறி முறைக்கும் அடிபணிகின்றமையால், எந்த ஒரு திட்டமிடலாளனும், கணனியை ஒரு முட்டாள் (fool) எனவும் ஆணுல் ஒரு நம்பிக்கையான தொழி ளாளி எனவும் கருதுதல் வேண்டும். இதுபற்றி விரிவாக மாணவர் கள் கணனி பற்றிய புத்தகங்களில் அறிந்து கொள்ளலாம்.

2.1.2: மாறி அல்லது மாறலி (VARIABLE OR VARIATE)

அநேகமாக, எல்லாச் சுழுக, பொருளாதொரத் துறைகளிலும் புள்ளிவிபரங்கள் அடங்கியிருப்பதைக் காணமுடிகின்றது. குறிப்பிட்ட துறைகளிற் காணப்படும் குறிப்பிட்ட பண்புகளுக் குரியவையாகும். அதாவது, பண்புகளுடைய இயல்புகள் அல்லது குணுதிசயங்கள், புள்ளிவிபரங்கள் வாயிலாக வெளிக்காட்டப்படு புள்ளிவிபரவியலிலே இப்பண்புகளொவ்வொன்றையும் கின்றன. நாம் ஒவ்வொரு மாறிகளாகக் கொள்ளலாம். எனவே, ஒரு கூட் 🗷 த்திலிருக்கும் ஓர் உறுப்பின் தன்மை ஏனேய உறுப்புகளின் தன் மையினின்றும் கணியத்திலோ, பண்பிலோ எவ்வாறு வேறுபடு கின்றதென்பதைக் காட்டும் சிறப்புக் கூறு, மாறி எனப்படும். உதாரணமாக, பல்கலேக்கழகமொன்றிலுள்ள மாணவர்களது உய ரங்கள் அல்லது நிறைகள் அல்லது அவர்கள் பரீட்சையிற் பெறும் புள்ளிகள் என்பவை மாணவர்களேப் பொறுத்தமட்டில் மாறிகளா கும். பொருளாதாரத்திற் பொருளொன்றிற்கான கேள்வியை நோக்கின் அது வெவ்வேறு காலங்களில் மாற்றமடைவதைக் காணக்கூடியதாகவிருக்கின்றது. எனவே இதுவும் ஒரு மாறியாகும்.

பொதுவாக ஒரு மாறியானது பின்னக மாறியாகவோ அன்றித் தொடர் மாறியாகவோ காணப்படலாம். மாறியொன்று குறிப் பிட்ட தனியாக்கிய பெறுமானங்களே மட்டுமே எடுப்பின் அது பின்னக மாறியெனவும், குறிப்பிட்ட ஆயிடையிலுள்ள எப்பெறு மானங்களேயும் எடுப்பின் அது தொடர் மாறியெனவும் அழைக்கப்படும். உதாரணமாக, குடும்பம் ஒன்றிலுள்ள பிள்ளேகளின் எண்ணிக்கையை எடுத்துக்கொண்டால் அது 0, 1, 2, என்ற பெறுமானங்களாக இருக்க முடியுமே தவிர அது 1.5, 2.5, போன்ற முழுவெண்ணல்லாதவையாக இருக்க முடியாது. எனவே, இது ஒரு பின்னக மாறிக்கு உதாரணமாகும். அதேபோலத் தனிப்பட்டவர்களது உயரங்களே எடுத்துக்கொண்டால் அவை குறிப்பிட்ட ஆயிடையிலுள்ள எப்பெறுமானங்களேயும் எடுக்கமுடியும். அவை குறித்த தனியான பெறுமானங்களாக இருக்கவேண்டிய அவசியமில்லே. அவற்றைக் குறிக்கும் மாறி தொடர் மாறி எனப்படும். உதாரணமாக, உயரங்கள் 5 அடியாகவோ 5 2 அடியாகவோ இருக்கலாம்.

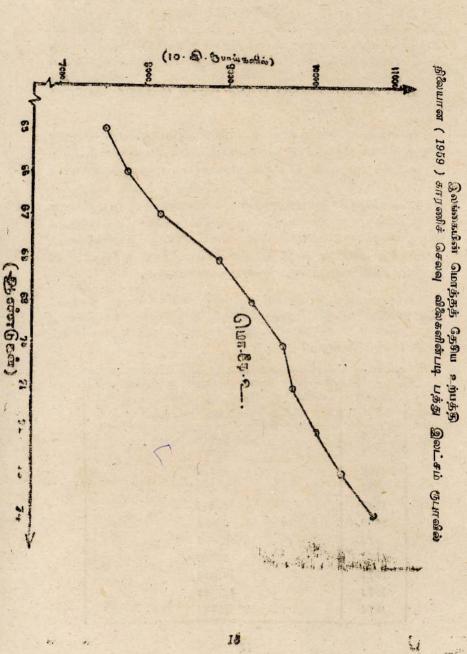
2.2: வரைபுகளும் வரிப்படங்களும் (GRAPHS AND DIAGRAMS)

இதுவரை நாம், சேகரிக்கப்பட்ட புள்ளிவிபரங்கள் எவ்வாறு வகுப்பாக்கப்பட்டு அட்டவணேகளிலமைக்கப்படுகின்றன என்பதனே அவதானித்தோம். ஆஞல், புள்ளிவிபரங்களின் பொருளேத் தெளி வாகத் தெரிவிப்பதற்கு அட்டவணேகள் போதியனவல்ல. மாருகத் தரவுகளிடையே காணப்படும் பொதுவான போக்கு, அவற்றினு டைய அளவைகள் மாறுபடும் அடிப்படை, தரவுகளிடையேயுள்ள சார்ச்சி, இடைச்சார்ச்சி முதலியவை தெளிவாகக் காட்டப்படல் வேண்டும். இதுவே புள்ளிவிபரவியேலீன் அடிப்படை நோக்கமு மாகும்,

புள்ளிவிபரங்கள் வரைபுகள் மூலமாகவோ அன்றி வரிப்படங்கள் மூலமாகவோ உணர்த்துவதன் மூலம் இந்த நோக்கத்தின் அடைய முடியும். சமூக, பொருளாதார சஞ்சிகைகளிலும், விளம் பரங்களிலும் பெரிய எண்களேக் கொண்ட தரவுகளேக் குறிப்பதற் குப் பதிலாகப் படங்கள் மூலமாக விளக்கங்கள் கொடுக்கப்படுவ தைக் காண்கின்றும். விவசாய உற்பத்தியின் வளர்ச்சி, தொழிற் றுறை வளர்ச்சி முதலியவையும் வரைபுகள் மூலமாகவே காட்டப் படுகின்றன. புள்ளிவிபரங்கள், வரைபுகள் மூலமாகவோ வரிப்படங்கள் மூலமாகவோ உணர்த்துவதால் அவை புள்ளியியல் ஆய்விற்கு உறுதுணேயாக அமைகின்றன. கிடைக்கப்பெற்ற புள்ளிவிபரங்களுக்கிடையேயுள்ள தொடர்புகள் மே லும் ஆராய்வதற்கு வரிப்படங்கள் வழிசெய்கின்றன. இவை, புள்ளிவிபரங்களில் வரும் சிக்கலான நில்மைகளின் வகைகளேயும் தோற்றங்களேயும் அறிவ தற்கு உதவுகின்றன. வரைபுகள் எண்களிலடங்கிய முழு உட்கருத்

துகளேயும் ஒரே சமயத்திற் பிரதிபலிக்கச் செய்கின்றன. அட்ட வணே அமைப்பதற்கு அனுபவம் எவ்வளவு அவசியமோ, அதேபோல வரைபுகள், வரிப்படங்கள் அமைப்பதற்கும் அனுபவம் அவசியமா கும். வரைபுகளே அமைக்கும்போது பின்வரும் முக்கிய விடயங்க ளேக் கவனத்திற் கொள்ளல் வேண்டும். வரைபுகள் தெளிவாகவும் எளிதாகவும் வரையப்படல் வேண்டும்; புள்ளிவிபரங்களது பொது வான போக்கையும் அவற்றுக்கிடையேயுள்ள தொடர்பிளேயும் தெளிவாகக் காட்டல் வேண்டும்.

2.2.1: காலத்தொடர் வரைபு (THE GRAPH OF A TIME SERIES)


சேகரிக்கப்பட்ட புள்ளிவிபரங்கள் வகுப்பாக்கப்பட்டு அட்ட வணப்படுத்தப்படும்போது அவை எப்போது பெறப்பட்டன எனக் குறிப்பிடப்படவேண்டுமென முன்னர் வலியுறுத்தியுள்ளோம். அதா எந்தச் சமயங்களிலெடுக்கப்பட்டன என்பது வது, ஆராய்ச்சியிற் சேர்த்துக்கொள்ளப்படவேண்டும். காலவேறுபாட் டால் ஒரு குறிப்பிட்ட மாறி பல மதிப்புகளேப் பெறக்கடும். ஒவ் வொரு குறிப்பிட்ட நேரத்தில் அல்லது காலப்பகுதியில் மாறி ஏற்கும் மதிப்புகளே வரிசையாக அமைத்துப் பெறப்படும் தொட ரையே காலத்தொடர் என்போம். சமூக, பொருளாதார இயல் களிலும் தொழிற்றுறை நிர்வாகத்திலும் ஏற்படும் முக்கியமான காலம் இடம்பெறுகின்றது. பிறப்பு இறப்பு பல சிக்கல்களிற் வீதங்களில் ஏற்படும் மாற்றங்கள், தேசிய வருமானத்தில் ஏற்ப டும் மாற்றங்கள், விஃவோசிகளிலேற்படும் தளம்பல்கள், உற்பத் டுப் பெருக்கத்தினுல் ஏற்படும் மாற்றங்கள், விற்பண்யிலும் ஆதா யத்திலும் ஏற்படும் மாற்றங்கள் போன்ற யாவற்றிலும் காலத் தொடர் பற்றிய ஆய்வே முக்கிய பங்கெடுக்கின்றது. எனினும் இவ் ஆய்வினேத் தொடர்ந்து வரும் அத்தியாயத்தில் விரிவாக ஆராய்வோம்.

காலத்தொடரின் போக்கைப் பொதுவான போக்கு, சக்கர மான போக்கு, பருவகால மாறலுக்குரிய போக்கு, ஒழுங்கற்ற தனம்பலுக்குரிய போக்கு என நான்கு பெரும் பிரிவுகளாகப் பிரிக் கலாம். குறிப்பிட்ட கால இடைவேணகளில் ஒரு நாட்டின் கைத் தொழில்களின் வளர்ச்சியை ஆராயும்போது அவை படிப்படியாக மூன்னேறியிருப்பதன் பொதுவான போக்கை அறியமுடிகின்றது. இவ்வளர்ச்சி பல்வேறு வகையான காரணிகளால் ஏற்பட்டிருக்கக் கூடிய போதிலும் பொதுவாக, சனத்தொகை அதிகரிப்பினுலும், அறிவியல் ஆராய்ச்சிகளிலே புதிய கண்டுபிடிப்புகள் அறிமுகப் படுத்தப்படுவதாலும் ஏற்படுகின்றது. ஆஞல், மக்களின் தேவை, விருப்பம் ஆசியவற்ருல் சில சமயங்களில் ஒரு சில தொழில்கள் வளர்ச்சியுறுவதையும், மற்றும் சில தொழில்கள் தேய்ந்து போவ தையும் உடனடியாக உணரமுடியாவிட்டாலும் காலப்போக்கில் அறியக்கூடியதாக இருக்கின்றது. நாகரீக வளர்ச்சியிஞலும், வரு மான மாற்றத்திஞலும், மக்களின் விருப்பங்கள் மாற்றமடைய லாம். குறுங்காலங்களிலும், * நீண்ட காலங்களிலும் விலேவாசிகளி லேற்படும் தளம்பல்களேக்கூடப் பொதுவான போக்கின் வாயிலாக வெளிக்காட்ட முடியும்.

காலத்தொடரை வரைபாக அமைக்கும்போது, புள்ளிவிபரங் கள் குறிக்கும் செய்திகள் கால அடிப்படையில் எங்கனம் மாறு படுகின்றன, அவற்றின் பொதுவான போக்கு எவ்வாறு அமைகின் றது, அவற்றின் பொதுவான போக்கிலிருந்து தனி மதிப்புகள் எந்த அளவிற்குத் தளம்பலுறுகின்றன என்பன கவனத்திற்கொள் எப்படவேண்டும். தனியான மாற்றங்களே மட்டும் வலியுறுத்தல் போதுமானுல், வரைபுத்தாளின் கிடை அச்சிற் காலத்தின்யும் நிவேக்குத்து அச்சிலே மாறி ஏற்கும் மதிப்புகளேயும் பதிந்து, குறிக் கப்படும் புள்ளிகளினூடாக வரைபு வரையப்படும்.

1959ஆம் ஆண்டு காரணி உற்பத்தி விஃலகளின்படி இலங்கை மின், 1965ஆம் ஆண்டிலிருந்து 1974ஆம் ஆண்டுவரையிலான மொத் தத் தேசிய உற்பத்தியை (10 இலட்சம் நூபாவில்) கீழுள்ள அட் டெவிண காட்டுகின்றது:

ஆண்டு	195 9ஆ ம், ஆண்டு காரணி உற்பத்தி விஃ களின்படி மொத்தத் தேசிய உற்பத்தி (10 இலட்சம் ரூபாவில்)
1959	5,893
1965	7,551
1966	7,818
1967	8,210
1968	8,901
1969	9,301
1970	9,686
1971	9,725
1972	10,030
1973	10,383
1974	10,731

தற்காலிக மதிப்புகளின்படி நிஃயான (1959) விஃகளில், 1974இன் மொத்தத் தேசிய உற்பத்தி 3.4 விதம் உயர்ந்து விளங் குகின்றது. இது 1973இன் 3.5 சதவீத மொத்தத் தேசிய உற்பத்தி உயர்ச்சியைவிட எல்ஃயளவால் குறைந்ததாகும். 1973ஆம் ஆண்டின் 3530 இலட்ச உயர்ச்சியுடன் ஒப்பிடுகையில், உண்மை யான மொத்தத் தேசிய உற்பத்தியானது 1974இல் உண்மையான அடிப்படையில் 3480 இலட்சத்தால் உயர்ந்து காணப்பட்டது. இவ்வாறு மொத்தத் தேசிய உற்பத்தியை வரைபாக அமைத்ததி ஞல், தேசிய உற்பத்தியின் வெவ்வேறு காலங்களிலுள்ள மாற்றங் கீன ஒப்பிட முடிகின்றது. வரைபிலிருந்து மொத்தத் தேசிய உற்பத்தியானது அதிகரித்துச் செல்வதைக் காணமூடிகின்றது.

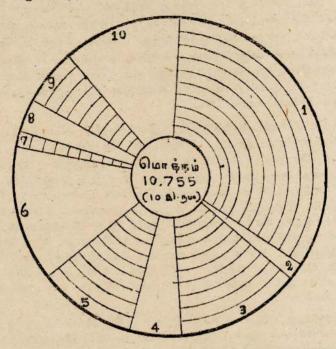
் எனினும் இலங்கையின் சனத்தொகையும் அதிகரித்துச் செல் வதால் இத்தேசிய உற்பத்தி அதிகரிப்பு எவ்விதை பயணேயும் அளிக் கமாட்டாது. 1974இல் இலங்கையின் குடிசனத்தொகை 134 இலட் சம் என மதிப்பிடப்பட்டுள்ளது. இது 1973ஆம் ஆண்டைவிட 1.6 சதவீத உயர்வைக் கொண்டுள்ளதாகும்.

2.2.2: இத்திரவரையம் (PICTOGRAM)

பெருப்பாலான அட்டவணேகளே, குறிப்பாக, பண்பினடிப் படையிலானவற்றை உருவப்படங்கள் மூலம் இலகுவாக விளக்க முடிகின்றது. கீழுள்ள உருவப்படமானது 1974ஆம் ஆண்டின் இலங்கையின் மொத்த உள்நாட்டு உற்பத்தியிற் பல்வேறு துறை களின் பங்குகளேக் காட்டுகின்றது.

நிலேயான (1959) காரணிச் செலவு விலேகளின் அடிப்படையில் 1974ஆம் ஆண்டுக்கான மொத்த உள்நாட்டு உற்பத்தியிலே துறைவகைப்படியான அமைப்பினேக் கீழ்வரும் அட்டவணே யானது காட்டுகின்றது:

இலங்கையின் மொத்த உள்நாட்டு உற்பத்தி — 1974


	துறைகள்	தொகை 10 இலட்சம் ரூபா	சதவி தம்
1.	கமத்தொழில், வனவியல், வேட்டை		
	யாடல், மீன் பிடித்தல்	3558	33.1
2.	சுரங்கத்தொழில், கற்ருண்டல்	191	1.8
3.	தயாரிப்புத் தொழிலுற்பத்தி	1359	12.6
4.	நிர்மா ணம்	553	5.1
5.	போக்குவரத்து, சேகரிப்பு	1054	9.8
6.	மொத்தச் சில்லறை வியாபாரம்	1450	13.5
7.			
	னப் பொருள்	165	1.5
8,	குடியுரிமை	344	3.2
9,	பொதுநிர்வாகமும், பாதுகாப்பும்	609	5.7
10.	சேவைகள், பணிகள்	1472	13.7
	மொத்த உள்நாட்டு உற்பத்தி	10755	100.0

மேலுள்ள துறைகளுடன் இலங்கையின் வெளிநாட்டின் தேறிய காரணி வருமானத்தின்யும் சேர்த்துக் கொண்டால், இலங்கை யின் மொத்தத் தேசிய உற்பத்தி பெறப்படும். பொதுவாக இத் துறையினுலான வருவாய் எப்பொழுதும் எதிர்க்கணியமாகவே காணப்படுகின்றது. உதாரணமாக, 1974 ஆம் ஆண்டிற்கான வெளிநாட்டுத் தேறிய காரணி வருமானம் —24.9 ஆகும். இது மொத்தத் தேசிய உற்பத்தியில் 0.2 சதவீத எீழ்ச்சியிண் ஏற் படுத்துகின்றது. மேலும் சேவைகள் என்ற துறையில் மின்சாரம், நீர், சுகாதாரப் பணிகள் என்பனவும் அடுங்குகின்றன,

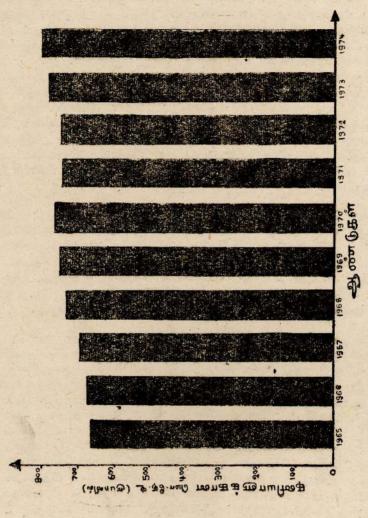
Appropriate Technology Services²⁰

NALLUR, JA Pligitized by Noolaham Foundation.

1974 ஆம் ஆண்டில் இலங்கையின் மொத்த உள்நாட்டு உற்பத்தி யிற் பல்வேறு துறைகளின் பங்கிணக் காட்டும் பரிதிவரிப்படம்:

இலங்கையின் மொத்த உள்நாட்டு உற்பத்திக்குக் குறிப்பீட்ட துறைகள் ஒவ்வோன்றும் உதவும் பங்கு மேலுள்ள படத்திற் காட் டப்படுகின்றது. இதனுல் ஒவ்வொரு துறையினதும் பங்கிண ஒப் பிட்டுப் பார்க்கமுடிகின்றது. எவ்வெத்துறைகள் கணிசமான பங்கு கள் வகிக்கின்றன என்றும் அறியமுடிகின்றது. உதாரணமாக, இலங்கையின் மொத்த உள்நாட்டு உற்பத்தியிண ஆராய்கையில் 1974 ஆம் ஆண்டின் பொருளாதார வளர்ச்சியிலே முதன்மையான பங்கு வசித்தன கமத்தொழிலும், பணிகளும், குறைந்த அளவில் நிர்மாணத் துறைகளுமேயாகும்.

மேலும், வெவ்வேறு ஆண்டுகளுக்குரிய ஒரே உருவப்படங்களே அமைப்பதால். வெவ்வேறு துறைகளின் வளர்ச்சிகள் ஒப்பிடவும், வளர்ச்சி வீதத்தின் அளவிடவும் முடிகின்றது. இதிலிருந்து குறிப்பிட்ட காலங்களின்போது பொருளாதார அமைப்பிற் குறிப்பிடத் தக்க அளவு மாற்றங்கள் ஏற்படுகின்றனவர என்பதை அவதானிக் கவும் முடியும்.


2.2.3: சலாகை வரிப்படம் (BAR DIAGRAM)

கிடை அல்லது நிலேக்குத்து அச்சுகள் மீது சமமான அகலங் களேக் கொண்ட (வித்தியாசமான உயரங்கள் அல்லது நீளங்கள்) ஒன்ருடொன்று பொருந்தியிராத செவ்வகங்களிலே தரவுகள் குறிக்கப்படின் அது சலாகை வரிப்படம் எனப்படும். இங்கு செவ் வகங்களின் உயரங்கள் அல்லது நீளங்கள், புள்ளிவிபரங்களின் மதிப்பிற்கேற்றவாறு அமைதல் அவசியம். உதாரணம் மூலம் இதன் அமைப்பிலேக் காண்போம்.

வெவ்வேறு ஆண்டுகளில், இலங்கையின் மொத்தத் தேசிய உற்பத்தியினேக் குறிக்கும் வினயியினே நோக்கும் போது, பொது வாக மொத்தத் தேசிய உற்பத்தி அதிகரித்துச் செல்கின்றது எனினும், வாழ்க்கைச் செலவு கள் அதிகமாகக் காணப்படுகின்றது எனினும், வாழ்க்கைச் செலவு கள் அதிகமாகக் காணப்படுகின்றதே என மாணவர்கள் சிந்திக்க முடியும். இதற்கும் முக்கிய காரணம் இலங்கையின் சனத்தொகை அதிகரித்துச் செல்வதேயாகும். 1974 இல் இலங்கையின் சனத் தொகை 134 இலட்சமாக மதிப்பிடப்பட்டுள்ளது. இது 1973 ஆம் ஆண்டைவிட 1.6 சதவீத உயர்வைக் கொண்டுள்ளதாகும். எனவே நாம் மொத்தத் தேசிய உற்பத்தியை நோக்கு வதற்கு ப் பதிலாக தனியாளுக்கான மொத்தத் தேசிய உற்பத்தியை அவ தானிப்போம்.

1959 ஆம் ஆண்டு காரணி உற்பத்தி விஃகளின்படி இலங்கை மின் 1965 ஆம் ஆண்டிலிருந்து 1974 ஆம் ஆண்டுவரையிலான தனி யாளுக்கான மொத்தத் தேசிய உற்பத்தியை ரூபாவில் கீழ்வரும் அட்டவணே காட்டுகின்றது:

ஆண்டு	1959 ஆம் ஆண்டு காரணி உற்பத்தி விலேகளின்படி தனியாளுக்கான மொத்தத் தேசிய உற்பத்தி (ரூபாவில்)
1959	612
1965	676
1966	683
1967	702
1968	742
1969	759
1970	774
1971	766
1972	770
1973	784
1974	801

தனியாளுக்கான உண்மைத் தேசிய உற்பத்தி 1973 இல் ரூபா 784/- ஆக வீருந்தது 1974 இல் ரூபா 801/- ஆக உயர்ந்துள்ளது.

2.3: மீடிறன் பரம்பல்கள் (FREQUENCY DISTRIBUTIONS)

எண்ணுருவில் ஒருமுகப்படுத்தப்படாத தரவுகளேப் பந்தி உரு வில் அமைத்து அவற்றைச் செவ்வனே வகுப்பாக்கி, அட்டவணேப் படுத்துவதன்மூலம் தரவினேச் சுருக்கமாகவும் தெளிவாகவும் காட்டமுடிகின்றதென முன்னர் அறிந்தோம். தரவுகள் கொகுதிகளாகவோ அன்றி வகுப்புகளாகவோ வகுப்பாக்கப்படுகின் **ரன**; பின்னர் ஒவ்வொரு வகுப்பிற்குமுரிய தரவுகளின் எண்ணிக்கை அவகானிக்கப்பட்டு அட்டவணேயிற் பதியப்படுகின்றன. இவ்விதம் பதிவதால் நாம் தரவுகளே ஒப்பீடுசெய்ய முடிகின்றது. அதாவது, எந்த வகுப்புகளினிடையே தரவுகள் கூடுதலாகக் காணப்படுகின் றன அல்லது குறைவாகக் காணப்படுகின்றன போன்றவற்றை அவதானிக்கமுடியும். ஒவ்வொரு வகுப்பிற்குமுரிய தரவுகளின் எண் ணிக்கை அவ்வகுப்பிற்கொத்த மீடிறன் அல்லது வகுப்பு மீடிறன் எனப்படும். வகுப்பொன்றின் மேல் கீழ் எல்லேகளுக்கிடைப்பட்ட பகுதி குறிப்பிட்ட வகுப்பினது வகுப்பாயிடை (Class interval) எனப்படும்.

ஒரு தொகுதித் தரவுகள் வகுப்புகளாக வகுக்கப்பட்டு, ஓவ் வொரு வகுப்பிற்குமுரிய மீடிறன்கள் அவதானிக்கப்படுகின்ற தென்க. இவ்வாறு வகுக்கப்பட்ட வகுப்புகளே அவற்றிற்கொத்த மீடிறன்களுடன் கொண்ட ஓர் அட்டவணே மீடிறன் பரம்பல் அட் டவணே அல்லது மீடிறன் பரம்பல் எனப்படும். அதாவது, இது மாறி ஏற்கும் மதிப்புகள் அதன் வீச்சினுள் எவ்வாறு பரந்துள் என அல்லது பரம்பப்பட்டுள்ளன என்பதைக் காட்டுகின்றது.

மேலும் தரவுகளே மீடிறன் பரம்பல்களாக உணர்த்தும்போது, பரம்பல்களுக்குரிய சில புள்ளிவிபர மதிப்புகள் கணிக்கப்பட வேண்டும். பொதுவாகப் புள்ளிவிபரவியலிற் குறிப்பிட்ட மாறியினது பரம்பலே விபரிக்கும்பொழுது மாறியானது இன்ன பெறுமானத்தை இடையாகவும் அல்லது சராசரியாகவும், இன்ன பெறுமானத்தை நியமவிலகலாகவும் கொண்டுள்ளது எனக் கூறுவது வழக்கம். உதாரணமாக, ஒரு கிராமத்திலுள்ள மக்களது தலாவருமானங்களே அவதானிக்கும்போது, சராசரியாக, குறிப்பிட்ட கிராம மக்கள் குறிப்பிட்ட கிராம மக்கள் குறிப்பிட்ட கிராம மக்கள் குறிப்பிட்ட தொகை வருமானத்தைக் கொண்டுள்ளார்கள் என்னும் முடிபு சுருக்கமாக எடுக்கப்படுகின்றது. அத்துடன் வேவ்வேறு பரம்பல்களேயும் இவை போன்ற மதிப்புகள் அவதானிப்பதான் ஓப்பிடமுடியும். இவைபற்றி, பின்னர் விரிவாக ஆராம்வோம்.

சில நிலேமைகளிற் பண்புகள் சில, குறிப்பிட்ட மதிப்புகளேப் பல தடவைகள் எடுக்கின்றமையையும் காணமுடிகின்றது. இவை போன்ற சந்தர்ப்பங்களில் மீடிறன் பரம்பல் அட்டவணேயில் மாறி களின் வகுப்புகளுக்குப் பதிலாக மாறியினது தனியான மதிப்பு களே காணப்படும். இவை கூட்டமாக்கப்படாத மீடிறன் பரம்பல் எனப்படும்.

உதாரணம் 2.1

குறிப்பிட்ட கிராமமொன்றீலுள்ள தொழிலாளர்களிலிருந்து எழுமாளுக எடுக்கப்பட்ட 25 பேரது தினசரி வருமானம் (ரூபா வில்) கீழே தரப்பட்டுள்ளது:

16, 15, 22, 13, 14 20, 19, 24, 20, 23, 17, 22, 19, 18, 21, 18, 20, 17, 16, 15, 20, 19, 17, 18, 23

இங்கு தொழிலாளர்களின் ஆகக் குறைந்த வருமானம் ரூபா 13/-உம் ஆகக் கூடிய வருமானம் ரூபா 24/-உம் ஆகும். அத் துடன் சில தொழிலாளர்கள் ஒரே வருமானத்தைப் பெறுவதை யும் காண்கின்ரேம். தொழிலாளர்களது தினசரி வருமானத்தை X என்ற மாறி குறிப்பின், X ஆனது இங்கு 13 இலிருந்து 24 வரை யுள்ள பெறுமானங்களேக் குறிப்பிட்ட மீடிறன்களுடன் எடுக்கின் றது. இதணே ஓர் அட்டவணேயிற் குறிப்போம்.

வருமானம் (ரூபாவில்) குடும்பங்களின் எண்ணிக்கை
X	the second of th
13	1.
14	1
15	2
16	2
17	3
18	3
19	3
20	3
21	2
22	2
23	2
24	The contract of the contract o
மொத்தம்	25

மேற்காட்டப்பட்ட அட்டவணேயானது கூட்டமாக்கப்படாத தருஷகளுக்கான மீடிறன் பரம்பல் அட்டவணே எனப்படும். மீடிறன் பரம்பல்கள் பற்றி விரிவாக ஆராயமுன்பாகப் பின் வரும் உதாரணத்தை எடுத்து நோக்குவோம்.

உதாரணம் 2.2

பல்கலேக்கழக வகுப்பொன்றிலுள்ள 50 மாணவர்கள் புள்ளி விபரவியற் பரீட்சையிற் பெற்ற புள்ளிகள் பின்வருமாறு:

77	65	83	55	58	60	33	85	52	69
63	48	74	77	67	71	78	35	50	35
85	54	59	88	45	- 80	43	55	91	57
73	39	68	67	75	41	65	98	48	89
65	94	65	54	88	93	42	67	66	73

மேலே தரப்பட்ட புள்ளிவ்பரங்கள் ஓர் எண்ணுருவில் ஒரு முகப்படுத்தப்படாத தரவுகளாகும். மேற்குறிப்பிட்ட வகுப்பிற்குப் புள்ளிவிபரவியல் விரிவுரைகள் உம்மால் எடுக்கப்பட்டதெனக் கொண்டு, போருளியல் விரிவுரையாளர், மாணவர்கள் புள்ளி விபரவியற் பரீட்சையிற் பெற்ற பெறுபேறுகஃனப்பற்றி விசாரிக் கும்போது, குறிப்பிட்ட ஒவ்வொரு மாணவனும் பெற்ற புள்ளி யிஃன நீர் கூறமுடியாது. எனவே, என்ன பதிலளிக்கப்படவேண் டுமெனக் கீழே அவதானிப்போம்.

மேலே தரப்பட்ட பச்சை எண் தரவுகளே ஏறு நிரையாகவோ அன்றி இறங்கு நிரையாகவோ ஒழுங்குபடுத்திப் பெறப்படும் ஒழுங்கு பந்தி (Array) எனப்படும். இவ்வொழுங்கிலிருக்கும் மிகப்பெரிய எண்ணிற்கும் மிகச் சிறிய எண்ணிற்குமிடையேயுள்ள வித் தியாசம் தரவின் வீச்சு எனப்படும். மேலே தரப்பட்ட புள்ளிவிபரவியற் பரீட்சைப் பெறுபேறுகளில், மாணவர்கள் பெற்ற ஆகக் கூடிய புள்ளி 98 ஆகவும், ஆகக் குறைந்த புள்ளி 33 ஆகவும் இருப் பதாலே தரவின் வீச்சு (98 — 33 =) 65 ஆகும். எனவே தரப்பட்ட தரவின்ப் பந்தி உருவினில் அமைப்போம்.

33	35	35	39	41	42	43	45	48	48
50	52	54	54	55	55	57	58	59	60
63	65	65	65	66	66	67	67	67	68
69	71	78	73	74	75	77	77	78	80
88	85	85	88	88	89	91	93	94	98

பரீட்சையில் மாணவர் 9—190 வரையுள்ள புள்ளிகூகாப் பெறக் கூடியதாக இருப்பூனும் தரப்பட்ட மாணவர்கள் புள்ளிவிபரவியற் பரீட்சையிற் பெற்ற ஆகக் குறைந்த புள்ளி 83 ஆகும். எனவே, நாம் இங்கு 30 இற்குக் குறைந்த புள்ளிகளேக் கவேனத்திற்கு எடுத் துக்கோள்ளைரமல் விடுவோம். இதனுல் தேவைப்படும் வகுப்புகள் மட்டுமே கவனத்திற் கொள்ளப்படும். தேவையற்ற வகுப்புகள் அட்டவணியிற் சேர்த்துக் கொள்ளப்படமாட்டா. தரப்பட்ட தழ வின் வீச்சு 65 ஆகையால் இவ்வீச்சிண் வேண்டிய வகுப்புகளாகப் பிரிக்கலாமெனினும், அவற்றின் எண்ணிக்கை அதிகமாக இருப் பின் அட்டவணப்படுத்தலின் நோக்கத்தின் அடையமுடியாது. அதாவது, தரவுகளேச் சுருக்கித் தெளிவாக விபரிப்பதே அட்டவ ணப்படுத்தலின் நோக்கமாகும். இதனுல், அவை பற்றிய முடிபு களே எடுப்பது சிக்கலாகக் காணப்படும். எனவே, நாம் தரப்பட்ட தரவிண், 10 என்னும் சம அளவுள்ள வகுப்பாயிடைகளேக் கொண்ட ஏழு வகுப்புகளாக வகுப்போம். பின்னர் ஒவ்வோரு வகுப்பையும் சார்ந்த தரவுகளின் எண்ணிக்கை அவதானிக்கப் பட்டு, அவை ஒரு குறிப்புத்தாளிலே கீழே காட்டப்பட்டவாறு பதியப்படும். (பொதுவாக அட்டவணேகளில் 7—15 வரையுள்ள வகுப்புகளே காணப்படும்.)

குறிப்புத்தான் (Tally Sheet)

ாளி (வகுப்பு) வரவுக் குறிகள்	மீடிறன்
30 39	11111	4
40 49	m1	6
50 59	IMM IIII	9
60 69	I HI HI II	12
70 — 79	I mu m	8
80 - 89	IMI I	7
90 — 99	11111	. 4
மொத்தம்		50

இங்கு தரவுகள் ஒவ்வொன்றுக எடுக்கப்பட்டு அது எவ்வகுப்பைச் சேர்ந்தது என்பதற்கு அறிகுறியாக, அவ்வகுப்பிற்கெதிராக ஒரு வரவுக்குறி அமைக்கப்படுகின்றது. ஒவ்வொரு 5 ஆவது வரவுக்குறியும் அதற்குமுன் தொடர்ந்து வந்த நாலு குறிகளுக்கும் குறுக்கே வரையப்படும். இவ்வாறு அட்டவணே அமைப்பதால் ஒவ்வொரு வகுப்பிற்குரிய எண்களே எளிதாகக் கணக்கிட்டு வகுப்பு மீடிறன்களேக் கணிக்கமுடிகின்றது.

மேற்காட்டப்பட்ட அட்டவணே அமைப்பதன் நோக்கம், மாணவர்கள் பெற்ற புள்ளிகள் பற்றிய விரிவான வீளக்கம் கொடுப்பதற்கேயாகும். இங்கு மாணவர்களின் தொகை குறை வாகக் காணப்படுவதால் அவர்கள் ஒவ்வொருவரும் பெற்ற புள்ளி கீள எடுப்பது இலகுவானதாகக் காணப்படுகின்றபோதிலும், அவர் களின் எண்ணிக்கை அதிகரிக்கும்போது உதாரணமாக, 1974 ஆம் ஆண்டு உயர்தரப் பொருளியற் பரீட்சையில் மாணவர்கள் பெற்ற புள்ளிகளே நோக்குவோமாளுல், அங்கு ஒவ்வொரு மாணவனும் பெற்ற புள்ளியை எடுத்துநோக்குதல் கடினமானதாகும். எனவே, நாம் ஒரு தொகுதி மீடிறன்களே, அவற்றுக்கொத்த வகுப்புகளு டன் கொண்ட ஒரு மீடிறன் அட்டவணேயை அமைப்பதன் மூலம் தரவை மேலும் தெளிவுபடுத்தலாம். மாணவர்கள் பெற்ற புள் ளிகளே ஒரு பின்னக எழுமாற்று மாறி X குறிக்கின்றதென்க. X இன் பரம்பல் பற்றிய புள்ளிவிபரவியற் பண்புகளேப் பின்னர் ஆராய்வோம்.

சம அளவுள்ள வகுப்பாயிடைகளேக் கொண்டு கூட்டமாக்கப் பட்ட தரவிற்கான மீடிறன் பரம்பல் அட்டவஃன

புள்ளி (வகுப்பு எல்ஃசைன்) X	மாணவர்களின் எண்ணிக்கை வகுப்பு மீடிறன் f
$30 - 39 (30 \le X \le 39)$	4
$40 - 49 (40 \le X \le 49)$	6
50 — 59 ,,	9
60 69 ,,	12
70 — 79	8
80 — 89	7
$90 - 99 (90 \le X \le 99)$	4
மாணவர்களின் மொத்த எண்ணிக்கை	50

இவ்வட்டவஃணயின் முதல் நிரலிற் புள்ளிகளேச் சம வகுப்பு களாகப் பிரித்து எழுதியுள்ளோம். ஒவ்வொரு வகுப்பினதும் வீச்சு 10. ஒவ்வொரு வகுப்பையும் சார்ந்த மாணவர்களின் எண் ணிக்கை இரண்டாம் நிரலில் இடம் பெற்றுள்ளது. இது வகுப்பு மீடிறன் எனப்படும். உதாரணமாக, 40 இற்கும் 49 இற்குமிடையே புள்ளிக்கோப் பெற்ற மாணவர்களின் எண்ணிக்கை 6. பேலும் இரண்டாம் நிரலின் கூட்டுத்தொகை மாணவர்களின் மொத்த எண்ணிக்கைக்குச் சமமாகக் கோணப்படும்.

மீடிறன் பரம்பூல அட்டவணேயில் அமைப்பதால், மாணவர் கள் பெற்ற புள்ளிகள் பற்றிய விபரம் தெளிவாக விளக்கப்படு கின்ற போதிலும் தனிப்பட்ட பெறுபேறுகள் (புள்ளி விபரங்கள்) பற்றிய தகவல்கள் இல்லாமற்போகின்றன. இங்கு தனிப்பட்ட புள்ளிகளின் மேல் அக்கறை காட்டப்படமாட்டாது. உதாரண மாக (50 — 59) என்ற வகுப்பைப் பொறுத்தவரையில் 50, 55, 59 என்ற புள்ளிகளெல்லாம் ஒரே மாதிரியான பங்கையே (நிறை

வகுப்பொன்றினது மிகக்கூடிய பெறுமானம் வகுப்பின் மேல் எல்லேயெனவும், மிகக் குறைந்த பெறுமானம் வகுப்பின் கீழ் எல்ஃயெனவம் வரையறுக்கப்படும். உதாரணமாக (30-39). (40-49) என்ற வகுப்புகளே நோக்கின், 30,40 என்பவை குறிப் பிட்ட வகுப்புகளின் கீழெல்லேகள் எனவும் 39, 49 என்பவை வகுப் புகளின் மேலெல்லேகள் எனவும் அழைக்கப்படும். வகுப்பொன்றின் மேல், கீழ் எல்ஃகளுக்கிடையேயுள்ள வித்தியாசம் வகுப்பினது வகுப்பாயிடையின் அளவு அல்லது பருமன் (Size of the Class interval) எனப்படும். மேலும் இவ்வகுப்பாயிடைகள் சம அளவள்ளவையாகக் காணப்படவேண்டிய அவசியமில்லே. அவை தரவுகளின் தன்மைகளுக்கேற்ப வித்தியாசமானவையாகக் காணப் படலாம். அத்துடன் வகுப்பாயிடைகள் ஒரு குறிப்பிட்ட அளவின தாக இருக்கவேண்டியதில்லே; அவை வசதிக்கேற்றவாறு மாறு படலாம். உதாரணமாகப் பரம்பலொன்றின் வகுப்புகள் (30—34), (35-39), (40-49), (50-62), என்றும் அமையலாம்.

2.3.1: வகுப்பு எல்லேகளுக்கான இடங்காணல் (LOCATION OF CLASS LIMITS)

மீடிறன் பரம்பலொன்றின் புள்ளிவிபர மதிப்புகள் சில வற்றை அறிவதற்குக் குறிப்பிட்ட மாறி எடுக்கும் பெறுமானங் கள் தேவைப்படுகின்றன. இங்கு நாம் மாறியினது வகுப்பிலுள்ள ஒரு பெறுமானத்தையே மாறியின் பெறுமானமாகக் கொள்கின்றேம். அதாவது, வகுட்பினது எப்பெறுமானத்தை மாறியின் பெறுமானமா சக் சொள்வது என்ற பிரச்சின் எழுகின்றது. பொதுவாக, வகுப் போன்றின் நடுப்புள்ளியே குறிப்பிட்ட வகுப்பிற்குரிய மாறியினது பெறுமானமாகக் கருதப்படும். வகுப்பின் நடுப்புள்ளியானது அதன் மேல், சீழ் எல்லேகளின் சராசரியினுற் பெறப்படும். எனவே வகுப்பின் மேல், கீழ் எல்லேகளது முக்கியத்துவம் இங்கு புரிகின் றது. அதாவது, இவற்றிற்கான இடங்காணல் முக்கியமானதா கும்

பொதுவாகப் பண்புகளேக் குறிக்கும் மாறிகள் பின்னக மாறி களாகவும், தொடர் மாறிகளாகவும் காணப்படலாம் என முன் னர் கூறிஞேம். இவ்விரு மாறிகளேக் கொண்ட மீடிறன் அட்ட வணேகளிலுள்ள வகுப்புகளின் எல்லேகளே வரையறுப்பதில் வேறு பாடுகள் காணப்படுகின்றன. மேற் கொடுக்கப்பட்ட உதாரணத் தில் மாணவர்கள் பெறும் புள்ளிகள் முடிவுள்ள பெறுமானங்களாக இருப்பதால் அது ஒரு பின்னக மாறியாகும். எனவே, இங்கு வகுப்பு எல்லேகளே வரையறுக்கும்போது, முறிப்புகள் காணப்பட லாம். அதாவது, (30 — 39), (40 — 49) என இரு வகுப்பை எழுதும்போது இங்கு மாறியானது முதலாம் வகுப்பில் 30 தொடக் கம் 39 வரையுள்ள பெறுமானங்களேயும், இரண்டாம் வகுப்பில் தொடர்ந்து 40 இலிருந்து 49 வரையுள்ள பெறுமானங்களேயும் பெறும்.

தொடர் மாறிகளேக் குறிக்கும் மீடிறன் வகுப்புகளே அமைக் கும்போது, மாறி எல்லாப் பெறுமானங்களேயும் எடுக்கவேண்டிய நில்லைமை காணப்படினும் அங்கும் முறிப்புகள் காணப்படுகின்றன. உதாரணமாக, (30 — 39.99), (40 — 49.99) என இரு வகுப்பு களே எழுதும்போது இங்கு முதலாம் வகுப்பில் மாறி 30 இலிருந்து 39.99 வரையுள்ள எல்லாப் பெறுமானங்களேயும் பெறும்; இரண் டாம் வகுப்பில் மாறி 40 இலிருந்தே பெறுமானங்களேப் பெறும். எனவே, 39 99 இற்கும் 40 இற்கும் இடைப்பட்ட பெறுமானங்கள் அட்டவணேயில் வரையறுக்கப்படாமற் போகின்றன. எனினும். வேறுவிதமாக வரையறுப்பது கடினமாகையால் இவ்வாறே எழுது வோம். சில வேளேகளில் அது (30 — 40), (40 — 50),... என இங்கு பின்னக வகையைப் போலல்லாது வு ் எழுதப்படலாம். மாறியானது முதலாம் வகுப்பில் 30 இலிருந்து 40 வரையுள்ள (ஆனுல் 40 என்ற பெறுமானத்தையல்ல) பெறுமானங்களேயும் இரண்டாம் வகுப்பில் 40 இலிருந்து 50 வரையுள்ள பெறுமானங் களேயும் (ஆணுல் 50 என்ற பெறுமானத்தையல்ல) கொள்ளும். இவ்வாறு எழுதப்படும்போது, நாம் அட்டவணேயை முறிவற்ற தாகவே கொள்ளல் வேண்டும்.

மேலும், பின்னக வகையில் (30 — 39) என்ற வகுப் பின் நடுப் பெறுமானம் $\frac{30+39}{2}=34.5$ எனவும் தொடர்ச்சி யுள்ள வகையில் (30 — 40) என்ற வகுப்பின் நடுப் பெறுமானம் $\frac{30+40}{2}=35$ எனவும் வரையறுக்கப்படும்.

எனவே, குறிப்பிட்ட மாறிபற்றிய ஒரு தொகுதி தரவுகள் தரப்படின் அதற்கான கூட்டமாக்கப்பட்ட மீடிறன் பரம்பல் அட்டவணேயை அமைப்பதற்கு முன்பாக மாணவர்கள் அம்மாறி எவ்வகையைச் சார்ந்த மாறியென அவதானித்தல் வேண்டும். பின்வரும் உதாரணத்தை நோக்குவோம்:

உதாரணம் 2.3

கம்பனி ஒன்றில் வேஃசெய்யும் 50 வேஃயாட்களின் வாராந்த ஊதியமானது கீழே தரப்பட்டுள்ளது. இதற்கான ஒரு மீடிறன் பரம்பல் அட்டவணேயை அமைக்க.

52	115	54	100	159	60	99	61	95
65	.81	79	85	70	72	90	75	63
80	69	85	70	105	90	75	75	75
110 ·	52	175	55	100	79	60	95	76
76	78	78	79	76	120	130	140	145
	65 80 110 ·	65 81 80 69 110 52	65 81 79 80 69 85 110 52 175	65 81 79 85 80 69 85 70 110 52 175 55	65 81 70 85 70 80 69 85 70 105 110 52 175 55 100	65 81 79 85 70 72 80 69 85 70 105 90 110 52 175 55 100 79	65 81 79 85 70 72 90 80 69 85 70 105 90 75 110 52 175 55 100 79 60	80 69 85 70 105 90 75 75 110 52 175 55 100 79 60 95

மேலே தரப்பட்ட தரவின் வீச்சு (175—50 =) 125 ஆகும். மேலும் தரவானது வேஃயோட்களின் வாராந்த ஊதியத்தைக் குறிப்பதால், இங்கு வார ஊதியத்தைக் குறிக்கும் மாறி X ஒரு தொடர் மளறியாகும். இங்கு நாம் தரப்பட்ட தரவுகளேச் சம அளவில்லாத வகுப்பாயிடைகளேக் கொண்ட வகுப்புகளாக வகுத்து அதின ஓர் அட்டவிணயில் அமைப்போம்.

சம அளவில்லாத வகுப்பாயிடைசளேக் கொண்டு கூட்டமாக்கப் பட்ட தரவிற்கான மீடிறன் பரம்பல் அட்டவணே

வாராந்த ஊதியம் X (வகுப்பு எல்லேகள்)	வேலேயாட்களின் எண்ணிக்கை f
$50 - 60 (50 \le X < 60)$	4
60 — 70 (60 ≤ X < 70)	8
70 — 80 ,,	15
80 — 100 ,,	10
100 — 120 ,,	6
120 — 150 ,,	4
$150 - 180 (150 \le X < 180)$	3
வேலேயாட்களின் மொத்த எண்ணிக்கை	50

2,3.21 தொடர்பு மீடிறன் வரம்பல் (RELATIVE FREQUENCY DISTRIBUTION)

ஒரு வகுப்பின் தொடர்பு மீடிறஞனது, அவ்வகுப்பு மீடிறனே, வகுப்புகளெல்லாவற்றினதும் மொத்த மீடிறனுற் பிரிக்க வருவதாகும். வழமையாக இவை சதவீதத்தினேயே உணர்த்தப்படுகின்றன. உதாரணமாக, மேலுள்ள மீடிறன் பரம்பல் அட்டவணேயில் (80 — 100) என்றே வகுப்பினது தொடர்பு மீடிறன் = $\frac{10}{50}$ = 20% ஆகும். அத்துடன் தொடர்பு மீடிறன் எல்லாவற்றினதும் கூட்டுத் தோகை 1 அல்லது 100% ஆகக் காணப்படும்.

தரவுகளின் வெவ்வேறு வகுப்புகளே, ஒத்த தொடர்பு மீடிறனு டன் கொண்ட ஓர் அட்டவணே தொடர்பு மீடிறன் அட்டவணே அல்லது தொடர்பு மீடிறன் பரப்பல் எனப்படும்.

உதாரணம் 2.4

உதாரணம் 2.2இலே கொடுக்கப்பட்ட தரவிற்கான தொடர்பு மீடிறன் பரம்பஸே அமைக்குக,

புள்ளி (வகுப்பு எல்ஃலைகள்)	வகுப்பு மீடிறன்	வகுப்புத் தொடர்பு மீடிறன் %
30 — 39	4	8
40 — 49	6	12
50 59	9	. 18
60 — 69	12	24
70 — 79	8	16
80 89	7	14
90 — 99	4	8
மொத்தம்	50	100

உதாரணம் 2.5

நாணயம் ஒன்று 5 முறை சுண்டப்படும்போது 3 தஃகள் பெறப் படின், பெறப்படும் விளேவுகளேக் கொண்ட தொடர்பு மீடிறன் அட்டவணே பின்வருமாறு:

ରୀଆ ଧ୍ୟ	மீடிறன் -	தொடர்பு மீடிறன்
தல்	3	3/5 = 0.6
у	2	2/5 = 0.4
மொத்தம்	5	1:0

குறிப்பு:

குறிப்பிட்ட ஒரு பரிசோதனோ வ தரம் நடைபெறுகின்றத்தன்க. அப்பரிசோதனேயின் போது யாதுமொரு வினேவு m முறை நேர்ந் தால், குறிப்பிட்ட வினேவினது தொடர்பு மீடிறன்—ஆகும்.

முயல்வுகளின் எண்ணிக்கை (n) அதிகரீக்குப்போது இப் பெறு மானம் ^m ஆனது ஒரு நிஃலயான பெறுமானத்தை அணுகுவதைக் காணமுடிகின்றது. அதாவது, n ஆனது அதிகரிக்க, தொடர்பு மீடிறன் ஒரு புள்ளிவிபர ஒழுங்கினக் காட்டுகின்றது. இது, அவ் விளேவிற்குரிய நிகழ்தகவு எனப்படும். இது பற்றிப் பின்னர் விரி வாக ஆராய்சீவாம்.

2.3.3: தரட்டு மீடிறன் பரப்பல் (CUMULATIVE FREQUENCY DISTRIBUTION)

உதாரணம் 2.2 இலே கொடுக்கப்பட்ட 50 மாணவர்கள் புள்ளி விபரனியற் பரீட்சையிற் பெற்ற புள்ளிகளே மீண்டும் அவதானிப் போம். மேற்படி பரீட்சையில் எத்தனே மாணவர்கள் 70இலும் கூடிய புள்ளிகளேப் பெற்றுர்கள்? எத்தனே மாணவர்கள் 40இலும் குறைந்த புள்ளிகள்ப் பெற்றனர்? இவை போன்ற விஞைக்களிலெல் லாம் புள்ளிகளேக் குறிக்கும் மாறியினது குறிப்பிட்ட பெறுமானத் திலும் குறைந்த அல்லது கூடிய மீடிறேன்களே வேண்டப்படுகின்றன.

தரப்பட்ட ஒரு வகுப்பின் மேலெல்லேயிலும் குறைந்த எல்லாப் பெறுமானங்களினதும் மீடிறன்களின் கூட்டுத்தொகை, அவ்வகுப்பு உட்பட அவ்வகுப்பு உரையுள்ள நிரட்டு மீடிறன் எனப்படும். திரட்டு மீடிறன் அட்டவணேயை அமைக்க முன்பாக, வகுப்பினது எந்த எல்லே, பிரிக்கும் பிரமாணமாக (Criteria) பயன்படுத்தப்படுகின்றது என்பது தீர்மானிக்கப்படல் வேண்டும்.

உதாரணமாக, உதாரணம் 2.4 இலே கொடுக்கப்பட்ட அட்ட வணேயில் (50 — 59) என்ற வகுப்பின் மேலெல்லே உட்பட அவ் வகுப்பு வரையுள்ள மீடிறன்களின் எண்ணிக்கை (4+6+9=)19 ஆகும். அதாவது, 19 மாணவர்கள் 59 புள்ளியிலும் குறைந்த புள் ளிகளேயோ அல்லது 59 புள்ளிக்குச் சமமான புள்ளிகளேயோ பெற் றுள்ளனர்.

உதாரணம் 2.6 உதாரணம் 2.6 இலே கொடுக்கப்பட்ட மீடிறன் பரம்பலுக்

கான தேரட்டு மீடிறன் பரம்பல் அட்டவணே:

வகுப்பு	வகுப்பு மீடிறன்	திரட்டு மேலெல்லேக்குச் சமமானஅல்லது குறைவான	மீடி நன் மேலெல்லேயிலும் பெரிதான
30 - 59	1 4	4	46
40 49	6	10	40
50 59	9	19	31
60 69	12	31	19
70 79	8	39	11
80 - 89	7	46	4
90 99	4	50	0

3ஆம் நிரலில் வகுப்புகளின் மேலெல்லேக்குச் சமமான அல்லது குறைவான புள்ளிகளேக் கொண்ட மாணவர்களின் திரட்டு எண் ணி க்கைகளும், 4ம் நிரலில் வகுப்புகளின் மேலெல்ஃவிலும் பெரிதான புள்ளிகளேப் பெற்ற மாணவர்களின் திரட்டு எண்ணிக்கைகளும் காணப்படுகின்றன, மொத்த மீடிறனின் சதவீதமாக உணர்த்தப் படும் திரட்டு மீடிறனுனது திரட்டு மீடிறன் சதவீதம் எனப்படும். திரட்டு மீடிறனுக்குப் பதிலாக, திரட்டு மீடிறன் சதவீதத்தைப் பயன்படுத்துவோமாளுல் திரட்டு மீடிறன் சதவீத அட்டவணே பெறப்படும்.

2.4: மீடிறன் பரம்பல்களின் வரைபு வகைக்குறிப்பு (GRAPHICAL REPRESENTATION OF THE FREQUENCY DISTRIBUTIONS)

மேற்காட்டிய மீடிறன் பரம்பல் அட்டவணேகள், கொடுக்கப் பட்ட புள்ளிவிபரங்களேச் சுருக்கமாக வெளியிடுவதற்கும், அவை பற்றிய புள்ளிவிபர ஆய்வுகளுக்குத் தேவையான அடிப்படையை உருவாக்குவதற்கும் பயன்படுகின்றன. மேலும் அவற்றை அட்ட வணேகளாக அமைப்பதுமல்லாமல், அவற்றை வரைபுகளாகவும் அமைக்கலாம். இதனுல், மீடிறன் பரம்பலின் சிறப்புப் பண்புகள் தெளிவாக வெளிக்காட்டப்படும்.

எந்தவொரு மீடிறன் பரம்பஃபியம் பின்வரும் வரைபுகள் மூலம் குறிக்க**லாம்:**

- 1. இழைவரையம்
- 2. மீடிறன் பல்கோணியும், மீடிறன் வஃாயியும்
- 8. திரட்டு மீடிறன் வள்யி

2.4.1: இழைவரையம் (HISTOGRAM)

பல செவ்வகங்களே ஒன்றுக்கொன்று அருகிற் கொண்டுள்ள ஒரு செவ்வகக் கூட்டம் ஓர் இழைவரையம் எனப்படும். இச்செவ் வகங்கள் பின்வரும் சிறப்பியசுபுகளேக் கொண்டிருக்கும்:

- (i) அச்செவ்வகங்களின் அடிகள் X அச்சிலும், அடிகளின் மையங்கள் ஒத்த வகுப்புகளின் நடுப் பெறுமானத்திலும் ஓர் அடியின் நீளம் ஒத்த வகுப்பாயிடையின் அளவிற் குச் சமளுயுமிருக்கும்.
- (ii) செவ்வகங்களின் பரப்பு ஒத்த வகுப்பு மீடிறனுக்கு நேர் விகிதசமளுய்க் காணப்படும். எனவே, இழைவரையத்தி லுள் அடங்கியிருக்கும் பரப்பு, பரம்பலின் மொத்த மீடி.

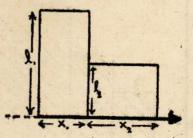
றனுக்குச் சமனுகவோ அன்றி நேர்விகி**த சம**னுகவோ இருக்கும்.

(அ) வகுப்பாயிடைகளெல்லாம் ஓரே அளவினதாகவிருப் பின் செவ்வகங்களின் உயரங்கள் ஒத்த வகுப்பு மீடி றனுக்குச் சமனுனதாக இருக்கும். எனவே, மீடிறனே எண்ணளவிற் செவ்வகத்தின் உயரத்துக்குச் சமனுக எடுப்பது வழக்கம்.

> வகுப்பாயிடைகளின் அளவுகள் ஓரலாகக் காணப் பட்டு, உயரங்கள் f₁, f_N ஆக இருப்பின், இழை வரையத்தின் பரப்பு 1.f₁ + ... + 1.f_N = f₁ + f₂ + ... + f_N = N (மொத்த மீடிறன்) ஆகும்.

(ஆ) வகுப்பாயிடைகளின் அளவுகள் சமனில்லா இருப்பின் செவ்வகங்களின் உயரங்கள் ஒத்த வகுப்பு மீடி றனதும் அதன் வகுப்பாயிடையின் அளளினதும் விகிதத்துக்கு (Ratio) நேர்விகிதசடினுய்க் காணப்ப டும். ஏனெனில்,

X₁ , X₂ என்பவற்றை வகுப் பாயிடையளவுகளாகவும் f₁ , f₂ என்பவற்றை வகுப்புகளே நோக் பிடிறன்களாகவும் கொண்ட இரு வகுப்புகளே நோக் குவோம். இவ்வகுப்புகளே இழைவரையமாக வரை யும்போது, இவற்றைக் குறிக்கும் செவ்வகங்களின் உயரங்கள் l₁ , l₂ என்க. வரைவீலைக்கணத்தால் முதலாம் வகுப்புக்குரிய செவ்வகத்தின் பரப்பு l₁ X₁ \alpha f₁ , இரண்டாம் வகுப்புக்குரிய செவ்வகத்தின் பரப்பு வகத்தின் பரப்பு l₂X₂ \alpha f₂ . எனவே,


$$\frac{l_1 \times l}{l_2 \times 2} = \frac{f_1}{f_2}$$

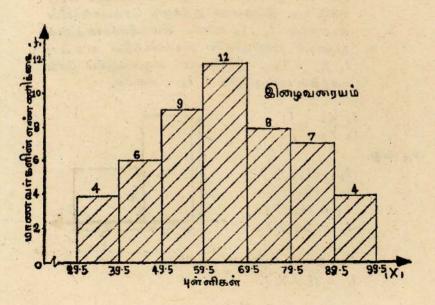
அதாவது,

$$\frac{l_1}{l_2} = \frac{(f_1/X_1)}{(f_2/X_2)}$$

$$l_1 \propto (f_1/X_1)$$

$$l_2 \propto (f_2/X_1)$$

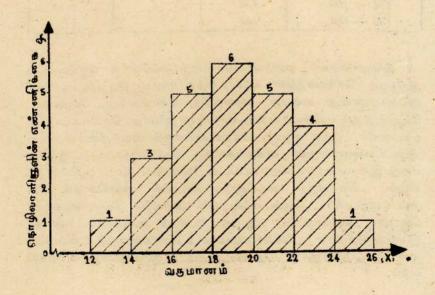
பொதுவாக i ஆவது வகுப்பிற்கு, $l_i \propto (f_i / X_i)$.


(அ) சம அளவுள்ள வகுப்பாயிடைகளேக் கொண்டு கூட்டமாச்கப் பட்ட தரவுகளேயுடைய மிடிறன் பரம்பலின் இழைவரையும்

உதாரணம் 2, 7

உதாரணம் 2. 2 இற்கான இழைவரையத்தை வரைக.

மீடிறன் பரம்பல் அட்டவணே

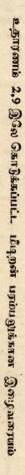

புள்ளி X (வகுப்பு எல்ஃலகள்)	வகுப்பின் நடுப் பெறுமானம்	ு குப்பு மீடிற ் f
30 39	24.5	4
40 49	44.5	6
50 59	54.5	9
60 69	64.5	12
70 79	71.5	8
80 89	84 5	7
90 99	91.5	4

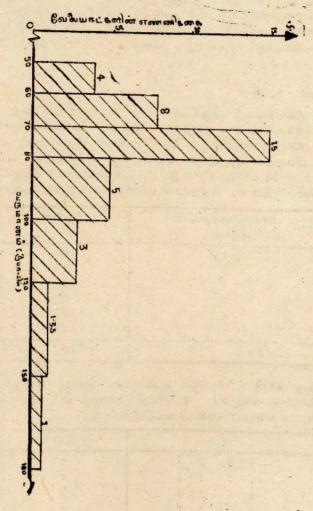
உதாரணம் 2.1 இனே ஓர் இழைவரையத்தில் அமைக்குக.

கொடுக்கப்பட்ட குடும்பங்களது வாராந்த வருமானத்தைக் குறிக்கின்ற தொடர் மாறியை, ரூபா 2/- வகுப்பாயிடையளவுக கோக் கொண்டுள்ள ஒரு மீடிறன் அட்டவணேயில் அமைப்போம்.

வருமானம் X (ரூடா) (வகுப்பு எல்லேகள்	வகுப்பின் நடுப் பெறுமானம்	வகுப்பு மீடிற ன் f
12-14 (125 X < 14)	13	1
14 - 16 (14≤ X < 16)	15	3
16 — 18 ,,	17	5
18 — 20 ,,	19	6
20 — 22 ,,	21	5
21 - 24 ,,	23	4
24 - 26 (24 < X < 26)	25	1

(ஆ) சம அளவில்லாத வகுப் ாயிடைகளேக் கொண்டு கூட்டமாக் கப்பட்ட தரவுகளேயுடைய மீடிறன் பரம்பலின் இழைவரையும்


உதாரணம் 2.9


உதாரணம் 2.3 இணே எடுத்துக்கொள்க. இங்கு தரவுகள் சம அளவில்லாத வகுப்பாயிடைகளேக்கொண்டு கூட்டமாக்கப்பட் டுள்ளன. இதற்கான இழைவரையம் எவ்வாறு வரையப்படுகின் றதேன அவதானிப்போம்.

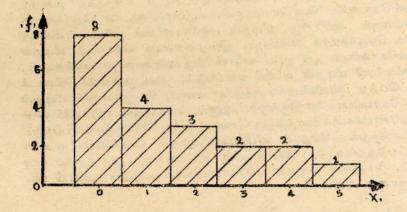
மீடிறன் பரப்பல் அட்டவணே

ஊதியம் (ரூபாவில்) (வகுப்பு எல்ஸேகள்)	வகுப்பின் நடுப்பெறு மானம்	வகுப்பு மீடிறன்	மீடிறன் அடர்த்தி
50 — 60	55	4	4
60 — 70	65	8	8
70 80	75	15	15
80 — 100	90	10	5
100 120	110	6	3
120 — 150	135	4	1.33
150 180	165	3	1

இழைவரையம் வரையப்படும்போது ஒவ்வொரு வகுப்பையும் குறிக்கும் செவ்வகத்தின் பரப்பு ஒத்த வகுப்பு மீடிறனுக்கு நேர் விகிதசமமானது என்பது கவனத்திற் கொள்ளப்பட வேண்டும். மேலும் வகுப்பாயிடைகள் சம அளவில்லாதபோது, செவ்வகங்களின் உயரங்கள், ஒத்த வகுப்பு மீடிறன்களினதும் அவற்றின் வகுப்பா யிடையளவுகளினதும் விகிதங்களிற்கு நேர்விகிதசமனுக இருச்கு மாறு இழைவரையம் வரையப்படல் வேண்டும். ஆஞல் குறிப்பிட்ட வகுப்பு மீடிறனதும் அவ்வகுப்பாயிடையின் அளவினதும் விகி தம் (குறிப்பிட்ட வகுப்பாயிடையின் அளவினதும் விகி தம் (குறிப்பிட்ட வகுப்பாயிடையின் அளவின நியம அலகாகக் கொண்டு) அவ்வகுப்பின் மீடிறன் அடர்த்தி எனப்படும். எனவே. இழைவரையமானது, செவ்வகங்களின் உயரங்கள் ஒத்த வகுப்புமீடி றன் அடர்த்திகளுக்கு நேர்விகிதசமமாக இருக்குமாறு வரையப் படும்.

(இ) கூட்டமாக்கப்படாத தரவுகளேயுடைய மீடிறன் பரம்பலின் இஎழுவகரயம்

இழைவரையமானது, கூட்டமாக்கப்பட்ட பரம்பல் களுக்கு மட்டுமே வரையமுடியுமெனினும் கூட்டமாக்கப்படாத தரவுகளுக்கும் இழைவரையத்தை வரையலாம். மாறி கொள்ளும் பெறு மானங்களேக் குறிப்பிட்ட ஆயிடைகளுள் அமைப்பதன் மூலம் இதனே அமைக்க முடிகின்றது. பின்வரும் உதாரணத்தை நோக்கு கோம்.

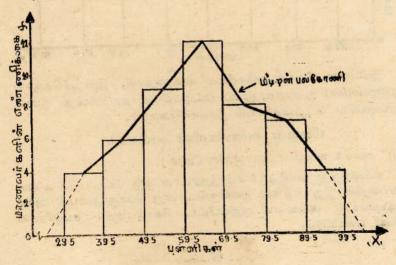

உதாரணம் 2.10

புள்ளிவிபரவியற் புத்தகமொன்றின் யாதாயினும் ஒரு பக்கத் தில் ஆகக்கூடியதாய் 5 எழுத்துப் பிழைகள் மட்டுமே காணமுடி யும். அப்புத்தகத்திலிருந்து 20 பக்கங்கள் எழுமாருய் எடுக்கப் பட்டுப் பிழைகள் அவதானிக்கப்பட்டன. பிழைகளின் எண்ணிக் கையைக் குறிக்கும் மாறியினது மீடிறன் பரம்பல் கீழே கொடுக் கப்பட்டுள்ளதெனின், அதற்கான இழைவரையத்தை வரைக.

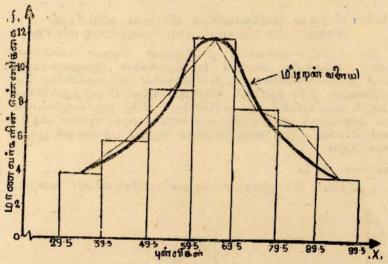
அச்சுப்பிழைகளின் எண்ணிக்கை X	மீடிறன் f
0	8
1	4
2	3
3	2
4	2
5	- 1
மொத்தம்	20

இங்கு மாறி X எடுக்கும் குறிப்பிட்ட பெறுமானங்கள், நடுப் புள்ளியில் அமையுமாறு 1 அலகு அளவுள்ள ஆயிடையைக் கொண்ட வகுப்புகள் அமைக்கப்படுகின்றன.

வகுப்பு	மீடிறன்
-0.5-0.5	8
0 · 5 — 1 · 5	4
1 · 5 — 2 · 5	3
2 · 5 — 3 · 5	2
3 · 5 — 4 · 5	2
4 · 5 - 5 · 5	1
மொத்தம்	20



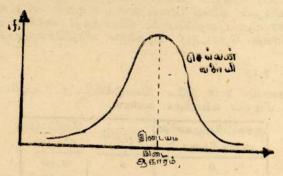
2.4.2: மீடிறன் பல்கோணியும் மீடிறன் வளேயியும் (FREQUENCY POLYGON AND FREQUENCY CURVE)


ஒரு கூட்டமாக்கப்பட்ட தரவிற்கான மீடிறன் பல்கோணி யானது, அத்தரவின் மீடிறன் பரம்பலுக்கான இழைவரையத்தி லுள்ள செவ்வகங்களினது மேற்பக்கங்களின் நடுப்புள்ளிகளே நேர் கோடுகளால் இணத்துப் பெறப்படும். அத்துடன் எடுத்துக் கொள் எப்படும் வகுப்புகளில் கீழ் வகுப்பிற்கும் கீழே ஒரு வகுப்பையும், மேல் வகுப்பிற்கு அடுத்ததாக ஒரு வகுப்பையும், பூச்சிய மீடிறன் களேக் கொண்ட இரு வகுப்புகளாகக் கருதிப் பல்கோணி பூர்த்தி செய்யப்படும்.

உதாரணம் 2.11

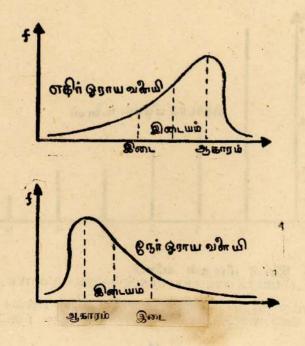
உதாரணம் 2.2 இற்கான மீடிறன் பல்கோணியை வரைக.

வகுப்பாயிடைகளின் அளவுகளேச் சிறிது சிறிதாகக் குறைத் துக் கொண்டே போவோமாஞல், வகுப்பாயிடைகள் நெருக்கமாக அமையும். அப்போது, மீடிறன் பல்கோணியின் முண்ப்புள்ளிகளும் மிக நெருக்கமாக அமையும். இம்முறையைக் கொண்டு மீடிறன் பல்கோணியை ஓர் ஒப்ப வளேயியிற்கு அண்ணளவுப் படுத்தலாம். இவ்வளேயி மீடிறன் வளயி எனப்படும். நடைமுறையில், கிடைக் கப்பெற்ற புள்ளிவிபரங்களுக்குரிய வரைபு பெரும்பாலும் மீடிறன் பல்கோணியாகவே இருக்கும். ஆஞல், கணக்கியல் ஆராய்ச்சிகளில் பல்கோணிகளுக்கொத்த ஒரு செவ்வன் வளையியினே (Normal curve)ப் பொருத்துவதாலேதான் விபரங்களைத்தும் கணக்கியல் முறைக் குட்படுத்தப்பட்டு, செய்திகளின் உட்கருத்தை உய்த்தறிய முடி யும். மேலுள்ள மீடிறன் பல்கோணிக்கான மீடிறன் வளேயி பின் வருமாறு அமையும்.



இவ்வாறு மீடிறன் வளேயியை வரைவதால், இடைச்செருகல் (Interpolation) மூலமாக, மூலப் பட்டியலிலே தரப்படாத இடை மதிப்புகளின் மீடிறன்களேயும் தீர்மானிக்கலாம்.

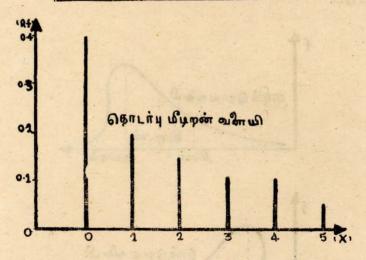
மீடிறன் வளேயிகளின் வகைகள்:


(அ) சமச்சிர் வளேயி (Symmetric Curve)

நிலேக்குத்து அச்சிற்குச் சமாந்தரமான ஒரு கோடுபற்றி வள்யி யொன்றின் இரு பாதிகள் ஒன்ருேடொன்று பொருந்தும்படி மடிக்க முடியுமாயின் அவ்வளேயி குறிப்பிட்ட கோடுபற்றிச் சமுச்சீரான வளேயி எனப்படும். செவ்வன் வளேயி இதற்கொரு முக்கியமான எடுத்துக்காட் டாகும்.

(ஆ) ஓராய வளேயி (Skew Curve)

ஒரு வஃளயி சமச்சீரற்றதாகவிருப்பின் அது ஓராய வஃளயி எனப்படும். ஓர் ஓராய வஃளயி இடப்பக்கம் ஓராயமாகக் காணப் படின் அது எதிர் ஓராய வஃளயி எனவும், வலப்பக்கம் ஓராயமான தாகக் காணப்படின் அது நேர் ஓராய வஃளயி எனவும் அழைக் கப்படும்.


தொடர்பு மீடிறன் வளேயி (Relative Frequency Curve)

தொடர்பு மீடிறன் அட்டவணேக்குரிய இழைவரையம், பல் கோணி, மீடிறன் வளேயி போன்றவை, மீடிறன் அட்டவணே ஒன் றிற்கு வரையப்பட்டதைப்போல், நிலேக்குத்து அச்சில் மீடிறனுக் குப் பதிலாகத் தொடர்பு மீடிறனேப் பிரதிசெய்வதாற் பெறப் படும்.

உதாரணம் 2.12

உதாரணம் 2.10 இலே கொடுக்கப்பட்ட பரம்பலுக்காண தொடர்பு மீடிறன் வீளயியை வரைக.

அச்சுப்பிழைகளின் எண்ணிக்கை X	மீடிறன்	தொடர்பு 1 மீடிறன்
0	8	0.40
1	4	0.20
2	3	0.15
3	2	0.10
4	2	0.10
5	1	0.05
மொத்தம்	20	1.00

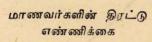
2.4.3: திரட்டு மீடிறன் வளேயி (CUMULATIVE FREQUENCY CURVE OR OGIVE)

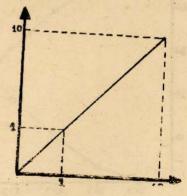
திரட்டு மீடிறன் பரம்பல் அமைக்கப்பட்ட பின்னர் வகுப்பு களின் மேல் எல்ஃயை அல்லது கீழ் எல்ஃயை (அட்டவஃண அமைக்கப்படும்போது எடுத்துக்கொண்டதை) X ஆள்கூருகவும், அவ்வெல்ஸேகளுக்கு ஒத்த திரட்டு மீடிறன்களே Y ஆள்குருகவும் கொண்டு பதியப்படும் புள்ளிகளினூடாகச் செல்லும் விளேயி திரட்டு மீடிறன் வளேயி எனப்படும்.

உதூரணம் 2.13

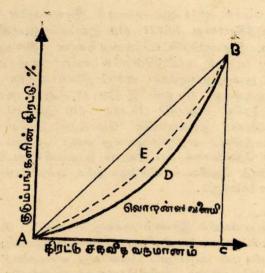
உதாரணம் 2.6 இலே கொடுக்கப்பட்ட திரட்டு மீடிறன் பரம்பலுக்கான வளேயியினே வரைக.

		திரட்டு மீடிறன்		
வகுப்பு	வகுப்பு மீடிறன்	மேலெல்ஃக்குச் சமமான அல்லது குறைவான	மேலெல்லேயிலும் பெரிதான	
30 — 39	4	4	46	
40 - 49,	6	10	40	
50 - 59	9	19	31	
60 — 69	12	31	19	
70 — 79	8	39	11	
60 - 89	7	46	4	
90 — 99	4	50	0	


வஃாயி (1) ஆனது வகுப்புகளின் மேலெல்லேக்குச் சமமான அல்லது குறைவான புள்ளிகளுக்குரிய மீடிறன்களேக்கொண்டு வரை யப்பட்ட திரட்டு மீடிறன் வஃாயியையும், வஃாயி (2) ஆனது வகுப்புகளின் மேலெல்ஃயிலும் பெரிதான புள்ளிகளுக்குரிய மீடி றன்களேக்கொண்டு வரையப்பட்ட திரட்டு மீடிறன் வஃாயியையும் குறிக்கின்றது.


Y அச்சில் திரட்டு மீடிறனுக்குப் பதிலாக, திரட்டு மீடிறன் சதவீதத்தை உபயோகிப்பின் திரட்டு மீடிறன் சதவீத வஃாயி பெறப்படும். இங்கு தரவுகள் சீரான நியமத்திற்குச் செப்பமாக் கப்படுவதால் வெவ்வேறு மீடிறன் பரம்பல்களே ஒப்பிடவும் இது உதவியாயிருக்கும்.

லொறன்ஸ் வளேயி (Lorenz Curve)


தி ரட்டு மீ டி றன் வகோயியொன்றின் எடுத்துக்காட்டாக லொறன்ஸ் வகோயியை ஆராய்வோம். மாறியொன்று ஏற்கும் மதிப்புகளின் திரட்டு சதவீதங்களே கிடை அச்சிலும், அவற்றிற்கு ஒத்த மீடிறன்களின் திரட்டு சதவீதங்களே நிலேக்குத்து அச்சிலும் கொண்டு வரையப்படும் வளேயி லொறன்ஸ் வளேயி எனப்படும். அதாவது, அங்கு இரு அச்சுகளிலும் திரட்டு எண்ணிக்கையே எடுத்துக்கொள்ளப்படுகின்றது. லொறன்ஸ் வளேயியைப் பயன்படுத் தித் திரட்டு மீடிறன் பரம்பல்களே வெவ்வேறு சமயங்களில் ஒப் பிடவும், மக்களிடையே வருமானம் எவ்வாறு பகிர்ந்து காணப் படுகின்றது என்பதனே அறியவும், வெவ்வேறு மாறிகள் ஏற்கும் மதிப்புகளே ஒப்பிட்டுப் பார்க்கவும் முடிகின்றது.

உதாரணமாக, வகுப்பொன்றிலுள்ள 10 மாணவர்கள் ஒவ் வொருவரிடமும் ஒவ்வொரு ரூபாய் இருக்கின்றதாகக் கொள்க. ரூபாய்களின் திரட்டு எண்ணிக்கையை கிடை அச்சிலும், மாண வர்களது திரட்டு எண்ணிக்கையை நிஃக்குத்து அச்சிலும்கொண்டு வரையப்படும் வளேயி லொறன்ஸ் வளேயி ஆகும்.

ருபாய்களின் திரட்டு எண்ணிக்கை

மேலுள்ள படத்திலே திரட்டு சதவீத வருமானம் கிடை அச்சிலும் குடும்பங்களின் திரட்டு சதவீதம் நிலேக்குத்து அச்சிலும் பதியப்பட்டுள்ளன. வளயி AB ஆனது, வருமானம் எல்லோரிடையும் சமமாகப் பங்கிடப்பட்டுள்ளதையும், வளயி ACB ஆனது, வருமானம் முற்ருகச் சமமாகப் பங்கிடப்படாமலிருப்பதையும் காட்டுகின்றது. வழமையாக லொறன்ஸ் வளயி ADB போலக் காணப்படும். மக்களின் வருமானத்தின்மேல் வரிவீதிக்கப்படின் லொறன்ஸ் வீளயி AEB ஆகக் காணப்படும்.

2.5: மீடிறன் பரம்பல்களின் ஒப்பீடு (COMPARISON OF FREQUENCY DISTRIBUTIONS)

புள்ளிவிபரங்களிடையே காணப்படும் பொதுவான போக்கு களேயும், சார்புத்தன்மைகளேயும் வெளிக்காட்ட வரைபுகளும் வரிப்படங்களும் உதவுகின்றபோதிலும், பொதுவான போக்கை யும், சார்புத்தன்மையையும் வரையறுத்து அளந்துகூற இவற்றி ஞல் முடியாது. அவற்றைத் திட்பமாக அளந்து கூறுவதற்குக் கணிப்பு முறையையே கையாளல் வேண்டும். இதன்மூலம் அட்ட வணேகளிலடங்கிய முக்கிய கருத்துகளே ஒப்பிட்டுப் பார்க்க முடிகின்றது. ஒன்றி எண்ணிலிருந்து நாம் எவ்வித பொதுவான முடிபையும் பெறமுடியாது. அதனே வேறு எண்களுடன் ஒப்பிடும் போதுதான் அது உயிர்பேறுகின்றது.

உதாரணமாக, 1974 ஆம் ஆண்டில் இலங்கையின் மொத்தத் தேசிய உற்பத்தியானது 10,731 (10 இலட்சம் ரூபாவில்) எனக் சுறும்போது, இது குறிப்பிட்ட ஆண்டிற்கான மொத்தத் தேசிய உற்பத்தியை மட்டும் காட்டுகின்றதே தவிர, அது அதி கரி த் துள்ளதோ, குறைந்துள்ளதோ, அன்றி நிஃலயானதாக உள்ளதோ என்று கூறமுடியாது. மேலும் இதனே 1973 ஆம் ஆண்டிற்கான மொத்தத் தேசிய உற்பத்தி 10,383 (10 இலட்சம் ரூபாவில்) உடன் ஒப்பிடின், இலங்கையின் மொத்தத் தேசிய உற்பத்தி 3480 இலட்சத்தினல் அதிகரித்துள்ளது எனக் கூறலாம். ஒப்பிட்டு முறைகளேத் தெளிவாகக் காட்டுவதும் தரவுகளினிடையே உள்ள தொடர்புகளேத் தெளிவாக விளக்குவதுமே புள்ளியியல் ஆய்வின் முக்கிய நோக்கமாகும்.

பள்ளிவிபரவியலில் இரண்டு அல்லது மேற்பட்ட மீடிறன் பரம் பல்களே ஒப்பிட்டுப் பார்க்கவேண்டிய அவசியம் காணப்படுகின்றது. ஓவ்வொரு மீடிறன் பரம்பலும் வெவ்வேறு வகைகளேச் சார்ந்தன வாகவும், ஒவ்வொன்றும் தனிவிதிகளுக்குக் கட்டுப்படுவனவாகவும் இருப்பின் இப்பரம்பல்களே எல்லாம் ஆராய்வதும் விபரிப்பதும் கழனமானதாகும். ஆணுல் பல்வேறு துறைகளில் சேகரிக்கப்பட்ட விபரங்களே மீடிறன் பரம்பல்களாகத் தொகுக்கும்போது அவற் றிற்கிடையே சில பொதுப் பண்புகள் காணப்படுகின்றன. அத் துடன் அவை சில பொது விதிகட்குக் கட்டுப்படுவதையும் காண முடிகின்றது. எனவே ஒரு துறையிற் பெற்ற அனுபவம், மற்றைய துறைகளுக்கும் வழிகாட்ட உதவுகின்றது. இவ்வாறு வெவ்வேறு துறைகளிடையே ஒருமைப்பாடு காணப்படுகின்றமையால், அறி வியல் ஆராய்ச்சிகளிற் பல்வேறு துறைகளிலிருந்து கொள்ளப்படும் விபாங்களேயெல்லாம் ஒரு பொதுமையான முறையினுல் படுத்தவும், ஆராயவும், ஒப்புநோக்கவும் முடிகின்றது. பரம்பல்களே விபரிப்பதற்கு ஒரு பொதுமையான முறையை மேற்கொள்ள, செவ்வன் வளேயியின் அமைப்பும் அதன் பண்பு களுமே முக்கிய சான்றுகும். இதுபற்றி, பரம்பல்கள் பற்றிய அத்தி யாயத்தில் விரிவாக ஆராய்வோம்.

சேகரிக்கப்பட்ட புள்ளிவிபரங்கள் வகுப்பாக்கப்பட்டு, அட்ட வணப்படுத்தப்படு வதன்மூலம் அறிமுகப்படுத்தப்படுகின்றன. அட்டவணேயை நோக்குவதன்மூலம் தரவுகள் பற்றிய தகவல் கஃப் புரிந்து கொள்ளுதல் இலகுவானதொன்றல்ல. அட்டவணேயி லுள்ள எண்களின் அடிப்படையிலிருந்து எவ்வித முடிபையும் எடுக்க முடியாது. அத்துடன் வெவ்வேறு பரம்பல்களே ஒப்பிடுவதந்கு அவற்றிற்குரிய மீடிறன் அட்டவணேகள் பொருத்தமானவையல்ல. எனவே. சேகரிக்கட்பட்ட தரவுகளே மேலும் இலகுவாக்க வேண் டியதேவை காணப்படுகின்றது. தரப்பட்ட தரவுகளிலிருந்து விகி தங்கள், வீதாசாரங்கள், சராசரிகள் போன்ற பெறுதிகளேக் கணிப் பதன்மூலம் தரவுகளீத் திட்பமாக விபரிக்கமுடிகின்றது. விகி தங்கள், வீதாசாரங்கள் போன்றவை புள்ளியியற் பெறுதிகள் (Statistical Derivatives) எனப்படும். இவையாவும் அட்டவணேயி லுள்ள தரவுகளிலிருந்தே கணிக்கப்படுகின்றன. இவை இரண்டு அல்லது மேற்பட்ட தரவுகளே இண்ப்பதன்மூலம் பேறப்படுகின்றன. மேலும் இவை கணிப்பதால் மட்டும் பெறப்படுகின்றனவே தவிர, ஆரம்பத் தரவுகளேப்போல் நேரடியாகப் பெறப்படுவதில்லே.

புள்ளியியற் பெறுதிகள் எளியவையாயும், கிக்கலானவையாயும் காணப்படுகின்றன. விகிதம், வீதாசாரம் முதலியன எளிய பெறுதிக ளெனவும், சராசரி, பிரிகை அளவைகள் முதலியன சிக்கலான பெறுதிகளெனவும் அழைக்கப்படும். புள்ளியியற் பெறுதிகள் பல் வேறு தேவைகளேப் பூர்த்திசெய்வதுடன், புள்ளியியல் ஆய்விற்கு மிகவும் உபயோகமானவையாகும்.

கொடுக்கப்பட்ட பரம்பலொன்றைப் பிறவற்றிலிருந்து எவ் வாறு வேறுபடுத்தி விபரிப்பது என்பதணேத் தொடர்ந்து அவதா னிப்போம். பொதுவாக, தரப்பட்ட பரம்பல்கள் ஒவ்வொன்றிற் கும் கீழே கொடுக்கப்படும் அளவைகணேக் கணிப்பதன் மூலம் அப் பரம்பல்களே ஒப்பீடு செய்ய முடிகின்றது.

- 1. இடங்காணல் அளவை
- 2. பிரிகை அளவை
- 3. ஓராய அளவை
- 4. குடில அளவை

2.5.1: இடங்காணல் அளவைகள் (MEASURES OF LOCATION)

குறிப்பிட்ட பண்புகளேக் குறிக்கும் மாறியின் மதிப்புகள் யாவும் தனிப்பட்ட அளவுத்திட்டத்தினடிப்படையிற், பரம்பலாக அமைந் துள்ளன என முன்னர் குறிப்பிட்டோம். இத்தகைய மீடிறன் பரம்பலொன்றை முற்ருக விபரிக்கக்கூடிய, பரம்பல் பற்றிய போதிய சிறப்பியல்புகளேக் காணமுடியுமெனில், நாம் அவற்றை உபயோகிப்பதன் மூலம் பரம்பலே விபரிக்க முடிகின்றது. உதார ணமாக, மாறி எடுக்கும் மதிப்புகளெல்லாவற்றிற்கும் பொதுவான ஒரு தனி மதிப்பைத் தேர்வதால் பரம்பல் முழுவதையும் ஓரள வில் விபரிக்க முடிகின்றது. மாறியெடுக்கும் மதிப்புகளெல்லாவற்றிற் குமுரிய மீடிறன்களின் எண்ணிக்கை சமனின்மையால் எம்மதிப் புக் கூடிய மீடிறன்களேக் கொண்டுள்ளதோ அதனேத் தேர்வதே ஏற்றதாகத் தோன்றுகின்றது.

ஓரு தொகுதி தரவுகளேச் சுருக்கமாகவும், ஒன்றியெண்ணின அம் எடுத்துக் காட்டும் அளவை சராசரி எனப்படும். உதாரண மாக, பல்க%லக்கழகத்திலுள்ள மாணவர்களது உயரங்கள் யாவும் சராசரியாக 5' 6'' ஆகக் காணப்படுகின்றதெனக் கூறுவதால், நாம் எல்லா மாணவர்களது உயரங்களேயும் ஒன் றியெண் ணினுற் குறிப்பிடுகின்ரும். சராசரிகள், இடங்காணல் அளவைகளில் ஒன் ருகும். சராசரியானது, ஒரு மாறியேற்கும் மதிப்புகளே மொத்தத் தில் எடுத்துரைக்கும் அளவையாகவும் உள்ளது. எனினும் சராசரி தொகுதியிலுள்ள ஏதாவது ஒரு தரவுக்குச் சமமாகக் காணப்பட வேண்டிய அவசியமில்லே. ஆதலால், சராசரியைப் பரம்பலொன்றின் மையநிஃப்போக்கினே அல்லது மையநாட்டத்தி னேத் (Central tendency) தெரிவிக்கும் அளவையாதக் கருதலாம். பரம் ப்வொன்றின் கூட்டலிடை, ஆகாரம், இடையம் முதலியனவும் மையநிஃப்போக்கிணத் தெரிவிக்கும் அளவைகளாகும். இவற்றைத் தனித்தனியாக அவதானிப்போம்.

மேலும் காலீணகள், தசவீதத்திகள், சதம‱கள் போன்றன வும் ஒரு பரப்பலின் மையநிஃப்போக்கிணத் தெரிவிக்காவிடினும், அவை அப்பரம்பலின் இடங்காணல் அளவைகளாகும்.

முதலில் அளவுமாறியையும், பண்புமாறியையும் வரையறுப் போம். எண்கணியத்தினுல் விபரிக்கக்கூடிய மாறிகளெல்லாம் அளவுமாறிகள் (உதாரணமாக நிறை, உயரம், வருமானம் முத லியன்) எனவும், எண்கணியமல்லாத குணுதிசயமொன்றினுல் விப ரிக்கப்படும் மாறிகளெல்லாம் பண்புமாறிகள் (உதாரணமாகப் பழுதடைந்த, பழுதடையாத பொருட்கள், நாணயத்தின் தலே அல்லது பூ போன்றவை) எனவும் வரையறுக்கப்படும். பரம்ப லொன்றின் சிறப்பியல்புகளே விபரிக்கும் ஒரு மாறி அப்பரம்பலின் பரமானம் எனப்படும். உதாரணமாக, இடை, இடையம், ஆகா ரம் முதலியவை ஒரு பரம்பலின் பரமானங்களாகும். பல்வேறுவகையான இடங்காணல் அளவைகள்:

- (i) கூட்டலிடை
- (ii) பெருக்கலிடை
- (iii) இசையிடை
- (iv) இடையமும் காலணேயும்
- (v) ஆகாரம்

(i) கூட்டலிடை (Arithmetic Mean)

சராசரியும் கூட்டலிடையும் ஒன்றையே கருதும். மீடிறன் பரம்பலொன்று யாதாயினுமொரு மையப்பெறுமானமொன்றிஞற் குறிக்கப்படுமாயின், இரு பரம்பல்களே ஒப்பிடுவதற்குப் பதிலாக அவை ஒவ்வொன்றினதும் மையப் பெறுமானங்களே ஒப்பிடலாம்.

வரைவிலக்கணம்

X என்னுமொரு மாறியினது x_1, x_2, \ldots, x_n என்னும் பெறுமானங்களே எடுத்துக் கொள்க. X இனது மீடிறன் பரம்பலின் கூட்டலிடையானது, \overline{X} இனுற் குறிக்கப்பட்டு,

$$\overline{X} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 என வரையறுக்கப்படும்.

அதாவது,

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

மாறியொன்றின் கூட்டலிடையானது, மாறியேற்கும் மதிப்புகளெ ல்லாவற்றினதும் கூட்டுத்தொகையை மதிப்புகளின் மொத்த எண் ணிக்கையால் பிரிக்க வருவதேயாகும்.

குறிப்பு:

கூட்டலிடையானது சில சமயங்களில் இடை எனவும் அழைக் கப்படும்.

உதாரணம் 2.14

X என்னும் மாறியானது 5, 10, 15, 20, 25 என்னும் 5 பெறுமா னங்களே எடுக்கின்றைதெனின் இப்பெறுமானங்களினது கூட்டலிடை,

$$\overline{X} = \frac{5+10+15+20+25}{5} = 15$$
 ஆகும்.

கூட்டலிடையானது மாறியேற்கும் ஒவ்வொரு மதிப்புகளிலும் தங்கியுள்ளது. உதாரணமாக, 5 மாணவர்கள் புள்ளிவிபரவியற் பரீட்சையொன்றில் 60, 60, 60, 60, 90 என்ற புள்ளிகஃாப் பெறு கின்முர்களெனில், அவர்கள் பரீட்சையிற் பெற்ற சராசரிப் புள்ளி,

$$\frac{60+60+60+60+90}{5} = 66$$

எனவே, இங்கு மாணவர்கள் சராசரியாக 66 புள்ளிகளேப் பெற்ற நுள்ளார்களெனக் கூறும்போது, நாம், 5 மாணவர்கள் பெற்ற புள்ளிகளும் 66 என்ற புள்ளியைச் சுற்றிப் பரந்துள்ளன எனக் கருது கின்ரும். அதாவது, 90 என்ற புள்ளியானது சராசரிப்புள்ளியை 6 புள்ளிகளால் உயர்த்தியிருப்பதைக் காணமுடிகின்றதே தவிர உண்மையில் மேற்கணித்த சராசரியானது தரப்பட்ட பரம்பலே முற்று கப் பிரதிநிதித்துவம் வகிக்கின்றதல்ல. எனவே மீடிறன் பரம்ப லொன்றைப் போதுமான அளவு பிரதிநிதித்துவம் வகிக்க, இடையி லிருந்து வேறுபட்ட ஒரு ம தி ப் பு தேவைப்படுகின்றது. இவை போன்ற நிலேமைகளில் இடையம் பொருத்தமானதாகக் காணப் படும்.

(அ) கூட்டமாக்கப்படாத தரவுகளேக் கொண்ட மீடிறன் பரம்பல்களின் கூட்டலிடை

X என்னும் மாறியானது x_1,\dots,x_n என்னும் n பெறுமானங்களே முறையே f_1,f_2,\dots,f_n என்னும் ஒத்த மீடிறன்களுடன் எடுக்கின்றதென்க. எனின் x_1,x_2,\dots,x_n என்ற பெறுமானக் கட்டத்தினது கூட்டலிடை \overline{X} ஆனது,

$$\overline{X} = rac{f_1 x_1 + f_2 x_2 + + f_n x_n}{f_1 + f_2 + + f_n}$$
 இஞலே தரப்படும்.

 $= rac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i x_i}$
 $= rac{\sum_{i=1}^{n} f_i x_i}{N}$ இங்கு, $N = \sum_{i=1}^{n} f_i$ மொத்த மீடிறன்களேக் குறிக்கின்றது

சில வேஃாகளில் \overline{X} ஆனது, $\overline{X}=\frac{\sum fx}{N}$ எனவும் வசதிக்காக கீழ்வரிபுகளே நீக்கி எழுதப்படும்.

உதாரணம் 2.15

உதாரணம் 2.1 இலே கொடுக்கப்பட்ட தரவில், தொழிலாளி களின் அன்றுட வருமானத்தைக் குறிக்கும் மாறியினது கூட்டலி டையைக் காண்க.

வரைவிலைக்கணத்தால்,
$$\overline{X}=\dfrac{\sum fx}{N}=\dfrac{13\times 1+14\times 1+\ldots\ldots+24\times 1}{1+1+\ldots\ldots+1}$$
 = $\dfrac{467}{25}=18\cdot 68$

அதாவது, தரப்பட்ட 25 தொழிலாளிகளும் சராசரியாக 18·68 ரூபாலீணே அன்ருட வருமானமாகப் பெறுகின்றனர்.

குறிப்பு:

மேலே கணிக்கப்பட்ட கூட்டலிடையானது சில வேளேகளில் நிறையேற்றப்பட்ட கூட்டலிடையெனவும் கூறப்படும்.

உதாரணம் 2.16

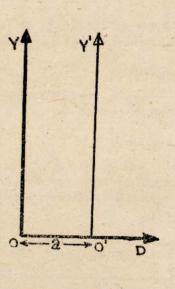
கம்பனி ஒன்றிலே தொழில் புரிகின்ற 50 வேஃயாட்களது வராந்த வருமானம் கீழ்க்காட்டப்பட்டுள்ள மீடிறன் பரம்பலிலே தரப்படுகின்றதெனின், தொழிலாளிகளினது வாராந்த வருமானம் யாது?

வாராந்த வருமா X	னம் வேலேயாட்களின் எண்ணிக்கை f	fx
55	4	220
65	8	520
75	1.5	1125
90	10	900
110	6	660
135	4	540
165	3	495
SERVICE AND ADDRESS OF THE PARTY OF THE PART	$\Sigma f = 50$	$\Sigma f x = 4460$

$$\therefore \quad \overline{X} = \frac{4469}{50} = 89^{\circ}2$$

எனவே வேஃயாட்கள் 89·2 ரூபாவிணே, சராசரி வாராந்**த வரு** மானமாகப் பெறுகின்*ளு*ர்கள். இலகுவான முறையிற் கூட்டலிடையினக் கணித்தல்; உற்பத்தி மாற்றம் அல்லது அளவின் தொடக்கநில் மாற்றம்

பூச்சியத்தினே ஆரம்பப் புள்ளியாகக் கொண்ட X, Y என்ற இரு கிடை, நிலேக்குத்து அச்சுகளே எடுத்துக் கொள்க. அளவின் தொடக்க நிலேயை கிடைவீச்சு a ஆகவுள்ள ஒரு புள்ளிக்கு மாற் றின் பரம்பலின் கூட்டலிடையானதும் a அலகுகளினுல் மாற்ற மடையும்.


தொடக்கநிலே பூச்சியமாகவுள் எபோது $\overline{X} = \frac{\sum fx}{N}$. அளவின் தொடக்கநிலே a என்ற புள்ளிக்கு படத்திற் காட்டியவாறு மாற்றப் படின், மாறியெடுக்கும் ஒவ்வொரு பெறுமானமும் a இறைற் குறைக்கப் பட வேண்டும். அதாவது,

$$\overline{X} - a = \frac{\sum f(x - a)}{N}$$

$$\overline{X} = a + \frac{\sum f(x - a)}{N}$$

x—a=d என எடுத்துக்கொண்டால்,

$$\overline{X} = a + \frac{\sum fd}{N}$$

D,Y' என்பவற்றைப் புதிய கிடை, நிலேக்குத்து அச்சுகளாகவும், பூச்சியத்திணத் தொடக்கநிலேயாகவும் கொண்டால்,

$$\overline{X} = a + \overline{D}$$

இங்கு a என்பது நோக்கிய இடை அல்லது தற்காலிக இடை எனப்படும். நோக்கிய இடைக்குப் பதிலாக, தரப்பட்ட பரம்பலின் இடை உபயோகிக்கப்படின், அதாவது, அளவில் தொடச்கநிலே இடையளவு கிடைவீச்சுள்ள புள்ளிக்கு மாற்றப்படின் ___ பூச்சிய மாகும். இம்முடிபு வெளிப்படையானதாகும். மேலும் நோக்கிய இடையானது கணித்தலே இலகுபடுத்தும் நோக்கத்துடன் வசதிக் கேற்றவாறு தெரியப்படுகின்றதே தவிர அதற்கெனக் குறீப்பிட்ட விதிகளோ அன்றிக் கணிதரீதியான விளக்கங்களோ கிடையாது. மேலே தரப்பட்ட உதாரணம் 2.16 இல், 90 இீன நோக்கிய இடையாகக்கொண்டு பரம்பலின் கூட்டலிடையைக் காண்க.

வாராந்த வருமானம் X	வேஃல்யாட்களின் எண்ணிக்கை f	D = X - 90	fd
55	4	- 35	-140
65	8	- 25	-200
75	15	- 15	-225
90	10	0	0
110	6	20	120
135	4	45	180
165	3	75	225
	$\Sigma f = 50$		$\Sigma fd = -40$

$$2^{160}$$
 $\overline{X} = a + \frac{\sum fd}{N} = 90 + \frac{40}{50}$

= 89.2 (முன்னர் பெற்ற விடையுடன் ஒப்பிடுக)

(ஆ) கூட்டமாக்கப்பட்ட தரவுகளேக்கொண்ட மீடிறன் பரம்பல்களின் கூட்டலிடை

முன்னர் குறிப்பிட்ட பண்புகளினடிப்படையில், மாறியொன்று பெறும் மதிப்புகள் வெவ்வேறு வகுப்புகளாக வகுப்பாக்கப்படுவ தையும் ஒவ்வொரு வகுப்பிற்குமுரிய தரவுகளின் எண்ணிக்கை அவதானிக்கப்பட்டு அட்டவஃணப்படுத்தப்படுவதையும் அவதானித் தோம். இங்கு, தரவுகள் கூட்டமாக்கப்பட்டவை எனப்படும். இவ்வாறு கூட்டமாக்கப்பட்ட தரவுகளேக்கொண்ட ஒரு மீடிறன் பரம்பலின் இடையினே அல்லது பரம்பலிற் குறிப்பிட்ட மாறியின் கூட்டலிடையினே எவ்வாறு காண்பது என்பதைக் கீழே விளக்கு வோம்.

தரவுகள் வகுப்புகளாகத் தரப்படின் வகுப்புகளின் நடுப் பெறு மானங்களேயே வகுப்புகளேக் குறிக்கும் மாறியினது மதிப்புகளெ னக் கொள்வது வழக்கம். எனவே, வகுப்பின் நடுப் பெறுமானங் களே மாறி எடுக்கும் பெறுமானங்களாகக்கொண்டு, முன்னர் உப யோகித்த சமன்பாடுகளே உபயோகிப்பதன்மூலம் குறிப்பிட்ட பரம் பலின் இடையினேக் காணலாம்.

உதாரணம் 2.18

உதாரணம் 2.2 இலே கொடுக்கப்பட்ட கூட்டமாக்சப்பட்ட வகுப்புகளேக்கொண்ட தரவுகளுக்கான கூட்டலிடையைக் காண்க.

வகுப்பு	வகுப்பின் நடுப் பெறுமானம் X	வகுப்பு மீடிறன் f	fx
30 — 39	24.5	4.	138.0
40 — 49	41.5	6	267.0
50 — 59	54.5	9	490.5
60 — 69	64 5	12	774.0
70 — 79	71.5	. 8	596.0
80 — 89	84.5	7	591.5
90 — 99	94 5	4	378.0
		$\Sigma f = 50$	$\sum fx = 3255.0$

இங்கு,
$$\overline{X} = \frac{\sum fx}{N} = \frac{3235.0}{50}$$

அதாவது, குறிப்பிட்ட பரீட்சையில் மாணவர்கள் சராசரி யாக 64.7 புள்ளிகளேப் பெற்றனர்.

எனவே, முன்னர் கூறிய பொருளியல் விரிவுரையாளர் விஞுவிற் குப் புள்ளிவிபரவியல் விரிவுரையாளர், மாணவர்கள் பரீட்சையிற் சராசரியாக 64.7 புள்ளிக்கோப் பெற்றுள்ளனர் எனச் சுருக்கமாகப் பதிலளிக்கலாம். அதாவது, வகுப்பிலுள்ள மாணவர்கள் பெற்ற புள்ளிகள், 64.7 என்ற புள்ளியைப் பரந்துள்ளனவெனப் பொருளி யல் விரிவுரையாளர் கொள்ளல் வேண்டும். மேலும் ஒரு மாணவ ஞவது 64.7 என்ற புள்ளியைப் பெற்றிருக்கவேண்டிய அவசிய மில்கேயென்பதைக் கவனிக்க, மேலே எடுத்துக்கொண்ட உதாரணம் 2.18 இல் நோக்கிய இடையொன்றைக் கருதிக்கொண்டு பரம்பலின் இடையைக் காண்க

இங்கு நாம் 64·5 இண நோக்கிய இடையாகக் கொள்வோம்.

வகுப்பின் நடுப் பெறுமாமை X	X - 64.5 = D	f	fd
34 · 5	- 30 · 0	4	- 120 · 0
44 · 5	$-20\cdot 0$	6	- 120 · 0
54 · 5	- 10 . 0	9	- 90 . 0
64 · 5	0.0	12	0.0
74 · 5	10 . 0	8	80 . 0
84 · 5	20 . 0	7	140 . 0
94 · 5	:0.0	4	120 . 0
மொத்தம்		50	10 . 0

இங்கு,
$$\overline{X} = a + \frac{\sum fd}{N}$$
$$= 64.5 + \frac{10}{50}$$

= 64.7 (முன்னர் பெற்ற விடையுடன் ஒப்பிடுக)

இலகுவான முறைபிற் கூட்டலிடையிணக் கணித்தல்; உற்பத்<mark>தி மாற்ற</mark> மும் அளவிடை மாற்றமும்

முன்னர், அளவின் தொடக்க நிஃலையக் கிடைவீச்சு *a ஆக* வுள்ள ஒரு புள்ளிக்கு மாற்றுகையிற் கூட்டலிடை **எவ்வாறு** பாதிக்கப்படுகின்றதென்பதை அவதானித்தோம்.

அங்கு,
$$\bar{X} = a + \frac{\sum fd}{N}$$

இப்பொழுது மீடிறன் புரம்பல் அட்டவணேயிலுள்ள மதிப்பு கள் h அகலத்தைக் கொண்ட சமமான வகுப்பாயிடைகளேக் கொண்டிருப்பின் முன்னேய அளவிடையின் 1/h மடங்கைப் புதிய அளவிடையாகக் கொள்வோம்.

இங்கு புதிய மாறி U ஆனது, $U=rac{X-a}{h}$ இஞல் வரையறுக் கப்ப**ு**கின்றது. அதாவது, _இ

8

$$u = \frac{x-a}{h} \implies x = a + hu$$

இரு பக்கங்களேயும் f இறை பெருக்கிக் கூட்டுத்தொகை எடுக்க நாம் பெறுவது,

$$\sum fx = \sum fa + \sum fhu$$

மேலும், இரு பக்கங்களேயும் $\sum f$ இனுற் பிரிக்க நாம் பெறுவது,

$$\frac{\sum fx}{\sum f} = \frac{\sum fa}{\sum f} + \frac{\sum fhu}{\sum f}$$

ଶ୍ୱଙ୍କ ଓଡ଼ା,
$$\overline{X} = a + h \frac{\sum_{i=1}^{n} f_{i}}{\sum_{i=1}^{n} f_{i}}$$

ஆனுல்
$$\overline{U} = \frac{\sum fu}{\sum f}$$

$$\therefore \quad \overline{X} = a + h\overline{U}$$

உதாரணம் 2,20

மேலே தரப்பட்ட உதாரணம் 2·19 இல் மாணவர்கள் பெற்ற புள்ளிகள், 10 என்னும் சம அளவான வகுப்பாயிடைகளே உடை யனவாகக் காணப்படுவதால் நாம் தரப்பட்டுள்ள அளவிடையின் 1/10 மடங்கைப் புதிய அளவிடையாகக் கொள்வோம்.

அதாவது,
$$U = \frac{X-a}{10} = \frac{D}{10}$$

எனவே அட்டவணேயானது பின்வருமாறு அமையும்:

வகுப்பின் நடுப் பெறுமானம் X	D = X - 64.5	$U = \frac{D}{10}$	f	fu
34.5	- 80	-3	4	-12
44.5	- 20	-2	6	-12
54.5	- 10	-1	9	- 9
64.5	0	0	12	1 0
74.5	10	1	8	8
84.5	20	2	7	14
94.5	30	3	4	12
மொத்தம்			50	I

இங்கு,
$$\vec{X} = 64.5 + h\vec{U}$$

= $64.5 + 10 \frac{1}{50}$

= 64.7 (முன்னர் பெற்ற விடையுடன் ஓப்பிடுக)

எனவே, நோக்கிய இடை ஒன்றைக் கருதிக்கொள்வதுடன், அளவிடையிணயும் மாற்றுவதனுற் கணித்தல் மேலும் இலகுவாக் கப்படுத்தப்படுகின்றமையைக் காணக்கூடியதாக இருக்கிறது.

குறிப்பு:

வகுப்புகள், சமஅளவான வகுப்பாயிடையை உடையனவாகக் காணப்படாதபோதும் அவற்றின் வகுப்பாயிடை அளவுகள் குறிப் பிட்ட எண்ணிஞற் பிரிபடக்கூடியனவாயின், நாம் அளவிடை மாற் றத்தை மேற்கொள்ள முடியும்.

குறிப்பிட்ட பரம்பலின் வகுப்பாயிடைகள் c என்னும் எண்ணி ஞற் பிரிபடக்கூடியதாய் உள்ளன என்க.

எனின், U என்னும் மாறியை $U=rac{X-a}{c}$ இஞல் வரையறுக்க.

அதாவது,
$$u=\dfrac{x-a}{c}$$
 \Longrightarrow $x=a+cu$
இதிலிருந்து, $\overline{X}=a+c\overline{U}$ எனக்காட்டலாம்.

உதாரணம் 2,21

உதாரணம் 2·3 இலே கொடுக்கப்பட்டுள்ள பரம்பலே எடுத் துக்கொள்க. இங்கு வகுப்பாயிடை அளவுகள் (10, 10, 10, 20, 20, 30, 30) சமமில்லாதபோதும் அவை 10 என்னும் குறிப்பிட்ட எண் ணிஞற் பிரிபடக்கூடியனவாசக் காணப்படுகின்றன. எனவே இங்கு நாம் தரப்பட்ட அளவிடையின் 1/10 மடங்கைப் புதிய அளவிடை யாகக் கொண்டு பரம்பலின் கூட்டலிடையைக் கணிக்கலாம்.

	ஊுதியம் (வகுப்பு எல்ஃகேள்)	வகுப்பின் நடுப் பெறு 'மானம் X		D = X - 90	$U = \frac{D}{10}$	fu
1	50-60	55	4	-35	-3.5	-14.0
1	60-70	65	8	-25	-2.5	-20.0
1	70-80	75	15	—15	-1.5	-22.5
	80-100	90	10	0	0.0	0.0
1	100-120	110	6	20	2.0	12.0
1	120-150	135	4	45	4.5	18.0
1	150—180	165	3	75	7.5	22.5
1	ம <u>ொத்</u> தம்		50			-4

$$\overline{X} = a + c\overline{U}$$
 $= 90 + 10 \frac{-4}{50}$
 $= 89.2$ (முன்னர் பெற்ற விடையுடன் ஒப்பிடுக)

மீடிறன் பரம்பலொன்றின் கூட்டலிடையை இலகுவான முறை யிற் கணக்கிடும்பொழுது படிப்படியாகக் கையாளவேண்டிய வழி முறைகள்:

- (1) கொடுக்கப்பட்ட பரம்பல், கூட்டமாக்கப்பட்ட தரவு களேயோ அன்றி கூட்டமாக்கப்படாத தரவுகளேயோ கொண்டது என்பதை அவதானித்து, அது கூட்டமாக்கப் பட்டிருப்பின் வகுப்பின் நடுப் பெறுமானம் கணிக்கப்படுவ துடன் அதுவே மதிப்பு எண்ணுக உபயோகிக்கப்படும்.
- (II) கூடிய மீடிறனேக்கொண்ட மதிப்பெண்ணே நோக்கிய இடை a ஆகக் கொள்ளல் விரும்பத்தக்கது.
- (!II) வகுப்பாயிடை அளவுகள் சமமான எண்களாக இருப்பின் அதணே h எனவும், சமமில்லாத, ஆஞல் யாதாயினுமொரு எண்ணிஞற் பிரிபடக்கூடியனவாகக் காணப்படின் அவ் வெண்ணே c எனவும் கொள்க.
- (IV) மாறி X இன் மதிப்புகள் ஒவ்வொன்றையும் $U=rac{X-a}{h}$ அல்லது $U=rac{X-a}{c}$ என்னும் சூத்திரத்தைப் பயன் படுத்தி U என்னும் மாறியின் பெறுமானங்களாக மாற்றுக.
- (V) U இன் பெறுமானங்கள் ஒவ்வொன்றையும் அவற்றிற் கொத்த மீடிறன்களால் பெருக்கவருவனவற்றின் கூட்டுத் தொகை ∑ fu இணக் கணிக்குக.
- (VI) கடைசியாகப் பரம்பலின் கூட்டலிடை \overline{X} ஆனது $\overline{X} = a + c \frac{\sum fu}{\sum f}$ என்னும் சூத்திரத்திறைப் பெறப்படும்.

 (வகுப்பிடை அளவுகள் சமனுனதாக இருப்பின் c இற்குப் பதிலாக h ஐ உபயோகிக்க)

இணேக்கப்பட்ட தொகுடுயினது கூட்டலிடை (Arithmetic Mean of the Combined Group)

 X_1 என்னும் பாறியானது $x_{11},x_{12},....,x_{1n}$ னும் n₁ பெறுமானங்களேயும், X_{*} என்னும் மாறியா**னது** X22,, X2n, என்னும் n2 பெறுமானங்களேயும் எடுக்கின் றன எனின்,

$$X_1$$
 இன் கூட்டலிடை $\overline{X}_1 = rac{\displaystyle\sum_{i=1}^{n_1} x_{1i}}{n_i}$ இனும்,

$$\sum_{i=1}^{n_2} x_{2i}$$

 X_2 இன் கூட்டலிடை $\overline{X}_2=rac{f i=1}{n}$ இணைய் தரப்படும்.

மேற்குறிப்பிட்ட மாறிகள் குறிக்கின்ற இரு பண்புகளேயும் இணேப் பதால் பெறப்படும் தொகுதி, x₁₁,, x_{1n₁}, x₂₁,,х, என்னும் (ா + ா,) பெறுமானங்களேக் கொண்டிருக் கும். இதன் கூட்டலிடை

$$\overline{X} = \frac{X_{11} + \dots + X_{1n_1} + X_{21} + \dots + X_{2n_2}}{n_1 + n_2}$$

$$= \frac{\sum_{i=1}^{n_1} X_{1i} + \sum_{i=1}^{n_2} X_{2i}}{n_1 + n_2}$$

మైతు,
$$\sum_{i=1}^{n_1} x_{1i} = n_1 \overline{X}_1; \quad \sum_{i=1}^{n_2} x_{2i} = n_2 \quad \overline{X}_2$$

$$\therefore \quad \overline{X} = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2} \quad \text{Assign}.$$

பொதுவாக $(X_r,\,n_r)$; $r=1,\,2,\,...,\,k$ என்பன முறையே வெவ்வேறு பண்புகளேக் குறிக்கும் Y என்ற மாறிகளது கூட்ட லிடைகளினேயும், அவை பெறும் பெறுமானங்களின் எண்ணிக்கை களேயும் குறிப்பின், இப்பண்புகள் எல்லாவற்றையும் இ 2 ணப்ப தாற் பெறப்படும் தொகுதியினது கூட்டலிடை \overline{X} ஆனது

$$\overline{\chi} = rac{n_1\overline{\chi}_1 + n_2\overline{\chi}_2 + \dots + n_k\overline{\chi}_k}{n_1 + n_2 + \dots + n_k}$$
 என்பதனுலே தரப்படும்.

அதாவது,
$$\overline{X}=rac{1}{N}{\gtrsim}n_{\mathrm{r}}\,\overline{X_{\mathrm{r}}};$$
 இங்கு $N=n_{1}+n_{2}+.....+n_{\mathrm{k}}$

அதாவது, ஒரு முழுத்தொகுதியிலிருந்து இரண்டு அல்லது இரண் டிற்கு மேற்பட்ட மாதிரி தேர்விலடங்கிய உறுப்புகளின் மதிப்பு கள் கொடுக்கப்படின், அம்மாதிரிகளின் சராசரிகளால் நிர்ண மிக்கப்படுகின்றன என்பதைக் கவனிக்க. மேலும், முழுத்தொகுதி யொன்றிலிருந்து வெவ்வேறு மாதிரிகளேத் தேரும்போது மேலு ள்ள நிபந்தணேயைத் திருப்தி செய்யக்கூடியதாக அவற்றைத் தேர் வது விரும்பத்தக்கதாகும். புள்ளிவிபரவியலில் முழுத்தொகுதி பற்றிய முடிபுகளே அத்தொகுதியிலிருந்து தேர்ந்தெடுக்கப்பட்ட மாதிரிகளே தெரிவிக்கின்றன என முன்னர்க் குறிப்பிட்டோம். குறிப்பாக, முழுத்தொகுதியின் சராசரியினது அல்லது இடையினது ஒரு மதிப்பாக மாதிரிச் சராசரியை அல்லது மாதிரியிடையைப் பயன்படுத்துவது வழமை. எனவே, மாதிரியிடையானது குடியிடை யினது ஒரு கோடலற்ற மதிப்பு எனப்படும்

நிறையளிக்கப்பட்ட கூட்டலிடை (Weighted Average)

இதுவரை மேற்கொண்ட கணிப்புகளில் நாம் மாறிகளது சார்பு முக்கியத்துவத்தினேக் கவனத்திற் கொள்ளவில்லே. மாளுக எல்லாவற்றுக்கும் ஒரே அளவில் முக்கியத்துவம் கொடுக்கப்பட்டது. பொருளாதார சிக்கல்கள் பலவற்றில் காரணிகளின் சார்பு முக்கியத்துவம் இன்றியமையாததாகக் காணப்படுகின்றது. எளிய முறையிற் சுட்டெண்களேக் கணக்கிடும்போது ஒவ்வொரு பண்டத் திற்கும் ஒரே அளவில் முக்கியத்துவம் கொடுக்கப்படுகின்றது. ஆலை அவையெல்லாம் ஒரே அளவான முக்கியத்துவம் பெற்றவையல்ல அவ்வப்பொழுது காலவேறுபாடுகளாலும் புதிய கண்டுபிடிப்புகளாலும் நுகர்வோரின் வருமான, சுவை மாற்றங்களாலும் பொருட்களின் முக்கியத்துவம் மாற்றமடையக்கூடியது. ஆதலால், ஒவ் வொரு பொருளும் எந்த அனவு வனியுறுத்தப்படவேண்டுமென் பதை, அவ்வப்பொருள் எத்த தின தட்வைகள் கொள்வனவு செய் பதை, அவ்வப்பொருள் எத்ததின் தட்வைகள் கொள்வனவு செய்

யப்பட்டன் என்பது வாயிலாகக் குறிப்பிடுவது வழமை. இவ் எண்ணிக்கைகளுத்தான் நிறைகள் (Weights) என்கிரும். எனவே, சட்டெண்களேக் கணக்கிடும்போது நிறையேற்றும் முறை முக்கி யத்துவம் பெறுகிறது. இவ்வாறு ஓவ்வொரு பண்டமும் எத்தனே தடவைகள் இடம்பெற்றுள்ன எனக்கண்டு அவற்றை நிறைகளா கப் பாவித்துக் காணும் சராசரிச் சுட்டெண், நிறையேற்றிய சுட்டெண் எனப்படும்.

குறிப்பிட்ட X என்னுமொரு மாறி $x_1,...,x_n$ என்னும் பெறு மானங்களே முறையே $w_1,....,w_n$, என்ற ஒத்த நிறைகளோடு எடுக்கின்றதென்க. எனின், X இனது நிறையளிக்கப்பட்ட கூட்ட லிடை \overline{X} ஆனது,

$$\overline{X} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

$$= \frac{\sum_{wx}}{\sum_{w}}$$
 என்பதறைலே தரப்படும்.

(ii) பெருக்கலிடை (Geometric Mean)

சராசரியானது எவ்வாறு சில மதிப்புகளின் பிரதிநிதியாக அமைகின்றதோ அதேபோலப் பெருக்கலிடையும் சில குறிப்பிட்ட தரவுகளப் பிரதிநிதித்துவம் வகிக்கின்றமையைக் காணமுடிகின் றது. சமூக, பொருளாதார விடயங்களிலும், தொழிற்றுறை நிர்வாகத்திலும் ஏற்படும் முக்கியமான பல சிக்கல்களிற் காலம் இடம்பெறுகின்றது. அச்சிக்கல்கள் பற்றிய, உதாரணங்களாகப் பிறப்பு இறப்பு வீதங்களில் ஏற்படும் மாற்றங்களாலே தேசிய வரு மான மாற்றத்திலேற்படும் மாற்றங்கள், உற்பத்திப் பெருக்கத்தி வேற்படும் மாற்றங்கள், சனத்தொகை அதிசரிப்புசள் முதலியவற் றைக் கொள்ளலாம். இவற்றுட் சில, பெருக்கலாக வசர்ச்சியுறு வதைக் காணமுடிகின்றது. இவ்வாறு பெருக்கலாக வளர்ச்சியுறும் தோற்றப்பாடுகளின் போக்கினே விபரிக்கப் பெருக்கலிடை உபயோ கிக்கப்படுகின்றது. ஒரு மாறியின் மொத்த வளர்ச்சிக்குப் பதி லாக அ**தன் வி**கிதவளர்ச்சிக்கு முக்கியத்துவம் கொடுக்க**வே**ண்டிய நிஃமைகளிலும் பெருக்கலிடையை உபயோகிப்பதே சிறந்ததாகும்.

வரைவிலக்கணம்

X என்னும் மாறியானது x_1, x_2, \dots, x_n என்னும் r பெறு மானங்களே எடுக்கின்றதெனில், இவ்வெண்களின் பெருக்கலிடைG ஆனது,

$$6 = \sqrt[n]{x_1 \times x_2 \times \dots \times x_n}$$

அதாவது, n பெறுமானங்களேப் பெருக்க வரும் தொகையின் n ஆவது மூலமே பெருக்கலிடை எனப்படும். தரவுகள் பூரணமாகத் தரப்பட்டிருந்தால் பெருக்கலிடையைக் கணிப்பது சுலபமானதா கும்.

ஆஞல் பெருக்குவதும், வர்க்கம் காண்பதும் கையாற் செய் வதாஞல் நேரம் விரயமாவதோடு தவறுகளும் ஏற்படலாம். இச் சந்தர்ப்பத்தில் மடக்கையை உபயோகிப்பதன்மூலம் கணித்தல் களே இலகுவாகச் செய்துமுடிக்கலாம்.

$$G = {}^{n}\sqrt{x_{1} \times x_{2} \times \dots \times x_{n}}$$

$$\omega \subseteq G = \omega \subseteq \left[(x_{1} \times x_{2} \times \dots \times x_{n})^{\frac{1}{n}} \right]$$

$$= \frac{1}{n} \omega \subseteq (x_{1} \times x_{2} \times \dots \times x_{n})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \omega \subseteq (x_{i})$$

அதாவது, பெருக்கலிடையின் மடக்கை மூலத்தரவுகளின் மடக்கை களின் சராசரிக்குச் சமனுகும்.

உதாரணம் 2.22

La Print

$$8, 9, 12, 16, 18$$
 என்ற 5 எண்களின் பெருக்கலிடை $G = {}^5\sqrt{8\times 9\times 12\times 16\times 18}$ = ${}^5\sqrt{2^{10}\times 3^5}$ = 12

குறிப்பு:

 $a, \, b$ என்னுமிரு நே**ரெ**ண்க2m எடுத்துக்கொள்க. இவற்றின் கூட்டலிடை $\frac{a+b}{2}$, இவற்றின் பெருக்கலிடை \sqrt{ab}

$$4500, \frac{a+b}{2} \ge \sqrt{ab}$$

எனவே, நேரேண்களது கூட்டலிடையானது எப்பொழுதும் அவற்றின் பெருக்கவிடையிலும் பெரிதாகவோ அன்றிச் மாகவோ இருக்கும்.

பொதுவாக, X என்னும் மாறியானது x_1, x_2, \ldots, x_n என்னும் பெறுமானங்களே முறையே ஒத்த மீடிறன்கள் f1. f2,, fn என்பவற்றுடன் எடுக்கின்றதென்க. எனின் பரம்பலின் பெருக்கலிடை,

$$G = \begin{pmatrix} f_1 & f_2 & & & f_n \\ x_1 \times x_2 \times & & & & \times x_n \end{pmatrix}^{\frac{1}{N}}$$
 என்பதை©ே தரப்படும்

$$\text{Ting } N = \sum_{i=1}^{n} f_i$$

$$\therefore \text{ idl. } G = \frac{1}{N} \text{ idl.} \left(x_1^{f_1} \times x_2 \times \dots \times x_n^{f_n} \right)$$

$$= \frac{1}{N} \sum_{i=1}^{n} f_i \quad \omega \vdash (x_i)$$

மேலும், k மாதிரிகளில் அடங்கிய மதிப்புகளின் எண்ணிக்கை nı,n2,....,nk எனவும். அவற்றின் பெருக்கலிடைகள் G_1 , G_2 , ..., G_k எனவும் தரப்படின், இங்கு k மாதிரிகளேயும் இ ${\mathbb Z}_{m}$ ப் பதாற் பெறப்படும் முழுத்தொகுதியின் பெருக்கலிடை G ஆனது

$$G = \left(G_1 \times G_2 \times \dots \times G_k^{n_k}\right)^{\frac{1}{N}}$$
 என்பதஞில தரப்

$$\therefore G^{N} = G_{1} \times G_{2} \times \dots \times G_{k}$$

$$=>N\omega LG=$$
 n_1 $\omega LG_1+\dots+n_k\omega LG_k$

$$\geq n_r$$
 where

(iii) இசையிடை (Harmonic Mean)

இசையிடையானது குறிப்பிட்ட சில துறைகளில் மட்டுமே பயன்படக்கூடிய ஒரு சராசரியாகும். காலவீதங்களேயும் அதற் கொத்த மற்றைய வீதங்களேயும் சராசரி செய்வதற்கு இசையி டையே ஏற்றதாகும். விஸேத்தளம்பல்களே அறியவும் இது ஏது வாகக் காணப்படுகின்றது.

X என்னும் மாறியானது $x_1\,,x_2\,,\,...,\,x_n$ என்னும் $m{n}$ பெறுமானங்களே எடுப்பின் X இனது இசையிடை $m{H}$ ஆனது,

$$\frac{1}{H} = \frac{1}{n} \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right)$$
 என்னும் தொடர்பினலே

தரப்படும். பொதுவாக, X என்னும் மாறியானது x_1 , x_2 ,... x_n என்னும் n பெறுமானங்களே f_1 , f_2 ,, f_n என்னும் ஒத்த மீடிறேன்களுடன் எடுக்கின்றதெனின், X இனது இசையிடை சூத்தது,

$$H = \frac{1}{N\left(\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_n}{x_n}\right)};$$
 இங்கு $N = f_1 + f_2 + \dots + f_n$

$$= \frac{N}{n}$$
 என்பதைலே தரப்படும்.
$$\sum_{i=1}^{f_i} x_i$$

(iv) இடையமும் காலணேகளும் (Median and Quartiles)

மீடிறன் பரம்பலொன்று ஓராயமானதாகவும், எல்ஃப்பெறு மானங்களேக் கொண்டதாகவும் காணப்படுகின்ற அனேகமான நிஃமைகளில் இடையமே மிகப்பொருத்தமான இடங்காணல் அளவை என முன்னர் குறிப்பிட்டோம். அது பின்வருமாறு வரை யறுக்கப்படும்.

குறிப்பிட்ட ஒரு மாறியேற்கும் பெறுமானங்கள் யாவும் பரு மன்கள் பற்றி ஏறுநிரையாகவோ அன்றி இறங்கு நிரையாகவோ பந்தி உருவிலே ஒழுங்குபடுத்துகின்றன எனக்கொள்க. இவ்வொழுங் கிலுள்ள நடுப் பெறுமானம் அல்லது இரு நடுப் பெறுமானங்களின் சராசரி, தரப்பட்ட பெறுமானங்களின் இடையம் என வரையறுக்

கப்படும். அதாவது, மீடிறன் பரம்பலொன்றை இரு சமபங்காகப் பிரிக்கும் பெறுமானம் அப்பரம்பலின் இடையம் எனப்படும்.

மேலும் இடையமானது மீடிறன் வன்யியொன்றின் பரப்பு ளவை இரு சம பங்காகப் பிரிக்கும். எந்தவொரு மீடிறன் பரம்ப லுக்கும் இடையம் வரையறுக்கப்படுவதோடு, மாறி தொடர்ச்சி யுள்ளதாயின் இடையம் ஒருதனியானதும், மாறி பின்னகமானதா யின் சில சமயங்களில் ஒன்றுக்கு மேற்பட்ட பெறுமானங்கள், குறிப்பிட்ட பரம்பலின் இடையமாகவும் காணப்படும்.

தரப்பட்ட ஒரு மாறியேற்கும் பெறுமானங்களின் எண்ணிக்கை N ஆக. இவையாவும் பந்தியுருவிலமைக்கப்படுகின்றன எனின், தரப்பட்ட பெறுமானங்களது இடையம் $\frac{N+1}{2}$ ஆவது உறுப்பிருலே தரப்படும். இங்கு மாறியேற்கும் மதிப்புகளின் எண்ணிக்கை ஒற் நையானதாகவோ, அன்றி இரட்டையானதாகவோ காணப்படலாம். மாறி இரட்டை எண்ணிக்கை (2k) மதிப்புகளே ஏற்கின்ற தெனில் இடையம் $\frac{2k+1}{2}$ ஆவது உறுப்பினுலும், மாறி ஒற்றை எண்ணிக்கை (2k+1) மதிப்புகளே ஏற்கின்றதெனில் இடையம் $\frac{2k+2}{2}$, அதாவது k+1 ஆவது உறுப்பினுலும் தரப்படும். உதாரணமாக, மாறி 4 பெறுமானங்களே எடுப்பின் இடையம் 2 ஆம் உறுப்புகளின் சராசரிப்பெறுமானமும், மாறி 5 பெறுமானங்களே எடுப்பின் இடையம் 2 ஆம் வது உறுப்பின் பெறுமானமும் மாகும்.

உதாரணம் 2,23

ஒரு வகுப்பிலுள்ள 6 மாணவர்கள் பெற்ற புள்ளிகள் வருமாறு: 43, 81, 57, 23, 78, 63. இடையத்தைக் காண்க.

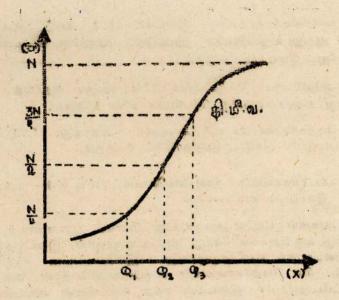
மாணவர்கள் பெற்ற புள்ளிகளே ஏறுவரிசையில் அமைப்போ மானுல் 23, 43, 57, 63, 78, 81.

இங்கு இடையம் 3ஆம் 4ஆம் உறுப்புகளின் சராசரியாகும்.

உதாரணம் 2.24

15, 32, 24, 51, 43 என்ற 5 நேர்முழு எண்களின் இடை யத்தைக் காண்க.

தரப்பட்ட எண்களின் பந்தி உருவானது 15, 24, 32, 43, 51; இங்கு 3 ஆவது உறுப்பே இடையமாகும். எனவே இடையம் 52 ஆகும்.


unalemuch (Quartiles)

மோத்த மீடிறனே நான்கு சம பங்குகளாகப் பிரிக்கும் மாறி மின் பெறுமானங்கள் காலணேகள் எனப்படும். தரப்பட்ட மாறி ஏற்கும் பெறுமானங்கள் ஏறு வரிகையிலோ அண்றி இறங்கு வரி சையிலோ ஒழுங்குபடுத்தப்படுகின்றதென்க. இவ்வரிசையின் காற் பங்கு தூரத்திலே வரும் மாறியின் பெறுமானம் முதலாம் தாலணே அல்லது கீழ்க்காலணே எனவும், வரிசையின் சமபங்கு தூரத்திலே வரும் மாறியின் பெறுமானம் இரண்டாம் காலணே எனவும், வரிசையின் முக்காற்பங்கு தூரத்திலே வரும் பெறுமானம் மூன்ரும் காலணே அல்லது மேற்காலணே எனவும் அழைக்கப்படும். இவை முறையே Q1, Q2, Q3 என வழமையாகக் குறிக்கப்படும்.

இரண்டாம் கால‰ோ இடையத்துடன் பொருந்தும்• இடைய மும் காலண்களும் மாறியின் பெறுமானங்களே ஆதலால் மாறி என்ன அலகு களிற் காணப்படுகின்றதோ அதே அலகுகளிலே தான் இடையமும் காலணேகளும் விபரிக்கப்படவேண்டும்.

(அ) மிடிறன் பரம்பலொன்றின் இடையமும் காலிணகளும்

இதுவரை எண் தொகுநிகளினது இடையம், காலிணகள் எவ்வாறு பெறப்படுகின்றன என் பதின யே அவதானித்தோம். மீடிறன் பரம்பலொன்றின் இடையம், காலிண்கள் என்பனவற்றைக் காண மேற்குறிப்பிட்ட முறையைக் கையாள முடியாது. மீடிறன் வள்யி உள்ளடக்கும் மொத்தப் பரப்பு மொத்த மீடிறனுக்குச் சமனுகுமென முன்னர் குறிப்பிட்டோம். எனவே நிலேக்குத்தச்சிற்கு சமாத்தரமான எந்தக்கோடு அப்பரப்பினே இரு சம பங்காகப் பிரீக்கின்றதோ, அக்கோடு கிடை அச்சில் வெட் டும் மதிப்பையே இடையமாகக் கொள்ளல் வேண்டும். எனவே பரம்பலொன்றின் மொத்த மீடிறன் N எனின், N/2 ஐத் திரட்டு மீடிறனுகக் கொண்ட மாறியின் மதிப்பே இடையமாகும். இதே போல N/4, 3N/4 என்பவற்றைத் திரட்டு மீடிறனுகக் கொண்ட மாறியின் மதிப்புகள் முறையே கீழ்க்காலின், மேற்காலிண் எனப்படும். இதினக் கீழ்வரும் படத்திற் காட்டலாம்.

உதாரணம் 2.25

கீழே தரப்பட்டுள்ள மீடிறன் பரம்பலின் இடையம், காலணே கள் என்பவற்றைக் காண்க.

மாறி X	0	1	2	3	4	5	6
மீடிறன் f	2	4	5	3	2	1	4

முதலிலே, தரப்பட்ட பரம்பலுக்கொத்த திரட்டு மீடிற**ன்** பரம்பல் அமைக்கப்படவேண்டும்.

X	0	1	2	3	4	5	6
திரட்டு மீடிறன்	2	6	11	14	16	17	21

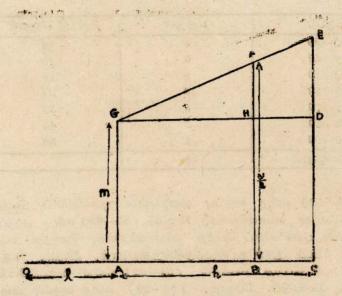
வரைவிலக்கணத்தால், இடையம் 21/2 ஆவது. அதாவது, 10.5 ஆவது உறுப்பிஞலே தரப்படும். மேலுள்ள அட்டவணேயி லிருந்து இடையம் 2ஆகும்.

அதேபோல, கீழ்க்காலணே 21/4 ஆவது, அதாவது, 5·25 ஆவது உறுப்பாகும். ஆகவே கீழ்க்காலணே 1 ஆகும்.

மேற்காலணே 21 × 3 / 4 ஆவது, அதாவது, 15.75 ஆவது உறுப்பாகும். ஆகவே, மேற்காலணே 4 ஆகும்.

(ஆ) கூட்டமாக்கப்பட்ட தரவுகளேக்கொண்ட மீ டி ற ன் பரம்பலின் இடையமும் காலீணகளும்

தரவுகள் மேலே தரப்பட்டது போலப் பூரணமாகத் தரப் படாது வகுப்பாக்கம் செய்து தரப்பட்டிருந்தால், இடையத்தினேச் செம்மையாகக் கணிக்கமுடியாது. இப்பேர்ப்பட்ட சந்தர்ப்பங் களில், சில மேற்கோள்களின் அடிப்படையிலேதான் அவற்றை மதிப்பிடமுடியும். இடையம் எந்த வகுப்பினுள் அமைகின்றது என்று மதிப்பிட்டு அறியலாமெனினும் அது குறிப்பிட்ட வகுப்பில் எவ்விடத்திலமைகின்றது எனத் தீர்மானிப்பது கடினமாகும். ஆகையால், குறிப்பிட்ட வகுப்பில் மதிப்புகள் எவ்வாறு பரந்திருக் கின்றன என்ற அடிப்படையிலேதான் கணிப்பீடுகள் செய்யப்படு கின்றன. வழமையாக, குறிப்பிட்ட வகுப்பினுள் உறுப்புகள் யாவும் சமமாகப் பரவியுள்ளன என்னும் மேற்கோளின் அடிப் படையிலேயே கணிப்புகள் செய்யப்படுகின்றன.


கூட்டமாக்கப்பட்ட தரவுகளேக் கொண்ட மீடிறன் பரம்ப லொன்றின் இடையத்தினக் காண்பதற்கு நாம் ஏகபரிமாண இடைச்செருகஸ் (Linear Interpolation) உபயோகிக்கின்றேம். உதாரணமாக, உதாரணம் 2.6 இலே தரப்பட்ட மீடிறன் பரம் பஸ் எடுத்துக்கொள்வோம். இங்கு தரவுகள் யாவும் கூட்டமாக் கப்பட்டுத் தரப்படுகின்றனவே அன்றி அவற்றின் உண்மையான மதிப்புகள் தரப்படவில்ஸ். இங்கு 50 மாணவர்கள் பெற்ற புள்ளி கள் மட்டுமே வகுப்பாக்கப்பட்டிருப்பதால், புள்ளிகளேக் குறிக்கும் மாறியினது இடையப் பெறுமானம் 25.5 ஆவது மாணவன் பெற்ற புள்ளியாகும். அதாவது, 25 ஆம் 26 ஆம் மாணவர்கள் பெற்ற புள்ளியின் சராசரியாகும். எனவே முதலில் நாம் 25 ஆம். 26ஆம் மாணவர் பெறும் புள்ளிகள் எவ்வகுப்பினிலடங்குகின்றன என அவதானிக்க வேண்டும். அதற்கு நாம் பரம்பலின் திரட்டு மீடிறன் பரம்பலே அமைப்போம்.

வகுப்பு	மீடி றன்	தரட்டு மீடிறன்
30—39	4	4
4049	6	10
50-59	9	19
6069	12	31
70—79	8	39
80-89	7	46
90-99	4	50
மொத்தம்	50	

(50—59) என்ற வகுப்பு வரையுள்ள புள்ளிக்காப் பெற்ற மாணவர்களின் எண்ணிக்கை 19 உம், (69—69) என்ற வகுப்பு வரையுள்ள புள்ளிக்கோப் பெற்ற மாணவர்களின் மொத்த எண்ணிக்கை 31உம் ஆகக் காணப்படுகின்றமையால், 25ஆம், 26ஆம் மாணவர்கள் பெற்ற புள்ளிகள் (60—69) என்ற வகுப்பிலேயே இருத்தல் வேண்டும். மேலும், (50—59) என்ற வகுப்பிலேயே இருத்தல் வேண்டும். மேலும், (50—59) என்ற வகுப்பு வரை 19 மாணவர்கள் காணப்படுகின்றமையால் 25.5 ஆவது மாணவன் (60—69) என்ற வகுப்பிற்குரிய 6.5 ஆவது மாணவனும். இவ் வகுப்பில் மொத்தம் 12 மாணவர்கள் பெற்ற புள்ளிகள் அடங்கு கின்றமையால், இவை சீராகப் பரம்பப்பட்டுள்ளன எனக் கொண்டு. 6.5 ஆவது மாணவன் பெற்ற புள்ளி (60—69) என்ற வகுப்பின் 6.5/12 ஆவது இடத்திலுள்ள புள்ளியாகும். குறிப்பிட்ட வகுப் பின் வீச்சு 10 ஆகையால், 6.5/12 ஆவது இடத்திலுள்ள புள்ளி மாகும். என்றே, 65.4 என்ற புள்ளியே தரப்பட்ட பரம்பலின் இடையமாகும்.

இனி நாம் கூட்டமாக்கப்பட்ட தரவுகளேக்கொண்ட பரம்பலின் இடையத்தைக் காணுவதற்கான பொதுவடிவத்தைப் பெறுவோம்.

தரப்பட்ட பரம்பலின் திரட்டு மீடிறன் அட்டவணே அமைக் கப்படுகின்றதென்க. பின்னர், N/2 மீடிறனுக்குரிய மதிப்பு எவ்வகுப் பில மை கின் றது என அவதானிக்கப்படுகின்றது. இவ்வகுப் பினேயே இடைய வகுப்பாகக் கொள்ளல் வேண்டும். இடைய வகுப்பிற்கு மேலுள்ள வகுப்பு வரையுள்ள மொத்தத் திரட்டு மீடிறனின் எண்ணிக்கை m அவதானிக்கப்படுகின்றது. இடைய வகுப்பின் கீழெல்லேயை l எனவும், வகுப்பு மீடிறேன் f எனவும், அதன் வகுப்பாயிடை அளவை h எனவும் கொண்டு பீன்வரும் படத்திண் நோக்குக:

GFE என்பது (AC) என்ற வகுப்பிற்குரிய திரட்டு மிடிறன் வளேயியைக் குறிக்கின்றது. இவ்வகுப்பினுள்ளேயே N/2 திரட்டு மீடிறணேக்கொண்ட மதிப்பு அடங்குகின்றது.

FGH, EGD என்ற முக்கோணங்களே எடுத்துக்கொண்டால்,

$$\frac{GH}{GD} = \frac{HF}{DE}$$

அதோவது,
$$\frac{GH}{h} = \frac{\frac{N}{2} - m}{f}$$

$$\therefore GH = \frac{\left(\frac{N}{2} - m\right)h}{f}$$

ஆஞல் இடையப் பெறுமானம்,

$$OB = OA + AB = OA + GH$$

$$OB = 1 + \frac{\left(\frac{N}{2} - m\right)h}{f}$$

எனவே எந்த ஒரு பரம்பலுக்கும் இடையமானது,

இடையம்
$$=l+rac{\left(rac{N}{2}-m
ight)_h}{f}$$
 என்னும் சமன்பாட்டினுலே தரப்படும்.

இதேபோல, கூட்டமாக்கப்பட்ட ஒரு பிடிறன் பரம்பலின் காலணேகள் பின்வரும் சூத்திரங்களினுலே தரப்படும்:

$$Q_1 = l + \frac{\left(\frac{N}{4} - m\right)h}{f}$$

$$Q_2 = l + \frac{\left(\frac{N}{2} - m\right)h}{f}$$

$$Q_3 = l + \frac{\left(\frac{3N}{4} - m\right)h}{f}$$

பொது வடிவத்திலே,

$$Q_i = l + \frac{\left(\frac{-iN}{4} - m\right)h}{f}; i = 1, 2, 3$$

உதாரணம் 2.26

உதாரணம் 2.6 இலே கொடுக்கப்பட்ட மீடிறன் பரம்பலின் காலணேகளேக் காண்க.

இங்கு மொத்த மீடிறன்களின் எண்ணிக்கை 50. எனவே முத லாம் காலீண 12.5 ஆவது உறுப்பின் பெறுமானம் ஆகும் எனவே, Q₁ ஆனது (50 — 59) என்ற வகுப்பினுள்ளேயே கிடக் கின்றது;

இங்கு
$$l = 50$$
, $h = 10$, $m = 10$, $N = 50$, $f = 9$

$$Q_1 = 50 + \frac{\left(\frac{50}{4} - 10\right)10}{9}$$

$$= 50 + \frac{2.5 \times 10}{9}$$
$$= 52.78$$

இரண்டாம் காலணேயானது 25 ஆவது உறுப்பின் பெறுமான மாகும். எனவே, Q_2 ஆனது (60 — 69) என்ற வகுப்பினுள் ளேயே கிடக்கின்றது;

இங்கு
$$l=60$$
, $h=10$, $m=19$, $f=12$

$$Q_2 = 60 + \frac{\left(\frac{50}{2} - 19\right)10}{12}$$

= 65

மூன்ரும் காலணேயானது 37.5 ஆவது உறுப்பின் பெறுமானம் ஆகும். எனவே, Q_3 ஆனது (70 — 79) என்ற வகுப்பிலுள்ளேயே கிடக்கின்றது;

இங்கு
$$l = 70$$
, $h = 10$, $m = 31$, $f = 8$

$$Q_3 = 70 + \frac{\left(\frac{3 \times 50}{4} - 31\right)10}{8}$$
$$= 70 + \frac{65}{8}$$
$$= 78.1$$

தசவிதத்திகளும் சதமனேகளும் (Deciles and Percentiles)

தரப்பட்ட பரம்பலொன்றின் மொத்த மீடிறனே 10 சம பங்கு களாகப் பிரிக்கும் மாறியின் பெறுமானங்கள் தசவீதத்திகளென வும், மொத்த மீடிறனே 100 சம பங்குகளாகப் பிரிக்கும் மாறி யின் பெறுமானங்கள் சதமணேகளெனவும் அழைக்கப்படும்.

எனவே, எந்தவொரு மீடிறன் பரம்பலுக்கும் D_1 ,, D_9 என்னும் 9 சதவீதத்திகளும், P_1 ,, $P_{9.9}$ என்னும் 98 சத மஃணகளும் உண்டு.

உதாரணமாக, நான்காவது சதவீதத்தி காணப்படவேண்டு மாயின் 4N/10 ஆவது அலகுள்ள வகுப்பு முதலிற் காணப்பட வேண்டும். பின்னர் நான்காம் தசவீதத்தி D4 ஆனது,

$$D_4 = l + \frac{\left(\frac{4N}{10} - m\right)h}{f}$$
 என்ற சமன்பாட்டை

உபயோகிப்பதன் மூலம் மதிப்பிடப்படும் அல்லது இடைச்செருகப் படும்.

அதேபோல, 75 ஆவது சதமஃண காணப்படவேண்டுமாயின் 75N/100 ஆவது அலகுள்ள வகுப்பு காணப்பட்டு,

$$P_{75} = l + \left(\frac{75N}{100} - m\right)h$$
 என்ற சமன்பாட்டின்

மூலம் மதிப்பிடப்படும். பொதுவாக

தசவீதத்திகள்,

$$D_i = l + \frac{\binom{iN}{10} - m}{f}h$$
 $i = 1, 2, \dots, 9$ என்பதனைலும்,

சதுமனேகள்,

$$P_1 = l + \frac{\left(\frac{tN}{100} - m\right)h}{f}$$

 $i=1,\,2,\,\ldots,\,99$ என்பதனும் தரப்படும்.

(இங்கு l, f, h, N, m என்பன முன்னர் வரையறுக்கப்பட்டவையே)

உதாரணம் 2.27

மேலே தரப்பட்ட 2.26 உதாரணத்திலே 4 ஆம் தசவீதத்தி யினேயும், 75 ஆம் சதமணேயையும் மதிப்பிடுக.

நான்காம் தசவீதத்தி என்பது $4 \times 50/10$ ஆவது அலகாகும். அதாவது, 20 ஆவது அலகாகும். இவ்வுறுப்பு (60 — 69) வகுப்பி ஸுள்ளேயே காணப்படுகின்றது.

্প্রার্ডিয়,
$$D_4 = 60 + \left(\frac{20 - 19}{12}\right)10$$

$$= 60.83$$

75 ஆம் சதமஃண ஆனது 75 × 50/100 ஆவது அலகாகும் அதாவது. 37.5 ஆவது அலகாகும். இவ்வுறுப்பு (70 — 79) என்ற லகுப்பூலுள் காணப்படுகின்றமையால்.

$$P_{75} = 70 + \left(\frac{37.5 - 31}{8}\right)10$$
$$= 78.4$$

அதாவது, வகுப்பிலுள்ள 75 வீதமான மாணவர்கள் 78.4 புள்ளியிலும் குறைந்த புள்ளிகளேயும், 25 வீதமான மாணவர்கள் 78.4 புள்ளியிலும் அதிகமான புள்ளிசீளயும் பெற்றுள்ளனர்.

(v) Asnyib (Mode)

தரப்பட்ட எண்தொகுதியினது இடங்காணல் அளவைகளாகச் சராசரி, இடையம், காலணேகள் ஆகியவை பயன்படுத்தப்படுவது போல், ஆகாரமும் எண்தொகுதியொன்றின் அல்லது மீடிறன் பரம்பல் ஒன்றின் இடங்காணல் அளவையாகப் பயன்படுத்தப்படும். சில சமயங்களிலே தரப்பட்ட தொகுதியொன்றில், குறிப்பிட்ட எண்ணென்று கூடிய தடவைகள் இருப்பதைக் காணமுடிகின் றது. இங்கு நாம் குறிப்பிட்ட எண்தொகுதியைக் குறிக்கும் மாறி யானது, பொதுவாக மேற்கூறப்பட்ட பெறுமானத்தையே பெறு

எனவே மாறியொன்று ஏற்கும் பெறுமானங்களில் எப்பெறு மானம் கூடிய தடவைகள் க ணப்படுகின்றதோ அது கரப்பட்ட தொகுதியின் ஆகாரம் அல்லது ஆகாரப் பெறுமானம் எனப்படும்.

உதாரணமாக, ஒரு வகுப்பிலுள்ள 10 மாணவர்கள் பரீட்சை யொன்றிற் பெற்ற புள்ளிகள் வருமாறு:

25, 31, 31, 42, 42, 42, 54, 63, 71, 80.

இங்கு 42 என்ற புள்ளியே கூடிய தடவைகள் காணப்படுவ தால், இதுவே தரப்பட்ட தொகுதிப்புள்ளிகளின் ஆகாரம் ஆகும். இதேபோல, மாறியானது மீடிறன் பரம்பலொன்றைக் கொண் டிருப்பின், மீடிறனின் உயர்வுப் பெறுமானத்திற்கொத்த மாறியின் பெறுமானம் ஆகாரம் அல்லது ஆகாரப் பெறுமானம் எனப்படும். உதாரணமாக,

மாறி X	30	35	40	45	50
மீடிறன் f	2	8	12	10	8

இங்கு, 40 பரம்பலின் ஆகாரம் ஆகும்.

கூட்டமாக்கப்பட்ட தரவுகளேக்கொண்ட மீடிறன் பரம்பலின் ஆகாரம்

தரவுகள் மேலே தரப்பட்டதுபோல் பூரணமாகத் தரப்படாது வகுப்பாக்கம் செய்து தரப்பட்டிருந்தால், ஆகாரத்தினேச் செம்மையாகக் கணிக்க முடியாது. முதலில் உயர்வு மீடிறனேயுடைய வகுப்பானது, அதாவது, ஆகார வகுப்பு அடையாளும் காணப் படுகின்றது. இங்கு நாம் பரம்பலின் ஆகாரத்தினே வகுப்பின் நடுப் புள்ளியாகக் கொள்வதைவிட இடைச்செருகல் மூலம் மிகவும் திருத்தமாக ஆகாரப் பெறுமானத்தைக் காணமுடியும். ஏனெனில் பரம்பலானது ஓராயமாகக் காணப்படின், அதாவது, மீடிறன்கள் ஒரு பக்கம் செறிந்து சீரற்றுக் காணப்படின் நடுப்புள் ளியை ஆகாரமாகக் கொள்ளமுடியாது. பொதுவாக, ஆகாரப் பெறுமானத்தின் மீது ஆகார வகுப்புத் தவிர்ந்த மற்றைய வகுப்பு மீடிறன்கள், குறிப்பாக, மேலும் கீழுமுள்ள வகுப்பு மீடிறன்கள் செல்வாக்குச் செலுத்துகின்றன எனக்கொள்ளல் வேண்டும். இதன் அடிப்படையில் ஆகாரம் M ஆனது,

$$M = l + \left(\frac{f_{\rm m} - f_1}{2f_{\rm m} - f_1 - f_2} \right) h$$

என்னும் சமன்பாட்டினுலே தரப்படும்.

இங்கு, ! — ஆகார வகுப்பின் கிழெல்லே,

h — ஆகார வகுப்பாயிடை அளவு,

fm — உயர்வு மீடிறேன்.

fi — ஆகார வகுப்பிற்கு முன்னுள்ள வகுப்பு மீடிற**ன்.**

/2 — ஆகார வகுப்பிற்குப் பின்னுள்ள வகுப்பு மீடிறன்

குறிப்பு:

- (i) எல்லா மீடிறன் பரம்பல்களுக்கும் இடை, இடையம் ஆகி யவை வரையறுக்கப்படுவதுபோல், ஆகாரம் இருக்கவேண் டிய அவரியமில்ஃ. உதாரணமாக, பரம்பலானது சீராகப் பரம்பப்பட்டிருப்பின் அதற்கு ஆகாரப் பெறுமானம் காண முடியாது. அட்படிக் காணப்படினும் அது ஒருதனியான தாக இருக்கவேண்டியதில்ஃ.
 - (ii) சராசரியிலிருந்து மிகுந்த அளவில் விலகல்களேயுடைய மதிப் புகளால் ஆகாரப் பெறுமானம் பாதிக்கப்படுவதில்லே.

உதாரணம் 2.28

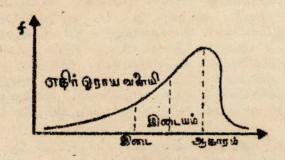
உதாரணம் 2.2 இலே தரப்பட்ட பரம்பலின் ஆகாரத்தைக் காண்க.

இங்கு (60 — 69) என்ற வகுப்பே ஆகார வகுப்பாதலால்,

$$l = 60, h = 10, f_{\rm m} = 12, f_1 = 9, f_2 = 8$$

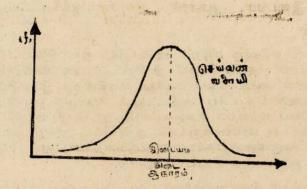
Gravial,
$$M = 60 + \left(\frac{12 - 9}{2 \times 12 - 9 - 8}\right) 10 = 60 + \frac{3}{7} 10$$

= 64.3


மேலே குறிப்பிட்டவற்றில், மதிப்புகளின் செறிவு ஒரே புள்ளி யில் உள்ளதெனக்கொண்டே ஆகாரத்தினக் கணித்தோம். ஒன் றிற்கு மேற்பட்ட புள்ளியில் மதிப்புகள் செறிந்திருக்கும்போது ஆகாரத்தினேக் கணிப்பது மேலும் சிக்கலானதாகும். இரு புள்ளி யில் மதிப்புகள் செறிந்து காணப்படின் பரம்பல் ஈராகாரப் பரம் பல் (Bimodal Distribution) எனப்படும். இதனே வரைபாக அமைக் கையில் இரு முகடுகளேக்கொண்ட பரம்பல் பெறப்படும். மதிப்பு கள் ஒரு படித்தானவையாக இருக்கும்போது இத்தகைய பரம் பல்கள் பெறப்படின் மதிப்புகளின் பற்றுக்குறையும், வகுப்பாக்கல் முறைகளுமே இதற்குக் காரணமாகும். திட்டவட்டமான ஆகார வகுப்பு பெறப்படும் வரையில் வகுப்பு எல்ஃகள் நகர்த்தப்பட்டும் வகுப்பாயிடை அளவுகள் பெரிதாக்கப்பட்டும், தனி ஆகாரப் பெறு மானம் கிடைக்கும் வரை மாற்றங்கள் செய்யப்படும். சிலவேளே களில் இவ்வாறு மாற்றங்கள் செய்யப்பட்டபோதிலும் பல்வேறு காரணங்களால் ஒன்றிற்கு மேற்பட்ட ஆகாரங்களேக் காணலாம்.


இடை, இடையம், ஆகர்ரம் என்பவற்றுக்கிடையேயுள்ள தொடர்பு

யா தாயினுமொரு மீடிறன் பரம்பலுக்கு நாம் இடை, இடையம், ஆகாரம் முதலிய வெவ்வேறு சிறப்புப் பண்புகளேக்கொண்ட இடங்காணல் அளவைகளேக் கணிக்க முடிகின்றது. இம்மதிப்புகளி டையே உள்ள தொடர்பு அறியப்படின் ஏதாவது ஒரு அளவையின் மதிப்பை மற்றைய அளவைகளிலிருந்து பெறமுடியும். ஓரா யமான மீடிறன் பரம்பல்களுக்குக் குறிப்பிட்ட மூன்று அளவைகளும் வெவ்வேருன்றையாகக் காணப்படுகின்றபோதிலும் இவற்றுக் கிடையே ஒரு மாருத தொடர்பு உண்டு.


இடைக்கும் இடையத்திற்கும் இடையே உள்ள வித்தியாசம், இடைக்கும் ஆகாரத்திற்குமிடையே உள்ள வித்தியாசத்தின் மூன் றிலொரு பங்காகும். அதாவது,

மூன்று அளவைகளேயும் மீடிறன் வளேமியிற் குறிப்போமாகில்,

எப்பொழுதும் இடையம், ஆகாரத்திற்கும் இடையிற்கு<mark>மிடையே</mark> காணப்படும்.

மேலும் சமச்சீர்ப் பரம்பல்களுக்கு இடை, இடையம், ஆகர ரம் என்பன ஒரே பெறுமானமாகவே காணப்படும். அதாவது, இவை மூன்றும் ஒன்றுடன் ஒன்று பொருந்தும்.

2. 5. 2: பிரிகை அளவைகள் (MEASURES OF DISPERSION)

இதுவரை வெவ்வேறு மீடிறன் பரம்பல்களே ஒப்பிடவேண்டி தன் அவசியத்தின்யும், அவற்றை ஒப்பிட உபயோகிக்கப்படும் வெவ்வேறு இடங்காணல் அளவைகளேயும் பற்றி ஆராய்ந்தோம். ஆனுல் மீடிறன் பரம்பலின் தன்மைகளேயும் சிறப்பியல்புகளேயும் சராசரி ஒன்றினுல் மட்டும் விபரிக்கமுடியாது பரம்பலின் முக்கிய தன்மைகளே வரையளவு செய்த இடங்காணல் அளவைகள் தவிர்ந்த பிறமதிப்புகளும் தேவைப்படுகின்றன. அப்போதுதான் வெவ்வேறு மீடிறன் பரம்பல்களே நுணுக்கமாக ஒப்பு நோக்கமுடி யும்.

தரப்பட்ட மதிப்புகள் அவற்றின் சராசரியிலிருந்து எந்த அளவிற்குப் பரந்துள்ளன அல்லது விலகியுள்ளன என்பதும் முக்கிய மானதாகும். உதாரணமாக, பல்கலேக்கழக மாணவர்களுடைய உயரங்கள் சராசரியாக 5 அடி 6 அங்குலம் எனக்கூறும்போது நாம் எல்லா மாணவர்களின் உயரங்களேயும் ஒன்றி எண்ணிஞல் மட் டுமே குறிக்கின்ருமே தவிர, உயரங்கள் எவ்வாறு பரந்துள்ளன என்பதனேக் குறிக்கவில்லே.

சமூக, பொருளாதார துறைகள் சம்பந்தமாகச் சேகரிக்கப் பட்ட தரவுகளிடையே மாறுபாடுகள் காணப்படுவது வழமை. அதாவது, ஒவ்வொரு மதிப்புகளும் வித்தியாசமானவையாகவே காணப்படும். சில சந்தர்ப்பங்களில் மதிப்புகள் பெரிய வீச்சினுள் ளும். சில மதிப்புகள் சிறிய வீச்சினுள்ளும் செறிந்து காணப் படும். நாட்டு மக்களது வருமானத்தினே நோக்கிளுல், மக்கள் சராசரியாகக் குறிப்பிட்ட வருமானமொன்றைப் பெறுகின்ருர் களைக் கூறிவீடமுடியாது, மக்களின் வருமானங்களிடையே குறிப்பிடத்தக்க அளவு ஏற்றத்தாழ்வுகளேக் காண்கின்றேம். எனவே வருமானம் எவ்வாறு பரந்து காணப்படுகின்றது. சராசரி மிலிருந்து எவ்வளவு விலகிக் காணப்படுகின்றது எனத் தெரிவிக்கப்படல் வேண்டும். மேலும், பொருளாதார மாறுபாடுகளுக்கேற்ப விலேகளில் ஏற்றவிறக்கங்களேக் காண்கின்ரும். எனவே. விலேகள் எவ்வாறு பரந்துள்ளன எனத் தெரிவிக்கப்படவேண்டுமே தவிர, அதனே ஒன்றி எண்ணிஞற் குறிப்பிட முடியாது. வருமானங்கள், விலேகள் போன்றவற்றினிடையே தொடர்புகள் காணப்படுகின்றமையால், இவற்றைக் குறிக்கும் மாறிகளிடையே காணப்படும் மாறுபாடுகளே ஒப்புநோக்க வேண்டியது அவசியமாகக்காணப்படுகின்றது.

மேலே அவதானித்தவற்றிலிருந்து பல நிலேமைகளில் சமூக, பொருளியல், வணிகம், நிர்வாகம் முதலிய துறைகளிற் காணப் படும் மாறிகளின் மதிப்புகளிடையே நாம் மாறுபாடுகளேக் காண் கின்ரும். எனவே, நாம் புள்ளியியலாய்வினே, மாறுபாடுகளே ஆராயும் ஒரு சாதனமாகக் கொள்ளலாம். இப்பேர்ப்பட்ட மாறு பாடுகளிஞவேயே வெவ்வேறு வகையான மீடிறன் பரம்பல்களே அவதானிக்க முடிகின்றது. வெவ்வேறு மாறுபாட்டின் களேயும், அவைபற்றிய ஆய்வுகளேயும் கையாளுவதன் மூலம் பல புள்ளிவிபர முடிபுகளே அனுமானிக்க முடிகின்றது. பாட்டினுல் மாறிகள் பல்வேறு மதிப்புகளேப் பெறுகின்றனவென முன்னர் குறிப்பிட்டிருந்தோம். உதாரணமாக, நாட்டின் தேசிய வருமானம், பொருட்களின் விலேகள், மொத்த உற்பத்தி, வேலே யற்ருர் தொகை முதலியவை காலவேறுபாட்டினுல் மாறுபடக் கூடியனவும், பொருளாதார முக்கியத்துவம் வாய்ந்தனவும் ஆகும். எனவே, இவை பற்றிய விபரங்களே ஆராயும்போது மாறுபாட் டின் சில புதிய அம்சங்களே நாம் மேற்கொள்ளல் வேண்டும். மேலும் தொழிற்சாலே ஒன்றில் உற்பத்தியாகும் பொருட்களின் தரங்களே உற்றுநோக்கின், அங்கு நுட்பமான கட்டுப்பாடுகள் உபயோகிக்கப்பட்டிருப்பினும்கூட உற்பத்திப் பொருட்களிடையே சிறிய மாறுபாடுகளேயேனும் காணமுடிகின்றது. இவை போன்ற மாறுபாடுகளே ஆராய்வதற்காகத் தற்பொழுது அநேகமான தொழிற்றுறை நிர்வாகங்களிலே தரக்கட்டுப்பாடு (Quality Control) என்ற புதிய புள்ளியியல் ஆய்வுமுறை கையாளப்பட்டுவருகின்றது. இதன் மூலம் பொருட்களின் தரத்திற் காணப்படுகின்ற மாறுபாடு களில் எவை சந்தர்ப்ப வசத்திஞல் ஏற்பட்ட**ன, எவை (கட்டுப்** படுத்தக்கூடிய) சில சிக்கல்களால் ஏற்பட்டன என வேறுபடுத்திக் காணமுடிகின் றது

எனவே, சேகரிக்கப்பட்ட மாதிரித்தரவுகளின் இடங்காணல் அளவை ஒன்றையும், குறிப்பாகச் சராசரியையும், அவை பரம்பி யிருக்கும் அளவின் ஒரு மதிப்பையும் பெறமுடியுமெனின் தரவு களே ஒப்புநோக்கவும், அவற்றைப் பரம்பலாக அமைத்து ஆராய்ச்சிக் குட்படுத்தவும் முடிகின்றது. இவைபோன்ற மதிப்புகளேப் பெறு வதன் மூலம் தரவின் முழுத்தொகுதி பற்றிய அனுமானங்களே எடுக்கவோ, அன்றி முழுத்தொகுதியின் பரமானங்களேக் கொண்ட கருதுகோள்களேச் சொதனேயிட்டுப் புள்ளியியல் முடிபுகளே எடுக் கவோ முடிகின்றது. தரவுகளிடையே காணப்படும் மாறுபாட்டி குறைவாகக் காணப்படும்போதுதான் இடங்காணல் அளவைகள் பொருளுடையனவாக இருக்கும். எனவே பரம்ப வொன்றின் பிரிகையளவையின் முக்கியத்துவத்தினே இங்கு உணர முடிகின்றது. வெவ்வேறு வகையான இடங்காணல் அளவைகளே நோக்கியதுபோல், வெவ்வேறு வகையான பிரிகை அளவைகளேயும் தோக்குவோம்.

புள்ளிவிபரவியலில் மாறி ஒன்று பரந்திருக்கும் அளவிணேயே பிரிகை குறிக்கின்றது. பிரிகையிணப் பின்வரும் மதிப்புகளேப் பாவித்து அளக்கமுடிகின்றது.

- (i) वी कंक
- (ii) சராசரி விலகல்
- (iii) நியமவிலகல்

(i) alsa (Range)

இது பரம்பலொன்றின் பிரிகையினே அளக்கும் இலகுவான அளவையாகும். தரப்பட்ட பரம்பலொன்றின் மிகக் குறைந்த, மிகக் கூடிய பெறுமானங்களுக்கிடையேயுள்ள வித்தியாசம் வீச்சு ஆகும். உதாரணமாக, முன்னர் தரப்பட்ட 2.2 உதாரணத்தில் மாணவர்கள் பெற்ற ஆகக்குறைந்த புள்ளி 33 உம், ஆகக்கூடிய புள்ளி 98 உம் ஆகையால் பரம்பலின் வீச்சு (98 — 33 =) 65 ஆகும்.

் இது தரப்பட்ட பரம்பலின் எல்ஃப் பெறுமானங்களிடையே யுள்ள வித்தியாசத்தினே மட்டும் குறிக்கின்றதே அன்றி மற்றைய தரவுகளேப் பற்றிய எச்செய்தியிணயும் காட்டுவதில்ஃ. ஆகை யால் இந்த அளவையிலிருந்து பரம்பல் பற்றிய எந்தவித தாவல் கீள்யும் பெறமுடியாது.

(ii) சராசரி விலகல் (Average Deviation)

சராசரி விலகலானது பரம்பலிலுள்ள எல்லாத் தரவுகளேயும் உள்ளடக்கும் வேருரு பிரிகையளவையாகும். இது பரம்பலின் நடுப் பெறுமானங்களாகிய இடை,இடையம், முதலியவற்றி லிருந்து மாறிகளில் விலக்ஸ்களுடைய சராசரியைக் குறிக்கின்றது.

(அ) இடை விலகல் (Mean Deviation)

பரம்பலின் நடுப் பெறுமானமாக இடை பாவிக்கப்படின், இடை பற்றிய இடை விலகல் பெறப்படும். பொதுவாக, மாறி X இனது, x_i ; i=1,2,....,n என்ற n நோக்கல்களே எடுத்துக் கொள்க.

$$X$$
 இன் இடை விலகல் $=$ $\frac{\sum\limits_{i=1}^{n}\left|x_{i}-\widetilde{X}\right|}{n}$ என வரையறுக்கப்

படும். இங்கு \overline{X} என்பது n நோக்கல்களினதும் இடையாகும். அத்துடன் நோக்கல்களினது இடையிலிருந்தான விலகல்களின் நேர்ப் பெறுமானங்களே எடுத்துக்கொள்ளப்படுகின்றன.

குறிப்பு:

குறிகொண்ட விலகல்களின் (Signed Deviations) கூட்டுத் தொகை எப்பொழுதும் பூச்சியமாகும்.

உதாரணம் 2.29

ஒரு வகுப்பில் 60, 65, 70, 80, 85, 90 என்னும் நிறை உள்ள ஆறு மாணவர்கள் இருக்கின்முர்களென்க.

எனின் இடை =
$$\frac{60+65+70+80+85+90}{6}$$

= 75

இவ்விடையிலிருந்து தனிப்பட்ட நிறைகளினது விலகல்கள் முறையே (60 — 75),, (98 — 75)

அதாவது, — 15, — 10, — 5, 5, 10, 15 ஆகும்.

எனவே வரைவிலக்கணத்தால் இடை விலகல்,

விலகல்களின் குறிகளே அவதானிப்பின்

இடை விலகல்
$$= \frac{\sum\limits_{i=1}^{n} (x_i - 75)}{6}$$
 $= \frac{-15 - 10 - 5 + 5 + 10 + 15}{6}$
 $= 0$

(ஆ) இடைய விலகல் (Median Deviation)

பரம்பலின் நடுப் பெறுமானமாக இடையம் பாவிக்கப்படின், இடையம் பற்றிய இடைய வீலகல் பெறப்படும்.

பொதுவாக மாறி X இனது x_i ; $i=1,2,\ldots,n$ என்ற n நோக்கல்களே எடுத்துக்கொள்க.

எனின்,
$$Z$$
 இன் இடைய விலகல் $=$ $\frac{\sum\limits_{i=1}^{n} |x_i - M_e|}{n}$

குறிப்பு:

எப்பொழுதும் இடைய விலகல் ≤ இடை விலகல்

சராசரி விலகல்கள் சிறிய அளவிலேயே புள்ளிவிபரவியலில் உபயோகிக்கப்படுகின்றமையால் நாம் இங்கு கூட்டமாக்கப்பட்ட தரவுகளுக்கான சூத்திரங்களே அவதானிக்காது, அடுத்து முக்கிய மான வேழெரு பிரிகையளவையினே விரிவாக வரையறுப்போம்.

(iii) நியமவிலகல் (Standard Deviation)

இதுவும் இடைபற்றிய சராசரி விலகஃலப் போன்றதே. இதற் குப் பல கணிதக் குணுதிசயங்கள் காணப்படுவதால் மறறைய விலகல்களிலும் முக்கியம் வாய்ந்ததாகும். மாறியோன்று ஏற்கும் மதிப்புகளினது இடையிலிருந்தான வீலகல்களின் வர்க்கங்களுடைய கூட்டுத்தொகையின் சராசரி யினது வர்க்கமூலமே குறிப்பிட்ட மாறியின் நியமவிலகல் எனப் படும்.

அதாவது, மாறிX ஆனது, i = 1, 2,....., n என்ற n நோக் கல்குள் எடுப்பின், X இனது நியம விலைகல் ∠ இனுற் குறிக்கப் பட்டு,

$$\triangle = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^3}{n}}$$
 என வரையறுக்கப்படும்.

இங்கு \overline{X} தரப்பட்ட எல்லா நோக்கல்களினதும் சராசரியாகும்.

குறிப்பு:

இங்கு விலகல்களின் வர்க்கங்களே எடுத்துக்கொள்ளப்படுவதால் அவற்றின் குறிகள் பற்றி அக்கறை காட்டப்படவேண்டியதில்ஃ.

மேலும், தரவுகள் விபரிக்கப்படும் அலகிஞலேயே, நியமவில கலும் விபரிக்கப்படும். உதாரணமாக, ஒரு மாறியானது ஒரு வகுப்பிலுள்ள மாணவர்களின் நிறையினே இருத்தலிற் குறிப்பின் மாறியின் நியமவிலகலும் இருத்தலிஞலேயே விபரிக்கப்படும்.

நியமவிலக‰க் கணிப்பதற்கான சூத்திரம் சற்றுச் சிக்கலாகக் காணப்படுவதால், அதண் வேருரு மதிப்பின் வாயிலாக உணர்த் துவோம். இங்கு மாறற்றிறன் என்னும் மதிப்பு ஒன்று அறிமுகப் படுத்தப்படுகின்றது. இதுவும் பிரிகையளவையினேக் குறிக்கும் ஒரு மதிப்பாகும்.

மாறற்றிறன் (Variance)

விலகல்களின் வர்க்கங்களுடைய கூட்டுத்தொகையின் சராசரி மாறற்றிறன் எனப்படும். இது வழமையாக 🔏 இனுற் குறிக்கப் படும். அதாவது,

உதாரணம் 2.30

மேலே தரப்பட்ட உதாரணம் 2.19 இலே மாணவர்களின் நிறைகளேக் குறிக்கும் மாறி X இன் நியமவிலகஸ்க் காண்க.

X	$(x-\overline{X})$	$(x-\overline{X})^2$
60	60 75 = 15	225
65	65 - 75 = -10	100
70	70 - 75 = - 5	25
80	80 - 75 = 5	25
85	85 - 75 = 10	100
90	90 75 = 15	225
$\Sigma x = 450$		
		$\Sigma(x-X)^2 = 700$

X இன் விலகல்களின் வர்க்கங்களினது கூட்டுத்தொகை = 700

$$X$$
 இன் மாறற்றிறன், $A = \frac{700}{6} = 116.6$
 X இன் நியமவிலகல், $A = \sqrt{116.6} = 10.7$

அநேகமான பிரயோகப் புள்ளிவிபரவியல்களில் நியமவிலகலே பயன்படுத்தப்படுகின்றது. நிகழ்தகவுப் பரம்பல்கள் பற்றிய அத்தி யாயத்தில் அவை பற்றிய விரிவான விளக்கத்திணே மாணவர்கள் அறிந்து கொள்ளலாம். தொடர்ந்து, நாம் நியமவிலகலேக் கணிப் பதிலுள்ள சிக்கல்களே இலகுபடுத்தும் வழிமுறைகளே அவதானிப் போம்.

(அ) கூட்டமாக்கப்படாத தரவிற்கான நியமவிலகல்

வரைவிலக்கணத்தால்,
$$\Delta^2 = \frac{\sum\limits_{i=1}^n (x_i - \overline{X})^2}{n}$$

முதலில்,
$$\sum (x - \overline{X})^2 = \sum (x^2 - 2x \, \overline{X} + \overline{X}^2)$$

$$= \sum x^2 - 2\overline{X} \sum x + \sum \overline{X}^2$$

$$= \sum x^2 - 2n\overline{X}^2 + n\overline{X}^2$$

$$= \sum x^2 - n\overline{X}^2$$

$$\therefore \triangle^2 = \frac{\sum x^2 - n\overline{X}^2}{n}$$

$$= \frac{\sum x^2}{n} - \overline{X}^2$$

$$= \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

எனவே, X இன் நியமவிலகல்,

எனவே தரப்பட்ட தரவுகளேக் குறிக்கும் மாறியினது நியம விலகலே, தரவுகளின் கூட்டுத்தொகையையும், தரவுகளின் வர்க் கங்களின் கூட்டுத்தொகையையும் காண்பதன்மூலம் இலகுவாகக் கணிக்கலாம்.

உதாரணம் 2.31

மேலே தரப்பட்ட (2.30) உதாரணத்தையே மீண்டும் நோக் குவோம்.

X	x^2
60	3600
65	4225
70	4900
80	6400
85	7225
90	8100
x = 450	$\Sigma x^2 = 34450$

= 10.7 (முன்னர் பெற்ற விடையுடன் ஓப்பிடுக)

(ஆ) கூட்டமாக்கப்படாத தரவுகளேக்கொண்ட மிடிறன் பரம்பலுக்கான நியமவிலகல்

மாறி X ஆனது x_i ; $i=1,2,\ldots,n$ என்ற பெறுமானங்கீன முறையே f_1,f_2,\ldots,f_n என்னும் ஒத்த மீடிறன்களுடன் எடுக்கின்ற தென்க.

X இன் நியமவிலகல் 🔬 ஆனது,

$$\triangle = \sqrt{\sum_{i=1}^{n} f_i (x_i - \overline{X})^2}$$
 என்பதனுலே தரப்படும்.

இங்கு N — தரப்பட்ட மீடிறன்களின் மொத்த எண்ணிக்கை, \overline{X} — தரப்பட்ட பரம்பலின் இடை. கீழ்வரிபுகளே நீக்கி எழுதிஞல்,

$$\triangle = \sqrt{\frac{\sum f(x - \overline{X})^2}{N}}$$

மேலும் இலகுவான வடிவத்திலே.

உதாரணம் 2.16 இலே கொடுக்கப்பட்ட பரம்பலின் நியம் விலகலேக் காண்க.

வாராந்த வருமானம் X	f	fx	fx ²
55	4	220	12100
65	. 8	520	33800
75	15	1125	84375
90	10	900	81000
110	6	660	72600
135	4	540	72900
165	3	495	81675
	$\Sigma f = 50$	$\Sigma f_X = 4460$	$\Sigma f x^4 = 438450$

இலகுவான முறையிற் நியமனிலகலிரேக் கணித்தல்; உற்பத்தி மாற்றம்

இடங்காணல் அளவையில், அளவின் தொடக்கநிலேயை வேருரு புள்ளிக்கு மாற்றுவதைலை இடையின் பெறுமானத்தில் ஏற்படும் மாற்றத்தின் அவதானித்தோம். அதேபோல, அளவின் தொடக்க நிலேயை மாற்றும்போது அது மாறற்றிறனின் பெறு மானத்தில் எவ்வித பாதிப்பினே ஏற்படுத்துகின்றதென்பதையும் அவ தானிப்போம்.

உற்பத்தியானது வலப்பக்கம் கிடைவீச்சு a ஆகவுள்ள புள்ளிக்கு நகர்த்தப்படுகின்றதென்க. புதிய அச்சுக்கள் பற்றி **D** என்னும் மாறியை, D = X - a என வரையறுப்போம். எனவே,

$$V(D) = V(X-A)$$

$$= \underbrace{\left[\sum (x-a) - (\overline{X}-a)\right]^{9}}_{n}$$

$$= \underbrace{\left[\sum x^{2} - 2ax + a^{2} - 2(x-a)(\overline{X}-a) + (\overline{X}-a)^{2}\right]}_{n}$$

$$=\frac{\sum (x^3-2x\bar{X}+\bar{X}^{\frac{1}{2}})}{n}$$

$$= \frac{\sum (x - \bar{X})^2}{n}$$
$$= V(X)$$

அதாவது, V(X-a)=V(X)

இதேபோல, உற்பத்தி இடப்பக்கம் கிடைவீச்சு a ஆக ஷிள்ள புள்ளிக்கு நகர்த்தப்படினும் V(X+a) = V(X) எனக் காட்ட லாம்.

எனவே, உற்பத்தி மாற்றம் மாறற்றிறனின் பெறுமானத் தினே எல்விதத்திலும் பாதிக்கமாட்டாது.

மீடிறன் பரம்பலொன்றைக் குறிக்கும் மாறி X இனது அள வின் தொடக்க நிஃயை வலப்பக்கம் கிடைவீச்சு a ஆகவுள்ள புள்ளிக்கு மாற்றும்போது பெறப்படும் புதிய மாறியை D என்க. அதாவது, இங்கு d=x-a

எனின், X இன் நியமவிலகல்

$$\triangle = \sqrt{\frac{\sum f d^2}{N}} - \left(\frac{\sum f d}{N}\right)^2 \dots (5)$$

உதாரணம் 2.33

-

மேலேதந்த (2.32) உதாரணத்தில், சமன்பாடு (5) இண உப யோகித்து நியமவிலகலேக் காண்க.

வாராந்த வேருமானம் X	f	D=X-90	fd	fd ²
55	4	-35	140	4900
65	8	25	-200	5000
75	15	15	-225	3575
90	10	0	0	0010
110	6	20	120	2400
135	- 4	45	180	100000000000000000000000000000000000000
165	3	75	225	8100 16875
மொத்தம்	50	3	-40	40650

$$\therefore \triangle = \sqrt{\frac{40850}{50} - \left(\frac{-40}{50}\right)^{8}}$$

$$= \sqrt{813 - 0.64}$$

$$= \sqrt{812.36}$$

$$= 28.5 \quad (முன்னர் பெற்ற விடையுடன் ஒப்பிடுக)$$

எனின், குறிப்பிட்ட 50 தொழிலாளிகளின் வருமானங்கள் ரூ. 89.2 சராசரியினேயும், ரூ. 28.5 நியமவிலைக ஃயும் கொண்டு பரம் பப்பட்டுள்ளன.

மேலுள்ள உதாரணத்திலிருந்து, நோக்கிய இடையொன்றைக் கருதிக்கொண்டு உற்பத்தியை மாற்றுவதால் நியமவிலகலுக்கான கணித்தல் ஓரளவில் இலகுபடுத்தப்படுகின்றது.

(இ) கூட்டமாக்கப்பட்ட தரவுகளேக்கொண்ட மீடிறன் பரம்பலுக்கான நியமனிலகல்

இதுவரை, நாம் கூட்டமாக்கப்படாத தரவுகளினதும், மீடி நன் பரம்பல்களினதும் நியமவிலகலே எவ்வாறு கணிப்பது என்ப தண் அவதானித்தோம். மாருக, தரவுகள் தனியான பெறு மானங்களாகக் காணப்படாது வகுப்புகளாகக் காணப்படும்போது எவ்வாறு அத்தகைய பரம்பலொன்றினது நியமவிலகலின் பெறு மானத்தைக் கணிப்பது என்பதனே அவதானிப்போம். முன்னர் போல் இங்கும் வகுப்புகளின் நடுப் பெறுமானமே மாறியேற்கின்ற பெறுமானமாகக் கொள்ளப்படும். : ஆவது வகுப்பின் நடுப்பெறு மானம் m; எனின் பரம்பலின் நியமவிலகல்,

$$\triangle = \sqrt{\sum_{i=1}^{n} f_i (m_i - \overline{X})^2}$$

இலகுவான வடிவில்

உதாரணம் 2.34

உதாரணம் 2.2 இலே தரப்பட்ட மீடிறன் பரம்பலே எடுத்துக் கொள்வோம். இங்கு தரவுகள் வகுப்பாக்கப்பட்டுக் காணப்படு இன்றன. மாணவர் பெற்ற புள்ளியைக் குறிக்கும் மாறியினது நியமவிலகலேக்காண்க

வகுப்பு	வகுப்பின் நடுப் பெறுமானம் m	ம். டி. றன ர	fm	fm2
30 - 39	34.5	4	138.0	4761.0
40 - 49	44.5	6	267.0	11881.5
50 59	54 5	9	490.5	26732.25
60 - 69	64.5	12	774.0	49923.0
70 - 79	74.5	8	596.0	44402.0
80 89	84.5	7	591.5	49981.75
90 - 99	94.5	4	378.0	35721.0
மொத்தம்		50	3235.0	223402.5

$$\therefore \triangle = \sqrt{\frac{2234085}{50} - \left(\frac{3235}{50}\right)^2}$$

$$= \sqrt{4468.05 - 4186.09}$$

$$= \sqrt{281.96}$$

$$= 16.79$$

எனவே, மேலே தரப்பட்ட உதாரணத்திலிருந்து தரப்பட்ட பரம்பலின் நியமவிலகலினே சமன்பாடு (6) இனே உபயோகித்துக் சணிப்பது கடினமாகத் தோன்றுகின்றது. இங்கு, நாம், பரம் பலேக் குறிக்கும் மாறியின் உற்பத்தியை மாற்றுவதன்மூலம் கணித் தலே இலகுபடுத்தலாம்.

உற்பத்தியானது வலதுபக்கம் கிடைவிச்சு a ஆகவுள்ள புள்ளிக்கு மாற்றப்படுகின்றதென்க. அத்துடன் d=m-2 எனில் முன்னர்க் காட்டியது போல,

உதாரணம் 2.35

மேலுள்ள (2.34) உதாரணத்தில், சமன்பாடு (7) இண் உப யோகித்து நியமவிலகஸேக் காண்க.

வகுப்பின் நடுப் பெறுமானம் m	D=m 64.5	f	fd	d^2	fd^{n}
34.5	-30	4	120	900	3600
44.5	20	6	120	400	2400
54.5	10	9	-90	100	900
64.5	0	12	0	0	0
74.5	10	8	80	100	800
815	20	7	140	400	2800
94.5	30	4	120	900	3600
மொத்தம்		50	10		14100

$$\therefore \triangle = \sqrt{\frac{14100}{50} - {10 \choose 50}^2}$$

$$= \sqrt{282 - 0.04}$$

$$= \sqrt{281.96}$$

= 16.79 (முன்னர் பெற்ற விடையுடன் ஒப்பிடுக)

இலகுவான முறையிற் நியமவிலகஸ்க் கணித்தல்; உற்பத்தி மாற்றமும் அளவிடை மாற்றமும்

மீடிறன் பரம்பலொன்றைக் கொண்டுள்ள மாறியொன்றின் உற் பத்தியை மாற்றுவதனுல் மாறற்றிறனின் பெறுமானத்திலேற்படும் பாதிப்பினே அவதானித்தோம். கூட்டமாக்கப்பட்ட மீடிறன் பரம்ப லொன்றின் வகுப்புகள் சம அளவான வகுப்பாயிடைகளே அல்லது குறிப்பிட்ட எண்ணினுற் பிரிபடச்கூடிய ஆயிடைகளேக் கொண் டிருக்கும்போது, நாம் தரப்பட்ட பரம்பீலக் குறிக்கும் மாறியின் உற்பத்தியை மாற்றுவதோடு அதன் அளவிடையினேயும் மாற்ற முடிகின்றது. இரண்டினேயும் மாற்றியபின்னர் மாறற்றிறனின் பெறுமானம் எவ்வாறு மாற்றமடைகின்றதெனக் கீழே அவதானிப் போம். மாறியின் பரம்பலானது c என்னும் சமமாை வகுப்பாயிடை களேக் கொண்ட வகுப்புகளே அல்லது c இறை பிரிபடக்கூடிய வகுப்பாயிடைகளேக் கொண்ட வகுப்புகளேக் கொண்டுள்ளதென்க. மாறியின் உற்பத்தியை வலதுபக்கம் கிடைவீச்சு a ஆகவுள்ள புள்ளிக்கு இடமாற்றிய பின்னர், முன்னேய அளவிடையின் c இல் ஒரு மடங்கு (1/c) புதிய அளவிடையாகக் கொள்ளப்படுகின்றது.

அதாவது, D = X - a

அளவிடை மாற்றப்பட்டபின்னர் புதிய மாறி U எனின்,

$$U = \frac{D}{c}$$

அதாவது, $X = a + \epsilon U$

எனவே, கூட்டமாக்கப்பட்ட தரவுகளேக் கொண்ட மீடிறன் பரம்பலொன்றைக் குறிக்கும் மாறியின் உற்பத்தியை வலதுபக்கம் கிடைவீச்சு a ஆகவுள்ள புள்ளிக்குமாகவும், அதனது அளவிடை 1/c மடங்காகவும் மாற்றப்படுகின்றதென்க.

இங்கு,
$$X = a + cU$$

 $\implies m = a + cu$

எனவே,

$$\triangle^2 = c^2 \left[\frac{\sum fu^2}{N} - \left(\frac{\sum fu}{N} \right)^2 \right]$$

அத்துடன், X இன் நியமவிலகல் 👃 ஆனது,

$$\triangle = c \sqrt{\frac{\sum fu^2}{N} - \left(\frac{\sum fu}{N}\right)^2} \dots (8)$$

என்பதனுலே தரப்படும்.

உதாரணம் 2.36

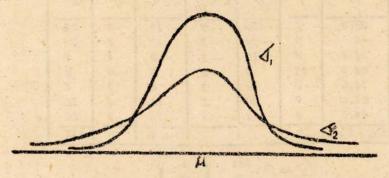
மேலே தரப்பட்ட (2.35) உதாரணத்தில், சமன்பாடு (8) இன் உபயோகித்து நியமவிலைகலேக் காண்க.

இங்கு வகுப்பாயிடை அளவுகள் (10) சமமாகக் காணப்படுவ தால்,

$$c = 10$$
 உம், $\frac{D}{10} = U$ உம் எனக் கொள்வோம்.

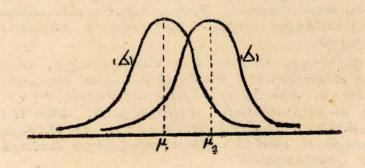
m	f	D	$U=\frac{D}{10}$	fu	u^2	fu ²
34.5	4	-30	-3	-12	9	36
44.5	6	20	-2	12	4	24
54.5	9	-10	-1	9	1	9
64.5	12	0	0	0	0	0
74.5	8	10	1	8	1	8
84.5	7	20	2	14	4	28
94.5	4	30	3	12	9	36
மொத்தம்	50			+1		141

= 16.79 (முன்னர் பெற்ற விடையுடன் ஒப்பிடுக)


சமன்பாடு (7) இணே உபயோகித்துப் பரம்பலின் நியமவில கலேக் கணிப்பதைவிட, சமன்பாடு (8) இணே உபயோகித்து நியமவிலகலேக் கணிப்பின், கணித்தல் மேலும் இலகுபடுத்தப்படு வதைக் காணமுடிகின்றது. எனவே, மாணவர்கள் எப்பொழுதும் பரம்பலொன்றின் மதிப்புகளேக் காணும்போது இலகுவான முறை களேயே கையாளவேண்டும். இதனைல், நேரத்தை மிச்சப்படுத்துவ தோடு கணித்தலும் இலகுவாக இருக்குமாதலால் தவறுகளேயும் நீக்கமுடியும்.

இப்பொழுது, புள்ளிவிபரவியல் விரிவுரையாளனுல், பொரு ளியல் விரிவுரையாளனின் விஞவிற்குத் தீர்க்கமான விடையளிக்க முடிகின்றது. அதாவது, வகுப்பிலுள்ள மாணவர்கள் சராசரி யாக 65 என்ற புள்ளியைப் பெற்றிருப்பதுடன், அவை 16.79 நியமவிலகலேயும் கொண்டுள்ளன. அதாவது, சராசரியிலிருந்து இருபுறமும் 17 புள்ளிகள் பரந்து காணப்படுகின்றன எனச்சுருக்க மான பதிலுளிக்கமுடியும்.

குறீப்பு :


உதாரணமாக, இழுத்தல், அடி என்பன முறையே நிறையை யும், நீளத்தையும்அளக்கும் அலகுகள் என்பதைப்போல நியமவிலக லானது ஒரு பரம்பலின் பிரிகையை, அதாவது, பரந்திருக்கும் அளவை அளக்கும் அலகாகக் கொள்ளப்படுகின்றது.

ஒரே இடையின்யும் வித்தியாசமான நியமவிலகஃயிம் கொண்ட இரு பரம்பல்கள் கிழேயுள்ள படத்திற் காட்டப்பட்டுள் வன.

பரம்பல் A இன் நியமவிலகல் Δ_1 ஆனது, பரம்பல் B இன் நியமவிலகல் Δ_2 இஃன விடச் சிறி தாகும். அதாவது, A பரந் நிருக்கும் அளவு, B பரந்திருக்கும் அளவைவிடச் சிறி தாகும். (Δ_1 < Δ_2)

வித்தியாசமான இடையையும் சமமான நியமவிலகஃயும் கொண்ட இரு பரம்பல்கள் கீழேயுள்ள படத்திற் காட்டப்பட்டுள் ளன.

உதாரணம் 2,37

கம்பனியொன்றில் தொழில்புரியும் 50 தொழிலாளிகளினது ஊதியங்களேக் கொண்ட மீடிறன் பரம்பலொன்று உதாரணம் 2.3 இலே கொடுக்கப்பட்டுள்ளது. தொழிலானிகள் பெறும் ஊதியங் களினது இடைவிலகஸேயும், நியம விலகஸேயும் காண்க.

வரைவிலக்கணத்தால், இடைவிலகல்
$$= \frac{\sum f|m-\bar{X}|}{N}$$

இங்கு $\overline{X} = 89.2$

வகுப்பு	வகுப்பின் நடுப் பெறுமானம் m	f	$m = \overline{X}$	$f \mid m - \overline{X} \mid$
50 60	55	4	34.2	136.8
60- 70	65	8	24.2	193.6
70- 80	75	15	14.2	198.0
80-100	90	10	0.8	8.0
100-120	110	6	22.8	136.8
120-150	135	4	45.8	184.0
150-180	165	3	75.8	227.1
மொத்தம்		50		1084.3

். இடை விலகல் =
$$\frac{1084.3}{50}$$

= 21.686

நியமனிலகில சமன்பாடு (8) இனே உபயோகித்துக் காண்போம்.

வகுப்பின் நடுப் பெறுமானம் m	f	D=m-90	U = D/3	uª.	fu	fu ²
55	4	35	7	49	-28	196
65	8	25	5	25	40	200
75	15	15	3	9	45	185
90	10	0	0	0	0	0
110	6	20	4	16	24	96
135	4	45	9	81	36	924
165	3	75	15	225	45	675
மொத்தம்	50			AR	-8	1626

தொடர்புப் பிரிகை (Relative Dispersion)

இதுவரை நாம் தனிப்பட்ட பரம்பல்களிற் காணப்படும் மாறு பாடுகளேயே அவதானித்தோம். ஆனுல் இரண்டு வேறுபட்ட பரம் பல்களின் மாறுபாடுகளே ஒப்புநோக்கவேண்டுமானுற் பல சிக்கல் கள் எழுகின்றன. மாறிகளின் அலகுகள் வேறுபட்டுக் காணப் படின் அவற்றை ஒப்பிடமுடியாது. அலகுகள் ஒன்றுகக் காணப்படி னும் வேறு பல சிக்கல்கள் எழுகின்றன. குறிப்பிட்ட மாறியினது நியமவிலகல் மற்றைய மாறியினது நியமவிலகலே விடப்பெரிசாகக் காணப்படின், முதலாம் மாறி அதிகளவு மாறுபாடுடையடு நனக் கூறிவிடமுடியாது. அதாவது, நியமவிலகலளவை மட்டும் கொண்டு உடனடியாக மேற்குறிப்பிட்டவை போன்ற முடி களே எடுக்கமுடியாது. உதாரணமாக, இரு வேறு பரீட்சைகளிற் குறிப் பிட்ட ஒரு வகுப்பு மாணவர்கள் பெற்ற புள்ளிகளே நோக்கு வோம். முதலாம் பரீட்சையில் மாணவர்கள் பெறக்கூடிய ஆகக் கூடிய புள்ளி 100 ஆக இருக்கும்போது, 6 நியமவிலகலேயும் சரா சரியாக 60 புள்ளியினேயும், இரண்டாம் பரீட்சையில் அவர்கள் பெறக்கூடிய புள்ளி 1000 ஆக இருக்கும்போது, 8 நியமனிலகலேயும் சராசரியாக 800 புள்ளியினேயும் பெற்றனர். இதிலிருந்து, நாம் இரண்டாம் பரீட்சையில் மாணவர்கள் பெற்ற புள்ளிகள் கூடிய பிரிகை உடையன எனக் கூறுவது தவருகும். எனவே, பரம்பல் களே ஒப்பிடச் சார்பு விலகலே பயன்படுத்தப்படுகின்றது.

சார்பு விலகல்
$$=$$
 $\frac{8}{8}$ $\frac{8}{8}$ $\frac{8}{8}$ $\frac{8}{8}$ $\frac{8}{8}$ $\frac{8}{8}$ $\frac{8}{8}$ $\frac{8}{8}$

தனியான விலகலுக்குப் பதிலாக நியமவிலகல் பாவிச்கப்படின் சார்பு விலகலானது மாறற் குணகம் எனப்படும். அதாவது,

மாறற் குணகம் $V = \angle X$ இது மாறியின் அலகுகளிலே தங்கியிருக்கமாட்டாது.

மாறற் குண்கத்தினேப் பயன்படுத்தி வெவ்வேறு பரியல் களின் பிரிகைகளே ஒப்பிடமுடியும். பொதுவாக இது சதவித்த்தி லேயே உணர்த்தப்படும். மேலே தந்த உதாரணங்களில்,

1ஆம் பரீட்சைக்கான மாறற் குணகம்

 $V_1 = \frac{1}{X_1} = \frac{6}{60} = \frac{1}{10}$

2ஆம் பரிட்சைக்கான மாறற் குணகம்

 $V_2 = \angle_2 / \overline{X}_2 = 8/8000 = 1/100$

2 ஆம் பரீட்சையின் சார்பு விலகலின் பத்திலொரு மடங் காகும்.

எனவே. தனியான மாறுபாடுகளின் அளவை அவற்றிற்குரிய சரானிகளுடன் தொடர்புபடுத்தியபின்னரே (அதாவது, விலகல் கள் எவற்றிலிருந்து அளக்கப்படுகின்றனவோ அவற்றிலிருந்தே) அடை: பொருளுடையனவாகக் காணப்படுகின்றன. சராசரியின் மதிட்டனுலும் நியமவிலகலின் அளவாலும் மாறற்குணகம் பாதிக் கப்ப இன்றது. அநேகமான நிலேமைகளில் 🖁 🔏 என்பன மாற்ற மடை பும்போதும், V ஆனது அண்ணளவாக மாருததாகக் காணப் படும் மேலும், V இனதும் 📈 இனதும் பெறுமானங்கள் படின் 🔏 இன் பெறுமானம், 🔏 🕳 $V\,\overline{X}$ என்பதிலிருந்து மதிப் மாதிரியெடுப்பிலே, மதிப்பிட்ட மாறற்றிறனது பிடப்படலாம். நம்பதகவை சோதிப்பதற்கும் மாறற் குணகம் பயன்படுத்தப்படு கின் து. தரவுகள் ஒராயமான தாகக் காணப்படின் V இன் பெறு மானம் பெரிதாகின்றது. இங்கு பொருத்தமான நியமவிலகலேக் கணிப்பதற்குப் பெரிய எண்ணிக்கை கொண்ட தரவுகள் தேவைப் படுகின்றன.

2.5.3: gjau sammasán (Measures of skewness)

இதுவரை நாம் மீடிநன் பரம்பல்களின் இடங்காணல் அளவைகள் பழ்றியும் பிரிகைஅளவைகளேப் பற்றியுமே அவதானித்தோம். அதாவது, மையநிலேப்போக்குகளேயும் அவற்றிலிருந்து தரவுகளின் வில லக்கோயும் அளவிடமுடிந்தது. ஆஞல், தரப்பட்ட மீடிறன் பரப்பலின் சமச்சீர்த்தன்மையை அறிந்து கொள்வதற்கு வேரேர் அளவை தேவைப்படுகின்றது. இந்த அளவையும் தெரியப்படின் நாம் யாதாயினுமொரு மீடிறன் பரம்பலின் சிறப்பை விரிவாக எடுத்துக்கூறமுடியும். மீடிறன் பரம்பலின் சிறப்பை விரிவாக எடுத்துக்கூறமுடியும். மீடிறன் பரம்பலென்று சமச்சீரானதாக இருக்கும்போதுதான் அதன் இடை, இடையம், ஆகாரம் என்பன ஒன்றுடன் ஒன்று பொருந்தியும், பரம்பல்கள் ஒராயமானதாகக் கானப்படும்போது மேற்குறிப்பிட்ட பெறுமானங்கள் வித்தியாச மானதாயும் காணப்படும். இரண்டாம் வகையில், இடையிற்கும், ஆகாரத்திற்கும்இடையே அதிக அளவு வேறுபாடு காணப்படும். இவ்

வேறுபாட்டளவே ஓராயத்திக்கை அளக்கப் பயன்படுகின்றது. வெவ் வேறு பரம்பல்களின் ஓராயத் தன்மையை ஒப்புநோக்குவதற்காக இங்கும் தனியான வேறுபாட்டை விட்டு, தொடர்பு வேறுபாடே கருத்திற்கொள்ளப்படுகின்றது.

யாதுமொரு பரம்பலின் ஓராயமானது சமச்சிரில்லாத தன்மை யின் அளவை அல்லது சமச்சிர்த்தன்மையிலிருக்கும் அதனது வில கலேக் குறிக்கின்றது.

இதனேப் பின்வருமாறும் எழுதலாம்.

சமச்சீரான பரம்பலுக்கு இவ் அளவையின் மதிப்பு பூச்சிய மாகும். ஏனெனில், இங்கு இடையும், ஆகாரமும் ஒரே பெறுமான முடையனவாகும். பிற நிலேமைகளில் இப்பெறுமானம் நேரான தாகவோ எதிரானதாகவோ காணப்படலாம்.

2.5.4: குடில் அளவைகள் (Measures of Kurtosis)

செவ்வன் வளேயியை நியமமானதாக எடுத்துக்கொண்டு அத னின்றும் மீடிறன் வளேயிகளின் உச்சப்படுத்தும் தன்மையை குடில அளவைகளேப் பயன்படுத்தி அறியமுடிகின்றது. அதாவது, குடில அளவை என்பது யாதுமொரு பரம்பலின் உச்சப்படுத்தும் நிலே யைக் குறிப்பதாகும். இவ் அளவையும் சில சமயங்களில் ஆராய்ச் சிக்கு வேண்டப்படுகின்றது.

உதாரணமாக, வெவ்வேறு ஆண்டுகளில் வீஸ்யின் ஏற்றவிறக் கங்களேக் காட்டும் மீடிறன் வளேயியொன்று வரையப்படின். அது செவ்வன் வளேகோட்டைவிடக் கூரியதாகக்காணப்படும். இங்கு குடில அளவானது மைய அளவைச் சுற்றிச் செறிவு அதிகமாகக் காணப்படுகின்றதைச் சுட்டிக்காட்டுவதனுல், இது மிகவும் பொரு ளுடையதாகும்.

2.6: பயிற்கேள்

- வகுப்பாக்கலின் உட்கருத்தை விளக்கி புள்ளிவிபரவியலில் அதனது தேவையினே ஆராய்க.
- 2. வகுப்பாக்கலென்றுல் என்ன? அதனது நோக்கங்கள், சிறப் பியல்புகள் யாவை?
- 3. பிடிறன் பரம்பலொன்றின் வீச்சு, வகுப்பாயிடை, வகுப்பு என்பவற்றை நிர்ணயிக்கும்போது கருத்திற்கொள்ள வேண்டிய வற்றைத் தருக.

அல்லது மீடிறன் பரம்பலொன்றை வரையறுக்குக. இதனே அமைக்கும் போது மேற்கொள்ளப்படும் அடிப்படை நோக் கங்கள் யாவை?

- அளவுரீ இயான வகுப்பாக்கத் இனையும், பண்புரீ தியான வகுப் பாக்கத் தீ வேயும் வேறுபடுத்துக.
- 5. பின்வருவனபற்றிச் திறகுறிப்பெழுதுக.
 - (அ) தனிப்பட்ட புள்ளிவிபரங்கள்.
 - (ஆ) பின்னக மாறி
 - (இ) தொடர்மாறி
 - (ஈ) எளியமீடிறன், திரட்டுமீடிறன், தொடர்பு மீடிறன்.
- அட்டவணேப்படுத்தல் என்பதிலிருந்து யாது விளைங்குகின்றீர்? புள்ளியியல் ஆய்வில் அதனது கணிப்பீட்டினேக் குறிப்பிடுக.
- 7. மையநிஃப் போக்கிலிருந்து யாது விளங்குகின்றீர்? வெவ் வேறு மையநிஃப்போக்குகளே விளக்குக.
- 8. கூட்டலிடையை வரையறுத்து அதனது அனுகலம், பிரதி கூலங்களேத் தருக,
- 9. பின்வருவனபற்றிச் சிறுகுறிப்பெழுதுக.
 - (அ) கட்டலிடை
 - (ஆ) பெருக்கலிடை
 - (இ) நிறையேற்றப்பட்ட கூட்டலிடை
- 10. யாதாயினும் ஒரு பரம்பலுக்கான இடை, இடையம், ஆகா ரம் என்பவற்றுக்கான வரைவிலக்கணங்களேத் தந்து அவற் றிற்கிடையேயுள்ள தொடர்பை விளக்குக.

- 11. பின்வரும் நோக்கல்களுக்கான ஆகாரம், இடையம், கூட்ட விடை, பெருக்கலிடை, என்பவற்றைக் காண்க.. 3, 5, 10, 7, 5, 8, 2, 5, 1, 6, 6, 4, 5, 4.
- 12. கீழே தரப்பட்டுள்ள பரம்பலுக்கான இடையைக் காண்க.

X	f
100-	3
200 —	4
300-	11
500	9
700 —	6
1000-	4
1500-2000	3
	40

மேற்படி பரம்பலுக்கான இடையம், என்பன முறையே 544 எனத்தரப்படின் மீடிறன் பரம்பலின் வடிவத்தைக் குறிப்பிடுக.

13. புள்ளிவிபரவியலில் 80 மாணவர்கள் பெற்ற புள்ளிகள் கீழே யுள்ள அட்டவஃணயில் தரப்பட்டுள்ளன. இடை, இடையம், மேல், கீழ்க்காலணேகள், ஆகாரம், என்பனவற்றைக் காண்க.

புள்ளிகள்	f
0 9	8
10 19	9
20 - 29	. 15
30 39	30
40 49	18
50 — 59	5
	80

மேற்படி பரம்பலுக்கான இழைவரையத்தை வரைக.

- 14. பச்சைத்தரவு, பந்தி என்பவற்றை வேறுபடுத்தி விளக்குக.
- 15. குறிப்பிட்ட கிராமமொன்றிலிருந்து எழுமாருகத் தெரியப் பட்ட 40 விவசாயிகளிடமிருந்து பெற்ற குறிப்பீட்ட நெல் வகைக்கொத்த விளேச்சல் (புசல், ஓர் ஏக்கருக்கு) பற்றிய தகவல்கள்:

					1000		4.
16	35	45	55	58	36	24	54
67	69	55	54	53	35	27	55
51	53	53	56	57	33	26	20
44	45	47	49	50	32	26	49
43	44	41	42	37	33	24	56

- (அ) தரப்பட்ட தரவுகளேப் பந்தியுருவில் அமைக்குக.
- (ஆ) பந்தியை இரு சமபங்காகப்'பிரிக்கும் பெறுமானம் என்ன?
- (இ) தரப்பட்ட புள்ளிகளே வகுப்பாயிடைகளாகப் பிரித்து. மீடிறன், திரட்டு மீடிறன், தொடர்பு மீடிறன், என்ப வற்றிற்கான அட்டவணேயை அமைக்குக.
 - (ஈ) இ பகுதியிலிருந்து தரப்பட்ட தரவுகளுக்கான இடை யின் பெறுமானத்திணக் காண்க.
- 70 வேலேயாட்களின் வாராந்த வருமானம் பின்வரும் கூட்ட மாக்கப்பட்ட மீடிறன் அட்டவணேயில் தரப்பட்டுள்ளது.

and the second	
வருமானம்	f_{-}
50—	8
60-	10
70	16
80	15
100-	10
120-	8
150—180	3
81	70

மேற்படி பரம்பலுக்கான இழைவரையத்தை வரைக.

17. தொழிற்சாஃயொன்றில் வெவ்வேறு வாராந்த ஊதியம் பெறும் தொழிலாளர்களின் எண்ணிக்கை கீழுள்ள அட்ட வணேயிலே தரப்பட்டுள்ளது. இதற்கான திரட்டு மீடிறன் வளேயியை வரைக.

ஊதியம் (ரூபா) 20 21 22 23 24 25 26 27 28 தொழிலாளர்களின் எண்ணிக்கை 8 10 11 16 20 25 15 9 6

 ஒரு மாறி X இனது கூட்டமாக்கப்பட்ட மீடிறன் பரம்பலட்ட வணே கீழே கொடுக்கப்பட்டுள்ளது.

X	f
0 5	5
5 — 10	8
10 — 15	12
15 20	7
20 25	5
25 — 30	3

- (அ) பரம்பலுக்கான திரட்டு மீடிறன் வளேயியை வரைக.
- (ஆ) பகுதி (அ) இணப் பயன்படுத்தி, பரம்பலின் இடை யத்தைக் காண்க.
- (இ) மாறி X ஆனது 13 இலும் கூடிய பெறுமானங்களே எத்தணே தடவைகள் எடுக்கின்றன.
- (ஈ) பரம்பலின் இடையினேக் காண்க.
- 19. தொழிற்சாலேயொன்றில் உற்பத்தியான மின்குமிழ்களிலிருந்து, எழுமாருகத் தெரியப்பட்ட 30 மின்குமிழ்களின் ஆயுட் காலங்கள் சோதிக்கப்பட்டு முடிபுகள் கீழ்வரும் அட்டலைண யிற் காட்டப்பட்டுள்ளன.

ஆயுட்காலம்	மின்குமிழ்களின்	<i>जार्डाच</i>	ணிக்கை
200 300		2	
300 400		.5	
400 500		7	*#
500 600	100	10	
600 700	2x / 27 / 24	8	* 31 -
700 - 800		6	2
800		2	

- (அ) தரவினது திரட்டு மீடிறன் வளேயியை வரைக.
- (ஆ) மின்குமிழ்களின் ஆயுட்காலத்தின் இடையத்தின்க் காண்க.
- (இ) 350 மணித்தியாலத்தினதும் கூடிய ஆயுட்காலத்தினக் கொண்ட மின்குமிழ்களின் எண்ணிக்கை யாது?
- வகுப்பொன்றிலுள்ள 100 மாணவர்கள் கணிதப் பரீட்சையிற் பெற்ற புள்ளிகள் கீழே தரப்பட்டுள்ளன.

46	ர்ளிகள்	மாணவர்களின்	எண்ணிக்கை
	0 9		5
	10 — 19		10
	20 — 29		25
	30 39		30
	40 49		20
	50 59		10

- (அ) மாணவர்கள் பெற்ற சராசரிப் புள்ளி யாது?
- (ஆ) பரம்பலுக்கான திரட்டு மீடிறன் வளேயியை வரைக.
- (இ) சித்திப்புள்ளி 40 எனின் சித்தியடையும் மாணவர் களின் எண்ணிக்கை யாது?
- மாணவர்கள் 2/3 பங்கினர் சித்தியடையுமாறு சித்திப் புள்ளியை தீர்மானிக்க.
- (உ) மேற் காலணேயிலும் கூடிய மாணவர்கள் எல்லோரும் செத்தியடைய வேண்டுமெனின் சித்திப் புள்ளி யாது?
- 21. பிரிகை அளவை என்பதனே விளக்கி, தனி யான பிரிகை, என்பவற்றை வேறுபடுத்துக.
- 22. புள்ளிவிபரவியல் பிரிகையின் முக்கியத்துவத்தினே ஆராய்க்.
- 24. பின்வருவனவேற்றிற்குச் சிறுகுறிப்பெழுதுக. (அ) வீச்சு (ஆ) இடை விலைகல் (இ) நியமவிலகல்
- 24. உதாரணங்கள் 13, 20 இல் கொடுக்கப்பட்ட ப'ரம்பல் களுக்கான நியமவிலகல்களேக் காண்க.
- 25. ஒரு வகுப்பிலுள்ள 100மாணவர்களினது உயரங்கள் பின் வரும் மீடிறன் அட்டவஃணயிற் கொடுக்கப்பட்டுள்ளன.

உயரம் (அங்.)	. மீடிறன்
59.5 - 62.5	5
62.5 - 65.5	18
65.5 68.5	42
68.5 — 71.5	27
71.5 - 74.5	8

மாணவர்களின் உயரத்தினது சராசரி, இடை விலகல், நியம விலகல் என்பவற்றைக் காண்க.

- 26. மாறற் குணகத்தை வரையறுத்து, உதாரணம் 13 இலே கொடுக்கப்பட்ட பரம்பலுக்கான மாறற் குணகத்தைக் காண்க.
- 27. ஓராயம் என்பதிலிருந்து யாது விளங்குகின்றீர்? பின்வரும் தரவிற்கான பியசனின் ஒராயக் குணகத்தைக் காண்க. 25, 15, 23, 40, 27, 25, 23, 25, 20, 25, 20.

* A. G. Stationary to a

புள்ளிவிபரவியல் பற்றிய ஆய்வாணது, முக்கியமாகத் தரவு களேயே (உதாரணமாக, நாட்டின் வருமானம், மக்கள்தொகை விவசாய, கனரக உற்பத்திகள், மக்கள் வருமானம், வேலேயற் ருேர்தொகை,..... போன்றவற்றை) அடிப்படையாகக் கொண்டுள் ளமையைக் காணக்கூடியதாக இருக்கின்றது. இங்கு எமக்கு வேண்டிய முழுத்தரவுகளேயும் சேகரிப்பது, இயலாததும் செயல்முறைக்கு ஒவ்வாததும் சிக்கனமற்றதொன்றுகவும் இருப்பதால் ஒரு குறிப் பிட்ட பகுதித் தரவுகளே சேகரிக்கப்படுகின்றன. இவ்வாறு பெறப் படும் மாதிரித் தரவுகளே சேகரிக்கப்படுகின்றன. இவ்வாறு பெறப் படும் மாதிரித் தரவுகளே சேகரிக்கப்படுகின்றன. இரட்டக்கு தரவுகள் சரியான வையாகவும், குடியினது வகைமாதிரியாயும் காணப்படல் அவசி யமானதாகும். இத்தரவுகள் ஒழுங்குபடுத்தப்பட்டு வெவ்வேறு குணுதிசயங்களின் அடிப்படையில் தொகுக்கப்பட்டுப் பின்னர். இவற்றிலிருந்து ஒப்புக்கொள்ளத்தக்க முடிபுகள் பெறப்படுகின்றன:

இம்முடிபுகளிலிருந்து குடிபற்றிய பொருத்தமான தீர்மானங்கள் மேற்கொள்ளப்படுகின்றன.

குடியொன்றின் வகைமாதிரியை ஆராய்ந்து அதிலிருந்து குடி பற்றிய முக்கியமான முடிபுகளே அனுமானிக்கக் கூடிய அனுமா னம், என்ன நிபந்தீகையில் கீழ் ஒப்புக்கொள்ளக் கூடியது என்று ஆராயப்படும் புள்ளிவிபரவியற்பகுதி, தொகுத்தறி புள்ளிவிபரவி யல் அல்லது புள்ளியியல் அனுமானம் (Statistical Inference) எனப்படும். அத்தகைய அனுமானம் முற்மூய் உறுநியாக இருக்க முடியாது என்பதால், முடிபுகளேக் கூறும்போது நிகழ்தகவுப் பரி பாஷையே பயன்படுத்தப்படும். மாதிரிக்கும் குடிக்குமிடையேயுள்ள தொடர்பு நிகழ்தகவுக் கொள்கையையே ஆதாரமாகக் கொண்டுள்ள மையால் புள்ளியியல் அனுமானத்தை ஆராய முன்பாக நிகழ் தகவுக் கொள்கையினே ஆராய்வோம்.

3.1: நிகழ்தகவுக் கொள்கை (РВОВАВІЛІТУ ТНЕОВУ)

அன்ருட வாழ்க்கையில் இயற்கையாக நிகழக்கூடிய பல எதிர் கால நிகழ்ச்சிகளின் விளேவுகள் அல்லது அவை பற்றி மனத்திலே கோன்றும் எண்ணங்கள், கருத்துகள் போன்றவற்றைப் போது மான அளவு திட்டவட்டமாக வரையறுத்துக் கூறுதல் பகுத்தறி விற்கப்பாற்பட்டதொன்றுகும். எனினும், பல நிலேமைகளில் எதிர் கால நிகழ்ச்சிகளின் விளேவுகள் அவை நேருவதற்கு முன்னமே வேண்டப்படுகின்றன. இவ்வாறு திட்டவட்டமாகக் கூறமுடியாத சந்தர்ப்பங்களிலேதான் நிகழ்தகவு பயன்படுத்தப்படுகின்றது. நிகழ் ககவு பயணபடுத்தப்படும்போது நிகழ்ச்சி நிகழ்வது சந்தேகத்திற்கு இடமானதா என்பதை அறிய முடிகின்றது. எனவே, நிகழ்ச்சி நேர்தகவுக் காரணத்தையொட்டி நிகழக்கூடியதாகவும் மீண்டும் மீண்டும் ஏற்படக்கூடியதாகவும் உள்ளதோ, அவ்வித நிகழ்ச்சிகளுக்கே நிகழ் தகவு பயனளிக்கின்றது. பொதுவாக நிகழ்ச்சிகள் நிகழ்வதை ஓரளவிற்கு அளவிட்டு எண்ணளவில் சுறுவதே நிகழ்தகவு ஆகும். இவ்விதம் அளவிட்டுக் பொது அறிவிற்கு முரண்படாதிருத்தல் விரும்பத்தக்கதாகும்.

புள்ளியியல் ஒழுங்குகளே வாய்ப்புக் கோட்பாடு (Chance Phenomena) வெளிக்காட்டுகின்றது என்ற அவதானிக்கப்பட்ட உண்மையின் விளேவே, நிகழ்தகவுக் கொள்கையின் பயன்பாடா கும். உதாரணமாக, ஒரு நாணயம் (Coin) சுண்டப்படும்போது 'பூவா, தஃயோ' (Hor T) விழும் என்று எதிர்வு கூறமுடியாது.

அதேபோல, ஒரு தாயக்கட்டை எறியப்படும்போது எம்முகம் மேல் , நோக்கியதாய் (அதாவது, 1, 2, 3, 4, 5, 6 என்ற புள்ளிகளில்) அத்தாயக்காய் விழும் என்றும், உதைபந்தாட்டப் போட்டியில் ஒரு கோஷ்டி வெற்றி பெறுவதற்கான சந்தர்ப்பம், ஒரு மனிதன் மேலும் எத்தணே வருடங்கள் உயிர் வாழலாம் என்பதற்குரிய வாய்ப்பு, நாளே மழை பெய்வதற்கான சாத்தியம்,போன்ற வற்றை எதிர்வு கூறமுடியாது. மேலே தந்த எல்லா வகைகளி லும் நாம் எதிர்கால நிகழ்ச்சிகளேயே கவனத்திற் கொண்டோம். அத்துடன் அவ்விளேவுகள் நிச்சயமற்ற தன்மையையும் கொண்ட னவாகக் காணப்படுகின்றன. அவற்றிற்கான தீர்வின் எவ்வாறு கணிப்பது என்பதனேக் கீழே ஆராய்வோம். எனினும் சில வேனே களில் மேற்படி சந்தர்ப்பங்களிற் பின்வரும் பரும்படியான முடிபு கள் எடுக்கப்படுகின்றன. ''அநேகமாக நாடீன மழை பெய்யலாம்'', ''குறிப்பிட்ட ஒரு மனிதன் 100 வருடங்கள் வரை உயிர் வாழ் வதற்கு சிறிய வாய்ப்புண்டு'',''போட்டியில் வெற்றி பெறுவதற்கு 50:50 சாத்தியங்கள் உண்டு ' போன்ற சில எண்ணளவான முடி புகள் எடுக்கப்படுகின்றன.

காப்புறுதி (Insurance) போன்ற பிரச்சண்களிலேயே வாய்ப் புக் கோட்பாடு பற்றிய புள்ளியியல் ஒழுங்குகள் அதி செயன் முறை முக்கியத்து வம் வாய்ந்தவையாகக் காணப்படுகின்றன. உதாரணமாக, தனிப்பட்ட ஒருவரின் ஆயுட்காலத்தை எதிர்வு கூறுதல் இயலாத காரியமாக இருக்கின்றபோதிலும் தனிப்பட்ட வர்களேக்கொண்ட பெரிய குடிகளின் ஆயுட்காலங்கள் பற்றித் திட்பமான கூற்றுகள் மேற்கொள்ள முடிகின்றது. கணிதரீதி யான நிகழ்தகவு பற்றிய ஆய்வில், என்ன நிபந்தனேகளின்கிழ் நிச்சயமற்ற நிகழ்ச்சிகள் பற்றிய தீர்க்கமான, அர்த்தமுள்ள முடி புகள் எடுக்கப்படுகின்றன என்பதுபற்றி ஆராய்வோம்.

நிகழ்நகவிற்கான பழைய வரைவிலக்கணம்

வரைவிலக்கணம் 3.1

சமமாக நிகழக்கூடிய n நிகழ்ச்சிகளில், நிகழ்ச்சி A ஆனது s முறை நேர்ந்தால் A இன் நிகழ்தகவு,

 $P\left(A\right)=p=s/n$ என வரையறுக்கப்படும்.

எனின் யாதுமொரு நிகழ்ச்சியின் நிகழ்தகவைக் காண்பதற்கு இரண்டு தெரியாக் கணியங்கள் காணப்படவேண்டும்.

- (i) நடைபெறக்கூடிய மொத்த விளேவுகளின் எண்ணிக்கை,
- (ii) குறிப்பிட்ட நிகழ்ச்சிக்குச் சாதகமான விளேவுகளின் எண் ணிக்கை.

உதாரணம் 3.1

தாயக்காயொன்று எறியப்படும்போது ஆறு இயல்தகு வீண்வு கள் பெறப்படும். 1, 3, 5 என்னும் ஒற்றை எண்களே மூன்று வெவ் வேறு வழிகளிலே பெறலாம்.

எனவே, மேற்குறிப்பிட்ட பரிசோதனேயின்போது ஒற்றை எண்ணிக்கை புள்ளிகள் பெறுவதற்கான நிகழ்தகவு,

$$p = 3/6 = 1/2$$
 ஆகும்.

உதாரணம் 3.2

ஒரு நாணயம் மீண்டும் மீண்டும் 10 முறை சுண்டப்பட்ட போது 'தஃல' நான்கு முறைகள் பெறப்பட்டதெனின், ஒரு 'தஃல' பெறப்படுவதற்கான நிகழ்தகவு,

$$P(H) = 4/10$$

அதேபோல, $P(T) = 6/10$

குறிப்பு:

''ஒரு நாணயத்தைச் சுண்டல்'', ''ஒரு தாயக்காயை எறி தல்'' முதலியவை பரிசோதண்கள் எனப்படும். இது வழமையாக £என்பதனுற் குறிக்கப்படும்.

இனி, நிகழ்தகவிற்கு மாதிரிவெளி மூலம் நவீன வரைவிலக் கணம் கூறுவோம். அதற்கு முன்பாக பின்வருவனவற்றை வரை யறுப்போம்.

3.2: மாதிவெளி (SAMPLE SPACE)

வரைவிலக்கணம் 3.2

பரிசோ தணேயொன்றின் எல்லா இயல் தகு விஃளவுகளின் தொடை அப்பரிசோ தஃனயுடன் சேர்க்கப்படும் மா திரிவெளி எனப் படும். இது வழமையாக S என்பதஞற் குறிக்கப்படும்.

உதாரணம் 3.3

ஒரு பரிசோதணே \mathcal{E}_1 ஆனது, ஒரு நாணயம் இரண்டுமுறை சுண்டப்பட்டுப்பின் அதன் தஸே (H), பூ (T) தோன்றும் வரிசையை நோக்குதஸேக் குறிப்பின், இங்கு 4 இயல்தகு வீளேவுகள் பெறப் படும்.

அவையாவன, (HH),(HT),(TH),(TT)

எனவே மாதிரிவெளி $S = \left\{ (HH), (HT), (TH), (TT) \right\}$

உதாரணம் 3.4

ஒரு பரிசோதணே \mathcal{E}_2 ஆனது, ஒரு தாயக்காய் எறி த ஃ க் குறிக்கின்றதென்க. அதன் மேல் நோக்கிய முகத்திலுள்ள புள்ளி களின் எண்ணிக்கையை நோக்கின், 6 இயல்தகு விஃாவுகள் பெறப் படும்.

அவையாவன: 1, 2, 3, 4, 5, 6 ஆகும்.

எனவே பரிசோதனே 2, இன் மாதிரிவெளி,

$$S = \left\{1, 2, 3, 4, 5, 6\right\}$$

உதாரண்ம் 3.5

ஒரு பரிசோதண் \mathcal{E}_3 ஆனது இரு தாயக்காய்களே எறிந்து ஓவ்வொன்றின் மேல்மூகத்திலுள்ள புள்ளிகளின் எண்ணிக்கையை நோக்கு தஃலக் குறிப்பின், அதன் மாதிரிவெளி,

$$S = \left\{ (1,1) \ (1,2) \ (1,3) \ (1,4) \ (1,5) \ (1,6) \\ (2,1) \ (2,2) \ (2,3) \ (2,4) \ (2,5) \ (2,6) \\ (3,1) \ (3,2) \ (3,3) \ (3,4) \ (3,5) \ (3,6) \\ (4,1) \ (4,2) \ (4,3) \ (4,4) \ (4,5) \ (4,6) \\ (5,1) \ (5,2) \ (5,3) \ (5,4) \ (5,5) \ (5,6) \\ (6,1) \ (6,2) \ (6,3) \ (6,4) \ (6,5) \ (6,6) \right\}$$

இது 36 மூலகங்களேக் கொண்டிருக்கும்.

இரண்டினதும் மேல்முகத்திற் பெறப்படும் எண்ணிக்கையின் கூட்டுத்தொகையை எடுப்போமாகில், மாதிரிவெளி S ஆனது,

உதாரணம் 3.6

**

ஒரு பரிசோதணே \mathcal{L}_4 ஆனது 5 செங்குண்டுகளேயும் 3 வெண்குண்டுகளேயும் கொண்டுள்ள ஒரு பெட்டியிலிருந்து, ஒரு குண்டு எழுமாருக **எடுக்கப்பட்டு அதன்** நிறத்தை நோக்குதலேக் கு**றிப்** பின் அதன் மாதிரிவெளி S ஆனது 8 மூலகங்களேக் கொண்டிருக் கும். R_1 , R_2 , R_3 , R_4 , R_5 என்பன 5 செங்குண்டுகளேயும் W_1 , W_2 , W_3 என்பன 3 வெண்குண்டுகளேயும் குறிப்பின், இயல் தகு விளேவுகள் R_1 , R_2 , R_3 , R_4 , R_5 , W_1 , W_2 , W_3 ஆகும்.

ਗਲਾਉਂਗ,
$$S = \left\{ R_1, R_2, R_3, R_4, R_5, W_1, W_2, W_3 \right\}$$

குறிப்பு:

e என்பது எடுக்கப்படும் குண்டு செந்நிறம் என்னும் விளேவையும் f என்பது எடுக்கப்படும் குண்டு வெண்நிறம் என்னும் விளேவையும் குறிப்பின்,

மாதிரிவெளி
$$S = \left\{e,f
ight\}$$
 என எழுதுவது தவருகும்.

உதாரணம் 3.7

ஒரு பரிசோதனே \mathcal{E}_5 ஆனது 3 கருங்குண்டுகளேயும், 2 வெண்குண்டுகளேயும் கொண்ட பெட்டியொள்றிலிருந்து இரண்டு குண்டுகள் ஒவ்வொன்றும் எழுமாருக எடுக்கப்பட்டு அவற்றின் நிறங்கள் குறிக்கப்படுதலேக் குறிக்கின்றதென்க. இங்கு 5 குண்டுகளும் வெவ்வேருனவை எனக் கொள்ளப்படும்.

வகை (1)

குண்டுகள் பிரதிவைப்பில்லாமல் (Without Replacement) ஒவ் வொன்றுக எடுக்கப்படுகின்றன எனக் கொள்க.

3 கருங்குண்டுக 2 ன $B_1,\,B_2,\,B_3$ என்பதனையம் 2 வெண்குண்டுக 2 ன $W_1,\,W_2$ என்பதனையம் குறிக்க.

எனின் மாதிரிவெளி,

$$S = \left\{ (W_{1}, W_{2}) (W_{1}, B_{1}) (W_{1}, B_{2}) (W_{1}, B_{3}) \\ (W_{2}, W_{1}) (W_{2}, B_{1}) (W_{2}, B_{3}) (W_{2}, B_{3}) \\ (B_{1}, W_{1}) (B_{1}, W_{2}) (B_{1}, B_{2}) (B_{1}, B_{3}) \\ (B_{2}, W_{1}) (B_{2}, W_{2}) (B_{2}, B_{1}) (B_{2}, B_{3}) \\ (B_{3}, W_{1}) (B_{3}, W_{2}) (B_{3}, B_{1}) (B_{3}, B_{2}) \right\}$$

இது 20 இயல்தரு விளேவுகளேக் கொண்டிருக்கும்.

வகை (2)

குண்டுகள் பிரதிவைப்புடன் (With Replacement) ஒவ்வொன் ருக எடுக்கப்படுகின்றன எனக்கொண்டால் மேலே தந்த 20 இயல் தகு விளேவுகளுடன் (B_1,B_1) (B_2,B_2) (B_3,B_3) (W_1,W_1) (W_2,W_2) என்னும் ஐந்து விளேவுகளுமாக, 25 இயல்தகு விளேவுகள் பெறப்படும்.

மாதிரிப்புள்ளி (Sample Point)

வரைவிலக்கணம் 3,3

மா திரிவெளியிலு**ள்ள ஒ**ரு மூலகம் மா திரிப்புள்ளி அல்லது மா திரி எனப்படும்.

நிகழ்ச்சி (Event)

வரைவிலக்கணம் 3.4

ஒரு மாதிரிவெளியின் தொடைப்பிரிவு ஒன்று ஒர் நிகழ்ச்சி எனப்படும்.

உதாரணம் 3.3இலே, $\bigg\{ (HH) \, (HI) \, \bigg\}$, $\bigg\{ (HH) \, (TH) \, (TT) \, \bigg\}$ என்பன நிகழ்ச்சிகளாகும்.

ஆரம்ப நிகழ்ச்சி (Elementary I vent)

வரைவிலக்கணம் 3.5

ஒரே மாதிரிவெளியின் மூலகம் ஒன்றை மாத்திரம் கொண் டுள்ள நிகழ்ச்சி ஆரம்ப நிகழ்ச்சி அல்லது ஒன்றி நிகழ்ச்சி எனப் படும்.

உதாரணம் 3.3 இலே, $\Big\{(HH)\Big\}$, $\Big\{(TT)\Big\},......$ போன் றவை ஆரம்ப நிகழ்ச்சிகளாகும்.

குறிப்பு:

விளேவு, மூடிவு, ஆரம்ப நிகழ்ச்சி, எளிய நிகழ்ச்சி, மாதிரிப் புள்ளி என்பவை ஒரே கருத்தை உடையன.

இயலா நிகழ்ச்சியும் திட நிகழ்ச்சியும் (Impossible Event And Sure Event)

வரைவிலக்கணம் 3.6

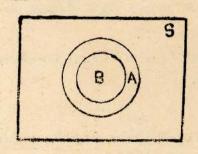
S எண்பது ஒரு பரிசோதண் & இன் மாதிரிவெளி என்க. எனின், S. **ச** என்பன Sஇன் தொடைப்பிரிவுகளாதலால் அவை நிகழ்ச்சிகளாகும்.

இங்கு ф என்பது இயலா நிகழ்ச்சி எனவும், S என்பது திட நிகழ்ச்சி எனவும் வரையறுக்கப்படும். அதாவது, பெறமுடியாத ஒரு நிகழ்ச்சி அல்லது விபரமில்லாத ஒரு நிகழ்ச்சி இயலா நிகழ்ச்சி எனப்படும்.

உதாாணமாக, ஒரு தாயக்காயை எறியும்போது '7' பெறப் படுவது இயலா நிகழ்ச்சியாகும்.

இங்கு 1, 2, 3, 4, 5, அல்லது 6 பெறப்படுவது நட நிகழ்ச்சியாகும்.

நிகழ்ச்சிகளின் சமம் (Equality of Events)

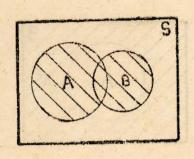

வரைவிலக்கணம் 3.7

A, B என்பன ஒரு மாதிரிவெளி Sஇலுள்ள இரு நிகழ்ச்சிக வென்க. A, B என்பவை ஒரே விஃாவிஃனக் கொண்டிருந்தால் மட்டுமே அவை சமமான நிகழ்ச்சிகள் எனப்படும்.

நிகழ்ச்சிகளின் உள்ளடக்கம் (Inclusion of Events)

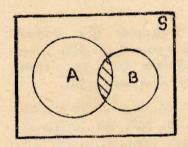
வரைவிலக்கணம் 3.8

. t-61 -



A, B என்பன ஒரு மா தி ரி வெளி Sஇலுள்ள இரு நிகழ்ச்சிகள் என்க. நிகழ்ச்சி B யிலுள்ள ஒவ்வொரு விளேவும், நிகழ்ச்சி A யிணச் சார்ந்திருந் தால் மட்டுமே நிகழ்ச்சி A ஆனது நிகழ்ச்சி Bயிண உள் ளடக்கியது எனப்பட்டு, A⊇B என்பதாலே குறிக்கப்படும்.

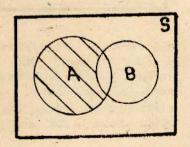
நிகழ்ச்சிகளின் ஒன்றிப்பு (Union of Events)


வரைவிலக்கணம் 3.9

A. B என்பன ஒருமாதிரி வெளி S இலுள்ள எவையே னும் இரு நிகழ்ச்சிகளென்க. எனின் A இலுள்ள அல்லது B இலுள்ள அல்லது A, B ஆகி யவை இரண்டி லுமுள்ள எல்லா மாதிரிப்புள்ளிகளேயும் கொண்ட நிகழ்ச்சி, A, B என்னும் நிகழ்ச்சி களின் ஒன்றிப்பு எனப்படும் இவ்வொன்றிப்பு AUB என்ப தாலேகுறிக்கப்படும்.

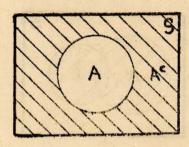
குறிப்பு: (i) $A \cup A = A$ (ii) $A \cup S = S$ $A \cup \phi = A$

நிகழ்ச்சிகளின் இடைவெட்டு (Intersection of Events) வரைவிலக்கணம் 3.10



A, B என்பன ஒருமாதிரி வெளி Sஇலுள்ள எவையேனும் இரு நிகழ்ச்சிகள் என்க. எனில் இவ் விரு நிகழ்ச்சிகளுக்கும் பொதுவான எல்லா மாதிரிப் புள்ளிகளின் திரள் இவற்றின் இடைவெட்டு எனப்படும்.

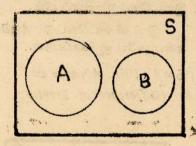
இ வ் வி டைவெட்டு $A \cap B$ என்பதாலே குறிக்கப்படும்.


குறிப்பு: (i) $A \cap A = A$ (ii) $A \cap S = A$ (iii) $A \cap \Phi = \Phi$ நிகழ்ச்சிகளின் வித்தியாசம் (Difference of Events) வரைவிலக்கணம் 3.11

A, B என்பன ஒருமாதிரிவெளி Sஇலுள்ள எவையேனும் இரு நிகழ்ச்சிகளென்க. எனின் வித் தியாசம் A-B ஆனது, B இலே கிடவாதனவும் ஆணுல் Aஇலே கிடக்கின்றனவுமான மாதி ரிப்புள்ளிகளேக் கொண்டுள்ள தொடை எனப்படும்.

நிரப்பு நிகழ்ச்சி (Complementary Event)

வரைவிலக்கணம் 3.12


A என்பது ஒரு மாதிரி வெளி g இலுள்ள யாதேனும் ஒரு நிகழ்ச்சி என்க. எனின், A ஐச் சேராத S இலுள்ள எல்லா மாதிரிப்புள்ளிகளின் திரள் A இன் நிரப்பு நிகழ்ச்சி அல்லது A இன் நிரப்பி எனப் படும். இந்நிரப்பி A அல்லது A என்பதாலே குறிக்கப்படும்.

குறிப்பு: (i) $\overline{S} = \Phi$, (ii) $S \cap \overline{A} = S - A = \overline{A}$

மூட்டற்ற நிகழ்ச்சிகள் அல்லது தம்முள் புறநீக்கும் நிகழ்ச்சிகள் (Disjoint Events or Mutually Exclusive Events)

வரைவிலக்கணம் 3.13

A, B என்பன ஒருமாதிரிவெளி S இலுள்ள இரு நிகழ்ச்சி கள் என்க. A இற்கும் B இற்கும் பொதுவான மாதிரிப் புள்ளி கள் யாதுமில்லே எனின் A, B ஆகியவை மூட்டற்ற நிகழ்ச்சி கள் அல்லது தம்முள் புறநீக்கும் நிகழ்ச்சிகள் எனப்படும்.

அதாவது, A∩B = Ф எனின் A, B ஆகியவை தம்முள் புற நீக்கும் நிகழ்ச்சிகளாகும். அதா வது. இரு நிகழ்ச்சிகளில் ஏதா வது ஒன்று நிகழும்போது மற்றைய நிகழ்ச்சி நிகழாவண்ணம் தடைப்படுமானுல் அவ்விரு நிகழ்ச்சிசனும் தம்முள் புறநீக் கும் நிகழ்ச்சிகள் எனப்படும்.

உதாரணமாக, ஒரு நாணயத்தைச் சுண்டும்போது தலே அல்லது பூ விழலாம். ஆணுல் ஒரே நேரத்தில் இரண்டும் விழமுடியாது. எனவே, இவ்விரு நிகழ்ச்சிகளும் தம்முள் புறநீக்கும் நிகழ்ச்சிகள் எனப்படும். அதேபோல, ஒரு மனிதன் குறிப்பிட்ட காலம்வரை உயிர்வாழலாம் அல்லது அதற்கு முன்பாகவே இறந்து விடலாம். ஆணுல் அவன் உயிர் வாழ்ந்துகொண்டு இறக்கவும் முடியாதா கையால் இவ்விரு நிகழ்ச்சிகளும் மூட்டற்றவை. மேலும் ஒரு தாயக்காயை எறியும்போது 6 முகங்களில் ஏதாவது ஒரு முகம் மேல் தோன்றியதாய் விழலாம். ஆனுல் ஒன்றிற்கு மேற்பட்ட முகங்கள் ஒரே நேரத்தில் மேல் நோக்கி விழமுடியாதாகையால் இங்கு 6 மூட்டற்ற நிகழ்ச்சிகள் காணப்படுகின்றன.

நிகழ்ச்சிகளின் அட்சரகணித விதிகள்

விடுகள்	ஓன்றிப்பு	இடைவெட்டு
l. பரிவர்த்த ீன வி தி	$A \cup b = B \cup A$	$A \cap B = B \cap A$
2. சேர்த்தி விதி	AU(BUC) = (AUB)UC	$(A \cap B) \cap C = A \cap (B \cap C)$
3. அதேவலு விதி	$A \cup A = A$	$A \cap A = A$
4. சர்வசமன்பாட்டு விதி	$A \cup \Phi = A, A \cup S = S$	$A \cap \Phi = \Phi, A \cap S = A$
	$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$
6. நிரப்பி விதி	$A \cup \overline{A} = S, (\overline{A}) = A$	$A \cap \overline{A} = \Phi$
7. உள்ளடக்கிய விதி	$A\subseteq (A\cup B), B\subseteq (A\cup B)$	$(A \cap B) \subseteq A, (A \cap B) \subseteq B$
8. பரம்பல் விதி	$A \cup (B \cap C) =$	$A\cap (B\cup C)=$
	(AUB) \(\lambda \UC)	

இங்கு A, B, C என்பன ஒரு மாதிரிவெளி S இலுள்ள எவை யேனும் மூன்று நிகழ்ச்சிகளாகும்.

குறிப்புரை:

(1) தமோகன் விதியானது இரண்டிற்கு மேற்பட்ட நிகழ்ச்சி களுக்கும் விரிக்கப்படலாம்.

 A_1, A_2, \ldots, A_n என்பன S இலுள்ள எவையேனும் n நிகழ்ச்சிகள் என்க. எனின்,

$$\overline{(A_1 \cap A_2 \cap \dots \cap A_n)} = \overline{A_1 \cup \overline{A_2} \cup \dots \cup \overline{A_n}}$$

$$\mathcal{A}_{\mathcal{B}} \mathcal{B}_{\mathcal{B}} \mathcal{B}_{\mathcal{B}} \mathcal{B}_{\mathcal{B}},$$

$$(\overline{A_1 \cup A_2 \cup \dots \cup A_n}) = \overline{A_1 \cap \overline{A_2} \cap \dots \cap \overline{A_n}}$$

(2) பரம்பல் விதியும் இரண்டிற்கு மேற்பட்ட நிகழ்ச்சிகளுக்கு விரிக்கப்படலாம்.

 A, A_1, A_2, \ldots, A_n என்ப**ன** S இலுள்ள எவையேனும் n+1 நிகழ்ச்சிகளெனின்,

 $AU(A_1 \cap A_2 \cap \dots \cap A_n) = (AUA_1) \cap (AUA_2) \cap \dots \cap (AUA_n)$ $AU(A_1 \cap A_2 \cap \dots \cap A_n) = (AUA_1) \cap (AUA_2) \cap \dots \cap (AUA_n)$ $AU(A_1 \cap A_2 \cap \dots \cap A_n) = (AUA_1) \cap (AUA_2) \cap \dots \cap (AUA_n)$

 $A \cap (A_1 \cup A_2 \cup \dots \cup A_n) = (A \cap A_1) \cup (A \cap A_2) \cup \dots \cup (A \cap A_n)$

(3) $A_1, A_2,, A_n$ என்பன மாதிரிவெளி S இலுள்ள நிகழ்ச்சி களின் முடிவுள்ள சேகரிப்பு எனின்,

 $(A_1 \cup A_2 \cup \cup A_n)$ உம் $(A_1 \cap A_2 \cap \cap A_n)$ உம் அதே மாதிரிவெளியைச் சேர்ந்த நிகழ்ச்சிகளாகும்.

இங்கு, $(A_1 \cup A_2 \cup \ldots \cup A_n)$ என்பது, A_i ; $i=1,2,\ldots$, n என்பவற்றிலுள்ள யாதாயினும் ஒரு நிகழ்ச்சி நேர்ந்தால் நேரும்.

ஆணல், $(A_1 \cap A_2 \cap \dots \cap A_n)$ என்பது, A_i ; $i=1,2,\dots$..., n என்பவற்றிலுள்ள எல்லா நிகழ்ச்சிகளும் நேர்ந்தால் மட்டுமே நேரும்.

முடிவுள்ள மாதிரிவெளிகளும் முடிவில் மாதிரிவெளிகளும் (Finite and Infinite Sample Spaces)

வரைவிலக்கணம் 3.14

ஒரு மாதிரிவெளிபானது முடிவுள்ள மாதிரிப் புள்ளிகளேக் கொண்டிருப்பின் அது முடிவுள்ள மாதிரிவெளி எனவும், அல்லா விடில் அது முடிவில் மாதிரிவெளி எனவும் வரையறுக்கப்படும்.

பின்னக மாதிரிவெளிகளு**ம்** தொடர் மாதிரிவெளிகளு**ம்** (Discrete and Continuous Sample Spaces)

வரைவிலக்கணம் 3.15

ஒரு மாதிரிவெளியிலுள்ள மாதிரிப்புள்ளிகள் எண்ணத்தகுவன வெனின் (Countable) அது பின்னக மாதிரிவெளி எனவும், அல் லாவிடில் அது தொடர் மாதிரிவெளி எனவும் வரையறுக்கப்படும்.

குறிப்பு:

(i) மேற்றந்த உதாரணங்களில் நாம் எடுத்துக்கொண்டவை யெல்லாம் முடிவுள்ள பின்னக (எண்ணத்தக்கவை) மாதிரி வெளிகளே ஆகும்.

- (ii) 'ஒரு நேர் முழுவெண்ணே சேருதல்' தரும் மாதிரிவெளி முடிவற்ற பின்னக மாதிரிவெளியாகும்.
- (iii) 'பஸ் தங்குமிடத்தில் பஸ்ஸிற்காக ஒருவன் காத்து நிற்பது' தரும் மாதிரிவெளி தொடர் மாதிரிவெளியாகும்.

குறிப்பு:

எந்த வொரு நிகழ்ச்சியின் நிகழ்தகவும் நேரானதாகவும், எல்லா நிகழ்தகவுகளினதும் கூட்டுத்தொகை எப்பொழுதும் ஒன்று கவும் காணப்படும்.

3.3: சமமாய் நேரக்கூடிய ஆரம்ப நிகழ்ச்சிகள் (EQUALLY LIKELY ELEMENTARY EVENTS)

ஆரம்ப நிகழ்ச்சிகள் ஒவ்வொன்றும் நேரக்கூடிய சாத்தியக் கூறுகள் உண்டென்ருல் அவ்வாரம்ப நிகழ்ச்சிகள் சமமாய் நேரக் கூடியன என்று எடுத்துக்கொள்வோம்.

எல்லா ஆரம்ப நிகழ்ச்சிகளும் சமமாய் நேரக்கூடியனவென்று எண்ணுவதற்குக் காரணங்கள் உண்டென்ருல் அவ் ஆரம்ப நிகழ்ச் சிகள் ஒவ்வொன்றிற்கும் ஒரே நிகழ்தகவை வழங்குவோம். இவ் வாருன நிகழ்தகவு வழங்கல் இயற்கை நிகழ்தகவு வழங்கல் எனப்படும். எனவே, ஒரு மாதிரிவெளி n ஆரம்ப நிகழ்ச்சிகளேக் கொண்டிருந்தால், இயற்கை நிகழ்தகவு வழங்கலிலே ஒவ்வொரு ஆரம்ப நிகழ்ச்சியின் நிகழ்தகவு = 1/n ஆகும்.

சமமாய் நேரக்கூடிய ஆரம்ப நிகழ்ச்சிகளுக்கு உதாரணங்கள்

- ஒரு கோடலற்ற நாணயம் சுண்டப்படும்போது சமமாய் நேரக்கூடிய இரு ஆரம்ப நிகழ்ச்சிகள் பெறப்படும். ஒவ் வொன்றினதும் நிகழ்தகவு 1/2 ஆகும்.
- ஒரு கோடலற்ற தாயக்காய் எறியப்படும்போது சமமாய் நேரக்கூடிய ஆறு ஆரம்ப நிகழ்ச்சிகள் பெறப்படும். ஒவ் வொன்றினதும் நிகழ்த்கவு 1/6 ஆகும்.
- 3. இரு கோடலற்ற தாயக்காய்கள் எறியப்படும்போது சமமாய் நேரக்கூடிய 36 ஆரம்ப நிகழ்ச்சிகள் ((1,1),, (6,6)) பெறப்படும். ஒவ்வொன்றினதும் நிகழ்த்தவு 1/36 ஆகும்.

119 Appropriate Technology Service

இயற்கை நிகழ் தகவு வழங்கலிலே ஒரு நிக்ச்சியின் நிகழ்தகவு வரைவிலக்கணம் 3.16

ஒரு பரிசோதணேயின் ஆரம்ப நிகழ்ச்சிகள் சமமாய் நேரக் கூடியன எனின் மாதிரிவெளி S இலுள்ள ஒரு நிகழ்ச்சி E இன் நிகழ்தகவு ஆனது, E இலுள்ள ஆரம்ப நிகழ்ச்சிகளின் எண்ணிக் கைக்கு S இலுள்ள ஆரம்ப நிகழ்ச்சிகளின் எண்ணிக்கையின் விகித மாகும்.

அதாவது, $P(E)=rac{E}{S}$ இலுள்ள ஆரம்ப நிகழ்ச்சிகளின் எண்ணிக்கை

$$=\frac{N(E)}{N(S)}$$

குறிப்பு:

ஒரு பரிசோதண்டின் விளேவுகள் (ஆரம்ப நிகழ்ச்கிகள்) சம மாய் நேரக் கூடியனவோ அல்லவோ என்று எதிர்வு கூறமுடிய வில்லே எனின், இவ்வகை ஆரம்ப நிகழ்ச்சிகளுக்கான நிகழ்தக வைப் பின்வருமாறு வரையறுப்போம்.

ஒரு பரிசோதனே மீண்டும் மீண்டும் N தரம் ஆற்றப்படுகின் றதென்க. இங்கு குறித்த ஓர் ஆரம்ப நிகழ்ச்சி E, Ne தரம் நேருகின்றதெனில், நிகழ்ச்சி Eஇற்கான நிகழ்தகவு, = Ne/N ஆகும்.

உதாரணம் 3.8

ஒரு கோடலற்ற தாயக்காய் எறியப்படுகின்றதெனில், இரட்டை எண்ணிக்கைப் புள்ளிகள் பெறுவதற்கான நிகழ்தகவு என்ன? தரப்பட்ட பரிசோதஃனக்குரிய மாதிரிவெளி,

$$S = \left\{ 1, 2, 3, 4, 5, 6 \right\}$$

E என்பது 'இரட்டை எண்ணிக்கைப் புள்ளிகள் பெறும்' நிகழ்ச்சி என்க. அதாவது, $E = \left\{ 2, 4, 6 \right\}$. ஆணுல் S ஆனது சமமாய் நேரக்கூடிய 6 ஆரம்ப நிகழ்ச்சிகளேக் கொண்டுள்ளது.

:.
$$P(E) = \frac{N(E)}{N(S)} = \frac{3}{6} = \frac{1}{2}$$

உதாரணம் 3.9

கோடலற்ற ஒரு நாணயம் இருதரம் சுண்டப்படுகின்ற**்தென்க.** எனின் (i) ஒரு தஃல மாத்திரம் (ii) ஒரு தஃலயாவது, பெறப்படும் நிகழ்ச்சிகளுக்கான நிகழ்த்கவுகள் என்ன?

தரப்பட்ட பரிசோதனேக்குரிய மாடுரிவெளி,

$$S = \left\{ (HH), \ (HI), \ (IH), \ (III), \ \right\}$$

S ஆனது சமமாய் நேரக்கூடிய 🛊 ஆரம்ப நிகழ்ச்சிகளேக் கொண்டுள்ளது.

(i) E₁ என்பது ஒரு தல் மாத்திரம் பெறப்படும் நிகழ்ச்சியைக் குறிக்கின்றதென்க. எனின்.

$$E_1 = \left\{ (HT), (TH) \right\}$$

$$P(E_1) = \frac{N(E_1)}{N(S)} = \frac{2}{4} = \frac{1}{2}$$

(ii) E_2 என்பது ஒரு தஃலயாவது பெறப்படும் நிகழ்ச்சியைக் குறிக்கின்றதென்க, எவின், $E_4 = \left\{ (HH), (HT), (TH) \right\}$

$$P(E_2) = \frac{N(E_2)}{N(3)} = \frac{3}{4}$$

குறிப்பு:

உதாரணம் 3.9இலே, பெறப்படும் தஃகளின் எண்ணிக்கையை மாதிரிவெளி கொண்டிருப்பின், S⇒ $\left\{0,1,2\right\}$. இங்கு S ஆனது சமமாய் நேரமுடியாத மூன்று ஆரம்ப நிகழ்ச்சிகஃரக் கொண்டுள் எது. எனவே, ஒரு தஃல பெறப்படுவதற்குரிய நிகழ்தகவு 1/3 என எழுதுவது தவருகும்.

உதுரணம் 3.10

கோட**ல**ற்ற இரு தாயக்காய்களேக் கொண்டு '7' எறிவதற் கான நிகழ்தகவு என்ன?

E என்பது இரு தாயக்காய்களேக் கொண்டு 7 எறியப்படும் நிகழ்ச்சியைக் குறிக்கின்றதென்க. ஆணல், மாதிரிவெளி S = { (1,1),(1,2)...... (6,5),(6,6) } இங்கு S ஆனது சமமாய் நேரக்கூடிய 36 ஆரம்ப நிகழ்ச்சிகளேக் கொண்டுள்ளது.

ஆஞல் நிகழ்ச்சி
$$E = \left\{ (1,6), (2,5), (3,4), (5,2), (6,1) \right\}$$
 $\therefore P(E) = \frac{N(E)}{N(S)} = \frac{6}{36} = \frac{1}{6}$

வரைவிலக்கணம் 3.16 ஆனது, மாதிரிவெளியிலுள்ள ஆரம்ப நிகழ்ச்சிகள் சமமாய் நேரக்கூடியன என்னும் எடுகோள் திருப்தி செய்யப்படின் மட்டுமே பொருத்தமானதாகும். பெரும்பாலான பரிசோ தனேகளில், ஆரம்ப நிகழ்ச்சிகள் சமமாய் நேரக்கூடியன வல்லாதவையாகக் காணப்படுகின்றன. எனவே, நிகழ்ச்சியொன் றிற்கான நிகழ்தகவினேப் பின்வருமாறு வரையறுப்போம்.

நிகழ்தகவு (Probability)

வரைவிலக்கணம் 3.17

S என்பது ஒரு பரிசோதணே & உடன் சேர்ந்த மாதிரிவெளி என்க. S இலுள்ள ஒவ்வொரு நிகழ்ச்சி A இற்கும் பின்வரும் வெளிப்படை உண்மைகளே திருப்தி செய்யுமாறு ஒரு எண் P(A) வழங்கப்படுமானுல், அவ்வெண் Aயின் நிகழ்தகவு எனப்படும்.

வெளிப்படை உண்மைகள்:

- (1) S இலுள்ள ஒவ்வொரு நிகழ்ச்சி A இற்கும் $O \leq P(A) \leq 1$
- $(2) \quad P(S) = 1$
- (3) A, B என்பன S இலுள்ள தம்முள் புறநீக்கும் நிகழ்ச்சிகளெனின் P(A∪B) = P(A) + P(B)
- (4) A₁,A₂,..... என்பன S இலுள்ள தம்முள் புறநீக்கும் நிகழ்ச்சிகளின் தொடரிகளெனின்,

$$P(A_1 \cup A_2 \cup) = P(A_1) + P(A_2) +$$

குறிப்பு:

வெளிப்படை உண்மை (4)ஐப் பயன்படுத்திப் பின்வரும் பொது வான முடிபை நாம் நிறுவலாம். அதாவது, ஏதாவது முடிவுள்ள n இற்கு. $P(A_1 \cup A_2 \cup \cup A_n) = P(A_1) + P(A_2) + + P(A_n)$

3.4: நிகழ்ச்சிகளின் நிகழ்தகவு பற்றிய தேற்றங்கள்

தேற்றம் 3.1

ு என்பது இயலா நிகழ்ச்சியாயின்,

நிறுவல்:

A என்பது Sஇலுள்ள யாதுமொரு நிகழ்ச்சியென்க எனின் A ு Ф = Ф அதாவது A உம் Ф உம் மூட்டற்றவையாகும். அத்துடன், AU Ф = A

இதிலிருந்து $P(A \cup \phi) = F(A)$

ஆன் வெ.உ. (3) ஆல், F(AU Ф) = P(A)+F(Ф)

$$P(A)+P(\Phi)=P(A)$$

$$P(\Phi)=0$$

குறிப்பு:

இத் தேற்றத் தின் மறு தலே உண்மையன்று. அதாவது, P(A)=O எனின், A= Ф என்னும் முடிபு பொதுவாக எடுக்கப் பட முடியாது. ஏனெனில், சில நிலேமைகளில் நேரக்கூடிய நிகழ்ச்சிகள் சிலவற்றிற்கும் நாம் பூச்சிய நிகழ்தகவை வழங்குகின்றேம்.

தேற்றம் 3.2

A என்பது Aயின் நிரப்பு நிகழ்ச்சியெனில்.

$$P(\overline{A}) = 1 - P(A)$$

நிறுவல்:

A, \overline{A} என்னு மிரு நிகழ்ச்சிகள் எடுத்துக் கொள்வோம். நிரப்பி விதியால் $A \cap \overline{A} = \Phi$. அதாவது, A, \overline{A} என்பன மூட்டற்ற வையாகும். அத்துடன், $A \cup \overline{A} = S$

:.
$$P(A \cup \overline{A}) = P(S) = 1$$
 (Gav. 2.(2)-80)

ஆனல் வெ.உ.(3)ஆல், $P(A \cup \overline{A}) = P(A) + F(\overline{A})$

$$P(A) + P(\overline{A}) = 1$$

$$P(\overline{A}) = 1 - P(A)$$

123

குறிப்பு:

ஒரு நிகழ்ச்சி நேருவதற்கான நிகழ்தகவு p எனின் அந் நிகழ்ச்சி நேராமலிருப்பதற்கான நிகழ்தகவு 1—p ஆகும்.

உதாரணம் 3.11

ஒரு பெட்டியிலே 6 செம்பந்துகள், 5 வெண்பந்துகள், 4 கரும் பந்துகள் உள்ளன. அப்பெட்டியிலிருந்து ஒரு பந்து எழுமாருக எடுக்கப்படுகின்றதெனில் எடுக்கப்பட்ட பந்து செம்பந்தல்லாம லிருப்பதற்கான நிகழ்தகவு என்ன?

எடுக்கப்பட்ட பந்து செம்பந்தாக இருப்பதற்கான நிகழ்தகவு,

$$P(R) = \frac{N(R)}{N(S)} = \frac{6}{6+5+4} = \frac{6}{15}$$
$$= \frac{2}{5}$$

எனின் எடுக்கப்பட்ட பந்து செம்பந்தல்லாமலிருப்பதற்கான நிகழ்த்கவு,

$$P(\overline{R}) = 1 - P(R) = 1 - 2/5$$

= 3/5

உதாரனம் 3.12

குறிப்பிட்ட ஒரு நகரத்தின் பொலீஸ் பிரிவு வெளியிட்ட தக வல்களிலிருந்து பின்வரும் புள்ளிவிபரங்கள் பெறப்பட்டன. சென்ற ஆண்டிலே காணுமற்போன மோட்டார் வாகனங்களில் 9 வீதமா னவை 10 அல்லது கூடிய வருட முதிர்ச்சியையும், 11 வீதமா னவை 5—9 வருட முதிர்ச்சியையும், 15 வீதமானவை 3—4 வருட முதிர்ச்சியையும், 20 வீதமானவை 2 வருட முதிர்ச்சியையும், 20 வீதமானவை ஒரு வருட முதிர்ச்சியையும், 55 வீதமானவை ஒன் றிலும் குறைந்த வருட முதிர்ச்சியையும் கொண்டுள்ளன. அதி காரி ஒருவரிடம் வாகனமொன்று காணுமற்போய்விட்டது என அறிவிக்கும்போது அவர், அது ஒரு வருடத்திலும் குறைந்த முதிர்ச்சியுடையதாக இருக்கலாம் எனக் கூறுகின்றுர். எனின், அவரின் கூற்று பிழையாக இருப்பதற்கான நிகழ்தகவு என்ன?

E₁, E₂,, E₃ என்பன முறையே காணுமற்போன வாக னங்கள் 10 அல்லது கூடியவருட முதிர்ச்சியை, (5—9) வருட முதிர்ச்சியை,, ஒரு வருடத்திலும் குறைந்த முதிர்ச்சியைக் கொண்ட நிகழ்ச்சிகளேக் குறிக்கின்றன என்க. முன்னேய வாகனத் திருட்டுகளே ஏற்படுத்திய சூழ்நிலேகள் தற்பொழுதும் மாறவில்லே என்ற எடுகோளின் அடிப்படையில் இங்கு தரப்பட்ட புள்ளிவிபரங்களே நாம் நிகழ்தகவுகளாகப் பயன் படுத்தலாம்.

அதாவது, $P(E_1) = 0.09$, $P(E_2) = 0.11,.....,P(E_6) = 0.25$ மேலுள்ள எடுகோளின்கீழ், அதிகாரியின் கூற்று சரியாக இருப்ப தற்குரிய நிகழ்தகவு,

 $P(E_6) = 0.25$. ஏனெனில், E_6 நிகழ்ச்சி நிகழ்ந்தால் மட்டுமே கூற்று சரியானதாகும்.

எனவே, நிகழ்ச்சி E_6 நிகழாவிட்டால், அதாவது, \overline{E}_6 நேர்ந் தால் கூற்று பிழையானதாகும்.

ஆகவே கூற்று பிழையாக இருப்பதற்கான நிகழ்தகவு,

$$F(\overline{E_6}) = 1 - P(E_6) = 1 - 0.25$$

= 0.75

தேற்றம் 3.3

A. B என்பன எவையேனும் இரு நிகழ்ச்சிகளெனின்.

$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$

நிறுவல்:

முதலில் (A∩B), (A∩B) என்னுமிரு நிகழ்ச்சிகஃளயும் ஆராய் வோம். இவற்றின் இடைவெட்டை நோக்கின்,

= 0

எனவே $(A \cap B)$, $(A \cap \overline{B})$ என்பவை மூட்டற்றவை. இவற்றின் ஒன்றிப்பை நோக்கின்,

$$(A \cap B) \cup (A \cap B) = A \cap (B \cup B)$$
 ; பரம்பல் விதியால்,
= $A \cap S$

 $I[(A \cap B) \cup (A \cap \overline{B})] = F(A)$

ஆனல் வெ. உ. (3) ஆல்,

 $P(A \cap B) \cup (A \cap \overline{B}) = P(A \cap B) + P(A \cap \overline{B})$

 $P(A) = P(A \cap B) + P(A \cap \overline{B})$

அதுபோல், $P(B)=P(A\cap B)+P(\overline{A\cap B})$ என நாம் நிறுவலாம்.

தேற்றம் 3.4

A, B என்பன எவையேனும் இரு நிகழ்ச்சிகளெனின், $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

நிறுவல்:

 $A, (\overline{A} \cap B)$ என்னுமிரு நிகழ்ச்சிகளேயும் ஆராய்வோம். $A \cap (\overline{A} \cap B) = (A \cap \overline{A}) \cap B$

 $= \phi \cap B$

அத்துடன்,

 $AU(\overline{A} \cap B) = (AU\overline{A}) \cap (AUB)$ $= S \cap (AUB)$ = (AUB)

எனின், $P(A \cup (\overline{A} \cap B)) = P(A \cup B)$ ஆஞல் வெ.உ (3) ஆல்,

> $P(A \cup (\overline{A} \cap B)) = P(A) + P(\overline{A} \cap B)$ = $P(A) + P(B) - P(A \cap B)$: தேற்றம் 3.3 ஆல் : $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

குறிப்பு:

 $A \cap B = \phi$ எனின் இத் தேற்றம் 3.4, வெ.உ (3) இற்கு ஒடுங்கும். ஏனெனில், $\mathbb{P}(A \cap B) = \mathbb{P}(\phi) = O$ ஆகவே, $P(A \cup B) = P(A) + P(B)$

f 47 126

தேற்றம் 3.5

$$A, B, C$$
 என்பன எவையேனும் மூன்று நிகழ்ச்சிகளெனின், $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$

நிறுவல்:

(AUBUC) என்பதுண் (AUB)UC எனக் கொள்க.

எனின்,
$$\Gamma(A \cup B \cup C) = P((A \cup B) \cup C)$$

= $P(A \cup B) + P(C) - P((A \cup B) \cap C)$
தேற்றம் 3.4 ஆல்

$$= P(A) + P(B) + P(C) - r(A \cap B) - P((A \cap C) \cup (B \cap C))$$

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$
$$- P(B \cap C) + P((A \cap C) \cap (B \cap C))$$

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

குறிப்பு:

மேலுள்ள தேற்றம் 3.5, மூன்றிற்கு மேற்பட்ட நிகழ்ச்சிகளுக் கும் விரிக்கப்படலாம்.

A1, A2,.....,An என்பன சுவையேனும் n நிகழ்ச்சிகளெனின்,

$$P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j = 2}^n P(A_i \cup A_j)$$

$$-\sum_{i< i}^{n} P (A_{i} \cap A_{j} \cap A_{k}) + \dots$$

$$i< i < k=3$$

$$(-1)^{n-1} P(A_{1} \cap A_{2} \cap \dots \cap A_{n})$$

இம்முடிபைக் கணிதத் தொகுத்தறிமுறை மூலம் இலகுவாக நிரூபித்தல் முடியும்.

உதாரணம் 3.13

நுகர்வோன் ஒருவன் குறிப்பிட்ட A, B என்னும் பண்டங்களே முறையே 0.5, 0.2 என்ற நிகழ்தகவுகளுடன் கொள்வனவு செய்கின்ருன். அத்துடன் சில வேளேகளில் A ஐயும் B ஐயும் ஒரே நேரத்தில் 0.1 என்ற நிகழ்தகவுடன் கொள்வனவு செய்வா கெனின் அவன் A அல்லது B ஐக் கொள்வனவு செய்வதற்கான நிகழ்தகவு என்ன?

இங்கு நுகர்வோன் பண்டம் A ஐயும் B ஐயும் கொள்வனவு செய்வதுடன் சில சமயங்களில் 4 ஐபும் B ஐபும் ஒரே நேரத்திற் கொள்வனவு செய்வதால், இவை மூட்டற்ற நிசழ்ச்சிகளல்ல.

எனவே P(A அல்லது B) = P(AUB)
$$= P(A) + P(B) - P(A \cap ?)$$

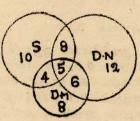
$$= 0.5 + 6.2 - 0.1$$

$$= 0.6$$

உதாரணம் 3.14

60 பேர் கொண்ட குழுவொன்றிடம், 'டெயிலி நியூஸ்' (The Daily News) 'டெயிலி மிரர்' (the Daily Mirror) 'சண்' (The sun) என்ற பத்திரிகைகள் வாசுக்கின்றவர்களா எனக் கேட்கப்பட்டது. பெற்ற விடைகளேப் பின்வரும் அட்டவணே தருகின்றது:

DN DM S DN & DM DN & S DM & S மூன்று பத்திரிகைகளும் 31 23 27 11 13 9 5


இக்குழுவிலிருந்து எழுமாறுகத் தெரிவு செய்யப்பட்ட ஒருவரது பின்வரும் வாசுப்புக்குரிய நிகழ்தகவுகள் என்ன?

- (i) 'டெயிலி நியூஸ்' அல்லது 'சன்'
- (ii) பத்திரிகைகளில் ஆகக் குறைந்தது ஒன்றுவது,
- (iii) பத்திரிகைகளுள் ஏதாவது ஒன்றுபில் கே,
- (iv) மூன்று பத்திரிகைகளுள் ஒன்று மட்டும்.
- (i) தெரிவு செய்யப்பட்டவர் டெயிலி நியூஸ் அல்லது சன் வாசிப்பவராக இருப்பதற்கான நிகழ்தகவு,

$$P(DN \cup S) = P(DN) + P(S) - P(DN \cap S)$$

$$= 31/60 + 27/60 - 13/60$$

$$= 3/4$$

(ii) தெரிவு செய்யப்பட்டவர் ஆகக்குறைந்தது ஒரு பத்திரிகை யாவது வாசிப்பவராக இருப்பதற்கான நிகழ்தகவு,

$$P(\neg N \cup DM \cup S) = P(DN) + P(DM) + P(S) - P(DN \cap DM) - P(DN \cap S) + P(DN \cap DM \cap S)$$

$$= (31 + 23 + 27 - 11 - 13 - 9 + 5)/60$$

= 53/69

(iii) தெரிவு செப்யப்பட்டவர் ஒரு பத்திரிகைகளும் வாசிப்பவராக இல்லாதிருப்பதற்கான நிகழ்தகவு,

$$P(UNUDMUS) = 1-P(DNUDMUS)$$

$$= 1-53/60$$

$$= 7/60$$

(iv) மேலுள்ள வெண்ணின் படத்திலிருந்து தனித்தனியே DN, DM,S பத்திரிகைகளே மட்டும் வாசிப்போரது எண்ணிக்கை கள் முறையே 12,8,10 ஆகும்.

எனவே, கேட்கப்பட்ட நிகழ்த்தவு =
$$\frac{12+8+10}{60}$$

நிகழ்தகவிறகான கூட்டல் விதி

தம்முள் புறநீக்கும் அல்லது ஒன்றைஒன்று விலக்கும் தன்மை பெற்ற நிகழ்ச்சிகள் எல்லாவற்றையும் ஆராயும்போது அந்நிகழ்ச்சி களுக்குள் ஏதாவது ஒன்று நிகழ்வதற்கான நிகழ்தகவு, நிகழ்ச்சி கள் ஒவ்வொன்றும் தனித்தனியே நிகழ்வதற்குரிய நிகழ்தகவுக ளின் கூட்டுத்தொசைக்குச் சமனுகும்.

A, B என்பன ஒன்றை ஒன்று விலக்கும் இரு நிகழ்ச்சிகள் என்க. எனின்,

$$P(AUI) = P(A) + P(B)$$

அதுபோல A, B, C, என்பன சோடியாய் (Pairwise) தம்முள் புறநீக்குவனவெனின் (பொதுவான விஃாவுகள் இல்ஃபெனின்),

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

அதுபோல $A_1,A_2,...,A_n$ என்னும் நிகழ்ச்சிப் பிரிவில் எந்த இரு நிகழ்ச்சிகளுக்கும் பொதுவான விளேவு இல்லேயாயின்,

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

உதாரணம் 3.15

நன்ருகக் குறுக்கப்பட்ட ஓரு சீட்டுக்கட்டிலிருந்து (Packet of Cards) ஒரு சீட்டு எழுமாருய் எடுக்கப்படின், அது இராசா அல் லது இராணி ஆக இருப்பதற்கான நிகழ்தகவு என்ன?

ஒரு சீட்டுக்கட்டிலுள்ள மொத்த சீட்டுக்களின் எண்ணிக்கை 52. அவற்றுள் 4 இராசாக்களும் 4 இராணிகளும் உண்டென்ப தால், எடுக்கப்படும் ஒரு சீட்டு இராசாவாக இருப்பதற்கான நிகழ்தகவு = 4/52 = 1/13

அதுபோல, எடுக்கப்படும் ஒரு சீட்டு இராணியாக இருப்பதற் கான நிகழ்தகவு = 4/52 = 1/13

எனவே, எடுக்கப்பட்ட ஒரு சீட்டு இராசா அல்லது இராணி யாக இருப்பதற்கான நிகழ்தகவு = 1/13 + 1/13

தேற்றம் 3.6

ஒரு நிகழ்ச்சி A ஆனது, ஒரு நிகழ்ச்சி B யின் நிகழ்ச்சிப் பிரிவாயின், அதாவது, $A\subseteq B$ எனில், $\mathbf{P}(A) \leq \mathbf{P}(B)$.

நிறுவல்:

தேற்றம் 3.3 ஆல்,
$$P(B) = P(A \cap B) + P(\overline{A} \cap B)$$
 ஆகும்.
ஆஞல், $A \subseteq B$ என்பதால் $A \cap B = A$ $\implies P(A \cap B) = P(A)$ எனவே, $P(B) = P(A) + P(\overline{A} \cap B)$

 \Rightarrow $\Gamma(\overline{A} \cap B) = P(B) - P(A)$

அத்துடன் வெ. உ. (1) ஆல்,
$$P(\overline{A} \cap B) \ge O$$

$$\implies \Gamma(B) - P(A) \ge 0$$
$$\implies P(B) \ge P(A)$$

கீளத்தேற்றம்:

- (i) $P(A \cap B) \leq P(A)$, (goamalá $(A \cap B) \subset A$)
- (ii) $P(A \cap B) \leq P(B)$, (goamsi $(A \cap B) \subseteq B$)

3.5: நிபந்தனே நிகழ்தகவு (conditional Probability)

திரட்டொன்றிலிருந்து ஓர் அலகு எழுமாருகப் பிரதிவைப்பு டனும், பிரதி வைப்பில்லாமலும் எடுக்கப்படும்போது அவற்றிற் கிடையே காணப்படும் வித்தியாசங்களேக் கவனத்திற் கொள்வோம். உதாரணமாக, பெட்டியொன்றிலுள்ள 100 பொருட்களுள் 20 பழுதடைந்தவையாயும் மிகுதி பழுதடையாதவையாயும் காணப் படுகின்றன. எனின் அப்பெட்டியிலிருந்து இரு அலகுகள் (அ) பிர நிவைப்புடன் (ஆ) பிரதிவைப்பில்லாமல் எடுக்கப்படுகின்றதென்க. இங்கு நாம் பின்வரும் இரு நிகழ்ச்சிகளேயும் வரையறுப்போம்:

பொருட்கள் பிரதிவைப்புடன் எடுக்கப்படும்போது,

$$P(A) = P(B) = 20/100 = 1/5$$

ஏனெனில் செய்கையின் ஒவ்வொரு நிலேயிலும் பெட்டி. யிலுள்ள 100 பொருட்களில் 20 பழுதடைந்தவையாகக் காணப் படுகின்றன. எனினும் பொருட்கள் பிரதிவைப்பில்லாமல் எடுக்கப் படின் முடிபை உடனடியாகப் பெறமுடியாது. இங்கும் முதலாம் அலகு பழுதடைந்ததாயிருப்பதற்கான நிகழ்தகவு 1/5. ஆனல் இவ்வகையில் P(B) ஐக் காண்பதற்கு, இரண்டாம் அலகு எடுக் கப்பட முன்பு பெட்டியிலுள்ள பொருட்களின் நிலே எமக்குத் தெரிதல் வேண்டும். அதாவது நிகழ்ச்சி A நேர்ந்துவிட்டதோ அல்லவோ எனத் தெரிதல் வேண்டும்.

இவ் உதாரணம் ஆனது, பின்வரும் முக்கியமான எண்ணக்கரு வரையறுக்கப்படவேண்டியதன் முக்கியத்துவத்தின் எடுத்துக் காட்டுகின்றது.

வரைவிலக்கணம் 3.18

A, B என்பன ஒரு மாதிரிவெளி S இலுள்ள எவையேனும் இரு நிகழ்ச்சிகள் என்க.

நிகழ்ச்சி A நேர்ந்துவிட்டதெனத் தரப்பட்ட, P(A) > 0 ஆயி ருக்க, P(B|A) என்பதனுற் குறிக்கப்படும் **A** இனது நிபந்தனே நிகழ்தகவு,

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 என வரையறுக்கப்படும்.

குறீப்புட

 $\Gamma(A) = 0$ எனின், நிபந்தனே நிகழ்**தகவு \Gamma(P|A)** வரையறுக் கப்படுவதில்லே.

குறித்த A ஒன்றிற்கு F(B|A) ஆனது நிகழ்தகவினது பின் வரும் உடைமைகளேத் திருப்தி செய்யும்:

- (i) $0 \le F(B|A) \le 1$,
- (ii) P(S|A) = 1,
- (iii) $\mathbb{P}((B_1 \cup B_2) \mid A) = \mathbb{P}(B_1 \mid A) + \mathbb{P}(B_2 \mid A),$ $\mathbb{D}^{\text{mis}} = B_1 \cap \mathbb{B}_2 = \phi$
- (iv) $P((B_1 \cup B_2 \cup) | A) = P(B_1 | A) + P(B_2 | A) +$ இங்கு $B_i \cap B_j = \phi$; எல்லா $i \pm j$ இற்கும்.

குறிப்பு:

(i)
$$A = S$$
 stables, $P(B|S) = P(B_i)S/P(S) = P(B)$

(ii) S இலுள்ள ஒவ்வொரு நிகழ்ச்சி B இற்கும் P(B) (B இன் நிபந்தணேயற்ற நிகழ்த்கவு), P(B\A) (நிகழ்ச்சி A நேர்ந்துவிட்ட தெனத் தரப்பட்ட B யின் நிபந்தணே நிகழ்த்கவு), என்னுமிரு எண் கீவச் சேர்த்துக்கொள்ள முடியும். பொதுவாக இவ்விரண்டும் நிகழ்ச்சி B இற்கு வெவ்வேறு இரு நிகழ்த்கவுகளேயே வழங்குகின் றன.

தேற்றம் 3.7

மாதிரிவெளி
$$S$$
 இலுள்ள A , B என்னுமிரு நிகழ்ச்சிகளுக்கும், $\mathbf{P}(A \cap B) = \mathbf{P}(A \mid B)$, $\mathbf{P}(B) = \mathbf{P}(B \mid A)$, $\mathbf{P}(A)$

நிறுவல்:

வரைவிலக்கணம் 3.18 ஆல்,

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \Longrightarrow P(A \cap B) = P(A \mid B) \cdot P(B)$$

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)} \Longrightarrow P(B \cap A) = P(B \mid A) \cdot P(A)$$

$$P(A \cap B) = F(B \cap A)$$

$$P(A \cap B) = P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A)$$

உதாரணம் 3.16

மேலே தரப்பட்ட உதாரணத்திலே இரு அலகுகள் எழுமாரு கப் பிரதிவைப்பில்லாமல் எடுக்கப்படின் எடுக்கப்பட்ட இரண்டும் பழுதடைந்ததாயிருப்பதற்கான நிகழ்தகவு என்ன?

A, B என்னுமிரு நிகழ்ச்சிகளேப் பின்வருமாறு வரையறப் போம்.

எனவே எமக்கு வேண்டியது $P(A \cap B)$ ஆகும்.

மேலுள்ள (3.7) தேற்றத்தால்.

$$P(A \cap B) = P(B \mid A) \cdot P(A)$$

ஆஞல், P(A)=1/5 எனின் $P(B \mid A)=19/99$ எனவே, $P(A \cap B)=19/99 \times 1/5=19/495$

குறிப்பு:

மேலுள்ள தேற்றம் 3.7, இரண்டிற்கு மேற்பட்ட நிகழ்ச்சி சளுக்கும் விரிக்கப்படலாம்.

 A_1, A_2, \ldots, A_n என்பன S இலுள்ள எவையேனும் n நிசழ்ச்சிகள் எனின்,

$$P(A_1, \cap A_2 \cap \dots \cap A_n) = P(A_1) \cdot P(A_1 | A_1) \cdot P(A_3 | A_1, A_2) \dots P(A_n | A_1, \dots, A_{n-1})$$

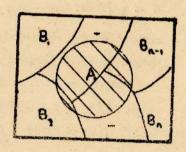
2.517mie 3.17

உதாரணம் 3.14 இலே, ஏற்கனவே டெயிலி நியூஸ் வாசிக் தென்ற ஒருவர் 'சன்'னும் வாகிப்பதற்குரிய நிகழ்தகவு யாது?

60 பேர்கொண்ட குழுவில் மொத்தம் 31 பேர் DN வாசிக் இன்றமையால், ஒருவர் DN வாசிப்பதற்கு ரிய நிகழ்**தகவு** P(DN) = 31/60. ஆனல் அதே குழுவில் 13 பேர் DN, S இரண் டையும் வாசிப்பதால்,

$$P(DN \& S) = 13/60$$

எனவே, டெயிலி நியூஸ் வாசிக்கும் ஒருவர் 'சன்'னும் வாசிப் பதற்குரிய நிபந்தனே நிகழ்தகவு,


$$P(S|DN) = \frac{P(DN \& S)}{P(DN)} = \frac{13/60}{31/60} = \frac{13}{31}$$

நாம் இதுவரை நிபந்தனே நீகழ்தகவு என்னும் எண்ணக்கரு வினே, ஒழுங்கமைவாக நேர்கின்ற இரு நிகழ்ச்சிகளின் நிகழ் தகவைக் கணிப்பதற்கு மட்டுமே உபயோகித்தோம். மாருக, இதே என்னக்கருவினே உபடேடைசித்து, தனி நிகழ்ச்சிகளின் நிகழ் தகவையும் கணிக்கமுடிகின்றது.

வரைவிலக்கணம் 3.19

 $B_1,\ B_2,.....,B_n$ என்னும் ர நி கழ்ச்சிகள் எடுத்துக் கொள்க.

இவை எல்லாம் சோடி யாய் தம்முள் புறநீக்குவனவா யும், இவற்றினது ஒன்றிப்பு மா நிரி வெளி \$ஆயும் ஒவ் வொன்றிற்கான நிகழ்தகவு நேரோனதாயுமிருப்பின், அதாவது,

(i)
$$B_i \cap B_j = \phi$$
; $i \neq j$.

$$(ii) \qquad \bigcup_{i=1}^{n} B_i = S$$

(iii) $\mathbf{P}(B_i$) > 0; எல்லா i இற்கும் எனின்,

 B_1 , B_2 ,....., B_n என்பன [மாதிரிவெளி S இன் ஒரு பிரிவினேயைக் (Partition) குறிக்கும். அதாவது, பூரிசோதணே ஒன்று ஆற் றப்படின், ஒரு நிகழ்ச்சி B_i மட்டுமே நேரும்.

கூட்டு நிகழ்தகவுத் தேற்றம் (Theorem on Total Probability)

தேற்றம் 3.8

 B_1, B_2, \dots, B_n என்பன மாதிரிவெளி S இன் ஒரு பிரிவிணக் குறிப்பதாயும், A என்பது S இலுள்ள யாதேனும் ஒரு நிகழ்ச்சி எனவும் கொள்க.

Gresslein,
$$F(A) = P(A|B_1)^r(B_1) + F(A|B_2)P(B_2) + ... + P(A|B_n)P(B_n)$$

நிறுவல்:

வரைவிலக்கணத்தால்,

$$A = S \cap A$$
 என எழுதலாம்.
ஆஞல், $S = (B_1 \cup B_2 \cup \cup B_n)$
எனவே $A = (B_1 \cup B_2 \cup \cup B_n) \cap A$
 $= (A \cap B_1) \cup (A \cap B_2) \cup \cup (A \cap B_n)$
 $\therefore P(A) = P[(A \cap B_1) \cup (A \cap B_2) \cup \cup (A \cap B_n)]$

இங்கு (A∩B_i) என்னும் நிகழ்ச்சிகளெல்லாம் சோடியாய் மூட்டற்றவையாதலால்,

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n)$$

$$P(A \cap B_i) = P(A \mid B_i) P(B_i)$$

$$\Gamma(A) = P(A \mid B_1) P(B_1) + P(A \mid B_2) P(B_2) + \dots + P(A \mid B_n) P(B_n)$$

உதாரணம் 3.18

உதாரணம் 3.16 இல் வரையறுக்கப்பட்ட A, B என்னும் நிகழ்ச்சிகளே எடுத்துக்கொள்க. அங்கு நிகழ்ச்சி B இற்கான நிகழ் தகவு என்ன?

P(B) பின்வருமாறு கணிக்கப்படலாம்.

$$P(B) = P(B|A)F(A) + P(B|\overline{A})P(\overline{A})$$

$$= 19/99. 1/5 + 20/9°. 4/5$$

$$= 1/5$$

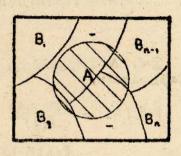
உதாரணம் 3.19

குறிப்பிட்ட ஒரு உற்பத்திப்பொருள் X, Y, Z என்னும் மூன்று தொழிற்சாலேகளினுல் உற்பத்தியாக்கப்படுகின்றது. தொழிற்சாலே X இனது உற்பத்தி Y யினதைவிட இரு மடங்காகவும், Y உம், Z உம் ஒரே அள்ளின்யும் உற்பத்தி செய்கின்றன. (குறிப்பிட்ட ஒர் உற்பத்திக்கால இடைவேள்யில்) அத்துடன் X, Y உற்பத்தி செய்யும் பொருட்களில் 2% பழுதடைந்தவையாயும், Z இனது உற்பத்திப் பொருட்களில் 4% பழுதடைந்தவையாயும் காணப்படு கின்றன. உற்பத்தி செய்யப்பட்ட பொருட்கள் யாவும் ஓரிடத் தில் குவிக்கப்பட்டு, அதிலிருந்து ஓர் அலகு எழுமாறுக எடுக்கப்படின் அது பழுதடைந்திருப்பதற்கான நிகழ்தகவு என்ன?

இங்கு பின்வரும் A, B₁, B₃, B₃ என்னும் நிகழ்ச்சிகளே வரையறுப்போம்.

இங்கு நாம் P(A), அதாவது பொருள் பழுதடைந்திருப்பதற் கான நிகழ்தகவைக் காணல் வேண்டும்.

ஆனுல் இப்பழது X அல்லது Yஅல்லது Z யினுல் ஏற்பட்டி. ருக்கலாம்.


எனவே மேலுள்ள (3.8) தேற்றத்தால்,

$$P(A) = P(A | B_1)P(B_1) + P(A | B_2)P(B_2) + P(A | B_3)P(B_3)$$
 + $P(A | B_3)P(B_3)$ 是動意, $P(B_1) = 1/2$, $P(B_2) = 1/4$, $P(B_3) = 1/4$ 是意识。 $P(A | B_1) = P(A | B_2) = 0.02$, $P(A | B_3) = 0.01$: $P(A) = 0.02 \times \frac{1}{2} + 0.02 \times \frac{1}{4} + 0.04 \times \frac{1}{4}$ = 0.025

3.6: பெயிசுவின் தேற்றம் (ваче'я тивовем)

தேற்றம் 3.9

B₁, B₂,, B_n என் னும் n நிகழ்ச்சிகள் மாதிரி வெளி S இன் பிரிவினே அல்லது பிரிப்பாயிருக்க, நிகழ்ச்சிகள் B_i : i = 1, 2,, n ஆனவை மூட்டற்றவையாயும், அவற்றின் ஒன்றிப்பு மாதிரி வெளி S ஆயும் இருந்தால், அம்மாதிரிவெளியின் யாது மோர் எதேச்சை நிகழ்ச்சி A இற்கு,

$$P(R_i|A) = \frac{P(A|R_i) \cdot P(R_i)}{\sum_{i=1}^{n} P(A|B_i) \cdot P(P_i)}$$

நிறுவல்:

வரைவிலக்கணத்தால், A = Ans என எழுதலாம்

ஆனுல்
$$S = (B_1 \cup B_2 \dots \cup B_n)$$

$$A = A \cap (B_1 \cup B_2 \cup \dots \cup B_n)$$

$$= (A \cap B_1) \cup (A \cap B_2) \cup \dots \cup (A \cap B_n)$$

இங்கு (A∩B_i) என்னும் நிகழ்ச்சிகளெல்லாம் மூட்டற்றவை. ஏனெனில் B_i மூட்டற்ற நிகழ்ச்சிகள் ஆகும்.

[எடுத்துக்காட்டாக

 $=\phi$

அதாவது, (A∩B₁), (A∩B₂) என்பவை மூட்டற்றவை இவ்வாறே மற்றவையும்]

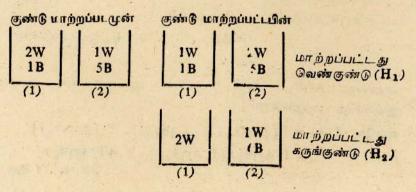
ଗ୍ରେଗ୍ରେ,
$$P(A) = P[(A \cap B_1) \cup (A \cap B_2) \cup \cup (A \cap B_n)]$$

$$= P(A \cap B_1) + P(A \cap B_2) + + P(A \cap B_n)$$
ଭର ೭. (4 ଅର୍ଚ୍ଚ)

ஆனல், தேற்றம் 3.7 ஆல்,

இனி, A நேர்ந்துவிட்டது எனத் தரப்பட B_i இன் நிபந்தனே நிகழ்தகவானது,

$$P(B_i \mid A) = \frac{F(P_i \cap A)}{P(A)}$$


$$= \frac{P(A \mid P_i).F(B_i)}{P(A)}....(2)$$

சமன்பாடு (2) இல் (1) ஐப் பிரதியிட

$$\Gamma(B_i \mid A) = \frac{P(A \mid B_i).\Gamma(P_i)}{\sum_{i=1}^{n} P(A \mid B_i).P(B_i)}$$

உதாரணம் 3.20

'1' '2' என இலக்கமிடப்பட்ட பெட்டிகள் முறையே இரண்டு வெண்குண்டுகளேயும் இரு கருங்குண்டுகளேயும், ஒரு வெண் குண்டையும் ஐந்து கருங்குண்டுகளேயும் கொண்டுள்ளன. பெட்டி (1) இலிருந்து பெட்டி (2) இற்கு ஒரு குண்டு எழுமாருய் எடுக்கப்படுகின்றது. இக்குண்டு வெண்குண்டாக இருந்தால் மாற் றப்பட்ட குண்டு வெண்குண்டாக இருப்பதற்கான நிகழ்தகவு என்ன?

Н் என்பது மாற்றப்பட்டகுண்டு வெண்குண்டாக இருக்கும் நிகழ்ச்சியும், Н₂ என்பது மாற்றப்பட்டகுண்டு கருங்குண்டாக இருக்கும் நிகழ்ச்சியும் என்க. அத்துடன் A என்பது பெட்டி (1) இவிருந்து குண்டு மாற்றப்பட்ட பின்னர் பெட்டி (2) இவிருந்து எடுக்கப்படும் குண்டு வெண்குண்டாய் இருக்கும் நிகழ்ச்சியைக் குறிக்கும் என்க. எனின்.

$$P(H_1) = 2/3$$
, $P(H_2) = 1/3$, $P(i|H_1) = 2/7$, $P(A|H_2) = 1/7$

(i) எடுக்கப்பட்ட குண்டு வெண்குண்டெனின் மாற்றப்பட்ட குண்டு வெண்குண்டாய் இருப்பதற்கான நிகழ்தகவு,

P(H1 | A) ஆனது, டெயிசுவின் தேற்றத்தால்,

$$P(H_1|A) = \frac{P(A|H_1) P(H_1)}{\sum_{i=1}^{2} P(A|H_i) P(H_i)}$$

$$= \frac{P(A|H_1) . P(H_1)}{P(A|H_1) . P(H_1) + P(A|H_2) . P(H_0)}$$

$$= \frac{2/7 \times 2/3}{2/7 \times 2/3 + 1/7 \times 1/3}$$

$$= 4/5$$

(ii) இனி, மாற்றப்பட்ட குண்டு கருங்குண்டாயிருப்பதற்கான நிகழ்த்கவு என்ன?

$$P(H_3 | A) = \frac{P(A | H_2) \cdot P(H_3)}{P(A | H_1) \cdot P(H_1) + P(A | H_2) P(H_2)}$$

$$= \frac{1/7 \times 1/3}{2/7 \times 2/3 + 1/7 \times 1/3}$$

$$= 1/5$$

(இதனே மொத்த நிகழ்தகவு 1 இனிருந்து P (H₁ | A) இணக் கழிப்பதஞுலும் பெறலாம்.)

(iii) எடுக்கப்பட்ட குண்டு கருங்குண்டாயின் மாற்றப்பட்ட குண்டு வெண்குண்டாயிருப்பதற்கான நிகழ்தகவு என்ன?

A' என்பது பெட்டி (1) இலிருந்து பெட்டி (2) இற்குக் குண்டு மாற்றப்பட்ட பின்னர் பெட்டி (2) இலிருந்து எடுக்கப்படும் குண்டு கருங்குண்டாய் இருக்கும் நிகழ்ச்சியைக் குறிக்கும் என்க. எனின், $P(A'_1H_1) = 5/7$, $P(A'_1H_2) = 6/7$ இங்கு காணவேண்டிய நிகழ்தகவு,

$$P(H_1|A') = \frac{P(A'|H_1).P(H_1)}{P(A'|H_1).F(H_1)+F(A'|H_2).P(H_2)}$$

$$= \frac{5/7 \times 2/3}{5/7 \times 2/3 + 6/7 \times 1/3}$$

$$= 5/8$$

(iv) எடுக்கப்பட்ட குண்டு கருங்குண்டாயின் மாற்றப்பட்ட குண்டு வெண்குண்டாக இருப்பதற்கான நிகழ்தகவு,

$$= \frac{1 - 5/8}{= 3/8}$$

உதாரணம் 3.21

ஒரு பல்தெரிவுப் பரீட்சையிலே (Multiple Choice Test) ஒரு மாணவன் விளுளிற்கான விடையை அறிந்திருக்க முடியுட் அல்லது ஊகித்து அறிய முடியும். p என்பது அவன் விடை அறிந்திருப்ப தற்கான நிகழ்த்கவு எனின், அவன் விடையை ஊகிப்பதற்கான நிகழ்த்கவு எனின், அவன் விடையை ஊகிப்பதற்கான நிகழ்த்கவு (1 — p). அத்துடன் பரீட்சையில் மாணவன் சரியாக விடையை அறிந்திருப்பின் அதற்கான நிகழ்த்கவு 1/n எனவும் கொள்க (n என்பது ஒரு விளுவிலுள்ள வெவ்வேறு பல்தெரிவு களின் எண்ணிக்கை). தேர்வுநாடி விளுவிற்கான விடையைச் சரி யாகக் கொடுப்பின், அவன் விடையை அறிந்திருப்பதற்கான நிபந் தீன நிகழ்த்கவு,

$$\frac{p}{1+(n-1)p}$$
 எனக்காட்டுக.

தேர்வுநாடி விடையை அறிந்திருக்கும் நிகழ்ச்சியை **K** என்ப தணும், தேர்வுநாடி விடையை ஊகித்து அறியும் நிகழ்ச்சியை **G** என்பதனுலம் குறிக்க.

பரீட்சைக்குத் தோற்றும் மாணவன் விஞவிற்கு ஒன்றில் சரி யான விடையை அல்லது பிழையான விடையை அறிந்தோ அல்லது ஊகித்தோ கொடுக்க முடியும். விஞவிற்கான விடையைச் சரியா கக் கொடுக்கும் நிகழ்ச்சி C என்க. எனின், அவன் விடையை அறிந்திருப்பதற்கான நிகழ்தகவு, P(KIC) ஆனது பெயிகவின் தேற்றத்தால்,

$$P(K|C) = \frac{P(C|K).P(K)}{P(C|K).P(K) + P(J|G). (G)}$$

ஆணல், P(K) = p, P(3) = (1-p)

அத்துடன் P(C|K) = 1, P(C|G) = 1/a

$$P(K \mid C) = \frac{1 \times p}{1 \times p + (1 - 1)1/n}$$
$$= \frac{np}{1 + (n - 1)p}$$

உதாரணம் 3.22

உற்பத்தியாளனிடமிருந்து வியாபாரி ஒரு தொகுதி இயந்திர உதிரிப்பாகங்களேக் கொள்வனவு செய்கின்ருன். இவை இயந்திரம் A இஞல் அல்லது B இஞல் உற்பத் தி செய்யப்பட்டவையாக இருக்கலாம். ஆஞல் குறிப்பிட்ட தொகுதி உதிரிப்பாகங்கள் எந்த இயந்திரத்திஞல் செய்யப்பட்டவை என்பது அவனுக்குத் தெரிய மாட்டாது. முன்கோய அனுபவங்களிலிருந்து இயந்திரம் A இஞல் உற்பத்தி செய்யப்பட்டவற்றில் 15% பழுதடைந்ததாகவும், இயந்திரம் க இஞல் உற்பத்தி செய்யப்பட்டவற்றில் 25% பழுதடைந்த தாகவுமிருக்கக் காணப்படுகின்றது. மொத்த உற்பத்தியில் 60% இயந்திரம் A இணுவம், 40% இயந்திரம் B இணுவும், உற்பத்தி செய்யப்படுகின்றன என உற்பத்தியாளன் அறிவிக்கிறுன். வியா பாரி 3 உதிரிப்பாகங்களேக்கொண்ட மாதிரியொன்றை எடுக்கும் போது அங்கு ஒன்றும் பழுதடையாது காணப்படின், அவை இயந்திரம் * இஞல் உற்பத்தி செய்யப்பட்டிருப்பதற்கான நிகழ்தகவு என்ன?

E₁, E₂ என்பன உதிரிப்பாகங்கள் முறையே A, B இயந்திரங் களிஞல் உற்பத்தி செய்யப்படும் நிகழ்ச்சிகளேயும், F என்பது எடுக்கப்பட்ட 3 பாகங்களில் ஒன்றும் பழுதடையாது காணப்படும் நிகழ்ச்சியையும் குறிக்கின்றதென்க.

தரப்பட்ட திலிருந்து,

$$P(E_1) = 0.6, P(E_2) = 0.4$$

எடுக்கப்பட்ட 3 பாகங்களும் A என்பதனுல் உற்பத்தி செய் யப்பட்டு, அவை பழுதடைந்து காணப்படாமலிருப்பதற்கான நிகழ்தகவு, P(F|E₁) = (1 — 0.15)³ = (0.85)³ அதேபோல, அவை இயந்திரம் B இனுல் உற்பத்தி செய்யப் பட்டு, பழுதடைந்து காணப்படாமலிருப்பதற்கான நிகழ்தகவு,

$$P(F|E_2) = (1 - 0.25)^3 = (0.75)^3$$

எனவே எடுக்கப்பட்ட மூன்றும் பழுதடையாது காணப்படின் அவை, A என்பதனுல் உற்பத்தி செய்யப்பட்டிருப்பதற்கான நிகழ் தகவு, P(F₁|F) ஆனது, பெயிசுவின் தேற்றத்தால்,

$$P(E_1 | F) = \frac{\Gamma(E_1) P(F | E_1)}{P(E_1) P(F | E_1) + P(E_2) (F | E_2)}$$
$$= \frac{0.6(0.85)^3}{0.6(0.85)^3 + 0.4(0.75)^3}$$
$$= 0.686$$

குறிப்பு:

 $P(E_1)$, $P(E_2)$ என்பவை பூர்வ நிகழ்தகவுகள் (Prior Probabilities) என்றும், $P(E_1 \mid F)$ என்பது உத்தர நிகழ்தகவு (Posterior Probability) என்றும் அழைக்கப்படும்.

3.7: புள்ளியியற் சாராமை (STATISTICAL INDEPENDENCE)

குறிப்பிட்ட நிகழ்ச்சிகளுள் ஒரு நிகழ்ச்சி நேருவது மற்றைய நிகழ்ச்சிகள் ஒவ்வொன்றும், நேர்வதை எவ்விதத்திலும் பாதிக்கா மலிருக்குமாளுல் அந்நிகழ்ச்சிகள் எல்லாம் சாரா நிகழ்ச்சிகள் எனப்படும். உதாரணமாக, ஒரு நாணயம் இருமுறை சுண்டப்படு வதாகக் கொள்க. இங்கு இரண்டாவது சுண்டலின்போது பெறப் படும் விளேவை, முதலாம் சுண்டலின்போது பெற்ற விளேவு எவ் விதத்திலும் பாதிக்காது. எனவே இவ்விரு நிகழ்ச்சிகளும் சாரா நிகழ்ச்சிகள். இதேபோல ஒரு தாயக்காயை எறியும்போது பெறப் படும் விளேவானது, ஒரு சீட்டுக்கட்டிலிருந்து ஒரு சீட்டை எழு மாருக எடுக்கும்போது பெறப்படும் விளேவைப் பாதிக்கமாட்டாது, எனவே இவையும் சாரா நிகழ்ச்சிகளாகும்.

A, B என்பன மாதிரிவெளி S இலுள்ள இரு நிகழ்ச்சிக ளென்க. நிகழ்ச்சி B யானது நேர்ந்துனிட்டதெனத் தரப்பட்ட A யின் நிபந்தனே நிகழ்தகவானது, A யின் நிகழ்தகவிற்குச் சமனு யின் A யானது B ஐப் புள்ளியியலாகச் சாராதது எனப்படும்.

அதாவது, Aயினது நேர்கை Bயினது நேர்கையைச் சாரா தது எனின், A ஆனது Bயைச் சாராதது எனப்படும்.

அதாவது. P(A|B) = P(A)

குறிப்பு:

$$F(A \mid B) = P(A)$$
 ஆயின், $P(B \mid A) = P(B)$

அதாவது, A யானது B ஐச் சாராதது எனின், B யானது A ஐச் சாராததாகும். எனவே இங்கு A, B என்பவற்றைச் சாரா நிகழ்ச்சிகளைக் கூறலாம்.

சாரா நிகழ்ச்சிகள் (Independent Events)

வரைவிலக்கணம் 3.20

 $P(A \cap P) = P(A).P(B)$ ஏனின் A, B என்பன சாரா நிகழ்ச்சி கள் எனப்படும்.

ஏனெனில்,

$$P(A \mid P) = \frac{P(A \cap P)}{P(P)}$$

 $=> P(A \cap B) = P(A \mid B).P(F)$

ஆனல் P(A | B) = P(A)

 $\therefore P(A \cap B) = P(A) \cdot P(B)$

குறிப்பு:

மறுதஃலயாக, A, B என்பன சாரா நிகழ்ச்சிகள் எனின், $P(A \cap B) = P(A).P(B)$ ஆகும்.

உதாரணம் 3.23

A, B என்பவர்கள் முறையே தனித்தனி 20 வருடங்கள் வரை மேலும் உயிர் வாழ்வதற்கான நிகழ்தகவுகள் 0.7, 0.5 எனின், இருவரும் 20 வருடங்கள் உயிர்வாழ்வதற்கான நிகழ்தகவு என்ன?

A என்பவர் உயிர்வாழ்வது, B என்பவர் உயிர்வாழ்வதை எவ்விதத்திலும் பாதிக்காதாகையால் இவ்விரு நிகழ்ச்சிகளும் ஒன் நில் ஒன்று சாராதவை.

ஆனல், P(A) = 0.7, F(B) = 0.5

எனவே, இருவரும் உயிர்வாழ்வதற்கான நிகழ்தகவு,

$$P(A \cap B) = P(A).P(B)$$

$$= 0.7 \times 0.5$$

$$= 0.35$$

உதாரணம் 3.24

பெட்டி A ஆனது 4 வெண்பந்துகளேயும், 2 கரும்பந்துகளே யும், பெட்டி B ஆனது 3 வெண்பந்துகளேயும், 5 கரும்பந்துகளே யும் கொண்டுள்ளதென்க. ஓவ்வொரு பெட்டியிலுமிருந்து ஒரு பந்து எழுமாருக எடுக்கப்படின்,

- (i) இரண்டும் வெண்பந்துகளாக,
- (ii) இரண்டும் கரும்பந்துகளாக,
- (iii) ஒன்று வெண்பந்தும் மற்றையது கரும்பந்துமாக, இருப்பதற்கான நிகழ்தகவுகள் என்ன?

 $\mathbf{W_1}$ என்பது பெட்டி \mathbf{A} மிலிருந்து வெண்பந்து எடுக்கப்படும் நிகழ்ச்சியையும், \mathbf{W}_2 என்பது பெட்டி \mathbf{B} மிலிருந்து வெண்பந்து எடுக்கப்படும் நிகழ்ச்சியையும் குறிக்கின்றதென்க.

$$\Gamma(W_1) = 4/6, P(W_2) = 3/8$$

(i) பெட்டி A யிலிருந்து ஒரு பந்தை எடுப்பது பெட்டி B யிலி ருந்து ஒரு பந்து எடுப்பதை எவ்விதத்திலும் பாதிக்காதாகை யால், எடுக்கப்படும் இரு பந்துகளும் வெண்பந்தாக இருப்பதற்கான நிகழ்தகவு,

$$P(W_1 \cap W_2) = F(W_1).P(W_2)$$

$$= 4/6 \times 3/8$$

$$= 1/4$$

(ii) எடுக்கப்பட்ட இரு பந்துகளும் கரும்பந்**தாக** இருப்பதற்கான நிகழ்தகவு,

$$P(\overline{W}_1 \cap \overline{W}_2) = I(\overline{W}_1).P(\overline{W}_2)$$
$$= 2/6 \times 5/8$$
$$= 5/24$$

(iii) ஒரு பந்து வெண்பந்தும், மற்றையது கரும்பந்தும் அதாவது ஒன்றில் முதலாம் பந்து வெண்பந்தாகவும், இரண்டாம் பந்து கரும்பந்தாகவும் அல்லது முதலாம் பந்து கரும்பந்*தர்* கவும், இரண்டாம்பந்து வெண்பந்தாகவும் காணப்படலா**ம்.**

 $P[(W_1, \overline{W}_2) \cup (\overline{W}_1, W_2)] = P(W_1, \overline{W}_2) + P(\overline{W}_1, W_2)$ (ஏனெலில் இவை தம்முள் புற நீக்கும் நிகழ்ச்சிகளாகும்) $= P(W_1)P(W_2) + P(W_1)P(W_2)$ $= 4/6 \times 5/8 + 2/6 \times 3/8$ = 13/24

சேரடியாய்ச் சாரா நிகழ்ச்சிகள் (Pairwise Independent Events) வரைவிலக்கணம் 3.21

S இலுள்ள நிகழ்ச்சிகள் A_1 , A_2 ,...., A_n என்பவை, எல்லாi, j = 1, 2,n $(i \neq j)$ இற்கும்,

 $P(A_i \cap A_j) = P(A_i) P(A_j)$ என்னும் நிபந்தனேயைத் திருப்தி செய்யின் அவை சோடியாய்ச் சாரா நிகழ்ச்சிகள் எனப்படும்.

குறிப்பு:

A, , A2 , A3 என்பன சோடியாய் சாரா நிகழ்ச்சிகளெனில்,

 $P(A_1 \cap A_2 \cap A_3) = P(A_1).P(A_2).P(A_3)$ என்னும் முடிபு கட்டாயம் உண்டாயிருக்க வேண்டியதில்லே. தம்முள் சுரா நிகழ்ச்சிகள் (Mutually Independent Events)

வரைவிலக்கணம் 3.22

S இலுள்ள A₁ ,A₂ ,....., A_n என்னும் **n** நிகழ்ச்சிகள் பின்வரும் நிபந்தனேகளேத் திருப்திசெய்தால் மட்டுமே அவை தம்முள் சாரா நிகழ்ச்சிகள் எனப்படும்.

எல்லா 1 ≤ i < j < k < l < ≤n இற்கும்

- (i) $P(A_i \cap A_i) = P(A_i).P(A_i)$
- (II) P(A, nA, nA, = P(A,).P(A,).P(A,)
- (iii) $P(A_i \cap A_j \cap A_k \cap A_i) = P(A_i).P(A_j).P(A_k).P(A_k)$
- $(n-i) P(A_1 \cap A_2 \cap \cap A_n) = P(A_1).P(A_2) P'A_n)$ இங்கு மொத்தம் (20 - n - 1) நிபந்தனேகள் காணப்படும்.

குறிப்பு:

S இலுள்ள A_1,A_2,A_3 என்னும் மூன்று நிகழ்ச்சிகள், தம்முள் சாரா நிகழ்ச்சிகளாய் இருப்பதற்கு பின்வரும் நான்கு நிபந்தனே களும் தனித்தனியே திருப்தி செய்யப்படல் வேண்டும்;

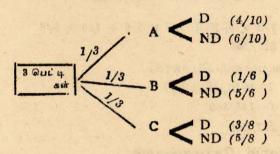
- (i) $P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$
- (ii) $P(A_2 \cap A_8) = P(A_2) \cdot P(A_3)$
- (iii) $P(A_3 \cap A_1) = P(A_3).P(A_1)$
- (ii) $\Gamma(A_1 \cap A_2 \cap A_3) = P(A_1).P(A_3).P(A_3)$

அதாவது, இவற்றுள் ஏதாவது ஒன்று திருப்தி செய்யப்படாவிடி. னும் நிகழ்ச்சிகள் சாராதவையல்ல. அவை சார்ந்த நிகழ்ச்சிக ளாகும்.

உதாரணம் 3.25

கந்தோர் ஒன்றைச் சேர்ந்த மூன்று உத்தியோகத்தர்கள் ஒவ் வொருவரும் தனித்தனியே கந்தோருக்கு வராமலிருப்பதற்கான நிகழ்தகவு 0·2 ஆகும். எனின், ஒரே நாளில் மூவரும் கந்தோ ருக்கு வராமலிருப்பதற்கான நிகழ்தகவு என்ன?

மூவரும் வராமலிருப்பதற்கான நிகழ்தகவு = 0·2×0·2×0·2 = 0·008


தரு வரிப்படம் (Tree Diagram)

ஒரு முடிவுள்ள தொடரியிலுள்ள பரிசோதகுகள் ஒவ்வொன் றிற்கும் தரப்பட்ட நிகழ்தகவுகளுடன் முடிவுள்ள எண்ணிக்கை யைக் கொண்ட விளேவுகள் இருப்பின் அது உத்தேசச் செய்முறை எனப்படும். மேற்படி முறையின் கீழுள்ள ஏதாவதொரு நிகழ்ச்சி யின் நிகழ்தகவைக் கீழ்க்காட்டும் வரிப்படம்மூலம் இலகுவாக விளக்கலாம். பரிசோதனேயொன்றின் விளேவுகள் ஒன்றையொன்று சாராதவையெனின் விளேவுகளே தரு வரிப்படமொன்றை அமைப் பதன் மூலம் இலகுவாக விளக்கலாம்.

உதாரணம் 3.26

தரப்பட்ட A,B,C என்னும் மூன்று பெட்டிகளில், பெட்டி A யிலுள்ள 10 மின்குமிழ்களில் 4 பழுதடைந்தவையாயும், பெட்டி B யிலுள்ள 6 மின்குமிழ்களில் 1 பழுதடைந்ததாகவும், பெட்டி C யிலுள்ள 8 மின்குமிழ்களில் 3 பழுதடைந்தவையாயும் காணப்படு கின்றன. இவற்றுள் ஒரு பெட்டி எழுமாழுகத் தேர்ந்தெடுக்கப் பட்டு அதனுள்ளிருந்து 1 மின்குமிழ் எடுக்கப்படுகின்றது. எடுக் கப்பட்ட மின்குமிழ் பழுதடைந்ததாமிருப்பதற்கான நிகழ்த்கவு என்ன? எடுக்கப்பட்ட மின்குமிழ் பமுதடைந்தாயிருப்பின் அது பெட்டி A யிலிருந்து எடுக்கப்பட்டிருப்பதற்கான நிகழ்தகவு என்ன? இங்கு தொடரியாக இரு பரிசோத‰கள் ஆற்றப்படுகின்றன.

- (அ) மூன்று பெட்டிகளுக்குள் ஏதாவதொன்றைத் தேர்ந்தெடுத் தல்.
- (ஆ) அதனுள்ளிருந்து எடுக்கப்படும் ஒரு மின்குமிழ் பழுதடைந் ததாயோ அல்து பழுதடையாததாயோ இருத்தல்.

D - பழுதடைந்ததையும்,

ND — பழுதடையா ததையும்,

() — அவற்றிற்கான நிகழ்தகவுகளேயும் குறிக்கின்றன.

பெட்டி A தேர்ந்தெடுக்கப்பட்டு அதனுள்ளிருந்து பழுதடைந்த மின்குமிழ் எடுக்கப்படும் நிகழ்ச்சியை E_1 குறிக்கின்றது என்க.

பெட்டி B தேர்ந்தெடுக்கப்பட்டு அதனுள்ளிருந்து பழுதடைந்த மின்குமிழ் எடுக்கப்படும் நிகழ்ச்சியை \mathbf{E}_2 குறிக்கின்றது என்க. எனின், $\mathbf{P}(\mathbf{E}_2) = 1/3 \times 1/6 = 1/18$

பெட்டி C தேர்ந்தெடுக்கப்பட்டு அதனுள்ளிருந்து பழுதடைந்த மின்குமிழ் எடுக்கப்படும் நிகழ்ச்சியை E₃ குறிக்கின்றது என்க.

எனின்,
$$P(F_3) = 1/3 \times 3/8 = 1/8$$

எனவே, (E₁UE₂UE₃) என்பது எடுக்கப்பட்ட மின்குமிழ் பழுத டைந்ததாயிருக்கும் நிகழ்ச்சியைக் குறிக்கும்.

எனவே, E₁, E₂, E₃ என்பன மூட்டற்ற பாதைக**ீ**ளக் கொண்ட நீகழ்ச்சிகளாதலால்,

$$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$$

= $2/15 + 1/18 + 1/8$
= $113/360$

(i) இனி, எடுக்கப்பட்ட மின்குமிழ் பழுதடைந்ததாயிருப்பின் அது பெட்டி A யிலிருந்து எடுக்கப்பட்டிருப்பதற்கான நிகழ்தகவு,

$$P(A|(B_2 \cup F_2 \cup E_3)) = \frac{1/3 \times 4/10}{113/360} = \frac{48}{113}$$

(ii) எடுக்கப்பட்ட மின்குமிழ் பழுதடையாதிருப்பதற்கான நிகழ்த்கவு,

 $= 1/3 \times 6/10 + 1/3 \times 5/6 + 1/3 \times 5/8$

= 247/360

அல்லது. இதனேப் பின்வருமாறும் பெறலாம்.

 $= 1 - P(E_1 \cup E_2 \cup E_3)$

= 1 - 113/360

= 247/360

3.8: வரிசைமாற்றமும் சேர்மானமும் (PERMUTATION & COMBINATION)

X,Y,Z என்னும் 3 எழுத்துக்கள் கொடுக்கப்பட்டுள்ளன. ஒவ்வொரு தடலையும் இரு எழுத்துக்கள் எடுக்கப்படுகின்றன எனின், மொத்தமாக எத்தனே தடவைகள் உள்ளன என்பதைக் கவனிப்போம்.

எடுக்கட்படும் சோடி எழுத்துக்களாவன, XY,XZ,YZ,YX,ZX, ZY. இங்கு XY,YX என்பன தனித்தனி தெரிவுகளாகக் கொள் எப்படும், அதாவது, இட ஒழுக்கிற்கு முக்கியத்துவம் கொடுப் பின் 3 எழுத்துக்களிலிருந்து இரு எழுத்துக்களே ஆறு வழிகளில் எடுக்கலாம்.

இட ஒழுங்கிற்கு முச்சியத்துவம் கொடுக்காவிடின் XY, YX என்பன ஒன்ருகவே சருதப்படும். எனவே இவ்வகையில் 3 எழுத் துக்களிலிருந்து இரு எழுத்துக்களே 3 வகைகளில் எடுக்கலாம். அவையான XY, YZ, ZX.

முதல்வகையில், அதாவது, இட ஒழுங்கிற்கு முக்கியத்துவம் கொடுத்துப் பெறப்படும் உறுப்புகளின் எண்ணிச்கை வரிசை மாற்றம் எனவும், இட ஒழுங்கிற்கு முக்கியத்துவம் கொடுக்காமல் பெறப்படும் உறுப்புகளின் எண்ணிக்கை சேர்மானம் எனவும் கொள்ளப்படும். எனின். n பொருட்களிலிருந்து ஒரே நேரத்தில் r பொருட்களே எடுக்கும் வரிசைமாற்றங்களின் எண்ணிக்கை, up. இனுற் குறிக் சப்பட்டு,

$$n_{r} = n(n-1)(n-2)....(n-r+1)$$
 எனவும்,

n பொருட்களிலிருந்து ஒரே நேரத்தில் r பொருட்களே எடுக்கும் சேர்மானங்களின் எண்ணிக்கை, nc, அல்லது (n) இஞற் குறிக்கப் பட்டு,

$$\mathrm{nc}_{\mathrm{r}} \ = \ \binom{\mathrm{L}}{\mathrm{r}} \ = \ \frac{\mathrm{n!}}{(\mathrm{n}-\mathrm{r})!} \ \mathrm{எனவும்} \ \mathrm{வரையறுக்கப்படும்}.$$

இங்கு n! என்பது, காரணியம் n என அழைக்கப்படும்.

$$n! = n \times (n-1) \times \dots \times 2 \times 1$$

குறிப்பு:

$$\binom{(i)}{n} \binom{n}{n} = \binom{n}{n} = 1$$

$$\binom{n}{t}$$
 = $\binom{n}{n-1}$

(iii)
$$o! = 1$$

உதாரணம் 3.27

8 மேர் கொண்ட குழு ஒன்றிடமிருந்து 3 பேர் கொண்ட உப குழு ஒன்றை எத்தனே வழிகளில் பெறலாம்.

இங்கு இட ஒழுங்கிற்கு முக்கியத்துவம் கொடுக்க முடியா தாகையோல், சேர்மானக்களின் எண்ணிக்கை $=\binom{8}{3}=\frac{8!}{5!\times 3!}$

$$= \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{5 + 3 \times 3 \times 2 \times 1 \times 3 \times 2 \times 1}$$
$$= 56$$

உதாரணம் 3.28

5 பொருளியலாளர்களேயும், 7 புள்ளிவிபரலியலாளர்களேயும், கொண்ட திட்ட அமைச்சிலிருந்து 3 பொருளியலாளரையும், 2 புள்ளிவிபரவியலாளரையும் கொண்ட ஒரு குழு எத்தீன வழிகளில் தேரப்படலாம்.

5 பொருளியலாளர்களிலிருந்து 3 பேரை (⁵₃) வழிகளிலும்

7 புள்ளிவிபெரவி யலாளரிலி ருந்து 2 பேரை ${7 \choose 2}$ வழி களிலும் தேரலாம்.

எனின், 3 பொருளியலாளரையும், 2 புள்ளிவிபரவியலாளரையும் கொண்ட குழுக்கள் தேரக்கூடிய வழிகளின் என்ணிக்கை,

$$= \binom{5}{3} \binom{7}{2}$$

 $= 10 \times 21$

= 210

உதாரணம் 3.29

பேராதீனப் பல்கீலக்கழகப் பொருளியற் சிறப்புக் கீஃப்பிரி விற் பயிலும் 15 தமிழ் மாணவர்களுள், 10 பேர் மிகவும் திறமை யுடையவர்களாகவும், 3 பேர் சாதாரண திறமையுடையவர்களாக வும், ஏஃயோர் திறமையற்றவர்களாகவும் காணப்படுகின்றனர். மேற்படி மாணவர்களுளிருந்து ஒரு மாணவன் நேர்முகப் பரீட்சை யொன்றிற்குத் தெரியப்படுகின்று வெனின்,

- (i) அவன் மிகவும் திறமையுடையவஞக,
- (li) அவன் திறமையற்றவஞக இல்லாது,
- (iii) ஒன்றில் அவன் மிகவும் திறமையுடையவளுக அல்லது திறமையற்ற**வ**ளுக,

இருப்பதற்கான நிகழ்தகவுகளேக் காண்க.

இரு மாணவர்கள் பிர திவைப்பில்லாமல் எழுமாருகத் தெரியப்படின்,

- (iv) இருவரும் மிகவும் திறமையுடையவர்களாக,
- (v) இருவரும் திறமையற்றவர்களாக,
- (vi) ஆகக்குறைந்தது ஒருவர் மிகவும் திறமையுடையவராக,
- (vii) ஆகக்கூடியது ஒருவர் மிகவும் திறமையுடையவராக,
- (viii) ஒருவர் மட்டும் திறமையுடையவராக,
 - (ix) ஒருவரும் திறமையற்றவராக இல்லாது,
- (x) ஒருவரும் திறமையுடையவராக இல்லாது, காணப்படுவதற்கான நிகழ்தகவுகளேக் காண்க.

முதலில், வகுப்பிலுள்ள ஒரு மாணவன் மிகத்திறமையுடை யவஞக, சாதாரண திறமையுடையவஞக, திறமையற்றவஞகக் காணப்படும் நிகழ்ச்சிகளே முறையே A, B, C என்பவற்ருல் குறிப் போம்.

(i) தெரியப்பட்ட மாணவன் மிகவும் திறமையுடையவஞக விருப்பதற்கான நிகழ்தகவு,

$$P(A) = 10/15$$

(ii) அவன் திறமையற்றவஞக இல்லா திருப்பதற்கான நிகழ்தகவு,

$$P(\vec{C}) = 1 - P(C)$$

= 1-2/15 = 13/15

(iii) அவன் மிகவும் திறமையுடையவளுக அல்லது திறமையற்ற வளுகவிருப்பதற்கான நிகழ்தகவு,

$$P(AUC) = P(A) + P(C)$$

(இங்கு A, C மூட்டற்றவை. ஏனெனில் ஒருவர் திறமை சாலியாக இருந்துகொண்டு திறமையற்றவஞகவும் இருக்க முடியாது.)

$$P(\cup C) = 10/15 + 2/15 = 12/15$$

இனி, இரு மாணவர்கள் பிரதிவைப்பில்லாமல் தெரியப்படின் அவர்கள் பின்வரும் 6 வகைகளில் ஒன்றுக இருக்கலாம்.

(iv) வகுப்பில் மொத்தம் 15 பேர் காணப்படுகின்றனர். இவர் களுள் இரண்டு மாணவர்களே (15) வழிகளில் தேரலாம். அத்துடன் வகுப்பிலுள்ள 10 மிகவும் திறமையுள்ள மாண வருள் இருவரை (10) வழிகளில் தேரலாம்.

> எனின், தெரியப்பட்ட இரு மாணவர்களும் மிகத்திற<mark>மை</mark> யடையவர்களாகக் காணப்படுவதற்கான நிகழ்தகவு,

$$\Gamma[(A,A)] = {10 \choose 2} / {15 \choose 2} = 3/7$$

(v) 2 திறமையற்ற மாணவர்களிலிருந்து 2 மாணவர்களே ($\frac{\epsilon}{2}$) வழிகளில் தேரலாம். எனின், தெரியப்பட்ட இரு மாண வர்களும் திறமையற்றவர்களாகக் காணப்படுவதற்கான நிகழ்தகவு,

$$F[(C,C)] = {2 \choose 2} / {15 \choose 2} = 1/105$$

(vi) அதாவது, இங்கு இருவரும் மிகவும் திறமையுடையவர்க ளாக இருக்கலாம். அல்லது ஒருவர் மிகவும் திறமையுடை யவராகவும் மற்றவர் எவ்வகையைச் சார்ந்தவராகவும் இருக்கலாம்.

$$\mathbf{P}_{\mathbf{L}}^{r}(\mathsf{AA}) \cup (\mathsf{AB}) \cup (\mathsf{AC}) = \frac{\binom{10}{2} + \binom{10}{1} \binom{3}{1} + \binom{10}{1} \binom{2}{1}}{\binom{15}{2}}$$

(vii) இங்கு, ஒன்றில் ஒருவர் மிகவும் திறமையுடையவராகவும் மற்றவர் எவ்வகையைச் சார்ந்தவராகவோ அல்லது ஒருவ ரும் திறமையுடையவராக இல்லாதவராயும் இருக்கலாம்.

ഒരു
$$P[(A \cap (BUC)) \cup (CC)] = \frac{\binom{10}{1}\binom{5}{1} + \binom{5}{2}}{\binom{15}{2}}$$

$$= 4/7$$

(viii) இங்கு ஒன்றில் ஒருவர் மிகவும் திறமையுடையவராகவும் மற்றவர் திறமையற்றவராகவும் அல்லது ஒருவர் சாதா ரண திறமையுடையவராகவும் மற்றவர் திறமையற்றவராக வும் இருக்கலாம்.

ਰਾਲਾ ਰਿਕਾ,
$$P[(AC) \cup (BC)] = \frac{\binom{10}{1}\binom{2}{1} + \binom{3}{1}\binom{2}{1}}{\binom{15}{2}}$$
$$= \frac{\binom{13}{1}\binom{2}{1}}{\binom{15}{3}} = \frac{26}{105}$$

(ix) இங்கு இருவரும் மிகவும் திறமையுடையவர்களாக அல்லது இருவரும் சாதாரண திறமையுடையவர்களாக அல்லது ஒருவர் மிகவும் திறமையுடையவராகவும் மற்றவர் சாதா ரண திறமையுடையவராகவும் இருக்கலாம்.

атем Сал,
$$P[(AA)U(BB)U(AB)] = \frac{\binom{10}{2} + \binom{3}{2} + \binom{10}{1} \binom{3}{1}}{\binom{15}{2}}$$

= 26/35

(x) இங்கு, இருவரும் சாதாரண நிறமையுடையவர்களாகவேர அல்லது இருவரும் நிறமையற்றவர்களாகவோ அல்லது ஒரு வர் சாதாரண நிறமையுடையவராகவும் மற்றவர் நிறமை யற்றவராகவும் இருக்கலாம்.

ਗ਼ਗ਼ਰਿਕ,
$$P[(BB)\cup(CC)\cup(BC)] = \frac{\binom{3}{2}+\binom{2}{2}+\binom{3}{1}\binom{2}{1}}{\binom{15}{2}}$$

= 2/21

உதாரணம் 3.30

பேராதனேப் பல்கஸேக்கழகத்தின் குறிப்பிட்ட துறை ஒன்றிலே மேலதிகமான விரிவுரையாளர்கள் இருப்பதாகக் காணப்பட்டு, அவர்களில் சிலர் புதிதாக அமைக்கப்படும் பல்கஸேக்கழகமொன் நிற்கு மாற்றப்பட வேண்டியுள்ளார்கள். மேற்படி துறையில் 8 சிரேஷ்ட விரிவுரையாளர்களும், 3 துணே விரிவுரையாளர்களும், 9 பமிற்சியாளர்களும் கடமைபுரிகின்ருர்கள் என்க. இவர்களில் மூன்று பேர் இடமாற்றப்படின் அவர்கள்,

- (i) மூவரும் சிரேஷ்ட விரிவுரையாளர்களாகவிருப்பதற்கான,
- (ii) மூவரும் பயிற்சியாளராகவிருப்பதற்கான,
- (iii) இரண்டு சிரேஷ்ட விரிவுரையாளர்களும், ஒரு உதவி விரி வுரையாளருமாகவிருப்பற்கான,
- (iv) ஆகக்குறைந்தது ஒரு உதவி விரிவுரையாளராவது இட மாற்றப்படுவதற்கான,

- (v) ஒவ்வொரு தரத்திலிருந்து ஒவ்வொருவர் இடமாற்றப்படுவ தற்கான, நிகழ்தகவுகளேக் காண்க.
- (i) குறிப்பிட்ட துறையில் மொத்தம் 20 பேர் காணப்படுகின் ருர்கள் இவர்களிலிருந்து மூன்றுபேர் (20) வழிகளில் தெரி யப்படலாம். ஆனுல் 8 சிரேஷ்ட விரிவுரையாளர்களிலிருந்து மூன்றுபேர் (8) வழிகளில் தெரியப்படலாம். எனவே தெரியப்பட்ட மூவரும் சிரேஷ்ட விரிவுரையாளர்களாக

விருப்பதற்கான நிகழ்தகவு,
$$=\frac{\binom{8}{3}}{\binom{20}{3}}=14/285$$

(ii) இங்கு 9 பயிற்சியாளர்களிலிருந்து மூன்றுபேரை (93) வழிகளில் தெரியலாம். எனவே, தெரியப்பட்ட மூவரும் பயிற்கியாளராகவிருப்பதற்கான நிகழ்தகவு.

$$= \binom{9}{3} / \binom{20}{3} = 7/95$$

(iii) இங்கு, 8 சிரேஷ்ட விரிவுரையாளர்களிலிருந்து இரண்டு பேரை (⁸₂) வழிகளிலும், 3 உதவி விரிவுரையாளர்களி விருந்து ஒருவர் (³₁) வழிகளிலும் தெரியப்படலாம். எனவே, 2 சிரேஷ்ட விரிவுரையாளர்களும், 1 உதவி விரிவுரையாள ரும் கொண்ட மூவர் (⁸₂) (³₁) வழிகளில் தெரியப்படலாம். எனவே மேற்படி நிகழ்ச்சிக்கான நிகழ்தகவு,

$$= \frac{\binom{8}{2} \binom{3}{1}}{\binom{20}{3}} = 14/9\delta$$

.

(iv) உதவி விரிவுரையாளர் ஒருவரையும் கொண்டில்லாத மூவர், (17) வழிகளில் தெரியப்படலாம். எனவே, உதவி விரிவுரை யாளர் ஒருவரையும் கொண்டில்லாத மூவர் தெரியப்படு

வதற்கான நிகழ்தகவு.
$$=\binom{17}{3}/\binom{20}{3}$$

= 34/57

எனின், தெரியப்படும் மூவரில் ஆகக்குறைந்தது ஒரு உதவி விரிவுரையாளராவது காணப்படுவதற்கான நிகழ்தகவு,

$$= 1 - 34/57$$
$$= 23/57$$

(v) 8 சிரேஷ்ட விரிவுரையாளர்களிலிருந்து ஒருவரை (⁸₁)வழி களிலும், 3 உதவி விரிவுரையாளர்களிலிருந்து ஒருவரை (³₁) வழிகளிலும், 9 பயிற்சியாளர்களிலிருந்து ஒருவரை (⁹₁) வழிகளிலும் தெரியலாம். எனவே தெரியப்பட்ட மூவரில் எல்லாத் தரத்திலிருந்தும் ஒவ்வொருவர் காணப்படுவதற்கான

நிகழ்த்தவு =
$$\frac{\binom{8}{1}\binom{3}{1}\binom{9}{1}}{\binom{20}{3}}$$
 = 18/95

3. 9: பயிற்கிகள்

1. மாதிரிவெளி S ஆனது 1 இலிருந்து 10 வரையுள்ள நேர்முழு எண்களேக் கொண்டது. A = \{2,3,4\}, B = \{3,4,5\}, C = \{5,6,7\} என்பன S இலுள்ள எவையேனும் மூன்று நிகழ்ச்சிகளெனின், பின்வரும் தொடைகளுக்குரிய மாதிரிப் புள்ளிகளேக் காண்க.

(4) Anb (4) AUB (9) (Anb) (7) An (Bnc)

2. பின்வரும் தொடர்புகளில் எவை உண்மையானவை? (அ) (AUB) ∩(AUC) = AU (B∩C)

(a) $(A \cap \overline{B})$ $\cup B$ = $(A \cup B)$

 $(\textcircled{a}) \ (A \cup B) \qquad = (\overline{A} \cap B)$

 $(\#) \overline{(AUB)} \cap C = \overline{A} \cap \overline{B} \cap \overline{C}$

(2) (ANB) N(BNC) = 0

3. பின்வரும் தொடர்புகளே நிறுவுவதற்கு வெண்ணின் வரைபடத்தை உபயோகிக்குக.

(அ) A ⊂B & B ⊂ C a a a l a a C C

(ஆ) $A \subset B$ எனின் $A = (A \cap B)$

(இ) A⊂B எனின் B⊂Ā

(F) ACB GTOST (AUC) C (BUC)

(2) A∩B = \$\psi \quad \text{2.ii} \quad \text{CCA granfloir B∩C} = \$\psi\$

4. A, B, C என்பன எவையேனும் மூன்று எதேச்சை யான நிகழ்ச்சிகளெனின் பின்வருவனவற்றிற்கான கோவையைப் பெறுக.

(ஆ) A மாத்திரம் நேரும்,

(ஆ) ஏதாவது ஒரு நிகழ்ச்சி மட்டும் நேரும்,

(இ) A, B என்பன நேரும் ஆனுல் C நேராது,

(ஈ) மூன்றில் ஒன்றுவது நேரும்,

- (உ) மூன்று நிகழ்ச்சிகளும் நேரும். (ஊ) ஒரே நேரத்தில் இரண்டிற்கு மேற்பட்ட நிகழ்ச்சிகள் நேராது.
- பின்வரும் பரிசோதண்களுக்கான மாதிரிவெளிகளேத் தந்து அவை பின்னக மாதிரிவெளிகளா தொடர் மாதிரிவெளிகளா எனக் கூறுக.
 - (அ) தொழிற்சாலே ஒன்றில் உற்பத்தியாகின்ற உதிரிப்பாகங்களின் விட்டங்கள்,
 - (ஆ) ஓர் அரைட்டின் பெட்டி ஒன்றிலுள்ள பழுத டைந்த முட்டைகளின் எண்ணிக்கை,
 - (இ) தனித்தனியே 100 கிருமிகளேக் கொண்ட இரு தொகுதிகளுக்கு ஒரு கிருமி நாசினியைப் பிர யோகிக்கும்போது அதனது தாக்கத்திணப் பதிதல்,
 - (ஈ) இணேத்துக்கட்டப்பட்ட இரு கட்டங்களிலுள்ள குறைபாடுகளின் எண்ணிக்கை,
 - (உ) மோட்டார் வாகனமொன்றின் 4 ரயர்களிலும் ஒருமைல் ஓட்டத்திற்கான தேய்வின் வீதத்தை அளத்தல்,
 - (ஊ) நாளொன்றிற்கு, குழாயொன்றினூடாகப் பாயும் நீரின் அளவினே அளவிடுதல்.
- 6. தொழிற்சாஃயொன்றில் உற்பத்தியாக்கப்படும் பொருட்கள் பழுதடைந்தனவாயோ பழுதடையா தனவாகவோ காணப்படலாம். உற்பத்திமுறையில் நான்கு பொருட்கள் மட்டுமே உற்பத்திசெய்யப்பட முடியுமெனினும், உற்பத்தி செய்யப்படும் பொருட் களில் அடுத்தடுத்து இரு பழுதுகள் காணப்படின் உற்பத்தியானது நிறுத்தப்படும். பரிசோதணேக்கான மாதிரிவெளியை விபரிக்க.
- 7. ஒன்று, இரண்டு என இலக்கமிடப்பட்ட இரு கோடலற்ற தாயக்காய்கள் எறியப்படுகின்றன எனின், இப்பரிசோதணக்கான மாதிரிவெளியைத் தந்து அதணப் படத்தில் குறிப்பிடுக. அத்துடன்,

இங்கு நிகழ்ச்சி A என்பது, ஏதாவது ஒன்றில் அல் லது இரண்டிலும்5 என்ற புள்ளியைப் பெறும் நிகழ்ச்சி யினேயும், B என்பது, கூட்டுத்தொகை 8 ஆகவுள்ள மாதிரிப்புள்ளிகளேயும் குறிக்கின்றனவெனின் பின் வருவனவற்றினேச் சார்ந்த மாதிரிப்புள்ளிகளேத் தருக.

(அ) A (ஆ) B (இ) (AnB) (所) (AUB)

- 8. (அ) இரு பரீட்சைகளுக்குத் தோற்றும் ஒரு பரீட்சார்த்தி ஒவ்வொன்றிலும் 0, 1,...,6 என்ற புள்ளிகளே ஈட்டமுடியும், மேற்படி பரிசோத கேக்குப் பொருத்தமான மாதிரிவெளியைத் தந்து அதனேப் படத்தில் குறிப்பிடுக.
 - (ஆ) பின்வரும் நிசழ்ச்சிகளேப் படத்தில் இஃதெனக் காட்டுக.
 - A மொத்த ஈட்டுக்களின் எண்ணிக்கை ஆகக் குறைந்தது 7
 - B இரண்டு ஈட்டுக்களிலும் இழி வானது ஆகக் கூடியது 2.
 - C முதற் பரீட்சையில் பெற்ற ஈட்டு இரண்டாம் பரீட்சையிற் பெற்ற ஈட்டிலும் ஆகக்குறைந்தது ஒன்றிலும் பெரியது.
 - D இரண்டு ஈட்டுக்களும் மூன்றைவிடப் பெரிதல்ல.
 - (இ) B இதற்குரிய மாதிரிப்புள்ளிகளேத் தந்து அத னேப் பொருத்தமான வசனங்களில் விளக்கிக் கூறுக.
 - (ஈ) A, B, C, D என்பனவற்றில் ஏதாவது இரு நிகழ்ச்சிகள் மூட்டற்றவையா?
 - (உ) AUB ஐக் காண்க.
- 9. A,B என்பன P (A) = 3, P (B) = 1 P (A∩B) = 1, ஆகுமாறுள்ள இரு நிகழ்ச்சிகளெனின், பின்வருவன வற்றைக் காண்க.
 - (3) P(AUB) (3) P(A), P(B)(Q) P(A)B)
 - (F) P(AUB) (2) PAUB) (2011) PANB)

- 10. A, B என்பன P(A∪B) = ⅔, P(Ā) =⅗, P(Ā∩B) =⅓
 ஆகுமாறுள்ள இரு நிகழ்ச்சிகளெனின்,
 (அ) P(A), (ஆ) P(B), (இ) P(Ā∩B) என்ப வந்றைக் காண்க.
- 11. கோடலற்ற இரு நாணயங்கள் சுண்டப்படுகின்றன. இப் பரிசோதணேக்கான மாதிரிவெளியையும் பின் வரும் நிகழ்ச்சிகளுக்குரிய மாதிரிப் புள்ளிகளேயும் தந்து அவற்றிற்கான நிகழ்தகவுகளேக் காண்க.
 - (அ) ஒரு தலே மாத்திரம் பெறப்படுவதற்கான,
 - (ஆ) ஒரு பூ மாத்திரம் பெறப்படுவதற்கான,
 - (இ) இரு தவேகள் பெறப்படுவதற்கான,
 - (ஈ) இரு பூக்கள் பெறப்படுவதற்கான,
 - (உ) ஓரு தஃயாவது பெறப்படுவதற்குரிய,
 - (ஊ) ஒரு பூவாவது பெறப்படுவதற்குரிய.
- 12. ஒரு பெட்டியினுள் 6 செம்பந்துகளும், 5 வெண்பந்து களும், 4 கரும் பந்துகளும் காணப்படுகின்றன. பெட் டியினுள்ளிருந்து ஒரு பந்து எழுமாளுக எடுக்கப்படு கின்றது.
 - (அ) அப்பந்து செம்பந்தாக, வெண்பந்தாக, கரும் பந்தாக இருப்பதற்கான நிகழ்தகவுகளேக் காண்க.
 - (ஆ) அப்பந்து செம்பந்தல்லா இருப்பதற்கான நிகழ் தகவு என்ன?
 - (இ) எடுக்கப்பட்ட பந்து வெண்பந்து, கரும்பந்து, இரண்டும் அல்லாமலிருப்பதற்கான நிகழ் தகவு என்ன?
- 13. ஒரு பல்கலேக்கழகத்தினுள் 3 ஆண்டு பட்டப்படிப் பிற்கு சேர்ந்த 500 மாணவர்கள் கணிதம், பொரு னியல், புள்ளிவிபரவியல் ஆகிய பாடங்களில் ஒன்

றினே அல்லது கூடிய பாடங்களேப் பயில்கின்றுர்கள். விபரங்கள் வருமாறு: கணிதம் 329 பேரும், பொரு ளியல் 186 பேரும், புள்ளிவிபரவியல் 295 பேரும், கணிதம்-பொருளியல் 82 பேரும், கணிதம்-புள்ளி விபரவியல் 217 பேரும், பொருளியல்-புள்ளிவிபர வியல் 67 பேரும் எனின், எத்தனே மாணவர்கள் கீழ்க் குறிப்பிட்ட பாடங்களேப் பயில்கின்றுர்கள்?

- (அ) மூன்று பாடங்களேயும்,
- (ஆ) கணிதம் ஆஞல் புள்ளிவிபரவியல் அல்ல,
- (இ) பொருளியல் ஆனுல் கணிதம் அல்ல,
- (ஈ) புள்ளிவிபரவியல் ஆணுல் பொருளியல் அல்ல,
- (உ) கணிதம் அல்லது புள்ளிவிபரவியல் ஆனல் பொருளியல் அல்ல,
- (ஊ) கணிதம் ஆஞல் பொருளியலோ புள்ளிவிபர வியலோ அல்ல.
- 14. பல்கஃலக்கழகம் புகும் ஒரு மாணவன் பட்டதாரி யாக வெளியேறுவதற்கான நிகழ்தகவு 0.4 எனின், இறு தி வருடத்திலுள்ள ஐந்து மாணவர்களுள்,
 - (அ) ஒருவர் மட்டும் பட்டதாரியாக,
 - (ஆ) ஒருவரும் பட்டதாரியாக இல்லாமல்,
 - (இ) ஒருவராவது பட்டதாரியாக, வெளியேறுவதற்சான நிகழ்தகவுகளேக் காண்க.
- 15. சப்பாத்துத் தொழிற்சாஃயைான்றில் A, B, C என்ற மூன்று வெவ்வேறு வகையான சப்பாத்துகள் உற் பத்தி செய்யப்படுகின்றன. A வகையில் 5 %, B வகையில் 4 %, C வகையில் 1 % பழுதடைந்து காணப் படுகின்றதெனின் மேற்படி மூன்று வகைகளிலும் ஒரு சோடிச் சப்பாத்து பழுதடையாதிருப்பதற்கான நிகழ்தகவு என்ன?
- 16. இயந்திரம் A மினுடைய உற்பத்தி தடைப்படுவதற் கான நிகழ்தகவு 0·1, இயந்திரம் B மினுடைய உற் பத்தி தடைப்படுவதற்கான நிகழ்தகவு 0·2. இயந்

திரம் A உம் இயந்திரம் B உம் ஒன்றையொன்று சாராதவையெனின் ஒரே நேரத்தில் இரு இயந்தி ரங்களினதும் உற்பத்தி தடைப்படுவதற்கான நிகழ் தகவு என்ன? ஏதாவது ஒரு இயந்திரத்தின் உற் பத்தி தடைப்படுவதற்கான நிகழ்தகவு என்ன?

- 17. A,B என்பன புள்ளியியலாகச் சாராதவையெனின்,
 - (அ) A, B என்பவையும் புள்ளியியலாகச் சாராத வையெனக் காட்டுக.
 - (ஆ) P [(AnB) | B] இணக் காண்க.
- 18. திருமணமான ஓர் ஆண் பாராளுமன்றத் தேர்தலில் வாக்களிப்பதற்கான நிகழ்தகவு0.4, திருமணமானஒரு பெண் வாக்களிப்பதற்கான நிகழ்தகவு 0.35அத்துடன் கணவன் வாக்களிப்பின் மணவியும் வாக்களிப்பதற் கான நிகழ்தகவு 0.6 எனின்,
 - (அ) தேர்தலில் கணவனும் மீனவியும் வாக்களிப் பதற்கான நிகழ்தகவு என்ன?
 - (ஆ) கணவனும் மஃனவியும் வாக்களிப்பது புள்ளி யியலாகச் சாராததா? ஏன்?
 - (இ) மனேவி வாக்களிக்கும்போது கண**வனும் வாக்** க**ளி**ப்பதற்கான நிகழ்தகவு என்ன?
- 19. மருத்துவ விஞ்ஞானம் புற்றுநோயைக் கண்டுபிடிப் பதற்குச் சோதணேயொன்றைக் கையாளுகின்றது. இச்சோதண 95 % செம்மையையே தருவதாகக் கொள்க. அதாவது 100 புற்றுநோயாளிகளே எடுத் துக் கொண்டால் சோதண மூலம் 95 பேரை அடையாளங் காணலாம்; 100 சுகதேகிகளே எடுத்துக் கொண்டால் சோதண மூலம் 95 பேரை புற்று தோயில்லா தவர்களெனவும், 5 பேர் புற்றுநோயாளி களெனவும் அடையாளங் காணலாம். முழுச் சனத் தொகையில் 0.005 வீ தமானுர்க்கு உண்மையில்

புற்றுநோயிருப்பின், தனிப்பட்ட ஒருவருக்கு, சோத வேயானது புற்றுநோய் காணப்படுகின்றதெனக் காட்டினும் அவருக்கு புற்றுநோயில்லா திருப்பதற் கானநிகழ்தகவு என்ன?

- 20. A, B என்பன P(A) = ¼, P(B) = ½, P(A B) = ¼ ஆகுமாறுள்ள இரு நிகழ்ச்சிகள் என்க: எனின் பின் வரும் முடிபுகள் உண்மையானவையோ பொய்யானவையோ எனக் கூறி அவற்றிற்கான காரணத்தைத் தருக.
 - (அ) A, B மூட்டற்ற நிகழ்ச்சிகள்
 - (3) $P(\overline{B}) = \frac{1}{2}$
 - (இ) A, B யினது நிகழ்ச்சிப்பிரிவு
 - (#) $P(\overline{A} | \overline{B}) = \frac{3}{4}$
 - (2) $P(A \cap B) = P(A) \cdot P(B)$
- 21. P(A | B) > P(A) எனின். P (B | A) > P(B) எனக் காட்டுக.
- 22. Ā, B என்பன பரிசோதுணபொன்றுடன் சேர்க்கப் பட்ட இரு நிகழ்ச்சிகளென்க. P(ĀUB) = 0·7 ஆயி ருக்கும்போது P(Ā) = 0·4, P(B) = p எனின்,
 - (அ) A, B மூட்டற்ற நிகழ்ச்சிகளாயின் p இன் பெறு மானம் யாது?
 - (ஆ) A, B சாரா நிகழ்ச்சிகளாயின் p இன் பெறுமா னம் யாது?
- 23. தொழிற்சாஃயொன்றின் மொத்த உற்பத்தியில் 25 வீதமானவை யந்திரம் A யினுலும், 35 வீதமானவை யந்திரம் A யினுலும், 35 வீதமானவை யந்திரம் C யினுலும் உற்பத்தி செய்யப்படுகின்றன. இவற்றுள் முறையே 5, 4, 2 வீத பழுதுகள் காணப் படுகின்றன. ஓர் உற்பத்திப் பொருள் எழுமாருக

எடுக் ப்பட்டு அது பழுதடைந்ததாகக் காணப்பட் டது எனின், அவ்வுற்பத்திப் பொருள் தனித்தனியே A B, C என்பவற்றுல் உற்பத்தி செய்யப்பட்டிருப் பதற்கான நிகழ்தகவு என்ன?

- 24. பெட்டி A ஆனது 3 வெண்குண்டுகளேயும், 5 கருங்குண்டுகளேயும், பெட்டி B ஆனது 2 வெண்குண்டு களேயும் 1 கருங்குண்டையும், பெட்டி C ஆனது 2 வெண்குண்டுகளேயும், 3 கருங்குண்டுகளேயும் கொண்டுள்ளதென்க. ஒரு பெட்டி எழுமாருகத் தேர்ந்தெடுக்கப்பட்டு அதனுளிருந்து ஒரு குண்டு எழுமாருக எடுக்கப்படுகின்றது. எடுக்கப்பட்ட குண்டு கருங்குண்டாயின் அது பெட்டி A யிலிருந்து எடுக்கப்படுவதற்கான நிகழ்தகவை (அ) தருவரிப்பட முறையாலும் (ஆ) பெயிசுவின் தேற்றத்தை உபயோகித்தும் காண்க.
- 25. குறிப்பிட்ட சமூகமக்களின் கல்விமட்டம், வருமா மானமட்டம் பற்றிய ஆய்வொன்றில் முழுச் சனத் தொகையில் 1/3 விகிதமானேர் உயர்ந்த வருமானம் உடையவர்களாகவும், 2/3 விகிதமானேர் குறைந்த வருமானம் உடையவர்களாகவும் காணப்படுகின்ற னர். அத்துடன் உயர்ந்த வருமானமுடையவர் களில் 0.75 வீதம் கல்வியறிவுடையவர்களாகவும், குறைந்த வருமானமுடையவர்களாகவும், கல்வியறிவுடையவர்களில் 0.35 வீதம் கல்வியறிவுடையவர்களில் 0.35 வீதம் கல்வியறிவுடையவர்களாகவும் காணப்படுகின்றனர். எனின், பெயிசுவின் தேற்றத்தை உபயோகித்து எழு மாருகத் தெரியப்படும் ஒருவர் கல்வியறிவுடையவ ராகவிருப்பின் அவர் உயர்ந்த வருமானமுடையவ ராக இருப்பதற்கான நிகழ்தகவு என்ன?
- 26. தரப்பட்ட பரீட்சையொன்றில் 8 விஞக்களுக்கான விடைகள் உண்மையானவையானகவோ, பொய்

யானவையாகவே இருக்கலாம். பரீட்சையில் சித்தி பெறுவதற்கு ஆகக்குறைந்தது 6 விஞக்களுக்கான விடைகள் சரியானவையாகக் காணப்படல்வேண்டும்

- (அ) பரீட்சார்த்தி ஒருவர் ஒவ்வொரு விணுவிற்கான விடையையும் ஊகித்தளிப்பின் அவர் பரீட்சை யில் சித்தியடைவதற்கான நிகழ்தகவு யாது?
- (ஆ) பரீட்சார்த்தி முதலாம் விஞவிற்கான விடையை மட்டும் அறிந்திருப்பதோடு ஏணேய ஏழு விஞக்களேயும் ஊகித்தே விடையளிப்பா ஞயின் அவன் பரீட்சையில் சித்தியடைவதற் கான நிகழ்தகவு என்ன?
- (இ) பரீட்சார்த்திமுதலிரு விஞக்களுக்கு விடையை அறிந்திருப்பின் அவன் பரீட்சையில் சித்தி யடைவதற்கான நிகழ்தகவு என்ன?
- உற்பத்தியாள இெருவனுக்கு A, B என்பவர்களால் 27. குறிப்பிட்ட மூலப்பொருளொன்று வழங்கப்படுகின் முன் வே ய அனுபவங்களிலிருந்து A யினுல் நிரம்பல் செய்யப்பட்ட பொருட்களில் 5% பழு தடைந்ததாகவும், B யினுல் நிரம்பல் செய்யய்பட்ட 9% பழுதடைந்ததாகவும் காணப்படுகின் most. கொள்வனவு செய்யப்படும் பொருட்கள் யாவும் தொட்டியொன்றினுள் குவித்து வைக்கப் பட்டிருப்பின் அதிலிருந்து ஒரு பொருள் எழுமாருக எடுக்கப்பட்டபோது थ म பழுதடைந்ததாகக் காணப்பட்டது. எனின் அது A யினுல் நிரம்பல் செய்யப்பட்ட பொருளாகவிருப்பதற்கான நிகழ் தகவு என்ன?

- 28. பொருளியற் பரீட்சைக்கு 10, பல தெரிவு விஞக்கள் கொடுக்கப்படுகின்றன. பரீட்சையில் சித்தியடைய ஏழு அல்லது கூடிய விஞக்களுக்குச் சரியாக விடை யளிக்கப்பட வேண்டும். ஊகித்து விடை எழுதும் ஒரு மாணவன் பின்வரும் நிலேமைகளில் சித்தி யடைவதற்கான நிகழ்தகவுகளேக் காண்க.
 - (அ) ஒவ்வொரு விஞவும் 8 வெவ்வேறு விடைக ளேக் கொண்டிருப்பின்,
 - (ஆ) ஒவ்வொரு வினுவும் 4 வெவ்வேறு விடைக கோக் கொண்டிருப்பின்,
 - (இ) முதல் 5 விஞக்களும் 3 வெவ்வேறு விடைக ளேயும், மிகுதி 5 விஞக்களும் 4 வெவ்வேறு விடைகளேயும் கொண்டிருப்பின்.
- 29, தரப்பட்ட ஒரு சீட்டுக் கட்டிலிருந்து எழுமாருக ஒரு சீட்டு எடுக்கப்படுகின்றதெனின் பின்வருவன வற்றிற்கான நிகழ்தகவுகளேக் காண்க.
 - (அ) Heart (ஆ) Ace அல்லது Heart
 - (இ) An Ace (ஈ) A Heart அல்லது A club.
- 30. A, B, C என்னும் 3 யந்திரங்கள் முறையே மொத்த உற்பத்தியில் 50%, 30%, 20% என்பவற்றை உற்பத்தி செய்கின்றன. அவற்றுள் முறையே 3%, 4%, 5% என்பன பழுதடைந்தவை. ஒர் உற்பத்திப் பொருள் எழுமாருக எடுக்கப்படுகின்றதெனின் அது பழு தடைந்திருப்பதற்கான நிகழ்தகவு என்ன?

எழுமாருக் எடுக்கப்பட்ட பொருள் பழுதடைந்து காணப்படின் அப்பொருள் யந்திரம் **À என்பதனுல்** உற்பத்தி செய்யப்பட்டிருப்பதற்கான நிக**ழ்தகவு** என்ன?

Appropriate Technology Services
165 121. POINT OF FOAD
NALLUR, ALENA

Appropriate Technology Services

121 MONT PELFO FOAD NALLUR, JAFFNA

அத்தியாயம்: 2

118

No

(11) 5, 5, 5.07, 4.43 (12) 665 (13) 32.7, 34.3, 41.7, 25.3, 34.5 (15) 45, 44.75 (18) 13, 20, 13.5(19) 560, 36 (20) 32.5, 19, 22,36.5 (24) 12, 13 (25) 97.45, 2.26, 2.92 (26) 0.37 (27) -0.03

அத்தியாயம்: 3

1. (A)
$$\{5\}$$
 (A) $\{1, 3, 4, 5, 6, 7, 8, 9, 10\}$ (A) $\{2, 3, 4, 5\}$ (F) $\{1, 5, 6, 7, 8, 9, 10\}$ (2) $\{1, 2, 5, 6, 7, 8, 9, 10\}$

- 2. (அ), (ஆ), (உ) என்பன உண்மை
- 4. (அ) An BUC அல்லது An Bn C (ஆ) [An Bn C] U[An Bn C]
 - (@) (A∪B)∩C
 - (所) AUBUC
 - (2) ANBIC
 - (am) A\B\C
- 5. (ஆ), (இ), (ஈ) என்பன பின்னக மா திரிவெளிகள்
- 6. {DD, NDD, DNLD, DNDN, DNND, DNNN, NDND, NDNN, NNDD, NNDN, NNND, NNNN}
- 7. (3) $\{(1,5), (2,5), (3,5), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,5)\}$
 - (3) $\{(2,6)(3,5)(4,4)(5,3)(6,2)\}$
 - (2) $\{(3,5)(5,3)\}$

```
(F) \{(1,5), (2,5), (2,6), (3,5), (4,4), (4,5), (5,1)\}
         (5,2)(5,3)(5,4)(5,5)(5,6)(6,2)(6,5)
 (ஈ) A, D மூட்டற்றவை
 (2) {(3,3)}
 (2)
      \frac{5}{8} (3) \frac{5}{8}, \frac{1}{2} (3)
                                   (所) 第
 (2) 3
            (em)
 (21) 1
            (3) \frac{11}{12}
                       (Q)
                             T 7
 (31) 0.5
                (36) 0.5
                              (A) 0.25
 (F) 0.25
               (2) 0.75
                            (2面) 0.75
 (3) 0.4, 0.33, 0.27
 (%) 0.6
             (இ) 0.67
                          (F) 0.4
 (21) 56
            (34) 112
                         (2) 104
                                      (年) 228
 (2) 314 (2m) 86
(别) 0. 6 (别) 0.08
                           (2) 0.92
0.813
0.02. 0.28
(34)P(A)
(34) 0.24
              (ஆ) இல்லே
                             (2)
                                  0.686
0.087
(அ) (இ) என்பன பொய்
(21) 0.3
0.362, 0.406, 0.232
75
T87
(3) 0.51
(31)
            (2)
                         (A) 23
0.807
```

8.

9.

10.

11.

12.

13.

T 4.

15.

16.

17.

18.

19.

20.

22.

23.

24.

25.

26.

27.

28.

30.

(3) 0.02

0.037, 0.405

io7.
Digitized by Nodiaham Foundation.
noolaham.org | aavanaham.org

(3) 0.0035

(2) 0.0087

ஆசிரியரின் அடுத்த வெளியீடு!

புள்ளிவிபரவியலில் தொடர்ந்து வரும் முக்கிய பகுதிகளே, குறிப்பாக,

> எழுமாற்று மாறிகள் நி**க**ழ்தகவுப் பரம்பல்கள் போன்றவற்றை உள்ளடக்கிய

புள்ளிவிபரவியல்

(பாகம் II)

புள்ளிவிபரவியலின் அடிப்படைக் கருத்துகளேத் தாமாகவே பயிலும் சகல மாணவர்களுக்கும் உதவும் நோக்குடன், பலதரப் பட்ட உதாரணங்களேயும், விளக்கப் படங்களேயும், பயிற்சி களேயும் இந்நூல் தாங்கி வருகின்றது.

மேலும் பின்னிணேப்பில்:

பயிற்கிகளுக்கான விடைகளும் மிக முக்கியமான புள்ளிவிபர அட்டவணேகளும் புள்ளிவிபரவியலில் வரும் கலேச்சொற்களுக்கான ஆங்கிலச் சொற்களும்

இணக்கப்பட்டுள்ளன.