Historia Septimental Company of the Company of the

INORGANIC CHEMISTRY

து. மகாதேவன் B.sc., Dipain Ed

அசேதன இரசாயனம்

ஆ. ம**காதேவன்** B. Sc., Dip-in-Ed. யாழ். இந்துக் கல்லூரி, யாழ்ப்பா**ணம்.**

Advanced Level INORGANIC CHEMISTRY

பொருளடக்கம்

Title	:	Inorganic Chemistry
Author	:	A. Mahadevan B. Sc., Dip-in-Ed.
Publisher	•	A. Vamadevan Kurumbasiddy, TELLIPPALAI.
Copyright	t :	To the Publisher
Price	•	Rs 30-00
Printers	:	Sri Luxmi Press 222 (76). Hospital Road, JAFFNA.
		Second Eqition November, 1989

		பக்கம்
1.	S தொகுப்பு மூல கங்கள்	1
2.	ஒட்சியேற்றமும் தாழ்த்தலும்	15
3.	P தொகுப்பு மூலகங்கள் – அறிமுகம்	20
	ஐ தரைட்டுக்களில் ஆவர்த்தனப் போக்குகள்	
	ஓட்சைட்டுக்களில் ஆவர்த்தனப் போக்குகள்	
	ஐதரொட்சைட்டுக்களில் ஆவர்த்தனப் போக்குகள்	24
4.	கூட்ட ம் III மூலகங்கள்	25
5,	கூட்டம் IV மூலகங்கள்	28
6.	கூட்டம் V மூலகங்கள்	35
	நைதரச ன்	37
	அமோனியா	39
	நைத்திரிக்கமில ம்	43
7.	கூட்டம் VI மூலகங்கள்	45
	கந்தகம்	47
	ஐதரசன் சல்பைட்டு	50
	கந்தக ஈரெட்சைட்டு	53 55
	சல்பூரிக் கமிலம்	59
8.	கூட்டம் VII மூலகங்கள் – அலசன்கள்	64
	ஐதரசன் ஏலேட்டுக்கள் ஏலேட்டுக்களே இனங்கா ணல்	65
		•
9.	ஐதரசன்	68
10.	தாண்டல் மூல கங்கள்	71
11.	வளி	73
12.	கடல் வளம்	76
	NaOH தயாரிப்பு	77
	NaHCO ₃ / Na ₂ CO ₃ தயாரிப்பு	80
13.	உலோகப் பிரித்தெடுப்பு இகும்பு	82
14.	அசே த ன உப்புக்களின் பண்பறி ப குப்பு	86
	கற்றயன்களுக்கு சோ த ீனகள்	88
	அனயன்களுக்கு சோத ின கள்	93

யாழ்ப்பாணம் இந்துக் கல்லூரி அதிபர்

திரு. S. பொன்னம்பலம் B. Sc., Dip-in-Ed.

அணிந்துரை

தெளிந்த நல்லறிவைப் பெறுவதற்கு ''தாய்மொழியே போதனு மொழியாக அமைதல் வேண்டும்'' – என்பது கல்வித்தத்துவ அறி ஞர்கள் கருத்தாகும். ஆயினும், சயமொழிவழிக் கல்வி பயனுறு வகையில் அமைவதற்கு அம்மொழியினில் அறிவியல் நூல்கள் பல ஆக்கப்படுதல் வேண்டும். தமிழ்மொழி மூலம் விஞ்ஞானம் சற்பிக்கத் தொடங்கிய காலத்தில், யான், G.C.E. (A/L) வகுப்புக்களில் 'இரசாயனவியல்' பாடத்தைக் கற்பித்துக் கொண்டிருந்தேன். அக் காலத்தில் போதிய அளவு உசாத்துணே நூல்கள் இன்றி மாணவர்கள் பெரும் சிரமங்களே எதிர்கொள்ள வேண்டியிருந்ததை உணர்ந்துள் வேன். இப்போது தமிழ்மொழியில் 'இரசாயனவியல்' பாடநூல்கள் அதிகஅளவில் வெளிவந்து கொண்டிருப்பது இத்துறையில் ஏற்பட்டுள்ள, ஆரோக்கியமான வளர்ச்சிப் போக்கிணக் குறிக்கின்றது. இரசாயனவியல் நூலாக்கத் துறையில் திரு. A. மகாதேவன் அவர்கள் பங்குகொண்டு ஆற்றிவரும் பணிகள் பாராட்டுக்குரியவை.

எமது கல்லூரியில் 'இரசாயனவியல்' ஆசிரியாரக பணிபுரியும் திரு. மகாதேவன் அவர்கள், தமது துறையில் ஆழ்ந்த அறிவுடையவர். அத்துடன் கற்பித்தலில் அதிக ஆர்வம் கொண்டவர். கடமையுணர்ச்சி மிக்கவர். எமது மாணவர்களின் கல்வி வளர்ச்சியில் மிகுந்த அக்கறை கொண்டு அயராது உழைப்பவர். அவர் வகுப்பறையை நிர்வகிக்கும் திறன் கற்பிக்கும் பாங்கு ஆகியவை மாணவர்களாலும். சக ஆசிரி யர்களாலும் பெரிதும் பாராட்டப்படுவதை, நான் பல சந்தர்ப்பங் களில் அவதானித்துள்ளேன், பாராட்டியுமுள்ளேன்.

தரு. மகாதேவன் அவர்கள் 'அசேதன இரசாயனம்' என்னும் இந்நூல பாடத் திட்டத்திற்கு அமைவாக ஆக்கியுள்ளார். S தொகுப்பு P தொகுப்பு மூலகங்கள், வளிவளம், கடல்வளம் ஆகிய பாடப்பரப்புக்களில் அமையும் முக்கிய அம்சங்கள் அனேத்தும் இத்நூலில் சுருக்கமாக வும், தெளிவாகவும் விளக்கப்பட்டுள்ளன. இந்நூல் இரசாயன வியல் கற்கும் மாணவர்களுக்கு நற்பயண் நல்குமென்பது எனது நம் பிக்கை. இந்நூல் ஆக்கிவெளியிடும் திரு. மகாதேவன் அவர்களேப் பாராட்டி அவரது கல்விப் பணிகள் சிறப்புற வாழ்த்துகின்றேன்.

S. பென்னம்பலம்

முகவுரை

உயர் தர வகுப்புகளுக்குரிய விஞ்ஞான நூல்கள் தமிழில் வெளி வரப்வண்டியது, இன்றைய காலகட்டத்தின் இன்றியமையாத தேவை யாகும். தமிழ் மாணவ சமூகத்தின் அறிவியல் விருத்திக்கு இத்த கைய நூல்கள் உறுதுணேயாய் அமைந்து நன்மை பயக்கும். இரசா யனவியற் கல்வித்துறையில் என்னுலான பணிகளே ஆற்றிவரும் யான், பல மாணவர்களின் வேண்டுதலுக்கு அமைய 'அசேதன இரசாயனம்' என்னும் இந்நூலே ஆக்கியுள்ளேன்.

அசேதன இரசாயனம் என்பது பரந்ததோர் பாடப்பரப்பாகும்.
இப்பகுதி தொடர்பாக, பாடத் திட்டத்தினுள் அமையும் முக்கிய
கருத்துப் படிவங்களே, பொருண்மைச் செறிவுடன் இந்தாலில் திரட்
டாகத் தந்துள்ளேன். வகுப்பறைக் கல்வியில் பெற்ற அறிவை மீள
வலியுறுத்தும் ஒருதுணேக் கருவியாக இந்நூல் அமைகின்றது. இந்
நூலின் கருத்துப் படிவங்களே மேலும் ஆழமாக — ஆய்ந்து கற்றல்
பயனுடைத்தாகும். வசதி கருதி பாடத் திட்டத்தை அணுகும்
முறையிலும் சிலமாற்றங்களே ஏற்படுத்தியுள்ளேன். உதாரணமாக
'வளி வளம்' என்ற அலகில் அமையும் ''நைதரசனும் அதன் சேர்வை
களும்'' பற்றிய கருத்துப் படிவங்கள், ''கூட்டம் V'' மூலகங்கள்
என்ற அலகில் உள்ளடக்கப்பட்டுள்ளன.

யான், கல்விப்பணி புரிகின்ற யாழ், இந்துக் கல்லூரியின் அதிபர் மதிப்புக்குரிய திரு. S. பொன்னம்பலம் அவர்கள் இந்நூலுக்கு அணிந்துரை வழங்கிச் சிறப்பித்துள்ளார். அன்ஞருக்கு எனது உளங்களிந்த நன்றிகள் உரித்தாகுக. இந் நூல அழகுறப் பதிப்பித்து வெளியிடு வதற்குத் துணேநின்று பேருதவிபுரிந்த எனது அன்புக்குரிய நண்பரும், யாழ். இந்துக்கல்லூரி பொருளியல் ஆசிரியருமான திரு. மா. சின்னத் தம்பி அவர்கள் எனது நன்றிக்குரியவர். இந்நூல சிறந்த முறையில் அச்சிட்ட யாழ்ப்பாணம், ஸ்ரீ லட்சுமி அச்சக நிறுவனத்தினருக்கும். உவந்து வெளியிட்ட திரு. A. வாமதேவன் அவர்களுக்கும் எனது உளமார்ந்த நன்றிகள் உரித்தாகுக.

ஆ. மகாதேவன்

குரு**ம்**பசிட்டி, தெல்லிப்பழை.

											ē Ā
			•	1 (ກ	ហ	4	. ω	N	-	கட்டம் ஆவர்த்தனம் ந
			7	87 C	×	Rb	7 7	Z:	= E.	- I	5
	Actinides		Ra	88 88	26	Sr 38	3 2	Z Z	2 82 4		4
	व्र	L anthanides	Αc	8 <u>r</u>	57	۲ 39	8.5		- 1		
								71			
	.≓.8	ს ჯ	4			N1 6	Υ	- 1			Œ
	.p 9	P 59		馬	2	34	12	1 3			8
,	U 92	28	1 ~	12	3	¥ ₽	4 23	TRANSITION ELEMENTS			மூலகங்களின்
			-	€:	74	₹ \$	₩ 2,2	Ä			
	¥3	30		₹ ;		2 5	X 23	Ž			<u>ම</u> ද
-	94 Pu	Sm Sm		S,	76	2 4	7 Fe	EM			ஆவர்த்தன
	% 73	E &		=		<u>-</u> 공 &	63	1 3			ja
	Ç.%	ନୁଛ		72 8		2 & 2 &	2 28	┤Ĭ			다. 8
	97 Bk	78		-	_			4			அட்டவண
	ರ%	D 86		 -		A 47	58				2
İ	£ %	67 Ho		H 8		& <u>C</u>	30 Zn			-	
ŀ	Fm.	68 Er		12	\$ \$	5 =	ନ୍ଦ୍ର ≃	≥ 5	BY		III
ŀ			<i>,</i>	3.5	វ ទ	ું જ	ರ ಜ	S: 7	Co		IV
ŀ	M O	69 Tm 1		₽ 8	s 8	≃ و	33 As	P 15	Z		< .
-	S S	48		2 %	: ;	3.5	. 34 Se.	S 8	0∞		١٧
L	r ë	71 Lu		A 85	: -	- 33	2,3	CI	71.0		VII
				₹ 8	×	3,	द्रश्र	Ar	Z = 0	# _e	0
				47M/m	-					······································	

1

S தொகுப்பு மூலகங்கள்

ஆவர்த்தன அட்டவணேயின் கட்டம் IA, கட்டம் IIA முல கங்கள், உறுதியான விழுமிய வாயு இலத்திரன் நிஃயமைப்புக்கு வெளியே, ஈற்றெழுக்கில் முறையே ns¹, ns² என்னும் வகையான இலத்திரன் நிஃயமைப்பு உடையவை.. இந்த இரு கூட்டத்து மூல கங்களும் S தொகுப்பு மூலகங்கள் எனப்படும்.

கூட்டம் I மூலகங்கள் - கார உலோகங்கள்

மூ லகம்	இலத்திரன்	அயஞக்க	உருகு நிஃ்ல	அடர்த்தி
	அ மை ப் பு	சக்தி kJmol_1	°C	g cm-3
Lithium Li Sodium Na Potassium K Rubidium Rb Caesium Cs	[Ne] 3s ¹ [Ar] 4s ¹ [Kr] 5s ¹	520 500 420 400 3 75	180 98 64 39 29	0·53 0·97 0·86 1·53 1·90

கூட்டம் II மூலகங்கள் - காரமண் உலோக**ங்**கள்

மூலகம்	இலத்திரன் அமைப் பு	அயஞக்க சக்தி kJmol_1	உருகு நி‰் ்C	அடிர்த்தி g cm— s
Beryllium Be	[He] 2s ₂	900	1280	1.85
Magnesium Mg	[Ne] 3s2	740	650	1.74
Calcium Ca	[Ar] 4s2	590	8 38	1.55
Strontium Sr	[Kr] 5s ²	55 0	768	2.60
Barium Ba	[Xe] 6s2	500	714	3.35

இரு கூட்டங்களிலும் கூட்டத்தின்வழியே பின்வரு**ம்** பொதுப் போக்குக்கள் காணப்படுகின்றன∮

- 1) அஹ்லு.ஆரை கூடும்
- . 27 முதல் அயஞக்கச்`சக்**தி குறையும்**
- 3) மின்னேர்த்தன்மை கூடும்
- 4) தாக்கு திறன் கூடும்
- உருகு நிலே குறையும்
- 6) அடர்த்தி கூடும்.

கூட்**டம்** I மூலகங்களின் பொதுத்தன்மைகள்

- 1) பொதுவாக ஒவ்வொரு ஆவர்த்தனத்திலும் அணுஆரை கூடியது கூட்டம் I மூலகம் ஆகும். (சடத்துவ வாயுக்கள் தவிர). கார ணம் கருஏற்றம் குறைவாக இருத்தலாகும்.
- 2) ஒவ்வொரு ஆவர்த்தனத்திலும் மிகக் குறைந்த மு**தல் அயஞக்க** சக்தி கொண்டது கூட்டம் 1 மூலகம் ஆகும். காரணங்**க**ள்:-
 - 1. அணுஆரை பெரிதென்பதால் வெளிப்புற இலத்திரன் மீதுள்ள கருக்கவர்ச்சி குறைவு.
 - 2. ns¹ அமைப்பைக் கொண்டிருப்பதால், ஒரு இலத்திரணே அகற் றியபின் உறுதியான அட்டக அமைப்பு எஞ்சுமென்பதால் அகற்றுவதற்கு குறைந்த சக்தி போதும்.
- 3) கூட்டம் I மூலகங்கள் நாக்கு திறன் கூடியவை, காரணம் விழுமிய வாயு நிஃயுமைப்பிற்கு வெளியே சுலபமாக அகற்றக்கூடிய தொரு தனி இலத்திரஃனக் கொண்டிருத்தல் (ns¹ வகை)
- 4) கூட்டம் I மூலகங்கள் உயர் மின்னேரானவை
- 5) கூட்டம் I மூலகங்கள் ஒரு இலத்திரணே இழந்து ஒரு நேரான அயணே உருவாக்கும். Na(g) → Na+(g) + e

காரணம் ஈற்றெழுக்கு இலத்திரன் தளர்வாகப் பிணேக்கப்பட் டுள்ளதால் சுலபமாக அகற்றப்படலாம். அகற்றியபின் உறுதி யான விழுமிய வாயு நிலேயமைப்பு எஞ்சுவதால் அடுத்த இலத் திரணே அகற்ற மிகக்கூடிய சக்தி தேவை, கூட்டம் I மூலகங்கள் ஒரு போதும் இருநேரான அயணே உருவாக்காது.

- 6) கூட்டம் I மூலகங்கள் சிறந்த தாழ்த்தும் கருவிக**ள், காரணம்** இவற்றில் ஈற்ரெழுக்கு இலத்திர**ன் மிகத் தளர்வாகவே பிணேந்** துள்ளது. இத**ஞல்** சுலபமாக அகற்றப்படலா**ம். அ**யஞக்கச் சக்தியும் குறைவு.
- 7) கூட்டம் I மூலகங்**கள் உலோகங்கள் எனினும்** –

பென்மையானவை

2. ஒப்பீட்டளவில் தாழ்ந்த உருகுநி**லே உடையவை.** காரணம் இவற்றில் ஒரு சுயாதீன இலத்திரன் மட்டுமே உலோ கப் பிணப்பில் ஈடுப**டு**கிறது. அத்துடன் அணு ஆரையும் உயர் வாக உள்ளது. இதனுல் உலோகப்பிணேப்பு வலிமை குறைந்த தாக உள்ளது.

- 8) கூட்டம் I மூலகங்கள் சிறந்த மின்கடத்திகள், ஏனெனில் இவற் றில் சுயாதீனமாக இயங்கும் இலத்திரன்கள் உண்டு.
- 9) கூட்டம் I மூலகங்கள் உலோகங்களெனினும் ஒப்பீட்டளவில் தாழ்ந்த அடர்த்தி கொண்டவை, காரணம் அணுப்பருமன் பெரி தாக இருப்பதும், கருவின் திணிவு குறைவாக இருப்பதுமாகும்.
- 10) கூட்டம் I மூலகங்களின் உப்புக்கள் சுவா‰ச் சோ**தின**யில் நிறங்களேக்கொடுக்கும்.

கூட்ட**ம் II மூலகங்களின் பொது**த் தன்மைகள்

இம்மூலகங்களின் இயல்புகளே கூட்டம் I மூலகங்களின் இயல்புக ளுடன் ஒப்பிட்டு நோக்குக.

- 1) கூட்டம் II மூலகமொன்றின் அணுஆரை, ஒத்த, கூட்டம் I மூலகத்தின் அணுஆரையைவிடக் குறைவாகும். காரணம் கரு ஏற்றம் அதிகமீத்தல்.
- 2) கூட்டம் II மூலகத்தின் முதல் அயஞக்கசக்தி, ஒத்த கூட்டம் I மூலகத்தினதைவிட உயர்வானது. காரணம்.
 - 1. கரு ஏற்றம் கூடுவதால் அணு ஆரை குறையும், ஈற்கொழுக்கு இலத்திரன் மீதுள்ள கவர்ச்சி அதிகரிக்கும்.
 - 2. ns² வகை இலத்திரன் நிஃயமைப்பு நிரம்பல் நிஃயென்ப தால் உறுதி கூடியது.
- 3) **இம்**மூலகங்களின் தாக்**கு**திற**ன் ஒத்த கூட்டம் I மூலகங்களேவிடக் குறைவானது.**
- 4) இம்மூலகங்கள் மின்னேரானவை எனினும் ஒத்த கூட்டம் I மூல கங்களே விடக் குறைந்த மின்னேர்த் தன்மை உடையவை.
- **5)** கூட்டம் II மூலகங்கள் இரு இலத்திர**ன்க**ோ இழந்து இரு நேரான அயன்களே உ**ருவ**ாக்கும். Mg → Mg²⁺ + 2e
- 6) கூட்டம் II மூலகங்களு**ம் தா**ழ்த்**து**ம் இயல்புடை**யவை.**
- 7) கட்டம் II மூலகங்கள் ஒத்த கூட்டம் I மூலகங்களேவிட ஒப்பீட் டளவில், 1. வன்மை கூழயவை.
 - 2. உருகுநிலே கூடியவை.

காரணம் இரு சுயாதீன இலத்திரன்க**ள் உலோகப் பிண**ப்பி**ல்** ஈடுபடுவதனைலும், அணுஆரை குறைவென்பதாலும் இவற்றில் உலோகப் பிணேப்பின் வலினீம அ**திக**ம்.

8) கூட்டம் II மூலகங்கள் மின்னேக் கடத்தும்.

- 9) கூட்டம் II மூலகங்கள், கூட்டம் I மூலகங்களேவிட கூடிய அடர்த்தி உடையவை.
- 10) இவற்றில் Be, Mg தவிர்ந்த ஏனேயவற்றின் உப்புக்கள் சுவாலேச் சோத**ணையி**ல் நிறங்களேக் கொடுக்கும்.

சுவாலேச் சோதண

பெரும்பாலான S தொகுப்பு மூலகங்கள் உருவாக்கும் சேர்வை கள் சுவாலேச் சோதனேயில் நிறச் சுவாக்கைளேக் கொடுக்கும். சுவாலேச் சோதனே செய்யும் முறை –

- 1) பன்சன் சுடரடுப்பில் ஒளிர்வற்ற சுவாஃயைப் பெறுக.
- 2) ஒரு பிளாற்றினம் கம்பியை HC1 அமிலத்தில் தோய்த்தபின்னர் நிறமேதும் தோன்ரு தவரை சுவாஃயில் பிடிப்பதன்மூலம் அத ணேச் சுத்தப்படுத்துக.
- 3. பிளாற்றினம் கம்பியை HCI அமிலத்தில் தோய்த்த பின்னர் சோதிக்கவேண்டிய தூளாக்கியசேர்வையில் தோய்க்குக. பின்னர் சுவாலேயில் பிடித்து நிறத்தை அவதானிக்குக.

கூட்டம் I	கூட் டம் II
சேர்வை சுவாலே நிறம்	சேர்வை சுவாஃ நிறம்
Li சிவப்பு Scarlet	Be —
Na பொன்மஞ்சள் Golden yellow	Mg —
K ஊதா Lilac	Ca செங்கட்டிச்சிவப்பு Brick-red
Rb சிவப்பு Red	Sr கருஞ்சிவப்பு Crimson
Cs நீலம் Blue	Ba அப்பிள்பச்சை Apple gr e en

ஏணேய உப்புக்களுடன் ஒப்பிடும்போது குளோரைட்டுக்கள் ஆவிப் பறப்புக் கூடியவை. குளோரைட்டைப் பெறவே HCl இல் தோய்க்கப் படுகிறது. சுவாலேச் சோதனேக்கு Pt கிடைக்காவிடின் காரீயப் பெண் சில் மூ**ணேயொன்**றையும் பயன்படுத்தலாம்.

உப்புக்களின் நிறங்கள்

S தொகுப்பு மூலகங்களின் சேர்வைகள் பொதுவாக நிறமற் றவை. இவற்றின் சேர்வைகளில் ஏதிரயன் நிறத்தைக் கொண்டிருந் தால்மட்டுமே இவை நிறமுடையன்வாய்க் காணப்படும். "KMnO₄ K₂CrO₄ ஆகிய சேர்வைகளின் நிறத்திற்குக் காரணம் இவற்றில் உள்ள அனயன்களேயாகும். S தொகுப்பு 'மூலகங்களின் அய**ன்**கள் நிறமற் றவை. சுவாலேயில் காணப்படும் நிறம் அயனின் நிறமல்ல.

இதக்கை Occurrence

S தொகுப்பு மூலகங்கள் தாக்குதிறன் கூடியவை. ஆகையால் இயற்கையில் சுயாதீனமாகக் காணப்படுவதில்லே. சேர்வைகளாகவே உள்ளன.

சேசடியம்	மக்னீசிய ட்
NaCl கடல் நீரில் உப்பு பாறை உப்பு NaNO ₃ சிலி வெடிப்பு	MgCO ₃ மக்னெசைற்று MgCO ₃ . CaCO ₃ தொலமைற்று MgSO ₄ . 7H ₂ O எ ப்சம் உ ப்பு
$\mathbf{N}a_{2}\mathrm{B}_{4}\mathrm{O}_{7}$ வெண்காரம்	கல்சியம்
Na_2CO_3 , $10H_2O$	Ca € O₃ – சுண்ணம்புக்கல்
பொற்றுசிய ம் KCl, MgCl ₂ , 6H ₂ O கானஃற்று K ₂ O. Al ₂ O ₃ . 6SiO ₂ பெல்ஸ்பார்	CaCO ₃ - க ல் சைற்று CaSO ₄ • 2H ₂ O- ஜிப்சம் உப்பு CaF ₂ புளோஸ்பார் Ca ₃ (PO ₄) ₂ • CaF ₂ அப்பற்றைற்று

பிரீத்தெடுப்பு Extraction கூற

பிரீத்தெடுப்பு Extraction கூற த S தொகுப்பு மூலகங்கள் பொதுவாக, அவற்றின் குளோரைட்டுக் களே உருகிய நிலேயில் மின்பகுப்பு செய்வதன் மூலமே பிரித்தெடுக்கப் படுகின்றன. உதாரணமாக NaCl இண உருகியநிலேயில் மின் பகுப்பு செய்து சோடியத்தைப் பிரித்தெடுக்கலாம். இம்முறையில் Na+ +e→Na என்னும் தாக்கமே நிகழ்வதனுல் இது மின்பகுப்பின் மூலம் செய்யப் படும் தாழ்த்தல் முறையாகும். இம்முறையில் உலோக குளோரைட்

சோடியம் பிரித்தெடுப்பின் படிகள்

- NaCl உருக்கப்படுதல் வேண்டும். உருகுநிலேயைக் குறைப்பதற் காக NaF அல்லது CaCl₂ சேர்க்கப்பட்ட பின்னரே உருக்கப் படும்.
- 2. உருகிய NaCl மின்பகுப்பு செய்யப்படும்.

டின் நீர்க்கரைசலே மின்பகுப்பு செய்யக்கூடாது.

С அஞேட்டு

Fe கதோட்டு

3. க**தோட்**டுத்தாக்கம் அடேடுத் தாக்கம்

 $Na^+ + e \rightarrow Na$ $2Cl^- \rightarrow Cl_2 + 2e$

கதோட்டில் சோடியம் படிவாகும்.

குறிப்பு:

உருகிய ஐ த ராட்சைட்டுக்களே மின்பகுப்பு செய்தும் உலோகத் தைப் பிரித்தெடுக்கலாம். உதாரணமாக NaOH உருகியநிலேயில் மின் பகுப்பு செய்யப்பட Na பெறப்படும், விஞ: தொலமைற்றில் இருந்து எவ்வாறு மக்னியம் பிரித்தெடுக்கப் படலாம் என சுருக்கமாக விபரிக்குக (Dolomite Mg CO₃- CaCO₃)

- விடை: (1) தொலைமைற்றுக்கு முதலில் HCl சேர்க்கப்படும் CaCO₃. Mg CO₃ + 4HCl → Ca Cl₂ + MgCl₂ + 2H₂O + 2CO₂
 - (2) பெறப்படும் கரைசலுக்கு $Ca (OH)_2$ சேர்க்கப்படும். $Mg^{2+} + 2OH^- \rightarrow Mg (OH)_2$ வீழ்படிவு வடித்தெடுக்கப்படும்.
 - (3) Mg (OH)₂ இணே உலர் HCl வாயு ஒட்டத்தில் வெப்ப மேற்றி நீர ற்ற MgCl₂ பெறப்படும்.
 - (4) Mg (OH)₂ + 2HCl MgCl₂ + 2H₂O Mg Cl₂ உருக்கப்படும் உருகு நிலேயைக் குறைப்பதற்கு சிறிதளவு NaCl சேர்க்கப்படும்.
 - (5) உருகிய MgCl₂ மின்பகுப்பு செய்யப்படும்.

 C அனேட்டு Fe கதோட்டு
 கதோட்டுத் தாக்கம் Mg²+ + 2e → Mg
 அனேட்டுத் தாக்கம் 2Cl- → Cl + 2e /
 கதோட்டில் Mg படிவாகும்

S தொகுப்பு மூலகங்களின் இரசாயன இயல்புகள்

S தொகுப்பு மூலகங்கள் மின்னேர்த்தன்மை கூடியவை. ஆகையால் இவை உருவாக்கும் சேர்வைகள் பொதுவாக அயன்தன்மை உடையவை.

விதிவிலக்காக பெரிலியம் பங்கீட்டுச் சேர்வைகளேயும் ஆக்குகிறது. காரணம் அணுஆரை குறைவென்பதால், இலத்திர**ன்க**ோ இழக்கும் நாட்ட**ம்** குறைவு.

வளியுடன் தாக்கம்

S தொகுப்பு மூலகங்கள் வளியில் உள்ள ஒட்சுசனுடன் இலகு வாகத் தாக்கமுற்று ஒட்சைட்டுக்களேத் தரும். இவை அயன் சேர்வை கள்.

I.
$$4Na + O_2 \rightarrow 2Na_2O$$

TT

 $2Mg + O_2 \rightarrow 2MgO$

கூட்டம் I மூலகைங்கள் வளியுடன் விரைவாகத் தாக்க**முறுவதா**ல் மங்குகி**ன்றன.** வளியில் உள்ள O_2 , CO_2 , H_2O ஆகியவற்றுடன் பின் **வருமா**று தாக்கமுறும்.

ஏனேயவையும் இவ்வாறே தாக்கமடையும். இலிதியம் வெப்ப மேற்றிஞல் மட்டும் சேரும்.

கூட்டம் II மூலகங்கள் வளியில் உள்ளபோது அவற்றின் மேற்பரப்பில் ஓட்சைட்டுப் படலம் உண்டாகும். தகனமாக்கப்பட்டால் முற்ருக ஒட்சைட்டாக மாறும்.

$$2Mg + O_2 \rightarrow 2MgO$$

Be, Mg, Ca, Sr, Ba என்ற ஒழுங்கில் தாக்கு நிறன் அதிகரிக்கும்.

நீருடன் தாக்கம்

கூட்ட**ம் I இ**ம்மூலகங்கள் குளிர் நீருடன் தாக்கமுற்று ஐதர**ச**ீண வெளிவி**டும்.**

2 Na + 2 H $_2$ O \rightarrow 2 NaOH + H $_2$ Li, Na, K, Rb, Cs யாவும் இவ்வாறு தாக்கமுறும். கூட்டத்தின் வழியே தாக்குதிறன் கூடும்.

கூட்ட**க் II** Be நீருடனும், நீராவியுடனும் தாக்கமுறுது. Mg குளிர் நீருடன் தாக்கமுறுது, நீராவியுடன் தாக்கமுறும். Ca, Sr, Ba குளிர் நீருடன் நன்றுகத் தாக்கமுறும்.

கூட்டத்தின் வழியே தாக்குதிறன் கூடும்.

அமிலங்களுடன் தாக்கம்

- கூட்டம் I இம்மூலகங்கள் அமிலங்களுடன் வன்மையாகத் தாக்கமுற்று ஐதரசணேக் கொடுக்கும். (உக்கிரமான தாக்கமென்பதால் பொதுவாகச் செய்யப்படுவதில்‰.) 2Na + 2HCI → 2NaCI + H₂
- கூட்ட**ம் I**I இம்மூலகங்களி**ன்** தாக்க**வ**ன்மை கூட்டம் I மூலக**ங்க**ளி**னதை** விட சற்று குறைவு.

ஐதா ன	2HCI	+	$Mg \rightarrow$	$MgCl_2$	+	H ₂	1.0
செறி	2HCI	+	$Mg \rightarrow$	$MgCl_2$	+	H ₂	No. of
<i>ஐதான</i>	H ₂ SO ₄	+	$Mg \rightarrow$	MgSO ₄	+	H_2	
செறி	2H ₂ SO ₄	+	$Mg \rightarrow$	MgSO ₄	+	$SO_2 +$	2H ₂ O
	2HNO ₃						
ஐதான (50%)	8HNO ₃	+	3Mg →	3Mg(NO	3)2	+ 2NO	+ 4H2O
செ றி (98%)					3)2	+ 2NO2	$+2H_2O$
மக்னீசிய ம் கா	ரங்களுட	ள் த	ாக்கமுரு	து			

அலோகங்களுடன் தாக்கம்

S தொகுப்பு மூலகங்கள் மின்னேரா**னவை.** இவை மின்னெதிர் மூலகங்களுடன் தாக்கமுற்று அயன்சேர்வைகளே உருவாக்கும்.

S தொகுப்பு மூலகங்களின் சேர்வைகள் ஒட்சைட்டுக்கள்

 $4Na + O_2 \rightarrow 2Na_2O$ $2Mg + O_2 \rightarrow 2MgO$

- S தொகுப்பு மூலகங்களின் ஓட்சைட்டுகள் பொதுவாக
 - (i) அயன் சேர்வைகள்
 முல இயல்பு கூட்டத்தின் வழியே அதிகரிக்கும்.
 (BeO ஈரியல்புடையது)
- (1) இந்த ஒட்சைட்டுக்கள் வெப்பத்திஞல் பிரிகை அடையாது.
- (2) இவை நீரில் கரையும்போது காரக்கரைசல்களேக் கொடுக்கும்.

$$Na_2O + H_2O$$
 2NaOH
BaO + H_2O Ba(OH)₂

- (3) இவை CO_2 உடன் தாக்கமுற்று காபனேற்றுக்க**ோக்** கொடுக்கும். $\mathrm{K}_2\mathrm{O} \ + \ \mathrm{CO}_2 \ \Rightarrow \ \mathrm{K}_2\mathrm{CO}_3$ $\mathrm{BaO} \ + \ \mathrm{CO}_2 \ \mapsto \ \mathrm{BaCO}_3$
- (4) இவை அமிலங்களில் கரைந்து உப்பையும் நீரையும் கொடுக்கும் ${
 m Na_2O} \ + \ 2{
 m HCl} \
 ightarrow \ 2{
 m NaCl} \ + \ {
 m H_2O}$ ${
 m MgO} \ + \ 2{
 m HCl} \
 ightarrow \ {
 m MgCl_2} \ + \ {
 m H_2O}$

பரஓட்சைட்டுக்கள் (Peroxides)

இரு கூட்டங்களிலும் கீழே உள்ள மூலகங்கள் உயர்வெப்ப நிலேயில், மிகை ஒட்சிசனுடன் தாக்கமுற்று பரஒட்சைட்டுக்களேயும் கொடுக்கும்.

உதாரணம்: Na_2O_2 , K_2O_2 , BaO_2

பரஒட்சைட்டுகள் சிறந்த ஒட்சியேற்றும் கருவிகளாகும். பரஒட்சைட்டுக்களில் ஒட்சிசனின் ஒட்சியேற்ற எண் — 1 ஆகும். பரஒட்சைட்டுக்கள் ஐதான அமிலங்களுடன் தாக்கமுற்று H_2O_2 ஐக் கொடுக்கும்.

 $2{
m Na_2O_2} + {
m H_2SO_4}
ightarrow {
m Na_2SO_4} + {
m H_2O_2}$ பரஒட்சைட்டுக்கள் நீருடன் தாக்கமுற்று ஒட்சிச**ின**க் கொடுக்கும். $2{
m Na_2O_2} + 2{
m H_2O}
ightarrow 4{
m NaOH} + {
m O_2}$

ஐதரொட்சைட்டுக்கள்

S தொகுப்பில் அமையும் உலோகங்கள் அல்லது உலோக ஒட் சைட்டுக்கள் நீரில் கரையும்போது ஐதரொட்சைட்டுக்களேக் கொடுக்கும்.

இந்த ஐதரொட்சைட்டுக்கள் மூலஇயல்பு கூடியவை. கூட்டத்தின் வழியே மூலஇயல்பு மேலும் அதிகரிக்கும்.

ஐதரொட்சைட்டுக்களின் இயல்புகள் —

- (1) நீர்க்கரைசலின் pH > 7
- (2) அமிலங்களுடன் உப்பையும் நீரையும் கொடுக்கும்.

(3) கூட்டம் I ஐதரொட்சைட்டுக்கள் வெப்பத்தால் பிரிகையுருது. கூட்டம் II ஐதரொட்சைட்டுக்கள் வெப்பத்தால் பிரியும். MgC(OH)₂ → MgO + H₂O

NaOHஇனது தாக்கங்கள்

(1) Al, Zn, Sn, Pb போன்ற சில உலோகங்கள் NaOH(aq) உடன் ஐதரசுணக் கொடுக்கும்.

(2) பல உப்புக்களின் நீர்க்கரைசல்கள் NaOH(aq) உடன் கரையாத ஐதரொட்சைட்டுக்களேக் கொடுக்கும்.

$$CuSO_4 + 2NaOH \rightarrow Na_2SO_4 + Cu(OH)_2$$
 ் நீலம் $FeSO_4 + 2NaOH \rightarrow Na_2SO_4 + Fe(OH)_2$ ் பச்சை $FeCl_3 + 3NaOH \rightarrow 3NaCl + Fe(OH)_3$ ் கபிலம்

(3) சில உப்புக்கரைச**க்**களுடன் முதலில் **வீ**ழ்படிவு பெறப்பட்டா லும் பின் மிகை NaOH(aq) இட வீழ்படிவு கரையும்.

$$ZnSO_4 + 2NaOH \rightarrow Na_2SO_4 + Zn(OH)_2 \downarrow G$$
 and side $Zn(OH)_2 + 2NaOH \rightarrow Na_2ZnO_2 + 2H_2O$

 $Al_2(SO_4)_3 + 6NaOH \rightarrow 3Na_2SO_4 + 2Al(OH)_3$ \downarrow வெள்ளே $Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$ ஈரியல்புடைய ஐதரொட்சைட்டுக்களே இவ்வாறு மிகை NaOH(aq) இல் கரைகின்றன.

S தொகுப்பு மூலகங்களின் காபனேற்றுக்கள்

- கூட்டம் I மூலகங்களின் காபனேற்றுக்கள்
 - (1) வெண்திண்மங்கள் (2) நீரில் கரையும்
 - (3) வெப்பத்தால் பிரியாது.
- கூட்டம் II மூலகங்களின் காபனேற்றுக்கள்
 - (1) வெண் திண்மங்கள் (1) நீரில் கரையாது
 - (3) வெப்பத்தால் பிரி**யும்**

இவற்றின் வெப்ப உறுதி கூட்டத்தின் வழியே கூடும்.

பிரிகை வெப்பநிலேகள் பின்வருமாறு

இரு காபனேற்றுக்கள்

காபணேற்றுக்களின் கரைசல்கள் அல்லது நீர்த்தொங்கல்கள் ஊடாக CO₂ வாயுவைச் செலுத்த இரு காபனேற்றுக்கள் உண் டாகும்.

$$Na_2CO_3 + CO_2 + H_2O \rightarrow 2NaHCO_3$$

 $CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$

இந்த இரு காபனேற்றுக்கள் வெப்பஉறுதி குறைந்தவை. வெப்பமேற்றினுல் மீண்டும் பிரியும்.

$$2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$$

 $Ca(HCO_3)_2 \rightarrow CaCO_3 + CO_2 + H_2O$

இரு கூட்டத்து இரு காபனேற்றுக்களும் நீரில் கரையும். கூட்டம் II இனது இரு காபனேற்றுக்களே திண்மநி‰யில் பெற முடி யாது. கரைசல் நிஃவில் மட்டுமே பெற முடியும்.

நைத்திரேற்றுக்க**ள்**

எல்லா நைத்திரேற்றுக்களும் நீரில் கரையும்.

கூட்டம் I நைத்திரேற்றுக்கள் வெப்பமேற்றிஞல் முதலில் உருகி, பின்னர் பிரியும், நைத்திரைற்றும், ஓட்சிசனும் பெறப் படும்.

கூட்டம் II நைத்திரேற்றுக்கள் வெப்பமேற்றிஞல் பிரிந்து கபிலநிற NO₂ வாயுவைக் கொடுக்கும்.

$$2Mg(NO_3)_2 \rightarrow 2MgO' + 4NO_2 + O_2 2Ba(NO_3)_2 \leftarrow 2BaO + 4NO_2 + O_2$$

Li கூட்டம் I மூலகமாயினும், LiNO₃ விதிவிலக்காக கூட்டம் II மூலக நைத்திரேற்றை ஒப்ப வெப்பப் பிரிகை அடையும்.

 $4 \text{LiNO}_3 \rightarrow 2 \text{Li}_2 O + 4 \text{NO}_2 + O_2$ இரு கூட்டங்களிலும் நைத்திரேற்றுக்களின் வெப்ப உறுதி கூட்டத் தின் வழியே அதிகரிக்கிறது.

உப்புக்களின் கரைதிறன்

ஒரு உப்பின் க**ரை** திறன்பற்றித் தீர்மானிப்பத**ற்கு அதன் அய**ன் களேக் கொண்டிரு**க்கும் கரைசல்க**ளே ஒன்றுடன் ஒன்று கலக்கலாம். வீழ்படிவு அல்லது கலங்கற்தன்மையின் அளவுகளேச்சொண்டு கரை திறன்களே ஓப்பிடலாம்.

0.1M செறிவுடைய Mg²⁺, Ca²⁺, Sr²⁺,Ba²⁺ அயன்க**ள் கொண்ட** கரைசல்களுக்கு வெவ்வேறு கரைசல்களேச் சேர்த்துப் பெற்ற அவ தானிப்புக்களேப் பக்கம் 13 இலுள்ள அட்டவணே காட்டு இறது.

பரிசோதனே அவதானிப்புக்களில் இருந்து பின்வரும் முடிவுகளேப் பெறக்கூடியதாக உள்ளது.

(1) கூட்டம் I மூலகங்களின் உப்புக்களில் பெரும்பாலானமை நீரில் நன்கு கரையும்.

[விதிவிலக்காக LiCO₃, Li₃PO₄, LiF ஆகிய சில உப்புக்கள் நீரில் கரையும்.]

- (2) கூட்டம் II மூகைங்களின் உப்புக்களில்
 - (a) குளோரைட்டுக்கள், புளுமைட்டுக்கள், அயடைட்டுக்கள் நைத்திரேற்றுக்கள் ஆகியவை நீரில் கரையும்.
 - (b) காபனேற்றுக்கள், சல்பேற்றுக்கள், ஓட்சலேற்றுக்கள், குரு மேற்றுக்கள் என்பவற்றின் கரை திறன்கள் கூட்டத்தின் வழியே குறையும்.
 - (c) ஐதரொட்சைட்டுக்கள், புளோரைட்டுக்கள் ஆகியவற்றில் கரைதிற**ன்** கூட்டத்தின்வழியே கூடும்.

கரைத்றன்களின் ஒப்பீடு

IM NaOH	தடித்த வெ ஷ்கோ வீழ்படிவு	வெள் ளே சிழ்படிவு	வெள்ளே வீழ்படிவு	மிக மெல்லிய வீழ்படிவு (கலங்கல்)
IM K ₂ CrO ₄	வீழ்படிவு இல்லே	வீழ்படிவ இல்கே	மென்மஞ்சள் வீழ்படிவு	தடித்த மென்மஞ்சள் வீழ்படிவு
IM Na ₂ C ₂ O ₄	வீழ்படிவு இல்லே	வெ ள் ளே வீழ்படிவு	வெள்ளே வீழ்படிவு	தடித்த வெள்ளே வீழ்படிவு
IM Na ₂ CO ₃	வெள் கோ வீழ்படிவு	வெள்ளே வீழ்படிவு	தடி த்த வெள்ளே வீழ்படிவு	மிகத்தடித்த வெள்ளே விழ்படிவு
IM Na ₂ SO ₄	வீ ழ்படிவ இல்லே	மெல்லிய வென்ளே வீழ்படிவு	வெள்ளே வீழ்படிவு	தடித்த வெள்ளே வீழ்படிவு
IM NaCi	வீழ்படிவு இல்லே	வீழ்படில் இல் வே	வீழ்படிவு இல்லே	வீழ்படிவு இல்லே
கூட்ட ம் II கற்றயனின் O. IM கரைசல்	Mg ²⁺	Ca2+	Sr ²⁺	Ba ² +

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

- விஞ : கூட்டம் II A மூலகங்களின் காபனேற்றுக்கள் பொதுவாக நீரில் கரையாத பதார்த்தங்கள் எனக்கருதலாம். இருந்தும் அவை நீரில் வெவ்வேறு சிறிய அளவுகளில் கரையும். நீரில் அவற்றின் கரைதிறன்களே ஒப்பிடுவதற்கு எவ்வாறு ஆய்வு கூடத்தில் ஒரு பரிசோதனே செய்வீர் எனச் சுருக்கமாக விப ரிக்குக
- விடை: MgCl₂, CaCl₂, SrCl₂, BaCl₂, ஆகியவற்றின் சம செறிவுக் கரைசல்களேத் தயாரிக்குக. இவற்றின் சம கனவளவு கரை சல்களுக்கு ஓர் குறித்த சேறிவுடைய Na₂CO₃ கரைசலின் துளித்துளியாக சேர்க்குக. ஒவ்வொன்றிலும் கலங்கற்தன்மை தோன்றுவதற்குத் தேவைப்படும் துளிகளின் எண்ணிக்கையை அறிக. துளிகளின் எண்ணிக்கைக்கு ஏற்ப கரைதிறனும் உயர் வாக இருக்கும். தொடரின் வழியே கலங்கற்தன்மை ஏற் படுத்துவதற்குத் தேவையான துளிகளின் எண்ணிக்கை குறைந்து செல்வதைக் கோணலாம். அதாவது காபனேற்றுக் களின் கரைதிறன் கூட்டத்தின் வழியே குறையும்
- லிஞ : Na₂CO₃, BaCl₂, MgSO₄, H₂SO₄ ஆகியவற்றின் நீர்க்கரை சல்கள் பெயரிடப்படாத நான்கு முகவைகளில் வெவ்வேருக உமக்குத் தரப்பட்டுள்ளன. வேறு சோதணப் பொருட்களேப் பயன்படுத்தாமல் இச்சேர்வைகளே எவ்வாறு பரிசோதனே மூலம் இனங்காண்பீர்?
- விடை; ஒவ்வொரு கரைசலேயும் ஏனேய மூன்று கரைசல்களுக்கும் தனித்தனிரேய சேர்க்குக.
 - (1) மூன்று தொகுதிகளிலும் வீழ்படிவு பெறப்பட்டால் சேர்க்கப்பட்டது BaCl₂ ஆகும்.
 - (2) இரு தொகுதிகளில் வீழ்படிவும், மற்றைய ஒன்றில் வாயுவிளேவும் பெறப்பட்டால் சேர்க்கப்பட்டது №22CO₃ ஆகும்.
 - (3) இரு தொகுதிகளில் வீழ்படிவு பெறப்பட்டு மற்றையதில் நோக்கத்தக்க அவதானிப்பு எதுவும் இல்லேயெனிவ் சேர்க்கப்பட்டது MgSO₄ ஆகும்.
 - (4) ஒன்றில் வீழ்படிவும் பிறிதொன்றில் வாயு விளேவும் மட்டும் அவதானிக்கப்பட்டால் சேர்க்கப்பட்டது H²SO₄

2

ஒட்சியேற்றமும் தாழ்த்தலும்

டைசியேற்றம்

ஒட்சியேற்றம் என்பது இலத்திரனேகளே இழத்தல் ஆகும். $m Na
ightarrow Na^+ + e$ $m Fe^{2+}
ightarrow Fe^{3+} + e$

து ழ்த்தல்

தாழ்த்தல் என்பது இலத்திரன்களே ஏற்றல் ஆகும். $\mathrm{Cl} + \mathrm{e} \to \mathrm{Cl} - \mathrm{cu}^{2} + 2\mathrm{e} \to \mathrm{Cu}$

ஒட்சியேற்றும் கருவி

இவை இலத்திரன்களே ஏற்கத்தக்க கூறுகள் ஆகும்.

தாழ்த்தும் கருவி

இவை இலத்திரன்களே இழக்கத்தக்க கூறுகள் ஆகும்.

ஒரு இரசாயனத் தாக்கத்தில் ஒட்சுயேற்றம் நிகழும்போது தாழ்த்**தலும்** கூடவே நிகழும், ஏனெனில் தாக்கத்தின் ஒருகூறு இ**லத்**திரன்க**ளே இ**ழக்கும்போது பிறிதொன்று அத**ேன** ஏற்கும்.

டை்சியேற்ற எண்

ஒட்சியேற்ற எண் என்பது ஒரு மூலகம் ஒட்சியேற்றப்பட்ட நிலேயைக் குறிப்பதற்குப் பயன்படுத்தப்படும் ஓர் எண்ணகும். ஒரு மூலகம், சுயாதீன நிலேயில் இருந்து, சேர்வையில் காணப்படும் நிலேக்கு வருவதற்குச் செய்யவேண்டிய ஒட்சியேற்றல் அல்லது தாழ்த்தல் அளவுகளே இது குறிக்கும்.

ஒட்சியேற்ற எண் தொடர்யான விதிகள்

- (1) மூலகங்கள், சுயாதீன நிலேயில் உள்ளபோது அவற்றின் ஒட்சியேற்ற எண் பூச்சியம் ஆகும்.
- (2) இருகூறுகள் கொண்ட அயன் சேர்வைகளில் அந்த அயன் களின் ஏற்றங்களே அவற்றின் ஒட்சியேற்ற எண்களாகும்.
- (3₎ ஒரு சேர்வையின் மூலக்கூற்றுச் சூத்திரத்தில் உள்ள ஒவ் வொரு அணுவினதும் ஒட்சியேற்ற எண்களே அவற்றின் அணுக்களின் எண்ணிக்கையால் பெருக்கிப் பெறப்படும் அட்சரகணிதக் கூட்டுத்தொகை பூச்சியம் ஆகும்.

- (4) ஐதரசனுக்கு அதன் சேர்வைகளில் ஒட்சியேற்ற எண் பொது வாக + 1 ஆகும். உலோக ஐதரைட்டுக்களில் ஐதரசனுக்கு —1 ஆகும்.
- (5) ஒட்சிசனுக்கு அதன் சேர்வைகளில் ஒட்சியேற்ற எண் பொது வாக —2 ஆகும். பரஒட்சைட்டுக்களில் (Peroxides) ஒட் சிசனுக்கு —1 ஆகும். OF₂ எனும் சேர்வையில் ஒட்சிச னுக்கு +2 ஆகும்.
- (6) எந்தச் சேர்வையிலும் மின்எதிர்த்தன்மை கூடிய மூலகம் மறை (—) ஒட்சியேற்ற எண்ணப் பெறும்.
- (7) அயன்களில், ஒட்சியேற்ற எண்களின் கூட்டுத்தொகை அந்த அயனின் ஏற்றத்திற்குச் சமனுகும்.

பயிற்சிகள்

- (1) KMnO₄, K₂MnO₄, MnO₂, MnCl₂ ஆகிய சேர்வைகளில் Mn இனது ஒட்சுயேற்ற எண்கள் எவை?
- (2) K₂CrO₄, K₂Cr₂O₇, **C**r₂O₃ ஆகிய சேர்வைகளில் CI இனது ஒட்சி யேற்ற எண்கள் எவை?
- (3) H₂S, SCl₂, SO₂, H₂SO₄ ஆகிய சேர்வைகளில் S இனது ஒட்சி யேற்ற எண்கள் எவை?
- (4) SO₄2-. PO₄3- ஆகிய சேர்வைகளில் முறையே S, P ஆகிய வற்றின் ஒட்சியேற்ற **எண்கள்** எவை?
- (5) நைதரசன் அதன் சேர்வைகளில் —3 தொடங்கி +5 வரை எல்லா ஓட்சுயேற்ற எண்களேயும் கொள்ளும். இவை ஒவ் வொன்றிற்கும் ஒவ்வொரு உதாரணம் தருக?

ஒட்சியேற்ற எண் மாற்றம்

ஒரு இரசாயனத் தாக்கத்தில் ஈடுபடும் ஒரு கூறினது-

- (1) ஒட்சியேற்றஎண் அதிகரித்தால் அது ஒட்சியேற்றம் அடைந்துளது.
- (2) ஒட்சியேற்றஎண் குறைவடைந்தால் அது தாழ்த்தல் அடைந்துளது.

உதாரணமாக, பின்வரும் தாக்கத்னதக் கருதுக.

$$(-2)$$
 (0) (-1) (0)
 $H_2S + Cl_2 \rightarrow 2HCl + S$

இத்தாக்கத்தில் S இனது ஒட்சியேற்ற எண் அதிகரித்துள்ளதால் அது ஒட்சியேற்றம் அடைந்துள்ளது.

Cl இனது ஒட்சியேற்ற எண் குறைந்துள்ளதால் அது தாழ்த்தல் அடைந்துள்ளது.

இருவழி விகாரம்

ஒரு இரசாயனத் தாக்கத்**தில்** ஈடுபடும் ஒரு கூறு ஒரேவேளேயி**ல்** ஒட்சியேற்றத்திற்கும். தாழ்த்தலுக்கும் உட்படுதல் இருவழி வி*காரம்* எனப்படும்.

உதாரணமாக பின்வரும் தாக்கங்களேக் கருதுக.

- (1) குளிர்ந்த, ஐதான NaOH உடன் குளோரினின் தாக்கம் ${
 m Cl_2} + 2{
 m NaOH} o {
 m NaCl} + {
 m NaOCl} + {
 m H_2O}$ இத்தாக்கத்தில் குளோரின் இருவழி விகாரம் அடைகிறது:
- (2) $m NO_2$ நீரில் கரையும்போது நிகழும் தாக்கம், $2
 m NO_2 + H_2O
 ightarrow HNO_2 + HNO_3$ இத்தாக்கத்தில் நைதரசன் இருவழி விகாரம் அடைகிறது.

ஒட்சியேற்ற எண்முறையால் சமன்பாடுகளேச் சமப்படுத்தல்

காபன், சூடான செறிந்த $\mathrm{H_2SO_4}$ உடன் பின்வருமாறு தாக்கமுறும். $\mathrm{C} + \mathrm{H_2SO_4} o \mathrm{CO_2} + \mathrm{SO_2} + \mathrm{H_2O}$

இத்தாக்கச் சமன்பாட்டை பின்வருமாறு சமப்படுத்தலாம்.

$$\begin{array}{cccc}
0 & +4 \\
C & \rightarrow & C & + & 4e \\
+6 & & +4 \\
2e & + & S & \rightarrow & S
\end{array}$$

பயிற்சி

பின்வரும் தாக்கச் சமன்பாடுகளே ஒட்கியேற்ற எண்முறையா**க்** சமன்படுத்துக.

- 1) S + $HNO_3 \rightarrow H_2SO_4 + NO_2 + H_2O$
- 2) $S + H_2SO_4 \rightarrow SO_2 + H_2O$
- 3) $1_2 + HNO_3 \rightarrow HIO_3 + NO_2 + H_2O$
- 4) $NH_3 + CuO \rightarrow Cu + N_2 + H_2O$

சில ஒட்சியேற்றும் கருவிகள்

- (1) அமில ஊடகத்தில் ${
 m KMnO_4}$ ${
 m MnO_4}^- + 8{
 m H}^+ + 5{
 m e}
 ightarrow {
 m Mn^2}^+ + 4{
 m H_2O}$ உளதா நிறமற்றது இத்தாக்கத்தில் ஊதாநிறம் நீங்கும்.
- (2) மென்கார ஊடகத்தில் அல்லது நடுநி‰ ஊடகத்தில் KMnO₄ MnO₄ + 2H₂O + 3e → MnO₂ + 4OH-ஊதா கபிலம் இத்தாக்கத்தில் ஊதாநிறம் நீங்குவதுடன் கபில நிறமான MnO₂ உருவாகும். வன்கார ஊடகம் எனில் ஊதா நிறமான MnO₄ ஆனது பச்சை நிறமான MnO₄² ஆனது
- (3) அமில ஊடகத்தில் $m K_2Cr_2O_7$ $m Cr_2O_7^{2-} + 14H^+ + 6e
 ightarrow 2Cr^{3+} + 7H_2O$ செம்மஞ்சள் பச்சை இத்தாக்கத்தில் செம்மஞ்சள் நிறம் பச்சையாக மாறும்.
- (4) அமில ஊடகத்தில் K_2CrO_4 $CrO_4^{2-} + 8H^+ + 3e \rightarrow Cr^{3+} + 4H_2O$ மஞ்சுள் பச்சை இத்தாத்கத்தில் மஞ்சுள் நிறம் பச்சையாக மாறும்.
- (5) மென்னமில ஊடகத்தில் ${
 m KIO_3}$ ${
 m IO_3}^- + 6{
 m H}^+ + 6{
 m e}
 ightarrow {
 m I}^- + {
 m 3\,H_2O}$
- (6) அலசன்க**ள்** Cl₂ + 2e → 2Cl⁻
- 7) அடில ஊடகத்தில் ஐதரசன் பரஒட்சைட்டு $m H_2O_2 \ + \ 2H^+ \ + \ 2e \
 ightarrow 2H_2O$
- 8) செறிந்த நைத்திரிக் அமிலம் 2HNO₃ + e → NO₂ + H₂O + NQ₃−

சில தாழ்த்தும் கருவிகள்

- 2. பெரசு சேர்வைகள் Fe²⁺ → Fe³⁺ + e
- 3. இசுத்தனசு சேர்வைகள் Sn²⁺ → Sn⁴⁺ + 2e
- 4. ஐதரசன் சல்பைட்டு $m H_2S \
 ightarrow \ 2H^+ + S \ + \ 2e$ அதாவது $m S^{2-} \
 ightarrow \ S \ + \ 2e$
- 5. கந்தகவீர் ஒட்சைட்டு $SO_2 + 2H_2O \rightarrow 2SO_4^{2-} + 4H^+ + 2e$ அதாவது, $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e$
- 6. **உ**லோகங்கள் Na → Na+ + 6
- 7. சோடியம் தயோ சல்பேற்று $2{
 m S}_2{
 m O}_3{
 m ^2} \; \mapsto \; {
 m S}_4{
 m O}_6{
 m ^2} \; + \; 2{
 m e}$
- விஞ; அமில ஊடகத்தில் MnO_4 அயன்கள், $C_2O_4^{2-}$ அயன்கள் ஆகியவற்றிக்கிடையில் நிகழும் தாக்க**த்தின் அ**யன் சம**ன்** பாட்டை எழுதுக. அமில ஊடகத்தின் $Na_2C_2O_4$ இனது 1.00 g உடன் முற்றுகத் தாக்கம் புரிவதற்குத் தேவையாள $KMnO_4$ இனது தெணிவைக் கணிக்குக.

MnO₄⁻ + 8H⁺ + 5e → Mn²⁺ + 4H₂O
$$C_2O_4^{2-}$$
 → 2CO₂ + 2e

$$2 \mathrm{MnO_4^-} + 16 \mathrm{H}^{\bullet} + 5 \mathrm{C_2O_4^{2^-}} \mapsto 2 \mathrm{Mn^{2^+}} + 10 \mathrm{CO_2} + 8 \mathrm{H_2O}$$
 5 மூல் $\mathrm{Na_2C_2O_4}$ உடன் தாத்கமுறுவது = 2 மூல் $\mathrm{KMnO_4}$ % $5 \times 134 \mathrm{g} \ \mathrm{Na_2C_2O_4}$ உடன் தாக்கமுறுவது = $2 \times 158 \mathrm{gKMnO_4}$ % $1 \mathrm{g} \ \mathrm{Na_2C_2O_4}$ உடன் தாக்கமுறுவது = $2 \times 158 \mathrm{gKMnO_4}$
3

P தொகுப்பு

மூலகங்கள்

ஆவ ர்த் தனம்			5m L	ட்டம்		
	III	IV	V	VI	VII	O
	ns ² np ¹	ns ² np ²	ns ² np ³	ns ² np ⁴	ns ² np ⁵	ns ² np ⁶
2	B	C	N	O	F	Ne
3	Al	Si	P	S	Cl	Ar
4	Ga	Ge	As	Se	Br	Kr
5	In	Sn	Sb	Te	I	Xe
6	TI	Pb	Bi	Po	At	Rn

ஆவர்த்தன அட்டவணேயின் கூட்டங்கள் III, IV, V, VI, VII, O ஆகியவற்றில் அமையும் மூலகங்களின் அணுக்கள் இறுதி சக்திமட்டத்தில், P உபசக்தி மட்டத்தில், முறையே 1, 2, 3, 4, 5, 6 இலத் திரைன்களேக் கொண்டுள்ளன.

இந்த ஆறு கூட்டத்து மூலகங்களும் P தொகுப்பு மூலகங்கள் எனப்படும்.

P தொகுப்பில் பலவகை மூலகங்கள் காணப்படுகின்றன.

(1) உலோகங்கள்

- (2) அல்லுலோகங்கள்
- (3) உலோகப்போலிகள் (உலோக அல்லுலோக இயல்புகள் இரண் டையு**ம் காட்**டுபவை)
- (4) உலோக-அல்லுலோக இயல்புகள் எதுவுமற்ற சடத்துவ வாயுக்கள் ஆகிய யாவும் P தொகுப்பில் 'அமைகின்றன.

ஆவர்த்த**ன அட்டவஃணயின் எல்லா அல்**லுலோகங்களும் **P** தொகுப்பிலேயே உள்ளன. டேலும் **P** தொகுப்பில், திண்மம். திரவம் வாயு ஆகிய மூன்று நிஃலகளிலும் மூலகங்கள் உள்ளன.

ஐகரைட்டுக்களில் ஆவர்த்தனப் போக்குக்கள்

தரப்பட்டுள்ள**ன** g G **த**ரவுகள் **E** பற்றிய ஐதரைட்டுக்கள் மூலகங்களின் ஆவர் த்தன மூன்ரும்

HCI	பங்கிட்டு	வன் அமிலம்
$ m H_2S$	பங்கட்டு	பென் அமிலம்
PH3	பங்கட்டு	ı
SiH4	பங்கட்டு	l
AlH3	இடைந்வே	<i>மிக</i> ி ம ன் காரம்
MgH ₂	இடைநில	டுமன் காரம்
NaH	அயன்	வன் கார ம் ,
சூத்திரம்	பிணேப்பு	நீர்க்கரை சலின் அமில∤முல இயல்பு
சூத்திரம்	பிணேப்பு	நீர்க்கரைசுலின் அமில/முல இயல்பு

ஆவர்த்தனத்தின் வழியே ஐதரைட்டுக்களின்:-(*)

(1) பிண்ப்பின் அயன்தன்மை குறைந்து பங்கீட்டுத் தன்மை கூடுகிறது. (NaH இலிருந்து PH3 வரை இந்தப்போக்கு காணப்படுகிறது.)

மென்காரம் மென்காரம் மென்னமிலம் வன்காரம் வன்ன பிலம் $^{
m H_2}_{
m 2H_2}$ HS-C T Mg(OH)2 கரையாது Al(OH)3 கரையாது NaOH H₃0+ $2H_2O$ $3H_2O$ H_2O H₂O H₂O **H₂O** H_2O MgH₂ A1H₃ NaH SiH4 PH₃ H₂S HCI

त्व्या<u>त</u>्र

குறைந்து

இயல்பு

BITT

நீர்க்கரைசலின்

(2)

ቚፙቘፙ

இயல்பு

தூக்கம்

25011 Geant

நீகீடன்

ஒட்சைட்டுக்களில் ஆவர்த்தனர் பேரக்குக்கள்

உருகுநிலே°C 920	அமில / மூல இயல்பு மூல ம்	பிணேப்பு அயன்	குத்திரம் Na ₂ O
0	ம்	G	20
2900	மெ ன் மூலம்	அபன்	MgO
2027	ஈரியல்பு	இடைநில	Al ₂ O ₃
1700	மென் அமிலம்	பங்கீட்டு	SiO ₂
300	மென் அமிலம்	பங்கீட்டு	P ₄ O ₁₀ (P ₄ O ₆)
17	வன் அமிலம்	பங்கீட்டு	\$0 ₃ (\$0 ₂)
-81	வன் ஆதிலம்	பங்கீட்டு	Cl ₂ O ₇ (Cl ₂ O)

இவற்றில் காணப்படும் மூன்மும் ஆவர்த்தன **€** மூலகங்களின் ஆவர்த்தனப் போக்குக்களாவன:-ஓட்சைட்டுக்களேக் க்டு துக

பினேப்பின் காரணம் இம்மூலகங்களுக்கும் **அ**யன் தன்மை குறைந்து (S) . சிசனுக்கு'ம் பங்கீட்டுத் இடையிலான தன் மை கூடுகிறது. மின்னெதிர்த்தன்மை வேறுபாடு ஆவர்

3

2

ஓ**ட்சைட்டுக்**களின் தனத்தின் வழியே குறைதல் ஆகும். மூலஇயல்பு **த**ைறந்து ஈரியல்பாகி िश அமிலஇயல்பு கூடுகிறது:

ஓட்சைட்டுகளின் அமில – மூல இயல்புகள்

ஒட்சைட்டை நீரில் கரைத்து பேறப்படும் கரைசஃ pH தாள் கொண்டு சோதிப்பதன் மூலம் அதன் pH பெறுமானத்தை அளவிட லாம். இதிலிருந்து ஒட்சைட்டின் அமில அல்லது மூல இயல்பை அறியலாம்.

$$Na_2O$$
 + H_2O \rightarrow 2 $NaOH$ வன்காரம் MgO + H_2O \rightarrow $Mg(OH)_2$ மென்காரம் Al_2O_3 + H_2O \rightarrow கரையாது SiO_2 + H_2O \rightarrow கரையாது P_2O_5 + H_2O \rightarrow 2 H_3PO_4 மென்னமிலம் SO_3 + H_2O \rightarrow 2 H_2SO_4 வன்னமிலம் Cl_2O_7 + H_2O \rightarrow 2 $HCiO_4$ வன்னமிலம்

நீரில் கரையாத ஒட்சைட்டுக்களின் வகையில் அமிலக்கரைசலில் அல்லது காரக்கரைசலில் கரைத்துப் பார்க்கலாம்.

- (1) அமிலக் சுரைசலில் கரைந்தால் ஒட்சைட்டு மூல இயல்புடையது.
- காரக் கரைசலில் கரைந்தால் ஒட்சைட்டு அமில இயல்புடையது.
- (3) இரண்டிலும் கரைந்தால் ஓட்சைட்டு தடுநிலேயான**து.** ரா*ரியல்புடையத*ி
 - (1) Na₂O + 2HCl \rightarrow 2NaCl + H_2O
 - (2) $MgO + 2HCl \rightarrow MgCl_2 \rightarrow H_2O$
 - MgO + NaOH → கரையாது
 - (3) $Al_2O_3 + 6HC1 \rightarrow 2AlCl_3 + 3H_2O$ $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$
 - (4) SiO_2 + HCl . \rightarrow கரையாது
 - $SiO_2 + 2NaOH \rightarrow Na_2SiO_3 + H_2O$
 - (5) $P_2O_5 + 6NaOH \rightarrow 2Na_3PO_4 + 3H_2O$
 - (6) SO_3 + $2NaOH \rightarrow Na_2SO_4 + H_2O$
 - (7) $Cl_2O_7 + 2NaOH \rightarrow 2NaClO_4 + H_2O_4$

ஈரியல்பா இ ஆவர்த்தனத்தின் (3) Ser കുഥിത வழிய இயல்பு அதிகரிக்கிறது. ஐ**த**ரொட்சைட்டுக்களின் நீர்க்கரைசல்களின் வன்கார பஞ்படு குறைந்து

AI/OH)3

Al(OH)3

₽ ₽ ₽

A l³+(aq) H+(aq)

++

 $3H^{-}(aq)$ $AIO_{2}^{-}(aq)$ $+ H_{2}O$

H₂SO₄ HCiO₄

₽ ₽ ₽

2H+(aq) H+(aq)

++

 $SO_4^{2-}(aq)$ $C_1O_4^{-}(aq)$ NaO_H

Ģ,

Na+(aq)

Mg(OH)2

 $Mg_2^+(aq)$

OH-(aq) + 2OH

20H-(aq)

H₂SiO₃ H₃fO₄

다. 다.

2H+(aq) 2H+(aq)

++

SiO₃²-(aq) PO₄3- (aq) 4

கூட்டம் ||| மூலகங்கள்

பெயர்	குறியீடு	ஈற் ெ ருழுக்கு இலத்திரன் அமைப்பு	உருகுநிலே °C
Boron Aluminium Gallium Indium Thallium	B Al Ga In	2S ² 2 P ¹ 3S ² 3P ¹ 4S ² 4P ¹ 5S ² 5P ¹ 6S ² 6P ¹	2030 660 30 156 304

பொ**துத்தன்மை**க**ள்**

- (1) இம்மூலகங்களின் பொது இலத்திரன் நி**லேய**மைப்பு ns² np¹
- (2) B அலோசும். ஏனேயவை உலோகங்கள்.
- (3) B, Al இலகுவாகக் கிடைக்கும். ஏனேயுவை அரிதாகவே கிடைக் கும். புவிஒட்டில் அதிக அளவில் காணப்படும் மூலகங்களில் மூன்ரும் இடம் வகிப்பது அலுமினியம் ஆகும். (O, Si, Al...).
- (**4**) கூட்ட**த்தின் வ**ழியே அணு ஆரை **அயஞரை அ**திகரிக்**கும்.**
- (5) B பங்கீட்டுச் சேர்வைகளே மட்டும் உருவாக்கும். Al பங்கீட்டுச் சேர்வைகளேயும், அயன் சேர்வைகளேயும் உருவாக்கும்.
- (6) B, Al ஆகியவை சேர்வைகளில் +3 ஓட்சியேற்ற நிலேயைப் பெறும். Ga, In, Tl ஆகியவை +3, +1 ஆகிய ஒட்சியேற்ற நிலேகளேப் பெறும்.
- (3) இம்மூலகங்கள் யாகவும் MX_3 வகை ஏஃட்டுக்களே உருவாக்கும் BF_3 , BCl_3 ஆகியவை பங்கீட்டுச் சேர்வைகள். AlF_3 அயன் சேர்வை. அனுல் $AlCl_3$ பங்கீட்டுச் சேர்வை.
- (8) இம்மூலக**ங்கள் யாவும் M_2O_3 வகை ஒட்**சைட்டுக்க**ோ உரு** வாக்**கும். B_2O_3, Al_2O_3, ஆகியவை ஈரியல்பு உடையவை கூட் டத்தின் வழியே ஒட்சைட்டுக்களின் மூலஇயல்**பு கூடு**ம்.**

ஐதிரரட்சைட்டுக்களில் ஆவர்த்தனப் பேரக்குக்கள்

				•		•	
•	$3\mathrm{H}_2\mathrm{O}$	2H ₂ O	H_2O	H ₂ O			
	HClO ₄ °	${ m H_2SO_4}^{\circ}$	$\mathrm{H_3PO_4}^{\circ}$	H ₂ SiO ₃ °			
	←-	←	~	<			
	CI(OH) ₇	S(OH)6	P(OH) ₅	Si(OH)4	Al(OH) ₃	$Mg(OH)_2$	INAULI
	6 695.	_டுக்கீனக் க	ரும் ஆவர்த்தன மூலகங்களின் ஐதரொட்சைட்டுக்களேக் கருதுக.	மூலகங்களின்	ஆவர் த் தன	மூன்மும்	Noon

- (9) Al அதன் மேலுள்ள ஒட்சைட்டுப் படலம் காரணமாக தாக்கு திறன் குறைந்து காணப்படும். படலம் நீக்கப்பட்டால் தொக்கு திறன் கூடும்.
- (10) 🖪 ஐதரசனுடன் சேர்ந்து பல ஐதரைட்டுக்களே உருவாக்கும். இவை ஆவிப்பறப்புடையவை.

Al இனது ஐதரைட்டு (AlH3), வெண்தின்மம். பல்பகு**திய அ**மைப்புடை**யது.**

பேரானின் சேர்வைகள்

B₂O₃ இது ஈரியல்புத் தன்மையுடைய**து.** எனினும் ஓரளவு அமில இயல்படையது.

 $B_2O_3 + 3H_2O \rightarrow 2H_3BO_3$ Boric acid.

BCl₃ இது பங்கீட்டுச் சேர்வை. தளமுக்கோணி வடிவ மூலக்கூறு உடையது, நீருடன் நீர்ப்பகுப்பு அடைந்து ஒரளவு அமில இயல்பைப்ப<u>ெற</u>ும்.

 $BCl_3 + 3H_2O \rightarrow H_3BO_3 + 3HC1$

BCl3, BF3 ஆகியவை இலத்திரன்போதாமை உடைய சேர்வைகள் என்பதால் NH₃ உடன் ஈதற்பிணேப்பால் இணேந்து சிக்க**ற்** சேர்வை களேக் கொடுக்கும்.

அலுமினியமும் அதன் சேர்வைகளும்

அலுமினியம் பிரகாசமான மினுக்கமுடையநீலச்சாயல் கொண்ட வெள்ளே நிறமான உலோகம், இதன் அடர்த்தி 2,7 gcm-3

Al ஐதான அமிலங்களுடனும், காரங்களுடனும் ஐதரசணேக் கொடுக்கும்,

 $2A1 + 6HC1 \rightarrow 2A1C1_3 + 3H_2$

 $2A1 + 2NaOH + 2H₂O \rightarrow 2NaAlO₂ + 3H₂$

அலுமினியத்தின் இயற்கை இருப்பாகிய போட்சைற்று (Bauxite) இனது சூத்திரம் Al₂O₃, 2H₂O. இதிலிருந்து தூய Al₂O₃ வேருக்கப் பட்டு அதனே உருகிய நிஃயில் மின்பகுப்பு செய்தே Al பிரித்தெடுக் **கப்படுகி**றது

Al₂O₃ ஈரியல்பு உடையது. நீரில் கரையாது. அமிலங்ங்களிலும் காரங்களிலும் கரையும்.

> $Al_2O_3 + 6HCl \rightarrow ^{\prime}2AlCl_3 + 3H_2O$ $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$

குருந்தம் (Corundum) வகை இரத்தினக்கற்களில் *்*முக்கியகூறு Al₂O₃ ஆகும்.

Al(OH)₃ Al உப்பொன்றின் கரைசலுக்கு NH₃ கரைசல் இட Al(OH)₃ வெண்ணிற வீழ்படிவாகப் படியும்.

 $Al_2(SO_4)_3 + 6NH_4OH \rightarrow 2Al(OH)_3 + 3(NH_4)_2SO_4$

Al உப்பொன்றின் கரைசலுக்கு NaOH கரைசல் இட Al(OH) படிவாகும். பின்னர் மிகை NaOH கரைசல் இட வீழ்படிவு கரையும். $Al_2(SO_4)_3 + 6NaOH \rightarrow 2Al(OH)_3 + 3Na_2SO_4$ $Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 3H_2O$

 $\underline{\bullet}$ $Al + \underline{\bullet}$ $arr Cl_2 \rightarrow AlCl_3 (s)$ A1Cl₃

நாய அலுமினியம் குளோரைட்டு திண்மம். 180°C இல் பதங்க மாதல் அடையும் இ**து ஆவி** நிஃயில் Al₂Cl₆ என்னும் இரணே**ய** மாகவே காணப்படும். AlCl₃ மூலக்கூறுகள் ஈதற்பிணேப்பால் இணந்து இரணேயங்கள் ஆகும். 180°C தொடங்கி 400°C வரை Al₂Cl₆ நிஃவயில் இருக்குமெனினும் மிக உயர் வெப்ப நிஃவயில் மீண்டும் AlCl₃ ஆகும்.

நி**ஃவயில்**

Cl Cl—Al←Cl A1Cl₂ மூலக்கூறு தளமுக்கோணி வடிவம் உடையது. !எனினும் Al₂Cl₆ $C_1 \rightarrow A_1 - C_1$ நான்முகி வடிவ அமைப்பைப் பெறும்.

AlCla பங்கீட்டுச் சேர்வை. நீருடன் [நீர்ப்பகுப்பு அடையும் நீர்க்கரைசல் அமில இயல்புடையது.

 $AlCl_3 + 3H_2O \rightarrow Al(OH)_3 + 3HCl$

AlCla உம் இலத்தின் போதாமை உடையதென்பதால், தனிச் சோடி இலத்திரன்கணேக் கொண்ட NH₃ போன்ற சேர்வைகளுடன் ஈதற்பிணப்பால் இணந்து கூட்டற் சேர்வைகளேக் கொடுக்கும்.

BCl₃, AlCl₃ போன்றவை தனிச்சோடி இலந்திரன்க**ோ** ஏற்றுக் கொள்பவை என்பதால் ஹாயிஸ் (Lewis) கொள்கைப்படி அமிலங்கள் எனப்படலாம்.

பிற குறிப்புக்கள்:

Al ஒரு வன்மையான தாழ்ந்தும் கருவி ஆகும்.

 $Fe_2O_3 + 2Al \rightarrow Al_2O_3 + 2Fe$

Al அடர்த்தி குறைந்ததாகவும், வவிமையானதாகவும் இருப்ப தால், அதன் கலப்பு லோகங்கள், இயந்திர உறுப்புக்களே ஆக்குவதற் கும், விமானங்களின் உருவாக்கத்திலும் பயன்படுத்தப்படுகிறது.

Magnalium (Al 90% Mg 10%)

Duralmin (Al 94 4% Cu 4.5% Mg 0.95% Mn 0.76%)

5

கூட்ட**ம் IV** மூலகங்கள்

மூலகம்	குறியீடு	இலத்திரன் அமைப்பு	உருகுநி‱் °C
Carbon Silicon Germanium Tin Lead	C	2S ² 2P ²	3730
	Si	3S ² 3P ²	1410
	Ge	4S ² 4P ²	937
	Sn	5S ² 5P ²	232
	Pb	6S ² 6P ²	327

பொதுத் தன்மைகள்

- 1. யாவற்றினதும் பொது இலத்திரன் நிஃயமைப்பு ns² np²
- 2. C. Si ஆகியவை அல்லுலோகங்கள். Ge ஓரளவு உலோக இயல் பைக் காட்டுகிறது; Sn, Pb ஆகியவை உலோகங்கள். அதாவது உலோக இயல்பு கூட்டத்தின் வழியே கூடுகிறது.
- 3. யாவும் சேர்வைகளில் +4 ஒட்சியேற்ற நிஃவையையும், +2 ஒட்சி யேற்ற நிஃவையையும் கொள்கின்றன. மேலே உள்ளவற்றில் +4 ஒட்சியேற்ற நிஃ உறுதியானது. கீழே உள்ளவற்றில் +2 ஒட்சி யேற்றநிஃ உறுதியானது.
- 4. C, Si ஆகியவை பங்கீட்டுச் சேர்வைகளே மட்டும் உருவாக்கும். Sn, Pb சில அயன் சேர்வைகளேயும், சில பங்கீட்டுச் சேர்வைக ளேயும் உருவாக்கும்.

Sn, Pb ஆகியவை +2 ஒட்சியேற்ற நிஃயில் அயன்சேர்வை களேயும்' +4 ஒட்சியேற்ற நிஃயில் பங்கீட்டுச் சேர்வைகளேயும் உருவாக்கும்.

5. C. Si ஆகியவை உயர் உருகுநிலே கொண்டவை. இவற்றில் வலிமையான பங்கீட்டுப் பிணேப்பால் ஆன அணு இராட்சத அமைப்பு உண்டு, மீறுவதற்குக் கூடிய சக்தி தேவை என்பதால் உருகுநிலே உயர்வு.

Sn, Pb ஆகியவற்றின் உருகு நிலேகள் மத்திமமானவை. இவற்றின் அணுக்களுக்கிடையில் உலோகப் பிணேப்பு உண்டு 6. யாவும் MO_2 வகை ஒட்சைட்டுகளே உருவாக்கும் CO_2 , SIO_2 ஆதியவை மென்னமில் இயல்புடையவை. கூட்டத்தின் வழியே அமில் இயல்பு குறையும்

இம்மூலகங்**கள்** MO வகை ஒட்சைட்டுக்களேயும் உருவாக்கும் CO, SiO ஆகியவை நடுநிலேயானவை.

- 7. யாவும் MC1₄ வகை குளோரைட்டுக்களே உருவாக்கும். இவை பங்கீட்டுச் சேர்வைகள். Sn, Pb ஆகியவை MC1₂ வகை குளோரைட்டுக்களேயும் ஆ**க்கும்.** இவை அயன் சேர்வைகள்.
- 8, யாவும் MH₄ வகை ஐதரைட்டுக்களே உருவாக்கும். (CH₄,SiH₄) இந்த ஐதரைட்டுக்களில் கூட்டத்தின் வழியே—
 - 1. வெப்ப உறுதி குறையும்
 - **2.** கொ**தி**நிலே கூடு**ம்,**

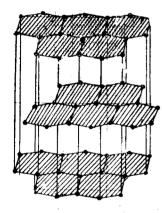
 $\mathbf{M}\mathbf{H}_4$ வகை தவிர வேறு பலவகை ஐதரைட்டுக்களேயும் \mathbf{C} , \mathbf{S}_i ஆகியவை உருவாக்குகின்றன. உதாரணங்களாவன:- \mathbf{C}_2 \mathbf{H}_6 $\mathbf{C}_2\mathbf{H}_2$, \mathbf{S}_i \mathbf{H}_6

இவை யாவும் பங்கீட்டுச் சேர்வைகள். தாழ்ந்த கொதி நிலே உடையவை

- 9. Sa, Pb ஆகியவை இருவலுவளவு நிலேச் சேர்வைகளில் கூடிய உலோக இயல்பையும், நால் வலுவளவு நிலேச்சேர்வைகளில் கூடிய அல்லுலோக இயல்பையும் கொண்டுள்ளன.
- 10. காபன் இரு முக்கிய பிற**திருப்ப** வடி**வங்களாகக் காணப்படுகிறது.** 1. வைரம் (Diamond) 2. பென்சிற்கரி (Graphite)

காபனின் பிற திருப்பங்<mark>கள்</mark>

Diamond


வைர**ம் Diamond** இயல்புகள்

- 1) உயர் உருகுநிலே உடை யது.
- 2) உயர் வன்மை உடை யது.
- 3) அடர்த்தி கூடியது (3·5g cm-3)
- 4) மின்னக் கடத்தாது.
- 5) உயர் ஒளிமுறிவுக் குண கம் கொண்டது.

வைரத்தில் ஒவ்வொரு காபன் அணுவும், வேறு நான்கு காபன் அனுக்களுடன் நான்முகி அமைப்பில் இணந்துள்ளது (முப்பரிமாண அமைப்பு.) இதில் C அணுக்கள் வலிமையான பங்கீட்டுப் பிணேப்பால் இணந்து அணு இராட்சத கட்டமைப்பைக் கொண்டுள்ளது. இதி லுள்ள வலிமையான பங்கீட்டுப் பிணேப்புக்களே மீறுவதற்குக் கூடிய சக்தி தேவை என்பதால் உயர் உருகுநில் உடையது.

வைரத்தில் C அணுக்கள் நெருக்கமாகவும் (Fightly Packed compact) இறுக்கமாகவும், வலிமையாகவும் பிணேக்கப்பட்டிருப்பதால் வன்மை கூடியதாகவும், அடர்த்தி கூடியதாகவும் காணப்படுகிறது.

Graphite

பென்சிற்கரி Graphite இயல்புகள்

- 1) உயர் உருகுநிலே உடையது.
- 2) வன்மை குறைந்தது.
- 3) ஓப்பிட்டளவில் அடர்த்தி குறைந்**தது** (2.25g cm₃)
- 4) மின்னேக் கடத்தும்
- உராய்வு நீக்கியாகப் பயன்படும்.

இதில் ஒவ்வொரு காபன் அணுவும், வேறு மூன்று காபன் அணுக்களுடன் அறுகோண அமைப்பில் இணேந்துள்ளது (இரு பரி மாண அமைப்பு) இது படைச் சாலக இராட்சத அமைப்பைக் கொண்டது.

இதிலும் C அணுக்கள் வலிமையான பங்கீட்டுப் பி‱ப்பால் இணேந்திருப்பதால், மீறுவதற்குக் கூடிய சக்தி தேவை. எனவே, உயர் உருகுநிலே உடையது.

பென்சிற்கரியில் அடுத்துள்ள படைகளுக்கிடையில் வலிமை குறைந்த வந்தர்வாலிசுக் கவர்ச்சியே உண்டு. இவை தளர்வாகவே இணேந்துள்ளன (loosely packed) இதனுல் அடர்த்தி குறைந்தது. என்பதுடன் வன்மையும் குறைவானது. படைகள் ஒன்றின் மீதொன்று வழுக்டுச் செல்லக்கூடிய தன்மை யைக் கொண்டிருப்பதால் உராய்வு நீக்கியாகப் பயன்படும்.

இதில் பிணேப்பில் ஈடுபடும் இலத்திரன்கள் தவிர எஞ்சிய இலத் திரன்கள் ஓரிடப்பாடற்று சுயாதீன இலத்திரன்களாகக் காணப்படு வதால் பென்சிற்கரி மின்னேக் கடத்தும்.

ஓட்சைட்டுக்கள்

காபனீர் ஒட்சைட்டு CO₂

தயாரிப்பு முறைகள்

- 1. காபனேற்று**க்க**ளுக்கு ஐதான அமிலம் சேர்**த்தல்** $\mathrm{Na_2\,CO_3} + 2\mathrm{HCl} \rightarrow 2\mathrm{NaCl} + \mathrm{CO_2} + \mathrm{H_2O}$ $\mathrm{CaCO_3} + 2\mathrm{HCl} \rightarrow \mathrm{CaCl_2} + \mathrm{CO_2} + \mathrm{H_2O}$
- 2. இருகாபனேற்றுக்களே வெப்பமேற்றல் 2NaHCO₃ → Na₂CO₃ + H₂O + CO₂
- 3. சில காபனேற்றுக்களின் வெப்பப்பிரிகை CaCO₃ → CaO + CO₂ 900°C

CO₂ இன் இயல்புகள்

CO2 வாயு மென்னமில இயல்புடையது

$$CO_2 + H_2O \rightarrow H_2CO_3 \leftarrow H^+ + HCO_3^-$$

CO₂ வளியிலு**ம்** அடர்த்தி கூடிய**து. நீரில் ஒரளவு கரையும்** காரக் கரைசல்களில் உறிஞ்சப்படும்.

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$
 CO_2 இலகுவாக திரவமாக்கப்படக் கூடியது.

CO₂] வாயுவுக்கு சோதணே

CO₂ வாயுவை கண்ணும்பு நீரினுள் செலுத்த பால்நிற**ம் தோன்** றும். மிகையாக செலுத்த பால்நிறம் அற்**றுப்போகு**ம்.

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

 $CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$

$$\mathrm{CO_2}$$
 மூலக்கூறு நேர்கோட்டு வடிவம் உடையது. $\mathrm{O} = \mathrm{C} = \mathrm{O}$

காபனேர் ஒட்சைட்டு CO

தயாரிப்பு முறைகள்

- 1. போமிக் கமிலத்தை செறி $m H_2SO_4$ உடன் வெப்பமேற்றல் $m HCOOH
 ightarrow H_2O \, + \, CO$
- ${f 2.}$ ஒட்சாலிக் அமிலத்தை செறி ${
 m H_2SO_4}$ உடன் வெப்பமேற்றல் ${
 m COOH}$ ${
 m H_2O}$ ${
 m COOH}$

இத்தாக்கங்களில் செறி $\mathbf{H_2SO_4}$ நீரகற்றும் கருவியாகத் தொழிற் படுகிறது.

CO இன் இயல்புகள்

நச்சுத்தன்மையான வாயு. நீரில் கரையாது. நடுநிஃயானது. இலகுவாக திரவமாக்க முடியாது. வளியில் நீலச் சுவாஃயடிடன் எரியும். வன்மையான தாழ்த்தியாகத் தொழிற்படும்.

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

CO மூலக்கூறின் அமைப்பு $egin{array}{c} = & & & \\ & \rightarrow & & \\ & & & \end{array}$

காபனேற்றுக்களுக்கு சோதணே CO₃2-

எந்தக் காபனேற்றுக்கும் குளிர்ந்த ஜதான அமிலமொன்றைச் சேர்த்தால் நுரைத்தெழலுடன் CO₂ வாயு வெளிவரும். இந்**த** வாயு வைச் சுண்ணும்பு நீரீனுள் செலுத்த பால்நிறம் தோன்று**ம்,**

சிலிக்கன் ஈரொட்சைட்டு SiO2

 SiO_2 மென்னமில ஒட்சைட்டு. நீரில் கரையாது. $\mathrm{SiO}_2 \ + \ 2\mathrm{NaOH} \ o \ \mathrm{Na}_2\mathrm{SiO}_3 \ + \ \mathrm{H}_2\mathbf{O}$

SiO₂ வலிமையான **பங்**கீட்டுப் பிணேப்பால் ஆன இராட்சத மூலக்கூற்று அமைப்பைக் கொண்டுள்ளது. இந்த வலிமையான பிணேப் புக்களே உடைப்பதற்குக் கூடிய சக்தி தேவை. எனவே இதன் உருகு நிலே உயர்வானது.

வினு: CO₂ ஒரு வாயு. ஆனல் 'SiO₂ அதிகூடிய உருகுநிலே உடைய திண்மம். இத்தோற்றப்பாட்டை விஆக்குக. Sn. Pb ஆகியவற்றின் ஒட்சைட்டுக்கள்

இந்த உலோகங்கள் இரு வலுவளவு நிலேயில் உருவாக்கும் SnO PbO ஆகியவை ஈரியல்பு உடையவை.

மூலஇயல்பு
$$SnO + 2HCl \rightarrow SnCl_2 + H_2O$$
 $PbO + 2HNO_3 \rightarrow Pb(NO_3)_2 + H_2O$ $SnO + 2NaOH \rightarrow Na_2SnO_2 + H_2O$ $Sodiam Stannite$ $PbO + 2NaOH \rightarrow Na_2PbO_2 + H_2O$ $Sodiam Plumbite$

நால்வலுவளவு நிலேயி**ல் உ**ருவாக்கும் ஒட்சைட்டுக்கள் ஒரள**வு** அமில இயல்புடையவை.

 $SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$ Sodiam Stannate $PbO_2 + 2NaOH \rightarrow Na_2PbO_3 + H_2O$ Soudiam Plumbate

குளோரைட்டுக்க**ள்**

	CCl ₄	CCI ₄
	SiCl ₄	مده لاست سما
	GeCl ₄	கூறு களு
SnCl ₂	SnCl ₄	வாலிசு
_		குறைந்
PbCl ₂	PbCl ₄	கொகி

CCl₄ எளிதில் ஆவியாகும் திரவம். இது எளிய தனி மூலக்கூறுகள் கொண்டது. அடுத்துள்ள மூலக் கூறுகளுக்கிடையில் வலிமை குறைந்த வந்தர் வாலிசுக் கவர்ச்சியே உண்டு. மீறுவதற்குக் குறைந்த சக்தியே போதும். எனவே தாழ்ந்த கொதிநிலேயுடையது.

இவ்வாறே SiCl₄ உம் தாழ்ந்**த கொ**திநிலே உடை**யது.** MCl₄ வகை குளோரைட்டுக்கள் யாவும் நான்முகி வடிவ மூலக்கூறு கள் சொண்டமைவ.

CCl₄ நீருடன் கலக்**காது.** நீர்பகுப்பு அடையா**து.** SiCl₄ நீர்பகுப்பு அடையும். SiCl₄ + 3H₂O \rightarrow H₂SiO₃ + 4HCl

SuCl ₂ and PbCl ₂	SnCl ₄ and PbCl ₄
திண்மங்கள்	ஆவிப்பறப்புடைய திரவங்கள்
அய ன் சேர்வைகள்	பங்கீட்டுச் சேர்வைகள்
உருகிய நிலேயில்	தூயநிலேயி ல் மின்னேக்
மின்னேக் கடத்தும்	கடத்தாது

சுயத்தின் சில உப்புக்கள்

ஈயத்தின் உப்புக்களில் ஈயநைத்திரேற்**று. ஈயஅ**சற்றேற்று ஆகி யவை மட்டுமே நீ**ரில் க**ரையக் சுடிய**வை. ஏனே**யடைவ நீரில் கரையாது.

 ${
m Pb}({
m NO_3})_2$ வெண்ணிற திண்மம். இது வெப்பமேற்றப்பட கடில நிறமான ${
m NO_2}$ வெளிவரும்.

 $2Pb(NO_3)_2 - 2PbO + 4NO_2 + O_2$

Pb(NO₃)₂ கரைசலுக்கு வெவ்வேறு உப்புக்கரைசல்களேச் சேர்க் கும்போது பெறக்கூடிய அவதானிப்புக்கள் கீழே தரப்பட்டுள்ளன.

(1) குளிர்ந்த. ஐதான HCl இடப்பட வெண்ணிற வீழ்படிவு தோன் றும். இது சூடாக்கப்பட கரையும். குளிரப்பண்ண மீண்டும் ஊசி வடிவில் படிவாகும்.

Pb(NO₃)₂ + 2HCl
$$\rightarrow$$
 PbCl₂ \downarrow + 2HNO₃

செறி HC1 உடன் இந்த வீழ்படிவு தோன்றுது. காரணம் $PbCl_2 + 2Cl^- \rightarrow PbCl_4^-$ என்ற தாக்கத்**தி**ன் வழி சிக்கல் அயன் தோன்றும்

(2) KI கரைசல் இட மஞ்ச**ள் வீழ்ப**டிவு தோன்றும். இது சூடாத் கப்பட கரையும். குளிரப்பண்ண மீண்டும் பொன்னி**ற ஊ**சிக ளாகப் படியும்.

Pb(NO₃)₂ + 2KI
$$\rightarrow$$
 PbI₂ \downarrow + 2KNO₃
 $ω_{\vec{n}}$ σ \vec{n}

- (3) ஐதான $m H_2SO_4$ இட வெள்ளே வீழ்ப**டிவு தோன்றும்.** $m Pb(NO_3)_2 \ + \ H_2SO_4 \
 ightarrow \ PbSO_4 \ \downarrow \ + \ 2HNO_3$ வெள்ளே
- (4) K_2CrO_4 கரைசல் இட மஞ்சள் வீழ்படிவு தோன்றும் $Pb(NO_3)_2 + K_2CrO_4 \rightarrow PbCrO_4 \downarrow + 2KNO_3$ மஞ்சள்
- (5) $m H_2S$ வாயுவைச் செலுத்த கரியநிற வீழ்படிவு $m [G_3]_2 + H_2S
 ightarrow PbS \downarrow + 2HNO_3$ கறுப்பு
- (6) NaOH கரைசல் இட வெள்ளே வீழ்படிவு தோன்றும். எனினும் மிகை NaOH கரைசல் இட கரைந்து விடும்.

$$Pb(NO_3)_2 + 2NaOH \rightarrow Pb(OH)_2 \downarrow + 2NaNO_3$$

 $Pb(OH)_2 + 2NaOH \rightarrow Na_2PbO_2 + 2H_2O$
Plumbite

கூட்டம் V மூலகங்கள்

மூலகம்	குறியீடு	இலத்திரன் அமைப்பு	உருகுநி ஃ ல °C
Nitrogen Phosphorus	N P	2S ² 2P ³ 3S ² 3P ³	-210 44
Arsenic	As	4S ² 4P ³	817
Antimony	Sb	5S2 5P3	630
Bismuth	Bi	6S ² 6P ³	271

பொதுத்தன்மைகள்

- 1. இம்மூலகங்களின் பொதுஇலத்திரன் நிஃயமைப்பு ns²np³
- N. P, ஆகியவை அல்லுலோகங்கள், As, Sb ஆகியவை உலோ கப் போலிகள். Bi உலோகம். கூட்டத்தின் வழியே உலோக இயல்பு கூடுகிறது.
- 3. கூட்டத்தின் வழியே மின்னெதிர் இய**ல்**பு குறைகிறது.
- 4. N. P. ஆகியவற்றின் ஒட்சைட்டுக்கள் அமில ஒட்சைட்டுக்கள் As, Sb ஒட்சைட்டுக்கள் ஈரியல்பு உடையவை.
 Bi ஒட்சைட்டு மூல இயல்புடையது. அதாவது இந்த ஒட்சைட்டிக்களில் கூட்டத்தின் வழியே அமில இயல்பு குறைந்து மூல இயல்பு அதிகரிக்கிறது.
- 5. அறைவெப்பநிஃயில் நைதரசன் வாயு, ஏனேயவை திண்மங்கள்.
- 6. N. P. ஆகியவற்றின் உருகுநிலேகள் தாழ்வானவை. As, Sb, Bi ஆகியவற்றின் உருகுநிலேகள் ஒப்பீட்டளவில் உயர்வானவை.
- 7. Nஆனது NCl₃ என்னும் குளோரைட்டை மட்டும் உருவாக்**கும்.** ஏனேயவை MCl₃, MCl₅ என்னும் அமைப்புடைய இரு குளோ ரைட்டுக்களே உருவாக்கும்.
- 8. இவை யாவும் MH₃ வகை ஐதனரட்டுக்களே உருவாக்கும். இவை பங்கீட்டுவலுச் சேர்வைகள் ஐதரைட்டுக்களின் மூல இயல்பும் உறுதித் தன்மையும் கூட்டத்தின் வழியே குறையும்.

- 9. நைதரசன் அதன் சேர்வைகளில் —3, —2, —1, +1. +2. +3, +4, +5 ஆகிய எல்லா ஒட்சியேற்ற நிலேகளேயும் பெறும் ஏனேயவை பெரும்பாலும் +3, +5 ஆகிய இரு ஒட்சியேற்ற நிலே களேக் கொள்ளும்.
- 10. நைதரசனுக்குப் பிற திருப்பங்கள் இல்லே. பொசுபரசு ஆசனிக்கு அந்திமனி ஆகியவை பிறதிருப்பங்களேக் கொண்டுள்ளன.

கூட்டம் V மூலகங்களின் குளேநரைட்டுக்கள்

நைத∎சன் NCl₃ என்னும் குளோரைட்டை உருவாக்கும். ஏனேய மூலகங்கன் MCl₃ MCl₅ வகை குளோரைட்டுக்களே உருவாக்கும். இவை பெரும்பாலும் பங்கீட்டுவலுச் சேர்வைகள். BiCl₃ அயன் தன்மையுடையது.

இக்குளோரைட்டுக்கள் நீருடன் நீர்ப்பகுப்பு அடையும். நீர்ப் பகுப்பு அடையும் தன்மை கூட்டத்தின் வழியே குறையும்.

கூட்டம் V மூலகங்களின் ஐதரைட்டுக்கள்

இம்மூலகங்கள் MH₃ வகை ஐதரை**ட்டு**க்க**ோ உருவாக்கு**ம். இவை யாவும் வாயுக்க**ள்**. பங்கீட்டு வலுச் சேர்வைகள்.

ஐதரைட்டு	கொதிநிலே °C
NH ₃	-35
PH ₃	-87
ASH ₃	-55
BiH ₃	-17

- (1) கூட்டத்தின் வழிபே இவற்றின் மூல இயல்பு குறையும், காரணம் — குறித்த மூலகத்தின் மின்னெதிர்த் தன்மை குறைவதால் தனிச்சோடி யின் வழங்குமியல்பு குறையும்.
- (2) கூட்டத்தின் வழியே இவற்றின் 'உறுதித்தன்மை குறையும்.
- ေ% NH₃ இ**ன்** கொதிநிஃ, PH₃ இனதைவிட உயர்வாக இருப்பதற் குக் காரணம் NH₃ முலக்கூறுகளுக்கிடையில் உள்ள ஐதர**சன்** பி‱ப்பாகும்,

- ஆ% NH₃ஐவிட PH₃ சிறந்த தாழ்த்தும் கருவி.
- NH₃ நீரில் கரைந்து காரக்கரைசலேக் கொடுக்கும். PH₃ நீரில் கரையாது.

நைதோசன்

வளியில் கனவளவுப்படி 78% நைதரசன் உண்டு. வளியில் மூக் கிய கூறுகள் நைதரசனும் ஒட்சிசனும் ஆகும். திரவ வளியைப் பகுதி படக் காய்ச்சி வடித்து நைதரசன் பெருமளவில் பெறப்படுகிறது.

நைதூசனின் ஆய்வுகூடத் தயாரிப்பு

$$\triangle$$
1. $\mathrm{NH_4Cl} + \mathrm{NaNO_2} \rightarrow \mathrm{NH_4NO_2} + \mathrm{NaCl}$
 $\mathrm{NH_4NO_2} \rightarrow \mathrm{N_2} + \mathrm{2H_2O}$
 $\mathrm{NH_4NO_2}$ இண் நேரடியாக வெப்ப $\mathrm{3}$ மற்றல் அபாயமானது.

நைதரசனின் இயல்புகள்

- அறை வெப்பநிஃபில் N₂ தாக்கு இறன் குறைந்தது. ஒரளவ சடைத் தோவ தென்மையுடையது. காரணம் N₂ மூலக்கூறில் N அணுக்கள் மூம்மைப் பீணேப்பிஞல் இணேந்துள்ளன. N ☐ N இனது பிஃணப் புச் சக்தி மிக உயர்வானது (945 kJ mol⁻) மிறுவதற்குக் கூடிய சக்தி தேவை.
- அறைவெப்ப நிஃயில் வளியின் N₂. O₂ ஆகியவை தாக்கமடை யாது. உயர்மின்சக்தி கிடைக்கும்போது தாககமடையும். (உதா ரணமாக மின்னல் நிகழும்போது)

$$N_2 + O_2 \rightarrow 2NO$$

 நைதரசன் பெரும்பாலும் புங்கீட்டுப் பிணப்பையே ஏற்படுத்தும்.
 எனினும் உலோக நைத்திரைட்டுக்களில் அயன் பிணப்பை ஆக்கு கிறது. இவற்றில் N³- அயன் உண்டு.

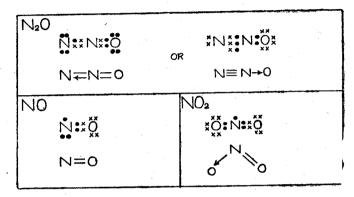
$$3Mg + N_2 \rightarrow Mg_3N_2$$
 $3Ca + N_2 \rightarrow Ca_3N_2$
 $2Al + N_2 \rightarrow 2AlN$ $6Li + N_2 \rightarrow 2Li_3N$

நைதரசனின் ஒட்சியேற்ற நிலேகள்

நைத**ர**சன் அதன் சேர்வைகளில் +5 தொடங்கி —3 வரை எல்லா ஒட்சியேற்ற நிலேகளேயும் பெறும்.

+ 5 HNO ₃	+4 NO ₂	+3 HNO ₂
+ 2 NO	+1 N ₂ O	0 N ₂
-1 NH ₂ OH	-2 NH ₂ NH ₂	-3 NH ₃

நைதரசனின் ஒட்சைட்டுக்கள்


- N_2O நைத்திரக ஒட்சைட்டு Nitrous oxide நடுநிலேயானது நிறமற்றது நீரில் கரையாது $NH_4NO_3 \rightarrow N_2O + 2H_2O$ NH_4NO_3 இனே நேரடியாக சூ'_ாக்குதல் அபாயமானது. $NH_4Cl + NaNO_3 \rightarrow NH_4NO_3 + NaCl$ \downarrow $N_2O + H_2O$
- NO, நைத்திரிக்கு ஒட்சைட்டு Nitric oxide நடுநிலையானது நிறமற்றது நீரில் கரையாது. 3Cu + 8HNO₃ \rightarrow 3Cu(NO₃)₂ + 2NO + 4H₂O 50%
- NO_2 நைதரசன் ஈரொட்சைட்டு $Nitrogen\ dioxide$ அமில இயல்புடையது கபிலநிறம் நீரில் கரையும். $Cu\ +\ 4HNO_3\
 ightarrow\ Cu(NO_3)_2\ +\ 2NO_2\ +\ 2H_2O$ அநேகமான நைத்திரேற்றுக்கள் வெப்பமேற்றும்போது NO_2 வாயுவைக் கொடுக்கும்.

$$2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$$

 $2Mg(NO_3)_2 \rightarrow 2MgO' + 4NO_2 + O_2$

NO₂ இனது நிலேகள்

$$N_2O_4$$
 \rightleftharpoons $2NO_2$ \rightleftharpoons $2NO + O_2$ $22^{\circ}C$ $140^{\circ}C$ $620^{\circ}C$ மென்மஞ்சள் கபிலம் நிறமற்றது

நீதடன் ஒட்சைட்டுக்களின் தாக்கம்
$$N_2O_5 + H_2O \rightarrow 2HNO_3$$
 $N_2O_3 + H_2O \rightarrow 2HNO_2$ $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$ ஓட்சைட்டுக்களில் கட்டமைப்புக்கள்

ஓட்கைட்டுக்களேக் தாழ்க்கல்
$$2NO + 2Cu \rightarrow 2CuO + N_2$$
 \triangle $2NO_2 + 4Cu \rightarrow 4CuO + N_2$ \triangle \triangle $N_2O + Cu \rightarrow CuO + N_2$

அமோனியா

 எந்த அமோனியம் உப்பையும் காரம் ஒன்றுடன் வெப்பமேற்ற NH₃ வாயு உருவாகும்.

$$NH_4Cl + NaOH \rightarrow NaCl + NH_3 + H_2O$$

 $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2NH_3 + H_2O$

வெளிவரும் வாயுவை உலர்த்த CaO பயன்படுத்தப்படும். ஏணேய உலர்த்தும் கருவிகளாகிய . CaCl₂. H₂SO₄ P₂O₅ ஆகியவ**ற்** றைப் பயன்படுத்த முடியாது. காரணம் இவற்றுடன் NH₂ தாக்கமுறும்.

2. உலோக நைத்திரைட்டுக்களுக்கு நீர் சேர்த்தல். $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$

NH₃ இனது இயல்புகள்

- NH₃ அதன் N அணுவில் உள்ள தனிச்சோடி இலத்திரன்களின் வழங்குமியல்பு காரணமாக மூல இயல்படையது.
- 2. NH₃ மூல இயல்புடையது எ**ன்பதால் அ**மிலங்களுட**ன்** சுலப**மா** க**த்** தாக்கமடையும்.

NH₃இல் N அதன் மிகக் குறைந்த ஒட்சியேற்றை நிலேயில் உள்ளது.
 எனவே அது தாழ்த்தும் கருவி.

$$2NH_3 + 3CuO \rightarrow 3Cu + 3H_2O + N_2$$

4. கில தாக்கங்களில் அமோனியா ஒட்சியேற்றியாகவும் தொழிற் படும். உலர் 400°

$$2Na + 2NH_3 \rightarrow 2NaNH_2 + H_2$$

- 5. குளோரினுடன் தாக்கம்
 - (a) N H_3 மிகை எனில் $2NH_3 + 3Cl_2 \rightarrow N_2 + 6HCl$ $\downarrow 6NH_3$ $8NH_4 + 3Cl_2 \rightarrow N_2 + 6NH_4Cl$
 - (b) குளோரின் மிகை எனில் NH₃ + 3Cl₂ → NCl₃ + 3HCl

NH₃ நீர்க் கரைசல்

- NH_3 நீரில் நன்mகக் கரையும். கரைசல் மென்கார இயல்புடையது. $NH_3 + H_2O \rightarrow NH_3H_2O \longrightarrow NH_4^+ + OH^-$
 - பல உப்புக் கரைசல்களுக்கு NH₃ கரைசஃவச் சேர்க்க உலோக ஐதரொட்சைட்டுக்கள் படிவாகும்.

$$\begin{aligned} &\text{FeSO}_4 + 2\text{NH}_4\text{OH} \leftarrow \text{Fe(OH)}_2 \downarrow + (\text{NH}_4)_2\text{SO}_4 \\ &\text{FeCl}_3 + 3\text{NH}_4\text{OH} \rightarrow \text{Fe(OH)}_3 \downarrow + 3\text{NH}_4\text{Cl} \\ &\text{Al}_2(\text{SO}_4)_3 + 6\text{NH}_4\text{OH} \rightarrow 2\text{Al}(\text{OH})_3 \downarrow + 3(\text{NH}_4)_2\text{SO}_4 \end{aligned}$$

2, சில தாக்கங்கனில் வீழ்படிவு தோன்றிப் பின் சிக்கல் அயன்கள் தோன்றுவதால் மிகை NH_3 கரைசலில் கரையும்,

$$\begin{array}{lll} CuSO_4 & + & 2NH_4OH \rightarrow Cu(OH)_2 & \downarrow & (NH_4)_2SO_4 \\ 4NH_3 & + & Cu(OH)_2 \rightarrow Cu(NH_3)_4^{2+} + & 2OH_- \\ Co(NO_3)_2 & + & 2NH_4OH \rightarrow Cu(OH)_2 & \downarrow & + & 2NH_4NO_3 \\ 6NH_3 & + & Co(OH)_2 \rightarrow & Co(NH_3)_6^{2+} & + & 2OH_- \end{array}$$

இவ்வாறு Ag+, Cu²+, Zn²+, Co²+, Ni²+, Cı+² ஆகியனவும் NH₃ உடன் சிக்கல் அயன்களே உருவாக்கும்.

 $Ag(NH_3)^{+}_2$ $Cu(NH_3)_4^{2+}$ $Zn(NH_3)_4^{2+}$ $Co(NH_3)_6^{2+}$ $Ni(NH_3)_6^{2+}$ $Cr(NH_3)_6^{2+}$

அமோனியாவின் தொழில் முறைத் தயாரிப்பு

ஏபர் மூறை Haber Process

 $N_2 + 3H_2 \le 2NH_3$ $\triangle H = -92KJ$

நிபந்து வேகள்

- 1) உயர் அமுக்கம் (250atm)
- 2) மத்திமமான வெப்பநிலே 500°C)
- 3) Fe ஊக்கி/Al₂O₃ தாண்டி

ஏபர் முறையின் பௌதிக – இரசாயன தத்துலங்கள்

- இத்தாக்கம் கனவளவுக் குறைவுடன் நிகழ்கிறது. மூலக்கூறுக ளின் எண்ணிக்கை குறைக்கப்படுகிறது. எனவே இலிச்சற்றலிய ரின் தத்துவப்படி, உயரமுக்கம் முற்தாக்கத்தைச் சாதகமாக்கி விளேவைக் கூட்டும். எனினும் மிக உயர்ந்த அமுக்கத்தைப் பயன் படுத்தினுல் உபகரணச் செலவு அதிகம். எனவே ஓரளவு மத்திம மான உயர் அமுக்கமாக 250 atm பயன்படுத்தப்டடுகிறது.
- 2) இத்தாக்கத்தில் வெப்பம் வெளியிடப்படுகிறது. எனவே இலிச் சற்றலியரின் தத்துவப்படி வெப்பநிலேயைக் குறைத்தல் முற் தாக்கத்தைச் சாதகமாக்கி விளேவைக் கூட்டும். ஆனுல் வெப்ப நிலேயை மிசுவும் குறைத்தால் தாக்க வீதம் குறைந்துவிடும். எனவே இடைப்பட்ட சிறப்பு வெப்பநிலேயாக 500°C பயன் படுத்தப்படுகிறது.
- 3) ஏவற்சக்தியைக் குறைத்துத் தாக்கவீதத்தை அதிகரிக்கச் செய்ய Fe ஊக்கி பயன்படுத்தப்படுகிறது.
- 4) வீளவாகிய NH₃ குளிரூட்டப்பட்டு ஒடுக்கப்பட்டு உடனுக்குடன் அகற்றப்படுவதால் முற்தாக்கம் சாதகமாக்கப்பட வீளவுகூடும்.

ஏபர் முறையில் பயன்படுத்தப்படும் மூலப்பொருட்கள் பின்வருமாறு பெறப்படும்.

¹⁾ வளியைத் திரவமாக்கி, திருவ வளியைப் பகுதிபடக் காய்ச்சி வடித்தல் மூலம் நைதரசன் பெறப்படுகிறது.

 $C+H_2O(g)
ightarrow CO+H_2$ அல்லது $CH_4+H_2O(g)
ightarrow CO+3H_2$ ஆகிய தாக்கங்களின் மூலம் H_2 பெறப்படும்.

அமோனியாவின் ஒட்சியேற்றம்

 $m NH_3$ வெளியில் ஒட்சியேற்றம் அடைகிறது. $4
m NH_3 + 3O_2
ightarrow 2N_2 + 6H_2O$

வளி மிகையாகவும் செஞ்சூடான Pt ஊக்கியாகவும் இருப் பின் NO உருவாகும்.

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

செம்பின் ஊக்கற் தாக்கத்தால் அமோனியாவை ஒட்சியேற்றல்

செஞ்சூடாக்கப்பட்ட செப்புச்சுருள் ஒன்றை ஒரு சாவணத்தால் பிடித்து ஒரு குடுவையில் உள்ள NH₃ கரைசலின் மேல் நிலே நிறுத்துக. O₂ வாயுவை அமோனியாக் கரைசலினுள் செலுத்துக சுருள் ஒளிர்வதைக் காணலாம். தொடர்ச்சியாக ஒட்சிசனேச் செலுத்த ஒளிர்வு அதிகரிப்பதை நோக்கலாம். மேலும் கபிலநிற வாயு தோன்றுவதையும் அவதானிக்கலாம்,

$$Cu$$

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

$$\triangle$$

$$2NO + O_2 \rightarrow NO_2$$

இத்தாக்க**த்**தில் செஞ்சூடான Cu ஊக்கியா**கத் தொழிற்பட்டுள்** ளது. தாக்கத்தில் வெளிவந்த வெப்பத்தினுலேயே சுருளின் ஒளிர்வு அதிகரித்தது. உருவாகிய NO பின்னர் NO₂ ஆக மாறிய**தால்** கபில நிறப் புகை தோன்றியது.

இத்தாக்கத்திற்கு Pt உம் ஊக்கியாகப் பயன்படுத்த**லாம்.**

அமோனியாவுக்கு சோதணேகள்

- 1) நெஸ்லரின் சோ*தணே*ப் பொருளிலு**ள் செலுத்த** கபில நிறம் தோன்றும்.
- 2) HCl மூடியுடன் அடர் வெண்தாமங்கள் தரும்.
- 3) தனித்தன்மையான மணம்.

அமேரனியரவின் பயன்கள்

-) HNO₃ தயாரி**ப்**பு
- 2) Na₂CO₃ தயாரிப்பு
- 3) (NH₄)₂SO₄ தயாரிப்பு ்
- 4) யூறியா தயாரிப்பு

5) குளிரூட்டியாக

அமோனியம் உப்புக்களில் வெப்பத்தின் தாக்கம்

அமோனியம் உப்புக்கள் வெப்பமேற்றப்படும்போது பொதுவாகப் பின்வருமாறு பிரியும்.

$$NH_4X \rightarrow NH_3 + HX$$

உதாரணமாக,

$$NH_4C1 \rightarrow NH_3 + HC1$$

 $(NH_4)_2CO_3 \rightarrow 2NH_3 + H_2O + CO_2$

வி தினிலக்காக பின்வரும் உப்புக்கள் வேறுவி தமாகப் பிரியும்,

$$NH_4NO_3 \rightarrow N_2O + 2H_2O$$

 $NH_4NO_2 \rightarrow N_2 + 2H_2O$
 $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + 4H_2O$

அமேரனியம் உப்புக்களின் நீர்ப்பகுப்பு

NH₄Cl, (NH₄)₂SO₄ போன்ற வன்னமில – மென்கார உப்புக்கள் நீருடன் நீர்ப்பகுப்பு அடைவதால் கரைசலில் H+ அயன்கள் மிகையாக விடப்பட கரைசல் அமில இயல்பைப் பெறும்.

$$NH_4^+ + H_2O \rightarrow NH_4OH + H^+$$

NH₄Cl நீர்க் கரைசலுக்கு Zn இடப்பட H₂ வெளிவருகிறது. இதற்குக் காரணம் NH₄Cl நீர்க் கரைச**ல் அமில** இய**ல்பைக்** கொண்டிருத்தலேயாகு**ம்.**

$$2NH_4^+ + Zn \rightarrow Zn^{2+} + 2NH_3 + H_2$$

நைத்திரிக் கமிலம்

தொழில் முறைத் தயாரிப்பு (Ostwald process)

1) அமோனியா, மிகை வெளியுடன் கலைக்கப்பட்டு Pt/Rh ஊக்கிமீது 900°C இல் செலுத்தப்படும். ஆரம்பத்தில் மின்முறையில் வெப்ப மேற்றப்படும். ஆணுல்தொடர்ந்து வெப்பமேற்றுதல் அவசியமில்ஃ.

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O \triangle H = -906 \text{ KJ mol}^{-1}$$

2) விளேவு வாயுக்கலவை 150° C வரை குளிரவிடப்பட்டு மேலும் வளியுடன் கலக்கப்பட்டு NO₂ பெறப்படும்.

$$2NO + O_2 \rightarrow 2NO_2$$
 $\triangle H = -113 \text{ KJ mol}^{-1}$

3) NO_2 மேலும் வளியுடன் கலக்கப்பட்டு நீருடன் கலக்கப்பட்டு HNO_3 பெறப்படும். $4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$

HNO₃ இன் ஒட்சியேற்றுமியல்பு

HNO₃ இல் N அதன் மிகவுயர்ந்த ஒட்சியேற்ற நிஃவயில் (+5) இருப்பதால் அது ஒட்சியேற்றும் கருவி. HNO₃ ஒருபோதும் தாழ்த்தியாகத் தொழிற்படாது.

- 1) $Cu + 4HNO_3 (G = D) \rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$ you D
- 2) 3 Cu + 8 HNO $_3$ (50%) \rightarrow 3 Cu (NO $_3$) $_2$ + 2 2NO + 4 H $_2$ O ெயப்பநிலே
- 3) C + 4HNO_3 (G# \cancel{D}) \rightarrow CO_2 + 4NO_2 + $2\text{H}_2\text{O}$
- 4) S + 6HNO₃ ($G_{\bullet}p_{0}$) $\rightarrow 2H_{2}O + 6NO_{2} + H_{2}SO_{4}$
- 5) $H_2S + 2HNO_3 \rightarrow 2H_2O + 2NO_2 + S$

 $\mathrm{HNO_3}$ செறிவான தாகவும் கொதிக்கும் நிலேயிலும் இருப்பின் S மேலும் ஒட்சியேற்றமடைந்து $\mathrm{SO_2}$, $\mathrm{H_2SO_4}$ ஆகியவை உருவாகும்,

$$H_2S + 8HNO_3 \rightarrow H_2SO_4 + 4H_2O + 8NO_2$$

6) $I_2 + 10HNO_3 \Rightarrow 2HIO_3 + 10NO_2 + 4H_2O$

NO₃ நைத்திரேற்றுக்களுக்கு சோதண

(1) நைத்திரேற்றுக் கரைசலுக்கு அலுமினியம் தூள் சேர்த்து சிறி தளவு செறிந்த NaOH கரைசல் இட்டு நன்கு வெப்பமேற்றுக NH₃ வாயு வெளிவருவதை மணத்தின் மூலம் உணராம். (வாயு*ை* நெஸ்லரின் சோதனேப் பொருளினுள் செலுத்தி கபிலநிறம் தோன்றுவதைக் கொண்டு உறுதி**ப்**படுத்தலாம்.

$$8A1 + 5OH^{-} + 2H_{2}O + 3NO_{3}^{-} \rightarrow 8A1O_{2}^{-} + 3NH_{3}$$

(2) நைத்திரேற்றுக் கரைசலுக்கு சிறிதளவு செறி H₂SO₄ மெதுவாக சேர்க்குக. கரைசலேக் குளிரச் செய்து, பி**ன்** உடன் தயாரிக்கப் பட்ட FeSO₄ கரைசலேச் சேர்க்குக. திரவப்படைகள் தொடுகை யுறும் இடத்தில் கபில வளேயம் தோன்றும்.

$$6Fe^{2 \bullet} + 8H^{+} + 2NO_{3^{+}} \rightarrow 6Fe^{3+} + 4H_{2}O + 2NO$$
 $FeSO_{4} + NO \rightarrow FeSO_{4}$ NO ചെടിവെ

(3) திண்மை நைத்திரேற்றுக்கு சிலதுளிகள் செறி $m H_2SO_4$ சேர்க்க கபிலநிற புகை வெளிவரும்.

$$NO_3^- + H_2SO_4 \rightarrow HSO_4^- + HNO_3$$

 $4HNO_3 \rightarrow 4NO_2 + O_2 + 2H_2O$

கூட்டம் VI மூலகங்கள்

மூலகம்	குறியீடு	இலத்திரன் அமைப்பு	உருகுநின் °C
Oxygen Sulphur Selenium Tellurium Polonium	O S Se Te Po	2S ² 2P ⁴ 3S ² 3P ⁴ 4S ² 4P ⁴ 5S ² 5P ⁴ 6S ² 6P ⁴	-219 113 217 450

பொதுத்தன்மைகள்

- இம்மூலகங்களின் பொது இலத்திரன் நிலேயமைப்பு ns²np⁴
- 2) O, S அல்லுலோகங்கள். Se, Te உலோகப்போலிகள். Po உலோகம்.
- இரு இலத்திரன்களே ஏற்று O²-, S²- என்றவாறு அயஞக்கம் அடையும். (Po விதிவிலக்கு)
- ஒட்சிசன் ஈரணு மூலக்கூறு வாயு. ஏனேயவை திண்மங்கள். கந்தகம் S₈ நிலேயில் காணப்படுகிறது.
- 5) இம் மூலகங்கள் பிறதிருப்பங்களேக் கொண்டுள்ளன. ஒட்சிசன் — ஓசோன் ஆகியவை பிறதிருப்பங்கள் (O₂ and O₃) கந்தகம் ஆனது சாய்சதுரக் கந்தகம், ஒரு சரிவுக் கந்தகம், பிளாஸ்ரிக் கந்தகம் போன்ற பல வடிவங்களில் உள்ளது.
- 6) இவை H₂X வகை ஐதரைட்டுக்களே உருவாக்கும். இவற்றின் அமில இயல்பு கூட்டத்தின் வழி**பே** கூடும்.
- 7) சேர்வைகளில் ஒட்சிசன் 2, 0, 1, + 2 ஆகிய ஒட்சியேற்ற நிலேகளேயும், கந்தகம் — 2, 0, + 2, + 4, + 6 ஆகிய ஒட்சி யேற்ற நிலேகளேயும் கொள்ளும்.
- 8) யாவும் XO₂ வகை ஒட்சைட்டுக்களே உருவாக்கும். SO₂ வாயு. ஆஞல் ஏனேயவை திண்மங்கள். இவற்றின் அமில இயல்பு கூட்டத்தின் வழியே குறையும். சிலவற்றில் XO₃ வகையும் உண்டு.

ஐ**த**ரைட்டுக்கள்

சூத்திரம்	கொதிநிலே °C
H ₂ O	100
H ₂ S	61
H ₂ Se	42
H ₂ Te	0

ஐதரைட்டுக்களில் கூட்டத்தின் 'வழி**யே**—

- 1) அமில இயல்பு கூடும்
- 2) உறுதித்தன்மை குறையும்

H₂O நடுநிஃயானது H₂S மென்னமில இ**யல்புடையது**

H₂O திரவம். H₂S வாயு.

H₂O இனது கொ**தி**நிலே அசாதாரணமாக உயர்வாக இருப்பதற் குக் காரணம். அதன் மூலக்கூறுகளுக்கிடையில் உள்ள ஐதரசன் பிணேப்பாகும்.

 $m H_2O,\,H_2S$ இரண்டினதும் மூலக்கூற்று வடிவம் 'கோண வடிவம்' ஆகும்.

ஓட்சிசன்

ஆய்வுகூடத் தயாரிப்பு முறை

 $2KC1O_3 \rightarrow 2KC1 + 3O_2 \quad (MnO_2 \text{ 2016})$

பின்வரும் தாக்கங்களிலும் ஒட்சிசன் உருவாகின்றது

 $2H_2O_2 \rightarrow 2H_2O + O_2$

 $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$

 $2NaNO_3 \rightarrow 2NaNO_2 + O_2$

தொழில் முறையில் திரவவளியைப் பகுதிபடக் காய்ச்சி வடித்து ஒட் சிசன் பெறப்படுகிறது.

ஒ**ட்**சைட்டுக்**கள்**

1. அமில ஒட்சைட்டுக்கள் Acidic oxides

இவை பொதுவாக அல்லுலோகங்களின் ஒட்சைட்டுக்கள். நீரில் சுரையும்போது அமிலங்களேக் கொடுக்கும்.

SO₂, SO₃, CO₂, P₄O₁₀, Cl₂O₇, SiO₂

2. முல ஒட்சைட்டுக்கள் Basic oxides

இவை பொதுவாக உலோகங்களின் ஒட்சைட்டுக்கள். சில நீரில் கரையும். நீர்க்கரைசல்கள் காரங்க்ள் ஆகும்.

Na₂O, K₂O, MgO, BaO, CuQ

இவை அமிலங்களில் கரையம்.

3. ஈரியல்பு ஒட்சைட்டுக்கள் Amphoteric oxide

இவை அமில இயல்பையும். மூல இயல்பையும் காட்டும் Al_2O_3 , ZnO, SnO, PbO இவை அமிலங்களிலும். காரங்களிலும் கரையும்

4, நடுநிலே ஓட்சைட்டுக்கள் Neutral oxides இவை அமில இயல்பையோ. மூல இயல்பையோ காட்டாது. NO, N₂O, CO, H₂O

5. பர ஒட்சைட்டுக்கள் Peroxides

 Na_2O_2 , K_2O_2 , BaO_2 , H_2O_2

இவை ஐதான அமிலங்களுடன் தாக்கமுறும்போது H_2O_2 வைக்கொடுக்கும். பரஒட்சைட்டுக்கள் வன்மையான ஒட்சியேற்றும்கருவிகள்.

கந்தகம்

இயற்கை இருப்புக்கள்

1.	சுயாதீனமாக மூலக நிலேயில்	S	Sulphur
2.	நாகமயக்கி	ZnS	Zine blende
3.	கலேஞ	P bS	Galena
4.	இரும்பு க் கந் தகக் கல்	FeS ₂	Iron pyrites
5.	செம்புக் கந் தகக்கல்	CuFeS ₂	Copper Pyrites
6.	ஜிப்சம் உப்பு	CaSO ₄ , 2H ₂ C	Gypsom salt

கந்தகத்**தி**ன் பிறதிருப்பங்<mark>கள்</mark>

சாய்சதுரக் கந்தகம் Rhombic Sulphur ஒரு சரிவுக் கந்தகம் Monoclinic Sulphur களிக் கந்தகம் Plastic Sulphur

கந்தகத்தின் பிறதிருப்பங்களேத் தயாரித்தல்

சரய்சதுரக் கந்தகம்

ஒரு ஆவியாக்கற் கிண்ணத்**தில்** சிறிதளவு கந்தகத்தூளே இடுக. இதற்குச் சிறிதளவு காபனிருசல்பைட்டைச் சேர்**த்து**க் கந்தகம் முழு வதையும் கரைத்**து**க் கொள்க. ஆவியாதல் நிகழத்த**க்**கதாக இக் கரைசலே வளியில் வைக்குக. CS₂ முழுவதும் ஆவியாகி முடிந்தபின் எஞ்சும் பளிங்கு சாய்சதுரக் சுந்தேகம் ஆகும். இது எண்முகி வடிவ**ப்** பளிங்கமைப்பு உடையது.

ஒரு சரிவுக் கந்தகம்

ஆவியாக்கற் கிண்ணம் ஒன்றினுள் சிறிதளவு சுந்தகத்தை இட்டு அது திரவமாகும் வரை சூடாக்குக. பின்னர் மெதுவாகக் குளிர விடுக. திரவத்தின் மேற்பரப்பில் பொருக்குத் தோன்றக் காணலாம். இப் பொருக்கைக் கண்ணுடிக்கோல் கொண்டு ஓரிரு இடங்களில் துளேக் குக. உள்ளே காணப்படும் திரவத்தை வெளியே ஊற்றுக. பொருக் கின் கீழ்ப்புறத்திலும், கிண்ணத்தின் பக்கங்களிலும் ஊசிவடிவப் பளிங்குகள் தோன்றும். இது ஒரு சரிவுக் கேந்தகம் ஆகும்.

களிக் கந்தகம்

கந்தகத்தை அதன் கொதிநில அண்மிக்கும் வரை சூடாக்குக. கொதிக்கும் திரவத்தைக் குளிர் நீரினுள் ஊற்றுவதன் மூலம் சடுதி யாகக் குளிரப்பண்ணுக. பிளாஸ்ரிக் தன்மையான களிக்கந்தகம் உருவாகும். இது பளிங்குரு அற்றது

குறிப்பு: சாதாரண இரசாயனத் தாக்கங்களில் பெறப்படும் கூழ்நிஃலக் கந்தகமும் பளிங்குரு அற்றது. இது வடிதாளின் ஊடாகவும் ஓரளவு உட்புகக் கூடியது.

 $Na_2S_2O_3 + 2HC1 \rightarrow 2NaC1 + SO_2 + S \downarrow + H_2O$

பீற தீருப்பங்களின் இயல்புகள்

சாய்சதுரக் கந்தகம்

சாதாரண வெப்பநிஃகளில் கந்தகத்தின் மிக உறுதியான பிற திருப்பம் இதுவாகும். இது S₈ மூலக்கூறுகள் கொண்டது.

- 1. எண்முகி வடிவப் பளிங்குகள் கொண்டது. மஞ்சள் நிறமானது.
- 2. ஒளிபுகவிடும் தன்மையுடைய பளிங்குகள் கொண்டது.
- 3. CS₂இல் கரையும், நீரில் கரையாது.
- 4. அடர்த்தி 2.06 g cm-3

ஒரு சரிவுக் கந்தகம்

- 1. ஊசி வடிவப் பளிங்குகள் கொண்டைது. அம்பர் மஞ்சள் நிற முடையது.
- 3. ஓளிபுகவிடாத தன்மையுடையை பளிங்குகள் கொண்டது.
- $oldsymbol{3}$, $ext{CS}_2$ இல் கரையும். நீரில் கரையாது.
- 4. அடர்த்தி 1.96 g cm-3

களிக் கந்தகம்

- 1. பளிங்குர அற்றது.
- 2. CS₂ இல் கரையாது.

ஒரு சரிவுக் கந்தகம், களிக்கந்தசும் ஆகியவை நீண்ட நேரம் விடப்படும்போது சாய்சதுர**த்** திண்மக் கந்தகமாக மாறும்.

சாய்சதுரக் கந்தகம் ⇌ ஒருச**ிவு**க் கந்தகம் 96° C கீழ்

96° C இன் மேல் சாய்சதுரக் கந்தகம் உறுதியற்றது.

96° C இன் கீழ் ஒருசரிவுக் கந்தகம் உறுதியற்றது.

சாய்சதுரக் கந்தகத்தை விரைவாக வெப்பமேற்றும்போது அது 113°C இல் உருகும். ஆஞல் சாய்சதுரக் கந்தகத்தை மெதுவாக வெப்பமேற்றும்போது அது 96°C இல் ஒருசரிவுக் கந்தகமாக மாறும். பின்னர் தொடர்ந்து வெப்பமேற்ற அது 119°C இல் உருகும்.

கந்தகத்தின் தாக்கங்கள்

 $S + O_2 \rightarrow SO_2$ 2) அலோகங்களுடன் $C + 2S \rightarrow CS_2$ $Cl_2 + 2S \rightarrow S_2Cl_2$ $H_2 + S \rightarrow H_2S$ 3) உலோகங்களுடன் $Fe + \frac{3}{2}S \rightarrow FeS$ $Cu + S \rightarrow CuS$

கந்தகம் மே**ற்**காணும் மூலகங்களு**டன் வெ**ப்பமேற்ற**ப்ப**டும் போதே குறித்த தாக்கங்கள் நிகழும்.

4) அமிலங்களுடன் தாக்கம்

சூடான செறிந்த அமிலங்களுடன் பின்வரும் தாக்கங்கள் நிகழும்.

$$S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$$

 $S + 6HNO_3 \rightarrow H_2SO_4 + 6NO_2 + 2H_2O$

5) கார**க்** கரைசேலுடன்

$$4S + 6NaOH \rightarrow Na_2S_2O_3 + 2Na_2S + 3H_2O$$

கந்தகத்தி**ன்** இயல்புகள்

- 1. மென்மஞ்சள் திண்மைம்
- 2. வெளியில் நீலச்சுடருடன் எரியும்
- 3. நீரில் கரையாது
- 4: CS₂ இல் கரையும்

7

கந்தகத்தின் பயன்கள்

- 1. இறப்பரை வல்கணேசுப்படுத்தல்
- 2. வெடிமருந்து, தீப்பெட்டி தயாரிப்பு
- 3. H₂SO₄ தயாரிப்பு

கந்தகத்தீன் ஒட்சியேற்ற நில்கள்

-2	0	+2	+4	+6
H ₂ S	S	SCl ₂	SO ₂ H ₂ SO ₃	SO ₃ H ₂ SO ₄

ஐதோசன் சல்பைட்டு

உலோக சல்பைட்டுக்களுக்கு ஜதான அமிலமொன்றைச் சேர்த்து H₂S தயாரிக்கலாம்.

FeS + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂S
Sb₂S₃ + 6HCl \rightarrow 2SbCl₃ + 3H₂S

H₂S இனது இயல்புகள்

- (1) நிறமற்றவாயு (2) பழுதுற்ற முட்ையின் மணமுடையது
- (3) இலகுவாகத் திரவ**மாக்கலா**ம் (4) வளியிலும் அடர்த்**தி** கூடியது

தகனம்

குறைந்தளவு வளியில்
$$2H_2S + O_2 \rightarrow 2H_2O + 2S$$
 மிகை வளியில் $2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$

அமில இயல்பு

$$H_{2}S$$
 ஓர் இருமூல மென்னமிலம் ஆகும். $H_{2}S \rightleftharpoons H^{\bullet} + HS^{-} \not\rightleftharpoons 2H^{+} + S^{2-}$

$$NaOH + H_2S \rightarrow NaHS + H_2O$$

 $2NaOH + H_2S \rightarrow Na_2S + 2H_2O$

 $m H_{2S}$ இனது நீர்க்கரைசல் நீலப்பாசிசாயத்தாளே மென்சிவப்பாக மாற்றும்.

 H_2S ஒரு வன்மையான தாழ்த்தும் கருவீ $H_2S \mapsto 2H + S + 2e$

- 1) அமில KMnO₄ கரைசலுடன் 2MnO₄⁻ + 6H+ + 5H₂S → 2Mn²+ + 8H₂O + 5S ஊதா நிறமற்றது 2KMnO₄+3H₂SO₄ + 5H₂S K₂SO₄+2MnSO₄ + 8H₂O +5S ↓ கரைசலில் ஊதாநிறம் நீங்கும். மென்மஞ்சள் வீழ்படிவு தோன்றும்.
- 2) அமில $K_2Cr_2O_7$ கரைசலுடன் $Cr_2O_7^{2-} + 8H^+ + 3H_2S \rightarrow 2Cr^{3+} + 7H_2O + 3S \downarrow$ செம்மஞ்சள் பச்சை $K_2Cr_2O_7 + 4H_2SO_4 + 3H_2S \rightarrow Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O + 3S$ க**ரை**சலின் செம்மஞ்சள் நிறம் பச்சையாக மாறும். மென்மஞ்சள் வீழ்படிவு தோன்றும்.
- 3) பெரிக்கு உப்புக்களுடன் $2Fe^{3+} + H_2S \rightarrow 2Fe^{2+} + 2H^+ + S$ மஞ்சள் பச்சை $2FeCl_3 + H_2S \rightarrow 2FeCl_2 + 2HCl + S$ கரைசலில் மஞ்சள் நிறம் பச்சையாக மாறும். மென்மஞ்சள் வீழ்படிவு தோன்றும்.
- 4) அலசன்களுடன்

அலசன்களேக் கொண்ட நீர்க்கரைசல்களினூடு H_2S செலுத்த அலசனின் நிறம் நீங்கும். உதாரணமாக H_2S புருேமின் நீரை நிறநீக்கம் செய்யும். மென்மஞ்சள் வீழ்படிவு தோன்றும்.

$$H_2S + Cl_2 \rightarrow 2HCl + S \downarrow H_2S + Br_2 \rightarrow 2HBr + S \downarrow$$

- 5) SO_2 e.l. $\dot{\omega}$ $2H_2S + SO_2 \rightarrow 2H_2O + 3S \downarrow$
- 6) H_2O_2 \not L \vec{m} $H_2S + H_2O_2 \rightarrow 2H_2O_4 + 3S \downarrow$
- 8) செறி H_2SO_4 உடன் $H_2S + H_2SO_4 \rightarrow 2H_2O + S + SO_2$

ஒட்சியேற்றியாக H2S தொழிற்படுதல்

சிழ்படிவாதல் தாக்கங்கள்

பல உலோக அயன்களேக் கொண்டை கரைசல்களுக்கு H_{2S} செலுத்தும்போது உலோக சல்பைட்டுக்கள் நிறமுடையை வீழ்படிவு களாக படிகின்றன. அசேதண உப்புக்களின் பண்பேறிபகுப்பில் சில சல்பைட்டுக்கள் கூட்டம் 2 இலும், சில சல்பைட்டுக்கள் கூட்டம் 4 இலும் படிவாகின்றன.

(இதற்கான விளக்கம் பௌதிக இரசாயனத்தில் கரை நிறன் பெருக்கம் பற்றி கற்கு மபோது அறியலாம்.)

கூடுட்டும்
$$2$$
 சோதஃனப் பொருள் ஐதான $HCl + H_2S$ $CuSO_4 + H_2S \rightarrow H_2SO_4 + CuS \downarrow$ கூறுப்பு $2SbCl_3 + 3H_2S \rightarrow 6HCl + Sb_2S_3 \downarrow$ செம்மஞ்சள் $Cd(NO_3)_2 + H_2S \rightarrow 2HNO_3 + CdS \downarrow$ மஞ்சள்

கூடைட்டம் 4 சோதஃனப் பொருள்
$$NH_4Cl + NH_4OH + H_2S$$
 $ZnCl_2 + H_2S \rightarrow 2HCl + ZnS$ வெள்ள $MnCl_2 + H_2S \rightarrow 2HCl + MnS$ பழுப்பு நிறம்

சோடியம் ஆசனேற்றுடன் H₂S இனது தூக்கம்

ஆசனேற்றுக் கரைசல்கள் H_2 \$ உடன், சற்றுத் தாமதமாக மஞ்சள் நிற வீழ்படிவைக் கொடுக்கும்.

$$2Na_3AsO_4 + 8H_2S \rightarrow As_2S_3 + 2S + 3Na_2S + 8H_2O$$

HCl அமிலம் உள்ளபோது $2Na_3AsO_4 + 5H_2S + 6HCl \rightarrow As_2S_3 + 2S + 6NaCl + 8H_2O$ அல்லது ω மஞ்சள் $2Na_3AsO_4 + 5H_2S + 6HCl \rightarrow As_2S_5 + 6NaCl + 8H_2O$ ω ஞ்சள்

 As_2S_3 , As_2S_5 இரண்டும் NaQH (aq) இல் கரையக்கூடியவை

H₂S வரயுவுக்கு சோதணகள்

- 1. அருவருக்கத்தக்க மணம் பழுதுற்ற முட்டையின் மணம்
- 2. ஈய அசற்றேற்றுக் கரைசலினுள் **செ**லுத்**த** கரிய **வீ**ழ்ப**டிவைக்** கொடுத்தல்.

$$(CH_3COO)_2Pb + H_2S \rightarrow PbS + 2CH_3COOH$$

கந்தக ஈரொட்சைட்டு SO2

கயாரிப்ப

- 1) செப்புத் தாருவ லுக்கு செறி $m H_2SO_4$ சேர்த்து வெப்பமேற்றல் $m Cu~+~2H_2SO_4~
 ightarrow~CuSO_4~+~SO_2~+~2H_2O$ செறி
- 2) சல்பைற்று ஒன்றிற்கு ஜதான HCl சேர்த்தல் $Na_2SO_3 + 2HCl \rightarrow 2NaCl + H_2O + SO_2$

SO₂ இனது இயல்புகள்

- 1) நிறமற்ற வாயு 2) வளியிலும் அடர்த்தி கூடியது
- 3) நீரில் நன்ருகக் கரையும் 4) இலகுவாகத் திரவமாக்கலாம்
- 5) அமில இயல்புடையது 6) எரியும்கந்தகத்தின் மணமூடையது

50₂ இனது தூக்கங்கள்

- 1) SO_2 நீரில் கடைந்து அமிலக் கரைசலேக் கொடுக்கும் $SO_2 + H_2O \rightarrow H_2SO_3$
- 2) SO_2 அமில இயல்புடையG தன்பதால் காரங்களுடன் தாக்கமுறும் $SO_2 + 2NaOH o Na_2SO_3 + H_2O$

SO₂ இளது தாழ்த்தும் இயல்பு

 $SO_2 + 2H_2O \rightarrow SO_4^{2-} + 4H^+ + 2e$

- 1) அமில ${\rm KMnO_4}$ கரைசலின் ஊதா நிறத்தை நீக்கும். $2{\rm MnO_4}-+5{\rm SO_2}+2{\rm H_2O} \rightarrow 2{\rm Mn^2}^++5{\rm SO_4}^{2^-}+4{\rm H^+}$ $2{\rm KMnO_4}+5{\rm SO_2}+2{\rm H_2O} \rightarrow {\rm K_2SO_4}+2{\rm MnSO_4}+2{\rm H_2SO_4}$
- 2) அமில $K_2Cr_2O_7$ கரைசலின் செம்மஞ்சள்நிறத்தைப்பச்சையாக்கும் $Cr_2O_7^{2-} + 3SO_2 + 2H^* \rightarrow 2Cr^{3+} + 3SO_4^{-2} + H_2O$ $K_2Cr_2O_7 + 3SO_2 + H_2SO_4 \rightarrow Cr_2(SO_4)_8 + K_2SO_4 + H_2O$
- 3) பெரிக்கு உப்புக் கரைசல்களே பெரசு உப்பாக மாற்றும் கரைச லின் மஞ்சள் நிறம் பச்சையாக மாறும். $2Fe^{3+} + 3O_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H+ 2FeCl_3 + SO_2 + 2H_2O \rightarrow 2FeCl_2 + H_2SO_4 + 2HCl$
- 4) அலசன்களே நிறநீக்கம் செய்வதுடன் அவற்றை அலசன் அமிலம் களாக தாழ்த்தும். உதாரணமாக SO₂ புருேமின் நீரை நிற நீக்கம் செய்யும். Cl₂ + SO₂ + 2H₂O → H₂SO₄ + HCl Br₂ + SO₂ + 2H₂O → H₂SO₄ + 2HBr

ஒட்சியேற்றியாக SO₂

$$2Mg + SO_2 \rightarrow 2MgO + S \downarrow 2H_2S + SO_2 \rightarrow 2H_2O + 3S$$

வெளிற்றியாக SO,

SO₂ ஈரலிப்பான நிறப்பொருட்களே வெளிற்றுகிறது. தாழ்த்தல் மூலமே இவ்வெளிறஃலச் செய்கின்றது.

> $SO_2 + 2H_2O + X \mapsto H_2SO_4 + XH_2$ நிறப்பொருள் நிறமற்றபொருள்

SO₂ வரயுவுக்கு சோதணகள்

- 1. அமில KMnO₄ கரைசலின் ஊதா நிறத்தை நீக்கும்.
- 2. அமில $\mathrm{K_2Cr_2O_7}$ கரைசலின்செம்மஞ்சள் நிறத்தைப் டச்சையாக்கும்

SO₂ இனது பயன்கள்

- 1. H₂SO₄ தயாரிப்பு ½ வெளிற்றியாக
- 3. பழங்கள், Jam போன்ற உணவு வகைகளேப் பாதுகாத்தல்

H₂S / SO₂ இயல்பு ஒப்பீடு

சோதவோ	H ₂ S	SO ₂
1. ஈயஅசற்றேற்றுக் க ை ற சலினுள் செலுத் த ல்	கரி ய வீ ழ்படிவு	வீழ்படிவு இல்லே
2. CuSO ₄ கரைசலினுள் செலுத்தல	கரிய வீழ்படிவு	வீழ்படிவு இல்லே
3. அமில KMnO ₄ க ை ரைச லினுள் செலுத்தல்	நிறம் நீங்கும் கலங் கற் தன்மை தோன் றும்	நிறம் நீங்கும் கலங் கல் தோன் <i>ருது</i>
4. அமில K ₂ Cr ₂ O ₇ கரைச லுள் செலு த் தல்	செம்மஞ்சள் நிறம் பச்சையாக மாறும் கலங்கல் தோன்றும்	செம்மஞ்சள் நிறம் பச்சையாக மாறும் கலங்கல்தோன் <i>ருத்</i>
5 ஈரலிப்பான நிறப்பூ இடுதல்	மா ற் றமில்லே	வெளிற்றும்
6. கண்ணும்பு நீரினுள் செலுத்தல்	மாற்றமில்லே	கலங்க <i>ற்த</i> ன்மை

கந்தக முவொட்சைட்டு SO₃

உருகுநில் 17°C கொதிநில் 45°C SO₃ அமில ஒட்சைட்டு, SO₃ இன் நீர்க்கைரைசல் H₂SO₄ ஆகும். SO₃ + H₂O H₂SO₄

 SO_3 மூலச்சுறு தளமுக்கோணி வடிவமுடையது. SO_3 வன்மையான ஒட்சியேற்றும் கருவி. $SO_3 + 2HI \rightarrow SO_2 + I_2 + H_2O$

சல்பூரிக்கமிலம்

தொழில்முறைத் தயாரிப்பு — தொடுகை முறை Contact Process

படி 1 கந்தகம் அல்லது கந்தகத்தைக் கொண்ட பிற இயற்கை இருப் புக்கள் வளியில் எரிக்கப்பட்டு SO₂ பெறப்படும்.

$$S + O_2 \rightarrow SO_2$$
 (இரும்புக் கந்தகக்கல்) $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_4$ (நாகமயக்கி) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$

படி 2 பெறப்படும் SO_2 ஊக்கி முன்னிஃலயில் வளிமண்டல ஒட்சிச னுடன் சேர்க்கப்பட்டு SO_3 ஆக்கப்படுகிறது. $2SO_2(g) + O_2(g) \Leftrightarrow 2SO_3(g)$ 450°C வெப்பநிஃல. I atm அமுக்கம். V_2O_5 ஊக்கி

படி 3 SO_3 ஆனது 98% H_2SO_4 இனுள் உறிஞ்சப்பட்டு பெறப்படும் $H_2S_2O_7$ (Oleum) நீரினுள் செலுத்தப்பட்டு H_2SO_4 ஆக்கப்படும் $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$

$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$$

தொடுகை முறையின் பௌதிக – இரசாயனத் தத்துவங்கள் இம்முறையின் படி 2 தொடர்பானவை: 2SO₂(g) + O₂(g) ⇌ 2SO₃ △H = − 188 KJ mol-1

வெப்ப நிலே

இது புறவெப்பத் தாக்கம் ஆகையால் தாழ்வெப்பநிலே முற்தாக் கத்தைச் சாதகமாக்கி SO₃ இன் விளேவைக் கூட்டும். எனினும் வெப்ப நிலே மிகக் குறைவாக இருப்பின் தாக்கவீதம் குறைந்துவிடும். எனவே இடைப்பட்ட சிறப்பு வெப்பநிலேயாக 450° C பயன்படுத்தப்படும். அமுக்கம்

இத்தாக்கம் கனவளவுக் குறைவுடன் நிகழ்வதால் உயரமுக்கம் முற்தாக்கத்தைச் சாதகமாக்கி விளேவைக் கூட்டும். எனினும் நடை முறையில் 1 வளிமண்டல அமுக்கமே போதிய விளேவைக் கொடுப்ப தால் உயரமுக்கம் பயன்படுத்தப்படுவதில்லே.

ஊக்கி

ஏவற்சக்தியைக் குறைத்து**த் தா**க்கவீ**த**த்தை அதிகரி**க்**கச் செய்ய V_2O_5 ஊக்கி பயன்படுத்தப்படும்.

ஒட்சிசன் செறிவு

சமநிலேயை முன்முகமாக நக**ர்த்**தி விளேவைக் கூட்ட மிகைஒட்சி சன் (வளி) உட்செலுத்தப்படும்.

H₂SO₄ இருமூல அமிலம்

 H_2SO_4 காரங்களுடன் தாக்கமுற்று இருவகையான உப்புக்கீனக் கொடுக்கும். Na HSO_4 and Na $_2SO_4$ • எனவே H_2SO_4 இருமூல அமிலம் ஆகும்•

H₂SO₄ இருமூல அமிலம் எ**ன்ப**தைக் காட்டுக**ல்**

- (1) மெதயிற் செம்மஞ்சளேக் காட்டியாகப் பயன்படுத்தி H₂SO₄ இண NaOH உடன் நியமிப்பு செய்க.
 - 1 மூல் $m H_2SO_4$ ஐ முற்றுக நடுநிலேயாக்க 2்மூல் NaOH தேவைப்படுகிறது.
- (2) 1 மூல் H₂SO₄ க்கு PCl₅ சேர்க்குசு. 2 மூல் HCl உருவாகும். இதனே நியமிப்பின் மூலம் உறுதிப்படுத்தலாம். 2PCl₅ + H₂SO₄ → SO₂Cl₂ + 2POCl₃ + 2HCl

H₂SO₄ நீரகற்றும் கருவி

(1) குளுக்கோசு அல்லது வேறு காபோலைதரேற்று ஒன்றிற்கு செறி H₂SO₄ சேர்க்குக_் நீரகற்றப்பட்டு கரிய மீதி எஞ்சும்,

$$\begin{array}{ccc} \text{QFD} & \text{H}_2\text{SO}_4 \\ \text{C}_6\text{H}_{12}\text{O}_6 & \rightarrow & \text{6C} + & \text{6H}_2\text{O} \\ \text{C}_{12}\text{H}_{22}\text{O}_{11} \mapsto & 12\text{C} + & 11\text{H}_2\text{O} \end{array}$$

(2) போமிக்கமிலத்திற்கு அல்லது ஓட்சாலிக் அமிலத்திற்கு செறி H_2 ்O₄ சேர்க்க நீரகற்றப்பட்டு GO உருவாகும். இது நீலச் சுவாஃயுடன் எரியும்.

$$HCOOH \rightarrow H_2O + CO$$

 $H_2C_2O_4 \rightarrow H_2O + CO + CO_2$

(2) CuSO₄, 5H₂O பளிங்குகளுக்கு செறி H₂SO₄ இடப்பட நீரகற்றப் படுவதால் அதன் நீலந்றம் வெள்ளே நிறமாக மாறு**ம்.**

$${
m CuSO_{4}}$$
 $5{
m H}_2{
m O}$ $ightarrow$ ${
m CuSO_4}$ + $5{
m H}_2{
m O}$
நீலம் வெள்ள

ஒட்சியேற்றும் கருவியாக H₂SO₄

செறி H₂SO₄ ஓர் வன்மையான ஒட்சியேற்றும் கருவி.

(1) C, S ஆகியவற்றை சூடானசெறி H_2SO_4 முறையே CO_2 , SO_2 ஆக ஒட்டுயேற்றும்.

$$C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$$

 $S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$

(2) உலோகங்களே செறி H₂\$O₄ ஒட்சியேற்றும்.

$$Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O_7n + 2H_2SO_4 \rightarrow ZnSO_4 + SO_2 + 2H_2O_7$$

(2) HBr, HI ஆகியவற்றை செறி H₂SO₄ முறையே Bi₂, l₂ ஆக ஒட்செயேற்றும்.

$$2HI + H_2SO_4 \rightarrow 2H_2O + SO_2 + I_2$$

 $2HBr + H_2SO_4 \rightarrow 2H_2O + SO_2 + Br_2$

உலோகங்களுடன் தாக்கம்

- 1. ஐதான H₂SO₄ உயர் மின்னேரான உலோகங்களுடன் தாக்க மூற்று H₂ ஐக் கொடுக்கும். Zn + H₂SO₄ → ZnSO₄ + H₂
- 2. செறி $m H_2SO_4$ உலோகங்களுடன் தாக்கமுற்று $m SO_2$ ஐக் கொடுக்கும் $m Cu~+~2H_2SO_4
 ightarrow CuSO_4 + SO_2 + 2H_2O$

இடப்பெயர்ச்சித் தூக்கங்கள்

செறி
$$H_2SO_4$$
 பிற அமிலங்களே உப்புக்களில் இருந்து பெயர்க்கும் $2NaCl + H_2SO_4 \rightarrow Nn_2SO_4 + 2HCl \\ 2KNO_3 + $H_2SO_4 \rightarrow K_2SO_4 + 2HNO_3$$

H₂SO₄ இனது பயன்கள்

- 1) வெடிமருந்து தயாரிப்பு 2) உரவகைகள் தயாரிப்ப
- 3) HCl, HNO₃ போன்ற பிற அமிலங்கள் தயாரிப்பு
- 4) சாயங்கள், மருந்துகள் தயாரிப்பு
- 5) சேமிப்புக் கலங்களில் பயன்பாடு

SO₄2-சல்பேற்றுக்களுக்கு சோதணே

கரைசலுக்கு BaCl₂ கரைச**ல்** இடுக**. வெண்ணிற வீழ்படிவு** தோன்றும். இது ஐதான HCl இல் கரையாது.

 $Na_2SO_4 + BaCl_2 \rightarrow 2NaCl + BaSO_4$

SO₃2- சல்பைற்றுக்களுக்கு சோதண

எந்த சல்பைற்றுக்கும் ஐதான அமிலமொன்றை (HGI) இட்டுவெப்பமேற்ற வெளிவரும் வாயு (SO_2) அமில $KMnO_4$ கரைசலே நிறநீக்கம் செய்வதுடன் ஈரலிப்பான நிறப்பொருளே வெளியேற்றும். $Na_2SO_3 \ + \ H_2SO_4 \ o \ Na_2SO_4 \ + \ SO_2 \ + \ H_2O$

- ணிஞ: SO₂, SO₃ ஆகியவற்றின் நீர்க்கரைசல்க**ீள எவ்வாறு** வேறு படுத்தி அறிவீர்.
- விடை: அமில KMnO₄ கரைசலே நிறநீக்கம் செய்வது SO₂ கரைசல் நிறநீக்கம் செய்யாதது SO₃ கரைசல். (SO₃ இல் S அதன் உயர் ஒட்சி யேற்ற நிலேயில் உள்ளது இதனே KMnO₄ மேலும் ஒட்சியேற்ற முடியாது – தாக்கமு*ரு*து)
- விஞ: X என்னும் வெண்ணிறப் பளிங்கு உப்புக்கு ஐதான H_2SO_4 சேர்த்து வெப்பமேற்ற, ஈரமான பாசிச் சாயத்தாளே வெளிறச் செய்யும். நிறமற்றவாயு ஒன்று வெளிவந்தது. X இனது அமிலக் கரைசலே $K_2Cr_2O_7$ கரைசலுக்கு சேர்க்க அதன் செம்மஞ்சள் நிறம் பச்சையாக மாறியது. X இனே HClஇல் கரைத்து அதற்கு அமோனியாக் கரைசல் சேர்த்தபின் அதனுள் H_2S வாயுவைச் செலுத்த ஓர் வெள்ளே வீழ்படிவு பெறப்பட்டது. தொடர்புடைய தாக்கங்களே விளக்குவதுடன் X எதுவென்

னிடை:
$$X$$
 என்பது $ZnSO_3$ (நாக சல்பைற்று) $SO_3^{2-} + 2H^+ o SO_2 \uparrow + H_2O$ $Zn^{2+} + H_2S o ZnS \downarrow + 2H +$

8

கூட்டம் VII மூலகங்கள் அலசன்கள்

மூலகம்– குறியீடு	இ ல த்திரன் அமைப்பு	பௌதிக நிலே	நிறம்
Fluorine F Chlorine Cl Bromine Br Iodine I	2S ² 2P ⁵	வாயு	மெ ன் மஞ்சள்
	3S ² 3P ⁵	வாயு	பசியமஞ்சள்
	4S ² 4P ⁵	திரவம்	செங்கபிலம்
	5S ² 5P ⁵	திண்மம்	ஊதா

பொதுத் தன்மைகள்

- 1. பொது இலத்தி**ரன்** நி*லேய*மைப்பு ns² np⁵.
- 2. யாவும் ஈரணு மூலக்கூறுகள் கொண்டவை.
- 3. கூட்டத்தின் வழியே உருகு நிலே / கொதி நிலே கூடும்.
- 4. இவை உயர் மின்னெ திரான மூலகங்கள். மூலகங்கள் யாவற்றி லும் மிகக் கூடிய மின்னெ திரானது புளோரின் இவ்வியல்பு கூட்டத் தின் வழியே குறையும்.
- 5. இவை சிறந்த ஒட்சியேற்றிகள். ஒட்சியேற்றும் இயல்பு கூட்டத் தின் வழியே குறையும்.
- 6. அலசன்கள் தாக்குதிறன் கூடியவை புளோரின் மிகக் கூடிப தாக்குதிறன் உடையது. தாக்குதிறன் கூட்டத்தின் வழியே குறை யும்.
- 7. அலசன்களில் நீரில் கரையும் திறன் கூட்டத்தின் வழியே குறையும். எல்லா அலசன்களும் CCl₄ இல் நன்*ருகக்* கரையும்.
- 8. அலசன்கள் மின்னேரான மூலதங்களுடன் அய**ன்** சேர்வைக**ளே**யும் (NaCl) மின்னெதிர் மூலக**ங்களுடன் ப**ங்கீட்டுச் சேர்வைக**ோயும்** (PCl₃) ஆக்கும்.
- 9. அலசன்கள் தமக்கிடையில் சேர்ந்து சேர்வைகளே உருவாக்கும். (ICI, CIF). இவை பங்கீட்டுச் சேர்வைகள்.

10. இவை HX வகை ஐதரைட்டுக்களே உருவாக்கும்.

இந்த ஜதரைட்டுக்களில் கூட்டத்தின் வழியே --

- 1. தாழ்த்தும் இயல்பு கூடும்.
- 2. வெப்ப உறுதி குறையும்.
- 3. நீர்க்கரைசலின் அமில இயல்பு கூடும்.
- வினை: F₂, Cl₂, Br₂, I₂ ஆகிய அலசன்களின் கொதிநிஃகள் முறையே —187°C. —35°C, 59°C, 183°C ஆகும். கொதிநிஃகள் கூட் டத்தின் வழியே அதிகரிப்பதன் காரணத்தை விளக்குக.
- விடை: அலசன்களில் மூலக்கூறுகளுக்கிடையில் இருப்பது வந்தர்வாலி சுக் கவர்ச்சி ஆகும். கூட்டத்தின் வழியே மூலக்கூற்றுப் பரு மன் அதிகரிப்பதால் வந்தர்வாலிசுக் கவர்ச்சி கூடும், இதனுல் கொதிநிலே கூடும்,
- விஞ: புளோரின் தாக்குதிறன் கூடியது. இதற்கான காரணத்தை விளக்குக.
- விடை: F இனது அணு ஆரை குறைவு. இதனுல், புளோரின் பூலக் கூறில் காணப்படும். பிஃணப்பில் ஈடுபடாத தனிச்சோடி இவத் திரண்களுக்கிடையில் உள்ள தள்ளுவிசை அதிகம். இதனுல் F — F பிஃணப்புச்சக்தி குறைவு. இதனுல் சுலபமான அணுக் களாகும். இதனுல் தாக்குதிறன் அதிகம்.

அலசன்களின் தயாரிப்பு முறைகள்

$$2X - \leftarrow X_2 + 2e$$

இது ஒட்சியேற்றம். எனவே ஒட்சியேற்றும் கருவிகள் HXக்கு சேர்க்கப்பட அலசன்கள் உருவாகும்.

குளோரீன் தயாரிப்பு

புரேமின் – அயடின் தயாரிப்பு

$$\begin{array}{l} 2KBr \ + \ 2H_{2}SO_{4} \ + \ MnO_{2} \implies MnSO_{4} \ + \ K_{2}SO_{4} \ + \ 2H_{2}O \ + \ Br_{2} \\ 2KI \ + \ 2H_{2}SO_{4} \ + \ MnO_{2} \ \rightarrow \ MnSO_{4} \ + \ K_{2}SO_{4} \ + \ 2H_{2}O \ + \ I_{2} \end{array}$$

புளோரின் தயாரிப்பு

மேற்காணும் முறைகளால் புளோரிணத் தயாரிக்க முடியாது. காரணம் F- ஐ ஒட்சியேற்றக்கூடிய வலிமையான ஒட்சியேற்றி கள். இல்லே. எனவே HF – KF கலவையை மின்பகுப்பு செய்தே F₂ தயாரிக்கப்படுகிறது.

ஒட்சியேற்ற நிலேகள்

- சேர்வைகளில் புளோரின், —1 என்ற ஒட்சயேற்ற நிஃவைய மட் டுமே கொள்ளும். காரணம் இது பிற எல்லா மூலகங்களேவிட வும் கூடிய மின்னெதிர்த்தன்மை உடையது.
- 2. CI, Br, I ஆகியவை —1 தொடங்கி +7 வரை பல ஒட்சியேற்ற நிலேகளேக் கொள்ளும். குளோரின் வெவ்வேறு ஒட்சியேற்ற நிலேகளில் உள்ள சில சேர் வைகள் பின்வருமாறு

அலசன்களின் தாக்கங்கள்

நீருடன் தாக்கம் $2F_2 + 2H_2O \rightarrow 4HF + O_2$ $Cl_2 + H_2O \rightarrow HCl + HOCl$ $Br_2 + H_2O \rightarrow HBr + HOBr$ கூட்டத்தின் வழியே நீரில் கரையும் இறன் குறையும்.

காரங்களுடன் தாக்கம்

குளிர்ந்த, ஐதான NaOH உடன் குளோரினின் தாக்கம் $Cl_2 + 2NaOH \rightarrow NaOCl + NaCl + H_2O$ செறிந்த. சூடான NaOH உடன் குளோரினின் தாக்கம் $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$ குளிர்ந்த. ஐதான $Ca(OH)_2$ உடன் குளோரினின் தாக்கம் $2Cl_2 + 2Ca(OH)_2 \rightarrow Ca(OCl)_2 + CaCl_2 + H_2O$ சூடான $Ca(OH)_2$ கரைசலுடன் குளோரினின் தாக்கம் $6Cl_2 + 6Ca(OH)_2 \rightarrow 5CaCl_2 + Ca(ClO_3)_2 + 6H_2O$ உலர்நிஃயில் உள்ள திண்ம $Ca(OH)_2$ மீது குளோரின் தாக்கம் $Cl_2 + Ca(OH)_2 \rightarrow CaOCl_2 + H_2O$ வெளிற்றும் தரள்

பரிசேசத்கின்கள்	ಕಿ
	9

	FeCl ₃ உருவாகின் றது	கபில நிறம் தொன்றும்	்சு ஆன் 10 துள் இடுக்
	நீரேறிய CuCl ₂ தோன்றும்	ம்முரமாக மாறும்	6. Cla Garrant Garrant Carrent Ed.
	நீரற்ற CuCl₂ தோன்றும்		(b) விளவுக்கு சிறிதளவு நீர் சேர்க்கு.
			5. (a) சூடாக்கப்பட்ட Cu துருவவே Cl ₂ கொண்ட
		வெ ன் னிறதாமம் தோன் நும். பளிச் ^த ு ஏற்படும்	4. டி வாயு கொண்ட குழாய் ஒன்றிலுள் NH ₃ (aq) துளிகளே இடுக,
	NaOC1 வெளிற்றும் இயல்புடையது	<i>நிறநீக்</i> கம் ஏற்படும்	NaOH கரைசல் இட்டுக் குலுக்குக கரைசலில் சிறிதளவை நிறப்பூவிதழ் ஒன்றில் தடவுக.
	பிரையி		3. Cl ₂ கொண்ட சுமாய் உள்ளிலர்
	கரையும் HOCl வெளிற்றும் இயல்	நிறநீக்கம் ஏற்ப டு ம்	<i>டைவுக</i> . தடவுக.
	C1 ₂ வாபு நீரில் ஓரளவு	நீர்மட்டம் உயரும்	ஒன்றும் கவிழ்த்து வைக்குக. (h) களைகூற கிறும்
	நீர்மய Cl ₂ வெளிற்றும் இயல்புடையது.	ம்றுநக்கம் ஏற்படும்	உ (a) Cl. நிரம்பிய காரார். இ
-	முடையது மணமுடையது	கும் மணம் தோன்றும்.	(b) வாயுவை நிறமுள்ள பூக்கள் ஈர மான பாதிச
	C1 ₂ வாயுபதிய மஞ்சள்நிற	பசிய மஞ்சள் நிறவாயு	1. (a) சுறுதளவு KMnO4க்கு செறி HCl சேர்க்குக.
	உய் த் தறிதல்	அவதானிப்பு	
1			செய்கை

அமோனியாவுடன் தாக்கம்

பொதுவாக, $2NH_3 + 3Cl_2 \rightarrow N_2 + 6HCl$ NH_3 மிகை எனில், $8NH_3 + 3Cl_2 \rightarrow N_2 + 6NH_4Cl$ Cl_2 மிகை எனில், $NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$

உலோகங்களுடன் தூக்கம்

 $2Na + Cl_2 \rightarrow 2NaCl$ $2Fe + 3Cl_2 \rightarrow 2FeCl_3$ (selfer figure)

Fe உயர் ஒட்சியேற்ற நிலேக்கு குளோ ரிஞல் ஒட்சியேற்றப்படுகிறது.

 $Cu + Cl_2 \rightarrow CuCl_2$

சூடாக்கப்பட்ட செப்புத் துருவல்களே Cl_2 கொண்ட குழாயினுள் இடும்போது முதலில் மஞ்சள் நிறம் காணப்படும். இது நீரற்ற CuCl₂ தோன்றுவதனுல் ஏற்படுகின்றது. இதற்கு சில துளிகள் நீர் சேர்க்க நீரேற்றப்பட்டு நீலநிறமாகும்.

அலசன்களின் ஒட்சியேற்றும் இயல்பு

பின்வரும் தாக்கங்கள் குளோரினின் ஒட்சிபேற்றும் இயல்புக்கு உதாரணங்களாகும்.

$$H_2S + Cl_2 \rightarrow 2HC1 + S$$

 $SO_2 + 2H_2O + Cl_2 \rightarrow 2HC1 + H_2SO_4$

அலசன்கள் S²P⁵ என்னு**ம்** இலத்திரன் நிலேயமைப்பு உடையவை. அத்துடன் மின்னெதிர் இயல்பு கூடியவை. இதனுல் இலத்திரணே கலபமாக ஏற்று உறுதிநிவேயடையும். இலத்திரணே இலகுவாக ஏற்ப தால் சிறந்த ஒட்சியேற்றிகள்.

F₂ தொடங்கி I₂ வரை நோக்கும்போது ஆரை கூடுவதனும், மின்னெதிர் இயல்பு குறைவதனுலம் இலத்திர*ணே* ஏற்கும் நாட்டம் குறையும். அலசன்களின் ஒட்சியேற்றும் வலு குறையும்.

ஒட் இயேற்றும் இயல்பு என்பது பிரிகைச்சக்தி, இலத்திரன் நாட் டச் சக்தி, நீரேற்றச் சக்தி போன்ற பல சக்தி மாற்றங்களின் கூட்டு விளேவில் தங்கியுள்ளது.

இடப்பெயர்ச்சித் தாக்கங்கள்

தொடரில் மேலே உள்ள அலசன் கீழே உள்ளதைப் பெயர்க்கும் $\mathbf{Cl_2} + 2\mathbf{KBr} \mapsto 2\mathbf{KCl_1} + \mathbf{Br_2}$ $\mathbf{Br_2} + 2\mathbf{KI} \mapsto 2\mathbf{KBr} + \mathbf{I_2}$

மேலே உள்ள அலசன் ஒட்சியேற்றும் இயல்பு கூடியதென்பதால், இத்தாக்கங்கள் சாத்தியமாகின்றன.

வெளிற்றும் இயல்பு

ஈரலிப்பான பூவிதழ்கள் போன்ற நிறப்பொருட்களேக் குளோரின் வெளிற்றுகிறது, ஒட்சியேற்றல் மூலமே வெளிற்றல் நிகழ்கிறது.

$$Cl_2 + H_2O \rightarrow HCl + HOCl$$
 $HOCl \rightarrow HCl + (O)$
நிறப்பொருள் $X + (O) \rightarrow XO$ நிறமற்ற பொருள்

ஐதரசன் ஏஃடைடுக்கள்

$$H_2 + F_2 \rightarrow 2HF$$
 உக்கிரமான தாக்கம் $H_2 + Cl_2 \rightarrow 2HCl$ சூரிய ஒளி தேவை $H_2 + Br_2 \rightarrow 2HEr$ Pt ஊக்கி $200^{\circ}C$ $H_2 + I_2 \rightarrow 2HI$ Pt ஊக்கி $400^{\circ}C$

ஐதரசன் ஏஸேட்டுக்களின் ஆய்வுகூடத் தயாரிப்பு

$$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$$

NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$

இதையொத்த முறையினுல் HBr, HI ஆகியவற்றைத் தயாரிக்க முடியாது. காரணம். HBr, HI ஆகியவை சுலபமாக ஒட்சியேற்றப் படக் கூடியவை என்பதால் செறி, H₂SO₄ இ**ரை**ல் ஒட்சியேற்றப்பட்டு விடும். HBr, HI என்பவற்றைப் பின்வரும் முறையினுல் தயாரிக்கலாம்.

$$PBr_3 + 3H_2O \rightarrow H_3PO_3 + 3HBr$$

 $PI_3 + 3H_2O \rightarrow H_3PO_3 + 3HI$

ஐதரசன் ஏஸேட்டுக்களின் கொகிநிஸுகள்

சேர்வை	கொதிநிலே °C
HF	+19
HC1	 84
HBr	65
HI	— 35

HF இனது கொதிநிஃ ஒப்பீட்டள வில் உயர்வாக இருப்பதற்குக் காரணம். அதன் மூலக்க றுகளுக்கு இடையில் ¹உள்ள ஐதரசன் பிணேப்பாகும்.

H -X பிணம்புச் சக்தி

ஐதரசன் ஏஃட்டுக்களில் கீழ்நோக்கிச் செல்லும்போது

- (1) பிணப்பு நீனம் கூடுவதாலும்
- (2) மின்னெதிர்த் தன்மை வித்தியாசம் கு**றைவத**னுலும் பிணேப்பு வலிமை குறைகிறது:

HX இனது அமில இயல்பு

கூட்டத்தின் வழியே கீழ்நோக்கிச் செல்லும்போது பிணப்பு வலிமை குறைவதனுல் H+ பிரியும் வாய்ப்பு கூடும். இதனுல் நீர்க் கரைசலின் அமில இயல்பு கூடும்.

$$HX (g) \rightarrow H+ (aq) + X- (aq)$$

அமில இயல்பானது பிஃணப்புச் சக்தி. அயஞக்க சக்தி. இலத் நிரன் நாட்ட சக்தி. அயன்சளின் நீரேற்ற சக்தி ஆகியவற்றிலும் தங்கியுள்ளது. இவற்றில் பிஃணப்புச் சக்தி முக்கியமானது.

நீர்க் கேரைசெலில் அமில இயல்பு HF < HCl < HBr < HI

HX இனது தாழ்த்தும் இயல்பு

தொடரின் வழியே ஆரை அதிகரிப்பதனுல் அலசனின் இலத்திரன் இழக்கும் நாட்டம் அதிகரிக்கும். இதனுல் தாழ்த்தும் இயல்பு கூடும். தாழ்த்தும் இயல்பு HF < HCl < HBr < HI

2HBr +
$$H_2SO_4$$
 \rightarrow Br₂ + $2H_2O$ + SO_2
2HI + H_2SO_4 \rightarrow I_2 + $2H_2O$ + SO_2
8HI + H_2SO_4 \rightarrow $4I_2$ + $4H_2O$ + H_2SO_4

HX இனது வெப்ப உறுதி

தொடரின் வழியே HX பிணேப்பு வலிமை குறைவத⊚ல் வெப்ப உறுதி குறையும்.

ஏஸேட்டுக்களே இனங்காணல் Cl- Br- 1-

AgNO₃ கரைசலுடன் சேரதனே

ஏஃபட்டின் நீர்க் கரைசலுக்கு ஐதான HNO_3 சேர்த்தபின் $AgNO_3$ கரைசல் சேர்க்குக.

- (1) டுவண்ணிற வீழ்படிவு தேருன்றிஞல் ${
 m Cl-}$ உண்டு. இந்த வீழ்படிவு ஐதான ${
 m NH_3}$ கரைசலில் கரையும்.
- (2) வெண்மஞ்ச**ள் வீ**ழ்ப**டிவு தோன்றி**ஞல் Br— உண்டு. இந்த வீழ்படிவு செறிந்த NH₃ கரைசலில் ஓரளவு கரையும்.
- (3) மஞ்சள் வீழ்படிவு தோன்றினுல் I— உண்டு. இந்த வீழ்படிவு செறிந்த NH₃ கரைசலிலும் கரையாது. 9

Cl₂ நீருடன் சோதண

ஏலேட்டின் நீர்க் கரைசலுக்குக் குளோரின் நீர் சேர்த்துப் பின்னர் சிறிதளவு CCl₄ இட்டுக் குலுக்குக, இரு படைகள் தோன்றும்.

- (1) கீழ்ப்படை செம்மஞ்சள் அல்லது செங்கபில நிறமாயின் கரை சலில் Br— உண்டு.
- (2) கீழ்ப்படை ஊதா நிறமாயின் கரைசலில் I— உண்டு.

சுய அசற்றேற்றுக் கரைசலுடன் சோதண

ஏஃபட்டின் நீர்க் கரைசலுக்கு ஈய அசற்றேற்றுக் கரைசஃச் சேர்க்குக.

- (1) வெள்ளே வீழ்படிவு தோன்றிப் பின்னர் சூடாக்கும்போது அது கரைந்தால் கரைசலில் Cl— உண்டு.
- (2) வெண்மஞ்சள் வீழ்படிவு தோன்றி பின்னர் சூடாக்கும்போது அது கரைந்தால் கரைசலில் Br— உண்டு.
- (3) மஞ்சள் நிற வீழ்படிவு தோன்றிப் பின்னர் சூடாக்கும்போது அது கரைந்தால் கரைசலில் Br— உண்டு.

மேற்காணும் வீழ்படிவுகள் சூடாக்கும்போது கரையும். பின்னர் குளிரப்பண்ணும்போது ஊசி வடிவில் படியும்.

செறி H₂SO₄ உடன் சேரத்ண

திண்ம ஏஃட்டுக்கு. செறி. H₂SO₄ இட்டுச் சூடாக்குக. வெளி வரும் வாயுவைச் சோதிக்குக

1. **வெண்**ணிறமான அமிலப்புகை வெளியேறிஞல், 'உப்பில் Cl— உண்டு. வெளிவரும் புகை NH₃ மூடியுடன் வெண்தூமங்களேக் சொடுக்கும்.

NaCl + H₂SO₄ → NaHSO₄ + HCl

- 2. செ**டிக**பில நிற வாயு வெளிபேற்றிஞல் உப்பில் Br— உண்டு. NaBr + H₂SO₄ → NaHSO₄ + HBr 2HBr + H₂SO₄ → Br₂ + SO₂ + 2H₂O
- 3. ஊதா நிற வாயு வெளியேறிஞ்ல் உப்பில் 1— உண்டு, KI + H₂SO₄ → KHSO₄ + 2HI 2HI + H₂SO₄ → I₂ + SO₂ + 2H₂O

குரோமைல் குளோரைட்டு சோதண

இது குளோரைட்டுக்களே இனங்காணும் வீசேட சோதணே திண்ம குளோரைட்டுக்கு, K₂Cr₂O₇ தூளேச் சேர்த்து கலந்து பின்னர் செறி. H₂SO₄ சேர்க்குக.

- a) செந்நிறம்பன ஆவி தோன்றும். (CrO₂Cl₂)
- b) வெளிவரும் செந்நிற ஆவியை NaOH கரைசலினுள் செலுத்துக. மஞ்சள் நிறக் கரைசல் தோன்றும்.
- c) கரைசலுக்குச் சிறிதளவு CH₃COOH சேர்த்துப் பின்னர் ஈய அச**ற்**றேற்று**க் கரை**சலேச் சேர்க்குக. மஞ்சள் நிற வீழ்படிவு தோன்றும்.

ஒட்சி அமிலங்கள்

- குளோரின் பின்வரு**ம்** ஒட்சி அமிலங்களே உருவாக்குகிறது. HOCl. HClO₂, HClO₃. HClO₄
- இவற்றின் அமில இயல்பு ஏறுவரிசை பின்வருமாறு HOCl < HClO₂ < HClO₃ < HClO₄

விணை: HI நீர்க்கரைச**ல்**

- 1) ஒட்டுயேற்றியாக 2) தாழ்த்தியாக 3) அமிலமாக தொழிற்படலாமென்பதைக்குறிக்கும் தாக்கங்கள் ஒவ்வொன்று உதாரணமாகத் தருக.
- லிடை: 1. HI ஓட்சியேற்றியாக $2HI(aq)+Mg(s) \rightarrow MgI_2+H_2(g)$
 - 2. HI தாழ்த்தியாக $2HI(aq)+Cl_2(g) \rightarrow 2HCl(aq)+I_2(s)$
 - 8. HI அமிலமாக $2HI(aq) + Na_2CO_3(s) \rightarrow 2Nal(aq) + CO_2(g) + H_2O(l)$
- வினு: ஒரு கரைசலில் உள்ள I_2 இனது செறிவை எவ்வாறு துணியலாம்.
- விடை: நியம $Na_2S_2O_3$ உடன் நியமிப்பதன் மூலம் துணியலாம். $I_2 + 2Na_2S_2O_3 \rightarrow Na_2S_4O_6 + 2Na$ கரைசலின் குறித்த கன்வேளவுக்கு அயடு.னின் நிறம் பெரும் பாலும் மறையும்வரை •அளவியிலிருந்து $Na_2S_2O_3$ சேர்த்தல். இறுதிநிஃயில் சிறிதளவு மாப்போருளேக் கரைசலுக்கு இட்டு உருவாகும் நீலநிறம் மறையும்வரை $Na_2S_2O_3$ ஐத் தொடர்ந்து சேர்த்தல்.

ஜகரசன்

இயற்கையில் சுயாதீனமாக ஐதரச**ன்** மிகவும் குறைந்த அளவி லேயே காணப்படுகிறது. எனினு**ம் சேர்வை**யாக அதிக **அளவில்** காணப்படுகிறது. நீரில் திணிவப்படி 1/8 ஐதரசன் உண்டு.

ஜதரசனின் தயாரிப்பு முறைகள்

- 13 குளிர் நீருடன் உலோகங்களின் தாக்கம் $2Na + 2H_2O \rightarrow 2NaOH + H_2$ $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$
- 2. நீராவியுடன் உலோகங்களின் தாக்கம் $Mg + H_2O \rightarrow MgO + H_2$ $3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$
- 3. ஐதான அமிலங்களுடன் உலோகங்களின் தாக்கம் $Zn + H_2SO_{4} \rightarrow ZnSO_4 + H_2$ $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$
- 4. காரங்களுடன் ஈரியல்புடைய உலோகங்களின் தாக்கம் $2AI + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$ Zn + 2NaOHNa₂ZnO₂ + H₂ Sn + 2NaOH→ Na₂SnO₂ + H₂
- 5. நீருடன் உலோக ஐதரைட்டுக்களின் தாக்கம் NaH + H₂O → NaOH + H₂ $CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$

தொழில் முறையில் ஐதரச2னத் தயாரித்தல்

1. கற்கரிமீது 1000°Cஇல் நீராவியைச் செலுத்தி நீர்வாயு (CO+H₂) பெறப்படும். இதனே மேலும் நீராவியுடன் கலந்து Fe₂O₃ ஊக்கி மீ*து செலுத்*கல்.

$$\begin{array}{ccc} C & + & H_2O \\ CO & + & H_2 & + & H_2O \end{array} \rightarrow \begin{array}{c} CO & + & H_2 \\ \rightarrow & CO_2 & + & 2H_2 \end{array}$$

\$. இரும்பு 600°C — 1850°C வரை ்சூடாக்கப்பட்டு அதன் மீது நீராவி செ*லுத்*தல். $3\text{Fe} + 4\text{H}_{2}\text{O} \Rightarrow \text{Fe}_{3}\text{O}_{4} + 4\text{H}_{2}$

ஜதுசனின் இயல்புகள்

- 1. நிறமற்றது மண**டிற்றது**.
- 2. மிகக் குறைந்த அடர்த்தி உடையது. (0.089 g dm-3)
- 3. தாழ்த்தும் கருவி.

 $H_2 + CuO \rightarrow Cu + H_2O$

ஜதூசனின் அயன்கள்

- 1. NH₂ இனது தொழில்முறைத் தயாரிப்பு
- 2. மாஜரின் தயாரிப்ப
- 3. ஓர் **எ**ரிபொருளாக (தகனத்**திருல்** சூழல் **மாசடையாது)**
- 4. வானிலே அவதானிப்பு பலூன்களே நிரப்புதல்.

அவர்க்கன அட்டவணேயில் ஐதரசனின் நிலே

அவர்த்தன அட்டவணேயில் ஐதரசன் கூட்டம் 1இல் இடம் பெற்றுள்ள போதிலும் கூட்டம் VII மூலகங்களுடனும் சில இயல் பொற்றுமைகளேக் கொண்டுள்ளது.

கூட்டம் I அலகங்களுடன் இயல்பொ**ற்றுமைகள்**

- 1. இறுதி இலத்திரன் ஒழுக்கில் ஒரு இலத்திரனேக் கொண்டிருத்தல். அதாவது ns1 அமைப்பைக் கொண்டிருத்தல்,
- 2. ஒரு இலத்திரண் இழந்து ஒரு நேரான அயணே உருவாக்கும்
- 3. அவசன்களடுள் சேர்ந்து MX வகைச் சேர்வைகளே உருவாக்கல் (HCl. HF)

கூட்டம் VII மலகங்களுடன் இயல்பெரற்றுமைகள்

- 1. ஒருவலுவுள்ள எதிரயன்களே உருவாக்கும் தன்மை:
- 2. அறை வெப்பநிலேயில் வாயு.
- 3. பங்கீட்டுப் பிணேப்புக்களே உருவாக்கும் தன்மை.

ஜதுசனின் சமதானிகள்

அதரசன் மூன்று சமதானிகளேக் கொண்டுள்<u>ளது</u>. 1 3 3 H Ð T H Ħ or OF 1 1 Protium Deuterium Tritium புரோ**த்திய**ம் *துத்தேரிய*ம் திரித்தியம்

விஞ: உமக்கு H₂ மாதிரியொன்றும், D₂ மாதிரியொன்றும் தரப் பட்டுள்ளன. இவற்றைப் பயன்படுத்தித் தூய HD வாயு மாதிரியொன்றினே எவ்வாறு தயாரிப்பீர்?

യിടെ.: $2Na + H_2 \rightarrow 2NaH$ $D_2 + Cl_2 \rightarrow 2DCl$ $NaH + DCl \rightarrow HD + NaCl$

ஐதரைட்டுக்கள்

ஐதரசன் பிறிதொரு மூலகத்துடன் சேர்ந்**து உ**ருவாக்கும் துவிதச் சேர்வை ஐதரைட்டு எனப்படும்.

- உலோகங்களின் ஐதரைட்டுக்கள் உதாரணம்: NaH, CaH₂ இவை அயன் சேர்வைகள், இவற்றில் ஐதரசன் H— அயஞக உள்ளது. உலோக ஐதரைட்டுக்கள் நீருடன் தாக்கமூற்று ஐத ரசனே விடுவிக்கும். விளேவுக் கரைசல் கார இயல்புடையது.
- அல்லுலோகங்களின் ஐதரைட்டுக்கள்.
 உதாரணம்: NH₃, H₂O, HCl, CH₄, H₂S
 இவை பங்கீட்டுச் சேர்வைகள். பொதுவாக எளிய தனி மூலக் கூறுகள் கொண்டவை.

வெண்காரமணிச் சோதண

வெண்காரத்தை ஒரு பிளாற்றினம் கம்பியில் எடுத்து வெப்ப மேற்றுக. பின் தரப்பட்ட சோவையை இதனுடன் சேர்த்து மீண்டும் பன்சன் சுவாஃயில் வெப்பமேற்றுக. சேர்வையில் உள்ள உலோக அயன்களுக்கேற்ப நிறங்கள் தோன்றும்

உலேரகம்		நிற ம்		
செப்பு இரும்பு குரோமியம் மங்கனீசு கோபோல்ற்று நிக்கல்	பச்சை கடிலம் பச்சை ஊதா நீலம் கபிலம்	(சூடானு நிஃ); (துடோனு நிஃ);	•	(குளிர் நிஃ ು) (குளிர் நிஃல)

10

தாண்டல்

மூலகங்கள்

d உபசக்தி மட்டத்தில் இலத்திரன்கள் நிரப்பப்படுவதால் பெறப் படும் மூலகங்கள், தாண்டல் மூலகங்கள் எனப்படும். (d¹⁰s² அமைப் புடையவை தவிர்ந்தவை). இவற்றில் இறுதி இலத்திரன் ஒழுக்கில் இலத்திரன்கள் உள்ளபோது ஈற்றயல் ஒழுக்கில் இலத்திரன்கள் சேர்க்கப்படுகின்றன.

தாண்டல் மூலகங்களின் சிறப்பியல்புகள்

- 1. மாறும் வலுவளவு
- 2. நிறமுள்ள அயன்களே உருவாக்குதல்
- 3. பரகாந்த இயல்பு
- 4. திக்கல் அயன்களேத் தோற்றுவித்தல்

காண்டல் மூலகங்களின் பொதுவான பிற இயல்புகள்

- 1. இவை உருகுநிலே கூடியவை. காரணம் இவற்றில் அணுக்கள் உலோகப் பிணேப்பால் இணேந்துள்ளன. உலோகப் பிணேப்பில் அதிக எண்ணிக்கை உடைய சுயாதீன இலத்திரன்கள் பங்கு கொள்கின்றன. இதஞல் இவற்றின் உலோகப் பிணேப்பு வலிமை யானது, மீறுவதற்குக் கூடிய சக்தி தேவை.
- 2. இவை அடர்த்தி கூடியவை. காரணம் இவற்றில் அணுஆரை குறைவு. அத்துடன் ஆவர்த்தனத்தின் வழியே கருவின் திணிவு அதிகரிப்பதால் அடர்த்தி கூடிச் செல்லும்.
- 3. இவற்றில் ஆவர்த்தனத்தின் வழியே அணுஆரையில் அதிக மாற்ற மில்ஃ. காரணம் அதிகரிக்கும் கரு ஏற்றத்தை ஈடு செய்யத் தக்கதாக (ஈற்றயல் ஒட்டில் சேர்க்கப்படும் இலத்திரன்களால்) திரை விளேவும் அதிகரிக்கின்றது.

இக்காரணங்க**ளால் ஆவ**ர்த்**தன**த்தின் வழியே இவ**ற்றின்** முதல் அயஞக்கச் சக்தியும் அதிக மா**ற்**றமடைவ**தி**ல்லே?

4. இவை தாக்குதிறன் குறைந்தவை:

S I n+
M(s) → M(g) → M + ne

இவற்றின் தாக்குதிறன் மேற்காணும் சக்திப்படிகளில் தங்கியுள் ளது. தாண்டல் மூலகங்களுக்குப் பதங்கமாதல் சக்தி அதிகம். அயனுக்கச் சக்தியும் அதிகம். எனவே இலத்திரன்களே இழக்கும் தன்மை குறைவென்பதால் தாக்குதிறன் குறைவு.

தடித்த எழுத்தில் குறிக்கப்பட்டுள்ளவை ஏவோயை சொத்தியமான ஒட்கியேற்ற நிஃகள். பிரதான ஒட்கியேற்ற நிவேகள்

B	நான் கரம்	10 Re	ஆவர்த்தனத்தீன் ச		துண்ட ல்	மூலகங்கள் பற்றிய சில	பேர்		துவுகள்	-	
அனுஎன்		21	22	23	24	25	26	27	28	29	30
மூலகம்		Sc	Ti	. <	Ω	Mn	Fe	S.	Z.	Cu	Zn
இலத்திரன் அ மை ப் பு	4	$\mathbf{d}^1\mathbf{s}^2$	d ² \$ ²	d3 s 2	$d^{5}s^{1}$	d5s2	d^6s^2	d7s2	dss2	$d^{10}s^4$	$ m d^{10}s^{2}$
ஒட்கி யே ற்ற நிலேகள்		6 -	4 4 4	u 4 m −	- c w 4 2 0	- 0 w 4 c o L	- U W 4 0 0	- αω 4 το	- ′′ ₩ 4	ω N –	N -
உருகுநி‰்C		1540	1675	1900	1890	1240	1535	1492	1453	1083	420
அடர்த்தி ஓ cm_3		2.99	4.54	5.96	7.19	7.20	7.86	8.90	8.90	8.92	7.14

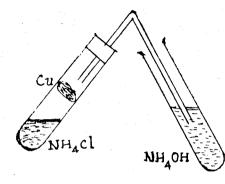
உலர் வளியின் கனவளவு ரீதியான நூற்றுவீத அமைப்பு பின்வருமாறு O_2 Αr CO2 N_2 0.93% 0.03% 78.09% 20.95% இவை தவிர Ne Kr, He. H₂. Xe போன்ற பிறவாயுக்களும் நீராவியும் உண்டு.

வளியில் நைதரசன் உண்டெனக் காட்டுதல்

- 1) Mg நாடா ஒன்றை வளியில் எரிக்குக. $3Mg + N_2 \rightarrow Mg_3N_2$
- பெறப்படும் மீதிக்கு நீர் சேர்க்குக. $Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2$
- இ) வெளிவரும் வாயு நெஸ்லரின் சோதஃனப் பொருளுடன் கபில நிறத்தைக் கொடுக்கும். எனவே அது NH_3 வாயு, ஆகவே ബണിധി**സ്** №2 മഞ്ഞെ 🕟 •

வளியில் CO₂ உண்டெனக் காட்டுதல்

வளியைச் சுண்ணும்பு நீரினுள் செலுத்துக. பால்நிறம் தோன்றும். மிகையாகச் செலுத்துக. பால்நிறம் அற்றுப்போகும். எனவே வளியில் CO2 உண்டு.


வளியில் நீராவி உண்டெனக் காட்டுதல்

வெண்ணிறமான நீரற்ற CuSO₄ தூளே எடுக்குக. இதனே முன்று பகுதிகளாகப் பிரிக்குக. ஒரு பகுதியை உலர்த்தியினுள் வைக்குக. பிறிதொரு பகுதியை வளியில் திறந்து வைக்குக. மற்றுரு பகுதிக்கு நீர் சேர்க்குக.

நீர் சேர்த்த பகுதி நீல நிறத்தைப்பெறும். வளியில் வைக் கப்பட்ட பகுதி சிறிது சிறிதாக நீல நிறத்தைப்பெறும். உலர்த்தி யினுள் வைக்கப்பட்ட பகுதி நிறமாற்றம் இன்றிக் காணப்படும். இவற்றில் இருந்து வளியில் நீராவி உண்டென்பது பெறப்படும். 10

ஓட்சிசன்

வளியில் ஒட்சிசனின் நூற்றுவிதத்தை துணித**ல்** பரிசோதணே

ஒரு சுத்தமான சோதனேக் குழாயை நீரால் நிரப்பி போக் குக் குழாய் கொண்ட அடைப் பொன்றுடன் அதனே இணேக்குக. சோதனேக் குழாயையும் போக் குக் குழாயையும் முற்றுக நீரால் நிரப்பி அந்நீரின் கணவளவை அளந்து குறித்துக்கொள்க. நீரை அகற்றிய பின் சோதனேக் குழா பில் 10 ml NH₄Cl கரைசல் எடுக்குக. குழாயின் நடுவில் Cu வீலக்கும்பி ஒன்றை நிறுத்துக.

குழாயை வளி இறுக்கமாக (Air tight) அடைத்து போக்குக் குழ**ாயின்** மறுமுணேயை NH₃ கரைசலில் அமிழ்த்துக, குழாய் Aஇனப் பல முறை குலுக்கி NH₄Cl கரைசலே Cu உடன் தொடுகையுறச் செய்க.

அவதானிப்புகள்

- 1) போக்குக் குழாயின் ஊடாக கேரைசல் B இல் இருந்து Aக்குச் செல்லுதல்.
- 2) குழாய் A இல் உள்ள கரைசல் நீல நிறம் ஆகுதல்.

^{டி}றிது நேரத்தின்பின் அவதானிப்புக்க**ள்** *தொடர்ந்து குழாய்* Aஇ*ணேக் குலுக்கும்போது*,

- 1) குழாய் Aஇலுள்ள நிற**ம்** படிப்படியாகக் குறைந்து இறு**தியில்** அற்றுப்**போ**கும்.
- 2) போக்குக் குழாய் ஊடாக கரைசல் B இலிருந்து Aக்குச் செல் அதல் நின்றுவிடும்,

குழாய் Aஇலுள்ள கரைசல் முற்று க இந்றமற்றதாகும் வரை குலுக்குக. B இலிருந்து Aக்குக் கரைசல் செல்லு தல் நின்றதன் பின்னர் குழாய் Bயை அகற்றுக. போக்குக் குழாயில் உள்ள கரைசஃயும் A குழாயில் இடுக, இறுதியில், குழாய் Aஇலுள்ள கரைசலின் கனவைவை அறியப்படும்.

கொதிகுழா**ய்** + போக்குக்குழாயின் மொத்தக் கனவளவு = V₁ m₁ ஆரம்பத்தில் எடுத்த NH₄Cl கரைசலின் கனவளவு = 10 ml பரிசோத**்னே**யின் இறுதியில் இருந்த \திரவத்தின் மொத்தக் கனவளவு = V₂ m₁

குழாயில் இருந்த வெளியின் கனவளவு (V_1 — 10) ml இந்த வெளிக் கேனவைளவில் அடங்கியிருந்த ஒட்சிசனின் கேனவளவு = (V_2 —10) ml வெளி மாதிரியில் அடங்கியிருந்த ஓட்சிசனின் கேனவளவு நூற்றுவீதம்

$$= \begin{array}{c} V_{2}-10 \\ ---- \times 100 \\ V_{1}-0 \end{array}$$

விளக்கம்

- 1) குழாய் A இல் இருந்த மட்டுப்படுத்திய அளவு வளியில் இருந்த ஒட்சிசன் செப்புடன் தாக்கமுற்று ஒட்சைட்டாக மோறும். 2Cu + O₂ → 2CuO
- 2) வெளியில் இருந்த ஒட்சிசனின் அளவு குறையை A இனுள் அமுக்கம் குறைவதால் குழாய் B இல் உள்ள NH₃ கரைசெல் Aஇனுள் செல்கிறது.
- 3) செப்பு ஒட்சிசனுடன் தாக்கமு**றுவதால்** Cu^{2+} அயன்கள் உருவா கியிருக்கும் (ஒட்சைட்டில்). இதனுடன் NH_3 தாக்கமுறுவதால் $Cu(NH_3)_4{}^2+$ உருவாகுவதால் கரைசல் நீல நிறமாகும். $Cu^{2+1}+4NH_3 \rightarrow Cu(NH_3)_4{}^2+$
- 4) எல்ஃப்படுத்திய அளவு வளியில் அடங்கிய ஓட்சிசன் முடிவடைந்த பின் பின்வரும் தாக்கம் நிகழும். Cu²+ + Cu⁰ → 2Cu+ நீலம் நிறமற்றது குழாய் A இலுள்ள கரைசல் நிறமற்றதாகிய பின், வளியில் ஒட்சிசன் முடிந்துள்ளது என்பதும். இதஞல் மேலும் Cu²+ தோன்ற வாய்ப்பில்ஃல என்பதும் உறுதியாகின்றது.
- 5) பரிசோத**ீன** முடிவுற்றபின் குழாய் Aஇணத் திறக்க கேரைசெல் நீலமாக மாறுகிறது. மிகை வளியில் ஒட்சிசன் கிடைப்பதால் தொடர்ந்**து** Gu²+ உருவாகி அமோனியாவுடன் சிக்கல் அய**ீனத்** தோற்றுவிக்க நீலநிறம் தோன்றுகிறது.

12

கடல் வளம்

கடல் நீரில் Na^{\bullet} , K^{\bullet} , Ca^{2+} , Mg^{2+} அயன்களும் Cl_{-} , SO_{4}^{2-} , CO_{3}^{2-} , Br_{-} , I_{-} அயன்கள் உட்பட பிறவும் உண்டு, கடல் நீரில் உள்ள உப்புக்கள் யாவற்றினதும் திணிவு நூற்று வீதம் 3.8% ஆகும். மிகுதி 96.2% நீர் ஆகும்.

கடல் நீரில் உப்புக்களின் திணிவு ரீதியான நோற்றுவீத அமைப்பு பின்வருமாறு:-

NaCl	2.7%	$CaSO_4 \cdot 2H_2O$	[0.15%
MgCl ₂	0.3%	KCl	0.07%
MgSO ₄	0.2%	CaCO ₃	0.01%
	, -	NaBr	0.008%

கடல் நீரின் அடர்த்தி அண்ணைளவாக 1.025gcm—3

கடல் நீரின் அடர்த்தியை அளக்**கப் பயன்**படும் அலகு Be(பியூமே) எனப்படும்.

கடல் நீரில் இருந்து NaCl பூரித்தெடுத்தல்

இலங்கையில் உப்பளங்களில் கடல் நீர் சூரிய வெப்பத்திஞல் ஆவியாக்கப்பட்டு NaCl பெறப்படுகிறது. உப்பளம் அமைவதற்கான இடம் பின்வரும் தன்மைகளேக் கொண்டிருத்தல்வேண்டும்.

- 1) கடினமான களிமண் **தரை (உப்பு நீர் பெருமளவில்** நிலத்தினு**ல்** உறிஞ்சப்படாதிருக்க)
- குரிய ஒளி நன்கு படுதல் உஷ்ண வலயம் குறைந்த மழை வீழ்ச்சி.
- 3) உலர்காற்று வீகமிடம்.

உப்பளத்தில் கடல் நீர் பல நாட்கள் விடப்பட்ட சூரிய வெப்பத்தினுலும், உலர் காற்றினுலும் நீர் ஆவியாக 'வெளியேற செறிவு கூடும், உப்பளத்தில் மூன்று வெவ்வேறு பாத்திகளுக்கு உப்பு நீர் மாற்றப்பட்டு ஆவியாக்கல் மூலம் செறிவாக்கப்பட்டு NaCl பெறப்படுகிறது.

- 1) முதல் பாத்தியில் கடல் நீர் செறிவாக்கப்படும்போது கடல் நீரின் செறிவு மூன்று மடங்கானதும் CaCO₃ படிவாகும்.
- 4) எஞ்சும் திரவம் இரண்ட! வது பாத்திக்குச் செலுத்தப்பட்டு மேலும் ஆவியாக்கப்பட செறிவு நான்கு மடங்கானதும் CaSO₄. 2H₂O (ஜிப்சம்) படிவாகும்.

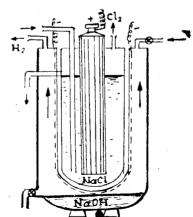
3) எஞ்சும் திரவம் மூன்ருவது பாத்திக்குச் செலுத்தப்பட்டு மேலும் ஆளியாக்கப்பட செறிவு பத்து மடங்கானதும் NaCl படிவாகும்.

இவ்வாறு பெறப்படும் NaCl மாசுக்களேக் (Ca²±, Mg²+, SO₄²-) கொண்டிருப்பதால் அது நீர்மயமாகும் தன்மையுடையது. NaCl இனது நிரம்பற் கரைசலினுள் HCl செலுத்தும்போது பொது அயன் விளவினுல் தூய NaCl படிவாகும்.

NaCl இனது நிரம்பற் கரைசல் பிறைன் (Brine) எனப்படும்.

NaCl இனது பயன்கள்

- 1) NaOH தயாரிப்பு
- 2) Na₂CO₃ தயாரிப்பு
- 3) சவர்க்காரம் தயாரிப்பு
- 4) உறைசுலவையில்


5) உணவுக்குச் சுவையூட்டல் 6) மருந்து வகைகள் கடல் நீரில் இருந்து NaCl பிரித்தெடுக்கப்பட்டபின் எஞ்சும் தாய்த் திராவகம் பிற்றேன் (Bittern) எனப்படும். இதில் Mg²+. K+, SO₄²— Cl—, Br— போன்ற அயன்கள் காணப்படுல். இதிலிருந்து Mg, Br₂ போன்ற மேலும் பல பதார்த்தங்களேப் பிரித்தெடுக்கலாம்.

கல்சிய**ம்** சல்பேற்**று**

கடல் நீரில் இருந்து NaCl பெறும்போது, உபவினேபொருளாக ஜிப்சம் CaSO₄. 2H₂O பெறப்படுகிறது.

$CaSO_4$, $2H_2O$ இனது பயன்கள்

- 1) பரிசுச் சாந்து
- 2) சீமேந்து தயாரிப்பு
- 3) சோக்குத் தயாரிப்பு
- 4) கடதாசி பளபளப்பாக்க

NaOH gwrfiy

NaCl கரைசலின் மின்பகுப்பில் மூலம் NaOH கரைசலேத் தயாரிக்க லாம். பரந்தன் தொழிற்சாஃயில் இம்முறை 'கையாளப்படுகிறது. பக்க லிளேவுகள் H₂. Cl₂ ஆகும்.

முதலில் NaCl கரைசலில் உள்ள மாசுகள் அகற்றப்பட்டு அது தாய தாக்கப்பட வேண்டும். மாசுகளாக Ca²⁺, Mg²⁺, SO₄^{2—} அயன்கள் தாணப்படலாம், 1) ${
m CO_2}$ செலுத்துவதன் மூலம் அல்லது ${
m Na_2CO_3}$ சேர்த்தல் மூலம் ${
m Ca^2}_+$ அயன்கள் அகற்றப்படும்.

 $Ca^2+ + CO_3^2 \rightarrow CaCO_3 \downarrow$

- 2) NaOH சேர்த்தல் மூலம் $\mathrm{Mg^2}+$ அயன்கள் அகற்றப்படும். $\mathrm{Mg^2}+$ + $2\mathrm{OH} \Rightarrow$ $\mathrm{Mg}(\mathrm{OH})_2$ \downarrow
- SO_4^2 அயன்கள் அகற்றப்படும், $Ba^{2+}+SO_4^2$ ightarrow $BaSO_4$ \downarrow

மாசுக்கள் வீழ்படிவுகளாக அகற்றப்பட்டபின் கரைசல் மண்ணி ஞல் வடிக்கப்பட்டு HCl அமிலத்தால் நடுநிஃயாக்கப்பட்டு, மின் பகுப்பு கலங்களுக்குச் செலுத்தப்படும். உயர் மின்ஞேட்டமும் (3000A) தாழ்ந்த மின்னழுத்தமும் (3.5V) கொண்டு மின்பகுப்பு செய்யப்படும்.

С (பென்சிற்காரி) — அறேட்டு

Fe (உருக்கு வஃல) — கதோட்டு

கரைசலில் Na+, Cl-, H÷, OH- அயன்கள் காணப்படும்.

கதோட்டில் $2H^+$ + 2e \rightarrow H_2 அஞெட்டில் 2CI- \rightarrow Cl_2 + 2e

கரைசல் NaOH ஆக மாறும். OH— இனது கசியும் தன்மை C!— இலும் அதிகம் என்பதால் கள்ளேர் ஊடாக கசிந்து வெளியேறும்.

கதோட்டு அறையும் அனேட்டு. அறையும் வேருக்கப்பட்டிருப் பதன் காரணம் விளேவு களாகிய Cl₂, NaOH ஆகியவை தாக்கமுறு திருப்பதற்காகும். ஒரு நுண்துளேப் பிரிசுவர் அனேட்டு அறையின் கவராக உள்ளது. உருக்குவலே கதோட்டு நுண்துளேச் சுவரின் வெளிப் புறத்தில் அதனுடன் நெருக்கமாகப் பொருத்தப்பட்டுள்ளது. கதோட்டு அறையில் NaOH கரைசல் சேர்க்கப்படும். பெறப்படும் கரைசல் செறிவு குறைந்தது (15%). இதனுள் நீராவி செனுத்தப்பட்டு மேலும் செறிவாக்கப்படும். (50%)

இம்முறையின் பௌதிக இரசாயனத் தத்துவங்கள்:-

1) $H_2O \rightleftharpoons H^+ + OH^-$

H• அயன்கள் கதோட்டில் இறக்சும் அடைவதால் நீரின் அய ஞக்கம் கூட்டப்பட்டு OH— அயன்கள் உருவாக்கப்படும்.

- 2) Cl— அயன் செறிவு உயர்வாக இருப்பதால் Cl— அயன்களின் இறக்க அழுத்தம் OH¬ இலும் குறைக்கப்பட்டு இறக்கமடையும்.
- 3] அனேட்டு விளேவாகிய Cl₂, பிரநான விளேவாகிய NaOH உடன் தாக்கமுருதிருக்க அனேட்டு / கதோட்டு ஆகியவை கள்ஞர் தகடு களால் வேறுபடுத்தம்படும்.

குறிப்பு:-

- 1) மின்பதுப்பின் முன்னார் கரைசலில் மாசாக உள்ள Mg²+ அயன்கள் அகற்றப்படாவிட்டால் Mg(OH)₂ வீழ்படிவினுல் கன்னுர் தகட்டில் உள்ள நுண்து இளகள் அடைபடும்.
- 2) மாசு அகற்றப்பட்ட கரைசலுக்கு HCl அமிலம் சேர்ப்பதன் காரணம் Cl அயன் செறிவை உயர்வாக வைத்திருத்தல் ஆகும்.

NaOH இன் பயன்கள்:-

Cl₂ இன் பயன்கள்:-

- 1) சவர்க்காரம் தயாரிப்ப
- 1) நீரைத் தூயதாக்க**ல்**
- 2) மில்ரன் தயாரிப்பு
- 2) வெளிற்றும் தூள் தயாரிப்பு
- 3) காதுதம் தயாரிப்பு
- 3) HCl தயாரிப்பு

H₂ இனது பயன்கள்

- 1) அமோனியா தயாரிப்பு
- 2) மாஜரி**ன் தயா**ரிப்பு

3) HCl தயாரிப்பு

3) எரிபொருளாக

சவர்க்காரம்

சவர்க்காரம் என்பது உயர் காபன் எண்ணிக்கை உடைய ஒரு காபொட்சாலிக் அமிலத்தின் சோடியம் அல்லது பொற்*ரு*சியம் உப் பாகும்.

உதாரணம்:- C₁₇H₃₅COCNa

25 cm³ தேங்காய் **எண்ணெ**ய் அளந்து முகவையில் இடுக, அத**்ன** 95°C வரை சூடாக்குக.

6g NaOH நிறுத்தெடுத்து அதற்கு 20cm³ நீர் சேர்த்து கரைக் குக. தேங்காய் எண்ணெயை அதே வெப்ப நிலேயில் வைத்துக் கலக் குக. தயாரித்த NaOH கரைசலேச் சிறிது சிறிதாக தேங்காய் எண் ணெயினுள் ஊற்றுக. NaOH கரைசலேச் சேர்த்து முடிந்த பின் 50 cm³ சூடான நீர் சேர்க்குக. மேலும் சிறிது சூடாக்கி 100cm³ நிரம்பிய NaCl கரைசல் சேர்க்குக. கரைசலேக் கலக்கி ½ மணி நேரம் வைத்திருக்க சவர்க்காரம் படியும். (அளவுகள் அண்ணைளவாக எடுக் கப்படலாம்)

தேங்காய் எண்ணெய்

தேங்காய் எண்ணெய் ஒரு எீசுத்தர் ஆகும். இது கார நீர்ப் பகுப்பு செய்யப்பட RCOONa (சவர்க்காரம்) உருவாகும். மற்றைய விளேவு கிளிசரோல் ஆகும். தேங்காய் எண்ணெயில் லோறிக் அமிலம், மிருஸ்டிக் அமிலம். பாமிற்றிக் அமிலம், கப்பிறிக் அமிலம் போன்ற பல கொழுப்பமிலங் களின் கிளிசரைல் — எசுர்த்தர்களே பெரிதும் காணப்படுகின்றன. இதில் லோறிக் அமிலத்தின் எசுத்தரே அதிகளவில் உண்டு.

NaHCO3 /Na2 CO3 தயாரிப்பு

சோல்வே முறை:-மூலப் பொருட்கள்:- [1] NaCl 2) NH₃ 3) CaCO₃

- 1) தூய NaCl நீரில் கரைக்கப்பட்டு நிரம்பற் கரைசல் ஆக்கப்படும். (பிறைன்)
- 2) அரண் ஒன்றின் மேலிருந்து கீழாக NaCl கரைசலும், கீழிருந்து மேலாக NH₃ வாயுவும் செலுத்தப்பட்டு கலக்கப்படும். (முர ணேட்ட முறை). அரணில் உள்ள துவாரமிடப்பட்ட தட்டுகளி னூடாகவே இரு தாக்கிகளும் செல்வதால் அவை நன்**ருக**க் கலக் கப்பட தாக்குதிறன் கூடும்.
- 2) சோல்வே அரணில் மேலிருந்து கீழாக NH₃ ஆல் நிரம்பலாக்கப் பட்ட NaCl கரைசல் செலுத்தப்படும். கீழிருந்து மேலாக CO₂ வாயு ஓரளவு உயரமுக்கத்தில் உட்செலுத்தப்படும். இவ்வரனி லும் முரணேட்ட முறையில் தாக்கிகள் கலக்கப்படுவதால், தாக்கு திறன் கூடும்.
- 4) நிகழும் தாக்கங்கள்:-

 CO_2 + H_2O \rightarrow H_2CO_3 \rightleftharpoons H^+ + HCO_3 - NH_3 + H^+ \rightarrow NH_4 ⁺

H+ அயன்கள் NH₃ ஆல் அதற்றப்பட்ட சமநிலே முன்னுக்கிப் பெயர்த்து HCO₃- செறிவு கூடும். கரைசலிலுள்ள Na+, HCO₃-அயன்கள் சேர்ந்து NaHCO₃ ஆக அரணின் அடியில் படியும் (NH₄Cl கரைசல் இதன்மேல் உருவாகிக் காணப்படும்).

5) இத்தாக்கங்களில் வெளிவரும் வெப்பம் காரணமாக NaHCO₃ பிரிகையுறலாம். இதைத் தவிர்க்க அரணின் அடிப்பகுதி குறைந்த வெப்ப நிஃயில் நிஃநாட்டப்படும். 6) CaCO₃ வெப்பமேற்றப்பட்டே CO₂ பெறப்படுகிறது.

CaCO₃ → CaO + CO₂
எஞ்சும் CaO மீதிக்கு நீர் சேர்த்து Ca(OH)₂ பெறப்படும்.

CaO + H₂O → Ca(OH)₂
உருவாகும் அமோனியம் குளோரைட்டுக் கரைசலுடன் இத்த

Ca(OH)₂ சேர்க்கப்பட்டு NH₃ மீளப் பெறப்படும்.

 $2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O$

இம்முறையின் பௌதிக இரசாயனத் தத்துவங்கள்

- 1) முரணேட்ட முறையில் தாக்கிகள் நன்கு கலக்கப்பட தாக்கு திறன் கூடும்:
- 2) NH₃, CO₂ ஆகிய வாயுக்களின் கரை இறனேக் கூட்ட உயரமுக்கம் தாழ்வெப்ப நிலே பயன்படுத்தப்படும்.
- 3) H₂CO₃ ⇌ H+ + HCO₃¬
 H+ அயன்களே அகற்ற NH₃ பயன்படுத்**த**ப்படும். இதன் மூலம் காபோனிக்கமிலத்தின் அயஞக்கம் கூட்டப்பட்டு H**C**O₃¬ அயன் செறிவு கூட்டப்படும்.
- 4) அரணில் நி**ஃ**நொட்டப்படும் தாழ்வெப்ப நி**ஃல கார**ணமாகவும், பொதுஅயன் விளேவாலும் NaHCO₃ படிவாகும். கரைசலில் பல அயன்கள் இருப்பினும் தாழ்வெப்பநிஃயில் கரைதிறன் குறை**ந்த** NaHCO₃ வீழ்படிவாகும்.

சோல்வே முறையின் அனுகூலங்கள்;-

- (1) மலிவான மூலவளங்கள் பயன்படுத்தப்படல்.
- (2) பக்கவிளேவுகள் விரயமாகாமல் மீளப் பயன்படுத்தப்படல்.
 NaHCO3 பயன்கள் Na2CO3 இன் பயன்கள்
 - 1) மருத்துவப் பயன்பாடு
- 1) வன்னீரை **மென்**னீராக்கல்
- 2) அப்பச்சோடா
- 2) கண்ணுடி தயாரிப்பு
- 3) சவர்க்காரம் தயாரிப்பு
- 4) சலவைச் சோடா
- 4) NaHCO $_3$ மூலமாகவும், அமிலமாகவும் தொழிற்படக் கூடியது. மூலமாக NaHCO $_3$ + HCl \rightarrow NaCl + CO $_2$ + H $_2$ O அமிலமாக NaHCO $_3$ + NaOH \rightarrow Na $_2$ CO $_3$ + H $_2$ O
- 2) NaHCO $_3$ Na $_2$ CO $_3$ ஆகியவை நீருடன் நீர்ப்பகுப்பு அடைவதனுல் இவற்றின் நீர்க்கரைசல்கள் மென்கார இயல்புடையவை, CO $_3$ 2— + H $_2$ O \rightarrow H $_2$ CO $_3$. + 2OH $^-$ HCO $_3$ + H $_2$ O \rightarrow H $_2$ CO $_3$ + OH $^-$

13

உலோகப் பிரித்தெடுப்பு இரும்பு

பிரித்தெடுப்பு முறைகள்:

இயற்கை இருப்பு ஒன்றில் இ**ரு**ந்து உலோக**த்தை பி**ரி**த்தெடு**த்தல் ஒரு தாழ்த்த**ல்** முறையாகும்.

- மின்னிரசாயனத் தொடரில் மேலே உள்ள மூலகங்கள், அவற் றின் சேர்வைகளே (பொதுவாக குளோரைட்டுக்களே) மின்பகுப்பு செய்து பிரித்தெடுக்கப்படுகின்றன.
- 2) தொடரில் நடுப்பகுதியில் உள்ள மூலகங்கள் (Zn → Sn) பிற தாழ்த்தும் கருவிகள் கொண்டு தாழ்த்தல் மூலமே பிரித்தெடுக் கப்படுகின்றன.

இரும்பு. அத**ன் இயற்கைத்** தாதுப்பொரு**ோ** CO **கொண்டு** தாழ்த்திப் பிரித்தெடுக்கப்படும்.

இகும்பு

இரும்பின் தாதுப்பொருட்கள்

1) Fe₂O₃

ஏம**ற்றைற்று**

2) Fe₃O₄

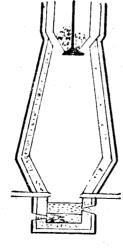
ம**க்னெ**ற்றைற்**று**

- 3) Fe₂O₃, 2H₂O விடிரனேற்று
- 4) Fe₂O₃, H₂O கோதைற்று

பிரித்தெடுப்பு முறை

இரும்பு பிரித்தெடு**க்கப்படும் உ**லே **ஊதுலே** எனப்படும். இம்முறையி**ல் பயன்படு**த்த<mark>ப்</mark> படும் மூலப் பொருட்களாவன:

Fe₂O₃


ஏம**ற்றைற்று**

C

கற்கரி

CaCO₃

சுண்ணு**ம்**பு**க்கல்**

இரும்பின் மூலப்பொருள் முதலில் வளியில் வறுக்கப்படும்.
 இந்நிலேயில் நீரகற்றல் நிகழும்,

- 3) உஃயின் மேற்புறத்தில் இருந்து நிறுக்கப்பட்ட கணியங்களான F_2O_3 , C, $CaCO_3$ ஆகியவை செலுத்தப்படுகின்றன. சூடாக் கப்பட்ட வளி அரணின் அடிப்பகுதியில் உள்ள ஊதுதுருத்திகள் ஊடாகச் செலுத்தப்படுகின்றன.
- 4) நிகழும் தாக்கங்களாவன.

 $C + O_2 \rightarrow CO_2$

 $CO_2 + C \rightarrow 2CO$

உருவாகும் COஇஞல் Fe_2O_3 ஆனது Fe_2 ஆக**த் தா**ழ்த்தப்படுகிறது. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

ஒருப**ஞ**தி $\operatorname{Fe_2O_3}$ நேரடியாக C இனுலும் தாழ்த்தப்படுகிறது. $\operatorname{Fe_2O_3} + \operatorname{3C} \to \operatorname{2Fe} + \operatorname{3CO}$

- 4) இத்தாக்கங்களில் பல புறவெப்பத் தாக்கங்கள் என்பதால் உலேயில் வெப்பநிலே உயர்வாக இருக்கும். உலேயின் அடிப்பகுதி 1500°C இலும், உலேயின் மேற்பகுதி 600°C இலும் காணப்படும். இவ்வெப்ப நிலேயில் இரும்பு உருகிய நிலேயில் உலேயின் அடியில் படியும்.
- 5) உஃவயில் உள்ள உயர்வெப்ப நிஃவயில் CaCO₃ பிரிகை அடையும். CaCO₃ → CaO + CO₂

மூலப்பொருளுடன் கலந்துள்ள மாசுக்கௌரனை SiO_2 அல்லது Al_2O_3 ஆகியவற்றுடன் CaO தாக்கமுற்று ஓர் கழிவுப் படலமாக (Slag) இரும்பின்மேல் மிதக்கும்.

 $CaO + SiO_2 \rightarrow CaSiO_3$

 $CaO + Al_2O_3 \rightarrow CaAl_2O_4$

உருகிய நிஃவ்பில் உள்ள இரும்பும். கழிவப் படலமும் வெவ்வேறு வாயில்களினூடாக வெளிச்செல்லும்.

6) இவ்வாறு பெறப்பட்ட இரும்பு வார்ப்பிரும்பு எனப்படும்.

கழிவுப் படலம் இரும்பின்மேல் மிதக்கும். இதனைல் சூடான வளிக்கும் திரவ இரும்புக்கும் இடையிலுள்ள தொடுகை துண் டிக்கப்படும். இதனைல் இரும்பு மீண்டும் வளியினுல் ஒட்சியேற்றம் அடைவது தடுக்கப்படும்.

வார்ப்பிரும்பு (Cast Iron)

வார்ப்பிரும்பில் 3–5% வரை காபண் காணப்படலாம். அத்துடன் மிகச் சிறிய அளவில், Si, S. P, Mn ஆகியனவும் காணப்படும். இது வன்மையானது. உருகுநில் 1200°C. உருக்கி வார்க்க முடியும் என்ப தால் தண்டவாளங்கள், அச்சுக்கள் செய்யப் பயன்படும்

உருக்கு (Steel)

இரும்பில் மாசுக்களான S, Si, P போன்றவற்றை முற்றுக நீக்கி காபனின் அளவைக் குறைத்து பெறப்படுவதே உருக்கு ஆகும். 0.1% இலிருந்து 0.45% வரை காபணேக் கொண்டது மெல்லுருக்கு. 0.5% இலிருந்து 1.5% வரை காபணேக் கொண்டது வல்லுருக்கு. வாக னங்கள். கட்டக் கூரைகள், ஆசனங்கள் செய்வதெற்குப் பயன்படும்.

கறையில் உருக்கு (Stainless Steel)

73% Fe. 18% Cr, 8% Ni, 1%C எணும் அமைப்பைக் கொண் டது கறையில் உருக்கு. இது கத்தி, பிளேட் போன்ற துருப்பிடிக் காத பொருட்கள் செய்யப் பயன்படும்.

இரும்பின் தாக்க**ங்**கள்

1)	நீராவியுடன்	3 Fe + 4 H ₂ O \rightarrow Fe ₃ O ₄ + 4 H
2)	ஐதான H₂SO₄ உடன்	$Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$
3)	செறி H ₂ SO ₄ உடன் 2Fe +	$6H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3SO_2 + 6H_2O$
	ஜதான / செறி HCl உடன்	$Fe + 2HCl \rightarrow FeCl_2 + H_2$
	குளோரினுடன்	$2Fe + 3Cl_2 \rightarrow 2FeCl_3$

சோ தணப் பொருள்	წe²+ உப்புக் கரைசல் ————————————————————————————————————	Fe³⊹ உப்புக் கரைசல்
K ₃ Fe(CN) ₆ பெரிச ய ணட்டு	கடும் நீல வீழ்படிவு	வீழ்படிவு இல்லே கரைசல் பச்சை கலந்த கபில நிறம்
K₄Fe(C N) ₆ பெரோச‱ட்டு	வெள்ளே வீழ்படிவு பின் நீலமாகமாறும்	கடும் நீல வீழ்படிவு Prussian blue
NaOH கரைசல்	பச்சை வீழ்படிவு	செங்கபில வீழ்படிவு
NH₄CNS	மாற்றம் இல்லே	குருதிச் சிவப்பு நிறம்
H+/KMnO ₄	ஊதா நிறம் நீங்கும்	மாற்ற ம் இல்லே

14

அசேதன உப்புக்களின் பண்பறி பகுப்பு

கற்றயன்களே இனங்காணல்

தரப்பட்ட உப்பின் கரைசலுடன் பின்வரும் சோதணேகள் செய் யப்படும். பெறப்படும் வீழ்படிவின் தன்மையில் இருந்து உப்பில் உள்ள சுற்றயன் இனங்காணப்படும்.

ஒன்றுக்கு மேற்பட்ட உப்புக்களேக் கொண்ட கலவைகளேப் பகுப்பு செய்யும்போது ஒரு கூட்டத்தில் வீழ்படிவு பெறப்பட்டால் வீழ்படிவை வடித்துப் பெறப்படும் வடிதிரவத்துடன் ஏனேய கூட்ட சோதனேகள் செய்யப்படும்.

கூட்டம் சோ தீனப் பொருள்	படிவாகும் அயன் —	வீழ்படிவு -	_ நிறம்
	Cut	Cie a C/2	
ை குளிர்ந்த ஜதான		Hg ₂ Cl ₂	வெள் <i>வே</i>
HCI சேர்த்தல்		AgCl	வெள்ளே
_ பட்ட சொத்தல்	Ag Pb	PbCl ₂	வெள்ளே
	-10	100.2	
🚛 ஐதான HCI	Cu	CuS	கறுப்பு
சேர்ந்த பின்	Sb	Sb ₂ S ₃	செம்மஞ்சள்
H ₂ S வாயுவைச்	Cd	Cds	மஞ் சள்
செ <i>லுத்துக</i> ்	-As	As_2S_3	மஞ்ச ள்
	Sn(II)	Sn \$	க பிலம்
•	Sn (IV)	SnS ₂	மஞ் சள்
	Bi	Bi_2S_3	கறுப்பு
	Hg (II)	HgS	க றுப்பு
	Pb	PbS	கறுப்பு
	As &	Ansx	اسدندها
∎∎∎NH₄CI கரைசல்	Al	Al (OH) ₃	வெள் <i>ளே</i>
NH₄OH	Cr	Cr (OH) ₃	
கரைசல்	Fe (III)	Fe (OH) ₃	கபிலம்
ஆகியவற்றைச்	Fe (II)	Fe (OH) ₂	பச்சை
சேர்க்குத.	٠	_	•
4	on m	roola	
	6-2-	1,00	
	アセンノ	•	

கூட்டம் சோ தணேப் பொருள்	படிவாகும் அயன்	— வீ ழ்படி	வு — நிறம்
NH ₄ CI கரைசல் NH ₄ O _H ஆகியவற்றை சேர்த்தபின் H ₂ S வாயுவைச் செலுத்துக. NH ₄ CI கரைசல் NH ₄ OH கரைசல் (NH ₄) ₂ CO ₃ கரைசல் ஆகியவற்றைச் சேர்க்குக.	Zn Mn Co Ni Ca Sr Ba	ZnS Mn \$ CoS NiS CaCO ₃ SrCO ₃ BaCO ₃	வெள்ளே மென்சிவப்பு கறுப்பு கறுப்பு வெள்ளே வெள்ளே
VI ^{NH} ₄CI கரைசல் NH₄OH கரைசல் Na₂HPO₄ கரைசல் ஆகியவற்றைச் சேர்க்குக.	Mg	Mg(NH ₄)	PO ₄ ഒച ണ ്ണ

சுவாலேச் சேரதண

தண்ம உப்பை HCl ஆல் ஈரமாக்கி தூய பிளாற்றினம் கம்பியில் எடுத்து பன்சன் சுடரடுப்பின் ஒளிராச் சுவாஃவில் பிடிக்கு சு. Li, Na K, Rb. Cs, Ca, Sr, Ba, Cu உப்புக்கள் நிறச்சுவாலேகளேக் கொடுக்கும்.

(சுவாஃ நிறங்கள் பக்கம் 4 இல் போர்க்க.)

காபன்கட்டிச் சோதண

காபன் கட்டியில் திண்ம உப்பை இட்டு சில துளிகள் Co(NO₃)₂ கரைசல் இட்டு பன்சன் சுவா**ஃலயின்** அருகில் பிடித்து ஊது குழாயி ஞல் ஊதுக. பின்வரும் உப்புக்கள் நிறங்களேக் கொடுக்கும்.

Al நீலம்

Mg மென்சிவப்ய

Zn பச்சை

கற்றயன்களே இனங்காணும் விசேட சோதணகள்

- Na+ சுவாலேச் சோதணேயில் பொன்மஞ்சள் நிறத்தைக் கொடுக்கும்.
- 🕅 + (1) சுவாஃச் சோதனேயி**ல் ஊதா** நிறத்தைக் கொடுக்கும்.
 - (2) உப்பின் சுரைசலுக்கு கிறிதளவு அசற்றிக்கமிலம் சேர்த்து Sodium Cobalti nitrite கரைசஃலச் சேர்க்குக. மஞ்சள் வீழ்படிவு தோன்றும்.
- $m Mg^2+$ (1) கரைசலுக்கு $m NH_4Cl(aq)$. $m NH_3OH(aq)$ ஆகியவற்றைச் சேர்த்தபின் $m Na_2HPO_4$ சேர்க்க வெள்ளே வீழ்படிவு பெறப்படும்.
 - (2) காபன்கட்டி சோதணயில் Pink நிறத்தைக் சொடுக்கும்.
 - (3) கரைசலுக்கு ்மக்னெசன் II'' சோதனப் பொருளின் சில துளிகள் சேர்த்து NaOH இடுக. நீலநிற வீழ்படிவு தோன்றும்.
- Ca²+ (1) a) கரைசலுக்கு அமோனியம் ஓட்சலேற்றுக் கரைசல் இடுக. வெண்ணிற வீழ்படிவு தோன்றும். (இந்த வீழ்படிவு HGlஇல்கரையும்? ஆனல் CH₃COOHஇல் கரையாது)
 - மேலே பெறப்பட்ட வீழ்படிலை வடித்து அதனுடன் சுவாலேச் சோதனே செய்க. செங்கட்டிச் சிவப்பு நிறம் தோன்றும்.
 - (2) க**ரைசலுக்கு** NH₄Cl NH₄OH கரைசல்களேச் சேர்த்த பின் (NH₄)₂CO கரைசலேச் சேர்க்குக. வெள்ளே வீழ் படிவு தோன்றும்
- Sr²⁺ a) கரைசலுக்கு NH₄C∜, NH₄OH கரைசல்களேச் சேர்க்குக். இவண்ணிற வீழ்படிவு தோன்றும்.
 - b) வீழ்படி**வை வ**டித்து அதனுடன் சுவா**ஃச் சோதஃன்** செய்க. கருஞ்சிவப்பு நிறம் தோ**ன்றும்**.

- Ba² (1) a) கரைசலுக்கு NH₄Cl, NH₄OH கரைசெல்களேச் சேர்த்தபின் (NH₄)₂CO₂ கரைச*ஃ*ச் சேர்க்குக. வெண்ணிற வீழ்படிவு தோன்றும்.
 - b) மேலே பெறப்பட்ட வீழ்படிவை வடித்து அதனு டன் சுவாஃச் செய்க. அப்பிள் பச்சை நிறச் சவாஃ தோன்றும்.
 - (2) கரைசலுக்கு K₂CrO₄ கரைசல் சேர்க்குக. மஞ்சள்நிற வீழ்படிவு தோன்றும். (இந்த வீழ்படிவு ஐதான அசற் றிக்கமிலத்**தில்** கரையாது)
- Al3 (1) a) கரைசலுக்கு NH₄Cl(aq) கரைசல் சேர்த்த பின் NH₃(aq) சேர்க்குக. செலற்றின் போன்ற வெண்ணிற வீழ்படிவு தோன்றும்.
 - b) வீழ்படிவை வடி**த்து காபன் கட்**டியில் இட்டு சில துளிகள் Co(NO₃)₂ சேர்த்து ஊதைகுழாயால் ஊதி வெப்பமேற்றுக. நீலநிறத் திணிவு தோன்றும்.
 - (2) கரைசலுக்கு NaOH(aq) இட வெண்ணிற வீழ்படிவு தோன்றும். மிகை NaOH(aq)இட வீழ்படிவு கரையும்.
- Sn (1) கரைசலுக்கு ஐதான HCl சேர்த்தபின் H_2S வாயுவைச் செலுத்துக,
 - a) Sn (II) சேர்வைகள் கபிலநிற வீழ்படிவைக் கொடுக் கும். இந்த வீழ்படிவு NaOH(aq)ல் கரையும்.
 - b) Sn (IV) சேர்வைகள் மஞ்சள் நிற வீழ்படிவைக் கொடுக்கும். இந்த வீழ்படிவும் NaOH)aq) இல் கரையும்.
 - (2) Sn (II) அல்லது Sn (IV) உப்புக் கரைசல்களுக்கு NaOH (aq) சேர்க்கும்போது வெண்ணிற வீழ்படிவு தோன்றும். இரண்டும் மிகை NaOH(aq) இல் கரையும்.
- Ph²⁺ (1) கரைசலுக்கு ஐதான HCl கரைசல் சேர்க்குக. வெண் ணிற வீழ்படிவு தோன்றும். சூடாக்கும்போது இந்த

- வீழ்படிவு க**ை**ரையும். குளிரவிட மீண்டும் ஊசிவடிவப் பளிங்குகள் தோன்றும்.
- (2) கரைசலுக்கு KI(aq) சேர்க்குக. மஞ்சள் நிற வீழ்படிவு தோன்றும். சூடாக்கும்போது இந்த வீழ்படிவு சுரை யும். குளிரவிட மீண்டும் பொன்னிற ஊசிகளாகப் படியும்.
- (3) கரைசலுக்கு K₂CrO₄(aq) சேர்க்குக. மஞ்சள்நிற வீழ் படிவு ேன்றும். (இந்த வீழ்படிவு அசற்றிக்கமிலத் தில் கரை**யாது.** ஆணுல் NaOH கரைசலில் **கரையும்)**
- (4) கரைசலினுள் H₂S வாயுவைச் செலுத்துக**.** கரியநிற வீழ்படிவு தோன்றும்.
- As கரைசலுக்கு ஐ,நான HCl சேர்த்தபின், H₂S வாயுவைச் செலுத்துக. மஞ்சள் வீழ்படிவு பெறப்படும். (As₂S₃) இது NaOH(aq) இல் கரையும்.
- Sb ′1) கரைசலுக்கு ஐதான HCl சேர்த்தபின் பH₂S வாயுவைச் செலுத்துக. செம்மஞ்சள்நிற வீ<mark>ழ்படிவு தோ</mark>ன்று**ம்:** இது NaOH(aq) இல் கரையும்.
 - (2) கரைசலுக்கு ஐதான HCl சேர்த்தபின். இத்திரவத்தை நீரினுள் ஊற்றுக. வெண்ணிற வீழ்படிவு தோன்றும். (SbOCl)
- Bi (1) கரைசலுக்கு ஜதான HCl சேர்த்தபின் H₂S வாயுவைச் செலுத்துக. கபிலம் கலந்த கரியநிற வீழ்படிவு தோன்றும்.
 - (2) கரைசலுக்கு ஐதான HCl சேர்த்தபின். இத்திரவத்தை நீரினுள் ஊற்றுக. வெண்ணிற வீழ்படிவு தோன்றும். (BiOCl)
- Cr³+ (a) கரைசலுக்கு சிறிஇளவு NH₄Cl கரைசலேச் சேர்த்தபின் னர் NH₄OH கரைசலேத் துளிதுளியாகச் சேர்க்குக. நீலம் கலந்த பச்சை நிற வீழ்படிவு தோன்றும்.

- (b) வீழ்படிவை வடித்து அதற்கு Na_2CO_3 / KNO_3 சேர்த்து ஓர் பிளாற்றினம் தட்டில் இட்டுச் சூடாக்குக. மஞ்சள் நிற மீதி தோன்றும். (Na_2CrO_4)
- $Ma^{2}+$ (3) கரைசலுக்கு $NH_{4}Cl$, $NH_{4}OH$ கரைசல்களேச் சேர்த்த பின் $H_{2}S$ வாயுவைச் செலுத்துக. மென்சிவப்பு நிற வீழ்படிவு தோன்றும்.
 - (b) வீழ்படி**வை வடித்து அ**தற்கு Na_2CO_3 / KNO_3 சேர்த்**து** ஓர் பிளாற்றினம் தட்டில் இட்டுச் சூடாக்குக. பச்சை நிறத் திணிவு தோன்றும். (Na_2MnO_4)
- Fe²⁺ (1) கரைசலுக்கு K₃Fe(CN)₆ கரைசல் இடுக. பிரசியன் நீலநிறம் தோன்றும்.
 - (2) கரைசலுக்கு NaOH கரைசல் சேர்க்குக. பச்சை நிற வீழ்படிவு தோன்றும்.
- Fe³+ (1) கரைசலுக்கு K₄Fe(CN)₆ கரைசல் இடுக. பிரசியன் நீல வீழ்படிவு தோன்றும்.
 - (2) கரைசலுக்கு அமோனியம் கந்தக சயனேற்று கரைசல் (NH₄CNS) சேர்க்குக. குருதிச் சிவப்பு நிறம் ் தோன் றும்.
 - (3) கரைசலுக்கு NaOH(aq) இடுக. கபிலநிற வீழ்படிவு தோன்றும்.
- ${f Co^2+}$ (1) கரைசலுக்கு ${f NH_4Cl}$, ${f NH_4OH}$ கரைசல்களேச் சேர்த்த பின் ${f H_2S}$ வாயுவைச் செலுத்துக கரியநிற வீழ்படிவு தோன்றும்.
 - (2) வீழ்படிவைக் கரை**த்து '**இருமெதயில் கிளே ஒட்சிம்'' சேர்க்குக. கபிலநிறப் தோன்றும். (வீழ்படிவு தோன் ருது)
 - (3) கரைசலுக்கு NH₄OH கரைசல் இடுக. கூற வீழ்ப**டிவு** தோன்றி மிசை- NH₄OH இல் கரையும்.

- Ni²⁺ (1) கரைசெலுக்கு NH₄Cl, NH₄OH கரைசல்களேச் சேர்த்த பின் H₂S வாயுவைச் செலுத்துக. கரியநிற வீழ்படி**வ** தோன்றும்.
 - (2) வீழ்படினவக் கரைத்து 'இருமெதயில் கிளே ஒட்சீம்'' இடுக. மென்சிவப்பு நிற வீழ்படிவு தோன்றும்.
 - (3) கரைசலுக்கு NH₄OH கரைச‰் இடுக. பச்சை நிற வீழ்படிவு தோன்றி, பின்னார் மிகை NH₄OH இல் கரையும்.
- Cu²+ (1) கரைசலுக்கு NH₃ கரைசல் சேர்க்குக. நீலநிற வீழ்படிவு தோன்றும். மிகை NH₃ கரைசல் இட **லீ**ழ்படிவு கரைந்து கருநீல நிறக் கரைசலாகும்.
 - (2) K₄Fe(CN)₆ கரைசல் இடுக. தடித்த கபிலநிற வீழ்படிவு தோன்றும்.
 - (3) கரைசலுக்கு H_2S வாயுவைச் செலுத்துக. கரியநிற வீழ்படிவு தோன்றும்,
 - (4) திண்டை உப்புச் சுவாலேச் சோத**்**னயில் பச்சை நிறம் காட்டும்.
- Zn²+ (1) கரைசலுக்கு NH₄Cl, NH₄OH கரைசல்களேச் சேர்த்த பின் H₂S வாயுவைச் செலு**த்துக.** வெண்ணிற வீழ் படிவு தோன்றும்.
 - (2) வீழ்படி**வை** வடித்**து அ**தனுடன் காபன்கட்டி சோத**ீன** செய்**க. ப**ச்சை **நிறத் திணி**வு தோன்று**ம்**.
- Ag+ (1) கரைசலுக்கு ஐதான HCl இடுக, வெண்ணிற வீழ் படிவு தோன்றும். (இந்த வீழ்படிவு HNO₃ கரைசலில் கரையாது. ஆணுல் NH₃ கரைசலில் கரையும்)
 - (2) கரைசலுக்கு $\mathbf{K_2CrD_4}$ கரைசல் இடுக. சிவப்பு நிற வீழ்படிவு தோன்றும்.
 - (3) கரைசலுக்கு NaOH கரைசல் இடுக. கபிலநிற வீழ் படி**வு தோன்றும்,** (இந்த வீழ்படிவு NH₃ கரைசலில் **கரையும்.)**

- Cd²' (1) கரைசலுக்கு ஐதான HCl சேர்த்தபின். H₂S வாயு வைச் செலுத்து**க**. மஞ்சள் நிற வீழ்படிவு தோன்றும். (இது NaOH கரைசலில் கரையாது)
 - (2) செறி HCl இல் CdS கரையும். ஆணுல் நீர் சே**ர்த்து** ஐதாக்க மீண்டும் படியும்.
- Hg (1) மேக்கூரசு Hg (1) உப்புக்களின் கரைசல்களுக்கு KI(aq) இட பச்சை கலந்த மஞ்சள் நிற வீழ்படிவு தோன்றும்.
 - (3) மேக்கூரிக்கு Hg (II) உப்புக்களின் கரைசல்களுக்கு KI(aq) இட முதலில் மஞ்சள் வீழ்படிவு (Hgl₂) தோன்றி பின்னர் கருஞ்சிவப்பாக (K₂Hgl₄) மாறும்.

அனபன்களே இனங்காணும் விசேட சோதணகள்

	காபனேற் று க்க ள் CO ₃ 2—	32
	நைத்துரேற்றுக்கள் NO₃—	44
	சல்பேற்றுக்கள் SO ₄ 2—	58
	சல்பைற்றுக்கள் SO ₃ 2—	58
5.	ஏஃட்டுக் கள் Cl ─ Br −, I —	6 5

Sodium Carbonate Extract

ஒரு உப்பில் உள்ள அனயணேச் சோதிப்பதற்கு முன் பொதுவாக 'சோடியம் காபனேற்று பிரித்தெடுப்பான்" ஒன்றைத் தயாரிக்கவேண் டியது அவசியமாகும். அதாவது தரப்பட்ட உப்பை அதன் திணிவின் மும்மடங்கு Na₂CO₃ உடன் கலந்து நீர் சேர்த்துக் கொதிக்க வைத்துப் பெறப்படும் வடிதிரவமே சோடியம் காபனேற்றுப் பிரித்தெடுப்பான் ஆகும். இதற்குத் தகுந்த அமிலமொன்றைச் சேர்த்து, மேலதிக Na₂CO₃ இ**ண்** நடுநிலேயாக்கிய பின் அனயன்களேச் சோதித்தறியலாம்.

சோடியம் காபனேற்று பிரித்தெடுப்பாணத் தயாரிக்க வேண்டிய தன் காரணங்களாவன:–

அனயன்கஃளச் சோதிக்க முற்படும்போது சில கற்றயன்களால் குறுக்கீடுகள் தோன்றலாம். Na₂CO₃ பிரித்தெடுப்பாஃனத் தயாரிக் கும்போது அக்கற்றயன்கள் யாவும் கரையும் தன்மையற்ற காபனேற் றுக்களாக அகற்றப்பட்டுவிடும் சோடியம் உப்புக்கள் அ**ணேத்**தும் நீரில் கரையக் கூடியவை. அண யண்களுக்காக சோதனே செய்யும்போது சோடியம் அயன்கள் பாதிப்பை ஏற்படுத்துவதில்ஃல.

ஒரு பரீசோதணேயும் வீளக்கமும்

ஒரு உப்பில் Cl— அயண்கள் இருப்பின், அதன் கரைசலுக்கு ஐதானை HNO₃ சேர்த்தபின் AgNO₃ கரைசல் சேர்க்க வெண்ணிற வீழ்படிவு தோன்றும். இதற்கு NH₃ கரைசல் இட வீழ்படிவு கரையும்.

FeCl₂ என்ற உப்பில் Cl— உண்டா என சோதிக்க **முற்**பட்டு இப் பரிசோதனேயைச் செய்ய ஐதான HNO₃ / AgNO₃ (aq) இடும் போது வெண்ணிற வீழ்படிவு தோன்றும். இதற்**கு NH₃ கரைச**ல் சேர்**க்க** கரியநிறம் தோன்றும். காரணம்;–

$$Cl- + Ag+ \longrightarrow AgCl \downarrow Gausin Enr Ag+ + 2NH_3 \longrightarrow Ag (NH_3)_2$$

இத்தாக்கங்களுடன் Fe²⁺ ஒரு தாழ்த்தியாகத் தொழிற்பட்டு வெள்ளியை சுயாதீன நிஃயில் விடுவிப்பதால் கரியநிறம் தோன்றும்.

$$Fe^{2+} + Ag^{+} - \longrightarrow Fe^{3+} + Ag \downarrow$$
 smill

FeCl₂ கரைசலுக்கு மிகை Na₂CO₃ பளிங்குகளே இட்டு நீர்சே**ர்த்து** நன்ருகக் கொதிக்க வைத்தபின் கரைசல் வடிக்குக. வடிதிரவத்திற்கு ஐதான HNO₃ சேர்த்தபின் AgNO₃ கரைசல் சேர்க்குக.

- (1) வெள்ளே வீழ்படிவு தோன்றும்.
- (2) இத்தொகுதிக்கு மிகை NH₃ கரைச**ஃ சே**ர்க்க வீழ்படிவு கரையும்.

(முன்னர் தோன்றிய கரிய வீழ்படிவு இப்போது தோன்றுது)

விளக்கம்:- சோடியம் காபனேற்**று** பயன்படுத்தப்பட்டதால்

$$Fe^{2+} + CO_3^2 \longrightarrow FeCO_3$$

என்ற தாக்கத்தின் வழி கணைசலில் இருந்த Fe²⁺ அயன்கள் அகற்றப்பட்டுவிடும். இந்த வீழ்படிவு வடிக்கப்பட்டு வடிதிரவ**த்துட** னேயே பரிசோத‰ செய்யப்பட்டது. எனவே முன்னர் Fe²+ அயன் களால் ஏற்பட்ட குறுக்கீடு இப்போது இராது.

புவுவளம் தொடர்பான சில குறிப்புக்கள்

புவியின் மேலோட்டின் அமைப்பு

ஒட்சிசன் 46.71% சிலிக்கன் 27.60% அலுமினியம் 8.07% இரும்பு 4.70% இவற்றுடன் Ca, Na, K, Mg போன்ற பிறவும் உண்டு.

களிமண்ணின் அமைப்பு

களிமன் Al_2O_3 , SiO_2 ஆகியவற்றை முக்கிய கூறுகளாகக் கொண்டது. சில களிமண் வகைகளில் Fe_2 O_3 உம் காணப்படலாம்.

சிமெந்து

சீ**மேந்து தயாரி**ப்பின் மூலப்பொருட்கள்

- 1. சுண்ணும்புக்கல் (CaCO₃)
- 2. களிமண் (Al₂O₃, SiO₂)
- 3. ஜிப்சம் அல்லது உறைகளிக்கல் (CaSO₄, 2H₂O₂

கண்ணடி

Na, Ca, K, Pb போன்ற மூலகங்கள் இரண் டின் அல்லது பல வற்றின் சிலிக்கேற்றுக்களேக் கொண்ட பளிங்காக்கப்பட்ட கலவை கண்ணுடி ஆகும்.

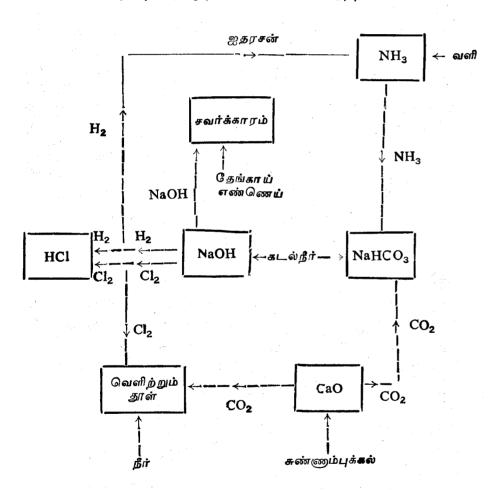
சோடாக்கண்ணுடி SiO_2 Na_2O CaO — Al_2O_3 — பெருக்ஸ் கண்ணுடி SiO_2 Na_2O CaO B_2O_3 AI_2O_3 K_2O தீக்கற் கண்ணுடி SiO_2 — — — K_2O PbO கிறவுண் கண்ணுடி SiO_2 Na_2O CaO B_2O_3 — K_2O — இருக் கண்ணுடி SiO_2 Na_2O CaO B_2O_3 Al_2O_3 — ZnO

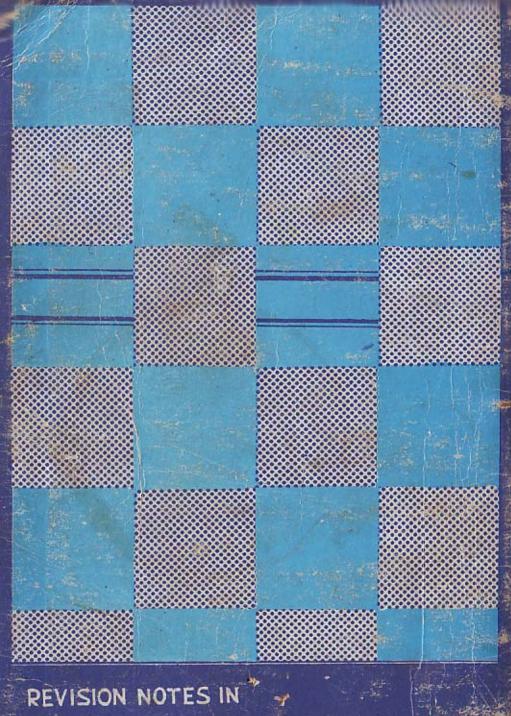
கண்ளுடிக்கு நிறமூட்டல் சிவப்பு Cu_2O நீலம் CuO_{\bullet} CoO பச்சை Cr_2O_3 , FeO, CuO/Fe_2O_3 மஞ்சள் SeO_2 , CdOஊதா MnO_2 கறுப்பு CoO, NiO, Fe_2O_3/CuO

இரத்தினக் கற்கள்

வகை சூத்திரம் உதாரணம் குருந்தம் Al₂O₃ நீலமாணிக்கம். ரூபி கிறிசோபெறில் BeO, Al₂O₃ வைடூரியம், அலெக்சான்றைற்**று** பெறில் 3BeO, Al₂O₃, 6SiO₂ மரகதம். சமுத்திரவண்ணக்கல் புஷ்பராகம் Al₂ Fe(OH)₃ SiO₄ வெண்புஷ்பராகம் மஞ்சள் புஷ்பராகம்

இலங்கையூல் காணப்படும் பொருளாதார முக்கியத்துவமுடைய கனியங்கள்


	இரும்புக் கனியங்கள்	
Limonite	Fe_2O_3 , $2H_2O$	லிமொ கோ ற்று
Geothite	Fe_2O_3 , H_2O	கோதைற்று
Magnetite	Fe_3O_4	மக்னெற்றை ற்று
Haematite	Fe_2O_3	ஏமற்றைற் ரு
Siderite	FeCO ₃	சி த றைற்று
	காரப்புவிக் கனியங்கள்	İr
Lime Stone	CaCO ₃	சுண்ணும்புக்கல்
Dolomite	CaCO ₃ , MgCO ₃	தொலமைற்று
Magnesite	MgCO ₃	மக் னெசை றறு
	கடற்கரைக் கனியன்கள்	ja
Ilmenite	FeO. TiO2	இ ல்ம னே ற் று
Rutile	TiO ₂	உருற்றைல் உருற்றைல்
Beddeleyite	ZrO_2	பத்தலெயை ற்று
Zircon	Zr SiO ₄	சேர்க்கோன்
Sillimanite	Al_2O_3 . SiO_2	சிலிம ்ன ற் று
Garnet	$Fe_2 Al_2 (SiO_4)_3$	கானற்று
	கதிரியக்கக் கனிய ங்க ள்	ir
Thorianite	U_3O_8 ThO_2	தோ றிய ஃன ற்று
Monazite	ThO2 (Ce, Yt, La) Po) ₄ மொனசைற்று
	பிற கனியங்கள்	
Graphite	C .	பென்சிற்கரி
Apatite	$Ca_5 (PO_4)_3$ FCI	அப் பற்றைற்று _*
Quartz	SiO ₂	படிகம்
Felspar	K_2O_{\bullet} Al ₂ O ₃ . 6 SiO ₂	பெல்ஸ்பார்
Serpentinite	Mg ₆ Si ₄ O ₁₀ (OH) ₈ '	சர்பென்ரினேற்று
Kaolin	$Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$	க யொலின்
Kaolinite	$Al_2O_3 \cdot 2Si()_2 \cdot 2H_2O$	கயலினேற்று
Chalcopyrite	Cu Fe S ₂	செப்புக்கந்தக் கல்


புவியில் இருந்து பெறும் கனியங்கள் பற்றிய விரிவான விளக் கங்க**னே இ**ந்நூலாசிரியரின் புவிவளம் என்னும் நூலிலிரு**ந்து பெறுக.**

FLOW SHEET

இலங்கையின் இயற்கை வளங்களேப் பயன்படுத்தி உற்பத்திசெய்யக் கூடிய பல இரசாயனப் பதார்த்தங்கள் பற்றிய விபரங்கள் கீழே தரப்பட்டுள்ளன.

அடையாளம் இடப்பட்டவை தொழிற்சாலேயின் பிரதான விளேவு அல்லது பக்க விளேவு பிற தொழிற்சாலேகளில் பயன்படுத்தப்படலாம்.

INORGANIC CHEMISTRY