

புதிய பாடத்திட்டத்திற்குரியது

T. Saththeeswaran

அடிப்படை இரசாயனம் BASIC CHEMISTRY

(உயர்தர வகுப்புக்குரியது)

- * புதிய பாடத்திட்டத்திற்குரியது
- * 120 பல்தேர்வு பரீட்சை வினாக்கள்-விடைகள்
- * 125 கட்டுரை வினாக்கள்-விடைகள்

ஆக்கியோன்:

தம்பையா சத்தீஸ்வரன்

(முன்னாள் இரசாயினி, சீமெந்துத் தொழிற்சாலை)

முதலாம் பதிப்பு : ஆவணி - 1989

இரண்டாம் பதிப்பு : பங்குனி - 1992

புதிய பாடத்திட்டத் திருத்திய பதிப்பு : ஆடி - 2003

ஆசிரியர் : தம்பையா சத்தீஸ்வரன்

திருத்திய பதிப்பு வெளியிடுபவர் : தி.திருக்குமரன்

பதிப்புரிமை : தி.திருக்குமரன்

விலை : ருபா : 120.00

Printed By:

PARANAN ASSOCIATES PRIVATE LIMITED

403 1/1, Galle Road, Wellawatta, Colombo - 06. T.P: 507932, 551241 Hotline: 077-7370292.

முதலாம் பதிப்பிற்கு

யாழ்ப்பாணம்-சென்பற்றிக்ஸ் கல்லூரி இரசாயனவியற்றுறை ஆசிரியர் திரு.ச.தில்லைநாதன் B.Sc, Dip. in. Ed அவர்கள் வழங்கிய

அனிந்துரை

அன்னைமொழி போதனையானது அறிவியலைச் சமுதாயத்தின் கீழ்மட்டம் வரை பரப்ப வழிவகுத்தது. உண்மைதானாயினும் இந்நிகழ்வு செயற்படுத்த ஆரம்பித்த காலத்து சில ஆங்கில நூல்களை மொழிபெயர்ப்புச் செய்ததுடன் அரசு அன்னைமொழியில் அறிவியல் நூலாக்கங்களைக் கைவிட்டது எனலாம். ஆயினும் கலைத்திட்ட மாற்றத்தின்போது சில அறிவியல் நூலாக்கங்கள் தரப்பட்டன. எனினும் அவை முழுமை பெற வில்லை என்க.

அறிவியல் நாள்தோறும் வளர்ந்து செல்வது பழையன கழிந்து புதியன புகுதல் அவசியமானது. இந்நிலையில் இந்நூலாசான் தற்போதைய இரசாயனப் பாடமுறைமைக்கு ஏற்ப பல்வேறு நூலாக்கங்களைச் சுயமாக அன்னைமொழியில் ஆக்கும் பணியினைப் புரிகின்றார்.

மாணவருக்குப் போதிக்கும் தோறும் ஏற்படும் இடுக்கண்களைக் கருத்தில் கொண்டு ஆசிரியர் உதவியின்றி சுயமாக மாணவன் கற்க ஏற்புடையதாக இந்நூல் அமைகின்றது. அனுபவ வாயிலாக ஆசிரியர் அளிக்கும் இந்நூலமுதம் மாணவருக்கு ஒரு வரப்பிரசாதம். இதனை மேலும் யான் விதைந்துரைக்க விழைதல் பூக்கடையினை விளம்பரப்படுத்துதல் போலாகும் என அஞ்சி அன்னாரின் பணி தொடர அன்புடன் வேண்டிநிற்பேன்.

ச.தில்லைநாதன்

அச்சுவேலி

முகவுரை

தற்போதைய க.பொ.த(உ/த) பரீட்ஷை வினாத்தாள்களை நோக்கு மிடத்து மாணவர்களிடமிருந்து அதிகளவு கொள்கை விளக்கங்களை எதிர் பார்ப்பதுடன், அவர்களிடமுள்ள விடயக் கொள்ளளவை அளவிடும் தன்மை வாய்ந்தவையாகவும் இருக்கின்றன. இதனால் மாணவர்கள் தாமா கவே நல்ல நூல்களை வாசித்து விளங்கும், விளக்கும், திட்டமிடும், செயற் படுத்தும் திறனைப் பெறுவது அவசியமாகும். இதனை நிறைவு செய்யும் வகையில் அடிப்படை இரசாயனம் பகுதி I பகுதி II நூல்களை முழுமை யான பாடநூல்களாக ஆக்கியுள்ளேன்.

இந்நூலில் அடிப்படை இரசாயனம் பற்றிய தெளிவான கருத்துக்கள். கொள்கை விளக்கங்கள், செய்முறைப் பரிசோதனை முறைகள் நுட்பங்கள், கணிப்புக்கள் என்பன தரப்பட்டுள்ளதுடன் தேவையான இடங்களிற் பல கணிப்புகள் செய்தும் பயிற்சி வினாக்களும் உள்ளடக்கப்பட்டிருக்கின்றன. இரசாயனவியலின் எல்லாப் பகுதிகளையும் விளக்கத்துடன் கற்பதற்கு இப்பகுதிகள் பற்றிய அறிவு பெரிதும் பயன்தரும்.

இந்நூலாக்கத்தின்போது மின்விநியோக ஸ்தம்பிதம் மிகவும் இடையூ றாக இருந்தும் தேவையை உணர்ந்து மிகக் கடின உழைப்பாலும் முயற்சி யாலும் இந்நூல் ஆக்கப்பட்டுள்ளதென்ற உண்மையை மாணவர்களும் ஆசிரியர்களும் உணர்ந்து இதற்கு ஆதரவு நல்குவார்களென நம்புகிறேன்.

இந்நூலாக்கத்தின்போது பாடப்பகுதிகளைப் பார்வையிட்டு, தனது கருத்துக்களை வழங்கி, ஆசிகூறி, கௌரவித்து அணிந்துரை வழங்கிய நண்பன் ச.தில்லைநாதன் *B.Sc* (ஆசிரியர் யாழ் சென்பற்றிக்ஸ் கல்லூரி) அவர்கட்கு என்றும் நன்றியுடையேன்.

மேலும் அதிசிரத்தையுடன் சிறந்த முறையில் இந்நூலை அச்சிட்ட புதிய சித்திரா பதிப்பகத்தாரிற்கும், நூல் பிரதிகளை எழுதியும் சரிபார்த்தும் உதவிய மாணவர்களிற்கும் தேவையான படங்களை சிறப்புற வரைந்துத விய நண்பன் இராசநாயகம் அவர்களிற்கும் எனது நன்றிகள் உரித்தாகுக.

> நூலாசிரியர் த.சத்தீஸ்வரன்

முகவுரை

புதிய பாடத்திட்டத்திற்கமைவான (1997 முதல் நடைமுறைப்படுத்தப் படும்) இந்நூல் பயனுள்தாகவும், ஆர்வத்தை ஏற்படுத்தக்கூடியதாகவும் இருக்கும். முன்னர் இரண்டு பகுதிகளாக இந்நூல் வெளிவந்தது. தற்பொழுது புதிய பாடத்திட்டத்தை முழுமையாக உள்ளடக்கி இரசாயனவியலில் சிறந்த அறிவைப் பெறக்கூடிய வகையில் கட்டுரைவடிவ வினாக்களையும் பல்தேர்வு வினாக்களையும் ஒருங்கே தன்னகத்தே தாங்கி வெளிவருகின்றது.

தற்போதைய க.பொ.த(உ/த) பரீட்சை வினாத்தாள்களை திறம்பட எதிர்கொள்ள தேவையான அடிப்படை இரசாயன அறிவை இந்நூல் தரத் தக்க வகையில் அமைந்துள்ளது. ஏனைய இரசாயனவியல் பாடஅலகுகளுக் குரிய பகுதிகளும் விரைவில் புதிய பாடத்திட்டத்திற்கமைவாக திருத்திய பதிப்பாக வெளிவரும்.

இந்நூலிற்கு முன்போலவே மாணவர்களும், ஆசிரியர்களும் மேலும் பல மடங்கு ஆதரவினை நல்குவார்கள் என நம்புகிறேன்.

மேலும் இந்நூலை சிறந்த முறையில் அச்சிட்டு வெளிக்கொணர்ந்த பரணன் அசோசியேட்ஸ் பிரைவேட் லிமிட்டெட் ஸ்தாபனத்தாருக்கும், நூல் பிரதிகளை சரிபார்த்துதவிய கொழும்பு இந்துக்கல்லூரி 2003(உ/த) மாணவர் களுக்கும் எனது நன்றிகள் உரித்தாகுக.

> **தி.**திருக்குமர**ன்** கொழும்பு

e-mail: thiru2003chem@yahoo.com

- (3) வெப்பத்துக்கு விரிவு குறைவு.
- (4) வெப்பத்துக்குத் துணிக்கை அசையாது. ஆனால் ஒரு குறிப்பிட்ட புள்ளியை நிலையாக வைத்து அதிரும்.

திரவம்.

திரவத் துணிக்கைகளுக்கிடையே கவர்ச்சி விசை குறைவு. எனவே திரவத் துணிக்கைகள் கட்டுப்பாட்டுக்குள் வழுக்கி அசையும். அதாவது திரவத் துணிக்கைகள் பாயக்கூடியவை. எனவே,

- (1) பாத்திரத்தின் வடிவைப் பெறும்.
- (2) அமுக்கத்தால் ஏற்படும் பாதிப்பு புறக்கணிக்கக் கூடியது.
- (3) வெப்பத்துக்கு விரிவு திண்மத்திலும் அதிகம்.
- (4) வெப்பத்துக்கு துணிக்கைகளின் இயக்கம் அதிகரிக்கும்.

வாயு.

வாயுத் துணிக்கைகளுக்கிடையே மூலக்கூற்று கவர்ச்சி விசைகள் புறக் கணிக்கக் கூடியவை. எனவே வாயுத்துணிக்கைகள் சுயாதீனமாக எழுந்தபடி இயங்கக்கூடியவை எனவே,

- (1) முழு இடத்தையும் அடைக்கும்.
- (2) அமுக்கத்தால் பெருமளவில் பாதிக்கப்படும்.
- (3) வெப்பத்துக்கு விரிவு மிக அதிகம்.
- (4) வெப்பத்துக்கு வாயுத் துணிக்கைகளின் சக்தி கூட்டப்படும்.

சடப்பொருட்களின் துணிக்கைத் தன்மைக்குச் சான்றுகள்.

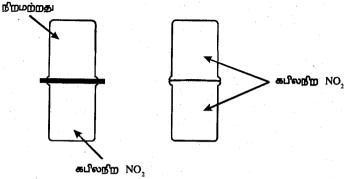
(1) வாயுக்களின் பரவல்.

H₂S வாயு பரவும்போது அதன் துர்மணம் எங்கும் நுகரக்கூடியதாக இருக்கும். வாசனைத் திரவியங்கள் பரவுதல்.

(2) திரவங்கள் ஆவீயாதல்.

நீராவியாதல், Br, திரவம் ஆவியாகி செங்கபில நிறம் பரவுதல்.

(8) திண்மங்கள் நீரில் கரைதல்.


NaCl நீரில் கரைந்து அதன் சுவையை கரைசல் எங்கும் அறியமுடிதல்.

திண்ம KMnO_4 பளிங்குகள் நீரிற் கரையும் போது அதன் நிறம் கரைசல் முழுவதும் பரவுதல். I_2 திண்மம் பதங்கமாகி அதன் ஊதாநிறம் வளியில் பரவுதல்.

4) பிறவுணியின் (Brownie) அசைவு.

மகரந்த மணிகளை (நிறமான தூள்களை) நீரில் இட்டு நுணுக்குக் காட்டியால் அவதானிக்கும் போது, மகரந்த மணிகள் தொடர்ச்சியாக இயங் குவதை அவதானிக்கலாம்.

- கதிர்த்தொழிற்பாட்டு முலகங்களில் இருந்து கதிர் வீசப்படும் துணிக்கைகள் ஒளிப்படத்தாளில் ஒளிப்பொட்டுக்களை ஏற்படுத்தும்.
- (6) பளிங்குகளினூடாக x கதிர்களைச் செலுத்தி வெளிப்படும் கதிர்களை ஒளிப்படத்தாளில் படம் பிடிக்கும்போது திட்டமான வடிவத்தில் அமைந்த பொட்டுக்கள் அவதானிக்கப்படும். இதற்குக் காரணம் பளிங்கிலுள்ள துணிக்கைகள் ஆகும். இது உலோவுப் பொட்டு (இப்பரிசோதனையைச் செய்தவர் Von Laue ஆவார்) என அழைக்கப்படுகிறது.
- (7) வித்தியாசமான திரவங்கள் கனவனவு மாற்றத்துடன் ஒன்றிலான்று கலத்தல். உ-ம்: அற்ககோல் - நீர்
- (8) NO₂ வின் கபில நிறம் பரவுதல்.

போன்றவை சடப்பொருட்கள் தொடர்ச்சியற்ற தன்மைக்கு சான்றுகளாகும்.

இரசாயனச் சேர்க்கை விக்கள்

திணிவுக் காப்பு விதி. [Lavoisier - 1795]

ஒரு இரசாயனத் தாக்கத்தில் தாக்கிகளின் மொத்தத் திணிவு விளைவு களின் மொத்த திணிவுக்குச் சமன்.

இவ்விதியில் இருந்து பெறப்பட்ட முடிவு: சடப்பொருளை / அணுக்களை ஆக்கவோ அழிக்கவோ முடியாது.

குவ்விதியின் வலிமை பற்றி அறிதல்.

(1) இரசாயனத் தாக்கங்களின் போது சக்தி மாற்றங்கள் அவதானிக்கப்பட்டது. ஐன்ஸ்டீனின் சக்திச் சமன்பாட்டின்படி,

$$E = mC^2$$

- E வெளிவிடப்பட்ட அல்லது உறிஞ்சப்பட்ட சக்தி.
- m அழிக்கப்பட்ட சடத்தின் திணிவு.
- C ஒளியின் வேகம்.

இங்கு c ஒரு மாறிலி ஆதலால் சக்தியை ஆக்குவதற்கு திணிவு அழிக்கப் பட்டிருக்க வேண்டும். அதாவது சக்தியின் அடிப்படை மூலகாரணி சடத்தின் திணிவு ஆகும். எனவே ஒரு இரசாயனத் தாக்கத்தால் திணிவு அழிக்கப்படலாம் அல்லது ஆக்கப்படலாம். எனவே இரசாயனத் தாக்கங்களின் போது தாக்கிகளின் திணிவும் விளைவுகளின் திணிவும் வேறுபடும். எனவே திணிவுக்காப்பு விதியானது பிழையானதாக அமைகிறது.

(2) 1 g திணிவு அழிக்கப்படும் போது வெளிவிடப்படும் சக்தி.

E = mC²
=
$$\frac{1}{1000}$$
 (3 x 10⁸)² = 9 x 10¹³ J

அதாவது 1 g திணிவினால் விளைவாக்கப்படும் சக்தி மிகவும் பெரிய கணியமாகும்.

இது 4.2 x 10³ மெற்றிக்தொன் பெற்றோலில் இருந்து பெறப்படும் சக்தியிலும் அதிகமானது.

2_-ŵ:

ஒரு மூல் CH_4 முற்றாக O_2 இல் எரிக்கும்போது $890\,\mathrm{kJ}$ வெப்பம் வெளிவிடப்படும். இத்தகனத் தாக்கத்தில் என்ன திணிவு அழிக்கப்படும்?

$$CH_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

 $E = mC^2$
 $890 \times 1000 = m (3 \times 10^8)^2$
 $m = 9.9 \times 10^{-12}$ kg (இது மிகவும் சிறிய கணியமாகும்.)

(3) ஒரு இரசாயனத் தாக்கத்தின் போது ஏற்படும் திணிவு மாற்றம் செய்முறை அளவில் உணரமுடியாத அளவு சிறியது. அதாவது புறக்கணிக்கத்தகக்து. சாதாரண தாக்கங்களின் போது அழிக்கப்படும் திணிவுகள் 10% g என்னும் அளவுக்குக் குறைவாகவே இருக்கும். இதனை உணரக்கூடிய தராசுகள் இல்லை. எனவே செய்முறை எல்லைக்குள் இவ்விதி சரியானது (வலிமையானது) எனக் கருதலாம்.

திருத்தப்பட்ட திணிவுக் காப்பு விதி.

திணிவுக்காப்பு விதியானது சக்திக்காப்பு விதியாக மாற்றப்படும்.

சக்திக் காப்பு விதி:

ஒரு தனிப்பட்ட தொகுதியில் சக்தி, திணிவு அளவுகளின் கூட்டுத்தொகை எப்போதும் ஒரு மாறிலியாகும்.

திணிவுக் காப்பு விதியின் உபயோகம்.

- (1) அடிப்படை இரசாயனக் கணிப்புக்களைச் செய்தல்.
- (2) இரசாயனச் சமன்பாடுகளைச் சமப்படுத்தல்.

மாறா அமைப்பு விதி (திட்ட விகித சமவிதி)

ஒரு தூய சேர்வையானது எந்த முறையினால் ஆக்கப்படினும் அதிலுள்ள மூலகங்களின் திணிவு விகிதங்கள் ஒரு மாறிலி ஆகும்.

MgO என்னும் சேர்வையில் 24g Mg ஆனது 16g ஒட்சிசனுடன் சேர்ந்துள்ளது.

ஆகவே
$$\frac{W_{Mg}}{W_0} = \frac{24}{16} = \frac{3}{2}$$
 K (மாறிலி ஆகும்)

முடிவு:

மூலகத்தின் எல்லா அணுக்களும் எல்லா விதத்திலும் ஒரே மாதிரியானவை

இவ் வீதியின் வலிமை.

இயற்கையிலுள்ள அனேகமான ஒவ்வொரு மூலகமும் சமதானிகளின் கலவை என நிருபிக்கப்பட்டுள்ளது.

உதாரணமாக ஐதரசனுக்கு (H¹, H², H³) திணிவு 1, 2, 3 உள்ள சமதானிகள் உண்டு.

பல்விகித சமவிதி. [John Dalton]

இரண்டு மூலகங்கள் சேர்ந்து ஒன்றுக்கு மேற்பட்ட சேர்வைகளை ஆக்கும் போது ஒரு மூலகத்தின் குறித்த திணிவுடன் சேரும் மற்றைய மூலகத்தின் திணிவு விகிதங்கள் ஒரு எளிய முழு எண் விகிமாகும்.

செப்பு, ஒட்சிசன் என்பன சேர்ந்து CuO, Cu₂O என்னும் இரண்டு வகையான ஒட்சைட்டுக்களைக் கொடுக்கும்.

(i) CuO - கறுப்பு

(ii) Cu₂O - சிவப்பு

CuO இல்,

16 g ஒட்சிசன், 63.5 g செப்புடன் சேரும்.

Cu₂O இல்,

16 g ஒட்சிசன் 63.5 x 2g செப்புடன் சேரும்.

. 16 g ஒட்சிசனுடன் சேரும் செப்பின் திணிவு விகிதங்கள் 63.5 : 63 .5 x 2 = 1 : 2 ஆகும்.

இது ஒரு எளிய முழு எண் விகிதம் ஆகும்.

முடிவு:

அணுக்கள் எளிய முழு எண் விகிதத்தில் சேர்ந்து இரசாயன நாட்ட விசை களால் சேர்வைகளை ஆக்குகின்றன.

இவ்விதியின் வலிமை.

அணுக்கள் எளிய முழு எண் விகிதத்தில் சேர்கின்றன என்பது உண்மையான போதிலும் இதற்கு விதிவிலக்காக புரதங்கள், காபோவைதரேற்று, செலுலோசு, பொலித்தீன், இறப்பர், நைலோன், பொலி எசுத்தர், தெரிலீன், பிளாஸ்டிக், RNA, DNA போன்ற பல இராட்சத மூலக்கூறுகளும் உண்டு. எனவே இவற்றுக்குத் தனியான இரசாயனம் அமைக்கப்பட்டுள்ளது. எளிய சேர்வை களைக் கருதும்போது இவ்விதி உண்மையானது.

இதர விதர விகித சமவிதி.

ஒரு மூலகத்தின் குறித்த திணிவுடன் சேரும் மற்றைய மூலகங்களின் திணிவு விகிதங்கள், அம்மூலகங்கள் தம்முள் சேரும் (அல்லது அம்மூலகங்கள் ஒன்றையொன்று இடப்பெயர்ச்சி செய்யும்) திணிவு விகிதங்களுக்குச் சமனாக இருக்கும் அல்லது ஒரு எளிய முழு எண் பெருக்கமாகக் காணப்படும்.

பின்வரும் சேர்வைகளைக் கருதுவோம். CH., H,O, CO₂

- (a) CH_4 இல் $4g\ H_2 \to 12g\ C$ உடன் சேரும். ஆகவே காபன், ஐதரசன் சேரும் திணிவு விகிதம். C: H = 12: 4 = 3: 1
- (b) H_2O இல் 2 g $H_2 \rightarrow 12$ g C உடன் சேரும். ஆகவே காபன், ஐதரசன் சேரும் திணிவு விகிதம். O: H = 16: 2 = 8: 1

a, b எ**ன்பவ**ற்றிலிருந்து காபனும் ஒட்சிசனும் சேரவேண்டிய நிறை விகிதம் C: O = 3:8 ஆகும்.

(c) CO₂ இல் 12 g C → 32 g ஒட்சினுடன் சேரும்.
 ஆகவே காபன், ஒட்சிசன் சேரும் திணிவு விகிதம்.
 C: O = 12: 32 = 3: 8

குறிப்ப:

CO வாயவை எடுப்போமாயின் இதில் 12 g காபன் 16 g ஒட்சிசனுடன் சேரும். அகவே CO இல் காபன் ஒட்சிசனின் நிறை விகிகம்.

C: O = 12: 16 = 3:4

அ.கவே C. O சோம் நிறை விகிதங்கள் 3 : 4 அல்லது 3 : 8 ஆகும். இது ஒரு எளிய பெருக்கமாகும்.

இவ்விதியில் இருந்து பெறும் முடிவு.

அணுக்கள் சேர்ந்து சேர்வைகளை ஆக்கும்போது, ஒரு திட்டமான குறித்த திணிவு பங்குபற்றுகின்றது என்பது தெளிவாகும். இக்கிணிவு அம்மூலகக்கின் சமவவுக்கிணிவு எனப்படும். எனவே இவ்விதி சமவவுக் கிணிவுடன் கூடிய தொடர்பைக் கொண்டிருக்கும்.

சமவலுத் த[ி]ணிவு

சமவவுக் திணிவ என்பகு

- 1 g ஐதரசனுடன் சேரும் மூலகத்தின் திணிவு.
- 8 g ஒட்சிசனுடன் சேரும் மூலகக்கின் கிணிவ (b)
- 35.5 g குளோரீனுடன் சேரும் மூலகத்தின் திணிவு. (c)
- (d) ஒரு பரடே மின் கணியத்தால் படிவாக்கப்படும் கிணிவ

என வரையறுக்கப்படும்.

சமவலுத் திணிவ எப்பொமுகும்.

- சமவலுத் திணிவையே தாக்கும்.
- சமவலுத் திணிவையே விளைவாக்கும்.
- சமவலுத் திணிவையே இடம்மாற்றும்.
- சமவவக் திணிவையே வெளியேற்றும்.

தாற்றனின் அணுக்கொள்கைகள்.

- சடப்பொருட்கள் மேலும் பிரிக்க முடியாத தொடர்ச்சியற்ற சிறுதுணிக்கைகளால் ஆக்கப்பட்டவை. இவை அணுக்கள் எனப்படும். சான்று: ஆவியாதல், பரவல், பிறவணியின் அசைவ என்பன.
- சடப்பொருட்களை (அணுக்களை) ஆக்கவோ, அழிக்கவோ முடியாது. சான்று: திணிவுக் காப்பு விதி.
- ஒரு மூலகத்தின் எல்லா அணுக்களும் எல்லா விதத்திலும் ஒரே மாதிரியனவை. ஆனால் மற்றைய அணுக்களிலும் வேறுபாடானவை. சான்று: மாறா அமைப்பு விதி

அணுக்கள் எளிய முழுஎண் விகிதத்தில் சேர்ந்து சேர்வைகளை ஆக்குகின்றன. (4) சான்று: பல்விகிக சமவிகி.

இரசாயனச் சேர்க்கை விதிகளைப் படிக்கும் போது இக்கொள்கைகள் எந்த அளவக்கு வலிமையானவை எனப் பார்த்கோம். எனவே இக்கொள்கைகள் மாற்றி அமைக்கப்பட வேண்டும்.

மாள்ளியமைக்கப்பட்ட அணுக்கொள்கைகள்.

- சடப்பொருட்களின் சிறிய துணிக்கைகள் அணுக்கள் அல்ல. அணுவில் இலத்திரன், புரோத்தன், நியூத்திரன் போன்ற வேறு அடிப்படைத் துணிக்கை களும் உண்டு.
- கருத்தாக்கங்களின் போது அணுக்கள் ஆக்கப்படுகின்றன, அழிக்கப்படு கின்றன. பிரிக்கப்படுகின்றன. சாதாரண இரசாயனத் தாக்கங்களின்போது அல்ல.
- ஒரு முலகத்தின் எல்லா அணுக்களும் ஒரே மாதிரியானவை அல்ல. ஆனால் மற்றைய மூலக அணுக்களிவும் வேறுபாடானவை.
- அணுக்கள் எளிய முழு எண் விகிதத்தில் சேர்ந்து சேர்வைகளை ஆக்கு (4) கின்றன என்பது உண்மையான போதிவும் விதிவிலக்காகப் பல இராட்சத மூலக்கூறுகளும் உண்டு.

வாயு விதிகள்

கேலூசாக்கின் விதி. (1809)

ஒரு குறித்த வெப்ப அமுக்கத்தில் வாயுக்கள் சேரும் கனவளவு விகிதம் ஒரு எளிய முழு எண் விகிதமாகும். விளைவும் வாயுவாக இருப்பின், அதே வெப்ப அமுக்கத்தில் அளக்கப்பட்ட அவற்றின் கனவளவுகளும் சேரும் வாயுக்களின் கனவளவுகளுடன் எளிய விகிதத்தில் காணப்படும்.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

கேலூசாக்கின் விதிப்படி,

$$V_{H_2}: V_{Cl_2} = 1:1$$
 $V_{H_2}: V_{Cl_2}: V_{HCl} = 1:1:2$

கேவசாக்கின் விதியின் உபயோகம்.

(1) வாயுக்கள் சேரும் அளவுகளைத் துணிதல்.

உ-ம்:

அறைவெப்பஅமுக்கத்தில் 100 cm³ CH₄ எரிப்பதற்குத் தேவையான உலர் வளியின் கனவளவை அறைவெப்ப அமுக்கத்தில் கணிக்க. வளியை மிகையாகப் பாவித்தால் என்ன நிகழும், வளியைக் குறைவாகப் பயன்படுத்தினால் என்ன நிகழும். வளியில் 20% கனவளவு ஒட்சிசன் உண்டு எனக் கொள்க.

$$CH_1 + 2O_2 \rightarrow CO_2 + 2H_2O$$

கேலூசாக்கின் விதிப்படி.

1 cm³ CH4 ஐ எரிக்க 2 cm³ O2 தேவை.

🔐 100 cm³ CH₄ ஐ எரிக்க 200 cm³ O₂ தேவை.

. தேவையான வளியின் கனவளவு = $\frac{200}{20}$ x $100 = 10^3$ cm³

வளி மிகையாக இருப்பின் தகனத்தின் போது பெறப்படும் வெப்பத்தில் ஒரு பகுதி மிகையான வளியுடன் சூழலுக்கு இழக்கப்படும். தகனத்தின் பயன் குறைக்கப்படும்.வளி போதாவிடின் CH₄ (எரிபொருள்) எரியாது வெளியேறும். இதனால் எரிபொருள் வீணாக்கப்படும். எனவே தகனங்களைச் சிக்கனமாக்க கேலூசாக்கின் விதி உபயோகமானது.

(2) வாயுக்களின் குத்திரங்களைத் துணிதல்.

4 cm³ வாயுநிலை ஐதரோகாபன் 40 cm³ மிகை O₂ உடன் வெடிக்கப்பட்டு விளைவுக்கலவை KOH கரைசலினூடாகச் செலுத்தியபோது கனவளவு 16 cm³ ஆல் குறைந்தது. எஞ்சிய வாயுக்களின் கனவளவு 16 cm³. எல்லா அளவீடுகளும் அறைவெப்ப அமுக்கத்தில் பெறப்பட்டவை எனக் கொண்டு ஐதரோகாபனின் குத்திரத்தைக் கணிக்க.

ஐதரோ காப**னின் குத்தி**ரத்தை C_x H_y என்க.

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow x CO_2 + \frac{y}{2} H_2 O$$

$$1$$
 கனவளவு $C_x H_y + \left(x + \frac{y}{4}\right)$ கனவளவு O_2 ஐத் தாக்கி

x கனவளவு $CO_2 + \frac{y}{2}$ களவளவு நீராவியைக் கொடுக்கும்.

அறைவெப்ப நிலையில் நீர் ஒடுங்கி திரவமாக இருப்பதால் இதன் கனவளவு புறக்கணிக்கக் கூடியது.

கேலூசாக்கின் விதிப்படி

 $1 \text{cm}^3 \text{ C}_{\mathbf{x}} \text{ H}_{\mathbf{y}} \to \mathbf{x} \text{ cm}^3 \text{ CO}$, ஐக் கொடுக்கும்.

ஃ 4cm^3 C_x $H_y \rightarrow 4x$ cm 3 CO_2 ஐக் கொடுக்கும்.

பரிசோதனைப்படி $V_{CO_2} = 16 \text{ cm}^3$

$$4x = 16$$

x = 4

குகனத்தின் பின் பரிசோகனை முடிவில் தொகுதியிவுள்ள கூறுகளின் கனவளவகள்.

$$V_{C_{u}}H_{u}=0$$

(முற்றான தகனம்)

$$V_{CO} = 0$$

(KOH ஆல் உறிஞ்சப்படும்)

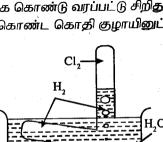
$$V_{H,O} = 0$$

(ஒடுங்கி, திரவமாகும்.)

- . எஞ்சிய வாயுவின் கனவளவு = V_O = 16 cm³
- ். தகனத்துக்குப் பயன்படுத்தப்பட்ட $V_{O_3} = 40 16 = 24 \text{ cm}^3$

சமன்பாட்டின்படி பயன்படுத்தப்பட்ட $V_{ ext{O}_3}$ - $\left(x+rac{y}{4}
ight)$ $4~ ext{cm}^3$ $x + \frac{y}{4} \quad 4 = 24 \dots (x = 4)$

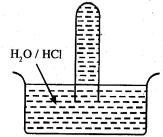
் ஐதரோ காபனின் சூத்திரம் C₄H₈


கேலாசாக்கின் விதியை நிருபித்தல். பரிசோகனை:

- ஒரே மாதிரியான சுத்தமான இரு கொதி குழாய் கள் எடுக்கப்படும்.
- படத்திற் காட்டப்பட்டது போல் ஒவ்வொரு குழாயிலும் தனித்தனி அரைவாசி அளவுக்கு உலர் Cl., H. என்பன நீரின் மேல் எடுக்கப்படும் அதாவது ஒவ்வொரு குழாயிலும் சமகனவளவு H, உம், Cl, உம் தனித்தனி எடுக்கப்படும். (கனவளவுகளை குறிக்க குழாயில் அடையாளமிடப்படும்.)
- H₂ ஐக் கொண்ட கொதிகுழாயின் வாய் அருகே கொண்டு வரப்பட்டு சிறி**து** சிறிதாகச் சரித்து முழு H, வாயுவும் Cl, ஐக் கொண்ட கொதி குழாயினுட் செவுத்தப்படும்.
- தொகுதி பரவிய சூரிய ஒளியில் வைக்கப்படும். (4)

அவதானம்:

BASIC CHEMISTRY


H, குழாயைச் சரிக்கும் போது வாயுக்குமிழ்கள் மேலெழுந்து கொதி குழாயினுட் செல்லும்.

- நீர் மட்டம் குறையும். (தாக்கம் உடனடியாக நிகழாது எனவே அமக்கம் அதிகரிக்கும். ($P = P_{H_a} + P_{Cl}$)
- (3) வெண்புகை தோன்றும். (HCL விளைவாக்கப்படும்.)
- நீர் மட்டம் படிப்படியாக குழாயினள் உயர்ந்து குழாய் முற்றாக நீரினுள் நிரப்பப்படும். (4)

முழவு:

- HCI நீரில் கரைவதால் குறாயில் எற்படும் வெற்றிடத்தை நிரப்ப நீர் குழாயினுட் செல்லும்.
- (2) குழாய் முற்றாக நீரினுள் நிரப்பப்படுவகால் விளைவாக்கப்பட்ட HCl இன் கனவளவு கொகி குழாயின் கனவளவக்குச் சமன்.

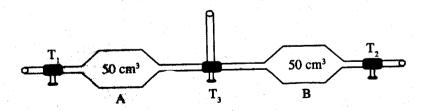
- 1 /, கனவளவு H, + 1 /, கனவளவு Cl, \rightarrow 1 கனவளவு HCl.
 - \star 1 கனவளவு H, + 1 கனவளவு Cl, \to 2 கனவளவு HCl.
 - ் V_H : V_{Cl} = 1 : 1 (தாக்கிகள் சேரும் விகிதம்.)
 - V_H : V_{Cl} : V_{HCl} = 1 : 1 : 2 (தாக்கிகள் உள்ள விகிதம்) இவை ஒரு எளிய முழு எண்விகிதுமாகும். எனவே கேலாசாக்கின் விதி உண்மையாகும்.

முக்கிய செய்முறைகள்.

- Zn துருவலை ஐதான H,SO, உடன் தாக்கி விளைவாகும் H., தூய்மையாக்கி, உலர்த்தி குழாயில் சேகரிக்கப்படும்.
- (2) HCl அமிலத்தை MnO, அல்லது KMnO, உடன் தாக்கி பெறப்படும் Cl., தூய்மை யாக்கி, உலர்த்தி குழாயில் சேகரிக்கப்படும்.
- தாக்கத்தை விரைவுபடுத்தவும், முற்றாக்கவும் பரவிய சூரிய ஒளியில் தொகுதி (3) நீண்ட நேரம் விடப்படும்.
- Cl, நீரில் கரைவதைத் தடுக்க பின்வரும் வழிகளைப் பயன்படுத்தலாம்.
 - நீரை Cl, ஆல் நிரம்பலாக்கல். (a)
 - H, வாயுவை Cl, கொண்ட கொதி குழாயினுள் செலுத்துதல்.

சாத்தியமான வழக்கள்.

- (1) Cl. நீரில் கரையலாம்.
- (2) சிறிய **அளவு** H, **தப்பி** வெளியேறலாம்.
- (3) தாக்கம் முற்றுப்பெற நிகழ்வது கடினம்.
- (4) கனவளவுகளை அளக்கும்போது வழு ஏற்படலாம். (இது புறக்களிக்கத்தக்கது)


குறிப்பு:

மேல் பரிசோதனையானது H,S, Cl, என்னும் வாயுக்களை அல்லது NO, O, என்னும் வாயுக்களைப் பயன்படுத்திச் செய்யலாம்.

$$H_2S + Cl_2 \rightarrow 2HCl + S \downarrow$$
 $2NO + O_2 \rightarrow 2NO_2$ (NO நிறமற்றது. நீரில் கரையாது, NO_2 கபில நிறம் நீரில் கரையம்)

 மேல் பரிசோதனையைக் கையாள்வது மிகவும் கடினமானது எனவே பின்வரும் மாற்று முறையைப் பயன்படுத்தலாம்.

மாற்றுமுறை. பரிசோகணை:

- (1) A, B என்பன சேமமாகவுள்ள (V = $50~{\rm cm^3}$) இரு கண்ணாடிக்குழாய்கள். ${\bf T_1}, {\bf T_2}$ என்பன இருவுறித் திருகிகள். ${\bf T_3}$ மூவழித் திருகி.
- (2) குழாய் A இல் 50 cm³ உலர் H₂ உம், குழாய் B இல் 50 cm³ Cl₂ உம் எடுக்கப்படும்.
- (3) T, ஐப் பய**ன்படுத்தி A** யிலும் B யிலும் உள்ள வாயுக்கள் கலக்கப்பட்டு தாக்கமடைய விடப்படும்.
- (4) தொகுதி இரண்டு நாட்களுக்கு பரவிய சூரிய ஒளியில் விடப்படும்.
- (5) தாக்கத்தால் வெண்புகை தோன்றும். தாக்கம் முற்றுப்பெற நிகழ்ந்த பின் பின்வரும் செய்முறைகள் கையாளப்படும்.

செய்முறை - I

குழாய் செங்குத்தாக நிமிர்த்தப்பட்டு, T_1 இரசத்தைக் கொண்ட தாழியில் அமிழ்த்தப்பட்டு T_1 திறக்கப்படும்.

ூவதானம்: இரச மட்டத்தில் எதுவித மாற்றமும் நிகழாது.

செய்முறை - II

T₁ மூடப்பட்டு **இ**ரசத்துக்குப் பதில் நீர் பயன்படு**த்தப்பட்டு தி**ரும்பவும் T₁ திறக்கப்படும்.

அவதானம்: நீர் மட்டம் உயர்ந்து குழாய் முற்**றாக நீரினால் நிரப்பப்ப**டும்.

முடிவு:

இரச மட்டத்தில் மாற்றம் இன்றியும், நீரினுள் குழாய் முற்றாக நிரப்பப் படுவதிலும் இருந்து, தாக்கத்தின் பின் தொகுதியில் விளைவாக்கப்பட்ட வாயுவின் கனவளவு, குழாயின் மொத்த கனவளவுக்குச் (100 cm³) சமனாகும்.

 $50 \text{ cm}^3 \text{ H}_2 + 50 \text{ cm}^3 \text{ Cl}_2 \rightarrow 100 \text{ cm}^3 \text{ HCl}$

...1 cm³ H₂ + 1 cm³ Cl₂ → 2 cm³ HCl

 $V_{H_a} + V_{Cl_a} \rightarrow V_{HCl}$ இது ஒரு எளிய விகிதமாகும்.

 $V_{{
m H}_2}:V_{{
m Cl}_2}:V_{{
m HCl}}=1:1:2$ இதுவும் ஒரு எளிய விகிதமாகும். எனவே கேலூசாக்கின் விதி உண்மையானது.

கேலூசாக்கின் விதியும் டோல்ற்றனின் கருத்தும். (1810)

மேல் பரிசோதனையில் இருந்**து கேலூ**சாக்கி**ன் விதியின்படி** V கனவளவு ஐதரசன் + V கனவளவு குளோரி**ன்** 2V கனவளவு ஐ**தரசன் கு**ளோரைட்டைக் கொடுக்கும்.

ஒரே வெப்ப அமுக்கத்திலும் சம கனவளவு வாயுக்கள் சம எண்ணிக்கையான அணுக்களைக் கொண்டிருக்குமென டோல்ற்றன் கருதினார். (அதாவது வாயுவின் கனவளவு அணுக்களின் எண்ணிக்கைக்கு நேர்விகித சமன்)

டோல்ற்றனின் கருத்தை கேலூசாக்கின் விதியுடன் இணைக்கும் போது,

1 அணு ஐதரசன் + 1 அணு குளோரின் → 2 கூட்டணு HCl.

2 கூட்டணு HCl இல் 2H அணுக்கள் உண்டு. இவ்விரு **ஐத**ரசன் அணுக்களும் தாக்கத்தின் போது ஒரு ஐதரசன் அணு பிரிகையடைந்**தே உருவா**க வேண்டும்.

மேலும் டோல்ற்றனின் கொள்கைப்படி அணுவை மேலும் பிரிக்க முடியாது. ஆகவே ஒரு ஐதரசன் அணு பிரிகையடைந்து இரு ஐதரசன் அணுக்களைக் கொடுக்க முடியாது. இதற்கான விளக்கத்தை டோல்ற்றனினால் தீர்மானிக்க முடிவில்லை.

முலக்கூறு.

டோல்ற்றனின் கருத்துக்களை அவதானித்து ஆராய்ந்த அவகாதரோ என்னும் விஞ்ஞானி "மூலக்கூறு" களின் இருக்கை பற்றிய கருத்தை முதலில் அறிமுகப்படுத்தினார்.

முலக்**கூறு:**

ஒன்று அல்லது ஒன்றுக்கு மேற்பட்ட அணுக்களின் கூட்டம் மூலக்கூறு எனப்படும். அல்லது ஒரு மூலகத்தின் அல்லது சேர்வையின் சுயாதீனமாக இருக்கக் கூடிய சிறிய துணிக்கை மூலக்கூறு எனப்படும்.

அவகாதரோவின் விதி. (1811)

ஒரே வெப்பநிலையிலும் ஒரே அமுக்கத்திலும் சம க<mark>னவளவு வா</mark>யுக்கள் சம எண்ணிக்கையான மூலக்கூறுகளைக் கொண்டிருக்கும்.

v oc n

ஆனால் N ∝ n

∴ V ∝ N

இங்கு V கனவளவையும், n அவ்வாயுவின் மூல் எண்ணிக்கையையும், N மூலக்கூறுகளின் எண்ணிக்கையையும் குறிக்கும்.

கேலூசாக்கின் விதியும் அவகாதரோவின் கருத்தும்.

பரிசோதனை முடிவுகளிலிருந்து கேலுசாக்கின் விதிப்படி,

V கனவளவு ஐதரசன் + V கனவளவு குளோரின் $\rightarrow 2V$ கனவளவு ஐதரசன் குளோரைட்டு.

அவகாதரோவின் விதிப்படி,

கனவளவு ∝ மூலக்கூறுகளின் எண்ணிக்கை.

- ∴ N மூலக்கூறு ஐதரசன் + N மூலக்கூறு குளோரின் → 2N மூலக்கூறு ஐதரசன் குளோரைட்டு.
- ஃ 1 மூலக்கூறு ஐதரசன் + 1 மூலக்கூறு குளோரின் → 2 மூலக்கூறு ஐதரசன் குளோரைட்டு.

2 மூலக்கூறு ஐதரசன் குளோரைட்டில் கட்டாயமாக, குறைந்தது இரண்டு அணு ஐதரசனும் 2 அணு குளோரினும் இருக்க வேண்டும்.

இதிலிருந்து ஐதரசன், குளோரின் மூலக்கூறுகள் ஒவ்வொன்றும் குறைந்தது இரண்டு அணுக்களையாவது கொண்டிருக்க வேண்டும் என முடிவு செய்யலாம். இதேபோன்று நைதரசன், ஒட்சிசன் என்பனவும் ஈரணுக்கொண்ட மூலக்கூறு எனக் காட்டலாம்.

$oldsymbol{\omega}$ லர் கனவளவு $(V_{oldsymbol{\omega}})$

ஒரு குறித்த வெப்ப அமுக்கத்தில் ஒரு மூல் வாயு அடைக்கும் கனவளவு மூலர் கனவளவு எனப்படும்.

வசதிகளைக் கருதி "நியம வெப்ப அமுக்கத்தில் (s.t.p) ஒரு மூல் வாயு அடைக்கும் கனவளவு மூலர்கனவளவு" எனப்படும்.

முக்கிய குறிப்பு:

- வாயு அளவீடுகளுக்கு நியம நிபந்தனைகளாக 0 ℃ வெப்பநிலையும், 1 atm (10⁵ Nm²) அமுக்கமும் தன்னிச்சையாகத் தெரிந்தெடுக்கப்பட்டுள்ளது. இவை நி.வெ.அ (நியம வெப்பநிலை அமுக்கம்) எனப்படும்,
- (2) பரிசோதனை முடிவுகளில் இருந்து மூலர்க்க<mark>னவளவு, V ූ 22.4</mark> dm³ mol⁻ (s.t.p) இல் ஆகும்.
- (3) வாயுவின் குத்திரம், அமைப்பு ஆகியவற்றின் அறிவைப் பயன்படுத்தாது நிறுத்தலால் மட்டும் ஒரு வாயுவின் சார் மூலக்கூற்றுத் திணிவைத் துணிவதற்கு இத்தொடர்பு உதவும்.
- (4) s.t.p இல் மூலர்க்கனவளவை அடைக்கும் வாயுவின் திணிவு மூலக்கூற்றுத் திணிவு ஆகும்.
- (5) s.t.p இல் மூலர்க்கனவளவை அடைக்கும் வாயு மூலக்கூறுகளின் எண்ணிக்கை அவகாதரோ எண் ஆகும்.

உ-ம்:

நியம் வெப்ப அமுக்கத்தில் $1~{
m dm}^3,~{
m H_2}$ வாயுவின் திணிவு 0.09 எனின், ${
m O_2}$ வாயுவின் மூலாக்கனவளவு என்ன? (H = 1.008)

நியம் வெப்ப அமக்கக்கில்.

0.09 g H. அடைக்கும் கனவளவு = 1 dm3

் 2.016 g H. அடைக்கும் கனவளவு = மூலர்க்களவளவு $=\frac{1 \times 2.016}{0.00} = 22.4 \text{ dm}^3$

ஒரு மூல் எந்த வாயவும் அவகாகரோ எண் மூலக்கூறுகளைக் கொண்டிருக்கும். எனவே அவகாதரோவின் விதிப்படி ஒரு மூல் எந்த வாயவும் நியம வெப்ப அமக்கத்தில் அடைக்கும் கனவளவு மூலர்க்கனவளவு ஆகும்.

$$\cdot$$
 O₂ வின் மூலர்க்கனவளவு = H_2 இன் மூலர்க்கனவளவு. = 22.4 dm^3

9 -in:

நியம் வெப்ப அழக்கத்தில் 560 ml வாய ஒன்றின் திணிவ 1 g. இவ்வாயவின் மூலக்கூற்று நிறை என்ன?

நியம் வெப்ப அமுக்கத்தில் மூலர்க்கனவளவ் (22.4 1) வாய்வின் கிணிவ மூலக்கூற்றுத் திணிவு ஆகும்.

மூலக்கூற்றுத் திணிவு
$$M = \frac{1 \times 22.4}{0.56} = 40 \text{ g mol}^{-1}$$

9 -in:

நியம வெப்ப அமுக்கத்தில் வாயுவொ**ன்றின் அட**ர்த்தி 0.76 g dm⁻³ ஆயின், வாயுவின் சார் மூலக்கூற்றுத் திணிவு என்ன?

நியம வெப்ப அமுக்கத்தில் ஒரு dm³ வாயுவின் திணிவு = 0.76g

. 22.4 dm⁻³ வாயுவின் திணிவு மூலக்கூற்றுத் திணிவு = 0.76 x 22.4

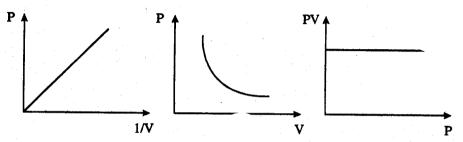
 $= 17.024 \text{ g mol}^{-1}$

ஒரு வாயுவின் நடத்தை தங்கியுள்ள காரணிகள்.

- அமுக்கம் (P)
- **ക്ങഖ**ണഖ്യ (V)
- வெப்பநிலை (T)

കിഞിഖ (m)

பொயிலின் விகி


மாரா வெட்பநிலையிற் குறிக்க கிணிவள்ள வாயவின் கனவளவு அழக்கக்குக்கு நேர்மாறு விகிக சமமாகும்.

$$V \propto \frac{1}{P}$$
, $V = K \frac{1}{P}$ $\therefore PV = K$

$$V = K - \frac{1}{F}$$

அதாவது P,V, = P,V,

பொயிலின் விதிக்கு வரைப முறை விளக்கம். மாறா வெப்பநிலையில் குறித்த திணிவுள்ள வாயுவுக்கு,

P -ih:

105 Pa அமுக்கத்திலும் 300 K இலும் உள்ள 100 dm3 He வாயுவை 1 dm3 ஆக அமுக்குவதற்குத்குத் தேவையான அமுக்கம் என்ன?

குறித்த திணிவு, மாறா வெப்பநிலை எனவே பொயிலின் விதிப்படி.

$$P_1V_1=P_2V_2$$

$$10^5 \times 100 = P_2 \times 1.$$

$$A P_{2} = 10^{7} Pa$$

2 -ib:

25 ℃ இலும் 105 Pa அமுக்கத்திலும் H, வாயுவைக் கொண்ட 2 dm³ குடுவை அதே வெப்பநிலையில் உள்ள 8 dm³ வெற்றுக்குடுவை ஒன்றுடன் இணைக்கப் பட்டால் தொகுதியின் அமுக்கம் என்ன?

மாரா வெப்பநிலை , குறிக்க திணிவ பொயிலின் விதிப்படி,

$$P_1V_1 = P_2V_2$$

$$10^5 \times 2 = P_2 \times (8 + 2)$$

∴
$$P_2 = 2 \times 10^4 \text{ Pa}$$

சாள்சின் விகி.

மாறா அமுக்கத்தில் ஒரு குறித்த திணிவடைய வாயுவின் கனவளவு தனி வெப்பநிலைக்கு நேர்விகிக சமன்.

$$V \propto T$$
 அதாவது $K = \frac{V}{T}$, $\therefore \frac{V_1}{T_1} = \frac{V_2}{T_2}$

குறிப்பு:

மாறா அமுக்கத்தில் ஒரு குறித்த திணிவுள்ள வாயுவின் கனவளவு, ஒவ்வொரு ℃ வெப்பநிலை அதிகரிப்புக்கும் 0 ℃ இல் உள்ள அதன் கனவளவிலும் 1/₂₇₃ மடங்கால் அதிகரிக்கும் எனப் பரிசோதனை முடிவுகள் காட்டின.

0 °C இல் வாயவின் கனவளவு V என்க.

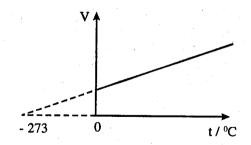
t °C இல் வாயவின் கனவளவு V என்க.

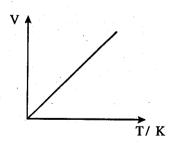
வெப்பநிலை t ℃ ஆல் உயரும்போது கனவளவு அதிகரிப்பு $\frac{V_0^t}{273}$

$$\star V = V_0 + \frac{V_0 t}{273} = V_0 \left(1 + \frac{t}{273} \right) = \frac{V_0}{273}$$
 (273 + t)

$$273 + t = T$$

இங்கு T என்பது தனிவெப்ப நிலையாகும்.


$$V = \frac{V_0 T}{273}$$
 $\frac{V_0}{273} = K$


 $V \propto T$

BASIC CHEMISTRY

$$\star K = \frac{V}{T}$$
 இது சாள்சின் விதியாகும்.

சாள்சின் விகியின் வரைப முறை விளக்கம்.

குறிப்பு:

இதேபோன்று மாறாக் கனவளவில் ஒரு குறித்த திணிவுள்ள வாயுவின் அமுக்கம் கனி வெப்பநிலைக்கு நேர் விகிக சமனாகும். இதுவும் சாள்சின் விகியாகம்.

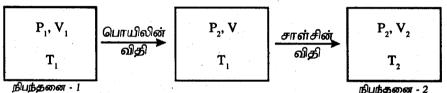
$$P \propto T$$
 அதாவது $P = KT$, $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

வாயு விதிகளை இணைத்தல்.

பொயிலின் விகிப்பட

சாள்சின் விதிப்படி.

இவ்விரு விதிகளையும் இணைக்கும் போது.


$$V \propto \frac{T}{P}$$
 இங்கு m மாறிலி

PV oc T

$$\frac{PV}{T} = K$$
 அதாவது $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_1}$

குறிப்பு:

ஒரு குறித்த திணிவுள்ள வாயுக்கு வேறுபட்ட நிபந்தனைகள் காட்டப் பட்டுள்ளன.

நபந்தனை - 2 வெப்பநிலை T₁ இல் மாறாதிருக்க அமுக்கம் P₁ இல் இருந்து P₂ வாக மாற்றப்பட்டதென்க. தொகுகியின் பதிய கனவளவ V என்க. பொயிலின் விகிப்பம.

$$P_1 V_1 = P_2 V$$

$$V = \frac{P_1 V_1}{P_2}$$

இப்பொழுது அமுக்கம் P_2 மாறாதிருக்க வெப்பநிலை T_1 இல் இருந்து T_2 வாக மாற்றப்பட்டது என்க. கனவளவு V, ஆகும்.

சாள்சின் விதிப்படி,

$$\frac{V}{T_1} = \frac{V_2}{T_2}$$

$$V = \frac{V_2 T_1}{T}$$

ஆனால் ,
$$V=\frac{P_1V_1}{P_2}$$

$$\frac{P_1V_1}{P_2}=\frac{V_2T_1}{T_2}$$

$$\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}$$

அதாவது
$$\frac{PV}{T} = K$$

(ii) PV T = K என்னும் சமன்பாட்டை நிறுவும்போது, பயன்படுத்தும் வாயு விதிகளாவன பொயிலின் விதியும், சாள்சின் விதியும் ஆகும்.

இது வாயுவின் திணிவில் தங்கியிருக்கும். இம்மாறிலி வாயுவுக்கு வாயு வேறுபடும். எனவே இம்மாறிலியானது ஒவ்வொரு வாயுவுக்கும், அதன் திணிவுக்கான K இன் பெறுமானம் பரிசோதனையால் துணியப்பட்ட பின்னரே பயன்படுத்தலாம். அத்துடன் இப்பெறுமானம் வழுவுள்ளதாகவே காணப்படும். இதன் பயனும் குறைவாகவே காணப்படும்.

ஆனால் அவகாதரோவின் விதியைப் பயன்படுத்தி இம்மாறிலியானது எல்லா வாயுக்களுக்கும் பொது உரிமை (சர்வதேச மாறிலி) ஆக்கப்படும்.

அதாவது ஒரு மூல் எந்த வாயுவும் நியம வெப்ப அமுக்கத்தில் அடைக்கும் கனவளவு மூலாக்கனவளவு ஆகும். (22.4 dm³)

ஆகவே நியம வெப்ப அமுக்கத்தில் ஒரு மூல் வாயுவை எடுக்கும் போது

$$\frac{PV}{T} = \mathbf{R}$$

$$PV = RT \dots (1)$$

ஃ n மூல் வாயுவுக்கு

$$PV = nRT....(2)$$

இது இலட்சிய வாயுச் சமன்பாடு ஆகும். இது பற்றி பின்னர் கருதுவோம். இங்கு R = 8.314 J mol⁻¹ K⁻¹ ஆகும். இது அகில வாயு மாறிலி எனப்படும்.

உ-ம்:

546K, 10° Pa இலும் ஒரு குறித்த திணிவுடைய H_2 இன் கனவளவு 600 cm³ ஆயின், இவ்வாயுவின் திணிவு என்ன?

s.t.p இல் வாயுவின் கனவளவு $m V_2$ என்க. மாறா அமுக்கம் 10^5 m Pa இல் குறித்த திணிவு வாயுவிற்கு சாள்சின் விதிப்படி

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 அதாவது $\frac{600}{546} = \frac{V_2}{273}$

$$V_2 = 300 \text{ cm}^3 = 0.3 \text{ dm}^3$$

s.t.p இல் 22.4 dm³ H₂ இன் திணிவு = 2g

் s.t.p இல்
$$0.3 \text{ dm}^3 \text{ H}_2$$
 இன் திணிவு = $2 \times \frac{0.3}{22.4} = 0.0268 \text{ g}$

2 -ib:

91 °C இலும் 950 mm Hg அமுக்கத்திலும் Ne வாயுவின் கனவளவு 800 cm³ ஆயின் s.t.p இல் இதன் கனவளவு யாது?

s.t.p. கனவளவை V, என்க.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{950 \times 800}{364} = \frac{760 \times V_2}{273}$$

$$\therefore V_2 = 750 \text{ cm}^3$$

உ-ம்:

5g Zn மிகையான ஐதான H₂SO₄ உடன் தாக்கமடையும் போது 15 ℃ இலும் 770 mm Hg அமுக்கத்திலும் விளைவாக்கப்படும் H, இன் கனவளவு என்ன? (Zn = 65)

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

$$n_{H_2} = n_{Zn} = \frac{5}{65} = \frac{1}{13} dm^3$$

$$V_{H_2}(s.t.p) = \frac{22.4}{13} \times 1 dm^3$$

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\frac{760 \times 22.4}{273 \times 13} = \frac{770 \times V_2}{288}$$

$$V_2 = 1.794 dm^3$$

உ-ம்:

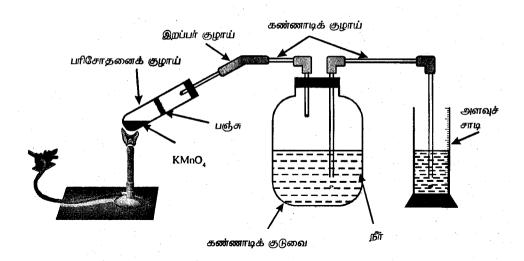
ஒரு குறித்த திணிவுள்ள வாயு 18 °C இலும் 100400 Pa அமுக்கத்திலும் 241 m³ கனவளவை அடைத்தது. நியம வெப்ப அமுக்கத்தில் இவ்வாயவின் கனவளவு என்ன?

 $P_1,\ V_1,\ T_1$ தொடக்க நிபந்தனை எனவும் $P_2,\ V_2,\ T_2$ இறுதி நிபந்தனை (s.t.p) எனவும் கொள்க.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$
 நியம் அமுக்கம் = 101300 Nm²

$$\frac{100400 \times 241}{(243 + 18)} = \frac{101300 \times V_2}{273}$$
 ... $V_2 = 224 \text{ m}^3$

. மலர்க்கனவளவைத் துணிதல்.


O, இன் (ழலர் கனவளவைத் துணிதல்.

வெப்பத்துக்குப் பிரிகை அடைந்து ஒட்சிசனை மட்டும் வாயு விளைவாகக் கொடுக்கும் ஒரு பதார்த்தத்தை இப்பரிசோதனைக்குப் பயன்படுத்தலாம்

$$\begin{array}{ccc}
\bullet & 2KMnO_{4} & \Delta H & K_{2}MnO_{4} + MnO_{2} + O_{2} \uparrow \\
2KNO_{3} & \Delta H & 2KNO_{2} + O_{2} \uparrow \\
2KClO_{3} & \Delta H & 2KCl + 3O_{2} \uparrow
\end{array}$$

வெப்பத்தின் விளைவாக பதார்த்தத்தின் திணிவில் ஏற்படும் நட்டம் வெளிவிடப்படும் O, இன் திணிவுக்குச் சமமாகும்.

பரிசோகனை.

- (1) சுத்தமான உலர்ந்த சோதனைக் குழாய் ஒன்றினுள் உலர் KMnO₂ எடுக்கப்படும்.
- சோதனைக் குழாயின் வாயினுள் பஞ்சுச் செருகி ஒன்று (படத்திற் காட்டப் பட்டுள்ளது போல்) வைக்கப்பட்டு குழாய் செம்மையாக நிறுக்கப்படும்.
- (3) தொகுதி வளியிறுக்கமாக மூடப்பட்டு, (படத்திற் காட்டப்பட்டுள்ளது போல்) உபகரணம் ஒழுங்குபடுத்தப்படும்.
- (4) சோதனைக் குழாய் வெப்பமாக்கப்படும்.

- (5) வெளியேற்றப்படும் O_, போத்தலில் இருந்து சமகனவளவு **நீரை இ**டம் பெயர்க்கும். இது அளவுச் சாடியிற் சேகரிக்கப்படும். (அல்லது வெளியேற்றப்படும் வாயுவை நேரடியாகச் சேகரித்தும் இதன் கனவளவை அளவிடலாம்.)
- (6) வசதியான கனவளவு நீர் சேகரிக்கப்பட்டதும் வெப்பமாக்கல் நிறுத்தப்படும்.
- (7) குளிரவிடப்பட்டு நீர் மட்டங்கள் சமனாக்கப்பட்டு அளவு சாடியில் உள்ள நீரின் கனவளவ செம்மையாக அளவிடப்படும். (V cm³)
- (8) கொதிகுழாய் அகற்றப்பட்டு மீண்டும் (பஞ்சுடன்) நிறுக்கப்படும்.
- (9) $W_{0} =$ நிறைக்குறைவு = $(W W_1)$ g.
- (10) பரிசோதனை நிலைமைகளில், அறை வெப்பநிலை வெப்பமானியில் இருந்தி அளவிடப்படும். (T, K), அமுக்கம் போட்டின் பாரமானியில் இருந்**து அளவிடப்படும்.** P, mm Hg.

கணிப்பு:

ஆய்வுகூட நிலைமையில்.

(W - W₁) g. O, அடைக்கும் கனவளவு V cm³.

$$\frac{\mathbf{W} - \mathbf{W}_1}{32} = \mathbf{n}_{\mathbf{o}_2}$$

ஃ O_2 இன் மூலர்க்கனவளவு, $V_m = \frac{V \times 32}{(W - W_1)} = V_1 \text{ cm}^3$ என்கை.

s.t.p இல் மூலர் கனவளவை V, cm³ என்க.

இணைந்த வாயு விதிகளைப் பயன்படுத்தி

$$\frac{P_1 V_1}{T_1} = \frac{760 \times V_2}{273}$$

 ${}_{m}$ O இன் மூலர்க்கனவளவு V_{m} (s.t.p) = $V_{2} = \frac{P_{1} \times V_{1} \times 273}{760 \times T_{1}}$ cm³

முக்கிய செய்முறை.

- (1) KMnO₄ மென் சூடாக்கப்பட்டபின் பயன்படுத்தப்படும். ஏனெனில் ஈரப்பற்றை அகற்றுவதற்காகும்.
- (2) KMnO₄ பதங்கமாகி வெளியேறுவதைத் தடுப்பதற்கு குழாயி**னுள் பஞ்சுவடி** இறுக்கப்படும்.
- (3) தொகுதி வளி இறுக்கமாக இருக்க வேண்டும்.

2_-in:

- (a) மேல் பரிசோதனையில் 27 ℃ இலும் 740 mm Hg அமுக்கத்திலும் 38 cm³ நீர் சேகரிக்கப்பட்டது ஆயின் s.t.p இல் வெளியேறிய O, இன் கனவளவு என்ன?
- (b) சோதனைக் குழாயினதும், உள்ளடக்கத்தினதும் நிறை இழப்பு 0.0481 g ஆயின் ஒட்சிசனின் மூலக் கனவளவு என்ன?

27 $^{\circ}$ C இலும் 740 mm Hg அமுக்கத்திலும் வெளியேறிய O_2 இன் கனவளவு = சேகரிக்கப்பட்ட நீரின் கனவளவு = $38~{
m cm}^3$.

s.t.p இல் O, இன் கனவளவை v என்க.

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$
 அதாவது $\frac{740 \times 38}{300} = \frac{760 \times V}{273}$

$$V = \frac{740 \times 38 \times 273}{300 \times 760} = 33.68 \text{ cm}^3$$

s.t.p இல்
$$O_2$$
 இன் மூலாக்கனவளவு = $\frac{33.68 \times 32}{0.0481}$ = 22400 cm³

முக்கிய குறிப்பு:

CO₂ இன் மூலர்க்கனவளவைத் துணிவதற்கு இதேபோன்ற முறையைப்பயன்படுத்தலாம்.

- (1) ${
 m CO}_2$ நீரில் கரைவதைத் தடுப்பதற்கு ${
 m CO}_2$ ஆல் நிரம்பலாக்கப்பட்ட நீர் பயன் படுத்தப்படும்.
- (2) வெப்பத்துக்கு இலகுவாகப் பிரிகை அடைந்து CO₂ ஐ மட்டும் வாயுவாகக் கொடுக்கக் கூடிய PbCO₃, CuCO₃, ZnCO₃ என்பவற்றை பயன்படுத்தலாம்.
- (3) Na₂CO₃ பயன்படுத்துவதாயின் அமிலம் சேர்ப்பதன் மூலம் வெளியேறும் CO₂ வினைச் சேகரிப்பதன் மூலம் CO₂ வின் மூலர்க்கனவளவைத் துணியலாம்.

2_-io:

உலர் KNO₃ வெப்பமாக்கிய போது உண்டான O₂ வாயு 300 K, 700 mm Hg அமுக்கத்திலும் 0.15 dm³ கனவளவை அடைத்தது. இப்பரிசோதனையில் உண்டான O₂ இன் திணிவு 0.192 g எனில் O₂ இன் மூலர்க்கனவளவைக் கணிக்கவும். (O = 16) ஒரு குறித்த வெப்ப அமுக்கத்தில் ஒரு மூல் O₂ அடைக்கும் கனவளவு.

$$Vm_{(300 \text{ K}, 750 \text{ mm Hg})} = \frac{0.15}{0.192} \text{ x } 32 = 25 \text{ dm}^3$$

$$Vm_{(s.t.p)} = 25 \text{ x} \frac{750}{700} \text{ x} \frac{273}{300} = 22.45 \text{ dm}^3$$

சார் அணுக்கிணிவு (Ar)

அணுக்கிணிவ அலகு [Atomic mass unit (a.m.u)]

- (1) சார் அணுத்திணிவும், சார் மூலக்கூற்றுத்திணிவும், ஒரு நியமத்துக்குச் சார்பாக வரையறுக்கப்படும். ஐதரசன் அணு எல்லா அணுக்களிலும் பாரம் குறைந்தது. எனவே ஐதரசன் அணு முதன் முதலாக நியமமாக எடுக்கப்பட்டு அதன் திணிவு ஒரு அலகு என எடுத்துக்கொள்ளப்பட்டது. ஐதரசனின் அணுவின் திணிவு அணுத்திணிவு அலகு என எடுத்துக்கொள்ளப்பட்டது.
- (2) ஐதரசன் அணுவை நியமமாகப் பயன்படுத்தி மற்றைய மூலகங்களின் திணிவு, ஐதரசன் அணுவின் திணிவிலும் எத்தனை மடங்கு பாரமானது என அறியப்பட்டது. இவ்வாறு கணிக்கப்பட்ட மற்றைய அணுக்களின் திணிவுகள் சாரணுத் திணிவுகள் எனப்பட்டது.
- (3) பல வசதிகளைக் கருதி H நியமம் O¹6 நியமமாகவும் பின் C¹² நியமமாகவும் மாற்றப்பட்டது.

சாரணுத்திணிவு (Ar)

BASIC CHEMISTRY

ஒரு மூலகத்தின் அணுவொன்றின் திணிவுக்கும் H¹ சமதானி ஒன்றின் திணிவுக்கும் இடையே உள்ள பின்னம் சார் அணுத்திணிவு (Ar) என அழைக்கப் பட்டது.

ஒட்சிசனை (O¹) நியமமாகப் பயன்படுத்தல்.

ஐதரசன் நியமம் ஒட்சீசனால் மாற்றப்பட்டதற்கான காரணங்கள்.

- (1) ஒட்சிசனை நியமமாகப் பயன்படுத்தி சாரணுத்திணிவுகளைத் துணிந்த போது அநேகமான மூலகங்களின் சாரணுத்திணிவுகள் அண்ணளவாக முழு எண்களாகக் காணப்பட்டன. இதனால் கணிப்புகள் இலகுவாக்கப்படும்.
- (2) ஒட்சிசன் ஐதரசனிலும் தாக்குதிறன் கூடியது. அத்துடன் அனேகமான மூலகங்களுடன் உறுதியான சேர்வைகளை ஆக்கும் ஆற்றல் உடையது.

ஒட்சிசன் நியமம் மாற்றப்பட்டதன் காரணம்.

"சமதானி" களின் இருக்கை கண்டுபிடிக்கும் வரை ஒட்சிசன் நியமம் திருப்திகரமாக இருந்தது. இயற்கையில் உள்ள ஒட்சிசன்) O¹⁶, O¹⁷, O¹⁸ என்னும் சமதானிகளால் ஆக்கப்பட்டதாகும்.

இயற்கையில் உள்ள ஒட்சிசனின் சமதானிகளின் வீத அமைப்புக்கள் அதிக அளவுகளில் வேறுபட்டமை அவதானிக்கப்பட்டது. இதனால் ஒட்சிசனை நியமமாகப் பயன்படுத்திக் கணிக்கப்பட்ட மூலகங்களின் சாரணுத்திணிவு களிடை யேயும் வேறுபாடுகள் அவதானிக்கப்பட்டன. இதனால் ஒட்சிசன் நியமத்தை மாற்ற வேண்டிய அவசியம் ஏற்பட்டது.

காபனை (C¹¹) நியமமாகப் பயன்படுத்தல். அணுத்திணிவு அலகின் நவீன வரைவிலக்கணம்.

 C^{12} சமதானி அணுவொன்றின் திணிவின் $^{1}/_{12}$ பங்கு அணுத்திணிவு அலகு எனப்படுகின்றது.

12.000 g C¹² சமதானி 6.022 x 10²³ அணுக்களைக் கொண்டிருக்கும்.

∴ அ.தி.அ (a,m.u) =
$$\frac{12}{6.022 \times 10^{23}} \times \frac{1}{12} = 1.66 \times 10^{-24} \text{ g}$$

= $1.66 \times 10^{-27} \text{ kg}$

சாரணுத்திணிவின் நவீன வரைவிலக்கணம்.

Ar = ஒரு மூலகத்தின் அணுவொன்றின் "சராசரித் திணிவு"
$$C^{12}$$
 சமதானி அணுவொன்றின் திணிவு $\frac{1}{1}$

\mathbf{C}^{12} நியமத்தைப் பயன்படுத்துவதன் காரணம்.

இயற்கையில் உள்ள காபனின் சமகானிகளின் வீக அமைப்ப அகிகளவில் வேறுபடுவதில்லை. (காபனின் சமதானிகளிவும் С12 சமகானியே கூடியளவில் காணப்படும். இதனால் காபன் C¹². C¹³. C¹⁴ என்னும் சமதானிகளைக் கொண்டிருந்த போதிலும் அதன் அணுத்திணிவ 12.0115 ஆகும்.)

எனவே காபனை நியமமாகப் பயன்படுத்தும்போது மூலகங்களின் சாரணுக் திணிவுகளிடையே காணப்பட்ட வேறுபாடுகள் நீக்கப்பட்டன. அக்துடன் காபனை நியமமாகப் பயன்படுத்திய போதும், கணிக்கப்பட்ட சாரணுத் திணிவுகள் அனேகமான மூலகங்களுக்கு அண்ணளவான முழு எண்களாகக் காணப்படும். இதனால் தணிப்பதளம் இலகுவாக்கப்படும்.

அவகாகரோவின் எண்.

ஒரு முல் எந்தப் பதார்த்தத்திலும் உள்ள அப்பதார்த்தத்தின் ஏகவின துணிக்கைகளின் எண்ணிக்கை அவகாதரோ எண் எனப்படும்.

$$L = \frac{N}{n} = 6.022 \times 10^{23} \text{ mol}^{-1}$$

இங்கு N என்பது n மூலில் உள்ள துணிக்கைகளின் எண்ணிக்கை ஆகும்.

சமதானி சார்பாக அவகாதரோ மாறிலியின் வரைவிலக்கணம்.

சரியாக 12.000 g C12 சமதானியில் உள்ள C12 அணுக்களின் எண்ணிக்கை அவகாதரோவின் மாறிலி எனப்படும்.

இகன் பெறுமானம்.

1 mol C¹² அணுக்களின் திணிவு = L x (C¹² அணுவொன்றின் திணிவு)

 $12.000 \text{ g mol}^{-1} = \text{L x } 12 \text{ a.m.u}$

$$L = \frac{1g \text{ mol}^{-1}}{1 \text{ a.m.u}} = \frac{1g \text{ mol}^{-1}}{1.66 \times 10^{-24} \text{ g}} = 6.022 \times 10^{23} \text{ mol}^{-1}$$

அவகாதரோவின் மாறிலி = $L = 6.022 \times 10^{23} \text{ mol}^{-1}$

குறப்பு:

இங்கு C¹² நியமத்தையே கட்டாயமாகப பயன்படுத்த வேண்டும் என்பதைக் கருத்திற் கொள்ளவும்.

மூல்.

மூல் என்பது மூலர் திணிவு (M) ஆகும். M எனப்படுவது ஒரு மூலின் திணிவு ஆகலால்.

$$M = \frac{W}{n}$$
 இங்கு W என்பது திணிவு.

$$\mathbf{n} = \frac{\mathbf{W}}{\mathbf{M}}$$
 இங்கு \mathbf{n} என்பது ஒரு மூல் எண்ணிக்கை ஆகும்.

\mathbb{C}^{12} சமதானி சார்பாக மலினை வரையாக்கல்.

சரியாக $12.000 \text{ g } \text{C}^{12}$ சமதானியில் உள்ள அணுக்களின் எண்ணிக்கைக்கு சமனான ஏகவின்க் துணிக்கைகளைக் கொண்ட புதார்க்கக்கின் அளவு மல் எனப்படும்.

முலர்த்திணிவு:

ஒரு மூல் பதார்த்தத்தின் திணிவு மூலர்த்திணிவு எனப்படும். இதன் அலகு g mol⁻¹ அல்லது S.I **அலகில்** kg mol⁻¹ ஆகும்.

2__-ib:

44 g CO, வாயுவில் உள்ள

- CO, முல்கள் **எ**த்த**னை**?
- CO. முலக்கூறுகள் எக்கனை?
- C அணு மூல்கள் எத்தனை?
- (d) C அணுக்கள் எத்தனை?
- மொத்த அணுக்கள் எக்கனை? (e)
- (a) $n = \frac{W}{M} = \frac{44}{44} = 1 \text{ mol}$
 - (b) $1 \times 6.022 \times 10^{23}$

- $n_c = n_{CO_2} = 1 \text{ mol}$ (d) $1 \times 6.023 \times 10^{23}$ $6.022 \times 10^{23} \times 3 = 1.8066 \times 10^{24}$ (ஒரு மூலக்கூறு CO_2 இல் 3 அணுக்கள் உண்டு)

2_-ii:

பின்வரும் மூலகங்களின் அணுவொன்றின் திணிவை கிராமில் கணிக்க [சாரணுத்திணிவுகள் : H = 12, C = 12, Fe = 56, U = 236]

- - (ii) C
- (iii) Ge (iv) U

அவகாதரோ எண் அணுக்களின் திணிவு அணுத்திணிவு ஆகும்.

(i)
$$\frac{1}{6.022 \times 10^{23}} = 1.66 \times 10^{-24} g$$

(ii)
$$\frac{12}{6.022 \times 10^{23}} = 1.99 \times 10^{-23} g$$

(iii)
$$\frac{56}{6.022 \times 10^{23}} = 9.29 \times 10^{-23} \text{ g}$$

(iv)
$$\frac{236}{6.022 \times 10^{23}} = 3.9 \times 10^{-23} g$$

மு. கு: அணுவொன்றின் திணிவின் வரிசையின் வீச்சம் 10⁻²⁴ - 10⁻²² g.

உ-ம்:

X என்னும் மூலகத்தின் அணுவொன்றின் திணிவு 4 x 10⁻²³ g.

- (i) X இன் அணுவொன்றின் திணிவு ஒரு ஐதரசன் அணுவிலும் எத்தனை மடங்கு பாரமானது?
- (ii) X இன் சாரணுத்திணிவு என்ன?

(i)
$$\frac{4 \times 10^{-23}}{1/6.022 \times 10^{23}} = 24.09$$
 (ii) 24.09

9...-ib:

மூலகம் Y இன் சமதானி அணுவொன்றின் திணிவு C^{12} சமதானி அணு ஒன்றின் திணிவைப்போல் 7.5 மடங்காகும். மூலகம் Y இன் அச்சமதானியின் சாரணுத்திணிவைக் கணிக்க.

சமதானியின் சாரணுத்திணிவு = மூலகமொன்றின் சமதானி அணுவொன்றின் திணிவு 1/12

$$= \frac{7.5 \text{ x} \left[\frac{12.000}{6.022 \text{ x} \cdot 10^{23}} \right]}{\frac{12.000}{6.022 \text{ x} \cdot 10^{23}} \text{ x} \frac{1}{12}}$$

$$= 90$$

சார்மூலக்கூற்றுத் திணிவு (Mr).

Mr = ஒரு மூலகத்தின் / சேர்வையின் மூலக்கூறு ஒன்றின் திணிவு C^{12} சமதானி அணுவொன்றின் திணிவு V_{12}

உ-ம்:

Cl, இன் மூலர் திணிவு 71 என்பதால் நீர் விளங்குவதென்ன?

ஒரு மூலக்கூறு Cl_2 இன் திணிவானது Cl^2 சமதானி அணுவொன்றின் திணிவ் ω . $^{1}/_{12}$ இலும் 7 1 மடங்கு பாரமானது.

சாரணுத்திணிவைத் துணிதல்

சாரணுத்திணிவைத் துணியப் பொதுவாக பின்வரும் இரண்டு முறைகள் பயன்படுத்தப்படுகின்றன..

- (1) இரசாயன முறை.
- (2) பௌதிக மு**றை.**

இரசாயன முறை.

(1) (a) கணிற்சாரோவின் முறை.

சாரணுத்திணிவை முதலில் திருத்தமாகத் துணிந்தவர் கணிற்சாரோ (Cannitzzaro) ஆவார். ஆவிப்பறப்புள்ள சேர்வைகளை ஆக்கும் மூலகங்களின் சாரணுத்திணிவைத் துணிய இம்முறை பயன்பட்டது.

(b) **தூலோன் பெற்றிற்றர்** முறை.

திண்ம மூலகங்களின் சாரணுத்திணிவுகளைத் துணிய தூலோன் பெற்றிற்றர் (Dulong - Petit) முறை பயன்பட்டது. எனினும் சில திண்ம மூலகங்களுக்கு இம்முறை பொருந்தாது.

പെണ്ട് ക് ധ്രത്നെ.

அணுத்திணிவு நிறமாலையைப் பயன்படுத்தி அணுத்திணிவு துணிதல்.

இம்முறை எல்லா மூலகங்களினதும் சாரணுத்திணிவுகளைத் திருத்தமாகத் துணியப் பயன்படுகிறது. இம்முறையினை அஸ்ரன் (Aston) எனும் விஞ்ஞானி பிரேரித்தார்.

- (1) இயற்கையில் உள்ள அனேகமான மூலகங்கள் சமதானிகளின் கலவையாகும்.
- (2) அணுத்திணிவு நிறமாலையைப் பயன்படுத்தி ஒரு மூலகத்தின் எல்லாச் சம தானிகளினதும் சார்பு அளவுகள் துணியப்படும்.
- (3) திணிவு நிறமாலைப் பகுப்பில் இருந்து இயற்கையிலுள்ள ஐதரசனின் அளவுகள் $H^1 = 99.4\%$, $H^2 = 0.4\%$ $H^3 = 0.2\%$ ஆகக் காணப்பட்டது. எனவே ஐதரசனின் 100 அணுக்களின் மொத்தத் திணிவு.

$$= 99.4 \times 1 + 0.4 \times 2 + 0.2 \times 3 = 100.8$$

(இவை பற்றிய மேலதிக விபரங்கள் பொது இரசாயனத்திற் விளக்கப்படும்.)

9 -ib:

அணுத்திணிவு நிறமாலைப் பகுப்பிலிருந்து X என்னும் மூலகத்தின் சமதானிகளின் சார்பளவுகள் முறையே $X^{24} = 79\%$, $X^{25} = 10\%$, $X^{26} = 11\%$ ஆகும். X இன் சாரணுத்திணிவு என்ன?

X இன் 100 அணுக்களின் மொத்தத் திணிவு. = 79 x 24 + 10 x 25 + 11 x 26 = 2432

வலுவளவு

ஒரு மூலகத்தின் ஓரணுவுடன் சேரும் அல்லது ஓரணுவால் இடம்பெயர்க்கப் படும் ஐதரசன் அணுக்களின் எண்ணிக்கை வலுவளவு எனப்படும்.

அதாவது ஒரு மூலகம் இழக்கும் அல்லது ஏற்கும் அல்லது பங்கீடு செய்யும் இலத்திரன்களின் எண்ணிக்கை வலுவளவாகும்.

உ-ம்:

 O_2 வில் ஒட்சிசனின் வலுவளவு 2 ஆகும்.

முக்கிய குறிப்பு:

ஐதரசனுடன் தாக்கமுறாத மூலகங்களில், ஐதரசக்குச் சமனான கூட்டங் களுடன் இம்மூலகங்கள் உண்டாக்கும் சேர்வைகளைக் கொண்டு இவற்றில் வலுவளவுகள் உய்த்தறியப்படும். அதாவது ஒரு மூலகம் CI, Br, CH, ஆகிய வற்றுடன் உண்டாக்கும் சேர்வைகள் ஓரணு ஐதரசனுக்குச் சமனான சேரும் திறனுடையனவாகும். இதேபோன்று ஒட்சிசனின் வலுவளவு 2 எனக் கொண்டு ஒட்சைட்டுக்களில் இருந்து மூலகங்களின் வலுவளவைத் துணியலாம்.

வலுவளவு x சமவலுத்திணிவு = சாரணுத்திணிவு

சேர்வைகளின் குத்திரங்கள்

இரசாயனச் சூத்திரம் என்பது ஒரு மூலகத்தின் அல்லது சேர்வையின் இரசாயன அமைப்பைக் குறிப்பிட சுருக்கமான முறையாகும்.

அனுபவச் குத்திரம்.

ஒரு சேர்வையில் உள்ள வெவ்வேறு மூலகங்களின் அணு விகிதத்தைக் காட்டும் எளிய சூத்திரம் அனுபவச் சூத்திரம் எனப்படும்.

மூலக்கூற்றுச் சூத்திரம்.

ஒரு சேர்வையின் மூலக்கூறு ஒன்றில் உள்ள ஒவ்வொரு மூலகத்தின் அணு எண்ணிக்கையையும் காட்டும் சூத்திரம் ஆகும்.

குறிப்பு:

- (1) பங்கீட்டு வலுச் சேர்வைகளே மூலக்கூறுகளாகக் காணப்படும். CO₂, SO₂, H₂SO₃, HCl, CH₄ என்பன மூலக்கூறுகளாகும்.
- (2) பல சேர்வைகள் மூலக்கூறுகளாகக் காணப்படுவதில்லை. உதாணமாக NaCl, CaCl, போன்ற அயன் சேர்வைகள் சாலகங்களாகவே காணப்படும். இவற்றைக் குறிப்பதற்கு பயன்படுத்தும் சூத்திரங்கள் அனுபவச் சூத்திரங்கள் ஆகும். அதாவது NaCl என்பது சோடியம் குளோரைட்டின் அனுபவச் சூத்திரமாகும்.

முலக்கூற்றுச் சூத்திரங்களைத் துணிதல்.

(1) தரப்பட்ட சேர்வையின் மூலக்கூற்று நிறை துணியப்படும். இதற்கு சேர்வையின் ஆவியடர்த்தி அளவீடுகள் பயன்படுத்தப்படும்.

ஆவியின் மூ.கூ.தி
$$M = \frac{d}{P} RT$$
 மு.கூ.நிறை = ஆவியடர்த்தி x 2

- (2) தரப்பட்ட சேர்வையில் உள்ள மூலகங்களை பகுத்தறிதல். (பண்பறி பகுப்பு).
- (3) தரப்பட்ட சேர்வையில் உள்ள மூலகங்களின் அளவுகளைப் பகுத்து அறிதல். (அளவறி பகுப்பு)
- (4) சேர்வையில் உள்ள மூலகங்களின் சாரணுத்திணிவுகளைத் துணிதல்.
- (5) மூலகங்களின் அளவு, சார் அணுத்திணிவு என்பவற்றைப் பயன்படுத்தி அனுபவச் சூத்திரத்தைத் துணிதல்.
- (6) அனுபவச் சூத்திரம், மூலக்கூற்றுத் திணிவு என்பவற்றைப் பயன்படுத்த. மூலக்கூற்றுச் சூத்திரம் துணியப்படும்.

பரிசோதனையால் பெறப்பட்ட திணிவமைப்பிலிருந்து இரசாயனச் சூத்திரத்தைப் பெறுவதற்கான நடைமுறை.

- (1) மூலகங்களின் திணிவுகள் அதன் சா.அ.தி ஆல் பிரித்து மூலகங்களின் அணுக்களின் சார் எண்ணிக்கைகளாக மாற்றப்படும்.
- (2) ஒவ்வொரு சார் எண்ணிக்கையும், மிகச் சிறிய சார் எண்ணிக்கையால் பிரிக்கப்படும்.
- (3) கிடைக்கும் எண் அண்ணளவாக சிறு முழு எண்ணாக இருக்கும் அல்லது முழு எண்ணாக மாற்றிக் கொள்ளப்படும்.
- (4) இச்சிறு முழு எண்களை உரிய மூலகத்தின் குறியீட்டுக்குக் கீழ் எழுதி அனுபவச் சூத்திரம் பெறப்படும்.
- (5) மு.கு.தி தெரியுமாயின், அனுபவச் சூத்திரத்தைப் பயன்படுத்தி மூ.கு.சூ பெறப்படும்.

உ-ம்:

X என்னும் சேர்வை ஒன்று நிறைப்படி 20% Ca, 80% Br என்பவற்றைக் கொண்டுள்ளது. (Ca = 40, Br = 80)

- (a) இச் சேர்வையின் அனுபவச் சூத்திரம் என்ன?
- (b) இச்சேர்வையை எவ்வாறு பெயரிடுவீர்? ஏன்?
- (c) இதனை எவ்வாறு உறுதிப்படுத்துவீர்?

மூலகம்	நிறை %	அணு விகிதம்	எளிய விகிதம்.					
Ca	20	$\frac{20}{40} = 0.5$	$\frac{0.5}{0.5} = 1$					
Br	80	$\frac{80}{80} = 1$	$\frac{1}{0.5} = 2$					

. X இன் அனுபவச் சூத்திரம் CaBr_a.

(b) Calcium bromide. காரணம் வலுவளவு Ca - 2, Br - 1, Ca எப்பொழுதும் இரு வலு உள்ள நேர் அயன்களைக் கொடுக்கும், Br ஒரு வலு உள்ள எதிர் அயகைக்கொடுக்கும் எனவே Ca⁺⁺, Br அயன்கள் அயன்பிணைப்பால் இணைந்து சாலகமாக இருக்கும்.

(CaBr₂ என்பது மூ.கூ.சூ அல்ல அனுபவச் சூத்திரம் என்பதை மீண்டும் மனதிற் பதிக்கவும்.)

(c) இதனை உறுதிப்படுத்த Ca⁺⁺, Br அயன்கள் பரிசோதிக்கப்படும்.

Ca⁺⁺: பிளாற்றினம் கம்பி ஒன்றைப் பயன்படுத்தி சேர்வையை HCl அமிலத்தில் தோய்த்து சுவாலையிற் பிடிக்க ஓட்டுச் சிவப்பு நிறம் தோன்றும். ஆகவே Ca⁺⁺ உண்டு.

Br: நீர்க்கரைசலுக்கு CCl₄/Cl₂ சேர்க்கும் போது குளோரோபோம் படையில் செம்மஞ்சள் நிறம் தோன்றும் ஆகவே Br உண்டு. (அல்லது நீர்க் கரைசலுக்கு AgNO₃ (aq) சேர்க்க மென்மஞ்சள் வீழ்படிவு தோன்றும். இது HNO₃ இல் கரையாது. குடான செறிந்த NH₃ இல் கரையும். ஆகவே Br உண்டு.)

உ-ம்:

(a)

ஒரு சேர்வை பின்வரும் நிறை வீத அமைப்பை உடையது. H = 1.12%, Cu = 37.78, S = 18.02%, O = 45.08 (H = 1, Cu = 63.5, S = 32, O = 16)

- (a) இச்சேர்வையின் அனுபவச் சூத்திரம் என்ன?
- (b) இதனை எவ்வாறு பெயரிடுவீர்? எவ்வாறு உறுதிப்படுத்துவீர்?

் முலகம்	Н	Cu	S	О
நிறை %	1.12	35.78	18.02	45.08
கி.அணு விகிதம்	1.12	35.78	18.02	45.08
	1	63.5	32	16
	1.12	0.56	0.56	0.56
எளிய விகிதம்	1.12	0.56	0.56	0.56
	0.56	<u>0.56</u>	0.56	0.56
	2	1	1	5

- ் அனுபவச் சூத்திரம் H,CuSO_s.
- (b) CuSO₄, H₂O (செப்பு சல்பேற்று ஒரு ஐதரேற்று)
 - (i) நீர்க்கரைசலுக்கு NH₃(aq) சேர்க்கும்போது நீல நிற வீழ்படிவு தோன்றி மிகையில் கரைந்து கடும் நீலநிறக் கரைசல் தோன்றும். ஆகவே Cu⁺⁺ உண்டு.
 - (ii) நீர்க்கரைசலுக்கு BaCl₂(aq) சேர்க்க அமிலத்திற் கரையாத வெண்ணிற வீழ்படிவு தோன்றும். ஆகவே SO₂. உண்டு.

உ-ம்:

X என்னும் ஐதரோகாபன் 11.1% நிறையளவு ஐதரசனைக் கொண்டுள்ளது. சார்மூலக்கூற்றுத்திணிவு 54. X இன் மூலக்கூற்றுச் சூத்திரம் என்ன? (C = 12, H = 1)

மூலகம்	நிறை %	அணுவிகிதம்	எளிய விகிதம்	எளிய முழுஎண்.விகி
C	88.9	$\frac{88.9}{12} = 7.41$	$\frac{7.41}{7.41} = 1$	1 x 2 = 2
Н	11.1	$\frac{11.1}{1} = 11.1$	$\frac{11.1}{7.41} = 1.5$	$1.5 \times 2 = 3$

- . அனுபவச் சூத்திரம் C₁H,
- X இன் மூலக்கூற்றுச் சூத்திரம் (C,H,) என்க.

$$(2 \times 12 + 1 \times 3) n = 54$$

$$27n = 54$$

n = 2

. X இன் மூலக்கூற்றுச் சூத்திரம் C₄H₆.

9 -in:

A என்னும் சேதனச் சேர்வை ஒன்று பின்வரும் மூலகங்களை நிறை வீதங்களாகக் கொண்டுள்ளது. C = 40%, H = 6.67%, O = 53.33%. A இன் ஆவியடர்த்தி 45 ஆயின், இதன் மூ.கூ.சூ என்ன? (C = 12, O = 16, H = 1)

மூலகம்	நிறை %	கி.அணு விகிதம்	எளிய விகிதம்
С	40	$\frac{40}{12} = 3.33$	$\frac{3.33}{3.33} = 1$
Н	6.67	$\frac{6.67}{1} = 6.67$	$\frac{6.67}{3.33} = 2$
0	53.33	$\frac{53.33}{16} = 3.33$	$\frac{3.33}{3.33} = 1$

∴ A அபைவச் சூத்திரம் CH.O

A இன் மூலக்கூற்றுச் சூத்திரம் (CH₂O) என்க.

(பக்கம் 34 ஐ பார்க்கவம்)

$$(CH_2)O = 45 x = 90$$

$$(12 + 2 + 16) n = 90$$

$$30n = 90$$

$$n = 3$$

. A இன் மூலக்கூற்றுச் சூத்திரம் C,H,O,.

2_-ib:

ஒரு சேதன ஒரு மூல அமிலம் A இன் 0.18 g முற்றாக தகனமடையச் செய்த போது 0.264 g CO_2 ஐயும், 0.108 g H_2O ஐயும் கொடுத்தது. அமிலத்தின் மூலக்கூற்றுத் திணிவு 90 எனில் A இன் மூலக்கூற்றுச் சூத்திரம் என்ன? (C=12, O=16, H=1) 44g $CO_2 \rightarrow 12$ g காபனைக் கொண்டிருக்கும்.

். காபனின் நிறை % =
$$\frac{12 \times 0.264 \times 100}{44 \times 0.18}$$
 = 40%

 $18 {
m g \ H_2O} \ 2 {
m g}$ ஐதரசனைக் கொண்டிருக்கும்.

∴ ஐதரசனின் நிறை % =
$$\frac{2 \times 0.108 \times 100}{18 \times 0.18}$$
 = 6.67%

எனவே அமிலம் A, 40% காபன், 6.67% ஐதரசன், 53.33 வீத ஒட்சிசன் என்பவற்றைக் கொண்டிருக்கும். இதன் அனுபவச் சூத்திரம் இதற்கு முதல் உள்ள உகாரணக்கில் கணிக்கப்பட்டுள்ளது. (CH.O).

A இன் மு.கூ.சூ (CH.O)n என்க. A இன் மு.கூ.தி 90

$$(12 + 2 + 16)n = 90$$

$$n = 3$$

. A இன் மு.கூ.கு C,H,O, ஆகும்

9 -in:

X என்னும் சேதனச் சேர்வை $\mathrm{C_xH_vO_z}$ என்னும் சூத்திரத்தைக் கொண்டது. X இல் காபனின் நிறை வீதம் 40. X இன் சார் மூ.கூ.தி 60 ஆயின் X இன் எளிய சூத்திரம் என்ன? (C = 12. O = 16. H = 1)

$$w_c = \frac{60 \times 40}{100} = 24 \text{ g}, \quad A_c = \frac{24}{12} = 2 \text{ mol}$$

🔥 சேர்வையின் சூத்திரம் C, H, O_

$$C_x H_y O_z = 60$$

$$12 \times 2 + 1 \times Y + 16z = 60$$

$$y = 16z = 60 - 24 = 36$$

z = 1 ஆயின், y = 20 ஆகும். வலுவளவின் அடிப்படையில் இது சாத்தியம் இல்லை. z = 3 ஆக இருக்க முடியாது.

$$y + 16 \times 2 = 36$$

$$y = 4$$

- ஃ மூ.கூ.சூத்திரம்,C,H,O,
- 🛦 எளிய சூத்திரம் (அனுபவச் சூத்திரம்) CH.O.

2_-ib:

நீர் ஏற்றப்பட்ட Al.(SO,).. xH,O 8.1% நிறைப்படி Al ஐக் கொண்டுள்ளது. (Al = 27, S = O. O - 16. H = 1)

- நீரேற்றப்பட்ட சேர்வையின் மூலக்கூற்றுத் திணிவு என்ன?
- நீரற்ற சேர்வையின் மூலக்கூற்றுக் கிணிவ என்ன? (b)
- X இன் பெறுமானம் என்ன? (c)
- சேர்வையில் உள்ள நீரின் நிறை வீதம் என்ன?
- e) நீர்ற்ற சேர்வையில் AI இன் நிறை வீகம் என்ன?

(a)
$$^{M}Al_{2}(SO_{4})_{3}$$
, $xH_{2}O = \frac{2 \times 27 \times 100}{8.1} = 666.6 \text{ gmol}^{-1}$

- MAI, $(SO_4)_3 = 2 \times 27 + (32 + 4 \times 16) 3 = 342 \text{ gmol}^3$. (b)
- 1 mol பளிங்கில் நீரின் திணிவு = 666.6 342 = 324.6 g (c)

$$n_{\rm H_2O} = \frac{324.6}{18} = 18.03$$

X எப்பொழுதும் முழு எண் ஆதலால் X = 18 ஆகும்.

(d) நீரின் வீத நிறை =
$$\frac{18 \times 18 \times 100}{666.6}$$
 = 48.60%

(e) Al இன் நிறை வீதம் =
$$\frac{2 \times 27 \times 100}{342}$$
 = 15.79%

உ-ம்:

- ஒரு மூலகம் M இனது வாயு நிலையிலுள்ள ஐதரைட்டின் 1.240 g ஆனது அதன் (a) மூலகங்களாக முற்றாகக் கூட்டப்பிரிவற்ற பொழுது, நி.வெ.அ இல் 1,345 dm³ ஐதரசன் வாயுவைத் தந்தது. மேலுள்ள தரவிலிருந்து M இன் இரசாயனச் சம**வவுவைக்** கணிக்க. (H = 1.00)
- ஐதரைப்டின் சார்பு மூலக்கூற்றுத் திணிவு 62 ஆகும். மேலே (a) யிலுள்ள இரசாயனச் சமவலுவுக்கு இசைவான ஐதரைட்டின் மூலக்கூற்றுச் சூத்திரம் என்ன?
- மேலே (b) யிவுள்ள உமது விடையுடன் இணங்கும் M இன் வலுவளவு யாது? (c)
- மேலே (a), (b), (c) ஆகியவற்றிலுள்ள உமது விடைகளுடன் இணங்கும் M இன் (d) சார்பணுத்திணிவு என்ன?

- (e) மிகவும் நம்பத்தக்க முறையினால் M இன் சார்பணுத்திணிவு துணியப்பட்டு, அதன் செம்மையான பெறுமானம் 28 எனக் காணப்பட்டது. M இன் ஐதரைட்டின் சரியான மூலக்கூற்றுச் சூத்திரம் என்ன?
- (f) மிகவும் நம்பத்தக்க ஒரு முறையினால் M இன் இரசாயனச் சமவலு துணியப் பட்டு, அதன் செம்மையான பெறுமானம் 7 எனக் காட்டப்பட்டது. M இன ஐதரைட்டின் கட்டமைப்பு என்ன?
- (a) s.t.p இல் மூலர் கனவளவு H, இன் திணிவு = 2g

$$^{\bullet}WH_2 = \frac{2 \times 1.245}{22.4} = 0.12 \text{ g}$$

$$W_M = 1.24 = 1.24 - 0.12 = 1.12 g$$

1 g H, உடன் சேரும் M இன் திணிவு சமவலுத்திணிவு (E) ஆகும்,

$$E = \frac{1.12 \times 1}{0.12} = 9.33$$

(b) ஐதரைட்டின் மூ.கூ.சூ MH_n என்க.

$$9.33n + n = 62$$

$$n = 6$$

- ஃ ஐதரைட்டின் சூத்திரம் MH
- (c) M இன் வலுவளவு = n = 6
- (d) M இன் சா.அ.தி = ச.வ.தி x வலுவளவு = 9.33 x 6 = 55.98
- (e) சரியான மு.கூ.சூ M_vH_v என்க.
 - x = 1 ஆகவோ அல்லது 3 ஆகவோ இருக்க முடியாது.
 - ஃ x = 2 ஆகும். ஆகவே மூ.சு.சூ C H_v ஆகும்.
 - ் சரியான மு.கூ.கு M₂H₂ ஆகும்.

- (f) M இன் வலுவளவு = $\frac{\textit{சா.அ.த}}{\textit{ச.வ.க}} = \frac{28}{7} = 4$
 - 🗜 ஐதரைட்டின் கட்டமைப்பு

धिमणेंग (C)

அநேகமான இரசானத் தாக்கங்கள் வழக்கமாகக் கரைசல் நிலையில் நிகழ்த்தப்படுகின்றன. ஒரு கரைசலை ஆக்குவதற்கு ஒரு கரையமும், ஒரு கரைப்பானும் அவசியமாகும். பொதுவாகத் திண்மப்பொருள் க**ரையம்** எனப்படும். இது தவிர திண்ம - திண்மக் கரைசல், வாயு - திரவக் கரைசல் என்பனவும் உண்டு.

சில வெவ்வேறு வகையான கரைசல்கள் உதாரணத்துடன் கீழே காட்டப் பட்டுள்ளது.

கரையம்	கரைப்பான்	உதாரணம்
வாயு	வாயு	ഖണി
வாயு	திரவம்	சோடா நீரில் CO,
வாயு	திண்மம்	ஐதரசன் பலேடியத்தில்
திரவம்	வாயு	வளியில் நீராவி
திரவம்	திரவம்	அற்ககோல் நீரில்
திண்மம்	திரவம்	குளுக்கோஸ் நீரில்
திண்மம்	திண்மம்	திண்மக் கரைசல்கள், கலப்பு உலோகங்கள்.

கரைசல்களைப் பயன்படுத்தி அளவறிபகுப்பு, பண்பறிபகுப்புத் தாக்கங் களை நிகழ்த்தும் போது ஒரு அலகு கனவளவு கரைசலில் உள்ள கரையத்தின் அளவை அறிந்திருத்தல் வேண்டும். இவ்வியல்பு கரைசலின் செறிவு எனப்படும்.

ஒரு இரசாயனத் தாக்கத்தில் என்ன அளவு தாக்கிகள் பயன்படுத்தப் பட்டன?, எந்த அளவுக்கு தாக்கிகள் தாக்கம் அடைந்துள்ளன?, எந்த அளவுக்கு விளைவுகள் தோன்றியுள்ளன?, இத்தாக்கத்தில் உச்ச விளைவைச் சிக்கனமாகப் பெறுவதற்கு என்ன அளவில் தாக்கிகள் பயன்படுத்தப்பட வேண்டும் என்பவற்றை அளவிடுவதற்கும், எல்லா அளவறி பகுப்புக்கும் அதாவது பீசமான ஆய்வுகள், பிணைப்பியல்புகள், இயக்கச் சமநிலை, அயன் சமநிலை, அவத்தைச் சமநிலை, இரசாயன இயக்கங்கள் என்பன பற்றியும் கடல், வளி, புவிவள ஆய்வுகளிலும் செறிவு பற்றிய அறிவு இன்றியமையாதது ஆகும். எனவே செறிவு பற்றிய தெளிவான அறிவை மாணவர்கள் பெற்றிருத்தல் வேண்டும்.

பொதுவாக ஒரு கரைசலில் உள்ள கரையத்தின் செறிவு பின்வருமாறு குறிக்கப்படும்.

- (1) rமலர்கிறன் (Molarity)
- (2) நேர்த்திறன் (Narmality)
- (3) மூலல்திறன் (Malality)
- l) வீதக் கரைசல் (Persent Solution)
- (5) முல் பின்னம் (Mole Fraction)

மலா்திறன் (M)

1 dm³ கரைசலில் உள்ள கரைய மூல்களின் எண்ணிக்கை மூலர்த்திறன் எனப்படும்.

$$= \text{mol dm}^{-3} \pmod{1^{-1}}$$

குறீப்பு:

- (1) மூலர் செறிவு நிறைக்குக் கனவளவுச் செறிவாகும். கனவளவு வெப்பநிலையில் தங்கியிருப்பதால் மூலர் செறிவும் வெப்ப நிலையில் தங்கியிருக்கும்.
- ஒரு கரைசலைத் தயாரிக்கும் போது, கரைசலின் மொத்தக் கனவளவினுள் கரையத்தின் கனவளவு உள்ளடங்கும் என்பதை நினைவுபடுத்துக.
- (3) $1 \text{ m}^3 = 10^{-3} \text{ dm}^3 = 10^{-6} \text{ cm}^3$, $1 \text{ dm}^3 = 1 \text{ som } \vec{r}$, $1 \text{ cm}^3 = 1 \text{ ml}$.

2_-ib:

 $18~{
m g~C_6H_{12}O_6}$ ஐ $100~{
m cm^3}$ நீர்க்கரைசல் கொண்டுள்ளது. இக்கரைசலின் மூலர்ச் செறிவு என்ன? (C = 12, O = 16, H = 1)

$$n_{C_6H_{12}O_6} = \frac{18}{180} = 0.1 \text{ mol}$$

$$C_{C_6H_{12}O_6} = \frac{0.1}{100} \times 1000$$

 $= 1.0 \text{ mol dm}^{-3}$

2_-.ib:

0.1 mol dm³, 250 cm³ Na₂CO₃ நீர்க்கரைசலை எவ்வாறு தயாரிப்பீர? (Na=23, C=12, O=16) 0.1 mol dm³, 250 cm³ கரைசலை ஆக்கத் தேவையான,

ⁿ Na₂CO₃ =
$$\frac{0.1 \times 250}{1000}$$
 = 0.025 mol
• WNa CO = 0.025 x 106 = 2.65 g

2.65 g நீரற்ற Na₂CO₃ செம்மையாக நிறுத்து எடுக்கப்பட்டு காய்ச்சி வடித்த நீரில் கரைத்து, கரைசலின் கனவளவு 250 cm³ ஆகும் வரை ஐதாக்கப்படும்.

உ_-ம்:

உமக்கு 5mol dm³, HCl நீர்க்கரைசல் தரப்பட்டுள்ளது. 1mol dm³, HCl நீர்க் கரைசலை எவ்வாறு தயாரிப்பீர்?

செறிவு 5 மடங்காகக் குறைவதால், தரப்பட்ட கரைசலின் கனவளவு 5 மடங்காக ஐதாக்கப்பட வேண்டும். அதாவது 5 mol dm³ கரைசலின் தெரிந்த கனவளவு செம்மையாக அளந்து எடுக்கப்பட்டு, கரைசலின்கனவளவு 5 மடங்காகும் வரை காய்ச்சி வடித்த நீர் சேர்த்து ஐதாக்கப்படும்.

உ-ம்:

 $25\,^{\circ}$ C இல் $10\,\mathrm{cm^3\,CH,OH~I}$ $100\,\mathrm{cm^3}$ நீர் கொண்டுள்ளது. இக்கரைசலில் CH,OH இன் மூலர்ச்செறிவு என்ன? $25\,^{\circ}$ C இல் மெதனோலின் அடர்த்தி $0.8\,\mathrm{g~cm^3}$, (C = 12, O = 16, H = 1)

$$W_{CH_3OH} = V \times d = 10 \times 0.8 = 8 g$$

$$n_{CH,OH} = \frac{8}{32} = 0.25 \text{ mol}$$

கரைசலின் கனவளவு = V_{H_2O} + V_{CH_3OH}

$$= 100 + 10 = 110 \text{ cm}^3$$

$$C_{CH_3OH} = \frac{0.25}{110} \times 1000 = 2.27 \text{ mol dm}^3$$

9 -in:

100 cm³ Mg (NO₃)₂ நீர்க்கரைசல் ஒன்று உலர்நிலை வரை ஆவியாக்கப்பட்டு, வன்மையாக வெப்பமாக்கிய போது 1.0 g மீதி பெறப்பட்டது. இக்கரைசலில் இருந்து Mg⁺⁺, NO₃ அயன் செறிவுகளைக் கணிக்க. (Mg = 24, O = 16)

$$2Mg (NO_3)_2 \rightarrow 2 MgO + 4NO_2 + O_2$$

$$n_{Mg(NO_3)_2} = n_{MgO} = \frac{1.0}{4.0} = 0.025 \text{ mol}$$

$$^{n}Mg^{++} = ^{n}Mg(NO_3)_2 = 0.025 \text{ mol}$$

$$[Mg^{++}] = \frac{0.025}{100} \times 1000 = 0.25 \text{ mol dm}^{-3}$$

$$[NO_3^{-}] = 2 [Mg^{++}] = 2 \times 0.25$$

$$= 0.5 \text{ mol dm}^{-3}$$

நேர்த்திறன் (N).

ஒரு dm³ கரைசலில் உள்ள கரையத்தின் கிராம் சமவலுக்களின் எண்ணிக்கை நேர்த்திறன் எனப்படும்.

குறீப்பு:

- (1) இது மூலர் செறிவைப் போன்று நிறைக்குக் கனவளவுச் செறிவாகும். எனவே வெப்பநிலையில் தங்கியிருக்கும்.
- (2) மூலர்ச்செறிவு ஒரு கரைசலில் உள்ள கரையத்தின் அளவைக் குறிக்கும். ஆனால் நேர்த்திறன் ஒரு கரைசலில் உள்ள கரையத்தின் அளவைக் குறிப் பதுடன், தாக்க அளவுகளையும் கணிப்பதற்குப் பயன்படுத்தலாம். அதாவது ஒரு தாக்கத்தின் போது கிராம் சமவலுவே, கிராம் சமவலுவைத் தாக்கும். தாக்க அளவுகளை பீசமான அளவீடுகளைப் பயன்படுத்தித் துணிவோமாயின் எல்லாச் செறிவுகளையும் மூலர் திறனில் குறிப்பிடலாம். அதாவது நேர்ச்

செறிவை உபயோகிப்பதில் பல பிரதி கூலங்கள் இருப்பதால் இவ் எண்ணக் கருக்களை உபயோகிப்பதில்லை என சாவதேச ரீதியாக ஒப்புக் கொள்ளப் பட்டுள்ளது.

மலல்திறன் (m).

ஒரு கிலோகிராம் (1000 g) கரைப்பானில் கரைந்துள்ள கரைய மூல்களின் எண்ணிக்கை மூலல் திறன் எனப்படும்.

குறீப்பு:

- (1) மூலல் செறிவு நிறைக்கு நிறைச் செறிவாகும். எனவே வெப்ப நிலையால் பாதிக்கப்படமாட்டாது. **செம்மை கூடியது. மிகவும் திருக்தமான அளவீடுகள். தேவைப்படும் போது மட்டுமே** மூலல் செறிவு பயன்படுத்தப்படும். மூலர் செறிவு நிறைக்குக் கனவளவுச் செறிவாதலால் இக்கரைசல்களைக் கையாள்வது இலகுவானது. எனவேதான்கூடிய அளவில் மூலர் செறிவுகளே பயன்படுத்தப்படும்.
- (2) மூலர் செறிவுக்கும், மூலல் செறிவுக்கும் இடையேயுள்ள தொடர்பு கரைசலின் தொடர்புக்கரைசலின் அடர்த்தியில் தங்கியிருக்கும் மிக ஐதான நீர்க் கரைசல்களில் மூலல் செறிவும், மூலர் செறிவும் சமன் எனக் கருதலாம். (கரைச்லின் அடர்த்தி நீரின் அடர்த்திக்குச் சமன் எனக் கருதுவதால்)

ഖ്ളச് சെനിവു.

இது இரு முறைகளாகக் குறிக்கப்படும்.

- (1) நிறைக்கு கனவளவு வீதக் கரைசல். (W / V)
- (2) நிறைக்கு நிறை வீதக் கரைசல். (W / W)

நிறைக்கு கனவளவு வீதக் கரைசல் (W/V).

100 cm³ கரைசலில் உள்ள கரையத்தின் நிறை ஆகும்.

நிறைக்கு நுறை வீதக் கரைசல் (W/W).

100 g கரைசலில் உள்ள கரையத்தின் நிறை ஆகும். அதாவது Wg கரையத்தை (100 - W)g கரைப்பான் கொண்டிருக்கும்.

வீதக் கரைசலின் அவசியம்.

தொழில்முறைகளை இலகுவாக்குவதற்கும், இலகுவாகக் கையாள்வதற்கும் இச்செறிவு முறை அவசியமானது.

உதாரணமாக ஒரு வைத்தியசாலையை எடுத்துக் கொள்வோம். அங்கு மருத்துவர் கொடுக்கவேண்டிய கலவை மருந்தை எழுதுகின்றார். மருந்து கலப்பவர் மருந்தைக் கலந்து கொடுக்கின்றார். மருத்துவர் மருந்தை எழுதும்போது 1 mol dm⁻³ செறிவுள்ள கலவை மருந்து ஒன்றைத் தயாரித்துக் கொடுக்குமாறு எழுதுகின்றார் என வைத்துக்கொள்வோம். இதனால் நாம் பின்வரும் பிரச்சனைகளை எதிர்நோக்க வேண்டியிருக்கும்.

- (1) மருந்து கலப்பவர் இரசாயன அறிவைப் பெற்றவராக இருத்தல் வேண்டும்.
- (2) இக்கரைசலைத் தயாரிப்பதற்கு கூடிய அளவு நேரம் எடுக்கும்.

எனவே மருத்துவர் எழுதும்போது 10% (W/V) கரைசல் தயாரித்துக் கொடுக்கும்படி எழுதுவாராயின் மருந்து கலப்பவருக்கு 10 g குறிப்பிட்ட மருந்தை எடுத்து நீர் சேர்த்து 100 ml கரைசல் ஆக்க வேண்டுமென எளிதில் விளங்கும். அத்துடன் வேலையும் விரைவாக்கப்படும். இதுபோன்று எத்தனையோ நடை முறைகளையும் கைத்தொழில்களையும் இலகுவாக்க இச்செறிவு அவசியமானது.

மூல்ப் பின்னம் (X).

ஒரு ஏகவினக் கரைசலில் உள்ள கரையத்தின் மூல் எண்ணிக்கைக்கும் மொத்த மூல் எண்ணிக்கைக்கும் இடையே உள்ள பின்னமாகும்.

ஒரு கரைசல் A என்னும் கரைப்பானாலும், B என்னும் கரையத்தாலும் ஆனதென்க. கரைசலில் A, B என்பவற்றின் மூல் எண்ணிக்கைகளை முறையே $n_{_{A}}$, $n_{_{B}}$ என்க. B இன் மூல் பின்னம் $X_{_{B}}$ ஆயின்,

$$X_{B} = \frac{n_{B}}{n_{B} + n_{A}}$$

$$= \frac{W_{B} / M_{B}}{W_{B} / M_{A} + W_{A} / M_{A}}$$
 $X_{A} + X_{B} = 1$

 $W_{_{\rm B}} \rightarrow B$ இன் திணிவு,

 $W_{_{A}} \rightarrow A$ இன் திணிவு,

 $M_B \rightarrow B$ இன் மூலர்த் திணிவு,

 $M_A \rightarrow A$ இன் மூலர்த் திணிவு

BASIC CHEMISTRY

9 -ib:

 $25~^{\circ}$ C இல் $46~{
m g}$ CH $_{
m 2}$ OH ஐ $54~{
m g}$ H $_{
m 2}$ O கொண்டுள்ளது. இக்கலவை இலட்சியமானது.

- (a) 25 °C இல் எதனோலின் மூல் பின்னம் என்ன? (C = 12, O = 16, H = 1).
- (b) 25 °C இல் எதனோலின் (W/V) வீதச் செறிவைத் துணிவதற்கு மேலதிகமாகத் தேவையான தாவு என்ன?
- (c) 25 °C இல் எதனோலின் (W/W) வீதச் செறிவைத் துணிவதற்கு மேலதிகமாகத் தேவைப்படும் தரவுகள் என்ன?
- (a) n CH₂CH₂OH = 46 / 46 = 1 mol.

$$^{n}H_{2}O = 54 / 18 = 3 \text{ mol}$$

$$X_{CH_3CH_2OH} = \frac{{}^{n}CH_3CH_2OH}{{}^{n}CH_3CH_2OH + {}^{n}H_2O} = \frac{1}{1+3}$$

(b) 25 °C இல் எதனோல், நீர் என்பவற்றின் அடர்த்திகள் கரைசலின் மொத்த கனவளவு என்பன கேவையானது.

கனவளவு =
$$V_{CH,CH,OH} + V_{H,O}$$

$$= \frac{W_{CH_3CH_2OH}}{{}^{d}CH_1CH_2OH} + \frac{W_{H_3O}}{{}^{d}H_2O} = V \text{ sising.}$$

். எதனோலின் (W / V) வீதச் செறிவு = $\frac{W_{CH_2OH}}{V}$ x 100

- (c) கரைசலின் திணிவு = ${}^{W}CH_{3}CH_{2}OH + {}^{W}H_{2}O$ = 46 + 54= 100 g.
 - ஃ 100 g கரைசல் 46g CH₃CH₂OH எதனோலைக் கொண்டிருக்கும்.
 - ் எதனோலின் (W/W) வீதச்செறிவ = 46%.

எனவே இதனைக் கணிப்பதற்கு மேலதிக தரவுகள் தேவையில்லை.

2_-ib:

25 ° C இல் X என்னும் கரையத்தின் 0.100 mol dm³ நியம நீர்க்கரைசலின் அடர்த்தி 1.18 g cm³. இக்கரைசலின் அடர்த்தி 27 ° C இல் 1.12 g cm³. இந்நியமக் கரைசலை 27 ° C இல் பயன்படுத்தும் போது நியமச் செறிவில் ஏற்படும் வழு வீதம் என்ன? எனக் கணித்து விமர்சிக்க.

$$C_{x} = \frac{n_{x}}{V} \dots (1)$$

V - கரைசலின் கனவளவு

$$d = \frac{m}{V}$$
 (2)

d - கரைசலின் அடர்த்தி,

சமன்பாடு (1) இல் இருந்து

சமன்பாடு (2) இல் இருந்து

$$V = \frac{n_x}{C_x}$$

$$V = \frac{m}{d}$$

கரைசலின் கனவளவுகளைச் சமப்படுத்தும் போது

$$\frac{n_x}{C_x} = \frac{m}{d}$$

$$C_X = \frac{n_X \times d}{m}$$
 $\frac{n_X}{m} =$ மாறிலி

$$C_v = k.d$$

$$C_{\rm x} \propto d$$

$$\frac{CT_1}{CT_2} = \frac{dT_1}{dT_2} \rightarrow \frac{C_{20}}{C_{27}} = \frac{d_{20}}{d_{27}}$$

$$C_{27} = \frac{C_{20} \times d_{27}}{d_{20}} = \frac{0.100 \times 1.12}{1.18}$$

 $= 0.095 \text{ mol dm}^{-3}$

 $= 0.005 \text{ mol dm}^{-3}$

ு வழுவீதம் =
$$\frac{0.05 \times 100}{0.100} = 5\%$$

9 -ib:

25 °C இல் கரைசல் ஒன்று 40.10 g NaCl, 20.2 g CH₃OH 100.2 g H₂O என்பவற்றைக் கொண்டுள்ளது. கரைசலிலுள்ள ஒவ்வொரு கூறுகளினதும் வீத நிறைகளைக் கணிக்க. கரைசலிலுள்ள ஒவ்வொரு கூறுகளினதும் வீத நிறைகளைக் கணிக்க. கரைசலில் உள்ள Cl அயன்களின் மூலர்ச்செறிவு என்ன? கரைசலின் அடர்த்தியை 25 °C இல் 1.10 g cm³ எனக்கொள்க. (மூ.கூ.நி NaCl = 58.5, CH₃OH = 32)

கரைசலின் திணிவு =
$$W_{NaCl}$$
 + W_{CH_3OH} + W_{H_2O} $W_{(aq)}$ = $40.10 + 20.2 + 100.2$ = 160.5 g

∴ NaCl இன் நிறைவீதம் =
$$\frac{W_{\text{NaCl}}}{Waq}$$
 x 100% = $\frac{40.1}{160.5}$ x 100 = 25%

$$CH_3OH$$
 இன் நிறை நிறை வீதம் = $\frac{W_{CH_3OH}}{W_{aq}}$ x $100 = \frac{20.2}{160.5}$ x $100 = 12.5\%$

[CH₃OH இன் திணிவிலும் அரைவாசியாக இருப்பதால் மெதனோலின் வீதச்செறிவு NaCl இன் செறிவிலும் அரைவாசியாக இருக்கும்]

$$= 62.5\%$$

$$n_{\text{NeCl}} = \frac{40.1}{58.8} = 0.6855 \text{ mol}$$

BASIC CHEMISTRY

கரைசலின் கனவளவு (V) =
$$\frac{$$
கரைசலின் திணிவு $}{}$ = $\frac{160.5}{1.1}$ = $145.9 \, \mathrm{cm}^3$

$$C_{\text{NaCl}} = \frac{n_{\text{NaCl}}}{V} \times 1000$$

= $\frac{0.6855}{145.9} \times 1000 = 4.7 \text{ mol dm}^3$

$$C_{Cl} = C_{NaCl} = 4.7 \text{ mol dm}^{-3}$$

2_-in:

 $25~^{\circ}$ C இல் 34.2~g கரும்பு வெல்லம் ($C_{12}H_{22}O_{11}$), $200~cm^3$ நீரில் கரைக்கப்பட்டு கரைசலின் கனவளவு ஒரு லீற்றருக்கு (dm^3) ஐதாக்கப்பட்டது. $25~^{\circ}$ C இல் இக்கரைசலின் அடர்த்தி $1.05~gcm^{-3}$, $25~^{\circ}$ C இல் வெல்லத்தின்.

- (a) மூலர் செறிவு
- (b) மூலல் செறிவு
- (c) வீதச் செ**றிவு** என்பவற்றைக் கணிக்க. (H = 1, C = 12, O = 16)

(a)
$$nC_{12}H_{22}O_{11} = \frac{34.2}{342} = 0.1 \text{ mol}$$

0.1 மூல் வெல்லத்தை ஒரு லீற்றர் கரைசல் கொண்டுள்ளது. எனவே கரைசலின் மூலர்செறிவு (C)

$$C = 0.1 \text{ mol dm}^3$$

∴ மூலல் திறன் =
$$\frac{0.1 \times 1000}{1015.8}$$
 = 0.098 mol kg⁻¹

(c) நிறைக்குக் கனவளவு வீதச் செறிவு =
$$\frac{34.2 \times 100}{1000}$$

$$= 3.42\%$$

நிறைக்கு நிறை வீதச் செறிவு =
$$\frac{3.42 \times 100}{1050}$$

$$= 3.275\%$$

2_-ib:

X என்னும் கரையம் நீரில் கரையக் கரையக்கூடியது. இதன் சார் மூலர் திணிவு 160. 25 °C இல் X இன் 0.1 மூலல் நீர்க் கரைசலின் அடர்த்தி 1.025 g cm³.

- (a) 0.1 மூலல் X இன் நீர்க்கரைசலை எவ்வாறு தயாரிப்பீர்?
- (b) இக்கரைசலின் மூலர் செறிவு என்ன?

(a) தேவையான X இன் திணிவு W_x என்க.

BASIC CHEMISTRY

$$W_x = 0.1 \times 160 = 16 g.$$

16 g X ஐ திருத்தமாக நிறுத்து எடுத்து, 1000 g காய்ச்சி வடித்த நீரில் கரைக்கப்படும்.

(b) கரைசலின் கனவளவு (V) = கரைசலின் திணிவு கரைசலின் அடர்த்தி

$$V = \frac{1000 + 16}{1.025} = 991.22 \text{ cm}^3$$

மூலர் செறிவு (
$$C_x$$
) = $\frac{0.1}{991.22}$ x 1000

$$= 1.008 \text{ mol dm}^{-3}$$

நீயமக்கரைசல்

செறிவு திருத்தமாகத் தெரிந்த கரைசல் நியமக் கரைசல் எனப்படும். செறிவு தெரியாத கரைசல்களின் செறிவுகளைத் துணிவதற்கு நியமக் கரைசல்கள் அவசியமாகும். எல்லாப் பதார்த்தங்களுக்கும் நியமக் கரைசல்கள் தயாரிக்க முடியாது. அதாவது நியமக் கரைசல்கள் தயாரிப்பதற்குப் பயன்படுத்தும் பதார்த்தங்கள் சில திட்டமான இயல்புகளைக் கொண்டிருக்க வேண்டும். முக்கியமாக,

- (1) வளியில் நீர் மயமாகக் கூடாது.
- (2) வளியுடன் தாக்கமடையக் கூடாது.
- (3) ஆவிப் பறப்பற்றதாக இருக்க வேண்டும்.
- (4) நீர்ப்பகுப்படையக் கூடாது.
- (5) பிரிகையடையக் கூடாது.

NaOH வளியில் உடனடியாக நீர் மயமாகும். HCl ஆவிப் பறப்பு உள்ளது. AgNO₃ ஒளிக்குப் பிரிகை அடையும். எனவே இவற்றுக்குத் திருத்தமான நியமக் கரைசல்களைத் தயாரிக்க முடியாது. அதாவது 0.1 mol dm⁻³ NaOH, HCl, AgNO₃ என்பனவற்றின் நீர்க்கரைசல்களைத் தயாரிப்போமானால் அவற்றின் செறிவுகள் அண்ணளவாகவே 0.1 mol dm⁻³ ஆக இருக்கும். இவ்வாறு தயாரிக்கப் படும் கரைசல்களை நியமக் கரைசல்கள் என்று கறமுடியாது.

ஆனால் இவற்றை நியமிக்கப்பட்ட கரைசல்களாகப் பயன்படுத்தலாம். அதாவது இவ்வாறு தயாரிக்கப்பட்ட கரைசல்கள், வேறு நியமக் கரைசல்களுடன் நியமிக்கப்பட்டு, இக்கரைசல்களின் திருத்தமான செறிவுகள் துணியப்படும். இவ்வாறு செறிவு துணியப்பட்ட கரைசல்கள் நியமீக்கப்பட்ட கரைசல்கள் எனப்படும். இவை உடனடித் தேவைகளுக்கு நியமக் கரைசல்களாகப் பயன்படுத்தப்படும். குறிப்பு:

- (1) நியமிக்கப்பட்ட கரைசல்களையும் நியமக் கரைசல்களாகப் பயன்படுத்தலாம்.
- (2) பொதுவாக HCl, H₂SO₄, HNO₃, H₃PO₄, NH₃ என்பவற்றின் செறிந்த கரைசல்கள் தொழிற்சாலைகளில் இருந்து விற்பனைக்கு விடப்படும்போது, அவை அடைக்கப்பட்டிருக்கும் போத்தல்களில் அவற்றின் வீதச் செறிவு (W / W), அடர்த்தி, வெப்பநிலை என்பன குறிப்பிடப்பட்டு இருக்கும். இத்தகவல்களைப் பயன்படுத்தி வேண்டிய செறிவுள்ள கரைசல்களை நாம் ஆய்வுகூடத்தில் தயாரித்து, நியமித்து பின் கனமான பகுப்புக்களில் பயன்படுத்தப்படும்.

நியமக் கரைசல்கள் தயாரிப்பு.

BASIC CHEMISTRY

0.1 mol dm⁻³ 250 cm³ Na,CO, கரைசல் தயாரித்தல்

(1) 0.1 mol dm⁻³ 250 cm³ கரைசலில் உள்ள Na₂CO, மூல்கள்.

n
Na₂CO₃ = $\frac{0.1}{1000}$ x 250 = $\frac{1}{40}$ mol

$$W_{Na_2CO_3} = \frac{1}{40} \times 100 = 2.65 g$$

- (2) தூய நீரற்ற Na₂CO₃ இன் மாதிரி எடுக்கப்பட்டு நன்றாக வெப்பமாக்கி உலர்த்தி, உலர்த்தும் குடுவையில் வைத்து குளிர்விக்கப்படும்.
- (3) சுத்தமான உலர்ந்த கடிகாரக் கண்ணாடியில், 2.65 g உலர்ந்த Na₂CO₃ மிகவும் செந்மையாக நிறுக்கு எடுக்கப்படும்.
- (4) நிறுக்கப்பட்ட மாதிரி சுத்தமான புனல் ஒன்றைப் பயன்படுத்தி காய்ச்சி வடித்த நீரினால் கவனமாகக் கழுவி, சுத்தமான உலர்ந்த 250 cm³ நியமக் குடுவை ஒன்றிற்கு மாற்றப்படும்.
- (5) கடிகாரக் கண்ணாடியும், புனலும் காய்ச்சி வடித்த நீரினால் நன்றாகக் கழுவப்பட்டு நியமிப்புக் குடுவையினுள் சேர்க்கப்படும்.
- (6) பின் குடுவையை, கரைசலில் சுழி ஏற்படுமாறு அசைத்து முழுக்கரையமும் கரைக்கப்படும்.
- (7) பின் சிறிது சிறிதாக காய்ச்சி வடித்த நீர் சேர்த்து கழுத்து வரை நிரப்பப்படும்.

- (8) 250 cm³ அடையாளத்தை நெருங்கும்போது துளித்துளியாக நீரைச் சேர்த்து சரியாக 250 cm³ இற்கு ஐதாக்கப்படும்.
- (9) இறுதித்துளி சேர்க்கும் போது, கரைசலின் மேற்பரப்பில் பிறையுருவின் கீழ்ப் பகுதி குடுவையின் 250 cm³ அடையாளக் குறியுடன் சரியாகப் பொருத்த வேண்டும்.
- (10) பின் நியமக்குடுவையை மூடி நன்றாகக் குலுக்கி ஏகவினக் கரைசல் பெறப் படும்.

ច្រីឃាល HCl គ្នាយាកប្រឹប្ប.

பொதுவாக வியாபாரத் துறையில் இருந்து பெறப்படும் HCl 36% செறிவுள்ளது. அறை வெப்பநிலையில் அடர்த்தி 1.18 g cm⁻³ ஆகும். 100 g HCl கரைசலில் உள்ள HCl மூல்களை nஎன்க. கரைசலின் கனவளவை V என்க.

$$V = \frac{100}{1.18}$$
 cm³ $n = \frac{36}{36.5}$ mol

ஃ HCl இன் செறிவு = HCl =
$$\frac{n}{V}$$
 x 1000 = $\frac{36/36.5}{100/1.18}$ x 1000

$$= \frac{36 \times 1.18}{36.5 \times 100} \times 1000 = 11.64 \text{ mol dm}^3$$

இக் கரைசலை வேண்டிய அளவுக்கு ஐதாக்கி தேவையான செறிவுள்ள அமிலம் பெறப்படும். இச்செறிவு அண்ணளவானது. பின்னர் நியமித்து நியமச் செறிவு அறியப்படும்.

கீட்டத்தட்ட 0.1 mol dm⁻³ செறிவுள்ள நியம HCl தயார்த்தல்.

(1) 0.1 mol dm³ அண்ணளவான செறிவுள்ள HCl தயாரித்தல். மேற்கூறிய அமிலத்தைக் கருதுவோமாயின்

11.64 x V = 0.1 x 1000,
$$V = \frac{0.1 \times 1000}{11.64} = 8.59 \text{ cm}^3$$

அதாவது நிறை வீத செறிவு 36 ஐயும், அடாத்தி 1.18 g cm³ ஐயும் கொண்ட HCl அமிலத்தின் 8.59 cm³ அளந்து எடுத்து, காய்ச்சி வடித்த நீா சோத்து 1 dm³ க்கு ஐதாக்கும் போது அண்ணளவாக 0.1 mol dm³ HCl கரைசல் எடுக்கப்படும்.

(2) தயாரித்த HCl அமிலம் அளவில் எடுக்கப்படும்.

- (3) 0.1 mol dm⁻³ Na,CO, இன் நியமக் கரைசல் தயாரிக்கப்படும்.
- (4) குழாயி ஒன்றைப் பயன்படுத்தி 20 cm³, 0.1 mol dm³ Na₂CO₃ செம்மை அளந்து எடுக்கப் பட்டு, சுத்தமான நியமிப்புக் குடுவை ஒன்றுக்கு மாற்றப்படும்.
- (5) Na₂CO₃ கரைசலுக்கு இரண்டு துளி மெதையில் செம்மஞ்சள் காட்டியாக**ச் சே**ர்த்து, குடுவையினுள் ஒரங்கள் காய்ச்சி வடித்த நீரினால் கழுவப்படும்.
- (6) அளவியில் இருந்து HCl அமிலம் துளித்துளியாகச் சேர்த்து. Na₂CO₃ க**ரைசலுடன்** நியமித்து முடிவுப்புள்ளி பெறப்படும்.
- (7) முடிவப்புள்ளி (மஞ்சள் நிறம் மென் சிவப்பாக மாறும்)
- (8) அளவியில் இருந்து நடுநிலையாக்கத்துக்குத் தேவைப்பட்ட HCl இ**ன் அளவு** (Vcm³) பெறப்பட்டு, HCl இன் நியமச் செறிவு (C,) கணிக்கப்படும்.

$$2 \times 20 \times 0.1 = C_1 \times V$$

$$C_1 = \frac{2 \times 20 \times 0.1}{V} \text{ mol dm}^{-3}$$

(இக் கணிப்புகள் பற்றி பீசமானப் பாடத்தின் போது விபரமாகப் பார்க்கலாம்)

கீட்டத்தட்ட 0.1 mol dm⁻³ செறிவுள்ள NaOH இன் நியமக் கரைசலைத் தயாரித்தல்.

- (1) அண்ணளவாக 0.1 mol dm³ செறிவுள்ள NaOH கரைசல் தயாரிக்கப்படும்.
- (2) அண்ணளவாக 0.1 mol dm⁻³ HCl கரைசல் தயாரிக்கப்படும்.
- (3) 0.1 mol dm⁻³ Na,CO, இன் நியமக் கரைசல் தயாரிக்கப்படும்.
- (4) நியம Na₂CO₃ ஐப் பயன்படுத்தி HCl அமிலத்துடன் நியமித்து HCl அமிலத்தின் நியமச் செறிவு துணியப்படும்.
- (5) மேலே நியமித்து திருத்தமாகச் செறிவு அறிந்த HCI அமிலத்தைப் பயன்படுத்தி NaOH கரைசலுடன் வலுப்பார்த்து NaOH இன் செம்மையான நியமச் செறிவு துணியப்படும்.

2-ib:

அறை வெப்பநிலையில் 1.87 g cm⁻³ அடர்த்தியுள்ள சல்பூரிக்கமிலம் உமக்குத் தரப்பட்டுள்ளது. (H = 1, S = 32, O = 16)

- (a) 0.3 mol dm⁻³ H₂SO₄ இன் கரைசலை எவ்வாறு தயாரிப்பீர்?
- (b) 0.2 mol dm⁻³ NaOH கரைசலின் 30 cm³ ஐ நடுநிலையாக்கத் **தேவைப்படு**ம் 0.3 mol dm⁻³ H,SO, கரைசலின் கனவளவு என்ன?
- (a) தேவையான H_sSO_a இன் திணிவு WH_sSO_a என்க.

$$W_{H_2}SO_4 = {}^{11}H_2SO_4 \times 98$$

= 0.3 x 98 = 29.4 g

தேவையான அமிலத்தின் கனவளவு = திணிவு
அடர்த்தி
=
$$\frac{29.4}{1.87}$$
 = 15.7 cm³

காய்ச்சி வடித்த நீருக்கு 15.7 cm³ H₂SO₄ கவனமாகச் சேர்க்கப்பட்டு பின் கனவளவு ஒரு லீற்றர் ஆகும்வரை காய்ச்சி வடித்த நீர் சேர்த்து ஐதாக்கப்படும். (H₂SO₄க்கு நேரடியாக நீர் சேர்க்கக் கூடாது.)

(b) **முறை: 1**

 0.2 mol dm^{-3} , 30 cm³ NaOH = 0.2 mol dm^{-3} H₂SO₄, @six 15 cm³

0.2 mol dm⁻³, H₂SO₄ @
$$\sin$$
 15 cm³ = 0.3 mol dm⁻³, H₂SO₄ @ $\sin \frac{15}{0.3}$ x 0.2 cm³

A **தேவையான** 0.3 mol dm⁻³
$$H_2SO_4 = \frac{15 \times 0.2}{0.3} = 10 \text{cm}^3$$

முறை: 1

$$H_aSO_a + 2NaOH \rightarrow Na_aSO_a + 2H_aO$$

$$^{\rm n}$$
NaOH = $\frac{0.2 \times 30}{1000}$ = 0.006 mol

$${}^{n}H_{2}SO_{4} = {}^{n}NaOH = \frac{0.006}{2} = \frac{0.003}{2}$$

∴
$$0.3 \text{ H}_2\text{SO}_4$$
 இன் கனவளவு = $\frac{1000}{0.3} \times 0.03 = 10 \text{ cm}^3$

உ-ம்:

வியாபாரத் துறையில் பயன்படுத்தும் H_2SO_4 , 98% தூய்மையானது. 25 $^{\circ}$ C இல் இதன் அடர்த்தி 1.87 g cm 3 . இக் கரைசலின் மூலாச்செறிவு என்ன? (H = 1, S = 32, O = 16)

100 g கரைசல் 98g H.SO, ஐக் கொண்டிருக்கும். அதாவது

$$_{1}^{n}$$
H₂SO₄ = $\frac{98}{98}$ = 1 மூல் (100 g கரைசலில்)

$$100 \ \mathrm{g}$$
 கரைசலின் கனவளவு $V = \frac{$ திணிவு $}{$ அடர்த்தி $} = \frac{100}{1.87} = 53.47 \ \mathrm{cm}^3$

$$^{\text{C}}\text{H}_2\text{SO}_4 = \frac{n_{12}\text{SO}_4}{53.47} \times 1000 = 18.7 \text{ mol dm}^3$$

உ-ம்:

25 g NH₃ ஐக் கொண்ட 100 g நீர்க்கரைசலின் அடர்த்தி 0.98 g cm⁻³. இக் கரைசலின் என்ன கனவளவை ஒரு லீற்றருக்கு ஐதாக்கினால் 1mol dm⁻³, NH₃ நீர்க் கரைசல் பெறப்படும்? (N = 14, H = 1)

1mol dm⁻³ NH, கரைசல் 17 g NH, ஐ ஒரு dm³கரைசலில் கொண்டிருக்கும்.

$$100 \, \mathrm{g \, NH_3}$$
 கரைசலிக் கனவளவு = $\frac{\mathcal{B}}{\mathcal{B}}$ $\frac{\mathcal{B}}{\mathcal{B}}$ = $\frac{100}{0.98} = 102.04 \, \mathrm{cm}^3$

1
NH₃ = $\frac{25}{17}$ mol (100 g கரைசலில்)

ஃ 1 mol NH, ஐக் கொண்ட கரைசலின் கனவளவு

$$= \frac{102.04 \times 1}{25 / 17} = 69.38 \text{ cm}^3$$

அதாவது 69.38 cm³ NH₃ கரைசல் எடுக்கப்பட்டு காய்ச்சி வடித்த நீர் சேர்த்து\ ஒரு லீற்றருக்கு ஐதாக்கப்படும்.

9 -in:

25 ℃ **இல்** 1 mol dm⁻³ H₂SO₄ கரைசலில் உள்ள H⁺ அயன் செயிவு 1.8 mol dm⁻³ ஆகும். இக்கரைசலில் உள்ள SO₄⁻⁻, HSO₄⁻⁻ அயன் செறிவு என்ன?

$$H_2SO_4 \rightarrow H^+ + HSO_4$$
(1)

H₂SO₄ இன் முதலாம் பிரிகை முற்றானது. இரண்டாம் பிரிகை மீளத்தக்கது. முதலாம் பிரிகையின் போது விளைவாக்கப்படும் [H⁺]

$$[H^+] = [HSO_4] = [H_2SO_4] = 1 \text{ mol dm}^{-3}$$

கரைசலில் உள்ள மொக்க $[H^+] = 1.8 \text{ mol dm}^{-3}$

இரண்டாம் பிரிகையினால் விளைவாக்கப்படும் [H+] = [SO,--]

$$[SO_4^-] = மொத்த [H^+] - 1 ஆம் பிரிகையில் உண்டான $[H^+]$$$

$$= 1.8 - 1 = 0.8 \text{ mol dm}^{-3}$$

். கரைசலில் உள்ள $[HSO_4] = 1$ ஆம் பிரிகையில் உண்டான $[HSO_4] - 2$ ஆம் பிரிகையில் உண்டான $[SO_4]$

$$= 1 - 0.8 = 0.2 \text{ mol dm}^{-3}$$

உ-ம்:

 $9.8 {
m cm}^3$ பாகுநிலை ${
m H_3PO_4}$ அமிலத்தில் இருந்து ஆக்கக்கூடிய $2.5 {
m mol}~{
m dm}^{-3}~{
m H_3PO_4}$ கரைசலின் கனவளவு யாது? பாகுநிலை ${
m H_3PO_4}$ இன் அடர்த்தி $1.9 {
m cm}^{-3}$

$$W_{H_3PO_4}$$
 = கனவளவு x அடர்த்தி = 9.8 x 1.9 = 18.62g

$$n_{H_3PO_4} = 18.62 = 0.19 \text{ mol}$$

 $2.5 \; \text{mol} \;$ கொண்ட கரைசலின் கனவளவு $= 1 \, \text{dm}^3$

$$\therefore$$
 0.19 mol கொண்ட கரைசலின் கனவளவு $=\frac{1}{2.5}$ x 0.19

$$= 0.076 \text{ dm}^3$$

ப்காவக்ப

இரசாயனத் தாக்கத்திலீடுபடும் தாக்கிகளின் முல் எண்ணிக்கை விகிதம் பீசமானம் எனப்படும்.

அதாவது ஒரு இரசாயனத் தாக்கத்தைக் குறிக்கும் ஒரு சமன்படுத்திய சமன்பாட்டில் தாக்கிகளின் மூலக் சுறுகளுக்கு அல்லது அயன்களுக்கு அல்லது அணுக்களுக்குக் கொடுக்கப்படும் மூல் எண்ணிக்கை விகிதம் பீசமானம் எனப்படும்.

உ-ம்:

- (a) Na₂CO₃ + 2HCl → 2NaCl + CO₂ + H₂O . பீசமானம் ⁿNa₂CO₃: ⁿHCl = 1 : 2
- (b) Mg + S → MgS . பீசமானம் ⁿMg : ⁿS = 1 : 1
- (c) $Ag^+ + Cl^- \rightarrow AgCl$ $\therefore L^0 \mathcal{F}$ LOT \mathcal{G} \mathcal{F} \mathcal{F}

பீசமானத்தின் உபயோகம்.

தாக்க அளவுகளைக் கணிப்பதற்குப் பீசமான அளவீடுகள் அவசியமானவை. அதாவது ஒரு தாக்கத்தில் உண்டான விளைவுகளின் அளவு, இவ்விளைவுகளை ஆக்கப் பயன்படுத்திய தாக்கிகளின் அளவு என்பவற்றைக் கணிப்பதற்கு பீசமானம் பற்றிய ஆய்வு அவசியமானது. இதனால் உற்பத்திகளும் சிக்கன மாக்கப்படும்.

உ-ம்:

2mol dm⁻³, 50 cm³ Na₃PO₄ கரைசலுடன் முற்றாகத் தாக்க 1.5 mol dm⁻³ 100 cm³ Pb(NO₃), கரைசல் தேவைப்பட்டது.

- (i) தாக்கமடைந்த
 - (a) $Pb(NO_2)_2$
- (b) Na,PO, முல்கள் எத்தனை?
- (ii) தாக்க பீசமானம் என்ன? சமன்பாடு என்ன?

(i) (a)
n
 Pb(NO₃)₂ = $\frac{1.5}{1000}$ x 100 = 0.15 mol

(b)
$${}^{n}\text{Na}_{3}\text{PO}_{4} = \frac{2}{1000} \times 50 = 0.10 \text{ mol}$$

(ii) தாக்க பீசமா**ன**ம்

$$\frac{n_{\text{Na}_3\text{PO}_4}}{n_{\text{Pb}(\text{NO}_3)_2}} = \frac{0.10}{0.15} = \frac{1}{1.5} = \frac{2}{3}$$

 $2Na_3PO_4 + 3Pb(NO_3)_2 \rightarrow Pb_3(PO_4)_2 \downarrow$ (வெள்ளை நிறம்) + 6NaNO₃

2_-ıb:

 $0.1~{\rm mol~dm^{-3}},~500~{\rm cm^3~BaCl_2},~0.5~{\rm mol~dm^{-3}},~400~{\rm cm^3~AgNO_3}$ என்பவற்றில் நீர்க்கரைசல்கள் பெறப்பட்டன.

- (i) சேர்க்கப்பட்ட BaCl, மூ**ல்கள் எத்தனை**?
- (ii) சேர்க்கப்பட்ட AgNO, மூல்கள் எத்தனை?
- (iii) இத்தாக்கத்தின் பீசமானம் என்ன?
- (iv) எத் தாக்கி மிகையாக உண்டு?
- (v) உச்ச நிறையளவு AgCl ஐப் பெறுவதற்கு இக் கரைசல்களை எவ்வாறு சிக்கனமாகக் கலப்பீர்?

(i)
$$n_{\text{BaCl}_2} = \frac{0.1}{1000} \times 500 = 0.05 \text{ mol}$$

(ii)
$${}^{n}AgNO_{3} = \frac{0.5}{1000} \times 400 = 0.2 \text{ mol}$$

 $BaCl_{3} + 2AgNO_{3} \rightarrow 2AgCl + Ba(NO_{3})$

(iii) **்.** பீசமானம் ⁿBaCl_a : ⁿAgNO_a = 1 : 2

- (iv) 1 mol BaCl₂, 2 mol AgNO₃ ஐத் தாக்கும் 0.05 mol BaCl₂, 0.05 x 2 = 0.1 mol AgNO₃ ஐத் தாக்கும் 0.2 mol AgNO₃ சேர்க்கப்பட்டுள்ளது. எனவே AgNO₃ மிகையாக உண்டு. பீசமான அளவில் தாக்கிகள் இருக்கும் போது உச்ச நிறை அளவு AgCl பெறப்படும்.
 - ஃ 0.1 mol AgNO, ஐக் கொண்ட AgNO, கரைசலின் கனவளவு

$$=\frac{400}{0.2} \times 0.1 = 200 \text{ cm}^3$$

∴ 0.1 mol dm⁻³ 500 cm³ BaCl₂ கரைசல், 0.5 mol dm⁻³, 200 cm³ AgNO₃ க**ரை**சல் கலக்கப்படும்.

பீசமானத்தைத் துணியும் முறைகள்.

தொடர்மாற்றல் முறை.

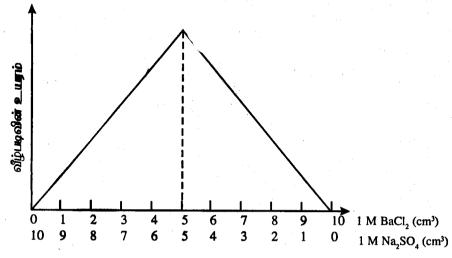
- (1) ஒரு தாக்கத்தின் பீசமானத்தைத் துணிவதற்கான முறைகளில் தொடர் மாறல் முறையும் ஒன்றாகும்.
- (2) இங்கு தாக்கிகளின் கனவளவுகள் மாற்றப்பட்டு விளைவுகளின் அளவுகள் துணியப்படும். அதாவது வெவ்வேறு தாக்கிகளின் சமசெறிவான கரைசல்கள் ஒன்றோடு ஒன்று கலக்கப்பட்டு விளைவுகளின் அளவுகள் துணியப்படும்.
- (3) விளைபொருட்களின் அளவு உச்சமாகஇருக்கும் போது தாக்கிகளின் பீசமான விகிதத்தில் தாக்கமடைந்திருக்கும், எனவே தாக்கத்தின் போது உண்டாகும்.
 - (a) வீழ்படிவுகளின் அளவு.
 - (b) வெப்பநிலை மாற்றம் என்பவற்றை அளந்து உச்சவிளைவு தோன்றும் போது தாக்கிகளின் விகிதம் துணியப்படும். இது பீசமானம் ஆகும்.

குறீப்பு:

பொதுவாகச் சம செறிவுள்ள கரைசல்கள் பயன்படுத்தப்படும் செறிவுகள் சமனாக இருக்கும் போது கனவளவு விகிதங்கள், மூல்விகிதங்களுக்குச் சமனாக இருக்கும்.

வீழ்படிவுமான முறை.

வீழ்படிவு தோன்றும் தாக்கம் ஒன்றின் பீசமானத்தைத் துணிதல்.


$$\mathfrak{P}_{-}i\dot{\mathfrak{D}}$$
: BaCl₂(aq) + Na₂SO₄(aq) \rightarrow BaSO₄(s) + 2NaCl(aq)

பாசோதனை.

- (1) 1 mol dm⁻³ BaCl₂, 1 mol dm⁻³ Na₂SO₄ என்பவற்றின் நியம நீர்க்கரைசல் தயாரிக் கப்படும்.
- (2) இக்கரைசல்கள் ஒரே மாதிரியான ஒரே விட்டமுள்ள சுத்தமான உலர்ந்த சோதனைக் குழாய்களிற் கீழ் காட்டப்பட்டிருக்கும் அளவுகளில் மொத்தக் கனவளவுகள் சமனாக இருக்குமாறு கலக்கப்படும்.

1 mol dm ⁻³ BaCl ₂ (cm ³)	1	2	3	4	5	6	7	8	9
1 mol dm ⁻³ Na ₂ SO ₄ (cm ³)	9	8	7	6	5	4	3	2	1

- (3) உண்டாகும் வீழ்படிவுகள் குறைந்தது 1 அல்லது 2 நாட்களுக்கு ஒரே மாதிரியான குழலில் அடையவிடப்படும்.
- (4) வீழ்படிவுகள் அடைந்து மாறா உயரத்தை அடைந்த பின் அவற்றின் உயரங்கள் செம்மையாக (mm அலகுகளில்) அளவிடப்படும்.
- (5) பின்னர் வீழ்படிவின் உயரங்கள் கரைசல்களின் கனவளவுகளுக்கு எதிராக வரைபாக்கப்படும்.

(6) வரைபிலிருந்**து உ**ச்ச **வீழ்**படிவாக்கத்தின் போது கரைசல்களின் கனவளவு விகிதங்கள் அளவிடப்படும். கரைசல் களின் செறிவுகள் சமமானதால் உச்ச வீழ்படிவாக்கத்தின் போதுள்ள கரைசல்களின் கனவளவு விகிதம், மூல் விகிதத்துக்குச் சமனாகும். அதாவது பீசமானமாக இருக்கும். ஆகவே காக்கமடைந்த மூல் விகிதம்.

$$\frac{n_{\text{BaCl}_2}}{n_{\text{Na}_2\text{SO}_4}} = \frac{V_{\text{BaCl}_2}}{V_{\text{Na}_2\text{SO}_4}} = \frac{5}{5} = \frac{1}{1}$$

முக்கிய செய்முறைகள்.

- (1) பயன்படுத்தும் கரைசல்களின் செறிவுகள் மிகத் திருத்தமாக இருக்**க வேண்**டும் அவற்றின் செறிவுகள் உறுதிப்படுத்தப்பட **வேண்**டும்.
- (2) கரைசல்களின் கனவளவுகளை செம்மையாக அளப்ப**தற்கு அளவி** பய**ன்** படுத்தப்படும்.
- (3) வீழ்படிவுகள் மாறா உயரத்தை அடைந்துள்ளன என்பது உறுதிப்படுத்தப்பட வேண்டும். (தொடர்ந்து 2 நாட்களுக்கு உயரங்களை அளத்தல்)
- (4) வீழ்படிவு அடைய விடப்படும் சூழலின் வெப்பநிலை மாறாது இருக்க வேண்டும். (ஆய்வு கூடம் குளிரூட்டப்பட்டதாக இருப்பது சிறந்தது.)
- (5) வீழ்படிவின் உயரங்கள் mm அலகுகளில் செம்மையாக அளவிட வேண்டும்.
- (6) 1mol dm⁻³ செறிவுள்ள கரைசல்களைப் பயன்படுத்துவது சிறந்தது. அப்பொழுது தான் செம்மையாக அளவிடக்கூடிய அளவு வீழ்படிவு பெறப்படும்.

குறீப்பு:

எல்லா வீழ்படிவாதல் தாக்கங்களுக்கும் வீழ்படிவுகளின் உயரங்களை அளந்து பீசமானம் துணிய முடியாது. காரணம்.

- (1) சில தாக்கங்களின் போது உண்டாகும் வீழ்படிவுகளை மிகையான தாக்கு பொருட்களிற் கரையும்.
 - (a) Al³+, Zn++, Pb++, Sn++ என்பவற்றின் நீர்க்கரைசல்கள் NaOH(aq) உடன் வெண்ணிற வீழ்படிவைக் கொடுக்கும். இவ் வீழ்படிவுகள் மிகையான NaOH இல் கரையும்.

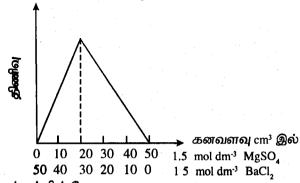
$$Al^{3+} + 3NaOH \rightarrow Al(OH)_3 \downarrow + 3Na^+$$

 $Al(OH)_3 + NaOH \rightarrow NaAlO_3 + 2H_3O$

(b) சில வீழ்படிவுகள் மிகையான தாக்கிகளில் சிக்கலயன்களை உருவாக்கி கரைகின்றன.

$$Cu^{++} + 2NH_4OH \rightarrow Cu(OH)_2 \downarrow + 2NH_4^+$$

 $Cu(OH)_2 + 4NHOH \rightarrow Cu(NH_3)_4 (OH)_2^- + 4H_2O$


(2) சில தாக்கங்களின் போது உண்டாகும் வீழ்படிவுகள் சுழ் பொருளாக இருப்பதால் கரை சலில் தொங்கல் நிலையில் காணப்படும். அடையமாட்டாது எனவே வீழ்படிவின் உயரம் மாறாது இருக்கும். (சில சமயங்களில் கூடவாகவும் இருக்கலாம்) எனவே இது போன்ற சந்தாப்பங்களில் தோன்றும் வீழ்படிவுகளை வடிகட்டல் மூலம் பிரித்தெடுத்து கழுவி உலர்த்தி செம்மையாக நிறுத்து வீழ்படிவின் திணிவுகளை கரைசலின் உயரங்களுக்கெதிராக வரைபாக்கி பீசமானம் துணியப்படலாம்.

9 -ib:

ஒரு மா**ணவன்** 1.5 mol dm³ MgSO₄ இன் நீர்க்கரைசலையும் 1mol dm³ BaCl₂ நீர்க்கரைசலையும் பயன்படுத்தி கரைசலின் முழுக் கனவளவையும் 50 cm³ ஆகவைத்து தொடர்மாற்றல் முறையினால் பரிசோதனை ஒன்றை நிகழ்த்தினான்.

MgSO₄ (aq) + BaCl₄(aq) → BaSO₄(s) + MgCl₄(aq)

- (1) பெறப்படுகின்ற வீழ்படிவின் திணிவுகள் நீர்க்கரைசல்களின் கனவளவுகளுக் கெதிராக வரைபாக்கப்படின் எவ்வாறு மாற்றம் அடையும் என ஒரு வரைபாற் குறித்துக் காட்டுக.
- (2) உச்சத் தாக்கத்தின் போது விளைவாக்கப்படும் BaSO₄ இன் உலர் திணிவைக் கணிக்க. (Ba = 137, S = 32, O = 16)
- (3) உச்சத் தாக்கத்தின் போது விளைவுக் கரைசலில் உள்ள மொத்த அயன் செறிவு என்ன?
- (4) உச்சத் தாக்கத்தின் போது தாக்கிகள் முற்றாக தாக்கம் அடைந்துள்ளனவா என்பதை உறுதிப்படுத்த திட்டம் ஒன்றைத் தருக.

உச்சத் தாக்க**த்தின் போது,** ^VBaCl, = ^Vcm³, ஃ ^VMgSO₄ = (50 - V) cm³

ⁿMgSO₄ =
$$\frac{1.5}{1.000}$$
 (50 - V) mol
ⁿBaCl₂ = $\frac{1.0}{1000}$ x V mol

சமன்பாட்டின்படி
$$\frac{n_{BaCl_2}}{n_{MgSO_4}} = \frac{1}{1} = \frac{\frac{v \times 1}{1000}}{\frac{1.5 (50 - V)}{1000}}$$
 $V = 30 \text{ cm}^3$

(1) உச்சத்தாக்கத்தின் போது,

ⁿBaSO₄ = ⁿMgCl₂ = 1 x 30 =
$$\frac{0.03}{1000}$$
 mol
• WBaSO₄ = 0.03 x 233 = 6.99 g

10
11
MgCl₂ = 11 BaCl₂ = 0.03 mol
[MgCl₂] = $\frac{0.03}{50}$ x 1000 = 0.6 mol dm⁻³
MgCl₂ (s) → Mg⁺⁺ (aq) + 2Cl⁻ (aq)
∴ அயன் செறிவு = 0.6 x 3 = 1.8 mol dm⁻³

- (3) உச்சத் தாக்கத்தின் போது பெறப்பட்ட விளைவு வடிக்கப்படும். வடியின் மாதிரியுடன் பின்வரும் சோதனைகள் செய்யப்படும்.
 - (1) BaCl, சேர்த்தால் வீழ்படிவு தோன்றாது. ஆகவே MgSO, இல்லை.
 - (2) MgSO₄ சேர்க்க வீழ்படிவு தோன்றாது. ஆகவே BaCl₂ இல்லை. ஆகவே தாக்கம் முற்றாக நிகழ்ந்துள்ளது.

உ-ம்:

- (a) ZnSO₄(aq), NaOH (aq) தாக்கத்தின் பீசமானத்தைத் துணிவதற்கு வீழ்படிவுமான முறையினைப் பயன்படுத்த முடியுமா? காரணம் தருக.
- (b) 1 mol dm⁻³ ZnSO₄(aq) உம், 1 mol dm⁻³ NaOH (aq) உம் கீழ்க் காட்டப்பட்ட அளவு -களில் கலக்கப்பட்டது.

தொகுதி	A	В	C	D	Е	F	G	Н	I
ZnSO ₄ (cm ³)	1	2	3	4	5	- 6	7	8	9
NaOH (cm³)	9	8	7	6	5	4	3	2	1

இப்பரிசோதனையின் அவதானிப்புக்களையும் அதற்கான காரணங்களையும் தருக.

- (a) இல்லை, காரணம் உண்டாகும் வீழ்படிவு மிகையான தாக்கும் பொருளில் NaOH கரையும்.
- (b) $ZnSO_4 + 2NaOH \rightarrow Zn(OH)_2 + Na_2SO_4$

உச்ச வீழ்படிவாக்கத்தின் போது பீசமானம்

$$n$$
ZnSO₄: n NaOH = 1:2

 $ZnSO_4 + 4NaOH \rightarrow Na_2ZnO_2 + Na_2ZnO_2 + Na_2SO_4 + 2H_2O$

விழ்படிவு முற்றாகக் கரையும் போது பீசமானம்

$$n_{ZnSO_4}$$
: $n_{NaOH} = 1:4$

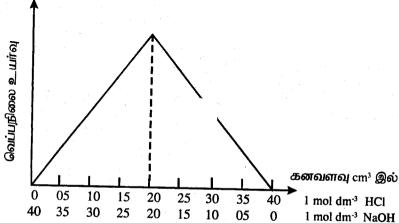
நோக்கல்கள்:

A, B இல் வீழ் யுவு **தோன்**றாது. காரணம் A இல் NaOH மிகையாக உண்டு. B இல் 1:4 என்லும் விகி**தத்தில் இ**ருப்பதால் முற்றாகக் கரையும்.

D இல் சூடிய வீழ்யடிவு தோ**ன்று**ம். **காரண**ம் 3 cm³ ZnSO₄ 6 cm³ NaOH ஐத் தாக்கும். 1 cm¹ ZnSO₄ மிலையாக இருக்கும். **எனவே உண்**டாகும் வீழ்படிவு கரையா**து**.

E இலிருந்து I வரை விழ்படிவின் அளவு குறையும் காரணம் இவ்வரிசையில் ZnSO₄ மிகையாக இருப்பதுடன் தாக்க அளவும் குறைந்து கொண்டு செல்லும்.

வெப்பமான முறை.


NaOH(aq), HCl(aq) தாக்கத்தின் பீசமானத்தைத் துணிதல்.

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O$$

(1) 1 mol dm⁻³ NaOH, 1 mol dm⁻³ HCl என்பவற்றின் நியமிக்கப்பட்ட நீர்க் கரைசல்கள் தயாரிக்க**ப்ப**டும். (2) பஞ்சால் அடைக்கப்பட்ட முகவையில் (வெப்ப காவல் இடப்பட்ட முகவை) ஒரே மாதிரியான, சுத்தமான, உலர்ந்த முகவைகள் வைக்கப்பட்டு கீழ்க் காட்டப்பட்ட அளவுகளிற் கரைசல்கள் கலக்கப்பட்டு நன்றாகக் கலக்கி உச்ச வெப்பநிலை உயர்வுகள் அளவிடப்படும்.

1 mol dm ⁻³ HCl cm ³ இல்	05	10	15	20	25	30	35
1 mol dm³ NaOH cm³ இல்	35	30	25	20	15	10	05

(3) கரைசல்களின் கனவளவுகளுக்கெதிராக உச்ச வெப்பநிலை உயர்வுகள் வரைபாக்கப்படும்.

(4) வரைபிலிருந்து, உச்ச வெப்பநிலை உயர்வு பெறப்படும் போது தாக்கம் அடைந்த கரைசல்களின் கனவளவு விகிதங்கள் அளவிடப்படும்.

$$\frac{V_{HCl}}{V_{NaOH}} = \frac{20}{20} = \frac{1}{1}$$

(5) பயன்படுதப்பட்ட கரைசல்களின் செறிவுகள் சமன் ஆதாலால் தாக்கக் கரைசல்களின் கனவளவு விகிதங்கள் மூல் விகிதங்களுக்குச் சமனாகும்.

$$\frac{n_{HCl}}{n_{NaOH}} = \frac{V_{HCl}}{V_{NaOH}} = \frac{20}{20} = \frac{1}{20}$$

முக்கிய செய்முறைகள்:

(1) பயன்படுத்தப்படும் HCl, NaOH கரைசல்களின் செறிவுகள் மிகவும் செம்மையாக இருக்க வேண்டும். இச்செறிவுகள் நியமிப்பு முறைகளால் உறுதிப் படுத்தப்பட வேண்டும்.

- (2) கரைசல்களை அளந்து எடுப்பதற்கு அளவிகள் பயன்படுக்கப்படும்.
- (3) கரைசல்கள் ஒவ்வொரு சந்தாப்பத்திலும் விரைவாகக் கலக்கப்பட வேண்டும்.
- (4) கரைசல்கள் நன்றாகக் கலக்கப்பட வேண்டும். எல்லாச் சந்தர்ப்பத்திலும் ஒரே மாதிரியான கலக்கி, வெப்பமாக்கி என்பன பயன்படுத்தப்படும்.
- (5) வெப்ப இழப்பைக் குறைக்க இயன்றளவு பாதுகாப்பு எடுக்கப்படல் வேண்டும். வெற்றிடக் கலோரிமானியைப் பயன்படுத்துவது சிறந்தது.

₽-iD:

X என்னும் உலோக ஐதரொட்சைடடின், 1mol dm³ நீர்க்கரைசலின் வெவ்வேறு கனவளவுகள் 3 mol dm³ HCl இன் வெவ்வேறு கனவளவுகளுடன் கலந்து, மொத்தக் கனவளவு 40 cm³ ஆக மாறாது வைத்துச் செய்யப்பட்ட பரிசோதனை ஒன்றில் உச்ச வெப்பநிலை உயர்வு பெறப்படும் போது அமிலம், மூலம் என்பவற்றின் கனவளவுகள் முறையே 10 cm³, 3 0cm³ எனில் X இன் சூத்திரம் என்ன? X, HCl தாக்கத்தின் சமன்பாடு என்ன?

உ.ச்ச தாக்கத்தின் போது

ⁿHCl =
$$\frac{3 \times 10}{1000}$$
 = 0.03 mol, ⁿx = $\frac{1 \times 30}{100}$ = 0.03 mol

and the effective $^{n}HC1: ^{n}X = 0.03: 0.03 = 1:1$

க X இன் கூத்திரம் M OH (Mg_லோகம்)

$$MOH(nq) + HCl(nq) \rightarrow MCl(nq) + H_sO(1)$$

உ-ம்:

0.1 mol dm ³ Ba(OH), **கரைசலின்** 25 cm கரைசலுக்கு சமவலுப் புள்ளிவரை **3.**2 mol dm ³ HCl அமிலம் சேர் க்கப்பட்டது. விளைவுக் கரைசலில் உள்ள Cl செறிவு என்ன?

 0.1 mol dm^{-3} , Ba(OH), Asia 25 cm³ = 0.1 mol dm^{-3} , HCl Asia 50 cm^{-3}

. 0.1 mol dm⁻³ HCl இன் 50 cm³ = 0.2mol dm⁻³, HCl இன் 25 cm³.

ക്കാദ്രക്കിൽ ക്**ബഖണഖു** = V Ba(OH)₂ + V HCl = 25 + 25 = 50 cm³

$$Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + H_2O$$

n
Cl = n HCl = $\frac{0.2 \times 25}{1000}$ = 0.005 mol

$$^{\text{C}}\text{Cl} = \frac{0.005 \times 1000}{50} = 0.01 \text{ mol dm}^{-3}$$

2_-iD:

100 ml 0.2 mol dm⁻³ MgSO₄ நீர்க்கரைசலுக்கு 150 ml 0.15 mol dm⁻³ KOH நீர்க்கரைசல் சேர்க்கப்பட்டுள்ளது. விளைவுக்கரைசலில் உள்ள K⁺, Mg⁺⁺, SO₄⁻, OH அயன் செறிவு என்ன?

கலக்கப்பட்ட மூல் எண்ணிக்கைகள் முறையே $n_{\mathsf{MgSO_4}} n_{\mathsf{KOH}}$ என்க.

$$n_{MgSO_4} = \frac{0.2}{1000} = 0.2 \times 100 = 0.02 \text{ mol}$$

$$^{\rm n}$$
KOH = $\frac{0.15}{1000}$ x 150 = 0.0225 mol

 $MgSO_4 + 2KOH \rightarrow Mg(OH)_2 + 2K^+ + SO_4^-$ 0.02 mol 0.0225 mol

தாக்கமுற்ற K+ = 0.0225 mol

்
$$[K^*] = \frac{0.0225}{0.25} = 0.09 \text{ mol dm}^3$$
 தாக்கமுற்ற $SO_4^{--} = 0.02 \text{ mol}$
 $\therefore [SO_4^{--}] = \frac{0.02}{0.25} = 0.08 \text{ mol dm}^3$

தாக்கமுறாத
$$Mg^{++} = 0.02 - \frac{0.0225}{2} = 0.0087 \text{ mol}$$

∴ [Mg⁺⁺] =
$$\frac{0.00875}{0.25}$$
 = 3.5 x 10⁻² mol dm⁻³

OH அயன்கள் முற்றாக வீழ்படிவாயிருக்கும். ${
m Mg}({
m OH})_{i}$ ஒரு அரிதிற் க**ரை**யும் மின்பகுபொருள் எனவே கரைசலில் OH செறிவு புறக்கணிக்கக் கூடியது.

நியமிப்பு முறையினால் பீசமானம் துணிதல். வீழ்படிவாக்கல் நியமிப்பு

NaCl(aq), AgNO₃(aq) தாக்கத்தின் பீசமானத்தைத் துணிதல். NaCl(aq) + AgNO₃(aq) → AgCl(s) + NaNO₃(aq)

- (1) 0.1 mol dm⁻³ தூய NaCl, 0.1 mol dm⁻³ தூய AgNO₃ என்பவற்றின் நியம நீர்க் கரைசல்கள் தயாரிக்கப்படும்.
- (2) அளவியல் AgNO₃(aq) எடுக்கப்படும்.
- (3) NaCl கரைசலின் தெரிந்த கனவளவு V₁(25 cm³) குழாயி ஒன்றைப் பயன்படுத்தி செம்மையாக அளந்தெடுத்து சுத்தமான நியமிப்புக் குடுவை ஒன்றிற்கு மாற்றப்படும்.
- (4) NaCl கரைசலுக்குள் சில துளிகள் K₂CrO₄(aq) காட்டியாகச் சேர்க்கப்பட்டு, நியமிப்புக் குடுவையின் ஓரங்கள் காய்ச்சி வடித்த நீரினால் கமுவப்படும்.
- (5) அளவியில் இருந்து AgNO, கரைசல் துளித்துளியாகச் சேர்க்கப்பட்டு NaCl கரைசலுடன் நியமிக்கப்பட்டு முடிவுப்புள்ளி பெறப்படும்.
- (6) (முடிவுப்புள்ளி வெண்ணிற வீழ்படிவு செந்நிறமாக மாறும். முற்றான வீழ் படிவதற்குத் தேவையான AgNO₃(aq) இன் கனவளவை V, cm³ என்க.
- (7) பயன்படுத்தப்பட்ட கரைசல்களின் செறிவுகள் சமனாதலால், தாக்கக் கரைசல்**களின் கன**வளவு விகிதம் பீசமானமான விகிதமாகும்.

$$\frac{n_{\text{NaCl}}}{n_{\text{AgNO}_3}} = \frac{v_{\text{NaCl}}}{v_{\text{AgNO}_3}} = \frac{v_1}{v_2}$$

$$\frac{V_1}{V_2} = \frac{25}{25} = \frac{1}{1}$$
 ஆகக் காணப்படும்.

ழக்கிய செய்முறைகள்.

- (1) பயன்படுத்தும் கரைசல்களின் செறிவுகள் மிகவும் செம்மையாக இருத்தல் வேண்டும்.
- (2) நிறுப்பதற்கு இரசாயனத் தராசு பயன்படுத்தப்படும்.
- (3) பரிசோதனை கூடிய அளவு செம்மையாக இருப்பதற்கு 0.1 மூலர் கரைசல் களைப் பயன்படுத்துவது சிறந்தது.

- (4) அளவி பயன்படுத்தும் போது AgNO₃ கரைசலால் சிலாவிக் க**ழுவிய பின்னரே** AgNO₃ கரைசல் அளவியில் நிரப்பப்படும்.
- (5) அளவியில் உள்ள கரைசலில் வளிக்குமிழ்கள் சிறைப்படுத்தப்படவில்லை என்பது உறுதியாக்கப்பட வேண்டும். பின் அளவியைத் திறந்து AgNO₃ கரைசலின் மட்டம் பூச்சியக் குறியில் இருக்கத்தக்கதாக செப்பமாக்கப்படும்.
- (6) NaCl கரைசலை செம்மையாக அளந்து எடுக்க குழாயி பயன்படுத்தப்படும் குழாயியும் பயன்படுத்தப்படும் NaCl கரைசலால் சிலாவிக் கழுவப்படும்.
- (7) நியமிப்பின் போது, குடுவை நன்றாகக் கலக்கப்பட்டு நியமிப்புக் குடுவையின் ஓரங்கள் காய்ச்சி வடித்த நீரினால் கழுவப்படும்.
- (8) அளவி அளவீடுகள் பெறப்படும் போது கரைசலின் மட்டம், கண் மட்டத்தில் இருக்கத்தக்கதாக வைத்து அளவீடுகள் பெறப்படும்.
- (9) நியமிப்பு இரண்டு அல்லது மூன்று முறை செய்யப்பட்டு செம்மை உறுதிப் படுத்தப்படும்.

உ-ம்:

 $10~{\rm g~NaCl}$ மாதிரியான நீரில் கரைத்து $1.2~{\rm dm^3}$ கரைசல் பெறப்பட்டது. இக்கரைசலின் $25~{\rm cm^3}$ ஐ முற்றாக வீழ்படிவாக்க $20~{\rm cm^3}~0.1~{\rm mol~dm^3}~{\rm AgNO_3}$ கரைசல் தேவைப்பட்டது. இந்நியமிப்பின் காட்டியாக ${\rm K_2CrO_4}$ பயன்படுத்தப்பட்டது. (Na = 23, Cl = 35.5)

- (1) முடிவுப் புள்ளியில் நோக்கல் என்ன?
- (2) கரைசலில் NaCl இன் செறிவு யாது?
- (3) மாதிரியில் NaCl இன் தூய்மை வீதம் என்ன?
- (1) வெண்ணிற வீழ்படிவு (AgCl), செந்நிறமாக மாறும். (Ag.CrO.)
- (2) $n_{\text{NaCl}} = n_{\text{AgNO}_3} = \frac{0.1 \times 20}{1000} = 0.002 \text{ mol}$

$$n_{\text{NaCl}} = \frac{0.02}{25} \times 100 = 0.08 \text{ mol dm}^{-3}$$

(3) 1.2 dm³ கரைசலில் உள்ள NaCl இன் திணிவை WNaCl என்க.

நியமிப்பு முறையினால் அமில மூலத் தாக்கங்களின் பீசமானத்தைத் துணிதல்.

அமில மூல நியமிப்புக்களின் முடிவுப் புள்ளிகளை (சமவலுப் புள்ளி) அறிவதற்கு காட்டிகள் பயன்படுத்தப்படும்.

சீல காட்டிகளும் அவற்றின் நிறங்களும்.

காட்டி	கார ஊடக நிறம்	ி மில் 2 ஊடக நிறம்
மெதைல் செம்மஞ்சள்	மஞ்சள்	சிவப்பு
பினோல்த்தலீன்	சிவப்பு	நிறமற்ற து
பாசிச்சாயம்	நீலம்	சிவப்பு

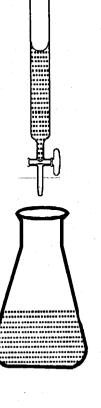
நியமிப்பு வகையும் காட்டியும்.

நியமிப்பு	காட்டி
வன்கார / வன்னமிலம்	மேற்கூறிய எல்லாம்
வன்னமில / மென்காரம்	மெதைல் செம்மஞ்சள்
வன் கார / மெ ன்ன மிலம்	பினோத்தலீன்
ெம ன்னமில / மென்கா ரம்	காட்டிகளில்லை (நியமிக்க முடியாது)

குறப்பு:

அமில் மூல நியமிப்புக்கள் 0.1 mol dm³ செறிவுள்ள கரைசல்களுக்கே செய்யும் போ**து** மே**லுள்**ள காட்டிகள் பயன்படுத்தப்படும் **என்பதை** மனதிற் பதிக்கவும், இது பற்றிய விளக்கங்கள் பௌதிக இரசாயனத்தில் **கவனத்தி**ல் கொள்ளப்படும்.

NaOH / HCl நியமிப்பு


 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$ எனும் தாக்கத்தின் பீசமானத்தைத் துணிதல்.

- 0.1 mol dm⁻³ நியம NaOH, 0.1 mol dm⁻³ நியம HCl என்பவற்றின் நீர்கரைசல்கள் தயாரிக்கப்படும்.
- (2) HCl அமிலம் அளவியில் எடுக்கப்படும்.
- (3) NaOH கரைசலின் தெரிந்த கனவளவு (V₁ = 25 cm³) குழாயியைப் பயன்படுத்தி, செம்மையாக அளந்தெடுத்து, சுத்தமான நியமிப்புக் குடுவை ஒன்றிற்கு மாற்றப்படும்.

- (4) NaOH கரைசலுக்கு சில துளி காட்டி (மெதைல் செம்மஞ்சள் அல்லது பினோல்த்தலீன்) சேர்த்துக் குடுவையின் ஓரங்கள் காய்ச்சி வடித்த நீரினால் கழுவப்படும்.
- (5) அளவியில் இருந்து HCl அமிலக் கரைசல், துளித்துளியாக காரக் கரைசலுக்குச் சேர்க்கப் பட்டு சமவலுப்புள்ளி பெறப்படும். நடுநிலையாக் கத்துக்குத் தேவைப்பட்ட HCl இன் கனவளவை V, என்க.
- (6) முடிவுப்புள்ளி- மஞ்சள் நிறம் மென் சிவப்பாக (மெதைல் செம்மஞ்சள்) மாறும்.
- (7) பயன்படுத்தப்பட்ட கரைசல்களின் செறிவுகள் சமன் ஆதலால் கரைசல்கள் தாக்கமடைந்த கனவளவு விகிதம் தாக்கத்தின் பீசமானம் ஆகும்.

$$\frac{\overline{n_{NaOH}}}{\overline{v_{NaOH}}} = \frac{\overline{v_{1}}}{\overline{v_{1}}}$$

$$\frac{\overline{v_{2}}}{\overline{v_{1}}} = \frac{25}{25} = \frac{1}{1}$$
ஆகக் காணப்படும்.

முக்கிய செய்மு**தைகள்**:

BASIC CHEMISTRY

n_{HCl}

- (1) NaOH, HCl என்பவற்றின் நியமச் செறிவுகள் நியமிப்பு முறைகளினால் உறுதிப்படுத்தப்படும்.
- (2) நிறுப்பதற்கு இரசாயனத் தராசு பயன்படுத்தப்படும்.
- (3) அளவி பயன்படுத்தும் போது HCl அமிலத்தால் சிலாவிக் கழுவப்படும்.
- (4) குழாயி பய**ன்படுத்து**ம் போது NaOH கரைசலால் கழுவப்படும்.
- (5) அளவியில் வளிக்குமிழ்கள் இல்லை என்பது உறுதிப்படுத்தப்படும்.
- (6) நியமிப்பின் போதும், முடிவுப்புள்ளி பெறப்படும் போதும் கரைசல் நன்றாக கலக்கப்பட்டு குடுவையின் ஓரங்கள் காய்ச்சி வடித்த நீரினால் கழுவப்படும்.
- (7) அளவியின் அளவீடுகள் பெறப்படும்போது கரைசலின் மட்டம் கண்மட்டத்தில் இருக்கத்தக்கதாக வைத்து அளவிடப்படும்.
- (8) நியமிப்பு குறைந்தது 2 அல்லது 3 தடவைகள் செய்யப்பட்டு செ<mark>ம்மை உறுதிப்</mark> படுத்தப்படும்.

Na₂CO₄ / HCl **தாக்க**த்**தின்** பீசமானத்தைத் துணிதல்.

Na,CO, + 2HCl
$$\rightarrow$$
 2NaCl + CO, + H,O

- (1) 0.1 mol dm⁻³, NaCO₃, 0.1 mol dm⁻³ HCl என்பவற்றின் நியம நீர்க்கரைசல்க**ள் கய**ாரி**க்க**ப்படும்.
- (2) அளவியில் HCI அமிலம் எடுக்கப்படும்.
- (3) குழாயி ஒன்றைப்பயன்படுத்தி தெரிந்த கனவளவு (V₁=20 cm³) Na₂CO₃ செற்மையாக அளந்து எடுக்கப்பட்டு, சுத்தமான நியமிப்புக் குடுவை ஒன்றுக்கு மாற்றப்படும்.
- (4) Na,CO, கரைசலுக்குள் ஒரு துளி மெதைல் செம்மஞ்சள் காட்டி சேர்த்து, குழாயின் ஒரங்கள் காய்ச்சி வடித்த நீரினால் கமுவப்படும்.
- (5) அளவியில் இருந்து HCl அமிலம் Na₂CO₃ கரைசலுக்குத் துளித்துளியாகச் சேர்க்கப்பட்டு, நியமித்து முடிவுப்புள்ளி பெறப்படும்.
- (6) முடிவுப்புள்ளி மஞ்சள் நிறம் மென்சிவப்பாக மாறும். நடுநிலையாக்கத்து க்குத் தேவைப்பட்ட HCl அமிலக் கரைசலின் கனவளவை V,cm³ என்க.
- (7) பயன்படுத்தப்பட்ட கரைசல்களின் செறிவுகள் சமன் ஆதலால் தாக்கக் கரைசல்களின் கனவளவு விகிதம், பீசமான விகிதம் ஆகும்.

$$\frac{\mathbf{n_{HCl}}}{\mathbf{n_{Na_{2}CO_{3}}}} = \frac{\mathbf{v_{HCl}}}{\mathbf{v_{Na_{2}CO_{3}}}} = \frac{\mathbf{v_{2}}}{\mathbf{v_{1}}} = \frac{40}{20} = \frac{2}{1}$$
 ஆகக் காணப்படும்.

மு**க்கிய செய்**முறைகள்:

- (1) N_{II},CO₃, HCl கரைசல்களின் செறிவுகளின் செம்மை உறுதிப்படுத்த வேண்டும்.
- (2) நிறுப்ப**தற்கு இ**ரசாயனத் தராசு பயன்படுத்த வேண்டும்.
- (3) அள்ளி HCl அமிலத்தால் கழுவப்பட வேண்டும்.
- (4) குழாயி Na,CO, கரைசலால் கழுவப்பட வேண்டும்.
- நிய மியில் வளிக்குமிழ்கள் இல்லை என்பது உறுதிப்படுத்தப்பட வேண்டும். நியமிப்பின் போது கரைசல்கள் நன்றாகக் கலக்கப்பட்டு, குடுவையின் ஒரங்கள் காய்ச்சிய நிரினால் கழுவப்பட வேண்டும்.
- (7) அளவி அளவீடு பெறப்படும் போது கரைசலின் மட்டம் கண்மட்டத்தில் இருக்கத்தக்கதாக வைத்து அளவிடப்பட வேண்டும்.
- (8) நியமிப்பு குறைந்த 2, 3 தடவைகள் செய்து செம்மை உறுதிப்படுத்தப்பட வேண்டும்.

முக்கிய குறிப்பு:

- (1) Na₂CO₃, HCl தாக்கம் முற்றாக நடுநிலையாக்கப்படும் போது மெதையில் செம்மஞ்சள் காட்டி பயன்படுத்தப்பட வேண்டும் என்பதை மனதிற் பதிக்கவும்.
- (2) இந்நியமிப்பில் பினோல்த்தலீன் காட்டியாகப் பயன்படுத்தப்படின் Na₂CO₃ இன் முதலாம்படி நடுநிலையாக்கம் மட்டும் நிகழ்ந்திருக்கும். அதாவது Na₂CO₃, NaHCO₃ ஆக மாற்றப்படும்.

$$Na_2CO_3 + HC1 \rightarrow NaHCO_3 + NaC1$$
(1)
 $Na_2CO_3 + 2HC1 \rightarrow 2NaC1 + CO_2 + H_2O$ (2)

(a) முதலாம்படி நடுநிலையாக்கத்தில் பினோல்த்தலீன் காட்டி நிறம் மாறும். ஆகவே பீனோல்த்தலீன் காட்டியாக இருக்கும் போது Na₂CO₃, HCl தாக்க -த்தின் பீசமானம்

$$n_{\text{Na}_2\text{CO}_3}$$
 : $n_{\text{HCl}} = 1 : 1$ ஆகும்.

(b) முற்றான நடுநிலையாக்கத்தின்போது மெதையில் செம்மஞ்சள் காட்டியாக இருக்கும் போது இத்தாக்கத்தின் பீசமானம்.

$$n_{\text{Na,CO}_3}$$
 : $n_{\text{HCl}} = 1 : 2$ ஆகும்.

உ-ம்:

Na₂CO₃, NaHCO₃ என்பவற்றைக் கொண்ட 50 cm³ கரைசலை பினோல்த்தலீன் காட்டி கொண்டு நியமித்த போது 0.2 mol dm³ 25 cm³ HCl தேவைப்பட்டது. அதே கரைசலின் 50 cm³ மெதைல் செம்மஞ்சள் காட்டியாகப் பயன்படுத்தி நியமித்த போது 0.4 mol dm³, 31.25 cm³ HCl தேவைப்பட்டது. கரைசலில் உள்ள Na₂CO₃, NaHCO₃ என்பவற்றின் செறிவுகளைக் கணிக்க.

பீனோல்த்தலீன் காட்டியாக இருக்கும் போது Na₂CO₃, NaHCO₃ ஆக மாற்றப்படும். (அதாவது Na₂CO₃ இன் அரைவாசி அளவு நடுநிலையாக்கப்படும்)

... 50 cm³ கரைசலிலுள்ள Na_2CO_3 முற்றாக நடுநிலையாக்கத் தேவையான $0.2 mol\ dm^{-3}$ HCl இன் கனவளவு = $25 \times 2 = 50\ cm^3$

n
HCl = $\frac{0.2 \times 50}{1000}$ = 0.01 mol

BASIC CHEMISTRY

$$n_{\text{Na}_2\text{CO}_3} = \frac{n_{\text{HCl}}}{2} = \frac{0.101}{2} = 0.005 \text{ mol}$$

$${}^{\text{C}}\text{Na}_{2}\text{CO}_{3} = \frac{0.005 \times 1000}{50} = 0.1 \text{ mol dm}^{-3}$$

மெதையிற் செம்மஞ்சள் காட்டியாக இருக்கும் போது Na₂CO₃, NaHCO₃ இரண்டும் முற்றாக நடுநிலையாக்கப்படும்.

50 cm³ கரைசலிலுள்ள Na₂CO₃, NaHCO₃ என்பவற்றை முற்றாக நடுநிலை யாக்கத் தேவையான 0.4 mol dm³ HCl இன் கனவளவு = 31.25 cm³, 0.4 mol dm³ HCl 31.25 = 0.2 mol dm³ HCl இன் 62.5 cm³

50 cm³ கரைசலிலுள்ள NaHCO₃ உடன் தாக்கமடையத் தேவையான 0.2 mol dm³ HCl இன் கனவளவு = 62.5 - 50

$$=$$
 12.5 cm³

A ⁿHCl =
$$\frac{0.2 \times 12.5}{1000}$$
 = 0.0025 mol

$$n_{\text{NaIICO}_3} = n_{\text{HCI}} = 0.0025 \text{ mol}$$

$$C_{\text{NnHCO}_3} = \frac{0.0025}{50} \times 1000 = 0.05 \text{ mol dm}^3$$

கண்ணாம்புக் கல்லின் தாய்மை வீதத்தைத் துணிதல். முறை ၊ (உலாமுறை)

$$CaCO_3 \rightarrow CaO + CO_1$$
100 44g

தாக்க பீசமானப்படி 100 g CaCO, **முற்றாகப்** பிரிகையடை**ந்து 44** g CO₂ ஐக்கொடுக்கும்.

- 1) உலர்ந்த மா**தி**ரியி**ன் தெரிந்த நி**றை செம்மையாக நிறுத்து எடுத்தல். (ag)
- (3) மீதியைக் குளிரவிட்டு செம்மையாக நிறுத்து எடுத்தல் (bg)

முறை II (நியமிப்பு முறை)

 உலர்ந்த மாதிரியின் தெரிந்த நிறையை நியமிப்புக் குடுவையில் செம்மையாக நிறுத்து எடுத்தல். (xg)

- (2) தெரிந்த கனவளவு மிகையான நியம HCl சேர்த்தல். (கனவளவு V_2 cm³ செறிவு M, mol dm³ என்க.)
- (3) வெப்பமாக்கி CO, ஐ முற்றாக அகற்றி குளிரவிடுதல்.
- (4) விளைவுக்குப் பினோல்த்தலீன் காட்டி சேர்த்து நியம NaOH உடன் வலுப் பார்த்தல், தேவைப்பட்ட NaOH இன் கனவளவை V₂ cm³ என்க. மூலர் செறிவை M, என்க.

சேர்க்கப்பட்ட
$$HCl = \frac{M_2V_1}{1000}$$
 mol எஞ்சிய HCl தேவைப்பட்ட $NaOH = \frac{M_2V_2}{1000}$ mol $.$ தாக்கமடைந்த $HCl = \frac{M_1V_1}{1000} - \frac{M_2V_2}{1000}$ $= \frac{1}{1000} (M_1V_1 - M_2V_2)$ mol $CaCO_1 + 2HCl \rightarrow CaCl_1 + CO_2 + H_2O$

தாக்க பீசமானப்படி:

2_-ib:

திண்ம மாதிரி ஒன்று NaOH, Na₂CO₃, நீர் என்பவற்றைக் கொண்டுள்ளது. இம் மாதிரியில் உள்ள NaOH, Na₂CO₃ என்பவற்றின் அளவைத் துணிவதற்கான திட்டம் ஒன்றினைக் கூறுக.

Na,CO, இன் அளவைத் துணிதல்.

- (1) மாதிரியின் தெரிந்த நிறையை எடுத்தல். (Wg)
- (2) காய்ச்சி வடித்தநீரில் கரைத்தல்.
- (3) மிகை அளவு BaCl, கரைசல் சேர்த்தல்.
- (4) உண்டாகும் வீழ்படிவை (BaCO₃) வடிகட்டி, பிரித்**தெடுத்து** கழுவி உலர்த்தி நிறுத்தல் (Wg)

ⁿ BaCO₃ =
$$\frac{W_!}{198}$$
 mol

n
Na₂CO₃ = n BaCO₃ = $\frac{W_1}{197}$ mol

$$W_{\text{Na}_2\text{CO}_3} = \frac{W_1}{197} \times 106 = x \text{ g втюй в.}$$

A Na₂CO₃ இன் வீத அளவு =
$$\frac{x}{W}$$
 x 100%

NnOH **இன் அள**வைத் துணிதல்.

மேல் பரிசோதனையின் வடியை நியம HCl உடன் வலுப்பார்த்து NaOH இன் அளவு துணியப்படலாம்.

முறை !!ப (1) மேல் வடிக்கு மிகையான MgCl₂ சேர்க்கப்படும்.

(2) உண்டாகும் Mg(OH)₂ விழ்படிவு வடிகட்டி பிரித்தெடுத்து உலர்த்தி நி**றுக்கப்**படும். (W,g)

$$(M_1, \sigma_1, \rho_2)$$
 NaOH = 40, Mg (OH)₂ = 58)

$$2NnOH + MgCl_2 \rightarrow Mg(OH)_2 + 2NaCl$$

$$n_{Mg(OH)_1} = \frac{W_2}{58} \text{ mol}$$

¹¹NaOH = Mg(OH)₂ x 2 =
$$\frac{W_2}{58}$$
 x 2 mol

$$\frac{W}{58}$$
 NaOH = $\frac{W_1}{58}$ x 2 x 40 = y g stetres.

குறீப்பு:

மாதிரியை நீரில் கரைத்து பெறப்படும் கரைசலை பீனோல்த்தலீன், மெதையில் செம்மஞ்சள் ஆகிய காட்டிகளைப் பாவிப்பதன் மூலம் நியம ர்ஊடு உடன் வலுப்பார்த்து NaOH, Na₂CO₃ ஆகியவற்றின் செறிவுகளைத் துணிந்து திண்ம மாதிரியில் உள்ள அளவினைத் துணியலாம்.

Al, Mg, Cu என்பவற்றைக் கொண்ட கலப்புலோகத்தில் உள்ள கூறுகளின் வீதத்தைத் துணிதல்.

- (1) கலப்புலோகத்தின் தெரிந்த திணிவுகளை தூள்நிலையில் செம்மையாக நிறுத்த எடுக்கப்படும். (Wg)
- (2) மாதிரிக்கு மிகையான NaOH சேர்த்து Al (கரைக்கப்பட்டு) மீதி வடிகட்டல் மூலம் பிரித்தெடுத்து, கழுவி உலர்த்தி நிறுக்கப்படும். (W,g)
- மீதி பின் ஐதான மிகை H₂SO₄ அல்லது HCl உடன் தாக்கி Mg கரைக்கப்பட்டு, மீதி வடிகட்டல் மூலம் பிரித்தெடுத்து, கழுவி உலர்த்தி நிறுக்கப்படும். (W₂g) (இது Cu இன் திணிவு ஆகும்.)

(4)
$$W_{A1} = (W - W_1) g$$
, $W_{Mg} = (W_1 - W_2) g$, $W_{Cu} = W_2$

$$Al = \frac{(W_1 - W)}{W} 100\% g$$
, $Mg = \frac{(W_1 - W_2)}{W} 100\%$, $Cu = \frac{W_2}{W} \times 100\%$

உ-ம்:

BASIC CHEMISTRY

பரிசோதனையொன்றில் Mg, Al என்பவற்றை மட்டும் கொண்ட கலப்பு உலோகத்தின் 3.9 g மாதிரி, 125 cm³, 2 mol dm³ மிகையளவு H_2SO_4 இல் முற்றாகக் கரைந்து நி.வெ.அ இல் $4.48 \, \mathrm{dm}^3$ உலர் H, வைக் கொடுத்தது.

- (1) கலப்பு உலோகத்தில் (Mg) நிறை நூற்றுவீதம் என்ன? (Mg = 24, Al = 27)
- (2) விளைவுக் கரைசலின் 25 cm³ ஐ நடுநிலையாக்கத் தேவையான 0.8 mol dm ³ NaOH கரைசலின் கனவளவு என்ன?
- (1) கலப்பு உலோகத்தில் Mg இன் திணிவை xg என்க.

$$W_{Mg} = xg$$
 $^{*}W_{Al} = (39 - x)g$ $^{n}M_{g} = \frac{x}{24}$ mol $^{n}A_{l} = \frac{(39 - 1)}{27}$ mol $^{n}M_{g}(s) + 2H^{*}(aq) \rightarrow M_{g}^{**}(aq) + H_{2}(g)$ (1)

$$2Al(s) + 6H^{+}(aq) \rightarrow 2Al^{3+}(aq) + 3H_{2}(g)$$
(2)

சமன்பாடு (1) இன்படி

$$^{n}H_{2} = ^{n}Mg = \frac{x}{24} \text{ mol}$$

சமன்பாடு (2) இன்படி

$${}^{n}H_{2} = {}^{n}Al \times \frac{3}{2} = \frac{(3.9 - x)}{27} \times \frac{3}{2} \text{ mol}$$

. சமன்பாட்டின் படி விளைவாக்கப்படும் மொத்த H₂ மூல்கள்.

$$=\frac{x}{24}+\frac{(3.9-x)}{24}\times\frac{3}{2}$$

பரிசோதனைப்படி விளைவாக்கப்பட்ட H, இன் மொத்த மூல்கள் n ஆயின்

= 30.77%

$$PV = hRT$$

$$2 \times 4.48 = n \times 0.082 \times 273$$
 or $n = \frac{1 \times 4.48}{22.4}$
 $n = 0.2 \text{ mol}$ = 0.2 mol

சமன்பாட்டின் படியும், பரிசோதனைப் படியும் பெறப்பட்ட H, மூல்கள் சமன்.

$$x + \frac{(3.9 - x)}{27} \times 3 = 0.2$$

$$x = 1.2 g$$

ஃ W_{Mg} = 1.2 g W_{Al} = 3.9 - 1.2 = 2.7 g
∴ Mg இன் நிறை நூற்றுவீதம் =
$$\frac{1.2}{3.9}$$
 x 100

(2) H₂SO₄ இரு மூல அமிலம்.

🔥 சேர்க்கப்பட்ட மொத்த H+ அயன்களின் எண்ணிக்கை

$$\frac{2 \times 125 \times 2}{1000} = 0.5 \text{ mol}$$

சமன்பாடு (1), (2) என்பவற்றில் இருந்து, தாக்கமடைந்த H⁺ அயன்களின் எண்ணிக்கை.

$$= {}^{n}Mg \times 2 {}^{n}Al \times 3$$

$$= \frac{1.2 \times 2}{24} + \frac{2.7 \times 3}{27} = 0.4 \text{ mol}$$

125 cm³ கரைசலில் எஞ்சிய H⁺ அயன்களின் எண்ணிக்கை

$$0.5 - 0.4 = 0.1 \text{ mol}$$

ஃ 25 cm³ கரைசலில் உள்ள H⁺அயன்களின் எண்ணிக்கை.

$$= \frac{0.1 \times 25}{125} = 0.02 \text{ mol}$$

0.02 mol H+ ஐ நடுநிலையாக்க 0.02 mol OH தேவை.

ஃ 25 cm³ கரைசலை நடுநிலையாக்கத் தேவையான 0.8 mol dm³

NaOH கரைசலின் கனவளவு =
$$\frac{1000 \times 0.02}{0.8}$$
 = 25 cm³

பல்தேர்வு வினாக்கள் - 01

- (01) டோல்ற்றனின் அணுக்கொள்கைக்குப்பின்வரும் எந்த உண்மை முரண்பாடானது?
 - (1) செப்பும் ஒட்சிசனும் நிறைப்படி 4 : 1 என்ற விகிதத்தில் சேரும்.
 - (2) ஒரு ஒட்சிசன் அணுவும் இரு ஐதரசன் அணுவும் சேர்ந்து நீர் ஆக்கப்படும்.
 - (3) நைதரசனும், ஒட்சிசனும் சேர்ந்து பல ஒட்சைட்டுக்களை உருவாக்கும்.
 - (4) குளோரின் வேறு திணிவுடைய அணுக்களைக் கொண்டது.
 - (5) மேற்கூறிய யாவும்.
- (02) இரு மூலகங்களைக் கொண்ட XY என்னும் வாயுவானது சூடாக்கும் போது பூரணமாகப் பிரிகையடைந்து வாயு விளைவுகளை மட்டும் தோற்றுவிக்கின்றது. ஒரே வெப்ப அமுக்க நிபந்தனைகளில் கனவளவுகள் அளவிடப்படும் போது பிரிகையின் முன்னும் பின்னும் கனவளவில் மாற்றமில்லை. இத்தாக்கம் தொடர்பாக எக்கூற்று மிகவும் பொருத்தமானது. இத்தாக்கத்தின் விளைவுகள்?
 - (1) X அணுக்களும் Y அணுக்களுமாகும்.
 - (2) X அணுக்களும் Y, மூலக்கூறுகளுமாகும்.
 - (3) X, மூலக்கூறுகளும் Y அணுக்களுமாகும்.
 - (4) X, மூலக்கூறுகளும் Y₂ மூலக்கூறுகளுமாகும்.
 - (5) திட்டமான முடிவை எடுக்க முடியாது.
- (03) 1 மூல் ${
 m CO_2}$ வாயு பற்றிய கூற்றுக்களில் பிழையானது எது?
 - (1) ஒரு மூல் அணு காபனைக் கொண்டது.
 - (2) 44 கிராம் CO, ஐக் கொண்டது.
 - (3) இரண்டு மூல் அணு ஒட்சிசனைக் கொண்டது.
 - (4) இரண்டு மூல் ஒட்சிசனைக் கொண்டது.
 - (5) 3 x 6.023 x 10²³ அணுக்களைக் கொண்டது.

(04)	ஒரே நிபந்தனையில் 2 cr			கத் த	கனமடைவத ற்கு	(12)	_	மூல் ஒட்சிசன் கொ				
	தேவையான ஒட்சிசனின	ர் கன6	பளவு cm³ இல் எது?				(1)	ஒரு மூலக்கூறு.	(2)	இரு அணு க்க		32 அணுக்க ள்
	(1) 3	(2)	8	(3)	2		(4)	6.023 x 10 ²³ அணுக்க	ள் (5)	6.023 x 10 ²³ ഗ്രഖ	க்கூறுக	ள்
	(4) 11	(5)	சரியான விடை இ	ல்லை.								
						(13)	ை	குறித்த திணிவுள்ள எ	O ITU i Pai	m <i>அமக்கக்கி</i> லர்	TK இலர்	n V cm³ <i>கனவை</i> டை
(05)	44.8 cm³ ஒட்சிசன் வாயு	<u> </u> வில் உ	ள்ள O. மலக்கூறுக	ரின் எ	ண்ணிக்கை?	(/	-	்டத்தது. இவ்வாறு s		_		
,,	$(1) \qquad 6.02 \times 10^{23}$	(2)	12.04 x 10 ²³	(3)	3.01 x 10 ²³		900				тодопод (С	
	$(4) 1.204 \times 10^{21}$	(5)	தரவுகள் போதாத		5.01 X 10		(1)	273 VP	(2)	$\frac{273}{P}$ VT	(3)	VPT
	(1) 1,20 1 X 10	(5)	தர்வுகள் சொதாத	и•				-		Р	273	
(06)	1003 C II - ours um ou of C		lais a námear ar arthir i ar ána	- ÷ O			(4)	$\frac{273}{V}$ PT	(5)	மேற்கூறிய ஏத	ய் இல்கை	ລ າ.
(06)	100 cm³ C₂H₂ வாயுவை நி.ெ கனவளவு cm³ இல்,	வ.அஜ	ல முறுமாக ளாப்பத்றக	ල් මේ	5076 <u>1</u> 11111 601 62161111111607		(•)	V	(3)	மேறவற்க அது	,	•••
	(1) 100	(2)	3500	(3)	350	(1.4)	4 - 4					
	(4) 200	(5)	தரவுகள் போதாத	jĮ.		(14)	_	அணுவொன்றின் தில	-	. –		
							(1)	108	(2)	108 x 6.023 x 10 ²	3 (3)	1.79 x 10 ⁻²²
(07)	ஒரு மூல் ஒட்சிசன் வாயு	வின் த	ிணிவு கிராமில்,				(4)	10 ²²	(5)	10-23	1	the second second
` '	(1) 8	(2)	16	(3)	6.02×10^{23}							
	$(4) 2 \times 6.02 \times 10^{23}$	(5)	சரியான விடை து	` '		(15)	6.023	x 10 ²² , C ¹² சம தானி	அணுக	க்களின் திணிவு எ	து?	
	(1) 2 x 0.02 x 10	(2)	5 in all 100 100 100 100 100 100 100 100 100 1	,			(1)	1.200 g	(2)	120 g	(3)	12 kg
(08)	ஒரு காபன் அணுவின் த	ിക്കില	கிராமில் (C = 12)				(4)	1.2 kg	(5)	12 g		
(00)	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $		$10^{-22} (4) 10^{-27}$	(5)	எதுவுமல்ல.		` ,	J				
	(1) 10 (2) 10 -	(3)	10 (4) 10	(3)	வனிவும்லை.	(16)	Alee	ிவு கூடிய மூலகத்தி	ன் வல	വറ്റെയുന്നിൽ കിൽ	ிவின் வரி	கை கிராமில் எகு?
(0.0)				· - a	-	(10)	(1)	10^{-24} (2) 10^{-23}		امورو (4) 10 ⁻²² 10		10 ⁻²¹
(09)	2 ml வாயுநிலை ஐதரே						(1)	10 (2) 10 -	(3)	10 (4) 10	(3)	1021
	பட்டு விளைந்த வாயுக											
. "	<i>க</i> னவளவு 8 ml ஆல்குறை		_			(1 7)		தேனி ல் (C ₂ H ₆) உள்				
	களும் அ றை வெப்ப அழு			எனில்	ஐதரோகாபனி ன்		(1)	1.6 மூல்	(2)	1.2 மூல்	(3)	0.8 மூல்
	அனுபவச் சூத்திரம் பின்	ாவருவ	னவற்றில் எது?				(4)	8 గ్రాప	(5)	0.2 மூல்		
	(1) C_4H_8 (2) C_2H_8	(3)	CH_4 (4) C_2H_6	(5)	CH ₂							
						(18)	a bif∫g	ந் துண்டு ஒன்றினா ல்	கீறப் ட	ட்டு <mark>ள்ள ஒரு க</mark> ோ	ரட்டின் த	டிப்பு t cm, அகலம்
(10)	வளிமண்டல அமுக்கத்	திலும் 3	300 K இலும் 2 லீற்றர் a	னவஎ	ரவை அடைக்கும்		0.05	ா, நீளம் 10 cm . கரிய	ின் அட	ாத்தி 2.25 gcm ⁻³	அவகாக	ரோவின் மாறிலி L.
	ஆகன் வாயுவின் அமுக்	கம் 380	mm இரசமாகவும் வெ	ப்பநின	லை 150 K ஆகவும்			_{சே} காடு ஒ ன்றில் உ ள்				
	மாற்றப்பட்டால் க ன வள			•				ഞിക്കാക് ഒപ്പു?(C=			•	,
	(1) 1 (2) 3	(3)	4 (4) 2	(5)	5			0.05 x 10 x 2.25 x t		0.0)5 x 10 x t	
					_		(1)	12		$\frac{(2)}{12} \times 2.25$	x I	
(11)	300 K இலு ம் ஒரு வளிமன	ர்டல ⊰	அமுக்க த்திலு ம், சமக	5னவஎ	ரவு № ₂ இனதும், X			121. x 2.25		0.05 = 10		
	என்னும் வாயுவினதும் த	நிணிவு	கள் முறையே 0.28	கிராமு	ம், 0.88 கிராமும்		(3)	0.05 x 10 x t		$(4) \qquad \frac{0.03 \times 10}{12 \times 2}$		
	ஆகும். X இன் மூ.கூ.நி	ന്ന (N =	= 14)	_	- -		(5)	எதுவும் அல்ல.		12 X 2	23	
	(1) 44 (2) 14	(3)	176 (4) 71	(5)	88		(2)	வறுவும் அ6∪ஸ்.		* · · · · · · · · · · · · · · · · · · ·		
	(-/	(-)	(-/	(-)								
	4 4 5 4 5 4 5 4 5 4 5	-			96	BASI	C CHI	EMISTRY				8'

(19)	அறை வெப்பநிலையில் வளியிலும் அடர்த்தி கூடிய வாயு எது?(C = 12, H = 1, O = 16)	(26)	0.71 g குளோரீனைக் ெ
	(1) C_2H_2 (2) C_2H_4 (3) CH_4 (4) NH_3 (5) CO_2		.M இன் குளோரைட்டி
(20)	அவகாதரோவின் மாறிலியின் அலகு எது?	,	(1) MC1 (2) MC
	(1) mol ⁻¹ (2) dm ⁻³ (3) mol (4) g ⁻¹ (5) அலகு இல்லை.	(27)	ஒரே நிபந்தனையில் இரு
(21)	ஒரு குறித்த திணிவு வாயு 293 K இலும் 770 mm Hg இலும் 65 cm³ ஐ அடைத்தது.	. ,	கொண்டுள்ளன. எனே
	s.t.p இல் இவ்வாயு அடைக்கும் கனவளவு cm³ இல்,		(1) s.t.p இல் 22.4 dm
	(1) $\frac{1}{65} \times \frac{273}{293} \times \frac{770}{760}$ (2) 65 $\times \frac{293}{273} \times \frac{770}{760}$		(2) ஈரணுக்களைக்
			(3) சம எண்ணிக்கை
	(3) $65 \times \frac{273}{273} \times \frac{760}{770}$ (4) $65 \times \frac{273}{293} \times \frac{770}{760}$		(4) ஒன்றுடனொன்ற
	(5) சரியான விடை தரப்படவில்லை.		(5) மேற்கூறிய எத

(22)	எத்தாக்கத்தில் கூடிய கனவளவு அதிகரிப்புடன் தாக்கம் நிகழும்?

- (1) $N_2H_4(1) + 2H_2O_2(1) \rightarrow N_2(g) + 4H_2O(g)$
- (2) $2NH_{2}(g) \rightarrow N_{2}(g) + 3H_{2}(g)$
- $2H_2O_2(1) \rightarrow 2H_2O(1) + O_2(g)$
- (4) $MnO_2(s) + 4HCl(g) \rightarrow 2H_2O(g) + Cl_2(g) + MnCl_2(s)$
- (5) $2Al(s) + 3H_2SO_4(0.1 \text{ M}) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$

(23) "மல்" என்பகன் மிகச் சிறந்க பொருள் எது?

- 6.023 x 10²³ ஏகவி**னத்** துணிக்கைகள். (1)
- 1.000 g ஐதரசனில் உள்ள H அணுக்களின் எண்ணிக்கை.
- (3) $12.000 ext{ g } ext{C}^{12}$ இல் உள்ள $ext{C}^{12}$ அணுக்களின் எண்ணிக்கை.
- 32.000 g O, இல் உள்ள O, மூலக்கூறுகளின் எண்ணிக்கை. (4)
- மேற்கூறிய எல்லாம். (5)

BASIC CHEMISTRY

- 10g CaCO, க்கு மிகையான HCl சேர்க்கப்படும் போது வெளிவரும் CO, வாயுவின் கனவளவு dm³ இல் எது? (Ca = 40, C = 12, O = 16)
 - 1.12 (2) 2.24 (3) 4.48 (4) 11.2 (5) தாவு போதாது.
- (25) s.t.p இல் X என்னும் வாயுவின் 50 cm³ இன் திணிவு 0.144g, s.t.p இல் H, இன் அடர்த்தி 0.09 g dm⁻³ ஆகும். வாயு X எதுவாக இருக்கலாம்?
 - SO, (2) Cl, (3) CO, (4) O,

- கொண்ட மூலகம் M இன் குளோரைட்டி**ன்** கிணிவ 0.85g ன் சூக்கிரம் யாகு!? (M = 28, Cl = 35.5)
 - Cl₂ (3) MCl₂ (4) MCl₂ (5) MCI.
- ரு வாயக்கள் சம எண்ணிக்கையான மலக்கூறுகளைக் ഖ அவை.
 - ³ <mark>ஐக் கொள்ள</mark>ும்.
 - கொண்ட வாயக்களாக இருக்கும்.
 - கயான அணுக்களைக் கொண்டிருக்கும்.
 - mi சம கனவளவில் காக்கமடையம்.
 - மேற்கூறிய எதனையம் கொண்மாரது. (5)
- அணுத்திணிவு நிறமாலைப் பகுப்பிலிருந்து X என்னமு் மூலகத்தின் சமதானி களின் சார்பு அளவுகள் முறையே $X^{24} = 79\%$, $X^{25} = 10\%$, $X^{36} = 11\%$ ஆகும், X இன் சாரணுக்கிணிவ.
 - 24.32 (2) 24.66 (3) 24.00 (4) 24.21 (5) 24.60
- நிறைப்படி 80% காபனைக் கொண்ட ஐதரோக்காபனின் மு.கூ.சூ எது?
 - $C_{5}H_{15}$ (3) $C_{3}H_{5}$ (4) $C_{3}H_{4}$ (5) C,H. (2) எதுவமல்ல.
- 28 **டிச் சாரணுத்தி**ணிவாகக் கொண்ட மூலகம் M இன் ஐதரைட்டின் சா.மு.கூ.தி 62 ஆறும். M இன் ஐதரைட்டின் சூத்திரம் என்ன?
 - MH, (2) $M_{\star}H_{\star}$ (3) MH. (4)MH. (5)காவ போகாகு

40 வரையுமான வீனாக்களுக்கான அறிவுறுத்தற் சுருக்கம்.

	அ றிவுறு	த்தற் சுருக்க	ம்.	
(1)	(2)	(3)	(4)	(5)
a, b erffaccefeò	b, c சரியெனி ல்	c, d சரியெனில்	d, a சரியெனில்	வேறு சேர்மானம்

- (31) சடப்பொருளின் துணிக்கைத் தன்மைக்குச் சான்றாக அமைவது எது/ எவை?
 - வீழ்படிவு அடைதல் (a)
 - கற்பூரம் பதங்கமாதல் (b)
 - சடம் தணிவைக் கொண்டிருத்தல். (c)
 - சடம் அழிக்கமுடியாது இருத்தல். (d)
- பின்வரும் கூற்றுக்களில் பிழையானது / பிழையானவை எது / எவை?
 - சடத்தை ஆக்கவோ அழிக்கவோ முடியாது. (a)
 - ஒரு மூலகத்தின் எல்லா அணுக்களும் ஒரே மாதிரியானவை. (b)
 - சடத்தின் மிகச் சிறிய துணிக்கை அணுக்கள் அல்ல. (c)
 - எளிய மூலக்கூறுகள் உருவாகும் போது அணுக்கள் எளிய (d) முழுஎண் விகிதத்தில் சேரும்.
- கேலூசாக்கின் விதியை நிருபிக்கப் பயன்படுத்தக்கூடிய தொகுதிகள் எது / எவை?
 - H,S, Cl, (a)

NO, O,

H,, Cl, (c)

- நீரின் மின்பகுப்பு
- 100 cm³ வாயுக்கலவை ஒன்று பின்வரும் கூறுகளைக் கனவளவு வீதங்களாக கொண்டுள்ளது. H, = 50%, CO = 30%, CO, = 15%, N, = 5% 500 K இலும் 1 atm அமுக்கத்திலும் இக்கலவை 50 cm³ கனவளவு ஒட்சிசனுடன் எரிக்கப்பட்டது. எல்லா அளவீடுகளும் ஒரே நிபந்தனையில் பெறப்பட்டது எனக் கொண்டு சரியான கூற்று / கூற்றுக்கள் எது / எவை?
 - தகனத்தின் பின் உள்ள கலவையில் H., CO என்பவற்றின் கனவளவு (a) பச்சியம்.
 - விளைவுக் கலயைின் மொத்தக் கனவளவு 10 cm³ ஆல் அதிகரிக்கும். (b)
 - தகனத்தின் (மன்னும் பின்னும் N, வாயுவின் கனவளவு வீதம் மாறாது. (c)
 - இத்தகனத்தின் போது ஒட்சிசன் வாயு எஞ்சி இருக்காது. (d)
- (35) X என்னும் வாயு ஒன்றின் 10 ml ஐயும் Y என்னும் வாயு ஒன்றின் 5 ml கொண்ட கலவை முற்றாகத் தாக்கமடைந்து உண்டான ஐயும் கனவளவு 5 ml ஆல் குறைந்தது. பின்வரும் எத்தொகுதி / தொகுதியின் ஒத்திருக்கும்? (எல்லா அளவீடுகளும் தொகுதிகள் இதனை **அறை**வெப்ப அமுக்கத்தில் பெறப் பட்டவை).
 - $2CO + O_2 \rightarrow 2CO_2$
- $O_2 + 2NO \rightarrow 2NO_2$
- $2H_1 + O_2 \rightarrow 2H_2O$.
- $H_sS + Cl_s \rightarrow 2HCl + S$

- (36) $C_6 H_{12}$ என்னும் வாயுநிலை ஐதரோ காபனின் $10 \mathrm{cm}^3$ முற்றாக எரிக்கப்பட்டது எல்லா அளவீடுகளும் 200°C இலும். 1 atm அமுக்கத்திலும் பெறப்பட்டவை எனக்கொண்டு சரியான கூற்றுக்கள் எது /எவை?
 - 60 cm³ CO, விளைவாக்கப்படும்.
 - 120 cm³ நீராவி விளைவிக்கப்படும். (b)
 - தகனத்தின் பின் தொகுதியின் கனவளவு மாறாது. (c).
 - $\mathrm{C_{s}H_{12}}$ வாயுவும் O_{2} வாயுவும் தகனமடையும் போது சேரும் கனவளவு விகிதம் 1 : 9 ஆகும்.
- (37) 1dm³O, வாயுவைக் கொண்ட 2dm³ வாயுச்சாடி அரைவாசி அளவுக்கு நீரால் நிரப்பட்டு அதன் வாய் நீர் மட்டத்தில் இருக்கத் தக்கதாக வைக்கப்பட்டு 1dm³ உலர் NO வாயுச்சாடியுள் செலுத்தப்பட்டது. இப்பரிசோதனை பற்றிய சரியான கருத்து / கருத்துக்கள் எது /எவை?.
 - கபில நிற புகை தோன்றும்.
 - வாயுச் சாடியுள் நீர் மட்டம் உயரும். (b)
 - வாயுச் சாடி முற்றாக நீரினால் நிரப்பப்படாது. (c)
 - தாக்கத்தின் பின் வாயுச்சாடியில் 500 cm³ O, வாயு எஞ்சியிருக்கும். (d)
- $\frac{PV}{T} = K$ என்னும் சமன்பாட்டை நிறுவப் பயன்படும் வாயு விதிகள் எவை?
 - சாள்சின் விதி.
- அவகாதரோவின் விதி.
- கேலாசாக்கின் விதி. (c)
- பொயிலின் விதி. (d)
- மூலக்கூறுகள் எப்பொழுதும்,
 - ஒன்றுக்கு மேற்பட்ட அணுக்களைக் கொண்டிருக்கும். (a)
 - உயர் இரசாயன உறுதியுடையவை. (b)
 - 103 போன்ற உயர் சார்மூலக்கூற்றுத் திணிவுகளைக் கொண்டிருக்க (c) மாட்டாகு.
 - மூலக்கூறுகள் பங்கீட்டு வலுச் சேர்வைகள் ஆகும். (d)
- ஒரு மூல் பென்சீனில் (C,H,) உள்ள (L என்பது அவகாதரோ எண்ணாகும்).
 - காபன் அணுக்களின் எண்ணிக்கை 6 L . (a)
 - ஐதரசன் அணுக்களின் எண்ணிக்கை 6 mol. (b)
 - மொத்த அணுக்களின் எண்ணிக்கை 12 L. (c)
 - மொத்த மூலக்கூறுகளின் எண்ணிக்கை L. (d)

41 - 50 வரையுமான வீனாக்களுக்கான அறிவுறுத்தற் சுருக்கம்.

கூற்று - 1	கூற்று 2
கூற்று 1, 2 சரி, தகுந்த விளக்கம் எனில்.	1 ஆம் விடை
கூற்று 1, 2 சரி, தகுந்த விளக்கம் இல்லை எனில்	2 ஆம் விடை
கூற்று 1 சரி, 2 பிழை எனில்	3 ஆம் விடை
கூற்று 1 பிழை, 2 சா எனில்	4 ஆம் விடை
கூற்று 1, 2 பிழை எனில்	5 ஆம் விடை

(41) சடத்தை ஆக்கவோ அமிக்கவோ (முடியாது.

NaCl (aq) + AgNO, (aq) என்னும் தாக்கத்தில் தாக்கிகளின் திணிவ சமன். விளைவ களின் திணிவு என பரிசோதனை முறை யால் நிறுவலாம்.

இரசாயனத் தாக்கத்தின் போது சக்தி மாற்றம் நிகழ்கின்றது.

இரசாயனத் தாக்கத்தின் போது திணிவ மாற்றம் நிகழ்கின்றது.

1g ஒட்சிசனுடன் சேரும் செப்பின்ஒரு மூலகத்தின் குறித்த திணிவே கிணிவகள் எப்பொழுதும் ஒரு மாறிலி ஆகும்.

மற்றைய முலகத்தின் குறித்த திணிவுடன் சேரும்.

(NH₄), CO, ஐப் பயன்படுத்தி CO, இன் மூலர்க்கனவளவைத் துணிய லாம்.

(NH₄), CO, பிரிகையடைந்து CO, ஐக் கொடுக்கும்.

ஜதரசனின் மூலக்கூற்று நிறை அண்ணளவாக 2 ஆகும்.

ஒரு முல் ஐதரசனில் இரண்டு அணுக்கள் உண்டு.

s.t.p இல் எந்தப் பதார்த்தத்தின் ஒரு மூலும் 22.4 dm³ ஜ அடைக்கும். ஒரு மூல் எந்தப் பதார்த்தமும் சம எண்ணிக்கையான துணிக்கைகளைக் கொண்டிருக்கும்.

(47) s.t.p இல் 1g CO உம் 1g N, உம் சம கனவளவைக் கொண்டிருக்கும்.

N., CO என்பன ஈரணு வாயுக்கள்.

ஒரே வெப்ப அமுக்கத்தில் சம 10g CO,, 10g N₂O என்பன ஒரே வெப்ப திணிவுள்ள வாயுக்கள் சம கனவ அமுக்கத்தில் சமகனவளவை அடைக் ளவைக் கொள்ளும். கும்.

ஒரு மூல் காபன், ஒரு மூல் He இல் உள்ள அளவு அணுக்களைக் கொண்டிருக்கும்.

ஒரு முல்எந்தப்பதார்த்த மும் அவகாதரோ எண் துணிக்கைகளைக் கொண்மாக்கும்

s.t.p யில் ஒரு மூல் வாயு அணு ஐதரசன் கிட்டத்தட்ட 11.2 dm³ ஐ கொள்ளும்.

s.t.p இல் ஒரு மூல் ஐதரசன் (H₂) வாயு கிட்டத்தட்ட 22.4 dm³ ஐ கொள்ளும்.

NO, என்னும் அனுபவச் சூத்திரத்தைக் கொண்ட வாயுவைப் பற்றிய சரியான கூற்று எது?

(1) இதன் சார் மூலக்கூற்றுத்திணிவு 46 ஆகும்.

இது அண்ணளவாக நிறைப்படி 30 வீதம் நைதரசனைக் கொண்டுள்ளது.

ஒரு மூல் 3 மூல் அணுக்களைக் கொண்டுள்ளது. (3)

(4) s.t.p இல் 22.4 dm³ வாயுவின் திணிவு 46.

(5) மேற்கூறிய எல்லாம் சரியானவை.

Fe,O, இல் உள்ள இரும்பின் திணிவுப் பின்னம் பின்வருவனவற்றில் எதுவாகும்? [Fe = 56, O = 16]

 $^{56}/_{3} \times 16(3)$ $3 \times ^{16}/_{160}$ $3 \times \frac{16}{56} (2)$

10

1.24 g Na,S,O,. 5H,O இல உள்ள Na+ மூல்களின் எண்ணிக்கை. (Na = 23, S = 32, O = 16, H = 1

(1) 10^{2}

- (2)
- 10-1
- 10^{3}
- செனன் (Xe), வாயுநிலையில் உள்ள புளோரீனுடன் ஒரு நிக்கல் குழாயில் வைத்து வெப்பமாக்கிய போது ஆவிப்பறப்புள்ள விளைவு Q பெறப்பட்டது. O இன் 20.7 g மாதிரி ஒன்றில் 0.1 மூல் Xe காணப்படின் Q இன் சாத்தியமான சூத்திரம் எது? (F = 19, Xe = 131)

Xe₂F (2)

- XeF, (2) XeF₄ (4)
- XeF_{\star} (5)
- XeF.
- (05) S என்னும் சேர்வை C, H, O என்பவற்றைக் மட்டும் கொண்டது. S இல் காபனின் நிறைவீதம் 40. ஒரு மூல் S இல் உள்ள காபன் அணுக்களின் எண்ணிக்கை என்ன? (S இன் சார்மூலக்கூற்றுத் திணிவு = 60, C = 12)
 - (1)
- (2)
- (3)
- (4)
- (5) எதுவுமல்ல.

BASI	CHE	MIST	RY							94	BAS:	C CHI	EMIST	KY.								75
												(1)		(2)	2.12	(3)	4.24	(4)	8.48	(3)	10.0	95
											(55)	Na ₂ Co	0, இன்	நிறை	g இல் ச	ாது?					10.6	
											(06)	0.1 m	ol dm ⁻³ 1	100 cm³ п	දීඇ <u>ර</u> ්ග N	ia,CO, d	கரைச	തെക്ക് ദ	தயாரிக	தேத் சே	தவையா	ன நீரற்ற
											- .	(1)	2	(2)	1	(3)	5	(4)	10	(5)	6	
											இல்	ு எது?		WE!! W					-	- J	- 1	
												6 <i>ப</i> 16076 0.5 m ²	வம்பு க் அ.சு	கைரக்க	துக்கு தப்பட்ட	சாய்சர் சால் வி	,, ചേഴ്യ ബൈപ	் க ை ந கரை	<i>ச</i> லில் I	iCl Ø6	ர் செறிவு i	mol dm ⁻³
											(05)										லும் கலக் ரசலின் க	
				J	. , ,			-		<u> </u>		(1)	90/18	-¹ (2)	0.8 M	(3)	25/9 [M (4)	2.5 M	(5)	0.25 M	
	(1)	Na Na	(2)	Мg Мg	(3)	S	(4)	K	(5)	எதுவுமல்ல.		<u> </u>		னோ லி								
(60)				த்தின் எவற்ற						10 ⁻²³ g. X என்னும்	(04)	CH ₃ O	H இன்	அடர்த்	தி 0.8 g	cm ⁻³ 67	னவும்,	இக்க	ரைசல் (இலட்சி	ந்நிபந்தவ ியமானது	
	(1)	MCI			(3)	MCI ₂	(4)	M ₂ C	l (5)	MCI ₃		(1)	0.4	(2)	4	(3)	0.1	(+)	0.01	(3)	0.07	
			ளாலர ன சூத்		ு. மு.	பா.று60	0110H 32	ν , Σ ΜΟ	സംഗങ്ങ	க்குளோ ரைட் டின்		•		(mol dn			0.1	(4)	0.01	(5)	0.04	
(59)										றத் தயாரிக்கலாம்.		கரை	சலின்	கனவஎ	ாவு 0.25	dm³ අ	த்க ஐத	ாக்கட்	பட்டா6	ധ ഖിത	ளவுக் கன	ரைசலி ன்
									` `		(03)	0.4 വ്യ ക്കിമ	லை குள ர் 25 m ³	நககோ 3 செம்	சை 10 மையாக	m" நா க அள	ககரை ரந்கெ(சல ஒ தேத்து ச	வயும் காய்ச்ச	ளரை சிவழ்	ள்ளது. இ த்த நீர் ே	கையை சர்த்து
(58)	எம் <u>சூ</u> (1)	pலக e N	அ ணு க் (2)	கள இட H	Jபள் (3)		ਮੁ <i>ਠ</i> /ਠ < (4)	அளவி S	ல் கான (5)	னப்படும்? O							•		· O -	<u>-</u> -	÷	\ + = ~=
(ED)		· .	· .			0.						(1)	0.5	(2)	0.1	(3)		(4)	$\frac{34.2}{200}$	(5)	200	
(-,)	(1)	N	(2)	H H	(3)	وردهارور Fe	(4)	S	ம் எனு. (5)			எது?	(C = 12)	2, H = 1,					24.0		0.1	
(57)	இப்ப	ளிங்கி	ിക് ക്ര ങ	றந்தவ	നുവ ക്ഷ	ട ഭിക്ക	2011-111	ലാഖക	ம் எது?)	.12)	1 dm ³	க்கு ஐ	தாக்கட்	и иціце	து. இக்க	கரைச	ပါလံ မြေ	பல்லத்	தின் ெ	சறிவு mol o	dm ³ இல்
	(N =	14, H =	1, Fe =	56, S =	32, O =	= 16)		•			າ2)		ക്യങ്ങ	வெள்ள	'nC H	O 1200	ст³ г Д П	ன் கல	ரக்கப்ப	് ദ്ര ക്ക	ரசலி ன் க	 അഖണഖ
							(NH ₄),	Fe(SO), . 6H,(O ஆகும்.		(4) (5)		கூறிய 6						J,		
*	57.	58 - 01.5	പ്പെട്ടി	னாக்க	ണക്.ക	aftuasi.						(3) (4)		கரை <i>ச</i>						வின் எ	ாண்ணிக்	തക.
	(1)	. 1	(2)	2 1	(3)	3	(4)	4	(5)	5		(2)	1 kg ć	கரைப் ப	ானில்	உள்ள	கரை	ய மூல்	களின்		ரிக்கை.	
				ன் அணு				900000	ALLED TAT	தன் ஐத ன்ரட்டில	(01)	மூலா (1)		(mol dm கரைப்			கரைய	மூல்க	ளின் எ	ண்ணி	ക്കെക.	
	மாக வெ	கிய சே 'படவம	பாது ப் மக்கக	ரிகைய கில் (ச	படை <u>ந்</u> கொடு	து மு க்கக	லகத்ன கை	தயும், மலக்க	100 cm	³ H ₂ வையும் அதே இன் ஐதரைட் டில்	(0.1)	•		(.3\ ~~ **							
(56)	М எ	ன்னும்	மூலக	த்தின்	வாயு	நிலை	ஐதன	ரயிட் (டு ஒன்ற	றின் 50 cm³ வெப்ப			Ш	ல்தே	ந்நவு	ណ៍	ினா	ææ	ள்	- 02	2	

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

BASIC	CHEA	NTO I K	7								96	BASI	C CHE	MIST	RY								97
				அடாத	201 Fn(1	j.D.		-					(5)	ć15600)	ძით დ	lguлг				·			
	கரைச (1)	சலின் செ கரைச	ിഖப்பµ ∙லில் മ	6ിതെയെ	ற்பு 20 ' வெல்	்C க்கு லத்தின்	குளிரக	ச் செய்	பும் பே	ண்டுள் சாது,	ளது. இக்	(20)	(1)	10.3	(2)	0001 10 00	(3)	ச <u>லில் 9</u> 0.001 36.5	உள்ள (4)	H <u>+ அ</u> ப 0.001 36.5	ıன் செ х 100	றிவு mol di	m ^{.3} இல்
	(1)		(2)	3 x 10		0.1	(4)		(5)	3			(5)		ra susu antum					um ·.			
	செறுவ	भ mol d	m ⁻³ @6	ம் <i>எது</i> ?	(Ca = 4)	m³ நீர்க் l0, Br = l	க் கரை 80)	சலில் ഉ	டள்ள	மொத்	த அயன்		(2) (3) (4)	(2) 67)[ரசலில் 1 சலில் 1 சலில்	NaOH (இன் ெ	சறிவு பூ	_ச ்சிய				
	(4)	2			(5)	10 ⁻² m							(1)	മതി	<i>சலி</i> ல்	1 மில்	லி மூல்	NaOH	கரை	ற்று எது க்கப்பட்	? (Na = Б ј.	23, O = 16	5, H = 1)
mol	(1)	10-2			(2)	6 x 10				(3)	10 ⁻² x 3	(19)	40 mg	NaOH	நீ ரில் க	கரைக்	கப்பட்	டு கன	ரசலி	ன் கனவ	பளவு 5	0 cm³ க்கு	ஐதாக
(12)	2.0 g C துணி	CaBr ₂ නු <mark>க்கை</mark> க	1000 ci வின்	n³ நீர்க் எண்ணி	கரை வ ிக்கை	சல் கொ 5. (Ca = 4	ாண்டு∂ 40, Br	ர்ள து. 8 = 80)	கரைவி	இவள்ள	கரையத்				ിഖ moi		ல்,	0.6	(4)	0.75	(5)	0.9	
			(2)	0.1	(3)		(4)	0.2	(5)	5.85		ខេល€	ன வஎ P ஜ u	-	ஐயும் ச	லப்பத	ன் மூ	லம் பெ	றப்படு	ம் கரை	சலில்	உள்ள K	+ அயக
(11)	5.85 g கரை (1)	NaCl நி சலில் s 0	உள்ள	NaCl &	இன் ெ	சறிவு m	ol dm ⁻³	இல் எத	ы?		5ப்பட்டது.	ஐக்		கொ								், 0.6 மூ ரிக்கப்ப	
	ஐதா [Cr₂(S	க்கப்ப O ₄) ₃ = 3 0.016	ட்ட <i>து.</i> 88, H ₂ 0	க ரை ச	•லில் <u>s</u> (3)	உள்ள S 0.40	O ₄	யன்கஎ 0.15	ி ன் செ	சறிவு mo	oom ஆയ ol dm-³ இல்	(17)	0.025	ஆயி 12, H =		கரை 6)		களுக்			W) வீ <u>ச</u>	சின் மூல் ச் செறிவ 40.8	
(10)	2.48 g	Cr ₂ (SO) ₃ . 6H,	0 நீரில்	கரை						0 cm³ ஆக		(1)		(2)			0.20		0.40		0.8	
(09)	2 mol ் கரை (1)	dm ⁻³ , 25(சலின் 0.002	மொத்	தக் க	ஒன்றி6 எவள (3)	വ dm³ g	இல் எத	ol dm ⁻³		ரை ஐத 1.00	ாக்கினால்	16)	பட்டு	கரை	சலின் க	கனவ ்	ாவு 250	cm³ എ	தக்க ப்		. இக் ச	µ நீரில் கஞ தரைசலில் = 35.5)	
(00)	(1)	0.002	! (2)	0.02.	5 (3)	0.40	(4)	0.50	(5)	1.00			(1)		(2)		(3)	40	(4)	90	(5)	125	
(08)	(5)	ol dm ⁻³ , 2	50 cm ³	கரை ச	ம் <i>ஒன்</i> ற	ள் போ <i>த</i> இல்உள்	ள கன	ரபமூல்	களின்	- <i>61 ठाउं। त्वरी</i> ।	க்கை எது?	(15)	250 c	т³ ஆ		டபோ	து கன					சலின் க n ⁻³ ஆயின்	
	(1)	1		(2)	10/9)	(3)		- 10). (4)	0.1	· ·		(5)	மேற்	சுறிய	எல்லா	ம்சரி	பானன		•			
(07)	ക്ക	TUUTOT	்தான்	றும்வன	у Даба	^C ₆ H ₁₂ O ₆) தரைசல் என?(C	குளிரவ	விடப்பப்	_ால்வி	ளது. 10 ளையும்) g ජාිഞ්ගக் සාගූපාරින්		(3) (4)	ക്ക	ரசலின்	திணி	வு மாற	ாது.		ol dm ⁻³ (இலும் க	௯டும்.	

(21)	2mol dm ⁻³ KOH கரைசலின் 200 cm ³ உம் 3 mol dm ⁻³ KOH கரைசலின் 300 cm ³ உம் கலந்து பெறப்பட்ட கரைசலில் உள்ள OH அயன் செறிவு mol dm ⁻³ இல். (1) 2 (2) 3 (3) 1.5 (4) 2.6 (5) 1	(27)	தூப்பா, SO, இன் நிறைவீதச் செறிவு 98. அடர்த்தி 1.85 kg dm ⁻³ இவ்வமிலத்தின் என்ன சுன்னவன்ன (cm ³) 1 dm ³ ஐதாக்கினால் 0.1 mol dm ³ செறிவுள்ள கரைசன் பெறப்படும்? (1) 5. 0 (2) 5.40 (3) 2.8 (4) 2.7 (5) 10
(22)	0.1 mol dm ⁻³ செறிவுள்ள K ₂ SO ₄ கரைசலின் 25 cm ³ இல் உள்ள K ⁺ அயன்களின் எண்ணிக்கை. (அவகாதரோ எண் L). (1) 5 x 10 ⁻³ (2) 2.5 x 10 ⁻³ (3) 5 x 10 ⁻³ L (4) 0.1 L (5) 0.1	(28)	25 g NII ஐக் கொண்ட 100 g நீர்க் கரைசல் ஒன்றின் அடர்த்தி 0.98 g cm³ இக் கரைசல் ஒன்றின் அடர்த்தி 0.98 g cm³ இக் கரைசல் போது அண்ணளவான முக் மூலர் NH, கரைசல் பெறப்படும் (cm³) இல், (1) 127.5 (2) 104.16 (3) 102.04 (4) 62.39 (5) 85
(23)	வியாபாரத்துறை சல்பூரிக்கமிலத்தின் நிறை நூற்றுவீதச்செறிவு 98. அடர்த்தி 1.84 g cm ⁻³ , இச் சல்பூரிக்கமிலத்தின் மூலர் செறிவு mol dm ⁻³ இல் (H = 1, S = 32, O = 16) (1) 20 (2) 10 (3) 18.4 (4) 36.8 (5) 9.2	29)	9.8 cm³ பாகுநிலை H ₃ PO ₄ அமிலத்திலிருந்து ஆகக்கூடிய 1 mol dm⁻³ H ₃ PO கரைசலின் கனவளவு cm³ இல் யாது? பாகுநிலை H ₃ PO ₄ அமிலத்தின் அடர்த்தி 1.9 kg dm⁻³ (H ₃ PO ₄ = 98) (1) 190 (2) 18.62 (3) 0.19 (4) 76 cm³

செறிந்த HCI அமிலக் கரைசல் ஒன்றின் நிறை விதச் செறிவு 36.5 ஆகவும் அடர்த்தி 10/9 g cm³ ஆகவும் இருப்பின் இக்கரைசல் பற்றிய சரியாக கூற்று ஏது? (H = 1, Cl = 35.5)

- 100 g கரைசலில் 1 மல் HCl உண்டு.
- 100 g ക്കണക്കിൽ ക്**ൽഖണഖ** 0.09 dm³. (2)
- கரைசலில் HCl இன் மூலர்ச்செறிவு அண்ணளவாக 11 M. (3)
- இக் கரைசல் வளியில் தூமங்களை ஏற்படுத்தும். (4)
- மேற்கூறிய எல்லாம் சரியானவை. (5)

மாணவன் ஒருவனால் 4.0 g NaOH, இரசாயனத் தராசு ஒன்றைப் பயன்படுத்தி பாடசாலை அய்வகூடத்தில் நிறுத்தெடுத்து வளமையான முறைப்படி நீரில் கரைத்து கரைசலின் கனவளவு 250 cm³ க்குக் கொண்டுவரப்பட்டது. மாணவன் தகுதி உள்ள செய்முறையாளன் எனக்கருதி இக் கரைசலின் செறிவு NaOH சார்பாக mol dm³ இல் எதுவாக இருக்கலாம் எனக் கூறுக. (Na = 23, O = 16, H = 1` 0.2

- (1) 0.4 (2)
- 0.8
- (3) 0.1
- (4)
- (5)

 ≈ 0.4

(26) \$\frac{1}{2}\$ 46% (W/W) எதனோலைக் கொண்ட எதனோல், நீர்க்கரைசலில் நீரின் மூல் பின்னம் என்ன? (C = 12, O = 16, H = 1)

BASIC CHEMISTRY

- $\frac{46}{100}$ (3) $\frac{3}{4}$ (4) $\frac{100}{46}$ (5)

40 cm¹ கனவளவள்ள 0.1 mol dm⁻³ NaOH கரை சலுடன் 10 cm³ கனவளவள்ள 0.45 mol dm³ HNO, கரைசல் கலந்து ஒன்று சேர்க்கப்பட்டால் விளைவுக் மலா சலில் உள்ள H⁺ அயன் செறிவு mol dm³ இல் எது?

(5)

 10^{-1} (2)

கணிக்கக் காவ போகாகு.

- 10^{-2} (3) 10^{-3} (4)

10-5

40 வரையுமான வீனாக்களுக்கான அறிவுறுத்தற் சுருக்கம்.

அறிவுறுத்தற் சுருக்கம்.								
(1)	(2)	(3)	(4)	(5)				
a, b சரியெனில்	b, c சரியெனில்	c, d சரியெனில்	d, a சரியெனில்	வேறு சேர்மானம்				

31) அவகாதரோவின் கொள்கை பற்றிய சரியான கருத்து / கருத்துக்கள்.

- s.t.p இல் சமகனவளவு H, உம் SO, உம் சம எண்ணிக்கை மூலக் (a) **கூறுக**ளைக் கொண்டிருக்கும்.
- s.t.p இல் ஒரு கனவளவு CH, உம் 2 கனவளவு H, உம் சம எண்ணிக் (b) கையான ஐதூசன் அணுக்களைக் கொண்டிருக்கும்.
- s.t.p இல் சமகனவளவு CO வும் CH₄ உம் சம எண்ணிக்கையான (c) காபன் அணுக்களைக் கொண்டிருக்கும்.
- s.t.p இல் ஒரு மூல் எந்த வாயு அணுவும் கிட்டத்தட்ட 11.2 m³ ஜ (d) அடைக்கும்.

- (32) 11.1 g CaCl₂ I 100 cm³ நீர்க்கரைசல் கொண்டுள்ளது. இக்கரைசல் பற்றிய சரியான கூற்றுக்கள் எது / எவை? அவகாதரோ எண் L ஆகும். (Ca = 40, Cl = 35.3) (a) Ca⁺⁺ செறிவு 1 mol dm⁻³ (b) Al செறிவு 2 mol dm⁻³
 - (c) கரையத் துணிக்கைகளின் எண்ணிக்கை 3 L.
 - (d) CaCl, செறிவு 1 mol dm³.
- (33) 35 $^{\circ}$ C இல் 46 g எதனோலை (CH_3CH_2OH) . 54 g நீர் கொண்டுள்ளது. இக்கரைசல் பற்றிய சரியான கூற்று / கூற்றுக்கள் எது / எவை?(C=12, H=1, O=16)
 - (a) எதனோலின் செறிவு 46% (W/V) ஆகும்.
 - (b) எதனோலின் மூல்ப்பின்னம் 1/4 ஆகும்.
 - (c) எதனோலின் செறிவு 46% (W/W) ஆகும்.
 - (d) எதனோலின் மூலர்ச்செறிவு 1M ஆகும்.
- (34) ஒரு கரைசலில் உள்ள கரையம் ஒன்றின் செறிவு பற்றிய கூற்றுக்களில் எது / எவை சரியானவை?
 - (a) இக்கரைசலுக்கு வேறு ஒரு கரையத்தைக் கொண்ட கரைசலைச் சோக்கும்போது குறையும்.
 - (b) இது கரைசலின் கனவளவுக்கு நேர்மாறு விகித சமனாகும்.
 - (c) இது கனவளவுக்குத் தெரிந்த கரைசல் ஒன்றில் உள்ள கரையத்தின் மூல் அளவாகும்.
 - (d) வேறு ஒரு திண்மகக் கரையத்தைச் சேர்க்கும் போது செறிவில் மாற்றம் இல்லை எனலாம்.
- (35) நீரில் பின்வரும் எப்பதார்த்தங்களின் ஒரு மூல் கரைக்கப்படும் போது சம எண்ணிக் கையான கரையத் துணிக்கைகள் காணப்படும்?
 - (a) $Ba(NO_3)_2$
- CaCl₂ (c)
- K,SO, (d)
- Na₂CO₃
- (36) பின்வரும் எக்கரைசல்கள் சமமான K+ செறிவைக் கொண்டிருக்கும்? (ஒவ்வொரு சந்தர்ப்பத்திலும் சமகனவளவு 1 mol dm³ கலக்கப்பட்டுள்ளன)
 - (a) 1M K,CO, + 1M KNO,
- (b) $1M K_2CO_3 + 1M K_2SO_4$

- (c) 1M KNO, + 1M KBr
- (d) $1M K_2PO_4 + 1M NaCl$
- (37) X என்னும் கரையம் நீரில் கரையக் கூடியது. X நீரில் எதுவித மாற்றமும் அடைவதில்லை. X இன் மூ.கூ.நி 180. 25 °C. X இன் 0.1 மூலல் கரைசலின் அடர்த்தி 1.028gcm⁻³. இக்கரைசல் பற்றிய சரியான கூற்று / கூற்றுக்கள் எது / எவை?

- (a) 10.18 g கரைசல் 0.1 மூல் X ஐக் கொண்டிருக்கும்.
- (b) 0.1 மூல் X ஐக் கொண்ட கரைசலின் கனவளவு 1018/1.028 cm³.
- (c) கரைசலின் 1018 g இல் 6.023 x 10²² துணிக்கைகள் உண்டு.
- (d) 0.1 மூல் X ஐக் கொண்ட கரைசலின் கனவளவு சரியாக 1 dm³.
- (38) M என்னும் பதார்த்தத்தின் மூலக்கூற்றுத்திணிவு 180. M நீரில் கரையும், M நீரில் எதுவித மாற்றமும் அடைவதில்லை. 25 °C இல் 35% (W/V) ஐக் கொண்ட கரைசலின் அடர்த்தி 1.25 g cm³. இக்கரைசல் பற்றிய சரியான கூற்று / கூற்றுக்கள் எது / எவை?
 - (a) 0.1 dm³ கரைசலின் திணிவு 125 g.
 - (b) M இன் செறிவு 2 mol dm^{-3.}
 - (c) M இன் செறிவு 2.24 mol kg⁻¹.
 - (d) M இன் செறிவு 28.8% (W/W).
- (39) 25 ℃ இல் எதனோல் (CH₃CH₂OH) நீர்க்கரைசல் ஒன்றில் நீரின் மூல்ப் பின்னம் 3/4. இக்கரைசல் இலட்சியமானது எனக்கருதி இக்கரைசல் பற்றிய சரியான கூற்று எது / எவை? C = 12. O = 16, H = 1).
 - (a) எதனோலின் செறிவு 46% (W/W) ஆகும்.
 - (b) எதனோலின் செறிவு 46% (W/V) ஆகும்.
 - (c) எதனோலின் மூலச்செறிவு 10.
 - (d) எதனோலின் மூலல்செறிவு 18.5.
- (40) **பின்வ**ரும் எவ்வமிலத்தின் ஒரு மூலை 1dm³ கரைசல் கொண்டிருக்கும்போது சமஅளவு H⁺ அயன் செறிவுகளைக் கொண்டிருக்கும்?
 - (a) CH,COOH
- (b) HCl
- c) HNO,
- (d) H₂SO₄

11 - 50 வரையுமான வீனாக்களுக்கான அறிவுறுத்தற் சுருக்கம்.

கூற்று - 1	கூற்று 2
கூற்று 1, 2 சரி, தகுந்த விளக்கம் எனில்.	1 ஆம் விடை
கூற்று 1, 2 சரி, தகுந்த விளக்கம் இல்லை எனில்	2 ஆம் விடை
கூற்று 1 சார், 2 பிழை எனில்	3 ஆம் விடை
கூற்று 1 பிழை, 2 சரி எனில்	4 ஆம் விடை
ூட்ற்ற ு 1, 2 பிழை எனில்	5 ஆம் விடை

(41) 1 mol dm⁻³ அசற்றிக்கமிலத்தின் க**ரை சலி**ல் உள்ள H⁺ அயன் செறிவு 1 mol dm⁻³ ஆகும். அசற்றிக்கமிலம் ஒரு மூல அமிலமாகும்.

(42)	மூலகங்களின் சாரணுத்திணிவு களைத் துணிவதில் C ¹² நியமம் O ¹⁶ நியமத்திலும் விரும்பப்படு கின்றது.	இயற்கையில் உள்ள ஒட்சிசன் சமதானி களின் கலவையாகும்.
(43)	NaCI கரைசல் ஒன்றுக்கு திண்ம KCI சேர்க்கும்போது Na+ இன் செறிவு மாறாது.	NaCl கரைசலுக்கு திண்ம KCl சேர்க்கும் போது Na+ இன் அளவு மாறாது.
(44)	ஒரு காபன் அணுவின் திணிவின் வரிசை 10 ²³ ஆகும்.	6.023 x 10 ²³ காபன் அணுக்களின் திணிவு அண்ணளவாக 12 g ஆகும்.
(45)	தற்காலத் தில் C ¹² நியமம் சாரணுத்திணிவு அளவீட்டில் பயன்படுத்தப்படும்.	இந்நியமம் பௌதிக இரசாயன சாரணுத் திணிவுகளின் வேறுபாட்டை முற்றாக நீக்கியது.
(46)	Mg இன் சாரணுத்திணிவு கிட்டத்தட்ட 24 ஆகும்.	காபன் அணுவொன்றின் திணிவிலும் Mg அணுவொன்றின் திணிவு 24 மடங்கு ஆகும்.
(47)	C ¹² ஐ நியமமாகப் பயன்படுத்தி இயற்கையாக உள்ள காபனின் சாரணுத்திணிவு 12.015 ஆகும்.	மூலகத்தின் அணுவொன்றின் சராசரித் திணிவுக்கும் C ¹² சமதானி அணுவொன்றின் திணிவின் 1/12 பங்குக்கும் இடையே உள்ள பின்னம் சாரணுத்திணிவு ஆகும்.
(48)	கரைசல் ஒன்றின் கனவளவு அதிகரிக்கச் செறிவு குறையும்.	செறிவு ஐதாக்கத்துக்கு நேர்மாறு விகித சம ன் .
(49)	ஒரு மூல்கரையத்தைக்கொண்ட எல்லா நீர்க் கரைசல்களும் சம எண்ணிக்கையான கரையத் துணிக்கைகளைக் கொண்டு இருக்கும்.	ஒரு மூலில் அவகா தரோ எண் துணிக்கை கள் உண்டு.
(50)	KNO ₃ கரைசல் ஒன்றுக்கு யூறியா கரைசல் ஒன்றுக்குச் சேர்க்கும் போது கரைசலில் உள்ள யூறியா -வின் செறிவு மாறாது.	யூரியாக் கரைசலுக்கு திண்ம கரைசல் சோக்கும்போது கரைசலில் உள்ள யூறியா வில் அளவு மாறாது.

(51) 0.2 mol dm⁻³ NaOH இன் 30 cm³ ஐ நடுநிலையாக்கத் தேவையான 0.3 mol dm⁻³ அமிலம் ஒன்றின் கனவளவு cm³ இல் எகு!? (1) 20 (2) 10 (3) 15 (4) 25 (5) สสงดแกล่าลา.

(52) ஒரு அலோக புறோமைட்டின் 0.1 மூல் நீரில் கரைக்கப்பட்டு 500 cm³ கரைச லாக்கப்பட்டது. இக்கரைசலின் 50 cm³, 0.1 mol dm³ AgNO, இன் 300 cm³ நீர்க் **கரை**சல் உடன் பூரணமாகத் தாக்கமுற்றது. மூலகமானது A ஆல் குறிக்கப் பட்டால் புறோமைட்டின் சூக்கிரம்.

(1) A.Br (2) A_aBr_c (3) ABr, (5) ABr.

்.1) 29.25 g NaCl ஐ 180 g நீரில் கரைத்துப் பெறப்பட்ட கரைசலிலுள்ள கரையத்தி**ன்** மல் பின்னம் எது? (Na = 23, Cl = 35.5, H = 1, O = 16) 1/11 (2) 1/21 (3) 1/2 (4)

10

(5)

29 25/180

(54) 0.1 mol dm⁻³ KCl, 0.1 mol dm⁻³ BaCl, கரைசல்களின் சமகனவளவு கலக்கப் பட்டால் விளைவுக் கரைசலில் உள்ள Cl கரைசலிக் செறிவு mol dm³ இல்.

(1) 0.1 (2) 0.15 (3) 0.2 (4) 0.25 (5) 0.3

(55) H.O. பின்வரும் சமன்பாட்டின் மூலம் பிரிகையடையும். $2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$ 100 cm³ H₂O₂ கரைசல் ஒன்று முற்றாகப் பிரிகையடைந்து s.t.p இல் 2.24 dm³ O₂ வைக் கொடுத்தது. H,O, கரைசலின் செறிவு mol dm⁻³ இல் எது? (2) 1 * (3) 2 (4)

(56) I mol dm⁻³Cl⁻ செறிவுடைய 50 cm³ கரைசல் தயாரிப்பதற்குத் தேவையான BaCl₋ 2H,O இன் திணிவு (g) இல் எது? (Ba = 137, Cl = 35.5)

(1) 12.2 (2) 24.4 (3) 6.1 (4) 10.4 (5) 20.8

Bn(OH), கரைசல் ஒன்றின் 20 cm³ ஐ முற்றாக நடுநிலையாக்க 0.04 mol dm³ HCl ச**லன்** 25 cm³ தேவைப்பட்டது. Ba(OH), கரைசலின் செறிவு mol dm³ இல் எது? 0.100 (2) 0.050 (3) 0.025(4)0.064 (5) 0.032

6.75 g Al மு**ற்றாகத்** தாக்கமடைவதற்குத் தேவையான 1.5 mol dm³ H,SO₄ அமிலக் கரை சலின் மிகக் குறைந்த கனவளவு cm³ இல் எது? (Al = 27) (தாக்கம் முற்றாக நிகழும் எனக் கருதுக.)

(59) 2.5 mol dm⁻³ H₃PO₄ அமிலத்தின் 50 cm³ ஐ முற்றாக நடுநிலையாக்கத் தேவை யான 1.5 mol dm⁻³ Ba(OH)₂ இன் கனவளவு cm³ இல் எது?

(1) 25 (2) 50 (3) 75 (4) 100 (5) 125

(60) 1dm³ HCl நீர்க்கரைசல் ஒன்று, s.t.p இல் 11.2dm³ ஐ அடைக்கும் NH₃ வாயுவால் நடுநிலையாக்கப்பட்டது. கரைசலில் உள்ள H⁺அயன்செறிவு moldm³ இல்

(1) 0.5 (2) 1 (3) 1.12 (4) 2 (5) 2.24

பல்தேர்வு வினாக்களின் விடைகள்

	1	2		1	2		1	2
(1)	4	5	(21)	4	4	(41)	4	4
(2)	4	2	(22)	1	3	(42)	1	2
(3)	4	5	(23)	3	3	(43)	4	2
(4)	4	4	(24)	5	5	(44)	4	4
(5)	5	2	(25)	1	5	(45)	3	1
(6)	5	1	(26)	4	3	(46)	4	3
(7)	5	5	(27)	5	2	(47)	2	1
(8)	5	4	(28)	1	4	(48)	4	4
(9)	5	5	(29)	5	1	(49)	2	4
(10)	4	4	(30)	2	2	(50)	4	4
(11)	5	1	(31)	1	5	(51)	2	5
(12)	5	3	(32)	1	1	(52)	5	4
(13)	5	2	(33)	5	2	(53)	4	1
(14)	3	5	(34)	1	4	(54)	3	2
(15)	1	1	(35)	1	5	(55)	5	3.
(16)	3	5	(36)	. 4	4	(56)	4	3
(17)	1	1	(37)	5	1	(57)	2	3
(18)	1	2	(38)	4	5	(58)	2	3
(19)	5	5	(39)	5	4	(59)	3	5
(20)	1	1	(40)	5	2	(60)	5	1

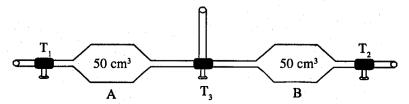
கட்டுரை வினாக்கள்

குறிப்பு : தரப்படாவிடின் எல்லா நிபந்தனைகளும் அிறை வெப்ப அமுக்கம் எனக் கொள்க

(1) 50 cm³ ஒட்சிசன் 50 cm³ ஐதரசனுடன் கலந்து அறை வெப்ப அமுக்க நிலையில் வெடிக்கப்பட்டது. விளைவுக்கலவை அறைவெப்ப அமுக்க நிலையில் அடைக்கும் கனவளவென்ன?

50 cm³ NH₃ வாயு கனவளவு மாறாது இருக்கும் வரை தொடர்ந்து பொறித் தாக்கத்துக்கு உட்படுத்தப்பட்டது. 98% கனவளவு NH₃ தனி மூலகங் களாக பிரிகை அடைந்திருந்தால் வாயுவின் இறுதிக் கனவளவு அதே நிபந்தனையில் என்ன?

- (1) ஒரு குறித்த திணிவு ZnS ஐ ZnO ஆக மாற்றுவதற்கு நி.வெ.அ.இல் 33 dm³ O₂ தேவைப்பட்டது. இந்நிபந்தனையில் வெளியேறும் SO₂ இன் கனவளவு என்ன?
- (4) அறைவெப்ப அமுக்கத்தில் 50 cm³ N₂ வையும் O₂ வையும் கொண்ட கலவையில் 40% கனவளவு O₂ உண்டு. இது 50cm³ H₂ உடன் கலந்து வெடிக்கப்பட்டு அதே நிபந்தனைக்கு குளிரவிடும்போது என்ன கனவளவு வாயு எஞ்சியிருக்கும்? எஞ்சிய வாயுவில் H₂ இன் கனவளவு வீதம் என்ன?
- (5) H,C₂O₄, ஒட்சாலிக்கமிலத்தை செறி H₂SO₄ ஆல் நீர் அகற்றும்போது சம கனவளவு CO உம் CO₂ உம் விளைவாகும். இக்கலவையின் 100 cm³, 50cm³ ஒட்சிசனுடன் வெடிக்கப்பட்டால் என்ன கனவளவு வாயு எஞ்சியிருக்கும். மிகையான KOH ஆல் உறிஞ்சப்பட்ட பின் என்ன கனவளவு வாயு எஞ்சும்?
- 6) 100 cm³ ஓசோனைக்கொண்ட ஒட்சிசன் அறைவெப்ப அமுக்கத்தில் எடுக் கப்பட்டு 400°C இல் வைக்கப்பட்டு பின் அறைவெப்ப அமுக்கத்திற்கு குளிர விட்டபோது கனவளவு 107 cm³ ஆகியது. 25 cm³, O₃, O₂ கலவை தேப்பன்ரையினுக்கு திறந்து வைக்கப்பட்டால் கனவளவுக்கு என்ன நிகழும்? குறிப்பு: (தேப்பன்ரையின் O₂ ஐ உறிஞ்சும்)
- (7) 25 cm³ உலர்வளி 100 cm³ H₂ உடன் கலந்து வெடிக்கப்பட்டு குளிரவிட்ட போது தொகுதியின் இறுதிக்கனவளவு 110 cm³ ஆகும். எல்லா அளவீடுகளும் அறை வெப்ப அமுக்கத்தில் பெறப்பட்டவை எனக்கொண்டு வளியில் O₂ இன் கனவளவு வீதம் என்ன?


- (8) 25 ml வாயு ஐதரோகாபன் 200 ml O₂ உடன் கலக்கப்பட்டு வெடிக்கப்பட்டது. குளிரவிட்டபின் விளைவுக்கலவையின் கனவளவு 137.5 ml கலவை KOH கரைசலின் ஊடாக செலுத்தியபோது கனவளவு மேலும் 100 ml ஆல் குறைந்தது எஞ்சிய வாயு O₂ ஆகும். ஐதரோ காபனின் சூத்திரம் என்ன?
- (9) 30 ml வாயுநிலை ஐதரோகாபன் 150 ml மிகையான ஒட்சிசனில் வெடிக் கப்பட்டு குளிர விட்டபோது விளைவுக்கலவையின் கனவளவு 105 ml. KOH உடன் உறிஞ்சியபோது கனவளவு மேலும் 60ml ஆல் குறைந்தது. ஐதரோ காபனின் சூத்திரம் என்ன?
- (10) 11.5 ml வாயுநிலை ஐதரோகாபன் 150 ml மிகையான ஒட்சிசனில் வெடிக்கப்பட்டு குளிர விட்டபோது கனவளவு 34.5 ml ஆல் குறைந்தது . விளைவு KOH இனால் உறிஞ்சப்பட்டபோது கனவளவு மேலும் 34.5 ml ஆல் குறைந்தது ஐதரோகாபனின் சூத்திரம் என்ன? தகனத்திற்கு தேவை யான மிகக் குறைந்த ஒட்சிசனின் கனவளவு என்ன?
- (11) 20 ml வாயுநிலை ஐதரோகாபனின் (CnH2n) 150 ml மிகையான ஒட்சிசனில் வெடிக்கப்பட்டு விளைவு KOH இல் உறிஞ்சப்பட்டபின் எஞ்சிய வாயுவின் கனவளவு 30 ml ஐதரோகாபனின் குத்திரம் என்ன?
- (12) 75 ml கலவை ஒன்று 30% மெதேன் (CH₄) 70% H₂ என்பவற்றைக் க**ன**வளவு வீதங்களாகக் கொண்டுள்ளது. இக்கலவை அறைவெப்பநிலையில் 200ml ஒட்சிசனுடன் வெடிக்கப்பட்டு குளிர விடப்பட்டால் எஞ்சிய வாயு வின் கனவளவு என்ன?
- (13) 5 ml C_xH_y என்னும் ஐதரோகாபன் $25\,\mathrm{ml}$ மிகை O_2 இல் வெடித்து உண்டான கலவை KOH ஊடாக செலுத்தியபோது கனவளவு $10\,\mathrm{ml}$ ஆல் குறைந்தது. எஞ்சிய வாயுவின் கனவளவு $7.5\,\mathrm{ml}$. x , y என்பவற்றைக் காண்க.
- (14) நிலக்கரி வாயு பின்வரும் கனவளவு வீத அமைப்புடையது. 50% H₂ , 30% CH₄ , 10% CO, 6%CO₂ , 4% N₂. இக்கலவை அதே கனவளவு O₂ உடன் எரிக்கும் போது விளைவுக்கலவையின் கனவளவு வீத அமைப்பை 227℃ இலும் வளியமுக்கத்திலும் கணிக்க.
- (15) எதைன் (C₂H₂), எதீன் (C₂H₄) என்பவற்றைக் கொண்ட 10cm³ கலவை ஒன்று 30cm³ O² உடன் வெடிக்கப்பட்டு அறைவெப்பநிலைக்கு குளிரவிட்டு KOH ஆல் உறிஞ்சப்பட்டபின் தாக்கமடையாத O₂ 2cm³ ஐ அடைத்தது எனில் கலவையின் கனவளவு அமைப்பைக் கணிக்க.

(16) பெற்றோல் ஆவியானது எந்த அளவுக்கு தகனம் அடைகிறது என மோட்டார் வாகனங்களில் தகனத்தால் வெளியேறும் கழிவு வாயுவில் உள்ள CO₂ இன் கணவளவு வீதத்தில் இருந்து அறியப்படும். 60cm³ வெளியேறும் கழிவு வாயு (CO, CO₂, N₂ என்பவற்றை மட்டும் கொண்டிருக்கும்) 20 cm³ மிகை ஒட்சிசனுடன் மலந்து வெடிக்கப்பட்டு குளிரவிடப்பட்டபோது கனவளவு 70cm³ ஆகக்குறைந்தது. KOH சேர் த்தபோது கனவளவு 35cm³ ஆகக்குறைந்தது கலவையின் கனவளவு அமைப்பை கணித்து இதில் உள்ள CO. இன் கனவளவு வீதத் தையும் கணிக்க.

பட்டணவாயு (எரிவாயு - Town gas) H₂ , CO , N₂ என்பவற்றை மட்டும் கொண்டது. 40 cm³ பட்டணவாயு ,40cm³ (மிகை) O₂ உடன் கவனமாக வெடிக்கப்பட்டு அறைவெப்பநிலைக்கு குளிரவிடப்பட்டபோது தொகுதியின் கனவளவு 51 cm³ ஆகக்குறைந்தது. KOH சோத்தபோது கனவளவு 41cm³ ஆனது.

- (a) விளைவாக்கப்பட்ட CO, இன் கனவளவு என்ன?
- (b) பட்டண வாயுவில் CO இன் கனவளவ என்ன?
- (c) வெடித்தலால் ஏற்பட்ட மொத்தக் கனவளவுக்குறைவு என்ன?
- (d) (i) CO, (ii) H₂என்பவற்றின்வெடித்தலால் ஏற்படுத்தப்பட்ட கனவளவு குறைவுகள் என்ன?
- 18) (அ) H₂, Cl₂ என்னும் வாயுக்களை பயன்படுத்தி கேலுசாக்கின் விதியை நிருபிப்பதற்கு நீர் ஆய்வுகூடத்தில் செய்யும் பரிசோதனையை விபரிக்க. இப்பரிசோதனையில் ஏற்படக்கூடிய வழுக்கள் எவை?
 - (ஆ) கேலுசாக்கின் விதி, அவகாதரோவின் கருதுகோள் என்பவற்றைத் தருக. ஐதரசன் ஈரணுவாயு என்பதை நிறுவ இவ்விதிகள் எவ்வாறு பயன்படும் எனக் காட்டுக. (மேலுள்ள பரிசோதனை வினாவை கருத்திற் கொள்க)
 - (**இ**) ஐதரசன் மூலக்கூறின் சூத்திரம் H₄ ஆக இருப்பின் ஐதரசன் குளோ ரைட்டின் சூத்திரம் என்னவாக இருக்கும்.?
 - (அ) 2 dm³ கொள்ளளவு உடைய வாயுச்சாடி ஒன்று நீரால் நிரப்பப்பட்டு நீர்கொண்ட தாழியுள் கவிழ்த்து அதன் வாய் நீர் மட்டத்திற்குக் கீழ் இருக்கும்படி பொருத்தப்பட்டுள்ளது. வாயுச் சாடியினுள் முதலில் 1 dm³ NO வாயு செலுத்தப்பட்டு பின் 1 dm³ O, செலுத்தப்பட்டது.
 - (i) அவதானிக்கக்கூடிய நோக்கங்களை காரணத்துடன் தருக.
 - இறுதியில் வாயுச்சாடியில் வாயு எஞ்சியிருக்குமா? ஆம் எனில் வாயுவில் கனவளவு என்ன? இல்லை எனில் ஏன் என விளக்குக.

(ஆ) சமகனவளவு A, B என்னும் இரு குழாயிகள் 50 cm³ கீழ் காட்டப்பட்டது போல் இணைக்கப்பட்டுள்ளன. T₁, T₂ என்பன இரு வழித் திருகிகள். T₃ மூழித்திருகியாகும். குழாய் A உம் B உம் முறையே சமகனவளவு H₂, Cl₂ என்னும் வாயுக்களை ஒரே வெப்ப அமுக்கத்தில் கொண்டுள்ளன. T₃ திறக்கப்பட்டு H₂, Cl₂ என்பன கலக்கவிடப்பட்டு தொகுதி இரு நாட் களுக்கு குரிய ஒளியில் விடப்பட்டது.

- (i) அவதானிக்கும் நோக்கல் என்ன?
- (ii) குழாய் செங்குத்தாக நிமிர்த்தி முனை T₁ அல்லது T₂ இரச**த்தினுள்** அமிழ்த்தித் திறக்கப்பட்டால் நோக்கல் என்ன?
- (iii) மேல் பரிசோதனையில் இரசத்துக்கு பதில் நீர் பயன்படுத்தி இருப்பின் நோக்கல் என்ன?
- (iv) இப்பரிசோதனையில் இருந்து நீர் எடுக்கும் முடிவுகள் என்ன?
- (20) பின்வரும் தரவுகளில் இருந்து A, B, C என்னும் வாயுக்களின் மூலர் திணிவு களை கணிக்குக.
 - (a) நி. வெ. அ. இல் 280 cm³ A இன் திணிவு 0.4g.
 - (b) 95°C இலும், 665 mm Hg அமுக்கத்திலும் 1g. E அடைக்கும் கனவளவு 0.533 dm³.
 - (c) நி. வெ. அ. இல் 640 cm³ வெற்றுக்குடுவையில் F நிரப்பப்பட்டபோது நிறை அதிகரிப்பு 0.0571 g.
- (21) (a) உலர்வளி 20% O₂ 80% N₂ என்பவற்றை கனவளவு வீதங்களாக கொண்டுள்ளது எனக்கொண்டு நி. வெ . அ . இல் ஒரு dm³ வளியின் நிறையைக் கணிக்க.
 - (b) 0.8 g N₂, O₂ என்பவற்றைக் கொண்ட ஒரு கலவை 25°C இலும் 745 mm Hg அமுக்கத்திலும் 657 cm³ கனவளவை அடைத்தது. கலவையில் உள்ள கூறுகளின் கனவளவு வீதத்தைக் கணிக்க.
- (22) FeCl₂, குளோரினுடன் தாக்கப்பட்டு FeCl₃ ஆக மாற்றப்பட்டது இம்மாற் றத்திற்கு 17°C இலும் 735 mmHg அமுக்கத்திலும் 97 cm³ கனவளவை அடைக்கும் Cl₂ வாயு உறிஞ்சப்பட்டது. உருவாக்கப்பட்ட FeCl₃ இன் திணிவு யாது?

(23) 0.1 g M என்னும் உலோகம் பின்வரும் சமன்பாட்டின் வழி தாக்கமுற்று 27℃ இலும் 600 mmHg அமுக்கத்திலும் 173 cm³ கனவளவை அடைக்கும் H₂ வாயுவைக் கொடுத்தது.

 $2M_{(s)} + 6H+_{(aq)} \rightarrow 2M^{3+}_{(aq)} + 3H_{2(g)}$ M இன் 0.1~g நீரற்ற உலர் குளோரைட் ஆவியாக்கப்பட்டபோது அதே வெப்ப அமுக்கத்தில் $12.05~\mathrm{cm}^3$ கனவளவை அடைத்தது. ஆவிநிலையில் குளோரைட்டின் சூத்திரத்தைக் கணிக்க.

- 24) வெடிமருந்து மாதிரி ஒன்று 16g கந்தகம் 12g காபன் என்பவற்றுடன் இவற்றின் முற்றான தகனத்துக்குப் போதுமான அளவு KNO₃ ஐயும் கொண்டுள்ளது. தகனத்தின் பின் வாயுக் கலவையின் கனவளவு நி. வெ. அ.இல் என்ன? பயன்படுத்த வேண்டிய KNO₃ இன்நிறை என்ன?
- (25) 8 g CaO ஆல் நி . வெ . அ . இல் உள்ள 2 dm³ CO₂ உறிஞ்சப்ப இம்போது விளை வாக்கப்படும் CaCO₃ இன் நிறை என்ன? எஞ்சியிருக்கும் கலவையில் CaO இன் வீதம் என்ன?
- (26) 1.07 g NH₄Cl உடன் முற்றாகத் தாக்கமுறத் தேவையான NaNO₂ இ<mark>ன் திணிவு</mark> என்ன? கலவை நீரில் கரைத்து வெப்பமாக்கும்போது 27 °C இலும் 720 mm Hg அமுக்கத்திலும் என்ன கனவளவு N, வாயு வெளியேறும்?
- (27) சூடாக்கப்பட்ட காபன் மேல் நீராவி செலுத்தப்படும்போது H₂O + C → CO + H₂ என்னும் தாக்கம் நிகழும். 1200° C இலும் 1 வ . ம . அ. இலும் 20 dm³ நீராவி காபனால் பிரிக்கப்படும் போது 600°C இலும் 1 a t m இலும் என்ன க<mark>னவளவு</mark> (`O உம் H, உம் பெறப்படும்?
- (?N) ்ப இ பென்சீன் C_sH_s முற்றாக எரிக்கப்படும்போது விளையும் கலவையி<mark>ன் கன</mark> வ**ள**வை 127°C இலும் 740 mm Hg அமுக்கத்திலும் கணிக்க?
- 9) 3 g அண்ணாம்புக்கல் மாதிரி மிகையான HCI அமிலத்துடன் தாக்கமடைந்து 20°C இலும் 790 mm Hg அமுக்கத்திலும் 656 cm³ உலர் CO₂ ஐக் கொடுத்தது அண்ணாம்புக்கல்லின் தூய்மை வீதம் என்ன?
- (30) காப**ை** மாசாகக் கொண்ட இரும்புக்கம்பி ஒன்றின் 0.98 g ஐதான H₂SO₄ இல் சில்ர கிகப்பட்ட போது விளைவாக்கப்பட்ட H₂, 20°C இலும் 756 mmHg அமுக் சிதிலும் 420 cm³ கனவளவை அடைத்தது. இரும்புக்கம்பியின் தூய்மை விதம் **என்ன**?

- (31) KCI , KCIO₃என்பவற்றைக்கொண்ட 2g மாதிரி ஒன்று வெப்பமாக்கியபோது 15°C இலும் 747 mmHg அமுக்கத்திலும் 0.36 cm³ O₂ வைக்கொடுத்தது. மாதிரியில் உள்ள KCIO₃ இன் திணிவு வீதம் என்ன?
- (32) Zn தூசு மாதிரி ஒன்றின் 1.5 g உலோக Zn ஐயும் ZnO ஐயும் கொண்டுள்ளது. மிகையான H_2SO_4 இல் கரைந்து 18°C இலும் 745 mmHg அமுக்கத்திலும் 0.36 dm³ உலர் H_2 வைக் கொடுத்தது. மாதிரியில் உள்ள உலோக Zn இல் நிறை வீதம் என்ன?
- (33) K இன்மூன்று சமதானிகள் K³⁹, K⁴⁰, K⁴¹ ஆகும் அவற்றின் சமதானிகளின் திணிவுகள் (அ.தி.அ. இல்) முறையே 39.00,39.9, 40.9 ஆகவும் சார்புவளன் முறையே 95%, 1.0%, 4.0% ஆகும். K இன் சாரணுத்திணிவைக் கணிக்குக.
- (34) இயற்கையிலுள்ள காபன் C¹² , C¹³ சமதானிகளைக் கொண்டது.காபனின் அணுத்திணிவு 12.01112 ஆகும் ஒவ்வொரு சமதானியினதும் இருக்கைவீதம் என்ன?
- (35) சாரணுத்திணிவு 30 ஐக் கொண்ட மூலகம் A மூலகம் B யுடன் தாக்கமுற்று AB₃ என்னும் வாயுவை தாக்குகிறது 5.4g B யுடன் 1.5g A சேர்ந்தால் B யின் சா.அ.தி என்ன?
- (36) 100mg சேதனச்சேர்வை X ஐ O₂ இல் முற்றாக எரித்தபோது 220 mg CO₂, 120mg H₂O ஐயும் கொடுத்தது. X ஆனது C, H, O என்பவற்றை மட்டும் கொண்டது. 100 mg X ஐ ஆவியாக்கிய போது 373K இலும் 1atm அமுக் கத்திலும் 50Cm³ கனவளவை அடைத்தது. X இன் மூ. கூ. நி., அனுபவச் சூத்திரம் மூ. கூ. சூ. என்பவற்றைக் கணிக்க.
- (37) C, H, O ஐ மாத்திரம் கொண்ட சேதனச்சேர்வை X இன் 1.5g பூரணமாக எரிக்கப்பட்ட போது 1.738g CO₂ ஐயும், 0.714 g H₂O ஐயும் கொடுத்தது இர் சேர்வையின் சார் மூ. தி 76 ஆயின் மூ. கூ. சூ அனுபவச்சூத்திர என்பவற்றைக் கணிக்க.
- (38) A என்னும் சேதனச்சோவையின் ஒரு குறிப்பிட்ட திணிவை முற்றாக தகன மாக்கியபோது 3.52g CO₂ உம் 0.72g நீர ஆவியும் பெறப்பட்டன. A இன் சார். மூ. தி 104 ஆயின் A இல் அனுபவச்சூத்திரம் என்ன? மூ.கூ. கூ . என்ன?
- (39) C, H, N ஆகியவற்றை மாத்திரம் கொண்ட சேர்வை ஒன்றில் C=57.14% , N=40.00% உம் உண்டு . இச்சேர்வையின் அனுபவச்சூத்திரம் யாது?

- (40) C, H, O ஆகிய மூலகங்களை மட்டும் கொண்ட W என்னும் சேதனச் சோவையின் 2.4 g முற்றாக தகனமாக்கப்பட்டபோது 7.04g CO₂ ஐயும் , 1.44g நீராவியையும் கொடுத்தது. W இன் சா.மூ.தி 120 ஆயின் W இன் மூ .கூ. கு. என்ன?
- (41) C, H, O என்னும் மூலகங்களை மட்டும் கொண்ட X இன் ஆவியின் அடர்த்தி 439 K இலும் 1atm அமுக்கத்திலும் 2.5gdm⁻³ X இல் காபனின் திணிவு வீதம் 40. X இல் H, O என்பவற்றின் நிறை வீதம் என்ன?
- (42) C, H, O மாத்திரம் உடைய ஒரு சேதனச்சேர்வை X இல் காபனின் திணிவு 58.82% திணிவுப்படி ஐதரசன் காபனில் ஆறில் ஒரு பங்காகும் X இன் சா. மூ. கூ .தி . 102 ஆகும். X இன் மூ .கூ . கூ . என்ன?
- 43) A என்பது CxHyOz எனும் மு. கூ. கூ. உடைய சேதனச்சோவையாகும்.
 - (a) 100cm³ வாயுநிலை A இன் பூரண தகனத்திற்கு 250 cm³ O, தேவைப்பட்டது.
 - (b) **பூரண** தகனத்தின்போது A இன் சமமூல் அளவில் CO₂ ஐயும் H₂O ஐயும் கொடுத்தது.
 - (c) A இன் 1g பூரண தகனத்தின்போது 2g CO₂ ஐக் கொடுத்தது. இத்தரவுகளி லிருந்து A இன் மூ . கூ. கு. கணிக்குக.
- (44) X எனும் சேர்வை ஒன்றின் மூ . கூ . கூ . $C_nH_{2n}O$ 1 மூல் X இன் பூரண தகனத் திற்கு 5.5mol O_2 தேவைப்பட்டது. X இன் மூ . கூ .கூ . என்ன?
- (45) சேதன உறுப்புச்சேர்வை M, உறுப்பு விகித குறியீடு C_sH₁₂O ஐக் கொண்டது S.T.P. இல் சேர்வையின் ஆவி 2.46 gdm⁻³ அடர்த்தியைக் கொண்டிருந்தது. M இன் மூலக்கூற்று நிறை , மூலக்கூற்றுச்சூத்திரம் என்ன?
- (46) C, H, O மட்டும் உள்ள சேதனச்சோவை y இன் ஒரு மூல் முற்றான தகனத்தின் போது 4 மூல் CO₂, 4 மூல் நீர் என்பவற்றைக் கொடுத்தது. y இன் ஆவியடர்த்தி 36 ஆயின் Y இன் மூ . கூ . கு . என்ன?
- 47) சேதனச்சோ்வை R, C, H, O ஐ மாத்திரம் கொண்டது. முற்றாகத் தகனமாக்கும் போது R சமமூலா் விகிதத்தில் CO₂ ஐயும் H₂O ஐயும் கொடுத்தது R இன் 5.8g முற்றான தகனத்தில் 5.4g நீரைக்கொடுத்ததாயின் R இன் அனுபவச் சூத்திரம் என்ன?
- (48) சேதனச்சோவை ஒன்று C-41% H-4.6% O-54.4% ஐக்கொண்டது. சோவையின் மு.கூ. தி அண்ணளவாக 180 ஆகும். சோவையின் மூ.கூ.கு. என்ன?

- (4^{Q)} என்பது C.H.O ஐ மாத்திரம் கொண்டுள்ள சேதனச்சேர்வையாகும். A இன் 0.610g பூரண தகனத்தின்போது 1.54g CO₂ ஐக் கொடுத்தது. A இன் சா.மூ.கூ.தி. 122 ஆயின் A இன் மூ.கூ.கு. என்ன?
- (50) செனன் (Xe) புளோரீனுடன் தாக்கமுற்று ஒரு புளோரைட்டைக் கொடுத்தது. இப்புளோரையிட்டின் 0.49g மாதிரியில் இருந்து புளோரின் அகற்றப்பட்டபோது 25℃ இலும் 1atm அமுக்கத்திலும் சேகரிக்கப்பட்ட செனனின் (Xe) கனவளவு 48 cm³ செனன் புளோரைட்டின் அபைவச்சூக்கிரம் என்ன?
- (51) நீர் ஏற்றப்பட்ட பளிங்கு X இன் சூத்திரம் MgCl_m nH₂O இது நிறைப்ப 34.97% குளோரீன், 53.20% H₂O என்பவற்றைக்கொண்டுள்ளது. (Mg 24 , Cl 35.5, O 16, H 1) m , n என்பவற்றின் பெறுமானம் என்ன? m இன் பெறுமானம் நீர் எதிர் பார்த்த பெறுமானத்துடன் இசைவாக உள்ளதா ?விளக்கம் தருக?
- (52) A என்னும் சேர்வையின் அமைப்பு H 2.17%, O 57.97%, S 23.19%, Na 16.67% ஆகும் (Na -23, S 32, O 16, H 1)
 - (1) A இன் அனுபவச்சூத்திரம் என்**ன**?
 - (2) A, NaOH (aq) உடன் தாக்கமடையக்கூடியது A இன் நீர்க்கரைசல் BaCl₂(aq) உடன் வெண்ணிற வீழ்படிவைத் தருகின்றது எனின் A யை இனங்கண்டு அதன் பெயரை எழுதுக?
- (53) (a) X என்னும் வெண்ணிறத் திண்மத்தின் அமைப்பு N- 35% , H 5%, O 60% X இன் அனுபவச்சூத்திரம் என்ன?
 - (b) X NaOH (aq) உடன் NH₃ வாயுவைக்கொடுத்தது. ஒரு நிறமற்ற கரை சலை விட்டது. இக்கரைசலை ஆவியாக்கி வன்மையாக வெப்பமாக்க ஒட்சிசன் மாத்திரம் ஒரேயொரு வாயு விளைவாக பெறப்பட்டது எனின் X ஐ இனங்காண்க.
- (54) சார் மூ .கு.தி. 948 ஐக் கொண்ட நீர் ஏற்றப்பட்ட பளிங்கு X இல் நீரின் நிறை/ வீதம் 45.6 இதன் நீரற்ற உப்பின் திணிவு நூற்று வீத 15.1%, 10.5%Al, 24.8% S, 49.6%O ஆகும். (K - 39, Al - 27, S - 32, O - 16)
 - (a) நீரற்ற உப்பின் அனுபவச்சூத்திரம் என்ன?
 - (b) நீரேறிய உப்பின் ஒரு மூலில் உள்ள பளிங்கு நீர் மூலக்கூறுகளின் எண்ணிக்கை யாது?
 - (c) நீரேறிய உப்புக்கு பொருத்தமான ஒரு இரசாயனச் சூத்திரத்தைக் கணித்து இவ்வுப்பு யாதென உய்த்தறிக.
 - (d) X இல் Al இன் நிறைவீதம் என்ன?

- (55) X என்பது NH₄+, Fe⁺⁺ அயனைக்கொண்ட நீரேற்றப்பட்ட ஒரு இரட்டை உப்பாகும். X இன் பகுப்பாய்வில் இருந்து அது பின்வரும் அமைப்பு வீதங்களைக் கொண்டிருந்தது. Fe 14.29%, S 16.33%, O 57.14%, H 5.10% N -7.14% அத்துடன் X இன் சார் மூ. கூ. தி 392 என அறியப்பட்டது. ஆயின் X இன் அனுபவச்சூத்திரத்தை அறிந்து X க்கு பொருத்தமான இரசாயனச் குத்திரம் ஒன்றினை உய்த்தறிக.
- **56) ஒ**ரு நீர் ஏற்றப்பட்ட பெரிக்சல்பேற்று Fe₂(SO₄), xH₂O நிறைப்படி 19.9% Fe ஐக் கொண்டுள்ளது. X இன் பெறுமானத்தைக் கணிக்க?
- 57) உப்பு B யினது ஐதரேற்றின் நீர்க்கரைசல் ஒன்று Na,CO, நீர்க்கரைசலுடன் தாக்க விடப்பட்ட போது காபனீரொட்சைட்டு வெளியேற்றப்பட்டது. உப்பு ஐதரேற்றின் அளவறி பகுப்பு பின்வரும் விளைவுகளைத் தந்தது. Na = 10.07%, S = 14.06, H = 5.74%, 0.70.13% ஐதரேற்றின் பளிங்கு நீரின் நூற்றுவீதத்தைக் கணிக்க. (நீரற்ற உப்பு B யின் சா.மு.தி = 120)
- (58) Z என்னும் சேர்வையின் ஐதரேற்றின் சா.மூ.தி 272 ஆகும். நீரற்ற சேர்வை Z அனுபவச் சூத்திரம் MCI₂O ஆக இருந்தால் (M = 40).
 - (i) நீரற்ற சேர்வை Z இன் மூலக்கூற்றுச் சூத்திரம் என்ன?
 - (ii) Z இன் ஐதரேற்றின் மு.கூ.சூ என்ன?
 - (iii) நீரேற்றப்பட்ட சேர்வையில் M இன் நிறைப்படியான நூற்றுவீதம் என்ன?
- (59) பின்வரும் கரைசல்களில் கரையத்தின் g அளவிலான நிறை என்ன? (H = 1, S = 32, O = 16, C = 12, Na = 23)
 - (i) 500cm³ 0.05 mol dm⁻³ H₂ SO₄
- (ii) 300cm³ 0.125 mol dm⁻³ H₂C₂O₄
- (iii) 3dm³ 0.01 mol dm⁻³ NaOH
- (60) பின்வரும் கரைசல்களின் மூலர் செறிவு என்ன?
 - (i) 0.53g Na₂CO, கொண்ட 100 cm³ கரைசல்
 - (ii) 1g NaOH ஐக் கொண்ட 1dm³ கரைசல்
 - (iii) 15.75g HNO, ஐக் கொண்ட 250 cm³ கரைசல்
- 61) 1.554 g CaCl₂ ஐக் கொண்ட ஒரு நீர்க்கரைசலின் செறிவு 0.1 mol dm⁻³ ஆயின் கரைசலின் கனவளவு என்ன?
- (62) 25℃ இல் 18g C₆ H₁₂O₆ 200 cm³ நீரில் கரைக்கப்பட்டு கரைசலின் கனவளவு 1dm³ இற்கு ஐதாக்கப்படுகிறது. இவ் வெப்பநிலையில் கரைசலின் அடர்த்தி 1.04 g cm³ (C=12, H=1, O=16)

- (i) கரைசலின் மூலர் செறிவு என்ன?
- (ii) கரைசலின் மூலல் செறிவு என்ன?
- (iii) கரையத்தின் மூல் பின்னம் என்ன?
- (iv) கரைசலின் வீதச் செறிவு என்ன?
- (63) 6g யூரியா CO (NH₂)₂ 100 cm³ நீரில் கரைக்கப்பட்டு கரைசலின் கனவளவு 250cm³ இற்கு ஐகாக்கப்படுகிறது.
 - (i) மூலர் செறிவு என்ன? (மு.கூ.தி. = 60)
 - (ii) இக்கரைசலின் 25 cm³ எடுக்கப்பட்டுக் கரைசல் 250 cm³ இற்கு ஐதாக்கப் பட்டால் விளையும் கரைசலின் மூலர் செறிவு என்ன?
- (64) 25g NH, ஐ கொண்ட 100g நீர்க்கரைசல் ஒன்றின் அடர்த்தி 0.89g cm⁻³
 - (i) 1 mol dm⁻³ NH, நீர்க்கரைசலை எவ்வாறு தயாரிப்பீர்?
 - (ii) 1 மூலல் NH, நீர்க்கரைசலை எவ்வாறு தயாரிப்பீர்?
- (65) 10g C, H,,O, I 100g நீர் 25 ℃ இல் கொண்டுள்ளது.
 - (i) களுக்கோசின் மூலர் செறிவைத் துணிவதற்குத் தேவையான மேலதிக தரவு என்ன?
 - (ii) இக்கரைசல் 10g திண்மக்கரைப்பான் (பனிக்கட்டி) தோன்றும் வரை குளிரவிடப்பட்டால் விளையும் கரைசலின் அடர்த்தி 1.08g cm³ ஆயின் இக்கரைசலில் உள்ள குளுக்கோசின் செறிவு என்ன?
- (66) 25cm³ Na₂ CO₃கரைசல் ஒன்றை நடுநிலையாக்க 0.05mol dm³ 17.5 cm³ H₂ SO₄ தேவைப் பட்டது. Na₂ CO₃ கரைசலின் செறிவு
 - (a) moldm⁻³

BASIC CHEMISTRY

- (b) g.dm⁻³ இல் என்ன?
- (67) 25cm³ 1 mol dm³ HC! கரைசல் 30cm³ 1 mol dm³ NaOH கரைசலுடன் கலக்கப்பட்டது. விளைவு கரைசலை நடுநிலையாக்கத் தேவையான 0.1 mol dm³ H₂ SO₄ கரைசலின் கனவளவ என்ன?
- (68) 10g CaCO, இற்கு 250cm³ 1 mol dm³ HCl சேர்க்கப்பட்டது. விளைவு கரைசலில். உள்ள மிகையான அமிலத்தை நடுநிலையாக்கத் தேவையான 2 mol dm³ KOH கரைசலின் கனவளவு என்ன?
- (69) NaCl, நீரற்ற Na₂ CO₃ என்பவற்றைக்கொண்ட 10g கலவையொன்று 1 dm³ நீர்க் கரைசல் ஆக்கப்பட்டது. இக்கரைசலின் 25cm³ ஐ நடுநிலையாக்குவதற்கு 20cm³ 0.2 mol dm³ HCl ஐ உட்கொண்டது. கலவையில் உள்ள NaCl இன் திணிவு என்ன?

- (70) மிகையான Ca (OH)₂ அறை வெப்பநிலையில் நீருடன் குலுக்கப்பட்டு வடிக்கப் பட்டது. இக்கரைசலின் 25cm³ ஐ நடுநிலையாக்க 12cm³ 0.1 mol dm³ HCl தேவைப் பட்டது. Ca (OH)₂ இன் கரைத்திறன் என்ன? (Ca = 40, H = 1, O = 16)
- (71) 1.10g உலோக Na மெதுவாக நீருடன் தாக்கமடைய விடப்பட்டது. விளைவுக் கரைசலிற்கு 1mol dm³ 75cm³ HCl சோக்கப்பட்டது. கரைசலின் கனவளவு காய்ச்சி வடித்த நீர்சேர்த்து 250 cm³ ஆக்கப்பட்டது. இக்கரைசலின் 25 cm³ஐ நடு நிலையாக்க 27.1cm³ 0 1 mol dm³ KOH கரைசல் தேவைப்பட்டது. Na இன் அணுத்திணிவு என்ன?
- /2) 5g ஒட்சாலிக்கமிலம் $H_2C_2O_4$. XH_2O நீரில் கரைக்கப்பட்டு $250\,\mathrm{cm}^3$ கரைசலாக் கப்பட்டது. இக்கரைசலின் $25\mathrm{cm}^3$ ஐ நடுநிலையாக்க $0.5\,\mathrm{mol}\ \mathrm{dm}^3\ \mathrm{NaOH}$ இன் $15.9\,\mathrm{cm}^3$ தேவைப்பட்டது. X இன் பெறுமானத்தைக் கணிக்க (H=1,C=12,O=16)
- (73) உலோகம் M இன் உப்பு Y ஐ வெப்பமாக்கப் பின்வருமாறு பிரிகை அடையும். 2Y → 2Z + O₂

உப்பின் 1.7g முற்றாகப் பிரிகையடையும்போது வெளிவிடப்பட்ட O₂ வாயு 27°C இலும் 1 வளிமண்டல அமுக்கத்திலும் 246 cm³ஆகும்.

- (a) சேர்வை Y இன் மூலக்கூற்றுத் திணிவைக் கணிக்க.
- (b) M இன் சா.அ.தி. 23 ஆகவும் Y ஆனது மூலகம் M இன் நைத்திரேற்று ஆகவும் இருப்பின் Y இன் சூத்திரம் யாது?
- (c) 8.5g Y, 200 cm³ நீரில் கரைக்கப்பட்டால் கரைசலில் மொத்த அயன் செறிவு என்ன?
- (74) (a) சுண்ணாம்புக்கல் மாதிரி ஒன்று உமக்குத் தரப்பட்டுள்ளது. இதன் தூய்மை வீதத்தினைத் துணிவதற்கான திட்டம் ஒன்றைத் தருக.
 - (b) 1g சுண்ணாம்புக்கல் மாதிரி ஒன்றிற்கு 1mol dm⁻³ 20ml மிகையளவு HCl சேர்க்கப்பட்டது. விளைவுக்கரைசலை நடுநிலையாக்க 0.4 mol dm⁻³ NaOH இன் 5ml தேவைப்பட்டது. சுண்ணாம்புக்கல்லில் தூய்மை வீதம் என்ன?
 - (c) மேற்கணிப்பில் நீர் பயன்படுத்திய எடுகோள்கள் என்ன?
- /5) சலவைச்சோடா, அப்பச்சோடா என்பனவற்றைக்கொண்ட மாதிரி ஒன்று உமக்குத் தரப்பட்டுள்ளது. இம்மாதிரியிலுள்ள சலவைச் சோடாவின் தூய்மை வீதத்தைத் துணிவதற்கான திட்டம் ஒன்றினைத் தருக.
- (76) 25 cm³ Na₂ CO₃ கரைசலுடன் 8 cm³ 0.75 mol dm³ HCl கலக்கப்படுகின்றது. முற்றாக நடுநிலையாக்க மேலும் 15 cm³ 0.4 mol dm³ H₂ SO₄ தேவைப்படுகின்றது. கரைசலின் செறிவு என்ன?

- (77) ஒரு இரசாயன அறிஞர் 2g தூளாக்கப்பட்ட முட்டைக்கோதுகளைத் தகுந்த முகவையில் இட்டு 50ml, 2 mol dm⁻³ HCl ஐ குழாயியின் உதவியால் சேர்த்தார். பின்னர் முகவையை வெப்பப்படுத்தினார் வாயு வெளியேற்றம் நின்றபின் அக்கரைசலில்25ml ஐஒரு அளவியின் உதவியால் 1 mol dm⁻³ NaOH இற்கு எதிராக நியமித்தார். நடுநிலையாக்கத்திற்கு 31 ml 1 mol dm⁻³ NaOH தேவைப்பட்டது. முட்டைக் கோதிலுள்ள CaCO₃ இன் வீதத்தைக் கணிக்க. இக்கணிப்பில் நீர் பயன் படுத்திய எடுகோள் என்ன?
- (78) 2.86g Na₂CO₃. X H₂O நீரில் கரைக்கப்பட்டு கரைசல் 100 ml இற்கு ஐதாக்கப் பட்டது. இக்கரைசலின் 10ml ஐ மெதையில் செம்மஞ்சள் காட்டியாகக் கொண்டு நியமித்த போது 0.1 mol dm³ 20ml HCl தேவைப்பட்டது. X இன் பெறுமானம் என்ன?
- (79) Na₂CO₃ ஐயும் NaHCO₃ ஐயும் கொண்ட கரைசலின் 50ml ஐ பினோல்த்தலின் காட்டி பாவித்து நியமிக்க 100ml 0.2 mol dm³ HCl தேவைப்பட்டது. அதேகரைசலின் 25ml ஐ மெதையில் செம்மஞ்சள் காட்டியாகக் கொண்டு நியமிக்க 0.5 mol dm³ 70ml HCl தேவைப்பட்டது. கரைசலில் உள்ள Na₂CO₃ ,NaHCO₃ என்பவற்றின் செறிவுகளைக் கணிக்க.
- (80) R என்ற ஓர் உலோகம் இயல்புகளில் Mg ஐ ஒத்ததாகக் காணப்படுகின்றது. அதனுடைய ஒட்சைட்டும் ஐதரொட்சைட்டும் முறையே RO, R(OH)₂ என்ற குறியீடுகளைக் கொண்டனவாகக் காணப்பட்டன. R என்ற உலோகமும் ஐதான HCl, NaOH நியமக் கரைசலும் தரப்பட்டுள்ளது. R என்ற உலோ கத்தின் அணு நிறையைக் காண்பதற்கு இவற்றை எவ்வாறு பயன்படுத்துவீர என பரிசோதனை விபரங்களுடன் விபரிக்க.
- (81) ஒரு பாடசாலைக்கு விநியோகிக்கப்பட்ட செறிந்த HCl, 1.15 தன்னீர்ப்பு உடை யதாயும் 32% நிறையளவு HCl ஐக் கொண்டதாயும் உள்ளது. 2mol dm³, 2 dm³ HCl அமிலத்தின் கரைசல் ஒன்றினை ஆய்வுகூடத்தில் எவ்வாறு தயாரிப்பீர்?
- (82) எரிசோடாவில் இருந்து NaHSO₄ , Na₂SO₄ பளிங்குகளை எவ்வா**று ஆய்வு** கூடத்தில் ஆக்குவீர் என்பதைப் பரிசோதனை விபரங்களுடன் தருக.
- (83) 250 ml அளவு கோடிடப்பட்ட குடுவை காய்ச்சி வடித்த நீரினால் கழுவப்பட்டது. ஒரு குழாயின் உதவியினால், 25 ml 3.3 mol dm³ NaOH இக்குடுவைக்கு மாற்றப் பட்டது. பின்னர் குடுவையிலுள்ள கரைசலின் மட்டம் 250ml ஆகும்

- வரை நீர் சேர்க்கப்பட்டது. இக்கரைசலின் 50 ml கரைசல் 25 ml வினாகிரி கரைசல் ஒன்றை நடுநிலையாக்கியது. 100 ml வினாகிரி கரைசலிலுள்ள CH₃COOH இன் நிறையைக் காண்க.
- (84) மரச்சாப்பலின் பசளை விளைவுகள் அதிலுள்ள K₂CO₃ ஆல் ஆனது. சாப்பல் மாதிரி ஒன்றின் 3.45g 250 ml காய்ச்சி வடித்த நீரில் கரைக்கப்பட்டபோது விளைந்த கரைசலை நடுநிலையாக்க100 ml 0.1 mol dm⁻³ HCl தேவைப்பட்டது. சாம்பலில் உள்ள K₂CO₃இன் வீதத்தை தருக இதில் நீர் பயன்படுத்திய எடுகோள்கள் எவை?
- (85) 1.992 g CuSO₄. X H₂O பளிங்கின் நீர்க்கரைசலுக்கு சூடான நிலையில் மிகை NaOH சேர்த்து, வீழ்படிவு வடிகட்டி கழுவி உலர்த்தி எரித்தபோது 0.632g, CuO பெறப்பட்டது எனில் X ஐக் காண்க.
- (86) 6.7 g CaO, CaCO₃ கலவை வன்மையாக வெப்பமாக்கிய போது 1.1g CO₂ வெளி யேறியது. தொடக்கக்கலவையில் உள்ள CaO ஐ Ca(OH)₂ ஆக மாற்றத் தேவையான மிகக்குறைந்த நீரின் திணிவு என்ன?
- (87) 10 g Zn ஐத் தாக்க தேவையான 10% நிறைச்செறிவுடைய ஐதான HCl அமிலத்தின் திணிவு என்ன? (Zn = 65, H=1, O=16) இந்நிகழ்வின் போது 12°C இலும் 750 mm Hg இலும் என்ன கனவளவு H, வெளியேறும்?
- (88) 1 g இரும்பு மாதிரி ஒன்று மிகையான ஐதான HCl இல் கரைத்தபோது 20°C இலும் 770 mm Hg அமுக்கத் திலும் 378 cm³ உலர் H₂ வெளியேறியது. இரும்பு மாதிரியின் தூய்மைவீதம் என்ன?
- (89) 1.952 g BaCl₂ . XH₂O பளிங்கின் நீர்க்கரைசல் மிகையான H₂SO₄ உடன் 1.864g உலர் BaSO₄ ஐக் கொடுத்தது X இன் பெறுமானம் என்ன? (Ba = 137, S = 32, O = 16, H = 1)
- (90) AlCl₃(aq), Na₂CO₃(aq) உடன் பின்வருமாறு தாக்கமுறுகின்றது.

 2AlCl₃(aq) + 3NaCO₃ + 3H₂O → 2 Al(OH)₃ + 6NaCl + 3CO₂ 50cm³, 0.2 mol dm³

 AlCl₃(aq) உம் 50cm³, 0.3 mol dm³Na₂CO₃(aq) உம் சேர்க்கப்பட்டு விளைவுக் கரைசல் உலர் நிலைக்கு அவியாக்கி மாறாத்திணிவு வரும்வரை வன்மையாக வெப்பமாக்கப்பட்டது. பெறப்படும் திண்ம மீதியின் திணிவைக் காண்க,

(91) பீசமான பரிசோதனை ஒன்றின் அளவீடுகள் கீழே தரப்பட்டுள்ளன.

பரிசோதனை இலக்கம்	1	2	3	4	5	6	7	8	9
1 mol dm ⁻³ BaCl ₂ (ml)	1	2	3	4	5	6	7	8	9
1 mol dm ⁻³ Na ₂ SO ₄ (ml)	9	8	7	6	5	4	3	2	1
உடன் பெற்ற வீழ்படிவின் உயரம் (mm)	2.1	4.5	6.3	8.3	10.2	8.3	6.3	4.5	2.1
மறுநாளடெற்றவீழ்படிவு உயரம்(mm)	2	4	6	8	10	8	6	4	2

- (i) பரிசோதனை செய்தவுடன் எடுத்த வீழ்படிவு உயரத்தை விட மறுநாள் வீழ்படிவு உயரம் குறைவாக இருந்தது. காரணம் யாது?
- (ii) தாக்கிகளின் கனவளவுக்கெதிரே எவ்வீழ்படிவு உயரத்துக்கு வரைபு வரைதல் வேண்டும்?
- (iii) நீர் பெறும் வரைபிலிருந்து அதியுயர் வீழ்படிவு உருவாகும் கனவளவு விகிதம் என்ன?
- (iv) இதிலிருந்து தாக்கத்தின் பீசமானம் காண்க?
- (v) 1 mol dm³ BaCl₂ இற்குப் பதிலாக 2 mol dm³ BaCl₂ பயன்படுத்தியிருந்தால் அதியுயா் வீழ்படிவு உருவாகும் கனவளவு விகிதம் யாது?
- (vi) வீழ்படிவு முறைப்படி பீசமானம் துணியும் போது பொதுவாக1mol dm³ கரைசல்களே பயன்படுத்தப்படும். ஏன் 0.1 mol dm³ செறிவுடைய கரைசல் பயன்படுத்தப்படுவதில்லை?
- (92) 0.05 mol dm⁻³, 100 cm³ H₂SO₄ ஒரு நியமக் குடுவையின் எடுக்கப்பட்டு சிறிய அளவு Na₂CO₃ (நீர் அற்றது) சேர்க்கப்பட்டது. விளைவுவாயு வெளியேற்றம் அற்றுப் போகும் வரை வெப்பமாக்கப்பட்டு குளிரவிட்டு காய்ச்சி வடித்த நீர் சேர்த்து 100cm³க்கு ஐதாக்கப்பட்டது. இக் கரைசலின் 25cm³ ஐ நடு நிலையாக்க 18cm³ 0.1 mol dm⁻³ NaOH கரைசல் தேவைப்பட்டது. சேர்க்கப்பட்டNa₂CO₃ இன் திணிவு என்ன?
- (93) (a) 5.72g Na₂CO₃.10 H₂O, 3.26g NaHCO₃என்பவற்றைக் கொண்ட கலவை மாறாத்திணிவு வரும்வரை வெப்பமாக்கினால் ஏற்படும் திணிவு இழப்பு என்ன? (Na =23, C = 12, O = 16, H = 1)

BASIC CHEMISTRY

(b) வெப்பமேற்றிய பின் எஞ்சிய மீதி நீரில் கரைக்கப்பட்டு 250cm³ கரைசல் ஆக்கப்பட்டது. இக்கரைசலின் 25cm³ ஐ முற்றாக நடுநிலையாக்க தேவையான 0.4 mol dm³ HCl இன் கனவளவு என்ன? (94) ஒரே உள்விட்டமுடைய சோதனைக்குழாய்களில் பின் வரும் கனவளவு விகிதங்களில், ஒரே மூலர்ச் செறிவடைய KCl, Pb(NO₃),(aq) ஆகியவை நன்றாகக் கலக்கப்பட்டு வீழ்படிவுகள் அடையவிடப்பட்டன.

KCl(aq)cm ³	20	20	20	20	20	20	20	20	20
Pb(NO ₃) ₂ (aq)cm ³	2	4	6	8	10	12	14	16	18

வீழ்படிவின் உயரம் எவ்வாறு கனவளவுடன் மாறும் என்பதைக்காட்ட ஒரு பருமட்டான வரைபு வரைக.

(95) 0.2 mol dm³ NiSO₄ (aq), 0.1 mol dm³ Ba(OH)₂ (aq) என்பன பின்வரும் கனவளவு விகிதங்களில் கலக்கப்பட்டு வீழ்படிவின் உயரங்கள் அளவிடப்பட்டன. NiSO₄ இன் கனவளவுக்கெதிராக வீழ்படிவின் உயரங்களை வரைபாக்குக. பீசமானத் தாக்கம் கீழே தரப்பட்டுள்ளது.

$$NiSO_4 + Ba(OH)_2 \rightarrow BaSO_4 \downarrow + Ni(OH)_2 \downarrow$$

0.2 mol dm ⁻³ NiSO ₄ cm ³	2	4	6	8	10	12	14	16	18	20
0.1 mol dm ⁻³ NiSO ₄ cm ³	20	20	20	.20	20	20	20	20	20	20

- (96) 3 mol dm⁻³ H₂SO₄, 2 mol dm⁻³ NaOH என்னும் கரைசல்கள் மொத்தக் கனவளவு 24cm³ ஆக இருக்கத்தக்கதாக வெவ்வேறு அளவுகளில்கலந்து உச்ச வெப்பநிலை உயர்வுகள் அளக்கப்பட்டன.
 - (1) தாக்கிகளின் என்ன கனவளவுகளில் உச்சவெப்பநிலை பெறப்படும்?
 - (2) தாக்கிகளின் கனவளவுக்கெதிராக அளவிடப்பட்ட வெப்பநிலை உயர்வு களைக் குறித்துக் காட்டுக.
 - (3) 3 mol dm 3 ${
 m H}_2{
 m SO}_4$ க்குப் பதில் 3 mol dm 3 HCl பயன்படுத்தி இருந்தால் வரைபின் கோலத்தை அதே வரைபில் குறித்துக் காட்டுக.
- (97) M₂O₃ என்னும் சூத்திரத்தை உடைய உலோக ஒட்சைட்டின் 4g, 1 mol dm⁻³ 250 cm³ HCl இல் கரைக்கப்பட்டது. இக்கரைசலின் 25cm³ ஐ நடுநிலையாக்க 0.5 mol dm⁻³, 20cm³ NaOH தேவைப்பட்டது. M இன் சார் அணுத்திணிவு என்ன?

(98) 0.25 mol dm⁻³ AgNO₃, 0.25 mol dm⁻³ BaCl₂ என்பவற்றின் வெவ்வேறு கனவளவுகள் ஒன்றோடொன்று கலக்கப்பட்டு மொத்தக் கனவளவு 30 cm⁻³ இருக்கும்படி தொடர் மாரல் முறையில் பரிசோகனை ஒன்று செய்யப்பட்டது.

$$BaCl_2(aq) + 2AgNO_3(aq) \rightarrow 2AgCl \downarrow + Ba(NO_3)_2(aq)$$

குழாய்	Α	В	C	D	Е
Ag NO ₃ cm ³	5	10	15	20	25
BaCl ₂ cm ³	25	20	15	10	5

- (a) பெறப்படும் வீழ்படிவின் உயரங்கள் கரைசல்களின் கனவளவுக்கெதிராக எவ்வாறு மாறுபடும் என ஒரு வரைபினால் குறித்துக்காட்டுக.
- (b) சோதனைக்குழாய் C, D, E என்பற்றின் வீழ்படிவுகள் பிரித்தெடுக்கப் பட்டு வடிக்கு பின்வருவன சேர்க்கப்படும் போது.
 - (i) நோக்கல் என்ன?
- (ii) முடிவு என்ன?
- (c) குழாய் D இல் உள்ள Cl , NO , ஆகியவற்றின் செறிவுகளைக் கணிக்க.
- (d) மேல் பரிசோதனையில் BaCl₂(aq) இன் செறிவு 0.5 mol dm⁻³ ஆக இருப்பின் இவ்வரைபு எவ்வாறு அமையும் என அதே வரைபில் புள்ளி இட்ட கோடு களால் வரைந்து காட்டுக.
- (99) (a) CuSO₄ இன் நீர்க்கரைசல் ஒன்று NaOH இன் நீர்க்கரைசல் ஒன்றுடன் தாக்கமுற்று செப்பைதரொட்சைட்டு வீழ்படிவொன்றைப் பின்வரும் சமன்பாட்டிற்கமையத் தருகிறது.

 ${\rm CuSO_4(aq)} + {\rm 2NaOH(aq)} \rightarrow {\rm Cu(OH)_2(s)} + {\rm Na_2SO_4(aq)}$ 0.5 mol dm⁻³ ${\rm CuSO_4}$, 0.5 mol dm⁻³ ${\rm NaOH}$ கரைசல்கள் தரப்படின் இத்தாக் கத்தின் பீசமானத்தை எவ்வாறு துணிவீர் என்பதை விபரிக்க.

(b) மாணவன் ஒருவன் 0.5 mol dm⁻³ CuSO₄, 0.1 mol dm⁻³ Ba(OH)₂ கரைசல் களைப் பயன்படுத்தி வழமையான முறையில் செப்பு சல்பே**ற்று நீ**ர்க் கரைசல் பேரியமைதரொட்சைட்டு நீர்க்கரைசல் ஆகிய**வற்கிடை** யேயுள்ள பின்வரும் தாக்கத்தின் பீசமானத்தை துணியத் திட்டமிடு கிறான்.

 ${\rm CuSO_4\,(aq)\,+\,Ba(OH)_2(aq)} \to {\rm BaSO_4(s)\,+\,Cu(OH)_2(s)}$ மாணவனின் இம் முயற்சி வெற்றியளிக்குமா?, உமது விடைக்கான காரணத்தை விளக்குக.

- (100) (a) CuSO₄(aq), NH₄OH(aq) தாக்கத்தின பீசமானத்தைத் துணிவதற்கு வீம்படிவமான முறையினைப்பயன்படுத்த முடியமா? விளக்கம் தருக.
 - (b) 1mol dm³ Cu SO₄(aq),உம் 1 mol dm³ NH₄OH(aq) உம் கீழ் காட்டப்பட்ட அளவு களின் ஒரே மாதிரியான சோதனைக் குழாய்களிற் கலக்கப்பட்டது.

தொகுதி	Α	В	С	D	Е	F	G	Н	I
CuSO ₄ (cm ³)	1	2	3	4	5	6	7	8	9
NH ₄ OH(cm ³)	9	8	7	6	5	4	3	2	1

இப்பரிசோதனையின் அவதானிப்புக்களையும் அதற்கான காரணங் களையும் விபரிக்க.

- (101) பீசமானம் என்றால் என்ன? இதன் முக்கிய உபயோகம் என்ன? பரிசோதனை ஆய்வு ஒன்றுக்கு கிட்டத்தட்ட 2×10^4 mol dm³ செறிவுள்ள ஆனால் திருத்தமாகச் செறிவு அறியப்பட்ட NaOH கரைசல் தேவைப்படுகின்றது. இக்கரைசலை உமது பாடசாலை ஆய்வுகூடம் ஒன்றில் எவ்வாறு தயாரிப்பீர்என விபரிக்கவும் உமக்கு நீர் அற்ற தாய Na₂CO₃ அறை வெப்ப நிலையில் அடர்த்தி 1.87g cm³ உள்ள 98% நிறைச் செறிவுடைய H₂SO₄என்பன தரப்பட்டுள்ளன. (உமது பாடசாலை ஆய்வுகூடம் வசதி உள்ளது எனக் கருதுக)
- (102) $1.818g\,\mathrm{cm^3}$ அடர்த்தியும் 98% நிறைச் செறிவும் உடைய $\mathrm{H_2SO_4}$ அமிலம் உமக்கு வழங்கப்பட்டுள்ளது. $\mathrm{H_2SO_4}$, Al உடன் பின்வரும் சமன்பாட்டின் வழி தாக்க மடைகின்றது.

$$Al_{(s)} + 3 H_2SO_{4(aq)} \rightarrow Al_2(SO_4)_{3 (aq)} + 3H_2(g)$$

- (i) 27.0 g A1 ஐ முற்றாகக் கரைப்பதற்கு பயன்படுத்த வேண்டிய மேலே கூறப்பட்ட அமிலத்தின் கனவளவு என்ன?(Al = 27, S = 32, O = 16, H =
- (ii) மேல் தாக்கத்தின் போது 1 atm இலும் 300 K இலும் பெறப்படும் உலர் H₂ வாயுவின் கனவளவு என்ன?
- (iii) இவ்வமிலத்தில் இருந்து 1 moldm⁻³ செறிவுள்ள H₂SO₄ இன் ஒரு dm³ ஐ எவ்வாறு தயாரிப்பீர்?
- (iv) **மேலே** நீர் தயாரித்த அமிலம் அண்ணளவாகவே 1 moldm⁻³ ஆக இருக்கும். இது ஏன் என விளக்கி இதன் திருத்தமான செறிவை அறிவதற்கான ஒரு திட்டத்தினையும் குறிப்பிடுக.

- (103) NH₄I, NaI ஆகியவற்றின் உலர்கலவை ஒன்று நீரில் கரைக்கப்பட்டு ஐதான HNO₃ ஐயும் AgNO₃ நீர் ஐயும் சேர்த்து அளவறிபகுப்பு முறையாக பகுத்தாயப்பட்டது.கலவையின்0.88g ஆனது 1.410g AgI இவைப்படிவாகத்தந்தது. கலவையில் இருக்கும் NaCl இன் முற்சதவீதத்தைக் கணிக்க. [Na = 23, N = 14, H = 1, I = 127, Ag = 108]
- (104) குழந்தைகளுக்கு மருந்தாகப்பயன்படுத்தும் மக்னீசியப் பால், Mg(OH), ஐ தொங்கலாகக் கொண்ட ஒரு நீர்க் கரைசலாகும். கடையில் வாங்கப்பட்ட 100 cm³ மக்னீசியப்பால் கொண்ட போத்தல் ஒன்று உமக்கு வழங்கப்பட்டுள்ளது. மேலும் அண்ணளவாக 0.1 moldm³ செறிவுள்ள HCl அமிலக் கரைசலும், தூய நீரற்ற Na,CO₃ உம் உமக்கு வழங்கப்பட்டுள்ளன. இவற்றுடன் ஆய்வு கூட சாதன வசதிகளும் உண்டு. இந் நிலைமைகளில் மக்னீசியப்பாலில் உள்ள Mg(OH), இன் அளவைத் துணிவதற்கான ஒரு முறையைக் கூறுக. (விபரங்கள், கணிப்புக்கள் வேண்டப்படவில்லை.)
- (105) உலா கலவையொன்று தூய KHCO₃, CaCO₃ என்பவற்றை சமமூல் அளவில் கொண்டுள்ளது. இவ் உண்மையை அறிவதற்கான திட்டம் ஒன்றினைத் தருக. இதற்காக அமிலம் எதனையும் நீர் பயன்படுத்த அனுமதிக்கப்பட வில்லை. (நீரைக் கூட நீர் பயன்படுத்த முடியாது.)
- (106) NaCl மாதிரி ஒன்று மாசாகச் சிறிதளவு Na₂CO₃ ஐக் கொண்டுள்ளது. இம்மாதிரியின் 2 gவடி நீரில் கரைத்து பினோத்தலின் காட்டி கொண்டு 0.1mol dm³ HClஉடன் நியமித்த போது நிறமாற்றத்திற்கு இவ் அமிலத்தின் 10cm³ தேவைப்பட்டது எனில் மாதிரியில் உள்ள NaCl இன் தூய்மை வீதம் என்ன? [Na = 23, C = 12, O = 16, Cl = 35.5]
- (107) 25 $^{\circ}$ C யில் $0.1 \text{ moldm}^3 \text{ H}_2\text{C}_2\text{O}_4$ கரைசலிலுள்ள $\text{H}^+,\text{C}_2\text{O}_4$ அயன் செறிவுகள் முறையே $0.038,\ 0.004 \text{ moldm}^{-3}$ ஆகும். கரைசலிலுள்ள $\text{HC}_2\text{O}_4,\ \text{H}_2\text{C}_2\text{O}_4$ என்பனவற்றின் செறிவுகளைக் காண்க.
- (108) தொலமைற்றுமாதிரிபொன்று CaCO₃, MgCO₃ ஐ சமமூல் அளவில் கொண்டுள்ளதாக அறியப்பட்டுள்ளது. இதனை உறுதிப்படுத்துவதற்கான இருமுறைகளைத் தருக. (தொலமைற்று = CaCO₃, MgCO₃)
- (109) 1.84g தொலமைற்று மாதிரிக்கு 50 cm³ 0.97 moldm³ HCl அமிலம் சேர்க்கப் பட்டது. எஞ்சிய அமிலத்தை நடுநிலையாக்க 17cm³ 0.5 moldm³ NaOH தேவைப் பட்டது. கலவையிலுள்ள CaCO₃ இன் நிறைவீதம் யாது?

- (110) 5.85g NaCl மிகை செறிந்த H₂SO₄, MnO₂ உடன் வெப்பமாக்கிய போதுஉண்டான பசிய மஞ்சள் வாயு மிகை H₂ உடன் வெடிக்கப்பட்டு விளைவு நீரில்கரைக் கப்பட்டது. இக்கரைசலுக்கு மிகையான Zn சேர்க்கப்பட்டால் stp யில் என்ன கனவளவு H, வெளியேறும்?
- (111) 5g CuO 500cm³ 0.25 moldm³ H₂SO₄ இல்கரைக்கப்பட்டு விளைவு கரைசலைநடுநிலை யாக்க 247cm³, 0.5 moldm³ NaOH தேவைப்பட்டது. செப்பின் அணுநிறை யாது?
- (112) NaCl ஐயும் , KCl ஐயும் கொண்ட ஒரு கலவையின் 5.5g நீரில் கரைக்கப்பட்டு மிகை AgNO₃ உடன் தாக்கமுற விடப்பட்டபோது 12.7g வீழ்படிவு தோன்றியது. கலவையிலுள்ள NaCl இன் திணிவு வீதம் என்ன?
- (113) Na₂CO₃, KHCO₃ என்பவற்றைக் கொண்ட கரைசலின் 50cm³ பினோல்த்தலீன் காட்டியைக் கொண்டு நியமிக்க 100cm³ 0.2moldm⁻³ HCl தேவைப்பட்டது. புதிய கரைசலின் 25cm³ மெதையில் செம்மஞ்சள் காட்டியைக் கொண்டு நியமிக்க 35cm³ 0.5moldm⁻³ H₂SO₄ தேவைப்பட்டது. கரைசலில் உள்ள Na₂CO₃, KHCO₃ என்பவற்றின் செறிவுகளைக் கணிக்க.
- (114) Na₂CO₃, NaOH கொண்ட கரைசலின் 50ml பினோல்த்தலீன் காட்டிகொண்டு நியமிக்க 0.3moldm⁻³ 50ml HCl தேவைப்பட்டது. கரைசலில் புதிய 50ml மெதையில் செம்மஞ்சள் காட்டி கொண்டு நியமிக்க 0.25moldm⁻³ HCl 100ml தேவைப்பட்டது. Na₂CO₃, Na₂CO₃ செறிவுக ளைக் கணிக்க.
- (115) நீரேற்றிய சல்பேற் $\mathbf{M}_2\mathbf{SO}_4$. $\mathbf{xH}_2\mathbf{O}$ ல் $\mathbf{8g}$ சூடாக்கப்பட்ட போது நீரற்ற சல்பேற்றையும் 3.75g நீரையும் கொடுத்தது.
 - (i) x இன் மதிப்பைக் கணிக்க. (M=23, S=32, O=16)
 - (ii) மேற்கூறிய நீரேற்றப்பட்ட சல்பேற்றின் 6.7g நீரில் கரைக்கப்பட்டு கரைசலின் கனவளவு 200cm³ ற்குக் கொண்டுவரப்படின் கரைசலிலுள்ள M⁺ இன் செறிவு moldm⁻³ இல் யாது?
- (116) NaOH குறித்து 1.0 moldm⁻³ ஆகவுள்ள காரக்கரைசல் ஒன்றும், ZnO தூய உம் உங்களிடம் வழங்கப்பட்டுள்ளது. நீங்கள் வேறு இரசாயனப் பொருட்களைப் பயன்படுத்த முடியாது. எனினும் மற்றய ஆய்வுகூட, சாதன வசதிகளைப் பயன்படுத்தலாம். இந்நிலைமைகளில் ZnO, NaOH தாக்கத்தின் மூலர் விகிதம் 1:2 என எங்ஙனம் காட்டுவீர் எனத் தெளி வாக விவரிக்க.

- (117) (a) திணிவுப்படி 70% HNO₃ கரைசல் ஒன்றின் அடர்த்தி 1.54gcm⁻³ ஆயின் இக்கரைசலின் மூலர் செறிவு என்ன?
 - (b) 1.8g cm⁻³ அடர்த்தி உள்ள H₂SO₄ இல் இருந்து 1dm³ 0.05moldm⁻³ H₂SO₄ ஐ எவ்வாறு தயாரிப்பீர்?
 - (c) $0.1 \text{ mol } \text{ K}^+$ அயனைக் கொண்ட ஒரு நீர்க்கரைசலில் உள்ள K_2SO_4 இன் செறிவு 0.1 moldm^{-3} ஆயின் கரைசலின் கனவளவு என்ன?
- (118) 2moldm⁻³, 8moldm⁻³ HCl அமிலக்கரைசல்கள் உமக்குத் தரப்பட்டுள்ளது. இவற்றை பயன்படுத்தி 5moldm⁻³ 100cm³ HCl அமிலத்தை எவ்வாறு தயாரிப்பீர்?
- (119) 3.42g Al₂(SO₄), ஐ 250cm³ நீர்க்கரைசல் கொண்டுள்ளது.
 - (i) Al₂(SO₄), சார்பாக கரைசலின் மூலர் செறிவு என்ன?
 - (ii) கரைசலிலுள்ள SO,2- இன் செறிவு என்ன?
 - (iii) கரைசலிலுள்ள மொத்த அயன் செறிவு என்ன?
- (120) X என்னும் கரையத்தின் 1g நீரில் கரைக்கப்பட்ட கரைசல் 250cm³ ஆக்கப்பட்ட போது கரைசலில் X இன் செறிவு 0.025mol dm³ ஆயின் கரையத்தின் மூலர் திணிவு என்ன?
- (121) KNO₃, Ba(NO₃)₂ ஆகியவற்றைக் கொண்ட கலவையின் 0.564g ஐ வெப்பப் பிரிகை அடையச் செய்தபோது 0.408g திணிவுள்ள KNO₂, BaO ஆகிய வற்றைக் கொண்ட கலவை கிடைத்தது. கலவையில் KNO₃ இன் நிறை வீதத்தைக் கணிக்க. (Ba = 137)
- (122) ஒரு கலப்புலோகமானது மக்னீசியத்தையும் கல்சியத்தையும் கொண்டு ள்ளது. 1.000g நிறையுள்ள இக்கலப்புலோகமான ஐதான HCl உடன் தாக்க முற்று நி.வெ.அ வில் 0.784dm⁻³ ஐதரசன் வாயுவைக் கொடுக்கும். நி.வெ.அ வில் ஐதரசனின் மூலர் கனவளவு 22.41 எனின் இக்கலப்பு லோகத்தில் உள்ள மக்னீசியத்தின் நூற்றுவீத நிறையைக் கணிக்க? (Mg = 24.00, Ca = 40.00)
- (123) 1moldm⁻³ Ba(OH)₂ கரைசலொன்றும் 1moldm⁻³ HCl கரைசலொன்றும் உமக்குத் தரப்பட்டுள்ளன. (H⁺அயன்களையும் OH அயன்களையும் கண்டுபிடிப்பதற்கு அல்லது அளப்பதற்கு உபயோகப்படுத்தக் கூடிய pH

மானிகள், கடத்துத்திறன் கலன்கள் போன்ற மின் உபகரணங்களோ அமில மூலக் காட்டிகளோ உமக்குத் தரப்படவில்லை) Ba(OH)₂, HCl ஆகியவற்றுக்கிடையே உள்ள தாக்கத்தின் பீசமானத்தை ஆய்வுகூடத் திலுள்ள இந்நிலைமைகளின் கீழ் பரிசோதனை ரீதியாக நிர்மானிப் பதற்கு எவ்வாறு எத்தனிப்பீர் என்பதைச் சுருக்கமாக குறிப்பிடுக.

- (124) HCl குறித்து 0.5mol dm³ஆகவும் H₂SO₄குறித்து 0.25mol dm³ஆகவும் உள்ள அமிலக் கரைசல் ஒன்று உங்களிடம் தரப்பட்டுள்ளது. மக்னீசியம் ஒட்சைட்டும் உங்களிடம் வழங்கப்பட்டுள்ளது. (நீங்கள் வேறு இரசாயனப் பொருட்களைப் பயன்படுத்த முடியாது. எனினும் நீங்கள் சாதாரண ஆய்வு கூடசாதனம், கண்ணாடிக்கலவகை வசதிகள் ஆகியவற்றைப் பயன்படுத்தலாம்) இந்நிலைமைகளில் MgO விற்கும் HCl இற்கும் இடையே உள்ள தாக்கத்தின் மூலர்விகிதம் 1:2 என்பதை எங்ஙனம் காட்டுவீரென்பதை தெளிவாக விவரிக்க.
- (125) இரசத்தைக் கதோட்டாகப் பயன்படுத்தி பிறைன் கரைசல் மின்பகுக்கப் பட்டபோது கதோட்டில் சோடியம் அமல்கம்(Na/Hg) பெறப்பட்டது. இவ் அமல்கத்தின் குறித்த திணிவு மிகையளவு நீருடன் சேர்த்தபோது 27°C இலும் 0.987atm அமுக்கத்திலும் 0.624dm³ உலர் H₂ வும் 400cm³ NaOH கரைசலும் பெறப்பட்டன.
 - a) NaOH கரைசலின் செறிவு என்ன?
 - b) மேல் விளைந்த NaOH கரைசலின் $20\mathrm{cm}^3$ நடுநிலையாக்க $\mathrm{H_2SO_4}$ கரைசலின் $32\mathrm{cm}^3$ தேவைப்பட்டது எனில் $\mathrm{H_2SO_4}$ இன் வீதச் செறிவு என்ன?

கட்டுரை வினாக்களுக்கான கணிப்பு விடைகள்

(1)	$25 cm^3$	(2)	$99 \ cm^3$
(3)	22 cm ³	(4)	$40 \ cm^3, 25\%$
(5)	125 cm ³ , 25 cm ³	(6)	3.5 <i>cm³</i> குறையும்
(7)	20%	(8)	C_4H_{10}
(9)	C_2H_6	(10)	$C_3^{1}H_8^{1}$, 57.5ml
(11)	$C_4H_8^{\circ}$	(12)	151.25 <i>ml</i>
(13)	2, 6 °		
(14)	நீராவி 64.7% , 27.1% CO ₂ ,	5.9% O	2, 2.3%N ₂
(15)	$C_{2}H_{2} = 4cm^{3}$, $C_{2}H_{4} = 6cm^{3}$		
(16)	$CO = 20cm^3$, $CO_2 = 15cm^3$, N_2	$=25cm^{2}$	³ , 25% CO ₂
(17)	(b) $10cm^3$ (c) $10cm^3$	(d) 29	$0cm^3$ (e) (i) $5cm^3$ (ii) $24cm^3$
	(f) $H_2 = 16cm^3$, $N_2 = 14cm^3$		
(18)	(@) H ₂ Cl		
(20)	(a) 32 gmol^{-1} (b) 64 g mol^{-1}	(c) $2g$	mol ⁻¹
(21)	(a) $1.29g$ (b) O_2 59 %		
(22)	1.281g	(23)	M_2Cl_6
(24)	33.6 <i>l</i> , 303 <i>g</i>	(25)	
	$1.38g$, $516cm^3$	(27)	$23.7 \ dm^3$
(28)	$77.8dm^3$	(29)	94.5%
(30)	99.3%	(31)	57.1%
(32)	64%	(33)	39.08
(34)	$C^{12} = 98.89\%$, $C^{13} = 1.109\%$, b	
(35)	36	(36)	61.2 , C ₃ H ₈ O , C ₃ H ₈ O
(37)	$C_4H_8O_6$	(38)	
(39)	$C_5H_3N_3$	(40)	C_8H_8O
(41)	H = 6.67%, $O = 53.33%$	(42)	
(43)		(44)	C_4H_8O
(45)	55.8, C ₆ H ₁₂ O	(46)	C_4H_8O
(47)	C,H,O "	(48)	$C_6H_8O_6$
(49)	$C_7H_6O_2$	(50)	XeF ₆
• •	1 4		, -

```
(51)
          m = 2, n = 6
                                          (ii) NaHSO,.H,O
(52)
          (i) NaH, SO,
(53)
          (a) N<sub>2</sub>H<sub>2</sub>O<sub>3</sub>
                                          (b) NH, NO,
          (a) K AlSO
(54)
                               (b) 24 (c) K<sub>2</sub>SO<sub>4</sub>Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>. 24 H<sub>2</sub>O
                                                                                     (d) 5.69%
                                  (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. FeSO<sub>4</sub>. 6H<sub>2</sub>O
(55)
          FeS, O, H, N,
(56)
                                          (57) 47.3%
                                                                                     (iii) 29.4%
                                          (ii) MCl<sub>2</sub>. M(ClO)<sub>2</sub>. H<sub>2</sub>O
(58)
          (i) M_2Cl_4O_2
          (i) 2.45
                                          (ii) 3.375
                                                                                     (iii) 1.2
(59)
                                          (ii) 0.025moldm<sup>-3</sup>
                                                                                  (iii) 1moldm<sup>-3</sup>
          (i) 0.05moldm<sup>-3</sup>
(60)
          140 \ cm^3
(61)
                                                                               (iv) 1.8%, 1.73%
          (i) 0.1moldm<sup>-3</sup> (ii) 0.098moldm<sup>-3</sup> (iii) 0.001758
(62)
                                          (ii) 0.04moldm<sup>-3</sup>
(63)
          (i) 0.4moldm<sup>-3</sup>
                                          (ii) 0.6moldm-3
(65)
          (i) அடர்த்தி
          (a) 0.035
                                          (b) 3.71
(66)
          25cm^3
                                                     (68)
                                                               25cm3
(67)
                                                     (70)
                                                                1.78gdm<sup>-3</sup>
          1.52g
(69)
          23
                                                     (72)
(71)
                                                     (c) 1moldm<sup>-3</sup>
(73)
          (a) 85
                               (b) MNO,
          (b) 90%
(74)
                                                                95%
(76)
          0.36moldm<sup>-3</sup>
                                                     (77)
                                                                0.4 moldm^{-3}, 0.6 moldm^{-3}
                                                     (79)
(78)
          10
(83)
          3.96g
                                                     (84)
                                                                20%
(85)
          5
                                                     (86)
                                                                1.35g
                                                                89.2%
(87)
          112g, 3.64dm<sup>3</sup>
                                                     (88)
                                                     (90)
(89)
                                                                2.265g
(91)
          (iii) 1:1 (iv) 1:1 (v) VBaCl_1: VNa_1SO_2 = 1:2
                                                                (a) 4.84g (b) 20cm^3
(92)
          0.148g
                                                     (97)
                                                                56
(96)
          (i) V_{H,SO_4} = 6cm^3
          [C1] = 0, [NO_3] = 0.167 \text{moldm}^{-3}
(98)
                                                               33.33%
          (i) 82.5 \text{cm}^3
                               (ii) 36.9 \, \text{dm}^3
                                                     (103)
(102)
          94.7%
(106)
          [H_2C_2O_4] = 0.066 \text{moldm}^3, [HC_2O_4] = 0.34 \text{moldm}^{-3}
(107)
          54%
                                                     (110) 1.12dm<sup>3</sup>
(109)
                                                               72.32%
          63.03
                                                     (112)
(111)
                                                               0.2moldm<sup>-3</sup>, 0.1moldm<sup>-3</sup>
(113)
          0.4moldm<sup>-3</sup>, 0.6moldm<sup>-3</sup>
                                                     (114)
```

(115) 7, 0.25moldm⁻³

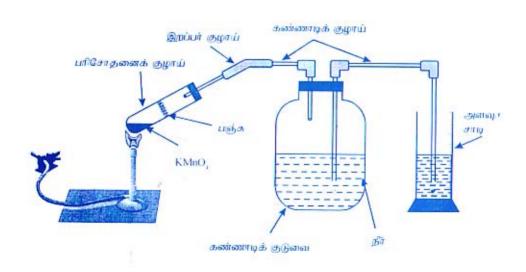
(b) 2.7cm^3 (a) 17.11moldm⁻³ (117)

(c) $0.5 dm^3$

இரு கரைசல்களிலும் 50cm³ கலக்கப்படும். (118)

(i) 0.04mol (ii) 0.12moldm⁻³ (119)

(iii) 0.2moldm⁻³


160gmol⁻¹ (120)

(121) 53.72%

(122)60%

(125)(a) 0.125moldm⁻³

(b) 0.3828%(w/v)

Printed By:

PARANAN ASSOCIATES PRIVATE LIMITED

403 1/1, Galle Road, Wellawatta, Colombo - 06. T.P: 507932, 551241 Hotline: 077-7370292.