ASIC CHEMISTRY PART. 2

amphiamin deplay Estatoria

த. சத்தீஸ்வரன்

அடிப்படை இரசாயனம்

BASIC CHEMISTRY

(உயர்தர வகுப்புக்குரியது)

பகு தி

கரைசல்களின் செறிவு

&

பீசமானம்

ஆக்கீயோன் தே**ம்**பையோ சுத்தீஸ்வரன் இரசாயினி சிமெந்துத் தொழிற்சாவே முதலாம் பதிப்பு ஆவணி, 1989

உரிமை:

சுபாசினி — சத்தீஸ்வரன், 108, பிறவுண் வீதி, யாழ்ப்பாணம்.

ഖിമ്പ ന്രൂപ്പ:-

அச்சுப்பதிப்பு: சுவர்ணு பிறின்டிங் வேக்ஸ், 295/7, கே.கே. எஸ். வீதி. யாழ்ப்பாணம்.

யாழ்ப்பாணம் = சென் பற்றிக்ஸ் கல்லூரி இரசாயனவியற்றுறை ஆகிரியர்

திஞ். ச. தில்பேநாதன் B. Sc., Dip — in-Ed. அவர்கள் வழக்கிய

அணிந்துரை.

அன்னேமொழி போதனேயானது அறிவியல் சமுதாயத்தின் கீழ்மட்டம் வரை பரவ வழிவகுத்தது உண்மைதாளுவினும், இந் நிகழ்வு செயற்படுத்த ஆரம்பித்த காலத்து கில ஆங்கில நூல்களே மொழி பெயர்ப்புச் செய்ததுடன். அரசு அன்னேமொழியில் அறிவி யல் நூலாக்கங்களேக் கைவிட்டது எனலாம். ஆயினும் கலேத்திட்ட மாற்றத்தின்போது கில அறிவியல் நூலாக்கங்கள் தரப்பட்டன, எனி னும் அவை முழுமை பெறவில்ல என்க.

அறிவியல் நாள் தோறும் வளர்ந்து செல்வது, பழையன கழித்து புதியன புகுத்தல் அவகியமானது. இந்நில்யில் இந்தாயில் சான் தற்போதைய இரசாயன பாட் முறைமைக்கு ஏற்பப் பல்வேறு நூலாக்கங்களேச் சுயமாக அன்னேமொழியில் ஆக்கும் பணியினேப் புரிகின்றுர்.

மாணவர்க்குப் போதிக்கும் தோறும் ஏற்படும் இடுக்கண்களேக் கருத்திற் கொண்டு ஆகிரியர் உதவியின்றிச் சுயமாக மாணவர் கற்க ஏற்புடையதாக இந்நூல் அமைகின்றது. அனுபவ வாயிலாக ஆகிரி யர் அளிக்கும் இந்நூலமுதம் மாணவருக்கு ஒரு வரப்பிரசாதம். இதனே மேலும் யான் விதந்துரைக்க விழைதல் பூக்கடையின் விளம்பரப் படுத்தல் போலாகும் என அஞ்சி அன்குரின் பணிதொடர அன்புடன் வேண்டி நிற்பேன்.

ச. தில்ஸ்நாதன்

ୟ ୫ ୫ ଓ ଲାଷ

முகவுரை

தற்போதைய க. பொ. த (உ/த) படிட்ஷை விணுத்தான் களே நோக்குமிடத்து மாணவர்களிடமிருந்து அதிகளவு கொள்கை விளக்கங்களே எதிர்பார்பதுடன், அவர்களிடமுள்ள விடயக்கொள்ளளவை அளவிடும் தன்மை வாய்ந்தவையாகவும் இருக்கின்றன. இதனுல் மாணவர்கள் தாமாகவே நல்ல நூல் களே வாசித்து, விளங்கும், விளக்கும், திட்டமிடும் செயற்படுத் தும் திற2னப் பெறுவது அவசியமாகும் இத2ன நிறைவு செய் யும்வகையில் "அடிப்படை இரசாயனம்" பகுதி I, பகுதி II நூல்களே முழுமையான பாட நூல்களாக ஆக்கியுள்ளேன்.

இந் நூலில் ''கரைசல்களின்'' செறிவு, ''பீசமானம்''என்னும் இரு பகு திகள் பற்றிய தெளிவான அடிப்படைக் கருத்துக்கள் கொள்கை விளக்கங்கள், செய்முறைப் பரிசோதணே முறைகள், நுட்பங்கள், கணிப்புகள் ஏன்பன தரப்பட்டுள்ளதுடன் தேவையான இடங்களிற் பல கணிப்புகள் செய்தும், பயிற்சி விஞக்களும் உள்ளடக்கப்பட்டிருக்கின்றன. இரசாயனவியலின் எல்லாப் பகுதிகளேயும் சிறந்த விளக்கத்துடன் கற்பதற்கு இப்பகுதிகள் பற்றிய அறிவு பெரிதும் பயண் தரும்.

இந் நூலாக்கத்தின் போது மின் விநியோக ஸ்தம்பிதம் மிகவும் இடையூருக இருந்தும் தேவையை உணர்த்து மிகக் கடின உழைப்பாலும் முயற்சியாலும் இந்நூல் ஆக்கப்பட்டுள்ள தென்ற உண்மையை மாணவர்களும் ஆசிரியர்களும் உணர்ந்து இதற்கு ஆதரவு நல்குவார்களென நம்புகிறேன்.

மேலும் அதிசிரத்தையுடன் சிறந்த முறையில் இந்நூல் அச்சிட்ட சுவர்ணு அச்சகத்திற்கும், நூல் பிர்திகளே எழுதியும், சரிபார்த்தும் உதவிய மாணவர்களிற்கும், தேவையான, படங்களே சிறப்புற வரைந்துதவிய நண்பன் இராசயநாயகம் அவர்களிற் கும் எனது நன்றிகள் உரித்தாகுக.

> நூலாசிரியர் த. சத்தீஸ்வரன்

பொருளடக்கம்

செறிவு	01
மூலர் திறன்	02
நேர்த் திறன்	04
மூலல் திறன்	05
வீதச் செறிவு	06
மூல் ப் பின்ன ம்	07
நியமக்கரைசல்கள்	
தியமக் கரைசெல்களின் தயாரிப்பு	14
பீசமானம்	
பீசமானத்தின் உபியாகம்	21
பீசமானம் துணியும் முறைகள்	
தொடர் மாறல் முறைகள்	23
வீழ்படிவுமான முறை	23
வெப்பமான முறை	28
நியமிப்பு முறை	3 2
வீழ்படிவாக்கல் நியமிப்பு	3 2
அமில மூல நியமிப்பு	34
கிலபீசமானத் கொள்கைகளின் பிரயோகங்கள்	41
சண்ணும்புக் கல்லின் தூய்மை வீதத்தைத் துணிதல்	4 1
நியமிப்பு முறையால் சமவலுத் தெணிவு துணிதல்	48
சில பகுப்பாய்வுக் கணிப்புகள்	.45
பயிற்சி விஞக்கள்	49
முடிவு	60

ப க்கம்	வெளி	பிழை	சி
2 5	குறிப்பு, 2ம் வளி	பீசமானத்	பீசமானத்தைத்
32	(2) 6–ம் வரி	அளவியல்	அளவியில்

செறிவு (C)

அநேகமான இரசாயனத் தாக்கங்கள் வழக்கமாகக் கரைசல் நிலேபில் நிகழ்த்தப்படுகின்றன. ஒரு கரைசல் ஆக்குவதற்கு ஒரு கரையமும், ஒரு கரைப்பானும் அவசியமாகும். பொதுவாகத் திண்மப் பொருள் கரையம் எனப்படும். திரவம் கரைப்பான் எனப்படும். இது தவிர திண்ம-திண்மக் கரைசல், திரவு-திரவக் கரைசல், வாயு- திரவக் கரைசல் என்பனவும் உண்டு.

சில வெவ்வேறு வகையான கரைசல்கள் உதார**ண**த்துடன் கீழே காட்டப்ப**ட்டுள்**ளது.

கரைய ம்	கரைப் பரன்	<i>உ</i> தா ர ணம்
कापती	வ்சயு	പ ബി
տուո	தி <i>ர</i> வம்	சோடா நீரி சு CO 2
en s ul	தி ண் ம ம்	ஐ த ரசன் பலேடி யத் தில்
திரவ ம்	வாயு	வ வியில் நீராவி
திரவம்	திரவம்	அல்ககோல் நீரில்
தி ண் மம்	திரவம்	கு ளுக்கோ ஸ் நீ ரில
தி 🗪 மம்	திண் மம்	த ை மக் கரைச ி சள், கலப்பு உலோகங்கள்

கரைசல்களேப் பயன்படுத்தி அளவறி பகுப்பு, பண்பறி பகுப்புத் தாக்கங்களே நிகழ்த்தும்போது ஒரு அலகு கனவளவு கரைசலில் உள்ள கரையத்தின் அளவை அறிந்திருத்தல் வேண்டும், இவ்வியல்பு கரைச லின் செறிவு எனப்படும்.

ஒரு இரசாயணத் தாக்கத்தில் என்ன அளவு தாக்கிகள் பயன்படுத் தப்பட்டன? என்ன அளவு தாக்கிகள் தாக்கம் அடைந்துள்ளன? என்ன அளவுவினேவுகள் தோன்றியுள்ளன? இத்தாக்கத்தின் உச்சவினேவைச் சிக்கனமாகப் பெறுவதற்கு என்ன அளவில் தாக்கிகள் பயன்படுத்தப்பட வேண்டும் என்பவற்றை அளவிடுவதற்கும், எவ்லா அளவறி பகுப்புக் கும், அதாவது, பீசமான ஆய்வுகள், பிணிப்பியல்புகள், இயக்கச் சமநிலே அயன் சமநிலே, அவத்தைச் சமநிலே, இரசாயன இயக்கங்கள் என்பண பற்றியும், கடல், வளி, புவி வள ஆய்வுகளிலும் செறிவு பற்றிய அறிவு இன்றியமையாதது ஆகும். பொது**வாக ஒரு கரைசலில் உ**ள்ள கரையத்தின் செறிவு பி**ன்**வரு மாறு குறிக்கப்படும்.

- (1) மூலர் திறன் (Molarity)
- (2) நேர்த்திறன் (Normality)
- (3) மூலல் இறன் (Molality)
- (4) வீதக் கரைசல் (Percent Solution)
- (5) மூல் பின்னம் (Mole Fraction)

மூலர் திறன் (M)

ஒரு வீற்றர் கரைசலில் உள்ள கரைய மூல்களின் எண்ணிக்கை மூலர் இறன் எனப்படும்.

குறிப்பு?

- (1) மூலர் செறிவு நிறைக்குக் கனவளவுச் செறிவாகும். கனவளவு வெப்பநிலேயில் தங்கி இருப்பதால் மூலர் செறிவும் வெப்ப நிலேயில் தங்கியிருக்கும்.
- (2) ஒரு கரைசலேத் தயாரிக்கும்போது, கரைசலின் மொத்தக் கனவள வினுள் கரையத்தின் கனவளவும் உள்ளடங்கும் என்பதை நிஃனவு படுத்துக.

உதாரணம் 1:1

 $18~g~C_6~H_{12}~O_6~lpha~100~cm^3$ நீர்க்கரைசல் கொண்டுள்ளது. இக்கரைசலின் மூலர் செறிவு என்ன? (C=12:O=16:H=1)

விடை

$$^{n}C_{6}H_{12}O_{6} = \frac{18}{180} = 0.1 \text{ mol}$$
 $C_{C_{6}H_{12}O_{6}} = \frac{0.1}{100} \times 1000$
 $= 1.0 \text{ mol } l^{-1} \text{ (} 1.0 \text{ mol dm}^{-3}\text{)}$

உதாரணம்! 1.1

 $0.1~{
m M}$, $250~{
m cm^3~Na_2CO_3}$ நீர்க்கரைச ${
m 3}$ எவ்வாறு தயாரிப்பீர்? (Na = 23 , C = 12, O = 16)

வியை

 $0\cdot 1~{
m M_{\it g}}$ 250 ${
m cm}^3$ கரைச ${
m 20}$ ஆக்கத் தேவையான

$${}^{n}Ns_{2}CO_{3} = \frac{0.1}{1000} \times 250 = 0.025 \text{ mol}$$

..
$$W_{Na_2CO_3} = 0.025 \times 106 = 2.65 g$$

2·65 g நீர் அற்ற Na₂ CO₃ செம்மையாக நிறுத்து எடுக்கப்பட்டு காய்ச்**சி வடி**த்த நீரில் கரைத்து, கரைசலின் கனவளவு 250 cm³ ஆகும் வரை **ஐதாக்**கப்படும்.

உதாரணம்: 1.2

விடை

உடைக்கு 5 M,HCl நீர்க்கரைசெல் தேரட்பட்டுள்ளது. 1 M, HCl நீர்க் கேரைசீல எவ்வாறு தயாரிப்பீர்?

செறிவு 5 மடங்காகக் குறைவதால், தரப்பட்ட கரைசலின் கண வளவு 5 மடங்காக ஐதாக்கப்படவேண்டும். அதாவது 5 M கரைசேலின் தெரிந்த கணவளவு செம்மையாக அளந்து எடுக்கப்பட்டு_உ கரைசேலின் கனவளவு 5 மடங்காகும் வரை காய்ச்சி வடித்த நீர் சேர்த்து ஐதாக்கப் படும்.

உதாரணம்: 1.3

 25° Cஇல் $10 {\rm cm}^3$. ${\rm CH_2OH}$ ஐ $100 {\rm cm}^3$ நீர் கொண்டுள்**ளது**. இக்கரைசலில் ${\rm CH_3OH}$ இன் மூலர்செறிவு என்ன? 25° C இல் மெதனே வின் அடர்த்தி 0.8 g cm 3 . (C = 12; O = 16 ${\rm H}$ = 1)

$$W_{CH_3 OH} = V \times d$$

$$= 10 \times 0.8 = 8 \text{ g}$$
 $^{10}CH_3OH = \frac{8}{32} = 0.25 \text{ mol}$

$$scorpedian security = V V$$
 $H_2O + CH_3OH$
 $= 100 + 10 = 110 \text{ cm}^3$
 $C_{CH_3OH} = \frac{0.25}{110} \times 1000 = 2.27 \text{ mol dm}^{-3}$

உதாரணம்! 1.4

100 cm³, Mg (NO₃)₂ நீர்க்கேரைசல் ஒன்று உலர் நிஃு வை**ரை** ஆ**வி** யாக்கப்பட்டு, வன்மையாக வெப்பமாக்கிய போது 1 0 g மீதி பெறப்

பட்டது. இக்கரைசலில் இருந்த Mg++, NO3 அயங் செறிவுக ோக்கணிக்க. (Mg == 24: O = 16)

விடை:

$$2 \text{ Mg (NO}_3)_2 \rightarrow 2 \text{ MgO} + 4 \text{ NO}_2 + \text{O}_2$$

$${}^{n}\text{Mg(NO}_3)_2 = {}^{n}\text{MgO} = \frac{1 \cdot 0}{40} \quad 0 \cdot 025 \text{ mol}$$

$${}^{n}\text{Mg++} = {}^{n}\text{Mg(NO}_3)_2 = 0 \cdot 025 \text{ mol}$$

$$\left[\text{Mg++} \right] = \frac{0 \cdot 025}{100} \quad \text{x } 1000 = 0 \cdot 25 \text{ mol dm}^{-3}$$

$$\left[\text{NO}_3^{-} \right] = 2 \left[\text{Mg++} \right] = 2 \times 0 \cdot 25.$$

நேர்த்திறன் (N)

ஒரு லீற்றர் கரைசலில் உள்ள கரையத்தின் கிராம் சமவலுக்களின் எண்ணிக்கை நேர்த்திறன் எனப்படும்.

குறிப்புச

- (1) இது மூலர் செறிவைப் போன்று நிறைக்குக் கனவளவுச் செறி வாகும். எனவே வெப்பநிஃவில் தங்கியிருக்கும்.
- (2) மூலர் செறிவு ஒரு கரைசலில் உள்ள கரையத்தின் அளவைக் குறிக்கும். ஆஞல் நேர்த்திறன் ஒரு கரைசலில் உள்ள கரையத் தின் அளவைக் குறிப்பதுடன், தாக்க அளவுகளேயும் கணிப்ப தற்குப் பயன்படுத்தலாம். அதாவது ஒரு தாக்கத்தின்போது கிராம் சமவலுவே, கிராம் சமவலுகைவத் தாக்கும். தாக்க அளவுகளே, பீசமான அளவீடுகளேப் பயல்படுத்தித் துணிவோ மாயின் எல்லாச் செறிவுகளேயும் மூலர் திறனில் குறிப்பிட லாம். அதாவது நேர்செறிவை உபயோகிப்பதில் பல பிரதி

கூலங்கள் இருப்பதால், இந்த எண்ணைக் கைருக்கள் உபயோகிப்ப தில்லே எனே அண்மையில் சர்வதேசரீதியில் ஒப்புக்கொள்ளப் பட்டுள்ளது.

உதாரணம்: 1.5

25° C இல் **4∙9** g H₂SO₄ ஐ 100 cm³ நீர்க்கரைசல் கொண்டுள் பது.

- இக்கரைசலின் மூலர் செறிவு என்ன?
- b) நேர் இறன் என்ன? (H = 1, S = 32:O = 16)

മിത്രൂ:

a)
$$^{n}H_{2}SO_{4} = \frac{4 \cdot 9}{98} = 0.05 \text{ mol}$$

$$C_{H_{2}SO_{4}} = \frac{0.05}{100} \times 1000 = 0.5 \text{ mol dm}^{-3}$$

- b) $1M_1H_2SO_4 = 8N_1H_2SO_4$
- $0.5M, H_2SO_4 = 1 N, H_2SO_4$

மூலல் திறன் (m)

ஒரு ^{இலோ இராம்} (1000g) கரைப்பாணில் உள்ள கரைய மூல்களி**ன்** எண்ணி**க்**கை **மூலல்** திறன் எ**னப்**படும்.

குறிப்பு :

- (1) மூலல் செறிவு நிறைக்கு நிறைச் செறிவாகும். எனவே வெப்பநிஃலயால் பாதிக்கப்படமாட்டாது. செம்மை கூடியது. மிகவும் திருத்தமான அவவீடுகள் தேவைப்படும் போது மட்டுமே மூலல் செறிவு பயன்படுத்தப்படும். மூலர் செறிவு நிறைக்குக் கனவளவுச் செறிவாதலால் இக்கரைசல்களேக் கையாள்வது இலகுவானது எனவேதான் கூடிய அளவில் மூலர் செறிவு களே பயன்படுத்தப்படும்.
- (2) மூலர் செறிவுக்கும், மூலல் செறிவுக்கும் இடையே உள்ள / தொடர்பு கரைசலின் அடர்த்தியில் தங்கி இருக்கும். மிக ஐதான நீர்க் கரைசல்களில் மூலல் செறிவும், மூலர் செறி வும் சமன் எனக் கருதலாம். (கரைசலின் அடர்த்தி நீரின் அடர்த்திக்குச் சமன் எனக் கருதுவதால்)

வீதச் செறிவு

இது இரு முறைகளால் குறிக்கப்படும்.

- (1) நிறைக்குக் கனவளவு வீ*தக்க*ரைசெல் (W V
- (2) நிறைக்குச் நிறை விதக் கரைசல் $\left(\frac{W}{W}\right)$

நிறைக்குக் கனவளவு வீதக் கரைசல் (W/V) $100~{
m cm}^3$ கரைசலில் உள்ள கரையத்தின் நிறை ஆகும்.

நிறைக்கு நிறை வீதக் கரைசல்
$$\left(rac{W}{W}
ight)$$

100 g கரைசலில் உள்ள கரையத்தின் நிறையாகும். அதாவது Wg கரையத்தை (100-W) g கரைப்பான் கொண்டிருக்கும்.

வீதக் கரைசலின் அவசியம்

தொழில் முறைகளே இலகுவாக்குவதற்கும், இலகுவாகக் கையாள் வதற்கும் இச்செறிவுமுறை அவசியமானது.

உதாரணமாக ஒரு வைத்தியசாலேயை எடுத்துக்கொள்வோம். அங்கு டாக்டர் கொடுக்கவேண்டிய கலவை மருந்தை எழுதுகின்ருர். மருந்து கலப்பவர் மருந்தைக் கலந்து கொடுக்கின்ருர். டாக்டர் மருந்தை எழுதும்போது 0·1 M செறிவுள்ள கலவை மருந்து ஒன்றை தயா ரித்துக் கொடுக்குமாறு எழுதுகின்றுர் என வைத்துக்கொள்வோம். இதனுல் நாம் பின்வரும் பிரச்சிணகளே எதிர்நோக்கவேண்டி இருக்கும்;

- (1) மருந்து கலப்பவர் இரசாயன அறிவைப் பெற்றவராக இருத் தல்வேண்டும்.
- (2) இக்கரைச‰த் தயாரிப்பதற்கு கூடிய அளவு நேரம் எடுக்கும்.

எனவே டாக்டர் எழுதும்போது 10% கரைசல் தயாரித்துக் கொடுக்கும்படி எழுதுவராயின் மருந்து கலப்பவருக்கு 10g குறிப் பிட்ட மருந்தை எடுத்து நீர் சேர்த்து 100 ml கரைசல் ஆக்கவேண்டும் என எளிதில் விளங்கும். அத்துடன் வேஃயும் விரைவாக்கப்படும். இதுபோன்று எத்தஃனயோ நடைமுறைகளையும், கைத்தொழில்களேயும் இலகுவாக்க இச்செறிவு அவசியமானது.

மூல்ப்பின்னம் (X)

ஒரு ஏகவினக் கரைசலில் உள்ள கரையத்தின் மூல் எண்ணிக்கைக் கும் மொத்த மூல் எண்ணிக்கைக்கும் இடையே உள்ள பின்னமாகும்.

ஒரு கரைசல் A என்னும் கரைப்பானுலும். B என்னும் கரையத் தாலும் ஆனதென்க. கரைசலில் A, B என்பவற்றின் மூல் எண்ணிக் கைகளே முறையே ⁿA . ⁿB என்க. B இன் மூல் பின்னம் ^xB ஆயின்

$${}^{X}B := rac{{}^{n}B}{{}^{n}B + {}^{n}A}$$
 $W_{B} \rightarrow B$ இன் தினிவு $W_{A} \rightarrow A$ இன் தினிவு $W_{B} \rightarrow B$ இன் மூலர் தினிவு $M_{B} \rightarrow B$ இன் மூலர் தினிவு $M_{A} \rightarrow A$ இன் மூலர் தினிவு

உதாரணம்: 1:6

25°C இல் 46 g, CH₃CH₂OH ஐ, 54 g H₂O கொண்டுள்ளது. இக்கலைவை இலட்சியமானது.

a) 25°C இல் எததேறைலின் மூல் பின்னம் என்ன?

$$(C = 12 : O = 15 : H = 1)$$

- (b) 25°C இல் எதஞேலின் (W/V) வீதச் செறிவைத் துணிவதற்கு மேலதிகமாகத் தேவையான தரவு என்ன?
- (0) 25°C இல் எதனேலின் (W/W) வீதச் செறிவைத் துணிவதற்கு மேலதிகமாகத் தேவைப்படும் தரவுகள் என்ன?

விடைம

(a)
$${}^{n}CH_{3}CH_{2}OH = 46/46 = l \text{ mol}$$
 ${}^{n}H_{2}O = 54/18 = 3 \text{ mol}$
 ${}^{n}CH_{3}CH_{2}OH = \frac{{}^{n}CH_{3}CH_{2}OH}{{}^{n}CH_{3}CH_{2}OH + {}^{n}H_{2}O} = \frac{1}{1 \oplus 3}$
 $= 1/4$

(b) 25° C இல் எதனேல். நீர் என்பவற்றின் அடர்த்திகள் கரை உ வின் பொத்த கனவளவு என்பன தேவையானது.

கணவளவு =
$$V_{CH_3CH_2OH} + V_{H_2O}$$

= $\frac{W_{CH_3CH_2OH}}{^d_{CH_3CH_2OH}} + \frac{W_{H_2O}}{^d_{H_2O}} = V$ என்க.

$$::$$
 எதனேலிக் (W/V) வீதச் செறிவு $=rac{ ext{WCH}_3 ext{CH}_2 ext{OH}}{ ext{V}}$ $ext{x}$ 100%

(c) கரைசலின் திணிவு
$$= W_{\text{CH}_3\text{CH}_2\text{OH}} + W_{\text{H}_2\text{O}}$$

 $= 46 + 54$
 $= 100 \text{ g}$

- ் 100 g கரைசல் 46 g CH₂CH₂OH எ**த**ேணிக் கொண்டிருச்கும்.
- ். எதுஞேலின் (W/W) வீதச் செறிவு = 46% எனவே இதனேக் கணிப்பதற்கு மேலதிக தரவுகள் தேவையில் இ

உதாரணம்: 619

20° C இல் x எனும் கரையத்தின் 0.100 M நியம நீர்க்கரைசேலின் அடர்த்தி 1·18g cm⁻³ இக்கரைசேலின் அடர்த்தி 27° C இல் 1.12 g cm⁻³ இந்நியமக் கரைசேலே 27° C இல் பயுன்படுத்தும்போது நியமச் செறி வில் ஏற்படும் வழு வீதம் என்ன? எனக் கணித்து விமர்சிக்க.

விடை:

$$\mathbf{n_X}$$
 — கரையத்தின் மூல்கள் $\mathbf{C_X} = \frac{\mathbf{n_X}}{\mathbf{V}}$ (1) \mathbf{V} — கரைசலின் கனவளவு $\mathbf{d} = \frac{\mathbf{m}}{\mathbf{V}}$ (2) \mathbf{d} — கரைசலின் அடர்த்தி \mathbf{m} — கரைசலின் திணிவு

சமன்பாடு (1) இல் இருந்து

சமன்பாடு (2) இல் இருந்**து**

$$V = \frac{n_X}{C_*} \qquad V = \frac{m}{d}$$

கரைசவின் கவைவவுகளேச் சமப்படுத்தும்போது

$$\frac{n_X}{C_X} = \frac{m}{d}$$

$$C_{x} = \frac{n_{x} \times d}{m} \qquad \qquad \left(\frac{n_{x}}{m} = i \text{ in } p \text{ so } \right)$$

$$C_{x} = k \cdot d$$

$$C_{x} \propto d$$

$$C_{T_{1}} = \frac{d_{T_{1}}}{d} \longrightarrow \frac{C_{20}}{d} = \frac{d_{20}}{d}$$

$$\frac{C_{T_1}}{C_{T_2}} = \frac{d_{T_1}}{d_{T_2}} \longrightarrow \frac{C_{20}}{C_{27}} = \frac{d_{20}}{d_{27}}$$

$$\frac{C}{C_{27}} = \frac{C}{20} \times \frac{d_{27}}{d_{27}} = \frac{0.100 \times 1.12}{1.18}$$

= 0:095 mol dm-3

$$0.005$$
 $0.100 \times 100 = 5\%$

உதாரணம்: 1.7

25° C இல் கரைசெல் ஒன்று 40.10 g NaCI, 20.2 g $\mathrm{CH_3OH}$, $100 \cdot 2$ g $\mathrm{H_2O}$ என்பவற்றைக் கொண்டுள்ளது. கரைசலில் உள்ள ஒவ் வொரு கூறுகளினதும் வீத நிறைகளேக் கணிக்க. கரைசலில் உள்ள Cl^- அயன்களின் மூலர் செறிவு என்ன? கரைசெலின் அடிர்த்தியை 25° C இல் 1.10 g cm^{-3} எனக் கொள்க. (மு. கூ. நி. $\mathrm{NaCl} = 58.5$ $\mathrm{CH_2OH} = 32$).

கரைசலின் திணிவு =
$$\frac{W}{NaCl} + \frac{W}{CH_3OH} + \frac{W}{H_2O}$$

= $40 \cdot 10 + 20 \cdot 2 + 100 \cdot 2$
= $160 \cdot 5$ g

். NaCl இன் நிறை வீதம்
$$= \frac{W}{W_{கரைசல்}} imes 100$$
 $= \frac{40 \cdot 1}{160.5} imes 100 = 25\%$

$$ext{CH}_3 ext{OH}$$
 இன் நிறை வீதம் $=rac{ ext{W} ext{CH}_3 ext{OH}}{ ext{W}} imes 100$ $=rac{ ext{20}\cdot ext{2}}{160\cdot ext{5}}$ $imes$ 100 $=$ 12.5%

[CH₃OH இன் தெணிவு NaCl இன் திணிவிலும் அரைவாசியாக இருப்ப தால் மெதஞேலின் வீதச் செறிவு NaCl இன் செறிவிலும் அரைவா சி யாக இருக்கும்.]

கரைசேலி இ செனவைனவு (V) = கூறைசேலின் திணிவு =
$$\frac{160 \cdot 5}{1 \cdot 1}$$
 = $145 \cdot 9$ cm³

உதுரணம்: 1:8

25° Cஇல் 34·2 g கரும்பு வெல்லம் ($C_{12}H_{22}O_{11}$), $200~cm^3$ நீரில் கரைக்கப்பட்டு கரைசலின் கனவளவு ஒரு லீற்றருக்கு (dm^3) ஐதாக்கப்பட்டது. 25° C இல் இக்கரைசலின் அடர்த்தி $1\cdot5$ g cm $^{-3}$. 25C° இல் வெல்லைத்தின் (a) மூலர் செறிவு (b) மூலல் செறிவு (c) வீதச் செறிவு என்பவற்றைச் கணிக்க. (H=1, C=12: O=16)

விடை

எனவே கரைசனின் மூலர்ச் செறிவு (C) ெ ு 0 ∙ 1 maol dm ு

(b) கரைசேவின் திணிவு = கனவேளவு × அடர்த்தி
= 1000 × 1·05 = 1050 g
:. கரைசெலில் உள்ள நீரின் திணிவு = 1050 — 34·2
= 1015·8 g

் மூலல் திறன் =
$$\frac{0.1 \times 1000}{1015 \cdot 8}$$
 = 0·098 moi kg⁻¹

உதாரணம்: 1.9

x என்னும் க**ரைய**ம் நீரில் கரைய**க்**கூடியது. இதன் சார் மூலர் திணிவு 160. 25° Cஇல் x இன் 0·1 மூலல் நீர்க் கரைசலின் அடர்த்தி 1·0**2**5 gcm⁻³

- a) 0·1 மூலல் x இன் நீர்க்கரைச2ல எவ்வாறு தயாரிப்பீர்?
- b) இக்கரைசேலின் மூலர் செறிவு என்ன? விடை:
 - (A) தேவையான xஇன் திணிவு W_x என்க.

$$\mathbf{W}_{\mathbf{x}} = 0.1 \times 160 = 16 \, \mathbf{g}$$

் 16g 🗙 ஐ திருத்**தமாக** நி**றுத்து எ**டுத்து, 1000g காய்ச்சி வழுத்**த** நீரில் **கரை**ச்கப்படும்.

(b) கரைசலின் கணவளவு (V)
$$=\frac{$$
 கரைசலின் திணிவு $}{$ கரைசலின் அடர்த்தி $V=\frac{1000+16}{1\cdot025}=991\cdot22\,\mathrm{cm}^3$ மூலர் இசுறிவு $(C_\mathrm{X})=\frac{0\cdot1}{991\cdot22}$ \times 1000 $=1\cdot008\,\mathrm{mol\ dm}^{-3}$

உதாரணம்: 2.0

300° K இல் அடர்த்தி 1·039 gcm⁻³ ஐக் கொண்டுள்ள ஓர் உப்புக் கரைசல் 3·8% நிறை உப்பைக் கொண்டுள்ளது. உப்பில் 75% NaCl உம், 10% MgCl₂ உம் உண்டு. (Na = 23; Mg = 24; Cl = \$5·5)

- (a) உப்புக் கரைசலில் உள்ள NaCl இன் செறிவு gcm 3 இல் யாது? மூலா் செறிவு என்ன?
- (b) கரைசெலில் உள்ள Mg²+ அயன்களின் மூலர் செறிவு யாது?
- c) கரைசெலில் உள்ள மொத்த Cl¯ செறிவு என்ணா? விடை:!
 - (a) 100g கரைசலில் உள்ள NaCl இன் திணில

$$=rac{3.8}{100} imes75=2.85$$
 g $=rac{100}{1.039} imes96.246$ cm 3 $=rac{2.85}{96.246}=0.0296$ g $\frac{2.85}{96.246}=0.0296$ g $\frac{0.0296 imes1000}{58.5}$ $\frac{1000}{\sqrt{1000}}$ $\frac{1000}$

(b) 100g கரைசலில் உள்ள MgCl₂ இன் திணிவு

நிய மக்கரைசல்

செறிவு திருத்தமாகத் தெரிந்த கரைசல் நியமக் கரைசல் எனப்படும். செறிவு தெரியாத கரைசல்களின் செறிவுகளேத் துணிவதற்கு நியமக் கரைசல்கள் அவைசியமாகும். எல்லாப் பதார்த்தங்களுக்கும் நியமக் கரைசல்கள் தயாரிக்க முடியாது. அதாவது நியமக் கரைசல்கள் தயாரிப்பதற்குப் பயன்படுத்தும் பதார்த்தங்கள் சில திட்டமான இயல்புகளேக் கொண்டிருத்தல்வேண்டும். முக்கியமாக,

- வளியில் நீர்மயமாகக் கூடாது.
- 2. வனியுகன் தாக்கமடையக் கூட்ரது.
- **ே. ஆவிப் பறப்பற்றதாக இருக்க வேண்டும்**:
- 4. **தீர்ப்**பகுப்படையக்கூடா<u>கு</u>ு.
- 5. பிரிகையடையக்கூடாது.

NaOH வளியில் உடனடியாக நீர்மயமாகும். HCl ஆவிப்பறப்பு உள்ளது. AgNO₃ ஒளிக்குப் பிரிகை அடையும். எனவே இவற்றுக்குத் திருத்தமான நியமக் கரைசல்களேத் தயாரிக்கமுடியாது. அதாவது 0.1M NaOH, HCl, Ag NO₃ என்பனவற்றின் நீர்க்கரைசல்களேத் தயாரிப்போமாளுக் அவற்றின் செறிவுகள் அண்ணனவாகவே 0·1 M ஆக இருக்கும். இவ்வாறு தயாரிக்கப்படும் கரைசல்களே நியமக்கரைசல்கள் என்று கூறமுடியாது.

ஆளுல் இவற்றை நியமக் கரைசல்களாகப் பயன்படுத்தலாம். அதாவது இவ்வாறு தயாரிக்கப்பட்ட கரைசல்கள், வேறு நியமக் கரைசல்கள், வேறு நியமக் கரைசல்களுடன் நியமிக்கப்பட்டு, இக்கரைசல்களின் திருத்தமான செறிவு கள் துணியப்படும். இவ்வாறு செறிவு துணியப்பட்ட கரைசல்கள் நியமிக்கப்பட்ட கரைசல்கள் எனப்படும். இவை உடனடித் தேவைகளுக்கு நியமக் கரைசல்களாகப் பயன்படுத்தப்படும்.

குறிப்பு:

- (1) நியமிக்கப்பட்ட கரைசல்களேயும் நியமக் கரைசல்களாகப் பயன் படுத்தலாம்.
- 2) பொதுவாக HCl, H₂SO₄₉ HNO₃, H₃PO₄ ,NH₃ என்பவற்றின் செறிந்த க**ை**ரசல்கள் தொழிற்சாலேகளில் இருந்து விற்பணேக்கு விடப்படும்போது, அவை அடைக்கப்பட்டிருக்கும் போத்தல்களில் அவற்றின் வீதச் செறிவு (W/W), அடர்த்தி, வெப்பநிலே என்பன குறிப்பிடப்பட்டு இருக்கும். இத் தகவல்களேப் பயன்படுத்தி வேண்டிய செறிவுள்ள கரைசெல்களே நாம் ஆய்வுகூடத்தில் தயா ரித்து நியமித்து பின் கணமான பகுப்புக்களில் பயன்படுத்தப்படும்.

நியமக் கரைசல்கள் தயாரிப்பு

- 1) O·1 M, 250 cm³ Na₂CO₃ கரைசல் தயாரித்தல்.
- (1) O·IM, 250 cm³ கரைசலில் உள்ள Na₂CO₃ மூல்கள்

$$n_{Na_2CO_3} = \frac{0.1}{1000} \times 250 = \frac{1}{40}$$
 mol

$$W_{Na_2CO_3} = \frac{1}{40} \times 106 = 2.6 g$$

- (2) தூய நீர் அற்ற Na₂CO₃ இன் மாதிரி எடுக்கப்பட்டு நன்ருக வெப்பமாக்கி உலர்த்தி. உலர்த்தும் குடுவையில் வைத்து குளிர் விக்குப்படும்,
- (3) சுத்தமான, உலர்ந்த கடிகாரக் கண்ணுடியில், 2·65 g உலர்ந்த Na₂CO₃ மிகவும் செம்மையாக நிறுத்**து** எடுக்கப்படும்.
- (t) நிறுக்கப்பட்ட மாதிரி சுத்தமான புனல் ஒன்றைப் பயன்படுத்தி காய்ச்சி வடித்த நீரிஞல் கவனமாகக் கழுவி, சுத்தமான. உலர்ந்த 250 cm³ நியமக் குடுவை ஒன்றிற்கு மாற்றப்படும்.
- (5) கடிகாரக் கண்ணுடியும், புனலும் காய்ச்சி வடித்த நீரிஞல் நன்மு கக் கழுவப்பட்டு நியமிப்புக் குடுவையினுள் சேர்க்கப்படும்,
- (6) பின் குடுவையை, கரைசலில் சுழி **ஏற்**படுமாறு **அசைத்து** முழுக் **கரைய**மு**ம்** கரைக்கப்படும்.
- (7) பின் சிறிது சிறிதாக காய்ச்சி வடித்த நீர் சேர்த்து கழுத்து வரை நிரப்பப்படும்.
- (8) 250 cm³ அடையாளத்தை நெருங்கும் போது துளித்துளியாக நீரைச் சேர்த்து சரியாக 250 cm³ இற்கு ஐதாக்கப்படும்.
- (9) இறதித் துளி சேர்க்கும் போது, கரைசலின் மேற்பரப்பில் பிறை யுருவின் கீழ்ப்பகுதி குடுவையின் 250cm³ அடையாளக் குறியுடன் சரியாகப் பொருத்த வேண்டும்.
- (10) பின் நியமக்குடுவையை மூடி நன்முகக் குலுக்கி ஏகவினக் கரைசல் பெறப்படும்.

நியம் HCl கரைசல் தயாரிப்பு

பொதுவாக வியாபாரத் தேறையில் இநந்து பெறப்படும் HCl 36% செறிவுள்ளது. அறை வெப்பநிலேயில் அடர்த்தி 1·18 gcm⁻³ ஆகும். 100g HCl கரைசலில் உள்ள HCl மூல்களே n என்க. கரைசேலின் கனவேளவைக் V என்க.

$$V = \frac{100}{1 \cdot 18}$$
 cm³ $n = \frac{36}{56 \cdot 5}$ mol

$$\therefore$$
 HCl இன் செறிவு = $\left[\text{HCl} \right] = \frac{n}{V} \times 100 = \left(\frac{36/36 \cdot 5}{100/1 \cdot 18} \right) \times 100$

$$= \frac{36 \times 1 \cdot 18}{36.5 \times 100} \times 1000$$

 $= 11.64 \text{ mol dm}^{-3}$

இக் கரைசலே வேண்டிய அளவுக்கு ஐதாக்கி தேவையான செறிவுள்ள அமிலம் பெறப்படும். இச் செறிவு அண்ணைளவானது. பின்னர் நியமித்து நியமச் செறிவு அறியப்படும்.

கிட்டத்துட்ட 0·1 M செறிவுள்ள நியமHCl தயாரித்தல்

(1) 0 • 1 M அண்ணளவான செறிவுள்ள HCl அமிலம் தயாரிக்கப்படும் தேறிப்பு: மேல் கூறிய அமிலத்தை சருதுவோமாயின்

$$V = \frac{0.1 \times 1000}{11.64} = 8.59 \text{ cm}^{3}$$

அதாவது நிறை % செறிவு 36 ஐயும், அடர்த்தி 1·18 gcm⁻³்ஐயும் கொண்ட HCl அமீலத்தின் 8·59 cm³ அளந்த எடுத்து, கோ**ய்ச்சி** வடித்த நீர் சேர்த்து l dm³ க்கு ஐதாக்கும் போது அண்ணைனவான 0·1M HCl கரைசல் பெறப்படும்.

- (2) தயாரித்த HCl அமிலம் அளவியில் எடுக்கப்படும்.
- (3) 0⋅1 MNa₂CO₃ இன் நியமக் கரைசல் தயாரிக்கப்படும்.
- (4) குழாயி ஒன்றைப் பயன்படுத்தி 20 cm³ , 0·1 M №2CO₃ செம்மை அளந்து எடுக்கப்பட்டு, சுத்தமான நியமிப்புக் குடுவை ஒன்றுக்கு மாற்றப்படும்.

- (5) Na₂CO₃ கரைசலுக்கு இரண்டு துளிமெதைய**ிற் செம்மஞ்சள்** காட்டியாக சேர்த்து, குடுவையின் ஓரங்கள் காய்ச்**சி வடி**த்த நீரினுல் கழுவப்படும்.
- (6) அளவியில் இருந்து HCl அமலம் துளித்துளியாகச் சேரித்து, Na₂CO₃ கரைசலுடன் நிய**மித்து** முடிவுப்புள்ளி பெறப்படும்.
- (7) முடிவுப்புள்ளி (மஞ்சள் நிறம்— மென்சிவப்பாக மாறும்)
- (8) அளவியில் இருந்து நுநில்யொக்கத்துக்குத் தேவைப்பட்ட HC! இன் அளவு (Vcm³) பெறப்பட்டு, HCl இன் நியமச் செறிவு (C₁) கணிக்கப்படும்.

$$2 \times 20 \times 0.1 = C_1 \times V$$

$$C_1 = \frac{2 \times 20 \times 0.1}{V} \text{ moldm}^{-3}$$

(இக்கணிப்புகள் பற்றி பீசமானப் பாடத்தின் போது விபரமாக்கப் பார்க்கலாம்)

இட்டத்துட்ட 0·1 M செறிவுள்ள NaOH இன் நியமக் கரைசலேத் தயாரித்தல்

- (1) அண்ண வையாக 0·1 M செறிவுள்ள NaOH கரைசல் தபாரிக்கப் படும்.
- (2) அண்ணளவான 0.1 M HCl கரைசல் தயாரிக்கப்படும்.
- (3) 0.1 MNa₂CO₃ இன் நியமக் கரைசல் தயாரிக்கப்படும்.
- (4) நியம் Na₂CO₃ ஐ பயன்படுத்**தி HCl அமிலத்துடன் நியமித்து** HCl அமிலத்தின் செம்மையான நியமச் செ**றிவு அ**றியப்படும்.
- (5) மேலே நியமித்து திருத்தமாகச் செறிவு அறிந்த HCl அமிலத்தை பயன்படுத்தி, NaOH கரைசலுடன் வலுப்பார்த்து NaOH இன் செம்மையான நியமச் செறிவு துணியப்படும்.

உதாரணம்: 2:1

அறை வெப்பநிட்**லயில் 1·87 g cm**-3 அடர்**த்தி**யுள்ள சல்பூரி **ஃ** அமிலம் உமக்குத் தரப்பட்டுள்ளது. (H = 1: S = 32: O = 16)

- (a) 0·3 M H₂SO₄ இன் கரைசஃ எவ்வாறு தயாரிப்பீர்?
- (b) 0·2 M NaOH கரைசலின் 30 cm³ ஐ நடுநிலேயாக்கத் தேவைப் படும். 0.3 M H₂SO₄ கரைசவின் கணவளவு என்ன?

விடை;

(a) தேவையான H_2SO_4 இன் திணிவு $W_{H_2SO_4}$ என்க.

$$W_{H_2SO_4} = {}^{n}_{H_2SO_4} \times 98$$

= $9.3 \times 98 = 29.4 \text{ g}$

காய்ச்சி வடித்த நீருக்கு 15·7 cm³ H₂\$O₄ கவனமாகச் சேர்க்கப்பட்டு பின் கனவளவு ஒரு லீற்றர் ஆகும்வரை காய்ச்சி வடித்**த நீர் சேர்த்**து ஐதாக்கப்படும். (H₂SO₄க்கு நேரடியாக நீர் சேர்க்கக்கூடாது.)

- (b) முறை *1*
- $0.2 \text{ M}, 30 \text{ cm}^3 \text{ NaOH} = 0.2 \text{ M}, \text{H}_2 \text{SO}_4 \text{ g} \text{ size} 15 \text{ cm}^3$

$$\theta \cdot 2$$
 M, $H_2 SO_4$ இன் 15 cm $^3 = 0 \cdot 3$ M, $H_2 SO_4$ இன் $\frac{15}{0 \cdot 3} \times 0 \cdot 2$ cm 3

$$^{\circ}$$
 Сதவையான 0·3 M H₂SO₄ = $\frac{15 \times 0.2}{0.3}$ = 10 cm³

முறை ii

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

ⁿNaOH =
$$\frac{0.2}{1000} \times 30 = 0.006 \text{ mol}$$

$$^{n}H_{2}SO_{4} = \frac{^{n}NsOH}{2} = \frac{0.006}{2} = 0.003$$

ိ
$$0.3 \text{ M H}_2 \text{SO}_4$$
 இன் கனவளவு $=\frac{1000}{0.3} \times 0.003 = 10 \text{ cm}^3$

3

உதாரணம்: 2:2

9·8 டீ பாகுநிலே H₃PO₄ அமிலத்தில் இருந்து ஆக்கக்கூடிய 2·5 mel dm-3 H₃PO₄ கரைசலின் கனவளவு யாது? பாகுநிலே H₃PO₄ இன் அடர்த்தி 1·9 cm-3

ബിത⊾;

$$W_{H_3PO_4} = secondered \times Allings$$

$$= 9.8 \times 1.9 = 18.62 g$$
 $^{n}H_3PO_4 = \frac{18.62}{98} = 0.19 mol$

2·5 mol கொண்ட கரைசலின் கணவளவு == 1 dm³

$$0.19$$
 mol கொண்ட கரைசலின் கனவளவு $=\frac{1}{2.5} \times 0.19$
 $=0.076~\mathrm{dm}^3$

உதாரணம்: 2.3

வியாபாரத் துறையில் பயன்படுத்தும் H₂SO4, 98% தூய்மையானது. 25°C இல் இதன் அடர்த்தி 1⋅87 gcm-3

(a) இக்கரைசலின் மூலர் செறிவு என்ன? (H=1: \$= 32; O=16)

விடை

 $100~{
m g}$ கரைசல் $96~{
m g}~{
m H}_2{
m SO}_4$ ஐ கொண்டிருக்கும். அதாவது.

$$^{n}H_{2}SO_{4} = \frac{98}{98} = 1 \text{ (pio (100 g sorpeolio))}$$

$$100$$
 g கரைசலின் கனவளவு $V = \frac{\text{இணிவு}}{\text{அடர் த்தி}}$

$$= \frac{100}{1.87} = 53.47 \text{ cm}^3$$
 $\mathbf{E}_{\text{H}_2\text{SO}_4} = \frac{^{\text{n}}_{\text{H}_2\text{SO}_4}}{53.47} \times 1000 = 18.7 \text{ mol dm}^{-3}$

உதாரணப் : 2.4

25 g, NH₃ ஐக் கொண்ட 100 g நீர்க்கரைசலின் அடர்த்தி 0·98 gcm⁻³ இக்கரைச**லின் என்ன கனவள**வை ஒரு வீற்றருக்கு ஐதாக்கிஞல் lM, NH₃ நீர்**க்கரைச**ல் பெறப்படும். (N = 14; H = 1)

விடை≀

1 M NH₃ கரைசல் 17 g NH₃ஐ ஒரு வீற்றர் கரைசலில் கொண் டிருக்கும்.

$$100 \ {
m g NH}_3$$
 கரைசலின் கணவளவு $= \frac{{
m gasta}}{3\mu_{\rm c}\hat{r}\,\hat{
m g}\,\hat{
m g}}$
 $= \frac{100}{0.98} = 102.04\ {
m cm}^3$
 $^{\rm N}{
m NH}_3 = \frac{25}{17}\ {
m mol}$
 $(100\ {
m g }\,{
m sor}\,{
m pedia})$

ு ஃ 1 mol NH₃ ஐக்கொண்ட கரைசலின் களவளவு

$$= \frac{102.04 \times 1}{25 / 17}$$
$$= 69.38 \text{ cm}^3$$

அதாவது 69·38 cm³ NH₃ கரைசல் எடுக்கப்பட்டு காய்ச்**சி வடித்த நீர்** சேர்த்து ஒரு லீற்றருக்கு ஐதாக்கப்படும்.

உதுரணம்: 2.5

 25° C இல் $1 M H_2 SO_4$ கரைசலில் உள்ள H^+ அயன் செறிவு $1 \cdot 8 \text{ mel dm}^{-3}$ ஆகும். இக்கரைசலில் உள்ள SO_4 , HSO_4 அயன் செறிவு என்ன?

விடை!

$$H_2SO_4 \rightarrow H^+ + HSO_4^- \dots (1)$$

$$HSO_{\bullet} \rightleftharpoons H^{+} + SO_{\bullet} \dots (2)$$

H₂SO₄ இன் முதலாம் பிரிகை முற்றுவது. இரண்டாம் பிரிகை மீளத்தக்கது.

முதலா**ம் பிரிகை**யின்போது விளேவாக்கப்படும் [H+]

$$[H^{+}] = [HSO_{4}] = [H_{2}SO_{4}] = 1 \text{ mol dm}^{-3}$$
 கரைசலில் உள்ள மொத்த $[H^{+}] = 1.8 \text{ mol dm}^{-3}$

இர**ண்டா**ம் பிரிகையோல் விளேவாக்கப்படும் $\left[\stackrel{+}{H} \right] = \left[\stackrel{-}{SO_4} \right]$

் கரைசேலில் உள்ள [HSO4-] = 1ம் பிரிகையில் உண்டொண [HSO4-] — 2ம் பிரிகையில் உண்டான [SO4--]
= 1 — 0.8 = 0.2 mol dm-3]

NB,

பயிற்**கி விளுக்**கள் இறுதியில் த**ரப்பட்டுள்ள**ன.

பீசமானம்

இரசாயனத் தாக்கத்திலீடுபடும் தூக்கெளின் மூல் எண்ணிக்கை விகிதம் பீசமானம் எனப்படும்.

அதாவது ஒரு இரசாயனத் தாக்கத்தைக் குறிக்கும் ஒரு சமட படுத்திய சமன்பாட்டில் தாக்கிகளின் மூலக் கூறுகளுக்கு அல்லது அயன் களுக்கு அல்லது அணுக்களுக்கு கொடுக்கப்படும் மூல் எண்ணிக்கை வீகிதம் பீசமானம் எனப்படும்.

உ - ம்:

- (a) Na₂CO₃+ 2 HCl \longrightarrow 2 NaCl \oplus CO₂ + H₂O \therefore Geometric $n_{Na_2CO_3}: n_{HCl} = 1:2$
- (b) $Mg + S \longrightarrow MgS$ $\therefore \mathcal{L}^{g} = \mathbf{n}_{mg} : \mathbf{n}_{S} = 1 ; 1$
- (c) $Ag^+ \oplus Cl^- \longrightarrow AgCl$ $\therefore \mathscr{C}_{\mathcal{F}} \omega \cap \mathfrak{S} \omega \cap \mathfrak{N}_{Ag^+} : n_{Cl^-} = 1 : 1$

பீசமானத்தின் உபயோகம்

தாக்க அளவுகளே கணிப்பதற்கு பீசமான அளவிடுகள் அவசியமானவை அதாவது ஒரு தாக்கத்தில் உண்டான விளேவுகளின் அளவு, இவ்விளேவு களே ஆக்கப் பயன்படுத்திய தாக்கிகளின் அளவு என்பவற்றைக் கணிப் பதற்கு பீசமானம் பற்றிய ஆய்வு அவசியமானது. இதனுல் உற்பத்தி களும் சிக்கனமாக்கப்படும்.

உதாரணம்: 2.6

 $2\mathrm{M}$,50 cm 3 , N \mathbf{a}_3 \mathbf{PO}_4 கரைசலுடன், முற்றுகத் தாக்க $1.5\mathrm{M}$, $100\mathrm{cm}^3$ Pb (NO_3) $_2$ கரைசல் தேவைப்பட்டது.

- (1) தாக்கமடைந்த
 - (a) $Pb(NO_3)_2$
- (b) Na₃PO₄ மூஸ்கள் எத்**த**ண?
- (ii) தாக்க பீசமானம் என்ன? சமன்பாடு என்ன?

ഷ്ബെ

(1) (2)
$$n_{Pb(NO_3)_2} = \frac{1.5}{1000} \times 100 = 0.15 \text{ mol}$$

(b)
$$n_{\text{Na}_3\text{PO}_4} = \frac{2}{1000} \times 50 = 0.10 \text{ mol}$$

(%) தாக்க பீசமானம்

$$\frac{^{n} \text{Na}_{3} \text{PO}_{4}}{^{n} \text{Pb}(\text{NO}_{3})_{2}} = \frac{0 \cdot 10}{0 \cdot 15} = \frac{1}{1 \cdot 5} = \frac{2}{3}$$

 $2 \text{ Na}_3 \text{PO}_4 + 3 \text{Pb}(\text{NO}_3)_2 \rightarrow \text{Pb}_3(\text{PO}_4)_2 \downarrow + 6 \text{NaNO}_3$

உதாரணம்: 2.7

 $0.1~\mathrm{M}$, $500~\mathrm{cm}^3~\mathrm{BaCl_2}~0.5~\mathrm{M}$, $400~\mathrm{cm}^3~\mathrm{AgNO_3}$ என்பவற்றின் நீர்க்கரைசல்கள் கலக்கப்பட்டன.

- (1) சேர்க்கப்பட்ட BaCl₂ மூல்கள் எத்தனே?
- (2) சேர்க்கப்பட்ட AgNO3 மூல்கள் எத்தனே?
- (3) இத் தாக்கத்தின் பீசமானம் என்ன?
- 4) எத்தாக்கி மிகையாக உண்டு?
- (5) உச்ச நிறையளவு AgCl ஐப் பெறுவதற்கு இக் கரைசல்களே எவ் வாறு சிக்கனமாகக் கலப்பீர்?

almı:

(1)
$${}^{n}BaCl_{2} = \frac{0.1}{1000} \times 500 = 0.05 \text{ mol}$$

(2)
$$^{n}A_{gNO_{3}} = \frac{0.5}{1000} \times 400 = 0.2 \text{ mol}$$

 $BaCl_2 + 2 Ag NO_3 \longrightarrow 2 AgCl + Ba(NO_3)_2$

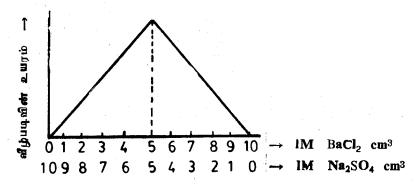
- (8) : பீசமானம் $^{n}BaCl_{2}: ^{n}AgNO_{3}=1:2$
- (4) l mol BaCl $_2$, 2 மூல் AgNO $_3$ ஐத் தாக்கும். $0\cdot05$ mol BaCl $_2$ $0\cdot05\times2=0\cdot1$ mol AgNO $_3$ ஐத் தாக்கும். $0\cdot2$ mol AgNO $_3$ சேர்க் கப்பட்டுள்ளது எனவே AgNO $_3$ மிகையாக உண்டு. பீசமான அளவில் தாக்கிகள் இருக்கும் போது உச்ச நிறை அளவு AgCl பெறப்படும்.
- ். $0.1~{
 m mol}~{
 m AgNO}_3$ ஐக் கொண்ட ${
 m AgNO}_3~{
 m s}$ கரைசலின் கணவளவு $=rac{400}{0\cdot 2}~{
 m x}~0\cdot 1~=~200~{
 m cm}^3$

். $0^{\circ}1 \text{ M} 500 \text{ cm}^3 \text{ BaCl}_2$ கரைசல், $0^{\circ}5 \text{ M}$, $200 \text{ cm}^3 \text{ AgNO}_3$ கரைசலு கலக்கப்படும்.

பீசமானத்தைத் துணியும் முறை

தொடர் மாறல் முறை.

- (1) ஒரு தாக்கத்தின் பீசமானத்தை துணிவதற்கான முறைகளில் தொடர் மாறல் முறையும் ஒன்றுகும்.
- (2) இங்கு தாக்கிகளின் கனவளவுகள் மாற்றப்பட்டு விளேவுகளின் அளவுகள் தணியப்படும். அதாவது வெவ்வேறு தாக்கிகளின் சம செறிவான கரைசல்கள் ஒன்ரேடு! ஒன்று கலக்கப்பட்டு விளேவுகளின் அளவுகள் துணியப்படும்.
- (3) விஃாபொருட்களின் அளவு உச்சமாக இருக்கும் போது, தாக்கிகள் பீசமான விகிதத்தில் தாக்கமடைந்திருக்கும். எனவே தாக்கத்தின் போது உண்டாகும்.
- வீழ்படிவுகளின் அளவு
- (b) "வெப்பநில் **மாந்**றம்'' என்பவற்றை அளந்**து உ**ச்சவி**ளவு தோன்** றும் போது தாக்கிகளின் விகிதம்துணியப்படும். இது பீசமா**னம்** ஆகும்.
- N:B பொதுவாகச் சமை இசறிவுள்ள கரைசல்கள் பயன்படுத்தப்படும். செறிவுகள் சமஞக இருக்கும் போது கனவளவு விகிதங்கள், மூல் விகிதங்களுக்குச் சமஞக இருக்கும்.


வீழ்படிவுமான முறை

வீழ்படிவு தோன்றும் தாக்கம் ஒன்றின் பீசமானத்தைத் துணிதல் $\mathbf{e}+\mathbf{i}\mathbf{e}$: $\mathrm{BaCi_2}\ (\mathrm{aq}) + \mathrm{Na_2SO_4}\ (\mathrm{aq}) \to \mathrm{BaSO_4}(\mathrm{s}) + 2 \mathrm{NaCl}\ (\mathrm{aq})$ பரிசோதன்.

- (1) 1 M BaCl₂, IM Na₂SO₄ என்பவற்றின் நியம் நீரிக்கரைசெல்கள் தயாரிக்கப்படும்.
- (2) இக்கரைசல்கள் ஒரே மாதிரியான, ஒரே விட்டமுள்ள, சுத்தமான உலர்ந்த சோதணக் குழாய்களிற் கீழ் காட்டப்பட்டிருக்கும் அளவு களில் கலக்கப்படும். (மொத்தக் கனவளவுகள் சமன்)

1 M, BaCl ₂ (cm) ³	1	2	3	4	5	6	7	8	9
IM, Na ₂ SO ₄ (cm) ³	9	8	7	6	5	4	3	2	1

- (8) உண்டாகும் வீழ்படிவுகள் குறைந்தது 1 அல்லது 2 நாடீகளுக்கு ஒரே மாதிரியான சூழலில் அடைய விடப்படும்.
- (4) வீழ்படிவுகள் அடைந்து மா*ரு* உயரத்தை அடைந்**த பின் அவற்** றின் உயரங்கள் செம்மையாக (mm அலகுகளில்) அளவிடப்படும்.
- (5) பின்னர் வீழ்படிவின் உயரங்கள் கரைசல்களின் கனவளவுகளுக்கு எதிராக வரைடாக்கப்படும்.

(6) வரைபில் இருந்து உச்ச வீழ்படி வாக்கத்தின் போது கரைசல்களின் கனவளவு விகிதங்கள் அளவிடப்படும். கரைசல்களின் செறிவுகள் சமனுனதால் உச்ச வீழ்படிவாக்கத்தின் போதுள்ள கரைசல்களின் கனைவளவு விகிதம், மூல் விகிதத்துக்கும் சமனுகும். அதாவது பீசமானமாக இருக்கும். ஆகவே தாக்கமடைந்த மூல் விகிதம்.

$$\frac{^{\mathrm{n}}\mathrm{BaCl_{2}}}{^{\mathrm{n}}\mathrm{Na_{2}SO_{4}}} = \frac{^{\mathrm{V}}\mathrm{B\bullet Cl_{2}}}{^{\mathrm{V}}\mathrm{Na_{2}SO_{4}}} = \frac{5}{5} = \frac{1}{1}$$

முக்கிய செய்முறைகள்

- (1) பயன்படுத்தும் கரைசல்களின் செறிவுகள் மிகத் திருத்தமாக இருக்க வேண்டும். அவற்றின் செறிவுகள் உறுதிப்படுத்தப்பட வேண்டும்.
- (2) கரைசல்களின் கனவளவுகளே செம்மையாக அளப்பதற்கு அள**வி** பயன்படுத்தப்படும்.
- (3) வீழ்படிவுகள் மா*ரு* உயரத்தை அடைந்துள்**ளன என்பது உறுதிப்** படுத்தப்பட வேண்டும். (தொடர்ந்து 2 நாட்களுக்**கு உயரங்க**ளே அளத்தல்)
- (4) வீழ்படிவு அடைய விடப்படும் சூழலின் வெப்பநில் மாருது இருக்க வேண்டும். (ஆய்வு கூடம் குளிரூட்டப்பட்டதாக இருப்பது சிறந்தது).

- (5) வீழ்படி**வி**ன் உயரங்கள் **m**m அலகுகளில் செம்மையாக அளவிட வேண்டும்.
- (6) IM செறிவுள்ள கரைசல்களேப் பயன்படு த்துவது சிறந்தது. அப்பொழுது தான் செம்மையாக அளவிடக்கூடிய அளவு வீழ் படிவு பெறப்படும்.

குறிப்பு

எல்லா வீழ்படிவாதல் தாக்கங்களுக்கும் வீழ்படிவுகளின் உயரங்களே அளந்து பீசமானத் துணிய முடியாது. காரணம்

- (1) சில தாக்கங்களின் போது உண்டாகும் வீழ்படிவுகள் மிகையான தாக்குப் பொருட்களிற் க**ை**ரயும்.
- (a) A]3+, Zn++, Pb++, Sn++ என்பவற்றின் நீர்க்கரைசல்கள் NaOH(aq) உடன் வெண்ணிற வீழ்படிவைக் கொடுக்கும். இவ் வீழ்படிவுகள் மிகையான NaOH இல் கரையும்.

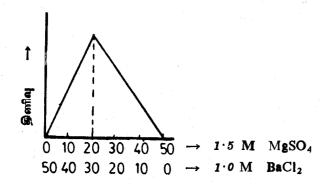
$$Al^{3+}$$
 + 8 NaOH \longrightarrow $Al(OH)_3$ + 3 Na⁺ $Al(OH)_3$ + NaOH \longrightarrow NaAlO₂ + 2H₂O

(b) Cu++, Nl++ Zn++ என்பவற்றின் நீர்க்கரைசல்கள் அமோனியா நீருடன் வீழ்படிவைக் கொடுக்கும். இவ் வீழ்படிவுகள் மிகையான அமோனியா நீரில் கரையும்.

$$Cu^{++} + 2 NH_4OH \longrightarrow Cu(OH)_2 \oplus 2 NH_4^+$$

 $Cu(OH)_2 \oplus 4 NH_4OH \longrightarrow Cu(NH_3)_4^{++} (OH)_2^{--} + 4H_2O$

(2) இல தாக்கங்களின் போது உண்டாகும் வீழ்படிவுகள் கூழ் பொருளாக இருப்பதால் கரைசலில் தொங்கல் நிஃயில் காணப் படும். அடையமாட்டாது. எனவே வீழ்படிவின் உயரம் மாருது இருக்கும். (சில சமயங்களில் கூடவாகவும் இருக்கலாம்) எனவே இது போன்ற சந்தர்ட்படிகளில் தோன்றும் வீழ்படிவுகளே வடி கட்டல் மூலம் பிரித்தெடுத்து கழுவி உலர்த்தி செம்மையாக நிறுத்து வீழ்படிவின் திணிவுகளே கரைசலின் உயரங்களுக்கெதி ராக வரைபாக்கி பீசமானம் துணியப்படலாம்.


உதாரணம்: 2:8

ஒரு மாணவன் 1.5 M MgSO₄ இன் நீர்க்கரைசஃயும் 1 M BaCl₂ நீர்க் கரைசஃயைய் பயன்படுத்தி கரைசலின் முழுக் கணவளவையும் 50 cm³ ஆக வைத்து தொடர் மாற்ற முறையினுல் பரிசோதனே ஒன்றை நிகழ்த்தினுன்.

 $MgSO_4$ (aq) + $BaCl_2$ (aq) \longrightarrow $BaSO_4$ (s) $\downarrow + MgCl_2(aq)$

- (1) ^நபறப்படும் வீழ்படிவின் திணிவுகள் கரைசல்களின் கனவளவுகளுக்கு எதிராக வரைபாக்கப்படின் எவ்வாறு மாற்றம் அடையும் என ஒரு வரைபாற் குறித்**துக்** காட்டுக.
- (2) உச்சத் தாக்கத்தின் போது விளேவாக்கப்படும் BaSO4 இன் உலர் திணிவைக் கேணிக்க. (Ba = 137, S = 32, O = 16)
- (3) உச்சத் தாக்கத்தின் போது விஃளவுக் கரைசலில் உள்ள மொத்த அயன் செறிவு என்ன.
- (4) உச்சத் தாக்கத்தின் போது தாக்கிகள் முற்ருகத் தாச்கம் அடைந் துள்ளனவா என்பதை உறுதிப்படுத்த திட்டம் ஒன்றைத் தருக.

ബിடെ;

உ**ச்சத்** தாக்கத்தின் பேர்து

$$V_{\text{BaCl}_2} = V^{\text{cm}^3}, \quad V_{\text{MgSO}_4} = (50-V)^{\text{cm}^3}$$

$$n_{\text{MgSO}_4} = \frac{1 \cdot 5 (50-V)}{1000} \quad \text{mol}$$

$$n_{\text{BaCl}_2} = \frac{1 \cdot 0 \times V}{1000} \quad \text{mel}$$

சமன்பாட்டின் படி
$$\frac{n_{\text{BaCl}_2}}{n_{\text{MgSO}_4}}$$
 $\frac{1}{1}$ $\frac{\frac{V \times 1}{1000}}{\frac{1 \cdot 5 (50 - V)}{1000}}$

 $V = 30 \text{ cm}^3$

(1) உச்சத்தாக்கத்தின் போது

$$^{n}BaSO_{4} = ^{n}BaCl_{2} = \frac{1}{1000} \times 30 = 0.03 \text{ mol}$$

 $W_{\text{BaSO}_4} = 0.03 \times 233 = 6.99 \text{ g}$

(3) ${}^{n}MgCl_{2} = {}^{n}BaCl_{2} = 0.03 \text{ moi}$ $\left[MgCl_{2}\right] = \frac{0.03}{50} \times 1000 = 0.6 \text{ moldm}^{-3}$

$$MgCl_2 \rightarrow Mg^{++} + 2 Cl^{-}$$

- ∴். அயன் செறிவு = 0·6 × 3 **=** 1·8 mol dm⁻³
- (4) உச்சத்தாக்கத்தின் போது. பெறப்பட்ட வினேவு வடிக்கப்படும். வடியின் மாதிரிகளுடன் பின்வரும் சோதணேகள் செய்யப்படும்.
 - (1) BaCl₂ சேர்த்தல் வீழ்படிவு தோன்றுது ஆகவே Mg SO₄ இல்ஃல்.
 - (2) Mg SO₄ சேர்க்க வீழ்படிவு தோன்றுது. ஆகவே BaCl₂ இல்லே ஆகவே தாக்கம் முற்றுக நிகழ்ந்துள்ளது.

உதாரணம்: 2.9

- (a) ZnSO₄ (aq), NaOH (aq) தாக்கத்தின் பீசமானனத்தைத் துணிவ தற்கு வீழ்படிவுமான முறைபி‱ப் பயன்படுத்த முடியுமா? கோரணம் தருக.
- (b) 1M ZnSO₄ (aq) உம், 1M NaOH (aq) உம் கீழ் காட்டப்பட்ட அளவுகளிற் கலக்கப்பட்டது.

A B C D E F G H I ZnSO₄ (cm³) 1 2 3 4 5 6 7 8 9 NaOH (cm³) 9 8 7 6 5 4 3 2 1

இப்பரிசோதனேயின் அவதானிப்புக்களேயும் அதற்கான காரணங் களேயும் தருக. விடை

- (a) இல்லே, காரணம் உண்டாகும் வீழ்படிவு மிகையான தாக்குப் பொருளில் (NaOH) கரையும்.
- (b) $ZnSO_4 \oplus 2 NaOH \rightarrow Zn(OH)_2 \downarrow \oplus Na_2SO_4$ உச்ச வீழ்படிவாக்ககத்தின் போது பீசமானம்

$$^{n}Z_{n}SO_{4}$$
 $^{\prime}$ $^{n}N_{a}OH$ = 1 : 3
 $Z_{n}SO_{4}$ + 4 NaOH \rightarrow Na₂ZnO₂ \rightarrow Na₂SO₄ + 2 H₂O

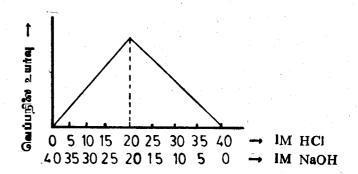
வீழ்படிவு முற்ருக் கரையும் போது பீசமானம்

$$nZnSO_4$$
: $nNaOH = 1:4$

நேரத்தல்கள்

A, B இல் வீழ்படிவு தோன்றுது. காரணம் A இல் NaOH மிகைக யாக உண்டு. B இல் 1:4 என்னும் வீகிதத்தில் இருப்பதால் முற்றுகக் கரையும்.

D இல் கூடிய வீழ்படிவு தோன்றும். காரணம் 5 cm³ ZnSO₄ 6cm³ NaOH ஐ தாக்கும். 1 cm³ ZnSO₄ மிகையாக இருக்கும். எனவே உண்டாகும் வீழ்படிவு கரையாது.


C இல் D ஐ ஒத்த தாக்கம் நிகழ்ந்தாலும் 1cm³ NaOH மிகையாக இருப்பதால் உண்டாகும் வீழ்படிவின் சிறிய பகுதி NaOH ஆல் கரைக்கப்படும். ஆகவே வீழ்படிவின் அளவு D இலும் குறையும்.

E இலிருந்து I வ**ரை** வீழ்படி**வீன் அ**ளவு குறையும் காரணம் இவ்வரிசையில் ZnSO₄ மிகையாக இருப்பதுடன் தாக்க அளவும் குறைந்து கொண்டு செல்லும்.

- (2) வெப்பமான முறை
 NaOH(aq), HCl(aq) தரக்கத்தின் பீசமானத்தைத் துணிதல்.
 NaOH (aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O
- (1) lM NaOH , lM HCl என்பவற்றின் நியமிக்கப்பட்ட நீர்க்கரைசன் கள் தயாரிக்கப்படும்.
- (2) பஞ்சால் அடைக்கப்பட்ட முகவையில் (வெப்ப காவல் இடப்பட்ட முகவை) ஒரே மாதிரியான , சுத்தமான, உலர்ந்த முகவைகள் வைக்கப்பட்டு இழ் காட்டப்பட்ட அளவுகளிற் கரைசல்கள் கலக்கப் பட்டு நன்முகக் கலக்கி உச்ச வெப்பநிலே உயர்வுகள் அளவிடப்படும்.

1 M, HCl cm ³	5	10	15	20	25	30	85
IM, NaOH cm ³	35	30 🛚	25	20	15	10	5

(3) க**ரைசல்களின் கணவளவுகளுக்கெதிராக உ**ச்ச வெப்பநி**லே** உயர்**வு கள் வரைபாக்கப்படும்.**

(4) வ**ரைபில்** இருந்து, உச்ச வெப்பநிஃல உயர்வு பெறப்படும்போது தா**க்கமடைந்த க**ரைசல்களின் கனவளவு விகிதங்கள் அள**வி**டப் படும்.

$$\frac{V_{HC1}}{V_{NaOH}} = \frac{20}{20} = \frac{1}{1}$$

(5) பயண்படுத்தப்பட்ட கரைசல்களின் செறிவுகள் சமண் ஆதலால் தாக்க கரைசல்களின் கணவளவு விகிதங்கள் மூல் விகிதங்களுக்கு சமனுகும்.

$$rac{{}^{ ext{n}} ext{HCl}}{{}^{ ext{N}} ext{AOH}}=rac{{}^{ ext{V}} ext{HCl}}{{}^{ ext{V}} ext{N} ext{AOH}}=rac{1}{1}$$
 இதுவே பீசமான விதிதமாகும்

முக்கிய செய்முறைகள்

- (1) பயன்படுத்தப்படும் HCl, NaOH கரைசல்களின் செறிவுகள் மிகவும் செம்மையாக இருக்க வேண்டும். இச் செறிவுகள் நியமிப்பு முறை களால் உறுதிப்படுத்தப்பட வேண்டும்.
- (2) கரைசல்களே அளந்து எடுப்பதற்கு அளவிகள் பயன்படுத்தப்படும்.
- (3) **கரைச**ல்கள் ஒவ்வொரு சந்நர்ப்பத்திலும் விரைவாகக் கலக்கப்பட வேண்டும்.
- (4) கரைசல்கள் நன்றுகக் கலக்கப்படவேண்டும் எல்லாச் சந்தர்ப்பத்தி லும் ஒரே மா திரியான கலக்கி, வெப்பமானி என்பன பயன்படுத்தப் படும்.

(5) வெப்ப இழப்பை குறைக்க இயன்ற அளவு பாதுகாப்பு எடுக்கப்படல் வேண்டும். வெற்றிடக் கலோரிமானியைப் பயன்படுத்துவது சிறந்தது.

உதாரணம்:2.9

X என்னும் உலோக ஐதரொட்சைபீட்டின், l M நீர்க்கரைசலின் வெவ் வேறு கனவளவுகள் 3 M H Cl இன் வெவ்வேறு கனவளவுகளுடன் கலந்து, மொத்தக் கனவளவு 40 cm³ ஆக மாருது வைத்து செய்யப் பட்ட பரிசோத2ன ஒன்றில் உச்ச வெப்பநி2்ல உயர்வு பெறப்படும்போது அமிலம், மூலம் என்பவற்றின் கனவளவுகள் முறையே' 10 cm³, 30 cm³ எனில் X இன் சூத்திரம் என்னே? X, HCl தாக்கத்தின் சமன்பாடு என்னை?

விடை

உச்**சத் தா**க்கத்**தி**ன் போ*து*

$$n_{\text{HCl}} = \frac{3 \times 10}{1000} = 0.03 \text{ mol}, n_{\text{X}} = \frac{1 \times 30}{100} = 0.03 \text{ mol}$$

தாக்க பீசமானம் $n_{HCI}: n_X = 0.03; 0.03 = 1:1$

். X இன் சூத்திரம் M—OH (M உலோகம்) MOH (aq) + HCl (ag)
$$\rightarrow$$
 MCl (aq) + H $_2$ O(l)

உதாரணம்: 3:0

0·1 M Ba(OH)₂ கரைசலின் 25 cm³ கரைசெலுக்கு சமவலுப் புள்ளிவரை 0·2 M HCl அமிலம் சேர்க்கேப்பட்டது. விஃளவுக் கரைசலில் உள்ளே Cl¯ செறிவு என்னு?

விடை

கரைசலின் கணவள
$$y = V_{\text{Ba}(\text{OH})_2} + V_{\text{HCl}} = 25 \oplus 25 = 50 \text{cm}^3$$

Ba(OH)₂ + 2HCl \rightarrow BaCl₂ + H₂O

$${}^{n}Cl^{-} = {}^{n}HCl = \frac{0.2}{1000} \times 25 = 0.005 \text{ mol}$$

$$C_{Cl^{-}} = \frac{0.005 \times 1000}{50} = 0.1 \text{ mol dm}^{3}$$

உதாரணம்: 3.0

100 ml 0·2 M MgSO₄ நீர்க்கரைசேலுக்கு 150 ml 0·15 M KOH நீர்க்கரைசல் சேர்க்கப்பட்டுள்ளது. விளேவுக்கரைசலில் உள்ளK+ "Mg++

SO₄,OH அயன் செறிவுகள் என்ன?

விடை

கலக்கப்பட்ட மூல் எண்ணிக்கைகள் முறையே ^{n}M gSO $_{4}$, ^{n}KOH என்க.

$$^{n}MgSO_{4} = \frac{0.2}{1000} \times 100 = 0.02 \text{ mol}$$

n
KOH = $\frac{0.15}{1000}$ × 150 = 0.0225 mol

$$M_gSO_4 + 2 KOH \rightarrow Mg(OH)_2 + 2 K^+ + SO_4^-$$

0.02 0.0225

கரைசேலின் மொத்தக்சேனவளவு
$$= V_{Mg}SO_4+ V_{KOH}$$

 $= 100 + 150 = 250 \text{ cm}^3$
 $= 0.25 \text{ dm}^3$

$$% [K+] = \frac{0.0225}{0.25} = 0.09 \text{ M}$$

$$% [SO_4 - -] = \frac{0.02}{0.25} = 0.08M$$

தாக்கமுளுத
$$Mg^{++}$$
 (0.02 — $\frac{0.0225)}{2}$ = 0.00875 mol

$$^{\circ} [Mg^{++}] = \frac{0.00875}{0.25} = 3.5 \times 10^{-2} M$$

OH¬ அயண் என் முற்றுக வீழ்படிவாகியிருக்கும். Mg(OH), ஒரு அரிதிற் கரையும் மின்பகு பொருள். எனவே கரைசலில் OH¬ செறிவு புறக்கணிக்கக்கூடியது. (கரைதிறன் பெருக்கம் படிக்கும்போது இச் செறிவுகள் துணியும் முறைபற்றிப் படிக்கலாம்.)

- (3) நியமிப்பு முறையினுல் பீசமானம் துணிதல்
- (1) வீழ்படிவாக்கல் நியமிப்பு
 NaCl (aq) , AgNO₃ (aq) தாக்கத்தின் பீசமானத்தைத் துணி**தல்**NaCl (aq) + AgNO₃ (aq) → AgCl (s) + NaNO₃ (aq).
- (1) 0·1 M தாய NaCl, 0·1 M தாய AgNO_g என்பேவவைற்**றி**ன் நியம நீர்க்கரைசெல்கள் தயாரிக்கப்படும்.
- (2) அளவியல் AgNO3 (aq) எடுக்கப்படும்.
- (3) NaCl கரைசலின் தெரிந்த கனவளவு V₁ (25 cm³) குழாயி ஒன்றைப் பயன்படுத்தி செம்மையாக அளந்தெடுத்து சுத்**தமான** நியமிப்புக்குடுவை ஒன்றிற்கு மாற்றப்படும்.
- (4) NaCl கரைசலுக்குள் சில துளிகள் K₂ CrO₄ (aq) காட்டியாகச் சேர்க்கப்பட்டு, நியமிப்புக் குடுவையின் ஓரங்கள் காய்ச்சி வடித்த நீரிஞல் கழுவப்ப**டு**ம்.
- (5) அளவியல் இருந்து AgNO₃ கரைசல் துளித்துளியாகச் சேர்க்கப்பட்டு NaCl கரைசனுடன் நியமிக்கப்பட்டு முடிவுப்புள்ளி பெறப்ப**டும்**.
- (6) முடிவுப்புள்ளி: வெண்ணிற வீழ்படிவு செந்நிறமாக மாறும். முற்ருன வீழ்படிவத்துக்கு தேவையான AgNO₃ (aq) இன் கண வளவை V₂ c n ³ என்க.
- (7) பயன்படுத்தப்பட்ட கரைசல்களின் செறிவுகள் சமனுதலா**ல்,** தாக்கக் கரைசல்களின் கணவளவு விகிதம், பீசமான விகி**தமாகும்**.

$$\frac{n_{\text{NaCl}}}{n_{\text{AgNO}_3}} = \frac{V_{\text{NaCl}}}{V_{\text{AgNO}_3}} = \frac{V_2}{V_1}$$

$$rac{{
m V}_2}{{
m V}_1} = rac{25}{25} = rac{1}{1}$$
 ஆக்க காணப்படும்.

முக்கிய செய்முறைகள்

- (1) பயன்படுத்தும் கரைசல்களின் செறிவுக**ள்** மிகவும் செ**ம்மையாக** இருத்தல் வேண்டும்.
- (2) நிறுப்பதற்கு இரசாயனத் தராசு பயன்படுத்தப்படும்.
- (3) பரிசோதனே கூடிய அளவு செம்மையாக இருப்பத**ற்கு 0·1 மூலர்** அல்லது 0·01 மூலர் கரைச**ல்க**ளேப் பயன்படுத்**துவது சிறந்தது.**

- (4) அளவி, பயன்படுக்கும் AgNO₃ கரைசலால் சிலா**விக் கழுவிய** பின்னரே AgNO_{3 க}ைரசல் அளகியில் நிரப்பப்படும்.
- (5) அளவியில் உள்ள கரைசலில் வளிக்குமிழ்கள் சிறைப்படுத்தப்பட வில்லே என்பது உறுதியாக்கப்பட வேண்டும். பின் அளவியை திறந்து AgNO₃ கரைசலின் மட்டம் பூச்சியக் குறியில் இருக்**கத் தக்க** தாக செப்பமாக்கப்படும்.
- (6) NaCl கரைசலே செம்மையாக அள**ந்து** எடுக்க குழாயி பயன்படுத் தப்படும். குழாயியு<mark>ம் பயன்படுத்</mark>தப்படும். NaCl கரைசலால் சிலா விக்கழுவப்படும்.
- (7) நியமிப்பின் போது, குடுவை நன்றுகக் கலக்கப்பட்டு நியமிப்புக் குடுவையின் ஒரங்கள் காய்ச்சி வடித்த நீரினல் கழுவப்படும்.
- (8) அளவி அளவீடுகள் பெறப்படும் போது கரைசலின் மட்டம், கண் மட்டத்தில் இருக்கத்தக்கதாக வைத்து அளவீடுகள் பெறப்படும்.
- (9) நிய**மி**ப்பு **இரண்**டு அல்லது மூன்று முறை செய்யப்பட்டு செம்மை உறுதிப்படுத்தப்படும்.

உதூரணம்: 3:1

10 g NaCl மாதிரியானது நீரில் கரைத்து $1\cdot 2\,\mathrm{dm}^3$ கரைசல் பெறப்பட்டது. இக்கரைசலின் $25\,\mathrm{cm}^3$ ஐமுற்ருக வீழ்படிவாக்க $20\,\mathrm{cm}^3\,0\cdot 1\,\mathrm{M}$ AgNO3 கரைசல் தேவைப்பட்டது. இந்நிய மிப்பின் காட்டியாக $\mathrm{K}_2\mathrm{CrO}_4$ பயன்படு தைப்பட்டது. (Na = 23, Cl = $35\cdot 5$)

- (1) முடிவுப் புள்ளியில் நோக்கல் என்ன?
- (2) கரைசலில் NaCl இன் செறிவு யாகு?
- (3) மாதிரியில் NaCl இன் தூய்மை வீதம் என்ன? விடை:
- (1) வெண்ணிறை வீழ்படிவு (AgCI), செந்நிறமாக மாறும் (Ag2CrO4)

(2)
$$^{n}NaCl = ^{n}AgNO_{3} = \frac{0.1 \times 20}{1000} = 0.002 \text{ mol}$$

$$CNaCl = \frac{0.002}{25} \times 1000 = 0.08 \text{ mol dm}^{-3}$$

(3) 1·2 dm³ கரைசெலில் உள்ள NaCl இன் தெணிவை WNaCl என்க.

$$W_{N *C1} = 0.08 \times 1.2 \times 58.5 = 5.616g$$
 \therefore தாய்மை வீதம் = $\frac{5.616}{10} \times 100 = 56.16\%$

நியமிப்பு முறையினுல் அமில மூலத் தாக்கங்களின் பீசமானத்தைத் துணிதல்

அ**மில மூல** நியமிப்பக்களின் முடிவை**ப்** புள்ளிக*ீள (சமவலுப்* புள்ளி) அறிவதற்கு கொட்டிகள் பெயன்பெடுத்தப்பிடும்.

சில காட்டிகளும் அவற்றின் நிறங்களும்

காட்டி	ாட்டி கார ஊடாக நிறம்		
மெதைல் செம்மஞ்சள்	மஞ்சள்	இவப்பு	
பீஞேல்தலீன்	செவப்பு	நிறமற்ற து	
பாசிச்சாயம்	நீலம்	செப்பு	

நியபிப்பு வகையும் / காட்டியும்

ரியமிப்பு	காட்டி			
வன்கார / வன்னமிலம்	மேற்கூறிய எல்லாம்			
வ ன் னமில / மென்காரம் மெதைல் செம்மஞ்சள்				
வன்கார / மென்னமிலம்	பினேல்தலீன்			
மென்னமில / மென்காரம்	காட்டிகேளி ல் ஃ (நியமிக்குமுடியா <i>து</i>)			

மேற் கூறியவற்றை மணதிற் பதிக்கவும். இது பற்றிய விளக்கங்கள் பௌதிக இரசாயனத்தில் கருதப்படும். NaOH / HCl թնատնու

 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$ எனும் தாக்கத்தின் சேமானத்தைத் துணிதல்

- (≀) 0·1 M நியம NaOH, 0·1 M நியம HCl என்பை வற்றின் நீர்க்கரைசல்கள் தயாரிக்கப்படும்.
- (2) HCl அமிலம் அளவியில் எடுக்கப்படும்.
- (3) NaOII கரைசலின் தெரிந்த கனவளவு (V₁ == 25 cm³) குழாயினயப் பயன்படுக்கி செம்மையாக அளந்தெடுத்து, சுத்தமான நியமிப்புக் குடுவை ஒன்றிற்கு மாற்றப்படும்.
- (4) NaOH கரைசலுக்கு சில துளி காட்டி (மெகைதல் செம்மஞ்சள்) சேர்த்து குடுவையி**ன் ஓரங்கள்** காய்ச்சிவடித்த நீரினுல்கழுவப்படும்.
- (5) அளவியில் இருந்து HCl அமிலக் கரைசல் துளித் துளியாக , காரக்கரைசலுக்குச் சேர்க்கப்பட்டு சமவலுப்புள்ளி பெறப்படும். நடுநி‰ யாக்கத்துக்கு தேவைப்பட்ட HCl இன் கனவளவை V₂ என்க.
- (6) முடிவுப்பு**ள்**ளி: மஞ்சள் நிறம் மென் சிவ**ப்பாக** மாறும்.
- (7) பயன்படுத்தப்பட்ட கரைசல்களின் செறிவுகள் சமன் ஆதலால் கரைசல்கள் தூக்கமடைந்த கனவளவு விகிதம் தாக்கத்தின் பீசமானம் ஆகும்.

$$\frac{^{n}HCl}{^{n}N_{1}OH} = \frac{^{V}HCl}{^{V}NaOH} = \frac{^{V}2}{^{V}1}$$

முக்கி**ய செய்**முறைகள்

- (1) NaOH, HCl எ ்பவற்றின் நியமச் செறிவுகள் நியமிப்பு முறை களிஞல் உறுதிப்படுத்தப்படும்.
- (2) நிறுப்பதற்கு இரசாயனத்தராசு பயன்படுத்தப்படும்.
- (3) அளவி பயன்படுத்தும் HCl அமிலத்தால் சிலாவிக் கழுவப்படும்.
- (4) குழாயி பயன்படுத்தும் NaOH கரைசலால் கழுவப்படும்.
- (5) அளவியில் வளிக்குமிழ்கள் இல்ல என்பது உறுதிப்படுத்**தப்பட** வேண்டும்,
- (6) நியமிப்பின் போதும், முடிவுப்புள்ளி பெறப்படும் போதும் கரைசெல் நன்ருகக் கலக்கப்பட்டு குடுவையின் ஒரங்கள் காய்ச்சி வடித்த நீரிஞல் கழுவப்படும்.
- (7) அளவியின் அளவீடுகள் பெறப்படும் போது கரைசலின் மட்டம் கண் மேட்டத்தில் இருக்கத்தக்கதாக வைத்து அளவிடைப்படும்.
- (8) நியமிப்பு குறைந்தது 2 அல்லது 3 தடவைகள் செய்யப்பட்டு செம்மை உறுதிப்படுத்தப்படும்.

Na₂CO₃ , HCI தாக்கத்தின் பீசமானத்தைத் துணித**ல்**

 $Na_2CO_3 + 2HCl \rightarrow 2 NaCl + CO_2 + H_2O$

- (1) 0·1 M , NaCO₃ , 0·1 M HCl என்பவற்றின் நியம நீர்க் கரைசல் கள் தயாரிக்கப்படும்.
- (2) அளவியில் HCl அமிலம் எடுக்கப்படும்.
- (3) குழாயி ஒன்றைப் பயன்படுத்தி தெரிந்த கனவளவு (V₁ = 20cm³) Na₂CO₃ செம்மையாக அளந்து எடுக்கப்பட்டு, சுத்தமான நியமிப் புக்கு நிவை ஒன்றுக்கு மாற்றப்படும்.
- (4) №₂CO₃ கரைசலுக்குள் சில துளி மெதைல் செம்மஞ்**சள் காட்**டி சேர்த்து, குழாயின் ஓரங்கள் காய்ச்சி வடித்த நீரிஞல் கழுவப்படும்.
- (5) அளவியில் இருந்து HCl அமிலம் Na₂CO₃ கரைசெலுக்குத் துளித்**தா**ளி யாகச் சேர்க்கப்பட்டு, நியமித்து முடிவுப்பு**ள்ளி** பெறப்படும்.
- (6) முடிவுப்புள்ளி:— மஞ்சள் நிறம் மென் சிவப்பாக மாறும். நடுநிலே யாக்கத்துக்கு தேவைப்பட்ட HCl அமிலக் கரைசலின் கனவளவை $V_2 \, \mathrm{cm}^3$ என்க.
- (7) பயன்படுத்தப்பட்ட கரைசல்களின் செறிவுகள் சமன் ஆதலால் தாக்கக் கரைசல்களின் கனவளவு விகிதம், பீசமான விடிதம் ஆகும்.

$$\frac{^{\mathrm{n}}\mathrm{HCl}}{^{\mathrm{n}}\mathrm{Na_{2}CO_{3}}} = \frac{^{\mathrm{V}\mathrm{HCl}}}{^{\mathrm{V}}\mathrm{Na_{2}CO_{3}}} = \frac{^{\mathrm{V}_{2}}}{^{\mathrm{V}_{1}}} = \frac{^{40}}{^{20}} = \frac{^{2}}{^{1}} \quad \text{25.6}$$

காணப்படும்.

முக்கிய செய்ழுறைகள்

- (1) Na₂CO₃, HCl கரைசெல்களின் செறிவுகளின் செர்மை உறுதிப்படுத்த வேண்டும்.
- (2) நிறுப்பதற்கு இரசாயனத் தராசு பயன்படுத்த வேண்டும்.
- (3) அளவி HCl அமிலத்தால் கழுவப்பட வேண் நம்
- (4) குழாயி Na₂CO₃ கரைசலால் கழுவப்பட வேண்டும்.
- (5 அளவியில் வளிக்குமிழ்கள் இல்லே என்பது உறுதிப்படுத்தப்பட வேண்டும்.
- (6) நியமிப்பின் போது, கரைசல்கள் நன்று ¤க் கலக்கப்பட்டு, குடுவை யின் ஓரங்கள் காய்ச்சி நீரிறுல் கழுவப்பட வேண்டும்.
- (⁷) அளவி அள்ளிடு பெறப்படும் போது கரைசலின் மட்டம் கண் மட்டத்தில் இருக்**கத்த**க்கதாக வைத் து அளவிடப்பட வேண்டும்.
- (8) நிய**டி**ப்பு குறைந்**தது 2, 3 த**டவைகள் செ**ய்து** செம்மை உறுதிப் படுத்தப்படவேண்டும்.
- N.B. (1) Na₂CO₃ , HCl தாக்கம் முற்ரு * நடுநிலேயாக்கப்படும் போது மெதையில் செம்மஞ்சள் காட்டி பயன்படுத்தப்பட வேண்டும் என் பதை மனதிற் பதிக்கவும்.
 - (2) இந்நியமிப்பில் பினேன்த்தலின் காட்டியாகப் பயன்படுத்தப் படின் Na₂CO₃ இன் முதலாம் படி நடுநிலையாக்கம் மட்டும் நிகழ்ந் திருக்கும். அதாவது Na₂CO₃ , NaHCO₃ ஆக மாற்றப்படும்.

(a) முதலாம் படி நடுநிலேயாக்கத்தில் பீனேர்த்தவீன் காட்டி நிறம் மாறும். ஆகவே பினேல்த்தலீன் காட்டியாக இருக்கும்போது Na₂CO₃, HCl தாக்கத்தின் பீசமானம்

$$^{n}Na_{2}CO_{3}$$
 i $^{n}HC_{1} = 1:1$ ஆகும்.

(b) முற்றுன நடுநிஃலயாக்கத்தின் போது மெதையில் செம்மஞ்சள் காட்டியாக இருக்கும்போது இத் தாக்கத்தின் பீசமானம்

$$^{n}Na_{2}CO_{3}$$
 i ^{n}HCl = 1 : 2 $_{2}$ $_{3}$ $_{5}$ $_{0}$.

உதாரணம்: 3⋅2

Na₂CO₃ , NaHCO₃ என்பவற்றைக் கொண்ட 50 cm³ கரைசீல பிஞேல்த்தலீன் காட்டி கொண்டு நியமித்த போது 0·2 M, 2⁵ cm³ HCl தேவைப்பட்டது. அதே கரைசெலின் 50 cm³ மெதமிற் செம்மஞ்சள் காட்டியாகப் பயன்படுத்தி நியமித்த போது 0·4 m , 31·2⁵ cm³ HCl தேவைப்பட்டது. கரைசெலில் உள்ள Na₂CO₃், NaHCO₃ என்பவற்றின் செறிவுகீளக் கணிக்க.

விடை

பி ே இைத்தலீன் காட்டியாக இருக்கும் போது Na₂CO₃ , NaHCO ₃ ஆக மாழ்**றப்**படும். (அதாவது Na₂CO₃ இன் அரைவாசி அளவு நடுநிலே யாக்கப்படும்)

் 50 cm³ கணரசலில் உள்ள Na₂C∂₃ ஐ முற்றுக நடுநிஃயாக்கத் தேவையான 0·2 M HCl இன் கணவளவு = 25×2 = 50 cm³

:
$$n_{HCl} = \frac{0.2}{1000} \times 50 = 0.01 \text{ mol}$$

:
$${}^{n}Na_{2}CO_{3} = {}^{n}\frac{HCl}{2} = {}^{0.01} = 0.005 \text{ mol}.$$

$$C_{\text{Na}_2}CO_3 = \frac{0.005 \times 1000}{50} = 0.1 \text{ mol dm}^{-3}$$

மெதையிற் செப் மஞ்சள் காட்டியாக இருக்கும் போது Na₂CO₃'N₂HCO₃ இரண்டும் முற்*ருக* நடுநிலேயாக்கப்படும்.

50 cm³ கரைசெலில் உள்ள Na2CO3, NaHCO3, என்பவற்றை முற்றுக நடுநிஃ யாச்கத் தேவையான 0 4 M HCl இன் கனவளவு = \$1.25 cm³ 0.4 M HCl 31.25 cm³ = 0.3 M HCl இன் 62.5 cm³

் 50 cm³ கரைசலில் உள்ள NaHC()₃ உடன் தாக்கமடையத் தேவையான 0·2 M HCl இன் கனவளவு = 62·5 — 50

:
$$^{n}HC1 = \frac{0.2 \times 12.5}{1000} = 0.0325 \text{ mol}$$

n
NaHCO₃ = n HCl = $^{0.0025}$ mol

$$C_{\text{NaHCO}_3} = \frac{0.0025}{50} \times 1000 = 0.05 \text{ moldm}^{-3}$$

உதாரணம்: 3.3

1 M செறிவுடையை KOH கரைசெல் ஒன்று ஆய்வு கூடத்தில் தயாரிக்கப் பட்டு வெளியில் பிடைப்பட்ட போது , வளியில் உள்ள CO2 ஐ உறிஞ்சவை தால் ஒரு பகுதி K_2CO_3 ஆகமாற்றப்பட்டுள்ளது.

- (a) இக்கரைசலின் 25 cm³ பினேல்த்தேலீன் காட்டி முன்னிஃ ையில் lM, 15 Cm³ HCl ஆல் நடுநிஃயாக்கப்பட்டது எனில் கரைசெலில் உள்ள OH- அயன்களின் செறிவு என்ன?
- (b) மெதயிற் செம்மஞ்சள் காட்டி முன்னிஃ **யி**ல் மேல் நிய**மிப்பு செய்** யப்பட்டிருப்பின் 25 cm³ கரைசஃ நடுநிஃயாக்**க என்ன** கணவளவு IM , HCl அமிலம் தேவைப்படும்.

19
 mL; 2 KOH + CO₂ \longrightarrow K₂CO₃ + H₂O

ஆரம்பக் கரைசலில் n_{OH}- = n mol என்க.

$$n = \frac{1}{1000} \times 25 = 0.025 \text{ mol} - (1)$$

K₂CO₃ ஆக மாற்றப்பட்ட OH- அயன்களே x mol என்க. ஆகவே எஞ்சிய OH- = n — x mol ஆகும்.

CO₂ ஐ உறிஞ்சிய பின் கரைசல் (n – x) மூல் OH – அயன்கஃள யு**ம்** x மூல் K₂CO₃ ஐயும் கொண்டுள்ளது.

பினேல்த்தலீன் காட்டியாக இருக்கும் போது தாக்கத்துக்குத் தேவை யான HCl மூல்கள்

KOH sig
$$(n-x)$$
 mol , K_2CO_3 sig $\frac{x}{2}$ mol

நியமிப்பின் போது தேவைப்பட்ட H+ மூல்கள் =
$$\frac{1}{1000} imes 15$$
 = 0 015 mel

$$n-x + \frac{x}{2} = 0.015$$

$$n - \frac{x}{2} = 0.015$$
 Quies $n = 0.025$

$$\therefore 0.025 - \frac{x}{2} = 0.015$$

$$x = 0.02 \text{ mol}$$

். கரைசலில் எஞ்சியுள்ள OH- = (**n—**x) mol

$$\mathbf{n} - \mathbf{x} = 0.025 - 0.02$$
$$= 0.005 \text{ mol}$$

$$\therefore COH \cdot = \frac{0.005 \times 1000}{25} = 0.2 \text{ moldm}^{-3}$$

(b) CO_2 ஐ உறிஞ்சிய பின் கரைசல் $0\cdot005 \mod KOH$ ஐயும் $\frac{0\cdot02}{2} = 0.01 \mod K_2CO_3$ ஐயும் கொண்டிருக்கும்.

மெதைற் செம்மஞ்சள் காட்டியாக இருக்கும் போது தாக்க அளவு கள் : பீசமானப்படி

$$KOH + HCI \longrightarrow KCI + H_2O$$

mol 0.005 0.005

 $K_2CO_3 + 2HCl \longrightarrow 2KCl + CO_2 + H_2O$ mol $0.01 \quad 0.02$

். தேவையான H+ மூல்கள் = 0.005 + 0.02 = 0.025 mol

் 1 M HCl இன் 25 c m³ தேவைப்படும்.

குறிப்பு !

² KOH + CO₂
$$\longrightarrow$$
 K₂CO₃ + H₂O(1)

$$KOH + HCI \longrightarrow KCI + H_2O \qquad (2)$$

$$K_2CO_3 + 2HCI \longrightarrow 2HCI + CO_2 + H_2O \dots (3)$$

சமன்பாடு (1), (१), (3) என்பெவற்றில் பீசமானங்களின்படி

2 mol KOH → 1 mol K₂CO₃ ஐக் கொடுக்கும்.

1 mol KOH → 1 mol HCl ஐ தாக்கும்.

1 mol K₂CO₃ - க mol HCl ஐத் தாக்கும்.

ஆகவே மெதயிற் செம்மஞ்சள் காட்டியாக இருக்கும்போது, CO₂ ஜ உறிஞ்சிஞல் என்ன, உறிஞ்சாது இருந்தால் என்ன தேவைட்படும் HCl இன் அளவுகள் சமஞகும். தொடக்கக் கரைச**ீ**லத் தாக்கத் தேவை யான HCl மூல்கள்

n
HCl = n KOH = $\frac{1 \times 2^{5}}{1000}$ = 0.025 mol

..
$$V_{HCl} = \frac{1000 \times 0.025}{1} = 25 \text{ cm}^3$$

் 1 M HCl இல் 25 cm³ தேவைப்படும்.

சுண்ணும்புக் கல்லின் தூய்மை வீதத்தைத் துணிதல்

முறை I உல**ஈமு**றை

$$\begin{array}{c} \text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \\ 100 & 44g \end{array}$$

தாக்க பீசமானப்படி 300g CaCO₃ முற்றுகப் பிரிகை அடைந்து 44g CO₂ ஐக்கொடுக்கும்.

- (1) உலர்ந்த மாதிரியின் தெரிந்த நிறை செ**ம்மை**யாக நி**றுத்து எ**டுத் தல் (**2**g)
- (2) மாருத் திணிவு வரும் வரை வெப்பமாக்கல்.
- (3) மீதியைக் குளிரவிட்டு செம்மையாக நிறுத்து எடுத்தல் (bg)

ழுறை II நிய**மி**ப்பு முறை

- (1) உலர்ந்த **மாதி**ரியி**ன் தெரிந்த நிறையை நியமிப்புக் குடுவையில்** செம்மையாக நி**று**த்து எடுத்தல் (xg)
- (2) தெரிந்த கனவளவு மிகையான நியம் HCl சேர்த்தல். (கனவளவு V₁cm³ செறிவு M₁ என்க.)
- (3) வெப்பமாக்கி CO₂ ஐ முற்ருக அகற்றி குளிர விடுதல்.
- 4) விளேவுக்கு பினேல்த்தலீன் காட்டி சேர்த்த நியம NaOH உடன் வனுப்பார்த்தல். தேவைப்பட்ட NaOH இன் கணவளவை V₂ cm³ என்க, மூலர் செ**றிவை** M₂ என்க

சேர்க்கப்பட்ட
$$HCl = \frac{M_1V_1}{1000}$$
 mel

எஞ்சிய HCl = தேவைப்பட்ட NaOH =
$$\frac{M_2V_2}{1000}$$
 mol

.. தாக்கமடைந்த
$$HCl = \frac{M_1V_1}{1000} - \frac{M_2V_2}{1000}$$

$$= \frac{1}{1000} \left(M_1V_1 - M_2V_2 \right) \text{ mel}$$
 $CaCO_3 \div 2 HCl \rightarrow CaCl_2 + CO_2 + H_2O$

தாக்க பீசமானப்படி

$${}^{n}CaCO_{3} = \frac{{}^{n}HCl}{2} = \frac{1}{1000} \left(M_{1}V_{1} - M_{2}V_{2}\right) \times \frac{1}{2} mcl$$

$$W_{CaCO_3} = \frac{1}{1000} \times \frac{1}{2} \left(M_1 V_1 - M_2 V_2 \right) \times 100g$$
(CaCO₃ Qub (40. 5a. $\beta = 100$)

= W ह नकंड

$$CaCO_3$$
 தாய்மைவீதம் $=\frac{W}{X} \times 100$ ஆகும்.

நியமிப்பு **முறையால் சமவ**லுத் திணிவைத் துணிதல்

Zn இன் சமவலுத் திணிவைத் துணிதல்

- (1**) தூய Zt (துருவல்) இசை தெரிந்த நிறை** செம்மையாக நிறுத்து சு**த்த**மா**ன நியமிப்புச் தடுவை** ஒன்**றில் எடுக்கப்படும் (W**g)
- (2) தெரிந்த கணவளவு (V₁ cm³) மிகையான நியம HCl (aq) (lM) சேர்க்கப்பட்டு Zn முற்ளுகக் கரைக்கப்படும்,
- (3) விளேவுக் கரைசலே நியம் NaOH (aq)(0·5 M) உடன் வலுப்பார்த்து எஞ்சிய அமிலத்தை நடுநிலேயாக்கத் தேவையான NaOH இன் கனவளவு அளவிடைப்படும். (V2 cm³)
- (4) நியமிப்புக்கான காட்டி பீனேல்த்தலின்.
- (5) சேர்க்கப்பட்ட $HCl = \frac{1 \times V_1}{1000}$ mol

எஞ்சிய HCl = தேவைப்பட்ட NaOH = $\frac{0.5 \times V_2}{1000}$ mol

தாக்கம் அடைந்த HCl =
$$\left(\frac{1 \times V_1}{1000} - \frac{0.5}{1000} \times V_2\right)$$
 mol = $\frac{1}{1000} \left(V_1 - 0.5 V_2\right)$ mol

். தாக்கமடைந்த HCl இன் திணிவு =
$$\frac{1}{1000} (V_1 - 0.5 V_2) \times 36.5 g$$

= W₁ g. என்க.

HCl இன் சமவலுத்திணிவு = மு. கூ. தி = 36.5 g \therefore 36.5 g HCl உடன் தாக்கும் Zn இன் திணிவு, Zn இன் சவமலுத்திணிவு $\left(E_{Zn}\right)$ ஆகும்.

$$\therefore E_{Z_n} = \frac{W_x \$6.5}{W_1} g$$

உதாரணம்: 3.4

0·24 **ஓ உலோகம்** Mக்கு IM. **40cm**³ HCl சேர்க்கப்பட்டு கரைச்கப்பட்ட டது. விளேவுக்கரைசலே நடுநிலேயாக்க IM NaOH கரைசலின் 20 cm³ தேவைப்பட்டது. M இன் சமவலுத்திணிவு என்ன? விடை

சேர்க்கப்பட்ட
$$HCl = \frac{1 \times 40}{1000} = 0.04$$
 mol

எஞ்சிய HCl =தேவைப்பட்ட $NaOH = \frac{1}{1000} \times 20 = 0.02$ mol

். தாக்கமடைந்த $HCl = 0.04 - 0.02 = 0.02 \, mol$ $HCl இன் சமவலுக்திணிவு <math>36.52 \, (lmol)$, உலோகத்தின் சமவலு திணிவு (E) ஐ தாக்கும்.

$$E = \frac{0.24}{0.02} \times 1 = 12 g$$

Na₂CO₃ இன் சமவலுத திணிவைத் துணிதல்

- (1) 0·1 M Na₂CO₃ 0·1 M HCl என்பவற்றின் நியமக் கரைசல்கள் தயாரிக்கப்படும்.
- (2) 0·1 M Na₂CO₃ இன் தெரிந்த கனவளவு (20 cm³) எடுக்கப்பட்டு 0·1 M நியம் HCl உடன் வலுப்பார்த்தல்.

(காட்டி மெதைல் செம்மஞ்சள்) கேவைப்பட்ட HCl இத் க

தேவைப்பட்ட HCl இன் கேனவ்ளவை V₁ என்க.

$$^{n}Ns_{2}CO_{3} = \frac{0.1 \times 20}{1000} = 0.002 \text{ mol}$$

$$n_{HCl} = \frac{0 \cdot 1 \times V_1}{1000} = X \text{ mol}$$
 erains.

HCl இன் சமவலுத்திணிவு Na₂CO₃ இன் சமவலுத்திணிையத் தாக்கும் HCl இன் சமவலுத் திணிவு — மூ. கூ. தி = 36·5 g

் 36·5 g HCl ஐ அதாவது 1 mol HCl ஐ தாக்கும் Na₂CO₃ இன் திணிவு அதன் சமவலுத் திணிவு ஆகும்.

$$E_{\text{Na}_2\text{CO}_3} = \frac{0.002}{x} \times 106 \text{ g} \quad \left(\text{Na}_2\text{CO}_3 \text{ g} \text{ in c. s. } \text{S} = 106\right)$$

பரிசேரதனேயின் போது $V_{HCl}=40~{
m cm}^3$ ஆக இருக்கும் $x=0.004~{
m mol}$ ஆகும்.

$$B_{Na_2CO_3} = \frac{0.002}{0.004} \times 106 = 53$$

உதாரணம்: 3.5

தி ண்ம மாதிரி ஒன்று NaOH , Na₂CO₃ , நீர் என்பவற்றைக் கொண்டுள் ளது. இம் **மா**திரியில் உள்ள N[®]OH , Na₂CO₃ எ**ஃபெ**வற்றின் அளவைத் தோணி**வத**ற்கா**ன திட்ட**ம் ஒன்றி'னக் கூறுக.

Na₂CO₃ இன் அளவைத் துணிதல்

- (1) மாதிரியின் தெரிந்த நிறையை எடுத்தல் (wg)
- (2) சாய்ச்சி வடித்த நீரில் கரைத்தல்
- (3) மிகை அளவு BaCl₂ கரைசல் சேர்த்தல்.
- (4) உண்டாகும் வீழ்படிவை (BaCO₃) வடிகட்டி, பிரித்தெடுத்து கழுவி உலர்த்தி நிறுத்தல் (W₁·g) (மூ. கூ. தி. Na₂CO₃ = 106 . BaCO₃ = 197)

n
BaCO₃ = $\frac{W_1}{197}$ mol

Na₂CO₃ + BaCl₂ → BaCO₃ ⊕ 2NaCı

$$^{n}Na_{2}CO_{3} = ^{n}BaCO_{3} = \frac{W_{1}}{197}$$
 mol

$$W_{Na_2CO_3} = \frac{W_1 \times 106}{197} = x g \text{ signs.}$$

$$N_{a_2}CO_3$$
 இன் வீத அளவு $=\frac{x \times 100\%}{W}$

NaOH இன் அளவைத் துணிதல்

முறை I, மேல் பரிசோத‰யின் வடியை நியம HCI உடன் வலுப் பார்த்து NaOH இன் அளவு துணியப்படலாம்

முறை 11 ப

- (1) மேல் வடிக்கு மிகையான MgCl₂ சேர்க்கப்படும்.
- (8) உண்டாகும் Mg (OH)₂ வீழ்படிவு வடி கட்டி பிரித்தொடுத்து உலர்த்தி நிறுக்கப்படும். (W₂ g) (மு. கூ. தி. NaOH == 40, Mg(OH)₂ = 58)

$$^{\mathrm{u}}\mathrm{Mg(OH)_2} = \frac{\mathrm{W_2}}{58}$$
 mol

$$n_{\text{NaOH}} = n_{\text{Mg(OH)}_2} \times 2 = W_2 \times 2$$

$$53 \quad \text{mol}$$

WNaOH =
$$\frac{W_2}{58}$$
 × 2 × 40 = yg a \dot{m} s.

Al, Mg,Cu என்பவற்றைக் கொண்ட கலப்புலோசத் நில் உள்ள கூறுகளின் வீதத் நதத் துணிதல்

- (1) தெரிந்த திணிவுள்ள கலப்புலோகம் (தூர் நிஃவில்) செம்மையாக நிறுத்து எடுக்கப்படும் (Wg)
- (2) மாதிரிக்கு மிகையான NaOH சேர்த்து Al (கரைக்கப்பட்டு) மீ தி வடிகட்டல் மூலம் பிரித்தெடுத்து, குழுவி உலர்த்தி நிறுக்கப்படும் (Wig)
- (3) மீதி பின் மிகஐதான மிரை H_2SO_4 அல்லது HCl உடன் தாக்கி Mg கரைக் ாப்பட்டு, மீதி வடிகட்டல் மூலம் பிரித்தெடுத்து, கழுவி, உலர்த்தி நிறுக்கப்படும் (W_{2g}) (இது Cu இன் திணிவு ஆகும்)
- (4) $W_{AI} = (W W_1)_g$, $W_{Mg} = (W_1 W_2)_g$, $W_{cu} = W_2$

Al =
$$(\frac{W_1 - W}{W}) \frac{100\%}{W} g$$
, Mg = $(\frac{W_1 - W_2}{W}) \frac{100\%}{W}$, Cu = $\frac{W_2 \times 100\%}{W}$

உதாரணம்: 3.6

பெரிசோதேனே ஒன்றில் Mg, Al என்பவற்றை மட்டும் கொண்டைகலப்பு உலோகத்சின் 3·9 g மாதிரி, 125 cm³, 2 M மிகை பொவு H₂SO₄ இல் முற்றுகக் கரைந்து நி. வெ. அ. இல் 4·48 dm³ உலர் H₂ வைக் கொடுத்தது.

- (1) கலப்பு உலோகத்தில் Mg நிறை நூற்று விதம் என்ன? (Mg = 24: Al = 27:)
- (2) விளேவுக்கரசலின் 25 cm³ ஐ நடுநிலேயாக்கத் தேவையான 0·8 M. NaOH கரைசலின் கணவளவு என்ன?

வியை

சுமன்பாடு (1) இன்படி,

$$n_{H_1} = n_{Mg} = \frac{x}{24}$$
 nol

சமன்பாடு (2) இன்படி,

$$^{n}H_{2} = ^{n}A! \times \frac{3}{2} = \frac{(3.9 - x)}{27} \times \frac{3}{2} \text{ mol}$$

். சமன்பாட்டின் படி விளே**வா**க்கப்படு**ம்** மொத்த H₂ மூல்கள்

$$=\frac{x}{24}+\frac{(3.9-x)}{24}\times\frac{3}{2}$$

பரிசோத‰ப்படி விளேவாக்ப்பட்ட H₂ இன் மொத்த மூல்கள் நே ஆயி**ன்**

$$PV = nRT$$

$$1 \times 4.48 = n \times 0.082 \times 273$$
 $n = \frac{1 \times 4.48}{22.4}$ $n = 0.2 \text{ mol}$

சமன்பா**ட்டின்** படியும், பரிசோ*த*ீணப் படியும் பெறப்பட்ட H₂ மூல்களி சமன்.

∴
$$\frac{x}{24}$$
 + $\frac{(3.9 - x)}{27}$ × $\frac{3}{2}$ = 0.2
 $x = 1.2g$
∴ WMg = 1.3 g : WA1 = $(3.9 - 1.2)$ = 2.7g
∴ Mg இன் நிறை நூற்று வீதம் = $\frac{1.2 \times 100}{3.9}$
= $\frac{3.9}{3.9}$

(ii) H₂SO₄ இரு மூல அமிலம் ∴. சேர்க்கப்பட்ட மொத்த H+ அயன்களின் எண்ணிக்கை

$$\frac{2 \times (25 \times 2)}{1000} = 0.5 \text{ mol}$$

சமன்பாடு (1),(2) என்பவற்றில் இருந்து, தாக்கமடைந்த H+

$$= \frac{1.2}{24} \times 2 + \frac{2.7}{27} \times 3 = 0.4 \text{ mol}$$

 $= n_{M\sigma} \times 2 + n_{A1} \times 3$

 $125~{
m cm}^3$ கரைசலில் எஞ்சிய ${
m H}^+$ அயன்களில் எண்ணிக்கை $0.5-0.4~=~0.1~{
m mo}$

். $25 \, \mathrm{cm}^3$ கரைசெலில் உள்ள H^+ அயன்களின் எண்ணிக்கை $= \frac{0.1 \times 25}{100} = 0.02 \, \mathrm{mol}$

0.02 mol H+ ஐ நிற்போக்க 0.02 mol OH- தேவை. ...25 cm³ கரைசமே நடு ந்வேயாக்கத் தேவையான 0.8 M NaOH தரைசலின் கேவைவு = $\frac{1600 \times 0.02}{0.8}$ = 25 cm²

பயிற்சி வினுக்கள்

- 1. பின்வரும் கரைசல்களில் உள்ள கரையத்தின் g அளவிலான நிறை என்ன? (H=1; S=32; O=16: C=12; Na=23)
 - a) $500 \text{ cm}^3 0.05 \text{ M} \text{ H}_2 \text{SO}_4$
 - b) $300 \text{ cm}^3 \quad 0.125 \text{ M} \quad \text{H}_2\text{C}_2\text{O}_4$
 - c) 3dm³ 0.01 M NaOH
 - $(a \rightarrow 2.45; b \rightarrow 3.375; C \rightarrow 1.2)$
- 2. பின்வரும் கரைசெல்களின் மூலர் செறிவு என்ன?
 - a) 0.53 g, Na₂CO₃ ஐக் கொண்ட 100 cm³ கரைசல்
 - b) 1 g NaOHஐக்கொண்ட 1 dm³ கரைசல்
 - c) 15·75 g HNQ₃ ஐக் கொண்ட 250cm³ கரைசல்
 - $(a \rightarrow 0.05 \text{ M}: b \rightarrow 0.025 \text{ M}: c \rightarrow 1 \text{ M})$
- 3. 6 g யூரியா [$CO(NH_2)_2$] 100 cm³ நீரில் கரைக்கப்பட்டு கரைசெலின் கணவளவு 250 cm³ ற்கு ஐதாக்கப்படுகிறது.
 - (i) மூலர் செறிவு என்ன? (மூ. கூ. தி. = 60)
 - (ii) இக்கரைசலின் 25 cm³ எடுக்கப்பட்டுக் கரைசல் 250 cm³ ற்கு ஐதாக்கப்பட்டால் விஃோயும் கரைசலின் மூலர் செழிவு என்னே? ((i) 0·4 M, (ii) 0·04 M)
- 1. 3·42 g Al₂(SO_{4) இ} 250 cm³ நீர்க்கரைசல் கொண்டுள்ளது.
 - (i) Al₂(SO₄)₃ சார்பாக கரைசலின் மூலர் செறிவு என்ன?
 - ii) கரைசலிலுள்ள SO4 இன்செறிவு என்ன?
 - (iii) கரைசெலிலுள்ள மொத்த அயன் செறிவு என்ன? (Al = 27: S = 32: O = 16) [(i) 0 04M, (ii) 0 · 12 M, 0 · 2M]
- 5. 11.1 g CaCl₂ 100 cm³ நீர்க்கரைசல் கொண்டுள்ளது.
 - (i) $CaCl_2$ சார்பாக கரைசலின் செறிவு என்ன? (Ca = 40, Cl = 35.5)
 - (ti) Ca⁺⁺ இன் செறிவு ? (tii) Cl⁻ அயன் செறிவு என்ன? ((i) 1 M, (ii) 1 M, (iii) 2 M)
- 6. நீரேற்றிய சல்பேற் M₂SO₄, × H₂O இல் 8 g சூடாக்கப்பட்ட போது நீரற்ற சல்பேற்றையும் 3·75 g நீரையும் கொடுத்தது. (M = 23, S = 32:O = 16) பி x இன் முதிப்பைக் கணிக்க.

- (11) மேற்கூறிய நீரேற்றப்பட்ட சக்பேற்றின் 6·7g நீரில் கரைக் கப்பட்டு கரைசலின் கணவளவு 200 cm³ ந்குக் கொண்டுவரப் படின் கரைசலிலுள்ள M+ இன் செறிவு mol dm⁻³ இல் யாது? ((i) 7, (ii) 0·25)
- 7. X என்னும் க**ரையத்தின் 1 %** நீரி**க்** க**ரைக்க**ப்பட்டு கரைசல் 250 cm³ ஆக்கப்பட்டபோது கரைசலில் X இன் செறிவு 0·025 mol dm⁻³ ஆயின் கரைய**த்தி**ன் மூல**ர் திணிவு என்ன? (** 160)
- 8. $1\cdot554~{
 m gCaCl_2}$ ஐக் கொண்ட ஒரு நீர்க்கரைசலின் செறிவு $0\cdot1$ mol dm $^{-3}$ ஆயின் கரைசலின் கனவளவு என்ன? ($140~{
 m cm^3}$) (${
 m Ca}=40$; ${
 m Cl}=35\cdot5$)
- 9. 25° C இல் 18 g C₆H₁₂O₆ 200 cm³ நீரில் கரைக்கப்பட்டு கரைசெ லின் கனவளவு 1 dm³ ற்கு ஐதாக்கப்படுகிறது இவ் வெப்ப நிலே யில் கரைசேலின் அடர்த்தி 1 04 gcm⁻³ (C = 12, H = 1, O = 16)
 - (க) கரைசலின் மூலர் செறிவு என்ன?
 - (b) கரைசலின் மூலல் செ**றிவு என்ன?**
 - (c) கரையத்தின் மூல் பின்னம் என்ன?
 - (d) சரைசலின் வீதச் செறிவு என்ன? [(a) 0·1 M, (b) 0·098 m, (c) 0·001758, (d) 1·8% W/V, 1·73% (W/W) /
- 10. 2M, 8 M HCl அமிலக் கரைசல்கள் உமக்குத் தரப்பட்டுள்ளது. இவற்றை பயன்படுத்தி 5 M 100cm³ HCl அமிலத்தை எவ்வாறு தயாரிப்பீர்? (இரு கரைசல்களினதும் 50cm³ கலக்கப்படும்.)
- 11. (a) திணிவுப்படி 70% HNO₃ கரைசல் ஒன்றின் அடர்த்தி 1·54 gcm⁻³ ஆயின் இக்கரைசலின் மூலர் செறிவு என்ன? [15·6]
 - (b) 1.8 gcm⁻³ அடர்த்**தி உள்ள** H_2SO_4 இல் இருந்து 1 d m³ . 0.05M H_2SO_4 ஐ எவ்வாறு தயாரிப்பீர்? [2.7 cm³ அமிலம் 1 dm³க்கு ஐ தாக்கல்]
 - (c, 0·1, mol K+ அய?னக் கொண்ட ஒரு நீர்க்கரைசலில் உள்ள K₂SO₄ இன் செறிவு 0·1 moldm⁻³ ஆயின் கரைசலின் கண வளவு எ**ன்ன**? [0·5 dm³]
- 12. 25g NH₃ ஐ கொண்ட 100g நீர்க்கரைசல் ஒன்றின் அடர்த்தி 0·89 g cm⁻³
 - (a) 1M NH₃ நீர்க்கரைசேல் எவ்வாறு தெயாரிப்பீர்? (N = 14, H = 1)
 - (b) 1 முனல் NH₃ நீர்க்கரை சுறை எவ்வாறு தயாரிப்பீர்?

- 13 . $10_8 C_6 H_{12} O_6$ ஐ 100 g நீர் $25^{\circ} C$ இல் கொண்டுள்ளது.
 - (a) குளு**ஃகோ**சின் மூலர் செறிவைத் துணிவதற்குத் தேவையான மேலதிக தரவு என்ன?
 - (b) இக்கரைசல் 10g திண்டிக்கரைப்பான் (பணிக்கட்டி) தொள் றும் வரை குளிரவிடப்பட்டால் விளேயும் கரைசலின் அடர்த்தி 1·08 gcm⁻³ ஆயின் இக்கரைசலில் உள்ள குளுக்கோசின் செறிவு என்ன? (C = 12,O = 16, H = I) [(3) அடர்த்தி (b) 0·667 mel dm⁻³]
- 14: (a) திணிவுப்படி 25% NH₃ ஐ உடைய நீர்க்கரைசலின் அடர்த்தி 0·98 gcm⁻³, இக்கரைசலில் NH₃ இன் மூலர்செறிவு என்**ன**?
 - (b) பகுதி (a) இல் தரப்பட்ட கரைசலேப் பயன்படுத்தி கரைசலே விரையமாக்காது 1M,_2 dm³ NH₃ நீர்க்கரைசலே எவ்வாறு தயாரிக்கலையை?
 - (c) பகுதி (b) இல் தயாரிக்கப்பட்ட கரைசலின் 20 cm³ ஐ நியமிக்க HCl கரைசலின் 10 cm³ தேவைப்பட்டது. இவ் HCl கரைசலின் HCl திணிவு நூற்றுவீதம் யாது?
 ((a) 14·41 M, (b) 138·73cm³ (c) 8·11%)
- 15. 25 cm³ Na₂CO₃ கரைசல் ஒன்றை நெடிநில்யோக்க, 0.05 M 17.5 cm³ H₂SO₄ தேவைப்பட்டது. Na₂CO₃ கரைசெலின் செறிவு (a) mol. dm³ (b g. dm³ இல் என்ன? (Na → 2³, C → 12, O → 16) [a → 0.035: b → 3.71]
- 16. 25 cm³ 1 M HCl கரைசல் 30 cm³ 1 M NaOH கரைசலுடன் கலக் கப்பட்டது. விளேவுக்கரைசலே நடுநிலேயாக்கத் தேவையான 0·1 M H₂SO₄ கரைசலின் கனவளவு என்ன? (25 cm³)
- 17. 10g CaCO₃ ந்கு, 250cm³ 1M HCl சேர்க்கப்பட்டது. வி**ளேவுக்** கரைசலில் உள்ள மிகையான அமிலத்தை நடுநிலேயாக்கத் தேவையான 2M KOH கரைசலின் கனவளவு என்ன? (Ca = 40: C = 12; O = 16) [25 cm³]
- 18. NaCl, நீரற்ற Na₂CO₃ என்பவற்றைக்கொண்ட 10 g கவவை பொன்று 1 dm³ நீர்க்கரைசல் ஆக்கப்பட்டது. இக்கரைசலின் 25 cm³ நடுநில்யாக்கத்திற்கு 20 cm³ 0·2 MHCl ஐ உட்கொண்டது. கலவையில் உள்ள NaCl இன் திணிவென்ன?
 (Na = 23: C = 12 O = 16) [1·52g]
- 19. மிகையான Ca(OH)₂ அறை வெப்பநில்யில் நீருடன் குலுக்கப் பட்டு வடிக்கப்பட்டது. இக்கரைசலின் 25 cm³ ஐ நடுநில்யோச்ச 12 cm³ 0·1 M HCl தேவைப்பட்டது. Ca(OH)₂ன் கரைத்திறன் என்ன? (Ca = 40, H == 1, Q = 16) [1·78 gdm⁻³)

- 20. 1.10 g உலோ Na மெது பாகநீருடன் தாக்கமடைய விடப்பட்டது. விள்வுக் கரைசலிற்கு 1 M 75 cm³ HC! சேர்க்கப்பட்டது கரைச வின் கனவளவு காய்ச்சி வடித்த நீர்சேர்த்து 250 cm³ ஆக்கப் பட்டது. இக்கரைசலின் 25 cm³ஐ நடுநில்யொக்க 27·1 cm³ 0·1 M KOH கரைசல் தேவைப்பட்டது. Na இன் அணுத் திணிவு என்ன? (23)
- 21. 5g ஒட்சாலிக்கமிலம் (H₂C₂O₄ X H₂O)நீரில் கரைக்கப்பட்டு 250cm⁸ கரைசெலாக்கப்பட்டது. இக்கரைசெலின் 25 cm⁸ ஐ நடுநில்யோக்க 0.5 M NaOH இன் 15.9 cm³ தேவைப்பட்டது. x இன் பெறு மானத்தைக் கணிக்க. (H = 1 / C = 12 : O = 16) [2]
- 22. உலோகம் M இன் உப்பு Y ஐ வெப்பமாக்கப் பின்வருமாறு பிரிகை அடையும்.

$$2\mathbf{Y} \rightarrow 2\mathbf{Z} + \mathbf{O}_2$$

உப்பின் 1.7g முற்ருகப் பிரிகையடையும் போது வெளிவிடைப்பட்ட O₂ வாயு 27°C இலும் 1 வளிமண்டல அமுக்கத்திலும் 246 cm³ ஆகும்.

- (a) சேர்வை Y இன் மூலக்கூற்றுத் திணிவைக் கணிக்க.
- (b) Mஇன் சார் அணுத்தி ணிவு 23 ஆவேடம் Y ஆனது மூலகம் Mஇன் நைத்திரேற்று ஆகவும் இருப்பின் Y இன் சூத்திரம் யாது?
- (c) 8.5 g Y 200 cm³ நீரில் கரைக்கப்பட்டால் கரைசலின் அயண் செறிவு என்ன? (a— 85, b—MNO₃, c— 1 M)
- 23. (a) சண்ணும்புக்கல் மா திரிஒன்று உமக்குத் தரப்பட்டுள்ளது. இதன் தாய்மை வீதத்திணத் துணிவதற்கான திட்டம் ஒன்றைத் தருக.
 - (b) 1 g சுண் ணும்புக்கல் மாதிரி ஒன்றிற்கு 1 M 20 ml மிகையளவு HCl சேர்க்கப்பட்டத. விளேவுக் கரைசீல நடுநிலேயாக்க 0.4 M NaOH இன் 5 ml தேவைப்பட்டது. சுண்ணும்புக்கல்லின் தூய்மை வீதம் என்ன?
 - (c) மேற் கணிப்பில் நீர் பயன்படுத்திய எடுகோள் என்னு? (90%)
- 24. சலவைச்சோடா, அப்பச்சோடா என்பணவற்றைக்கொண்ட மாதிரி ஒன்று உமக்குத் தரப்பட்டுள்ளத. இம்மாதிரியிலுள்ள சலவைச் சோடாவின் தூய்மை வீதத்தைத் துணிவதற்கான திட்டம் ஒன் றினேத் தருக.
 - 24 cm³ Na₂CO₃ கரைசலுடன் 8 cm³, 0·75 M HCl கலக்கப்படு கிற்றது. மூற்ருக நடுநிலேயாக்க மேலும் 15 cm³ 0·4 M H₂SO₄ தேவைப்படுகின்றது. கரைசலின் செறிவு என்ன? (0·36 M)
- 25 தொலமைற் மாதிரியொன்று CaCO₃, MgCO₃ ஐ சமமூல் அளவில் கொண்டுள்ளதாக அறியப்பட்டுள்ளது. இதனே உறுதிப்படுத்துவ த**ற்**கான இருமு**றைக**ோத் தருக.

1.84g டொலமைற் [CaCO₃ · MgCO₃] மா இரிக்கு 50 cm³ 0·97 M HCl அமிலம் சேர்க்கப்பட்டது. எஞ்ரிய அமிலத்தை நடு நிலேயாக்க 17cm³ 0·5M NaOH தேவைப்பட்டது. கலவையில் உள்ள CaCO₃ இன் நிறை வீதம் என்ன?
(Ca = 20, Mg = 24, C = 12, O = 16) 54·34%

- 26. NH₄+ உரம் ஒன்றில் NH₃ இன் அளவை அறிவதற்கான திட்டம் ஒன்றைத் தருக.
 - 1.25 g அமோனியம் உப்பு ஒன்று மிகை NaOH உடன் வெப்ப மாக்கப்பட்டது. வெளிவரும் NH3, 50 cm³ 0.5 M H2SO4 ஆஸ் உறிஞ்சப்படுகின்றது. மீதமுள்ள அமிலத்தை நடுநிலேயோக்க 27 cm³ 1 M NaOH தேவைப்பட்டது; உப்டில் உள்ள NH3 இன் சதவீதம் என்ன? (N = 14, H = 1) (31.28%)
- 27. வெலுப்பார்ப்பதற்கு உபயோகிக்கப்படும் 100 ml , 2M HCl சில cm³ ஐதான H₂SO₄ஐ கொண்டுள்ளது. இவ் அமிலக் கலவையில் இருந்து H₂SO₄ஐ இல்லாத HCl ஐ மட்டும் கொண்ட ஒரு கரைசலே எவ் வாறு பெறமுடியும் எனக்காட்டுக.
- 28. ஒரு இரசாயன அறிஞர் '2 g தூளாக்கப்பட்ட முட்டைக்கோது களேத் தகுந்த முகலையில் இட்டு 50 ml, 2 M HCl ஐ குழாயின் உதவியால் சேர்த்தார். பின்னர் முகலையை வெப்பப்படுத்திஞர். வாயு வெளியேற்றம் நின்றபின் அக்கரைசனில் 25 ml ஐ ஒரு அளவியின் உதவியால் 1 M NaOH ற்கு எதிராக நியமித்தார். நடுநிலே யாக்கத்திற்கு 31 mb 1 M NaOH தேலைப்பட்டது முட்டைக் கோதிலுள்ள CaCO3 இன் வீதத்தைக்கணிக்க: இக்கணிப்பில் நீர் பயன்படுத்திய எடுகோள் என்ன? [95%]
- 29. 2·86 g Na₂CO₃ X H₂O நீரில் கரைக்கப்பட்டு கரைசல் 100 ml இற்கு ஐதாக்கப்பட்டது. இக்கரைசலின் 10 **ml ஐ** மெதையில் செம்மஞ்சள் காட்டியாகக்கொண்டு நியமித்தபோது 0.1 M 20 ml HCl தேவைப்பட்டது. X இன் பெறுமானம் என்ன?

(X = 10)

30. Na₂CO₃ ஐயும் NaHCO₃ ஐயும் கொண்ட கரைசலின் 50 ml ஐ நியமிக்க 100ml 0·2 M HCl தேவைப்பட்டது. (பிறேல்ப்தலின் காட்டி). அதேசரைசலின் 25 ml ஐ மெதையில் செம்மஞ்சள் காட் டியாகக் கொண்டு நியமிக்க 0.5 M 70 ml HCl தேவைப்பட்டது. கரைசலில் உள்ள Na₂CO₃, NaHCO₃ என்பவற்றின் செறிவுகளேக் கணிக்க. (0·4 M: 0.6 M)

- 31. R என்ற ஓர் உலோகம் இயல்புகளில் Mg ஐ ஒத்ததாகக் காணப் படுகின்றது அதனுடைய ஒட்சைட்டும், ஐதரொட்சைட்டும் முறையே RO, R(OH)₂ என்ற குறியீடுகளேக் கொண்டைனவாகக் காணப்பட்டன. R என்ற உலோகமும் ஐதான HCl , NaOH நியமக் கரைசலும் தரப்பட்டுள்ளது. R என்ற உலோகத்தின் அணு நிறையைக் காண்பதற்கு இவற்றை எவ்வாறு பயன்படுத்து வீர் என பரிசோதனே விபரங்களுடன் விபரிக்க.
- 32. ஒரு பாடசாஃச்கு விநியோகிக்கப்பட்ட செறிந்த HCl 1.15 தன் னீர்ப்பு உடையதாயும் 32% நிறையைளவு HCl ஐக் கொண்டைதாயும் உளது. 2 M , 2 l HCl அமிலத்தின் கரைசெல் ஒன்றினே ஆய்வு கூடத்தில் எவ்வாறு தயாரிப்பீர்?
- 33. K₂CO₃ இன் சமவலு நிறையை எவ்வாறு துணிவீர் என்பதை முக்கிய பரிசோதனே விபரங்களுடன் தருக. புதிதாய் ஆக்கட்பட்ட சோடாச் சுண்ணும்பின் ஒரு மாதிரி 80% NaOH, 20% Ca(OH)₂ ஐயும் கொண்டுள்ளது. இச்சோடாச் சுண்ணும்பின் 2g அறைவெப்பநிஃவயில் 400 ml காய்ச்சி வடித்த நீரில் கரைக்கப்பட்டது. இக்கரைசலின் 100 ml ஐ நடு நீலேயாக்க வேண்டிய 1 M HCl இன் கனவளவு என்ன?
- 34. எரிசோடாவில் இருந்து NaHSO4, Na₂SO₄ பளிங்குகளே எவ்வாறு ஆய்வுகூடத்தில் ஆக்குவீர் என்பதைப் பரிசோத'ன விபரங்களு <u>—</u>ன் தருக.

250 ml அளவு கோடிடப்பட்ட குடுவை காய்ச்சி வடித்த நீரிஞல் கழுவப்பட்டது. ஒரு குழாயின் உதவியிஞல், 25 ml, 3·3 M NaOH இக்குடுவைக்கு மாற்றப்பட்டது. பின்னர் குடுவையிலுள்ள கரைசலின் மட்டம் 250 ml ஆகும் வரை நீர்சேர்க்கப்பட்டது. இக்கரைசலில் 50 ml கரைசல் 25 ml விணுகிரி கரைசல் ஒன்றை நடுநில்யோக்கியது. 100 ml விணுகிரி கரைசலிலுள்ள CH₃COOH இன் நிறையைக் கோண்க. [3·96%]

- 35. மரச்சாம்பலின் பசுள விளேவுகள் அதிலைய்ள K_2CO_3 ஆல் ஆணதை. சாம்பல்மாதிரி ஒன்றின் 3·45g 250 mlகாய்ச்சி வடித்த நீரில் கரைக்கப்பட்டபோது விளேந்த கரைசூல நடுநிலேயோக்க 100 ml 0·1 M HCl தேவைப்பட்டத. சாம்பலிலுள்ள K_2CO_3 ன் வீதத் தைத் தருக. இதில் நீர் பயன்படுத்திய எடுகோள்கள் எவை?(20%)
- 36. Mg பாலிலுள்ள Mg(OH)₂ ன் அளமைத் துணிவதற்கான முறை ஒன்றினே விபரிக்க.

- 37. தோட்ட மண்ணிலுள்ள அமிலத்தன்மையை ஆய்வுகூடத்தில் மதிப்பிடுகையில் 100 g மண்ணே நடுநிகேயாக்க 0·28 g NaOH தேவைப்பட்டது. இத்தோட்ட மண்ணின் 100 g ஐ நடுநிகேயாக்க தேவையான Ca(OH)₂ன் நிறை யாது [0.259g]
- 38. அடர்த்தி 1.80 gml-1 ஆகவும் நிறைப்படி 96·5% H₂SO₄ ஐ**யும்** கொ**ஸ்டுள்**ள சல்பூரிக்கமிலம் அலுமீனியத்துடன் பின்வருமாறு தாக்கமுறுகிறது. 2Al + 3H₂SO₄ → Al₂(SO₄)₃ + 3H₂
- (a) அலுடினியம் முற்று சத் தாக்கமுறுவதற்கு 10°/₆ H₂SO₄ மேலதிக மாகச் சேர்க்கப்படும் எனின் 50·0 g Al முற்று சுத் தாக்கமுற சேர்க்கவேண்டிய மேலே கூறப்பட்ட H₂SO₄ இன் கனவளவைக் காண்க.
- (b) மேலே பகுதி (a) இல் தரப்பட்ட தாக்கத்தில் வெளியேறிய H_2 வாயு நீரின்மேல் சேர்க்கப்பட்டது. நீரின் நிரம்பலாவி அமுக்கம் 27° C இல் 26·5 mmHg எனின் சேகரித்த H_2 வாயுவின் கணவளவைக் கணிக்குக.

[Al = 27 0, H = 1.0, S = 32.1, O = 16.0] ($a \rightarrow 17.8.4 \text{ cm}^3$; $b \rightarrow 141.6 \text{ dm}^3$)

- 39.86·53 g N₃2CO₃ (மூ.கூ.நி. = 105·99) 460 cm³ நீரில் கரைக்கப்பட்டு கரைசலின் கனவளவு 1 dm³ வரை ஐதாக்கப் டட்டது. 20°C இல் இச்சுரைசலின் அடர்த்தி 1·0816 gcm⁻³ 20°C இல் பின்வருவனவற்றைக் கணிக்க. (a) மூலர் செறிவு (b) Nኔ⁺ செறிவு (c) மூலல் செறிவு [a → 0·816 M; b → 1·632 M; c → 0·82 M]
- 40 இரசத்தைக் க**தோட்டா**சப் பயன்படுத்தி **பி**றைன் கரைசல் மி**ன்** பகுக்கப்பட்டபோது கதோட்டில் சோடியம் அமல்கம் (Na/Hg) பெறப்பட்டது. இவ் அமல்கத்தின் குறித்த திணிவு மிகையளவு நீருடன் சேர்த்தபோது 27°C இலும் 0 987 atm அமுக்கத் திலும் 0 624 dm³ உலர் H₂ வும் 400 cm³ NaOH கரைசலும் பெறப்பட்டன.
- (a) NaOH கரைசலின் செறிவு என்ன?
- (b) மேல் விளந்த NaOll கரைசேலின் 20 cm³ ஐ நடுநிக்யோக்க H_2SO_4 அமிலக் கரைசல் ஒன்றின் $32~{\rm cm}^3$ தேவைப்பட்டது. எனின் H_2SO_4 இன் வீதச் செறிவு என்ன? ($H_2SO_4=98$) [2 0·125 M, b 0·3828% (${\rm w/v}$)]
- (c) 25°C இல் $O\cdot 1M$ H_2 C_2 O_4 கரைசெலில் உள்ள H^+ , $C_2O_4^{--}$ அயன் செறிவுகள் முறை 3 ய $0\cdot 038$, $0\cdot 004$ mcl dm^{-3} சரைசெலில் உள்ள $HC_2O_4^{--}$, $H_2C_2O_4$ என்பவற்றின் செறிவுக 2 ளக் கணிக்க.

[0.03M,0.066M]

அடிப்படை பீசமானக் கணிப்புகள்

- 41 1.992 g CuSO₄ × H₂O பளிங்கின் நீர்கரைசலுக்கு சூடான நிஃ ையில் மிகை NaOH சேர்த்து ,வீழ்படிவு வடிகட்டி கழுவி உலர்த்தி எரித்த போது 0.632 g , CuO பெறப்பட்டது எனில் x ஐக்காண்க. (Cu = 63.5, O = 16, H = 1) [5)
- 42 6·7g CaO, CaCO₃ கலவை வ**ன்**மையாக வெப்பமாக்கிய போது I Ig CO₂ வெளியேறியது தொடக்கக்கலையையில் உள்ள CaOஐ Ca(OH)₂ ஆக மாற்றத்தேவையான மிகக்குறைந்த நீரின் திணிவு என்ன? (Ca = 40, C = 12, O = 16) [1·35 g]
- 43 10g Zn ஐத் தாக்க தேவையான, 10% நிறைச்செறிவு**டையை** ஐகாண HCl அமிலத்தின் திணிவு என்ன? (Zn = 65, H = 1, O = 16) இந்நிகழ்வின் போதே 12°C இலும் 750 mmHg இலும் என்ன கலவைளவு **H**₂ வெளியேறும்? (112g, 3·89 dm³,
- 44. 1g இரும்பு மாதிரி ஒன்று மிகையான ஐதான HCl இல் கரைத்த போது 20°C இலும் 770 mm Hg அமக்கத்திலும் 378 cm³ உலர் H₂ வெளியேறியது. இரும்பு மாதிரியில் தூய்மைவீதம் என்ன? [Fe = 56] (89 2°/₈)
- 41: 100 g செப்புமூலக்காபனேற்றில் (CuCO3. Cu(OH)2) இருந்து பெறற்கூடிய CuSO4. 5 H2O இன் திணிவு என்ன? [Cu = 65, S = 32, O = 16, C = 12, H = 1] O=16 [226g]
- 46. 5.85g NaCl மிகை செறிந்த H₂SO₄, MnO₂ உடன் வெப்ப மாக்கியபோது உண்டான பசியமஞ்சள் வாயு மிகை H₂ உடன் வெடிக் ஃப்பட்டு விளேவு நீரில் கரைக்கப்பட்டது இக்கரைசதுக்கு மிகையான Zn சேர்க்கப்பட்டால் S.T.P. இல் என்ன கனவ ளவு H₂ வெளியேறும்? [1·12 dna³] (Na = 23, Cl = 35·5 H = 1)
- 47 5g CuO, 500 cm³, 0·25 M H_2SO_4 இல் கரைக்கப்பட்டு விளேஷ கரைசீஃ நெடுநிஃபோக்க $247~\mathrm{cm}^3$, 0.5M NaOH தேவைப்பட்டது செப்பின் அணுநிறை என்ன? [H=1, O=16, S=32] (63)
- 48. 1.952 g BaCl₂. xH₂O பளிங்கின் நீர்க்கரைசெல் மி எக யான H₂SO₄ உடன் 1.864g உலர் BaSO₄ ஐக் கொடுத்தது x இன் பெறுமானம் என்ன? (Ba 137, S 32, O 16 H 1) (2)

(49) பீசமான பரிசோதனே ஒன்றின் அளவீடுகள் கிறே தரப்பட்டுள்ளன.

பரிசோதனே இலக்கம்	1	2	3	4	5	6	7	8	9
M BaCl ₂ (m!)	1	2	3	4	5	6	7	8	9
I M Na ₂ SO ₄ (ml)	9	8	7	6	5	4	3	2	1
உடன் பெற்ற விழ்படி வின் உயரம் (m m)	2.1	4.5	6.3	8.3	10.2	8.3	6.3	4.5	2 · 1
மறுநாள் வீழ்படிவு உயரம் (கூறை)	2	4	6	8	10	8	6	4	2

- (a) பரிசோதணே செய்தவுடன் விடுத்த வீழ்படிவு உயரத்தை விட மறுநாள் வீழ்படிவு உயரம் குறைவாக இருந்தது. காரணம் யாது?
- (b) தாக்கொளின் கனவளவுக்கெதிரே எவ்வீழ்படிவினுயரத்துக்கு வரைபு வரைதல் வேண்டும்?
- (ஓ) நீர் பெறும் வரைபிலிருந்து அதியுயர் வீழ்படிவு உருவாகும் கன வளவு விகிதம் என்ன?
- (d) இதிலிருந்து தாக்கத்தின் பீசமானம் காண்க?
- (e) 1 M BaCl₂ இற்குப் பதிலாக 2 M BaCl₂ பயன்படுத்தியிருந்**தால்** அதியு**யர் வீழ்படிவு உருவா**கும் கணவளவு விகிதம் யாது?
- (f) வீழ்படிவு முறைப்படி பீசமானம் துணியும் போது பொதுவாக 1M கரைசல்களே பயன்படுத்தப்படும். ஏன் 0·1 M செறிவடைய கரைசல் பயன்படுத்தப்படுவதில்‰?

IC - 1:1, d - 1:1, $e - V_{BaCl_2} := V_{Na_2SO_4} = 1:2$

(50) AlCl₃ (aq), Na₂CO₃ (aq) உடன் பின்வருமாறு தாக்கமுறுகின்றது 2 AlCl₃ (aq) ← 3 Na₂CO₃ ← 3H₂O → 2 Al(OH)₃ +6 NaCl + 3CO₂ 50 Cm³, O⋅2 M AlCl₃ (aq) உம் 50 Cm³, O⋅3 M Na₂CO₃ (aq) உம் சேர்க்கப்பட்டு விளேவுக்கரைசல் உலர்நிலுக்கு ஆவியாக்கி மாருத்திணிவு வரும் வரை வன்மையாக வெப்பமாக்கப்பட்டது. பெறப்படும் திண்ம மீதியின் திணிவைக் கணிக்க [Na = 23, Al • 27 Cl = 35 5, C = 12.° Q = 16, H = 1] [2.265g]

- (51) NaCl ஐயும், KCl ஐயும் கொண்ட ஒரு கேலையையின் மாதிரியின் திணிவு 5·5g இது நீரில் கரைக்கப்பட்டு மிகை AgNO₃ உடன் தாக்கமடையை விடப்பட்ட போது 12·7g வீழ்படிவு தோன்றியத கலைவையில் உள்ள NaCl இன் வீதம் என்ன? [72,72%] (Na = 23, K = 39, — Cl = 31·1)
- (52) 0.05 M, 100cm³ H₂SO₄ ஒரு நியமக் குடுவையின் எடுக்கப்பட்டு இறிய அளவு Na₂CO₃ (நீர் அற்ரது) சேர்க்கப்பட்டது விளேவு வாயு வெளியேற்றம் அற்றுப்போகும்வரை வெப்பமாக்கப்பட்டு குளிர வீட்டு காய்ச்சிவடித்த நீர் சேர்த்து100cm³க்கு ஐதாக்கப்பட்டது. இக் கரைசனின் 25cm³ ஐ நடுநில்யாக்க 18cm³ 0.1 M NaOH கரைசல் தேவைப்பட்டது. சேர்க்கப்பட்ட Na₂CO₃ இன் திணிவு என்ன?
 (Na = 23, C = 12, O = 16) [0·1484g]
- (53) (1) ஒரே உள்விட்டமுடைய சோதவோக்குழொய்களில் பின்வரும் கேனவளவு விகிதங்களில், ஒரே மூலர்ச் செறிவடைய KCl, Pb(NO₃)₂ (aq) ஆகிய வை நன்றுக் கலக்கப்பட்டு வீழ்படிவு அடைய விடப்பட்டன. KCl (aq) Cm³ 20 20 20 20 20 20 20 20 20 Pb(NO₃)₂ (aq) Cm³ 2 4 6 8 10 12 14 16 18 வீழ்படிவின் உயரம் எவ்வாறு கணவளவுடன் மாறும் என்பதைக் காட்ட ஒரு பருமட்டான உரைபு வரைகை.
- (54) 0·2 M NISO₄ (aq), 0·1 M Ba(OH)₂ aq என்பென பின்வரும் கணவளவு விகிதங்களில் கலக்கப்பட்டு வீழ்படிவின் உயரங்கள் அள விடப்பட்டன. NiSO₄ இன் கனவளவுக்கொதிராக வீழ்படின் உயர ங்களே வரைபாக்குக. பீசமானத்தாக்கம் கீழே தரப்பட்டுள்ளது. NiSO₄ + Ba(OH)₂ -> BaSO₄ \ + Ni(OH)₂ \ 0·2 M NISO₄ cm³ 2 4 6 8 10 12 14 16 18 20 1M Ba(OH)₂ cm³ 20 20 20 20 20 20 20 20 20 20
- (55) (2) 5·72 g Na₂ CO₃·10 H₂O, 3·36g NaHCO₃ என்பவற்றைக் கொண்ட கலவை மாளுத்திணிவு வரும்வரை வெப்பமாக்கிஞல் ஏற்படும் திணிவு இழப்பு என்ன? (Na = 23, C = 12, O = 16, H = 1) (b) வெப்பமேற்றிய பின் எஞ்சிய மீதி நீரில் கரைக்கப்பட்டு 250 cm³ கழைசல் ஆக்சப்பட்டது. இக்கரைசலின் 25cm³ ஐ முற்றுக நடு நிலேயாக்க தேவையான 0·4M HCl இன் கணிவளவு என்னை? [(a) - 4.84 g (b) 20 cm³]

- (86 3M H₂SO₄, 2M NaOH என்னும் கரைசல்கள். **மொத்தக்கனவ** ளவு 24 cm³ ஆக இருக்கத்தக்கதாக வெவ்வேறு அளவுகளில் கலந்து உச்ச வெப்பநிலே உயர்வுகள் அளக்கப்பட்டன.
 - (1) தாக்கிகளின் எ**ன்ன** க**ணவளவுக**ளில் உச்சவெப்ப**நிலே பெறப்** படும்?
 - (2) தூக்கிகளின் கனவளவுகளுக்கொதிராக அளவிடப்பட்ட வெப்ப நிலே உயர்வுகளேக் குறித்துக் காட்டுக.
 - (3) 3M H₂SO₄ க்குப் பதில் 3M HCl பயன்படுத்தி இரு**ந்தால்** வரைபின் கோலத்தை அதே வரைபில் குறித்துக் காட்டுக.
 - $(4)\ {
 m M}_2{
 m O}_3$ என்னும் சூத்திரத்தை உடைய உலோக ஒட்சைட்டின் 4 g, $1{
 m M}\cdot 250$ cm³ HCl இல் கரைக்கப்பட்டது. இக்கரைசெலின் 25 cm³ ஐடு நடுநிலேயாக்க $0\cdot 5$ M, 20 cm³ NaOH தேவைப்பட்டது ${
 m M}$ இன் சார் அணுத்திணிவு என்ன? $[\ (1)-{
 m V}_{
 m H_2SO_4}=6{
 m cm}^3\cdot (4)-56\]$
- (57) 0·25 M , AcNO₃ (aq) , 0·25 M BaCl₂ (aq) என்வற்றின் வெவ் வேறு கண அளவுகள் ஒன்று டொன்று கலக்கப்பட்டு மொத்த கனவளவு 30-cm³ இருக்கும்படி தொடர் மாறல் முறையினுல் பரிசோதனே ஒன்று செய்யப்பட்டது.

 $BaCl_2 + 2 AgNO_3 \rightarrow 2 AgCl \downarrow \Rightarrow Ba (NO_3)_2$

சு ழாய்	A	В	С	D	В
Ag NO ₃ Cm ³	5	10	15	20	25
BaCl ₂ Cm ³	25	20	15	10	5

- (a) பெறப்படும் வீழ்படிவின் உயரங்கள் கரைசல்களின் கணவளவுக்கேதி ராக எவ்வாறு மாறுபடும் என ஒரு வரைபினுல் குறித்துக் காட்டுக .
- (b) சோதணேக்குழாய் C, D, B என்பவற்றின் வீழ்படிவுகள் பிரி, தெடுக்**கப்பட்டு வ**டிக்**கு பின்வருவன** சேர்க்**கப்**படும் போ**து**,
 - (1) நோக்கல் என்னே?
- (2) முடிவு என்ன?

(a) $AgNO_3$ (aq)

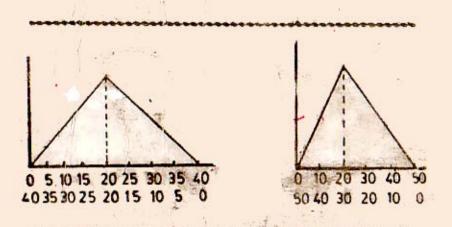
- (b) $BaCl_2(aq)$
- (c) குழாய் D இு உள்ளை Cl , NO3 ஆகியவற்றின் செறிவு கடுளக் கணிக்க.

(d) மல் பரிசோதனேயில் BaCl₂ (aq) இன் செறிவு 0.5 M ஆக இருப் பின் இவ்வரைபு எவ்வாறு அமையும் என அதே வரையில் புள்ளி இட்ட கோடுகளால் வரைந்து காட்டுக.

[Cl செறிவு பூச்சியம், NO₃ செறிவு 0·167 M]

உமது விடைக்கான கோரணத்தை விளக்குக?

- (58) (5) CuSO₄ இன் நீர்க்கரைசல் ஒன்று N∎OH இன் நீர்க் கரைசல் ஒன்றுடன் தாக்கமுற்று செப்பைதரொட்சைட்டு வீழ்படி வொன்றைப் பின்வரும் சமன்பாட்டிற்கமையத் தருகிறது. CuSO₄ (aq) + 2NaOH (aq) ⇌ Cu(OH)₂ (s) ↓ + Na₂SO₄ (aq) 0.5 M CuSO₄, 0.5 M NaOH கரைசல்கள் தரப்படின் இத்தாக் கத்தின் பீசமானத்தை எவ்வாறு துணிவீர் என்பதை விபரிக்க. மாணவன் ஒருவன் 0.5 M CuSO₄, 0.1 M Ba (OH)₂ கரைசல் களேப் பயன்படுத்தி வழமையான முறையில் செப்பு சல்பேற்று நீர்க்கரைசல் பேரியமைதரொட்சைட்டு நீர்க் கரைசல் ஆகியவற்கிடையேயுள்ள பின்வரும் தாக்கத்தின் பீசமானத்தை துணிய நிட்டமிடுகிறுன். CuSO₄ (aq) + Ba(OH)₂ (aq) = BaSO₄ (s) ∮ + Cu(OH)₂ (s) ↓ மாணவனின் இம் முயற்கி வெற்றியளிக்குமா?
- (59) (a) CuSO₄ (aq) , NH₄ OH (aq) தாக்கத்தின் பீசமானத்தைத் துணிவதற்கு வீழ்படிவுமான முறையிணப் பயன்படுத்**தமுடியுமா?** விளைக்கம் தருகை.
 - (b) 1 M CuSO₄ (aq) உம், 1 M, NH₄ OH (aq) உம் கீழ் காட்டப் பட்ட அளவுகளில் ஒரே மோதிரியான சோத°வக் குழாய்களிற் கலக்கப்பட்டது.


A B C D E F G H I
CuSO4 (cm³) 1 2 3 4 5 6 7 8 9
NH4OH (cm³) 9 8 7 6 5 4 3 2 1
இப்பரிசோதுவேயின் அவதானிப்புக்களேயும் அதற்கான காரணங்களேயும் விபரிக்கவும்.

(60) பீசமானம் என்றுல் என்ன? இதன் முக்கிய உபயோகம் என்ன? பரிசோதுன் ஆய்வு ஒன்றுக்கு கெட்டத்தட்ட 2×10^{-1} moldm-3 செறிவுள்ள ஆஞல் திருத்தமாகச் செறிவு அறியப்பட்ட NaOH கரைசல் ஒன்று தேவைப்படுகின்றது. இக் கரைசல் உமது பாடசாலே ஆய்வுகூடம் ஒன்றில் எவ்வாறு தயாரிப்பீர் என விபரிக்கவும். உமக்கு நீர் அற்ற தாய Na2CO3 அறை வெப்பநிலேயில் திடர்த்தி $1.87~gCm^{-3}$ உள்ள 98% நிறைச் செறிவுடைய H_2SO4 என்துனை தரப்பட்டுள்ளன. (உமது பாடசாலு ஆய்வுகூடம் வசதி உள்ளது எனக்கருதுகை)

BASIC CHEMISTRY

ADVANCED LEVEL

PART H

THAMBIAH - SATHTHEESWARAN 108, BROWN ROAD JAFFNA.