தேசிய உயர் கல்விச் சான்றிதழ்

மாணவர் இரசாயனம்

[முதலாம் பாகம்]

பொன். செல்வரத்தினம் B. Sc. (இலக்கை)

Chemistry for H. N. C. E students.

தேசிய உயர் கல்விச் சான்றிதழ்

மாணவர் இரசாயனம்

[முதலாம் பாகம்]

பொன். செல்வரத்தினம் B. Sc. (இலங்கை)

வெளியிடுபவர் :

ஆ. துரைராஜிங்கம் 141, பருத்தித்துறை வீதி, நல்லூர், யாழ்ப்பாணம். மு**தற் பதி**ப்பு வைகாசி 1977.

பதிப்புரிமை ஆசிரியருக்குரியது

அச்சுப் பதிப்பு வஸ்தி**டின் அ**ச்சகம், யாழ்ப்பாணம்.

முகவுரை

இந்நூல், தேசிய உயர் கல்விச் சான்றிதழ் வகுப்புக்குரிய பாடத் திட்டத்திற்கமைய எழுதப்பட்டுள்ளது. இந்நூலில், நடாத்தப் பட்ட பரிசோதனேகளின் பெறுபேறுகள் பல சேர்க்கப்பட்டுள்ளன. மாணவர்கள் தாமாகவே இலகுவாகக் கற்றறியக்கூடிய முறையில், பாடத் திட்டத்தின் முதலாம் அலகிலுள்ள முழு விபரங்களும் விளக்கப் படங்களுடனும் உதாரணங்களுடனும் கொடுக்கப்பட்டுள்ளன. அத்துடன், ஒவ்வொரு அத்தியாயத்தின் முடிவிலும் கட்டமைப்பு விரைக்களும், கடைசி அத்தியாயத்தில் பல்தேர்வு விருக்களும் சேர்க்கப் பட்டுள்ளன.

இந்நூலேத் தொகுப்பதில் ஆக்கபூர்வமான ஆதரவு தந்துள்ள திரு. சபா. குணரத்தினம் B. Sc. Hons. Dip in Ed. (இலங்கை) அவர் களுக்கும், திரு. ம. ப. புறூடி B. Sc. (இலங்கை) அவர்களுக்கும் எனது நன்றி உரித்தாகும்.

இந்**நூல், ஆ**சிரியர்களுக்கும் மாணவர்களுக்கும் மிகவும் பய னுள்ளதாகவிரு**க்கும்** என்பது எனது நம்பிக்கை

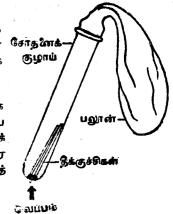
பொன். செல்வரத்தினம்.

திட்ட அலகு	புத்தியாட	யம்	பக்கம்
1.10	1	சடப்பொருளும் அ ளுக்களும்	1.
		[அணுக்கள் இருப்பதற்கான சான்றுகள்]	
		தெணிவைக் காப்பு விதி, மாறு அமைப்பு விதி,	
		பல்விகிதசம் விதி	
1.20	2	மூலக்கூறுகள்	16
		கேலுசாக்கின் விதி, அவகாதரோவின் விதி	
1.30	3	சார் அணுத்திணிவும் சார் மூலக்கூற்றுத்திணிவ	júb 34
		சமவ 201த் திணிவை, சார் மூலக்கூற்றுத் திணிவு.	
		சார் அணுத்திணிவு, சேர்வைகளின் சூத்திரங்கள்,	
		சமன்பாடுகள்	
1.40	4	மூல்	55
	•	அவகாதரோ எண், மூலாக் கரைசெல், மூலல் க ரைசெல்	,
		மூலர்க் க னவளவு	
1.50	5	பீசமானம்	72
		தொடர்-மாற்றல் முறை, நியமிப்பு முறைகள்,	
			86

அத்தியாயம் 1

சடப்பொருளும் அணுக்களும்

சடப்பொருள்கள் யாவும் அணுக்கள் எனப்படும் மிகச்சிறிய துணிக் கைகளாலானவை என்னும் அடிப்படை எண்ணக்கருவை விளக்குவதற்கு பின்வரும் இரசாயன விதிகள் தொடர்பான சில பரிசோதனேகள் இவ் வத்தியாயத்தில் ஆராயப்படும்.


திணிவுக் காப்பு விதி

பில் வரும் பரிசோதனேகள் ஒவ்வொன்றிலும் வெவ்வேறு பதார்த் தங்கள் மூடிய பாத்திரத்தில் ஒன்ருடொன்று தாக்க விடப்படுகின் றன. முதலில் தாக்கிகளின் மொத்தத் திணிவு துணியப்பட்டு, தாக்கம் முடிவடைந்தபின் விளேவு பொருள்களின் மொத்தத் திணிவு துணியப்படுகிறது.

பரிசோதுணே I. திக்குச்சிகளே மூடிய பாத்திரத்தில் எரித்தல்

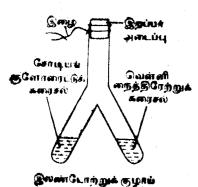
ஒரு வன்கண்ணுடிச் சோத2னக் குழாய்க்குள் 2 அல்லது 3 திக்குச்சிக2ளத் தலேகீழாக இட்டு, சோத2னக் குழாயின் சோத2னக் வாயுடன் ஒரு பலூ2ன இறுக இ2ணக்க குழாய் (படம் 1).

இவ்வுபகரணத்தைத் திருத்தமாக நிறுத்து, சோதனேக் குழாயின் அடியை ஒளிர்வற்ற பன்சன் சுவாலேயால் சூடாக் குக. தீக்குச்சிகள் எரிந்தபின் இவ்வுபகர ணத்தை ஆறவிட்டுத் திரும்பவும் திருத் தமாக நிறுக்க

படம் 1

அவதானிப்பு: தீக்குச்சிகள் எரிந்து வெண்புகை, சாம்பல் ஆகியன உண்டாவதையும், பலூன் சற்று ஊதிப் பின் பழைய நிலேயை எய்து வதையும் அவதானிக்க. அளவீடுகள்: சூடாக்குமுன்

சோதுணக் குழாய் + தீக்குச்சி + பலூனின் திணிவு = 14·101 ஓ சூடாக்கி ஆறவிட்ட பின்


மேற்படி உபகரணத்தின் திணிவு

= 14.101 g

முடிவு: சூடாக்க முன்னுள்ள தாக்கிகளின் மொத்தத் திணிவு, சூடாக் கிய பின் உண்டாகிய விளேவுகளின் மொத்தத் திணிவுக்குச் சமமாக உள்ளது:

பரிசோதனே II: இலண்டோற்றுக் குழாயினுள் இரு பதார்த்தங்களின் கரைசல்களே ஒன்று கலத்தல்.

இலண்டோற்றுக் குழாயின் (படம் 2) இரு புயங்களில் ஒன்றினுள் வெள்ளி நைத்திரேற்றுக் கரைசஃயும், மற்றதனுள் சோடியங் குளோ ரைட்டுக் கரைசஃயும் வெவ்வேருக இட்டு, இக்குழாயை இறப்பர் அடைப்பால் இறுக மூடுக

இவ்வுபகரணத்தை இழையின் உதவியால் இரசாயனத் தராசின் இடது புயத்தில் தொங்கவிட்டு அதன் திணிவைத் துணிக.

வெள்ளி இலண்டோற்றுக் குழாயைச் நைத்திரேந்நுக் சரித்து இரு கரைசல்களேயும் ஒன்று கரைசல் கலக்குக. இவ்வேளேயில் தயிர் போன்ற வெள்ளே வீழ்படிவு உண் டாவதை அவதானிக்கலாம்.

> இவ்வுபகரணத்தைச் சில மணி நேரத்திற்கு ஆறவிட்டு, இதனே முன்பு நிறுத்தது போல் திரும்பவும் நிறுக்க.

படம் 2

(ழடிவு: இரு திணிவுகளு**ம் ∗மமாக** இருப்பதை அறியலாம். வெள்ளி நைத்திரேற்று + சோடியங் குளோரைட்டு திணிவு = வெள்ளிக் குளோரைட்டு ↓ + சோடியம் நைத்திரேற்று திணிவு குறிப்பு: இவ்வாறு,

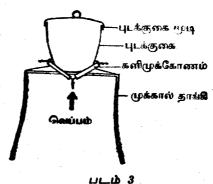
- (அ) பேரியங் குளோரைட்டு + ஐதான சல்பூரிக்கமிலம்
- (ஆ) ஈய நைத்திரேற்று + ஐதான சல்பூரிக்கமிலம்
- (இ) ஈய நைத்திரேற்று + பொற்ருசியங் குரோமேற்று
- (ஈ) சோடியங் காபனேற்று + கல்சியம் ஐதரொட்சைட்டு போன்ற சோடிப் பதார்த்தங்களின் நீர்க் கரைசல்களேப் பயன்படுத்தியும் மேற்படி பரிசோதணேயைச் செய்யலாம்.

பொதுமுடிவு: பரிசோதனேகள் I, II ஆகியவற்றிலிருந்தும், இவற்றை ஒத்த மற்றும் பரிசோதனேகளிலிருந்தும், ஓர் இரசாயனத் தாக்கத் தில் தாக்கிகளின் மொத்தத் திணிவு விளேவுகளின் மொத்தத் திணி வுக்குச் சமம் என நிறுவப்படுகிறது.

இப்பொது முடிவிலிருந்து திணிவுக் காப்பு விதி ஆக்கப்படுகிறது திணிவுக் காப்பு விதி:

ஒரு இரசாயனத் தாக்கத்தில் தாக்ககளின் மொத்தத் திணிவு விளேவு பொருள்களின் மொத்தத் திணிவிற்குச் சமமானது.

மாரு அமைப்பு விதி


பின்வரும் பரிசோதணேகளில் மகனீசியம் பல்வேறு முறைகளால் மகனீசியமொட்சைட்டாக ஒட்சியேற்றப்பட்டு, இவை ஒவ்வொன்றி லும் ஒரு குறித்த திணிவுள்ள ஒட்சிசனுடன் சேர்ந்துள்ள மகனீசியத் தின் திணிவு துணியப்படுகிறது.

பரிசோதனே I, மகனீசியத்தை வளியில் சூடாக்கி மகனீசியமொட்சைட்டாக ஒட்சியேற்றல்

$$Mg \xrightarrow{O_2} MgO$$

ஏறக்குறைய 0°2 g (ஏறக்குறைய 15 cm நீளமுள்ள) மகனீசியம் (Mg) நாடாவை அரத்தாளால் தேய்த்து அல்லது மிக ஐதான அமில த்தில் சிறிது நேரத்திற்கு வைத்துச் சுத்தமாக்குக. இது Mg நாடா வின் மேற்பரப்பிலுள்ள ஒட்சைட்டுப் படையை அகற்றுவதற்கேயாகும். இந்நாடாவை ஒரு இறுகிய சுருளாக்குக.

ஒரு புடக்குகையை மூடியுடன் நிறுத்து, அதனுள் Mg சுருளே இட்டுத் திரும்பவும் நிறுக்க, இப்புடக்குகையை, முக்கால் தாங்கியின் மேல் வைக்கப்பட்ட களிமுக்கோணத்தின் மேல் வைத்து ஒளிராப்

பன்சன் சுவாஃயால் சூடாக்குக (படம் 3). Mg எரிவதற்குப் போதுமான வளியைப் படக் கு கைக்குள் செல்லவிடுதற்கு மூடியை ஒரு குறட்டின் உதவி யால் இடையிடையே சற்று உயர்த்தி மூடுக.

Mg முற்றுக எரிந்ததும், புடக்குகையை ஆறவிட்டு அதனே மூடியுடன் நிறுக்க. திணிவில் மேலும் மாற்றம் ஏற்படாத வரை சூடாக்கல், ஆறவிடல், நிறுத்தல் ஆகிய செய்கைகளேத் திரும்பத் திரும்பச் செய்க இது, Mg ஆனது மகனீசியமொட்சைட்டு (MgO) ஆக முற்ருக ஒட்சியேற்றப் பட்டுள்ளதென்பதை உறுதிப்படுத்துவதற்கேயாகும்.

அவதானிப்பு: சூடாக்கப்படுகையில் Mg நாடா உலோக மினுக்கத்தை இழந்து வெண்ணிற MgO தூளாகுவததை அவதானிக்க.

கணிப்பு: திணிவுப்படி 1 பாகம் (1·0 g) O₂ உடன் சேர்ந்துள்ள Mg இன் திணிவைக் கணிக்க

$$0.16~{
m g}~{
m O}_2$$
 உடன் சேர்ந்துள்ள Mg இன் திணிவு $=0.24~{
m g}$ 1 g ,, ,, $=\frac{0.24}{0.16} imes 1$ 1.50 g

பரிசோதனே II: Mg ஐ மகனிசியம் நைத்திரேற்று ஆக ஒட்சியேற்றி, மகனிசியம் நைத்திரேற்றைச் சூடாக்கி MgO ஐப் பெறல்

$$Mg \xrightarrow{\bigcirc \mathscr{F} \cancel{D} \ HNO_3} Mg(NO_3)_2 \xrightarrow{\triangle} MgO$$

ஒரு வன்கண்ணடிச் சோதீனக் குழாயை நிறுக்க. அதனுள், ஏறக்குறைய 15 cm நீளமுள்ள சுத்தமாக்கிய Mg நாடாவைச் சிறு துண்டுகளாக வெட்டி இடுக. இதனேத் திரும்பவும் நிறுக்க.

சோதனேக் குழாய்க்குள் செறிந்த நைத்திரிக்கமிலத்தை சிறிது சிறிதாக மை நிரப்பியால் அல்லது துளிக்கும் புனலால் இட்டு Mg ஐ முற்றுகக் கரைக்க. இவ்வேளேயில் செங்கபில நிற வாயு வெளியேறி நிறமற்ற மகனீசியம் நைத்திரேற்று – Mg(NO₃)₂ — கரைசல் உண் டாகிறது.

இக்கரைசல் குழாயிலிருந்து வெளிப்பாயாத வண்ணம் அதனே மெதுவாகச் சூடாக்கி ஆவியாக்குக. இதலை பெறப்படும் திண்ம Mg(NO₃)₂ ஐப் பலமாகச் சூடாக்க அது உருகி செங்கபில நிற வாயுவை வெளிவிடுகிறது. இறுதியில் வெண்ணிற MgO தூள் சோதனேக் குழாயில் எஞ்சுகிறது. இதனே மாருத் திணிவு வரை சூடாக்கி ஆறவிட்டு நிறுக்க

```
அளவீடுகள்: சோதனேக் குழாயின் திணிவு = 15·250 g
சோதனேக் குழாய் + Mg = 15·430 g
சோதனேக் குழாய் + MgO = 15·550 g
Mg இன் திணிவு = 15·43 - 15·25 = 0·18 g
MgO , , , = 15·55 - 15·25 = 0·30 g
O<sub>2</sub> , , , = 0·30 - 0·18 = 0·12 g
```

கணிப்பு:
$$1 \cdot 0$$
 g O_2 உடன் சேர்ந்துள்ள Mg இன் திணிவைக் கணிக்க $0 \cdot 12$ g O_2 உடன் சேர்ந்துள்ள Mg இன் திணிவு $== 0 \cdot 18$ g 1 g , , , , $= \frac{0 \cdot 18}{0 \cdot 12} \times 1$ $= 1 \cdot 50$ g

பரிசோதனே III. Mg ஐ மகனிசியங் காபனேற்ளுக்கி, மகனிசியங் காபனேற்றை நைச் சூடாக்கி MgO ஐப் பெறல்

இக் கரைசலுடன் அமோனியங் காபனேற்றுக்—(NH₄),CO₃ -- கரைசலே மிகையாகச் சேர்க்க. இவ்வேளேயில் மகனீசியங் காபனேற்றின் (MgCO₃ இன்) வெள்ளே வீழ்படிவு உண்டாகும். இக்கரைசலே உலரும் வரை சூடாக்கிப் பின் பலமாகச் சூடாக்குக. வெண்ணிற MgO தூள் உண்டாகிறது. இதனே, மேலும் திணிவு குறையாதவரை சூடாக்கி ஆறவிட்டு நிறுக்க.

கணிப்பு:

1.0 g O 2 உடன் சேர்ந்துள்ள Mg இன் திணிவைக் கணிக்க.

0.14 g O 2 உடன் சேர்ந்துள்ள Mg இன் திணிவு = 0.21 g

1g ,, ,, ,, , = $\frac{0.21}{0.14} \times 1$ = 1.50 g. பரிசோத**ண** IV Mg ஐ மகனிசியமைதரொட்கசட்டாக்**கி, மக**னிசியமை**த** ரொட்சைட்டைச் சூடாக்**கி MgO ஐப் பெறல்**

$$\begin{array}{ccc} \text{\mathbb{Q}-$} \text{$\mathbb{M}$} \text{$\mathbb{$$

செய்கை பரிசோதனே III இல் போன்றது, ஆணுல் அமோனியங் காபனேற்றுக்குப் பதிலாக அமோனியமைதரொட்சைட்டைச் சேர்க்க.

கணிப்பு: $1.0 ext{ g O}_2$ உடன் சேர்ந்துள்ள Mg இன் திணிவைக் கணிக்க. $0.132 ext{ g O}_2$ உடன் சேர்ந்துள்ள Mg இன் திணிவு $= 0.198 ext{ g}$

1 g,, ,, =
$$\frac{0.198}{0.132} \times 1$$

= 1.50 g

சுருக்கம்

பரிசோதுளே I Mg—→MgO

திணிவுப்படி விகிதம் O2:Mg = 1.00:1.50

பரிசோதன்
$$II$$
 $Mg \longrightarrow Mg(NO_3)_2 \longrightarrow MgO$
திணிவப்படி விதிதம் $O_2:Mg = 1\cdot00:1\cdot50$

பரிசோதனே III $Mg \longrightarrow Mg(NO_3)_2 \longrightarrow MgCO_3 \longrightarrow MgO$ தெணிவுப்படி விகிதம் $O_2:Mg = 1.00:1.50$

பரிசோதனே IV Mg
$$\longrightarrow$$
 Mg(NO $_3$) $_2$ \longrightarrow Mg(OH) $_2$ \longrightarrow MgO திணிவுப்படி விகிதம் O $_2$: Mg = 1:00:1:50

மகனீசியமொட்சைட்டை எம்முறையால் ஆக்கினுலும் அது ஒட்சி சணேயும் மகனீசியத்தையும் திணிவுப்படி **மாரு வி**கித**த்தில் கொண்**டுள் எது என அறியலாம்

இப்பரிசோ தணேகளிலிருந்தும், மற்றைய மூலகங்களேக் கொண்டு செய்யப்பட்ட இவ்வகைப் பரிசோ தணேகளின் முடிவுகளிலிருந்தும் மாறு அமைப்பு ளிதி ஆக்கப்படுகின்றது. மாளு அமைப்பு விதி (அல்லது திட்ட விகிதசம விதி)

ஒரு தூய சேர்வையை எம்முறையால் ஆக்கினுலும் அது ஒரே வித மூல கங்களேத் திணிவுப்படி மாரு விகிதத்தில் கொண்டிருத்கும்.

இவ்விதியைப் பின்வருமாறும் கூறலாம்

மூலகங்கள் ஒன்றேடொன்று சேரும்போது அவை திணிவுப்படி திட்ட விகிதசமத்திலேயே சேர்கின்றன; ஆகவே ஒரு தூய சேர்வையின் அமைப்பு அதளே ஆக்கும் முறையில் தங்கியிருப்பதில்லே.

பீசமானச் சேர்வைகள்

மா*ரு அ*மைப்புடைய சேர்வைகள் பீசமானச் சேர்வைகள் எனப் படும்.

உடம்:- MgO, CaO, NaCl முதலியன,

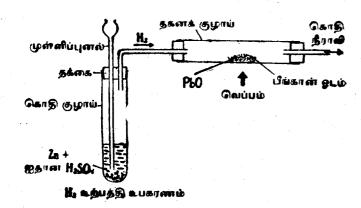
இச்சேர்வைகளிலுள்ள மூலகங்களின் திணிவுப்படி விகிதம் மாருத்து.

பீசமானமற்ற சேர்வைகள்

எந்தச் சேர்வைகளின் அமைப்பு மாறும் தன்மை உள்ளதோ அச சேர்வைகள் பீசமானமற்ற சேர்வைகள் எனப்படும்.

உடம்:- பெரசுச் சல்பைட்டு, பெரசொட்சைட்டு

இச்சேர்வைகளிலுள்ள மூலகங்களின் திணிவுப்படி விகிதம் மாறு படத்தக்கது. இது பொதுவாக இரும்பின் திணிவுப்படி விகிதக் குறைவு காரணமாகவே ஏற்படுகிறது.


பல்விகிதசம விதி

பின்வரும் பரிசோதன்களில் ஈயத்தின் 3 வகையான ஒட்சைட்டு களில் [ஈயவொட்சைட்டு – PbO; மூவீயநாலொட்சைட்டு – Pb₃O₄; ஈயவிரொட்சைட்டு – PbO₂] உள்ள ஒட்சிசனினதும் ஈயத்தினதும் திணிவுப்படி விகிதங்கள், சூடான இவ்வொட்சைட்டுகளே ஐதரசஞல் தாழ்த் துவதன் மூலம் துணியப்படும்.

இவ்வொட்சைட்டுகள் ஒவ்வொன்றிலும் ஒரு குறித்த திணிவுள்ள ஒட்சிசனுடன் சேர்ந்துள்ள ஈயத்தின் வெவ்வேறு திணிவுகள் துணியப் பட்டு, இத்திணிவுகளின் விகிதம் கணிக்கப்படும்

$$PbO \longrightarrow PbO$$

சிறிய கணியமான (ஏறக்குறைய 3g) ஈயவொட்சைட்டை ஒரு பீங் கான் ஓடத்தில் நிறுத்தெடுத்து. அதனே ஒரு தகனக் குழாயில் வைத்து, தகனக் குழாயை \mathbf{H}_2 உற்பத்தி உபகரணத்துடன் படம் 4 இல் காட் டியவாறு. இணக்க.

ULID 4

தகனக் குழாயூடாக \mathbf{H}_2 ஐச் செலுத்திய வண்ணம் PbO ஐப் பன்சன் சுவாலேயால் சூடாச்குக. PbO முற்ருக Pb ஆகத் தாழ்த்தப் பட்ட பின் பன்சன் சுவாலேயை நீக்கி. \mathbf{H}_2 ஐத் தொடர்ந்து செலுத் திய வண்ணம் குழாயை ஆறவிடுக. உண்டாகிய Pb இன் திணிவைத் துணிக.

அவதானிப்பு: மஞ்சள் நிற PbO தூள் H₂ ஆல் ந**ரை நிற** Pb உலோ மாகத் தாழ்த்தப்படுகிறது.

கணிப்பு: திணிவுப்படி 8 பாகம் (8g) O 2 உடன் சேர்ந்துள்ள Pb இன் தெணிவைக் கணிக்க

$$0.22~{
m g}$$
 ் உடன் சேர்ந்துள்ள Pb இன் திணிவு $=2.846~{
m g}$ 8 g , , , , $=rac{2.846}{0.22} imes 6$

பரிசோதனே II செவ்வீயத்தை H_2 ஆல் Pb ஆகத் தாழ்த்தல் H_2 $Pb_3O_4 \longrightarrow Pb$

நிறுக்கப்பட்ட கணியமான செவ்வீயத்தை பரிசோதணே l இல் பயன்படுத்திய உபகரணத்தை (படம் 4) உபயோகித்து H_2 ஆல் Pb ஆகத் தாழ்த்துக. ஆஞல் PbO உக்குப் பதிலாக பீங்கான் ஓடத்தில் செவ்வீயத்தை வைத்துச் சூடாக்குக

அவதானிப்பு: செந்நிற செவ்வீயத்தூள் ஈய உலோகமாகத் தாழ்த்தப் படுகிறது

கணிப்பு: 8 g O_2 உடன் சேர்ந்துள்ள Pb இன் திணிவைக் கணிக்க. 0.32 g O_2 உடன் சேர்ந்துள்ள Pb இன் திணிவு =3.105 g 8 g ,, ,, , $=\frac{3.105}{0.32} \times 8$ =77.625 g

பரிசோதுளே III ஈயவிரொட்சைட்டை H₂ ஆல் Pb ஆகத் தாழ்த்தல் H₂ PbO₂ ——→Pb

நிறுக்கப்பட்ட கணியமான ஈயவீரொட்சைட்டை பரிசோதனே. இல் போல் H₂ ஆல் தாழ்**த்துக**

அவதானிப்பு: கபில நிறமான PbO₂ தூள் Pb ஆகத் தாழ்த்தப்படு கிறது.

அளவிடுகள்:
$$PbO_2$$
 இன் திணிவு = 2.390 g
 Pb , , = 2.070 g
 O_2 , , = 0.320 g

கணிப்பு:
$$8 ext{ g O}_2$$
 உடன் சேர்ந்துள்ள Pb இன் திணிவைக் கணிக்க. $0.32 ext{ g O}_2$ உடன் சேர்ந்துள்ள Pb இன் திணிவு $= 2.07 ext{ g}$ $8 ext{ g}$, , , , , $= \frac{2.07}{0.32} imes 8$ $= 51.75 ext{ g}$

சுருக்கம் :

பரிசோதனே I
$$PbO \longrightarrow Pb$$
 திணிவுப்படி விகிதம் $O_2: Pb = 8:103\cdot 5$ பரிசோதனே II $Pb_3O_4 \longrightarrow Pb$ திணிவுப்படி விகிதம் $O_2: Pb = 8:77\cdot 625$ பரிசோதனே III $PbO_2 \longrightarrow Pb$

மேற்கண்ட 3 பரிசோதண்களிலும் O₂ இன் மாருத்திணிவு (8g) உடன் சேர்ந்துள்ள Pb இன் வெவ்வேறு திணிவுகளின் விகிதம்

$$= 103.5 : 77.625 : 51.75$$

$$= \frac{103.5}{51.75} : \frac{77.625}{51.75} : \frac{51.75}{51.75}$$

$$= 2 : 1.5 : 1$$

$$= 4 : 3 : 2 \% 6.00$$

கிணிவப்படி விகிதம் O, : Pb = 8:51.75

இது ஓர் எளிய முழு எண் விகிதமாகும்.

இப்பரிசோதனேகளிலிருந்தும், மற்றைய மூலகங்களேக் கொண்டு செய்யப்பட்ட இவ்வகைப் பரிசோதனேகளிலிருந்தும் பல்விக்**தசம** விதி ஆக்கப்படுகிறது.

பல்வித்தசம் விதி

இரு மூலகங்கள் ஒன்றுெடொன்று சேர்ந்து ஒன்றிற்கு மேற்பட்ட சேர் வைகளே உண்டாக்கின், ஒரு மூலகத்தின் ஒரு குறித்த திணிவுடன் சேர் கின்ற மற்றைய மூலகத்தின் வெவ்வேறு திணிவுகள் எளிய முழு எண் விகிதத்தில் உள்ளன. பல்விகத்சம் விதியை விளக்க மேலும் பரிசோதண்கள்

Cu இன் இரு ஒட்சைட்டுகளே சூடான நிலேயில் H₂ ஆஸ் Cu ஆகத் தாழ்த்தல்.

என்ற எளிய முழு எண் விக்கமாகும்.

உதாரணம்: ஒரு பரிசோதனேயில் 3·98 g குப்பிரிக்கொட்சைட்டை H₂ ஆல் தாழ்த்திய போது 3·18 g Cu பெறப்பட்டது. இன்னு மொரு பரிசோதனேயில் 3·58 g குப்பிரசொட்சைட்டை H₂ ஆல் தாழ்த் தியபோது 3·18 g Cu பெறப்பட்டது.

இவை ஒவ்வொன்றிலும் 8 g O 2 உடன் சேர்ந்துள்ள Cu இன் திணிவுகளேக் கணித்து, இவை பல்விகிதசம விதிக்கு அமைய உள்ளன எனக் காட்டுக

 $= 31.8 \, g$.

பெரிசோதன் I இல்

CuO இன் திணிவு = 3.98 g

Cu , , = 3.18 g

O2 , , = 0.80 g

0.8 g O2 உடன் சேர்ந்துள்ளை Cu இன் திணிவு = 3.18 g

8 g , , , , =
$$\frac{3.18}{0.8} \times 8$$

பரிசோத2ீன II இல்

0 4 g O 2 உடன் சேர்ந்துள்ள Cu இன் திணிவு = 3 18 g

$$8 \text{ g}$$
 , , $= \frac{3.18}{0.40} \times 8 = 63.6 \text{ g}$

8 g O₂ உடன் சேர்ந்துள்ள Cu இன் திணிவுகளின் விகிதம் = 31·8:63·6 = 1:2 ஆகும்.

இத்திணிவு விகிதம் பல்விகிதசம விதிக்கு அமைய உள்ளது

இரசாயனச் சேர்க்கை விதிகள்

மேலே தரப்பட்ட திணிவுக் காப்பு விதி, மாரு அமைப்பு விதி, பல்விகிதசம விதி ஆகிய மூன்றும் இரசாயனச் சேர்க்கை விதிகளா கும்.

இவ்விதிகள் தொடர்பான பரிசோதஃனகளிலிருந்து சடப்பொருள களில் அணுக்கள் உண்டு என்றும், இவ்வணுக்கள் இரசாயனத் தாக் கங்களில் பங்கு கொள்ளக்கூடியன என்றும் அறியப்படுகிறது

அதாவது இப்பரிசோதனேகள் சடப்பொருள்கள் யாவும் அணுக்கள் எனப்படும் மிகச்சிறிய துணிக்கைகளாலானவை என்னும் அடிப்படை எண்ணக் கருவை விளக்குவனவாகும்.

அணுக்கொள்கை

சடப்பொருள்கள் யாவும் அணுக்கள் எனப்படும். மிகச்சிறிய துணிக்கைகளாலானவை என்ற கொள்கையை திட்டவட்டமாக வெளி யிட்ட விஞ்ஞானி ஜோன் தாற்றன் ஆவர் (1808-இல்) இக்கொள்கை தூற்றனின் அனுக் கொள்கை என அழைக்கப்படுகின்றது.

தூற்ற**னி**ன் அணுக்கொள்கை

- சடப்பொருள்கள் யாவும் அணுக்கள் எனப்படும் மிகச்சிறிய மேலும் பிரிக்கப்பட முடியாத துணிக்கைகளாலானவை.
- ஒரு மூலகத்தின் அணுக்கள் யாவும் எல்லா வகையிலும் ஒரே தன்மையானவை. உடம் திணிவு, கனவளவு, இரசாயன இயல் புகள் முதலியன.

- 3. வெவ்வேறு மூலகங்களின் அணுக்கள் வெவ்வேறு திணிவு, கன வளவு, இரசாயன இயல்புகள் உடையன.
- 4. அணுக்கள் ஆக்கப்படுவதுமில்லே அழிக்கப்படுவதுமில்லே
- வெவ்வேறு மூலகங்களின் அணுக்கள் சிறிய முழு எண் விகிதங் களில் சேர்வதளுல் சேர்வைகள் உண்டாகின்றன.

மூலகம்

எந்த ஒரு தெரிந்த இரசாயன முறையிருலும் மேலும் எளிய பதார்த் தங்களாகப் பிரிக்**க** முடியாத ஒரு பதார்த்தம் மூலகம் எனப்படும்.

2 ID			
மூ லகம்	குறியீடு	மூலகம்	குறியீட <u>ு</u>
காபன்	C	ஒ ட் சிசன்	О
செம்பு	Cu	ஐ தரசன்	H
கல்சியம்	Ca	நைதரச ன்	N
க ாகம்	Zn	கு ளோரீன்	C1

சேர்வை

இரண்டு அல்ல*து* இரண்டிற்கு மேற்பட்ட மூலக**ங்க**ள் இரசாயனச் சேர்க்கை அடைந்த நிலேயில் கொண்ட ஒரு பதார்த்தம் சேர்வை எனப் படும்.

0 -- 1

சேர்வை	இரசாயனச சூத்துர
மகனீசி யமொட்சைட்டு	MgO
சல்பூரிக்கமிலம்	H_2SO_4
ஐதரோக்குளோ ரிக்க மி லம்	HC1
பொற்ருசியம் பேர்மங்கனேற்று	KMnO ₄

அணு

இரசாயனத் தாக்கத்தில் பங்கு கொள்ளக்கூடிய ஒகு மூலகத்தின் மிகச் சிறிய துணிக்கை அணு எனப்படும்.

மாதிரி விஞக்கள் [கட்டமைப்பு, பகுதிக் கட்டமைப்பு]

 ஒரு வன்கண்ணுடிச் சோதனேக் குழாய்க்குள் 3 தீக்குச்சிகள் இடப் பட்டு, சோதனேக் குழாயின் வாயுடன் ஒரு பலூன் இறுக

- இணேக்கப்பட்டது. இதன் திணிவு துணியப்பட்டு, ஒளிராப் பல் சன் சுவாலேயால் சூடாக்கப்பட்டு, தீக்குச்சி எரிந்த பின் ஆற விட்டுத் திணிவு துணியப்பட்டது.
- (அ) தீக்குச்சி எரியும் போது நீர் அவதானிக்கக் கூடியவை யாவை?
- (ஆ) சோதனேக் குழாயைத் தக்கையால் அடைக்காது பலூனே இணேத் ததன் நோக்கம் யாது?
- (இ) சோதனேக் குழாய் ஏன் ஒளிராப் பன்சன் சுவாஃயால் சூடாக் கப்பட வேண்டும்?
- (ச) எரிதலின் பின் உண்டான விளேவுகளே அவதானித்தபோது, அதில் தீக்குச்சிகளின் எரியாத சிறு மரப்பகுதிகள் இருப்பின், அதற்கு யாது விளக்கம் கொடுப்பீர்
- (உ) எரிதலின் முன்னுள்ள திணிவிற்கும் எரிந்த பின்னுள்ள திணிவிற் கும் உள்ள தொடர்பு யாதாயிருக்கும்.
- (ஊ) மேற்கண்ட பரிசோதனே யாதுமொரு இரசாயன விதிக்கு சான்று பகரும் என நீர் கருதிஞல், அவ்விதி யாது?
- (எ) தீக்குச்சிகளே ஒரு திறந்த சோதஃனக் குழாயில் நிறுத்து எரிப்பின். சூடாக்க முன்னுள்ள திணிவுக்கும் சூடாக்கிய பின்னுள்ள திணி வுக்கும் உள்ள தொடர்பு யாதாயிருக்கும்.
- (ஏ) (எ) இல் நீர் கூறும் விடைக்குக் காரணம் தருக.
- 2. மகனீசியமும் ஒட்சிசனும் சேரும் திணிவுப்படி விகி தத்தைத் துணி வதற்கு ஒரு மாணவன் 3 வேறுபட்ட முறைகளேக் கையாண் டான். இம்முறைகளில் அவன் Mg இன் 6 வேறுபட்ட திணிவு களேக் கொண்டு MgO ஐ ஆக்கி, அவை ஒவ்வொன்றிலுமுள்ள Mg இனதும் O 2 இனதும் திணிவுகளே அட்டவணேப்படுத்தினுன்.
- அட்டவணே பரிசோதனோ I II III IV V VI Mg இன் திணிவு (g இல்) 0.30 0.45 0.60 0.90 1.20 1.35 O₂ இன் திணிவு (g இல்) 0.20 0.30 0.40 0.60 0.80 0.90
- (அ) Mg இன் திணிவுகளே அட்டவணேயில் அவற்றின் கீழுள்ள O2 இன் திணிவுகளுக்கெதிரே குறித்து வரைபு வரைகை. இவ்வரைபிலிருந்து பின்வரும் விஞைக்களுக்கு விடை தருக
- (ஆ) Mg இன் திணிவு அதிகரிக்கும் போது O₂ இன் திணிவுக்கு யாது நிகழ்கின்றது

- (இ) 0.50 g O2 உடன் சேரக்கூடிய Mg இன் திணிவு என்ன?
- (ஈ) 1·05 g Mg உடன் சேரும் O₂ இன் திணிவைக்கணிக்க.
- (உ) Mg இன் திணிவு பூச்சியமாக இருக்கும் போது O₂ இன் திணிவு யாதாகும்?
- (ஊ) Mg உம் 0 2 உம் சேர்ந்து எத்தனே வகையான ஒட்சைட்டுகளே உண்டாக்கியுள்ளன?
- (எ) (ஊ) இல் நீர் தரும் விடைக்கு நியாயம் கூறுக.
- 3. செம்பும் ஒட்சிசனும் திணிவு ரீதியில் எவ்வாறு ஒன்றுடன் ஒன்று சேருகின்றன என்பதை அறியும் நோக்குடன் பின்வரும் ஆய்வுகள் செய்யப்பட்டன

0.636 g செம்புத் தோள். மூடியுடனுள்ள புடக்குகையில் நிறுத் தெடுக்கப்பட்டு பன்சன் சுவாகுயோல் மாருத் திணிவு வரை சூடாக் கப் பட்டது. இறுதியில் எஞ்சிய கறுப்புத் தூளின் திணிவு 796 g ஆகக் காணப்பட்டது.

மற்றைய ஆய்வில் 1.59 g செம்புத் தொருவலேச் செறிந்த நைத்திரிக்கபிலத்தில் கரைத்து, உண்டாகிய கரைசலே முதலில் மெதுவாகச் சூடாக்கி ஆவியாக்கி, பின் பலமாக மாறுத் திணிவு வரை சூடாக்கிய போது 1.99 g கறுப்புத் தூள் பெறப்பட்டது.

- (அ) புடக்குகையைச் சூடாக்கும் போது அதன் மூடி இடைக்கிடை சற்று உயர்த்தி மூடப்பட்டது. ஏன்?
- (ஆ) செம்புத் தூள் ஏன் திறந்த புடக்குகையில் சூடாக்கப்படவில்லே?
- (இ) மாருத் திணிவு வரை சூடாக்கிய பின் புடக்குகையில் எஞ்சி யுள்ள கறுப்புத் தூள் யாது? தேல
- (ஈ) இக்கறுப்புத் தூனேப் பெறுவதற்குப் புடக்குகையை நீண் ட நேரம் சூடாக்க வேண்டியிருந்தது. இதற்கு யாது விளக்கம் கூறலாம்.
- (உ) இரண்டாவது ஆய்வில் செம்புத் துருவலேச் செறிந்த நைத்திரிக் கமிலத்தில் கரைக்கும் போது நீர் பெறக்கூடிய அவதானங்களே எழுதுக.
- (ஊ) (உ) இல் பெறப்பட்ட கரைசல் ஆவியாகும் வரை மெதுவாகச் சூடாக்கப்படுகிறது. ஏன்?
- (எ) மேற்படி இரு ஆய்வுகள் ஒவ்வொன்றிலும் 8 கி ஒட்சிசனுடன் சேர்ந்துள்ள செம்பின் திணிவைக் கணிக்க
- (ஏ) (எ) இல் நீர் பெற்ற விடைகள் எவ்விரசாயன வி தி.க்கு அமைய உள்ளன.

அத்தியாயம் 2

மூலக்கூறுகள்

ஒரு மூலகத்தின் அல்லது சேர்வையின் சுயாதினமாக இருக்கக்கூடிய மிகச் சிறிய துணிக்கைகள் மூலக்கூறுகள் எனப்படும்.

மூலக்கூறுனது, இரசாயனச் சேர்க்கையால் ஒன்றிணேந்த ஒரே இனமான அணுக்களேக் கொண்ட அல்லது வேறு இனமான அணுக் களேக் கொண்ட அணுக்கூட்டம் ஆகும்.

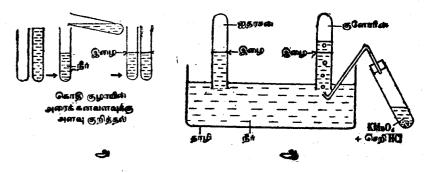
ஒரு **மூலகத்தின்** மூலக்கூறு அம்மூலகத்தின் இர**ண்டு அல்**ல து இரண்டிற்கு மேற்பட்ட அணுக்கள் இணேவதால் உண்டாகிறது.

a - 10

- **b.** ஓசோன் $O + O + O \longrightarrow O_3$
- \mathbf{O}_3 ஆனது மூவணுக் கொண்ட மூலக்காருகும்

குறிப்பு: சடத்துவ வாயுக்களின் மூலக்கூறுகள் ஒவ்வொன்றும் ஓர ணுக் கொண்டது.

	2 — ₩			
	மூலகம்	மூலக்கூறு	மூலகம்	மூலக்கூறு
1.	ஈலியம்	He	4 கிரித்தன்	Kr
2.	நேயன்	Ne	் சென ன்	Xe
3.	ஆகன்	Ar	6 இரேடன்	Rn

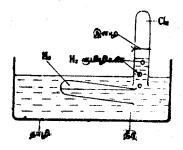

ஒரு சேர்வையின் மூலக்கூறு, இரண்டு அல்லது இரண்டிற்கு மேற் பட்ட மூலகங்களின் அணுக்கள் இணேவதால் உண்டாகிறது.

சேர்வை	மூலக்கூறு
நைத்திரிக்கொட் சைட்டு	NO
நைத ர சனீரொட்சைட் டு	NO_2
அ மோனியா	NH ₃
ஐதரசன் குளோரைட்டு	HCl
காப ேரொட்சைட் டு	CO
காபனீ ரொட்சைட்டு	CO ₂
ஐதரசன் சல்பைட்டு	H ₂ S
சோடியங்காபனேற்று	Na ₂ CO ₃
சோடியமிருகாபனேற்று	NaHCO ₃

கேலுசாக்கின் விதி

பரிசோதனே I ஐதரசனும் குளோரீனும் சேர்தல்

ஐதான சல்பூரிக்கமிலத்தை நாகத்துடன் சேர்த்து ஐதரசன் வாயு வைத் தயாரித்து அதனே ஒரு கொதி குழாயின் அரைக் கனவளவுக் குச் சேகரிக்க (படம் 5 ஆ).


படம் 5

செறிந்த ஐதரோக்குளோரிக்கமிலத்தைப் பொற்றுசியம் பேர்மங் கேனேற்றுடன் சேர்த்து. வெளிவரும் குளோரீனே அதேயளவான இன் ஞெரு கொதிகுழாயின் அரைக் கனவளவிற்குச் சேகரிக்க (படம் 5 ஆ).

[குறிப்பு கொதி குழாயின் அரைக் கனவளவிற்கு அளவு குறித்தல் படம் 5 அ இல் காட்டப்பட்டுள்ளது. ஒரே அளவான இரு கொதிகுழாய்களேத் தேர்ந்தெடுத்து, அவற்றில் ஒன்றை நீரால் நிரப்புக பின் இந்நீரை மற்றைய கொதி குழாய்க்குள் ஊற்றி, இரு குழாய்களிலு முள்ள நீர் மட்டங்களேச் சமப்படுத்துக. நீர்மட்டத்தின் எதிரே ஒரு இழையைக் கட்டுக. இழை மட்டம் அரைக் கனவளவைக் குறிக்கும். H₂ ஐயும் Cl₂ ஐயும் இழை மட்டம் வரை சேகரிக்க].

இப்பொழுது \mathbf{H}_2 உம் Cl_2 உம் சம சுனவளவுகளில் சேகரிக்கப் பட்டுள்ளன.

 \mathbf{H}_2 ஐக் கொண்ட கொதி குழாயைச் சற்று சரித்து அதன் வாயை, Cl_2 ஐக் கொண்ட கொதி குழாயின் வாயின் கீழ் வைத்து. அதிலுள்ள \mathbf{H}_2 ஐ Cl_2 ஐக் கொண்ட கொதி குழாய்க்குள் படம் $\mathbf{6}$ இல் காட்டியவாறு செலுத்துக.

படம் 6

H₂ முற்**றிலும் செலுத்தப்பட்ட பின் வாயுக் கலவை கொ**தி குழாயின் முழுக் **கனவளவையும் அடைப்பதை அவதானி**க்கலாம்.

நீரின் மேலுள்ள இவ்வாயுக் கலவையை மறை சூரிய ஒளியில் (நேர்ச் சூரிய ஒளியில் அல்ல) வைத்து அவதானிக்க.

அவதானிப்பு: நீர் கொதி குழாய்க்குள் படிப்படியாக எழுந்து இறுதி யில் கொதி குழாய் முழுவதையும் நிரப்புவதை அவதானிக்கலாம்.

முடிவு: 1. H₂ உம் Cl₂ உம் தாக்கமுற்று உண்டாகிய வாயு ஐதரசன் கு**ளோரைட்**டு (H Cl) ஆகும். 2. ஐதரசன் குளோரைட்டு நீரில் கரைய, அதனுல் வெற்றிடம் உண்டாக, வெற்றிடத்தை நிரப்ப நீர் கொதி குழாய்க்குள் எழுந்து இறுதியில் அதனே முற்றுக நிரப்புகிறது.

[குறிப்பு: நீர் முற்ளுக எழாது, கொதி குழாய்க்குள் நீரின் மேல் மீதி வாயு இன்னும் இருக்குமாயின், இதற்குக் காரணம் தாக்கிகளின் கனவளவு சமமாயில்லாததேயாகும். ஒளியில் வைக்கு முன், குளோரீனில் ஒரு பகுதி நீரில் கரைந்திருப்பதும் இதற்கு ஒரு காரணமாக இருக்கலாம். அப்படியாயின், குளோரீனச் சேகரிக்க முன், அதீனச் சேகரிக்க உபயோகிக்கும் நீரூ டாக குளோரீணச் செலுத்தி இந்நீரை இவ்வாயுவால் நிரம்பலாக்குவதன் மூலம் இவ்வழுவைத் தவிர்க்கலாம்].

3. இதிலிருந்து, உண்டாகிய HCl இன் கனவளவு கொதி குழாயின் கனவளவக்குச் சமம் என அறியலாம்.

[H₂ ஐயும் Cl₂ ஐயும் கொண்ட வாயுக் கலவையை இரசத்தின் மேல் வைத்து மறை சூரிய ஒளியில் வைக்கும் போது, இரசமட்டம் கொதி குழாய்க்குள் எழாதிருப்பதிலிருந்தும், குழாயிலிருந்து வாயுக்குமிழிகள் வெளியேருத்திலிருந்தும் HCl இன் கனவளவு கொதி குழாயின் கனவளவுக்குச் சமம் என நிறுவலாம் — ஏனெ னில் HCl இரசத்திற் கரையாது].

4. 🤰 கொதி குழாய் H 2 + 🛊 கொதிகுழாய் Cl 2 =

1 கொதிகுழாய் HCI வாயு.

1 கணவளவு H_2 + 1 கணவளவு Cl_2 = 2 கனவளவு HCl வாயு. கனவளவு விதைம் H_2 : Cl_2 : HCl = 1 : 1 : 2.

பரிசோத**ே II ஐதரசன் சல்பைட்டு**ம் குளோரீனும் சேரும் கனவளவு வீகிதத்தைத் துணிதல்,

பெரசுச் சல்பைட்டுடன் ஐதான ஐதரோக்குளோரிக்கமிலத்தைச் சேர்த்து ஐதரசன் சல்பைட்டு (H₂S) வாயுவைத் தயாரித்து, பரி சோதணே I இல் போல் ஒரு கொதி குழாயின் அரைக் கனவளவுக் குச் சேகரிக்க.

அரைக் கொதி குழாய் நிரம்பிய குளோரீன் வாயுவை பரிசோதனே I இல் போல் தயாரிக்க.

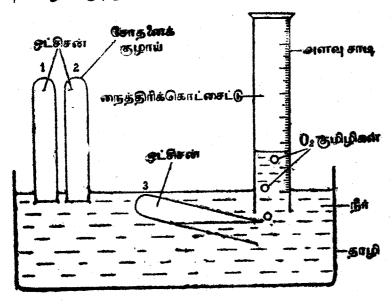
ஒரு வாயுவை மற்றைய வாயுவைக் கொண்ட கொதி குழாய்க் குள் பரிசோதனே I, படம் 6 இல் காட்டியவாறு செலுத்துக.

- அவதானிப்பு: 1. வாயுக் கலவை கொதி குழாயின் முழுக் கனவள வையும் அடைக்கின்றது.
- நீரின் மேலுள்ள இக்கலவையை மறை சூரிய ஒளியில் வைக்கும் போது, நீர் கொதி குழாய்க்குள் எழுந்து இறுதியில் அதனே நிரப்

புவதையும், மஞ்சள் நிற கந்தகத் தூள் உண்டாகுவதையும் அவகானிக்கலாம்.

முடிவு: 1. H₂S ஆனது Cl₂ உடன் தாக்கமுற்று HCl வாயுவைக் கொடுக்க, HCl நீரில் கரைய நீர் கொதி குழாய்க்குள் எழுந்து அதனே நிரப்புகிறது. [பரிசோதனே I இன் முடிவைக் காண்க]

2. $\frac{1}{3}$ கொதி குழாய் $\mathbf{H}_2\mathbf{S}+\frac{1}{3}$ கொதி குழாய் $\mathbf{Cl}_2=$ 1 கொதி குழாய் \mathbf{HCl} வாயு.


1 கனவளவு H_2S+1 கனவளவு $Cl_2=2$ கனவளவு HCl வாயு. கனவளவு விகிதம் $H_2S:Cl_2:HCl=1:1:2$.

பரிசோதுணே III நைத்திரிக்கொட்சைட்டும் ஒட்சிசனும் சேர்தல்

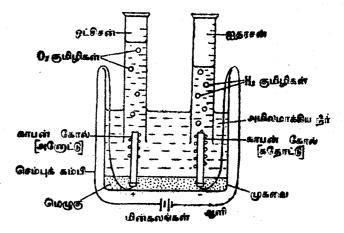
செம்புத் தூளுடன் ஐதான நைத்திரிக்கமிலத்தைச் சேர்த்து. அவற்றின் தாக்கத்தின் விளேவாக வெளிவரும் நைத்திரிக்கொட் சைட்டு (NO) வாயுவை ஒரு அளவு சாடியில் சேகரிக்க.

பொற்ருசியம் பேர்மங்கனேற்றைச் சூடாக்கி அதிலிருந்து வெளி வரும் ஒட்சிசனே, கனவளவு தெரிந்த சமகனவளவான சில (2-4) சோதனேக் குழாய்கள் நிரம்ப சேகரிக்க (படம் 7).

ஒட்சிசனேக் கொண்ட சோதனேக் குழாயின் வாயை அளவு சாடியின் கீழ் வைத்து, அதிலுள்ள ஒட்சிசனே அளவு சாடிக்குள் படம் 7 இல் காட்டியவாறு செலுத்துக.

அவதானிப்பு: சோதணக் குழாயிலிருந்து ஒட்சிசன் குமிழி ஒவ் வொன்றும் நைத்திரிக்கொட்சைட்டைக் கொண்ட சாடியை அடைந் ததும், ஒரு செங்கபில வாயு [நைதரசனீரொட்சைட்டு — NO₂] உண் டாகி உடனடியாகவே மறைநெறது. இதற்குக் காரணம், நைதரசனீ ரொட்சைட்டு நீரில் கரைவதேயாகும். இதன் விகோவாக நீர் மட்டம் சாடிக்குள் எழுகின்றது.

இவ்வாறு மற்றைய சோதனேக் குழாய்களிலுள்ள ஒட்சிசனேயும் வாயுச் சாடிக்குள் செலுத்தும் போது செங்கபில நிற வாயு உண் டாகி, அது நீரில் கரைய நீர்மட்டம் சாடிக்குள் எழுகின்றது.


அளவீடுகள்: 1. நீர் மட்டத்தின் எழுச்சியிலிருந்து தாக்கமடைந்த நைத்திரிக்கொட்சைட்டின் கனவளவை அளக்கலாம்.

2. உபயோகிக்கப்பட்ட சோதனேக் குழாய்களின் எண்ணிக்கையிலி ருந்து ஒட்சிசனின் கனவளவைக் கணிக்கலாம்.

முடிவு: 2 கனவளவு NO+1 கனவளவு $O_2=NO_2$ கனவளவு விகிதம் $NO:O_2=2:1$

பர்சோதனே IV. நிரை மின்பகுத்து H₂ ஐயும் O₂ ஐயும் பெறல்

இரு மின்குள் மின்கலங்களிலிருந்து இரு காபன் கோல்களேப் பெறுக. அவை ஒவ்வொன்றையும் செம்புக்கம்பியுடன் தொடுத்து, இக் காபன் கோல்களே ஒரு அகலமான முகவையில் நிலேக்குத்தாக வைத்து, இவற்றை நிலேநாட்டுவதற்கு உருகிய பரவீன் மெழுகை முகவைக்குள் ஊற்றி இறுக விடுக (படம் 8).

படம் 8

இரு செம்புக் கம்பிகளின் இரு முஃனகஃளயும் 2 அல்லது 3 மின் சூள் மின்கலங்களுடன் தொடுக்க. மின்சுற்றில் ஒரு ஆளியையும் தொடுக்க. முசுவைக்குள், காபன் கோல்களே மூடும்வரை அமிலமாக் கிய நீரை (சிறிதளவு சல்பூரிக்கமிலம் சேர்த்த நீரை) ஊற்றுக.

இரு அளவு சாடிகளே (அல்லது அளவிகளே) அமிலமாக்கிய நீரால் நிரப்பி, அவை ஒவ்வொன்றையும் ஒவ்வொரு மின்வாயின் மேலும் கவிழ்த்து வைக்க. ஆளியைத் தொடுத்து மின்சுற்றை முற்ருக்கி மின் ஞேட்டத்தைச் செலுத்துக. குறித்த நேர இடைவேளேகளில், அளவு சாடிகளில் சேர்கின்ற H_2 இனதும் O_2 இனதும் கனவளவுகளேக் குறித்துக்கொள்க

அவதானிப்பு:- 1. எதிர் மின்வாயில் (கதோட்டில்) H₂ வெளிவிடப் படுகிறது

- 2. நேர் மின்வாயில் (அனேட்டில்) O_2 வெளிலிட**ப்படுகிறது**.
- 3. ஒவ்வொரு குறித்த நேர இடைவேளேக்குப் பின்னும் அளவு சாயுக் குள் சேர்கின்ற H₁ இன் கனவளவு O₂ இன் கனவளவிலும் இரண்டு மடங்காக இருப்பதை அவதானிக்க.
- முடிவு நீரின் மின்பகுப்பின் போது வெளிவிடப்படும் H₂ இ**னதும்** O₂ இனதும் கனவளவுகள் **2** : 1 என்ற எளிய விகிதத்தில் உள் என என அறியலாம்

அதாவது, நீரானது 2 கனவளவு $\mathbf{H_2}$ இனதும் 1 கனவளவு $\mathbf{O_2}$ இனதும் இரசாயனச் சேர்க்கையால் உண்டான சேர்வையாகும்.

சுருக்கம்

பரிசோதனே I

ஐதரசன் + குளோரீன் -- ஐதரசன் குளோரைட்டு கனவளவு விகிதம்:- ஐதரசன் : குளோரீன் : ஐதரசன் குளோ ரைட்டு -- 1 : 1 : 2

பர்சோதன் II

ஐதரசன் சல்பைட்டு : குளோரீன் == ஐதரசன் குளோரைட்டு. கனவளவு விகிதம்:- ஐதரசன் சல்பைட்டு : குளோரீன் : ஐதரசன் குளோரைட்டு = 1 : 1 : \$

பரிசோதனே III

நைத்திரிக்கொட்சைட்டு + ஒட்சிசன் = நைதரசனீரொட்சைட்டு கனவளவு விகிதம்:- நைத்திரிக்கொட்சைட்டு : ஒட்சிசன் = 2:1

பரிசோதனே IV

ஐதரசன் + ஒட்சிச**ன் = நீர்** கனவளவு விகிதம்:- ஐதரசன் : ஒட்சிசன் = 2 ; 1

மேற்படி பரிசோதண்களின் முடிவுகளிலிருந்தும் இவற்றையொத்த மற்றும் பரிசோதண்களின் முடிவுகளிலிருந்தும், வாயுக்கள் ஒன்றே டொன்று சேரும் போது, ஒரே வெப்பநிலே அமுக்கத்தில் அளக்கப் பட்ட அவற்றின் கணவளவுகள் எளிய விகிதத்தில் உள்ளன என நிறு வப்படுகிறது.

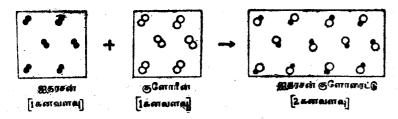
வெவ்வேறு வாயுக்களேக் கொண்டு இவற்றையொத்த பரிசோதனே களேச் செய்த கேலுசாக்கு என்ற பிரெஞ்சு விஞ்ஞானி, தமது பரிசோ தணேகளின் முடிவுகவேக் கொண்டு பின்வரும் வாயுச சேர்க்கை விதி யை 1808 இல் பிரகரித்துள்ளார்.

கேலுசாக்கின் விதி

வாயுக்கள் ஒன்றேடொன்று சேரும் போது, ஒரே வெப்பநில் அமுக் கத்தில் அளக்கப்பட்ட அவற்றின் சேரும் கணவளவுகள் எளிய விகிதத்தில் இருக்கும்; சேர்க்கையின் விளேவுகள் வாயுக்களாயின், அதே வெப்பநில் அமுக்கத்தில் அளக்கப்பட்ட அவற்றின் கனவளவுகளும் சேரும் கனவளவு களுடன் எளிய விகிதத்தில் இருக்கும்.

வாயுக்கள் பற்றிய மூலக்கற்றுக் கொள்கை

வாயுக்கள், மூலக்கூறுகள் எனப்படும் சுயாதீனமாக இருக்கக் கூடிய மிகச் சிறிய துணிக்கைகளேக் கொண்டவை. இம் மூலக்கூறு கள் தொடர்ச்சியாக அசைந்த வண்ணமுள்ளன. இவை அசையும் போது தாம் ஒன்றுடன் ஒன்றும், தம்மைக் கொள்ளும் பாத்திரத்தின் சுவர்களுடன் மோதுகின்றன. வாயு மூலக்கூறுகள் தம்மைக் கொள்ளும் பாத்திரத்தின் சுவர்களுடன் மோதுவதால் அமுக்கம் ஏற்படு இறது. வெப்பநிலே அதிகரிக்கும் போது, இம் மூலக்கூறுகள் சக்தியை உறிஞ்சி முன்பிலும் அதிக வேகமாக அசைகின்றன. வெப்ப நிலே குறையும் போது, இம் மூலக்கூறின் கேவைற்றின் வேகம் குறைகிறது.


ஒரே வெப்பநிஃயிலும் ஒரே அமுக்கத்திலும் வெவ்வேறு வாயுக்களின் சம கனவளவுகள் சம எண்ணிக்கையான மூலக்கூறுகளேக் கொண்டுள்ளன என்ற கருத்தை, அவகாதரோ என்ற இத்தாலிய விஞ்ஞானி 19ம் நூற்முண்டின் முற்பகுதியில் வெளியிட்டுள்ளார். இப்பொழுது இக்கருதுகோளின் உண்மை உறுதிப்படுத்தப்பட்டு அவகாத ரோவின் விதி என அழைக்கப்பட்டு வருகிறது.

அவகாதரோவின் விதி

ஒரே வெப்ப நிலேயிலும் ஒரே அமுக்கத்திலும் எல்லா வாயுக்களின் தும் சம கனவளவுகள் சம எண்ணிக்கையான மூலக்கூறுகளேக் கொண் டிருக்கும்.

கேலுசாக்கின் விதியை அவகாதரோவின் விதியால் விளக்கல் உடம் ஐதரசனும் குளோரீனும் சேர்தலே மூலக்கூற்றுக் கருத்துக் கொண்டு விளக்கல் (படம் 9)

ஒரே வெப்பநிலே அமுக்கத்திலுள்ள வாயுக் கனவளவுகள்

படம் 9

1 கனவளவு ஐதரசன் + 1 கனவளவு குளோரீன் == 2 **கனவளவு** ஐதரசன் குளோரைட்டு

1 கனவளவில் ந மூலக்கூறுகள் உள்ளதெனக் கொண்டால்,

n மூலக்கூறுகள் ஐதரசன் + n மூலக்கூறுகள் குளோரீன் =
2n மூலக்கூறுகள் ஐதரசன் குளோரைட்டு

1 மூலக்கூறு ஐதரசன் + 1 மூலக்கூறு குளோரீன் = 2 மூலக்கூறுகள் ஐதரசன் குளோரைட்டு

ஒரு ஐதரசன் குளோரைட்டு மூலக்கூறில் ஆகக் குறைந்தது ஒரு ஐதரசன் அணுவும் ஒரு குளோரீன் அணுவும் இருத்தல் வேண்டும். ஆகவே ஒவ்வொரு ஐதரசன் மூலக்கூறும் ஒவ்வொரு குளோர் ண் மூலக்கூறும் குறைந்தது இரண்டு அணுக்களேயாவது கொண்டிருக்க வேண்டும்.

$$H_2 + Cl_2 = 8 HCl$$

இவ்வாறு ஒவ்வொரு ஒட்சிசன் மூலக்கூறும் நைதரசன் மூலக் கூறும் இரண்டு அணுக்களாலானது என நிறுவலாம்.

3)
$$N_2 + 3 H_2 = 2 NH_3$$

வாயுக்களின் பௌதிக நடத்தை

வாயுக்களின் பௌதிக நடத்தை பின்வரும் விதிகளால் விளக்**கப்** ப**டுகி**ன்றது

- போயிலின் விதி
- 2. சாள்சின் விதி

போயிலின் விதி

மாளு வெப்பநிலேயில் ஒரு குறித்த திணிவுடைய வாயுவின் கனவளவு அமுக்கத்திற்கு நேர்மாறு விகிதசமமானது.

அதாவது வெப்பநிலே மாருதிருக்கையில், ஒரு குறித்த திணிவு டைய வாயுவின் கனவளவு, அமுக்கம் கூடிக் குறைகிறது, அமுக்கம் குறையக் கூடுகிறது.

யாதுமொரு குறித்த அமுக்கத்தில் ஒரு வாயுவின் க**ணவளவை** நாம் அறிவோமாயின், வெப்பநிலே மா*ரு*திருக்க, வே*ருெரு அமுக்கத்* தில் அவ்வாயுவின் கனவளவைக் கணிக்கலாம்.

နေတာရကရာ

$$P = \mathcal{A}(\mu)$$
န်နောက်
 $V \propto \frac{1}{P}$
 $V_1 \propto \frac{1}{P_1}$
 $V_2 \propto \frac{1}{P_2}$
 $P_1V_1 = K [K = \omega \pi p)$ တေါ်
 $P_2V_2 = K$
 $P_1V_1 = P_2V_2$

உதாரணம் 1 700 mm இரச அமுக்கத்தில் ஒரு குறித்த திணிவு டைய வாயுவின் கனவளவு 1000 cm³ ஆகும். வெப்பநிலே மாருதிருக்க, 1400 mm இரச அமுக்கத்தில் இவ்வாயுவின் கனவளவு யாது?

$$P_{1}V_{1} = P_{2}V_{2}$$

$$700 \times 1000 = 1400 \times V_{2}$$

$$V_{2} = \frac{700 \times 1000}{1400} \text{ c m}^{3}$$

$$= 500 \text{ c m}^{3}$$

உதாரணம் 2. 30°C இலும் 1140 mm இரச அமுக்கத்திலும் ஒரு குறித்த திணிவுடைய ஒட்சிசனின் கனவளவு 600 cm³. அதே வெப்ப நிஃலயிலும் 760 mm இரச அமுக்கத்திலும் இவ்வாயுளின் கனவளவு யாது?

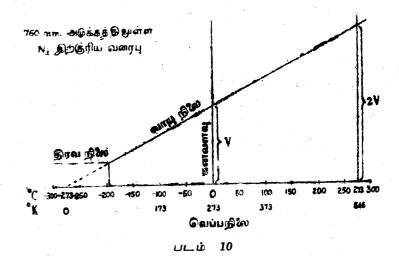
$$P_{1}V_{1} = P_{2}V_{2}$$

$$1140 \times 600 = 760 \times V_{2}$$

$$V_{2} = \frac{1140 \times 600}{760} \text{ c m}^{3}$$

$$= 900 \text{ c m}^{3}$$

சாள்சின் விதி

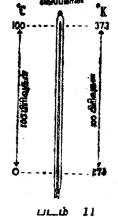

மாளு அமுக்கத்தில் ஒரு குறித்த திணிவுடைய வாயுவின் கடைவளவு, ஒவ்வொரு பாகை சதம அளவை வெப்பநிலே உயர்வுக்கு அல்லது தாழ் வுக்கு ஏற்ப 0° C இலுள்ள அதன் கனவளவில் $_{7}$ $_{78}^{\circ}$ பாகம் கூடும் அல்லது குறையும்.

இவ்விதி, O_2 . H_2 , N_2 , Cl_2 , CO_2 போன்ற நிஃபொன வோயுக் களுக்கு உண்மையானது.

கெல்வின் வெப்பநிலே [தனி வெப்பநி**ல**ே]

குறித்த திணிவுடைய ஒரு வாயுவை 0° C இற்குக் கீழ் குளிரச் செய்தால், அதன் கனவளவு ஒவ்வொரு ° C இறக்கத்துக்கும் அதன் ப° C இலுள்ள கனவளவில் தித பாகம் சுருங்கும். இவ்வாருக இவ் வாயுவை — 273° C உக்குக் குளிரச் செய்யலாம் என நாம் கருதினுல், இந்த – 273° C இல் வாயுவுக்குக் கனவளவு இல்லாமல் போய்விடும் (பூச்சியம் ஆகிவிடும்)

ஆயினும் நடைமுறையில் இது நிகழமாட்டாது. ஏனெனில் இவ் வெப்பநிலேயை (- 273° C ஐ) அடையமுன்பே எல்லா வாயுக்களும் திரவமாகிவிடுகின்றன (உ - ம் N₂ வாயு திரவமாகும் வெப்பநிலே = - 195·8°C). ஆதலால், திரவமாகிய பின் இவ்விதியைப் (சாள்சின் விதியைப்) பிரமோகிக்க இயலாது (படம் 10).



– 273° C ஆகிய வெப்பநிலே கெல்வின் பூச்சியம் எனட்படும். – 273° C ≕ 0° K [K ≕ கெல்வின்]

சதும அளவை (சென்ரி**கிறேட்**) வெப்ப நிலேயை கெல்<mark>வின் வெப்ப நிலேக்கு</mark> மாற்றுதல்

சதம அளவையிலுள்ள வெப்பநிலேயை கெல்வின் வெப்பநிலேக்கு மாற்றுவதற்கு. நாம் சதமவளவை வெப்பநிலேயுடன் 273 பாகையைக் கூட்டவேண்டும். (படங்கள் 10, 11 ஐக் காண்க)

2 —
$$\dot{\omega}$$

0° C = 0 + 273 = 273° K
5° C = 5 + 273 = 278° K
30° C = 30 + 273 = 303° K
100° C = 100 + 273 = 373° K
- 5° C = -5 + 373 = 268° K
- 273° C = -273 + 273 = 0° K

கெல்வின் வெப்பநி**ஸ்** அடிப்படையில் சாள்**சின் வி**தியைப் பின்வருமாறு கூறலாம்.

மாரு அமுக்கத்தில் ஒரு குறித்த திணிவுடைய வாயுவின் கனவளவு கேல்வின் வெப்பநிலேக்கு நேர் விகிதசமமானது.

$$V=$$
 கனவளவு $T=$ கெல்வின் வெப்பநிலே [t°C+273].ஆயின் $V\propto T$ $V_1\propto T_1$ $V_2\propto T_2$ $\frac{V_1}{T_1}=K$ [$K=\omega r$ நிலி] $\frac{V_2}{T_2}=K$ $\frac{V_1}{T_2}=\frac{V_2}{T_2}$

உதாரணம்: 1 O°C இல் ஒரு குறித்த திணிவுடைய ஒரு வாயு 300 cm³ கனவளவுடையது. அமுக்கம் மாருதிருக்கையில் 91°C இல் இதன் கனவளவு யாது?

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{300}{0 + 273} = \frac{V_2}{91 + 273}$$

$$\frac{300}{273} = \frac{V_2}{364}$$

$$V_2 = \frac{300 \times 364}{273} \text{ cm}^3$$

$$= 400 \text{ cm}^4$$

உதாரணம் 2. 30°C இல் ஒரு குறித்த திணிவுடைய ஐதரசனின் கனவளவு 1010 cm³ ஆகும். அமுக்கம் மாருதிருப்பின் நியம வெப்ப நிலேயில் (O°C இல்) அதன் கனவளவைக் கணிக்க.

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{1010}{303} = \frac{V_2}{273}$$

$$V_2 = \frac{1010 \times 273}{303}$$

$$= 910 \text{ cm}^3$$

சாள்சின் விதி

(அமுக்கம் சம்பந்தப்பட்டது)

மாருக் கனவளவில் ஒரு குறித்த திணிவுடைய வாயுவின் அமுக்கம் கெல்வின் வெப்பநிலக்கு நேர் விகிதசமமானது.

$$P =$$
 அமுக்கம் $T =$ கெல்வின் வெப்பநிலே [t°C+273] $P \propto T$ $P_1 \propto T_1$ $P_2 \propto T_2$ $\frac{P_1}{T_1} = K$ [K=மாறிலி] $\frac{P_2}{T_2} = K$ $\frac{P_1}{T_2} = K$

உதாரண**ம்:** மா*ருத க*னவளவுடைய ஒரு பாத்திரத்தில் ஒரு குறித்த திணிவுடை**ய வாயுவின்** அமுக்கம் O°C இல் 637 mm இரசம் ஆகும். 27°C இல் அதன் அமுக்கம் யா**து?**

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{637}{0 + 273} = \frac{P_2}{27 + 273}$$

$$\frac{637}{273} = \frac{P_2}{300}$$

$$P_2 = \frac{637 \times 300}{273}$$

$$= 700 \text{ mm}$$

போயிலின் விதி, சாள்சின் விதி

V= கனைவளவு P= அமுக்கம் T= கெல்வின் வெப்பநில் $V_1\propto rac{1}{P_1}$ $V_1\propto T_1$ $P_1\propto T_1$ $V_2\propto rac{1}{P_2}$ $V_2\propto T_2$ $P_2\propto T_2$ $P_1 V_1=P_2 V_2$ $rac{V_1}{T_1}=rac{V_2}{T_2}$ $rac{P_1}{T_1}=rac{P_2}{T_2}$ $rac{P_1}{T_2}=rac{P_2}{T_2}$

கணவளவை நி. வெ. அ. உக்கு மாற்றல் நி. வெ. அ. = நியம வெப்பநிலே அமுக்கம் [அல்லது பொ. வெ. அ. = பொது வெப்பநிலே அமுக்கம்] நியம வெப்பநிலே = O°C அல்லது 273°K நியம அமுக்கம் = 760 mm அல்லது 76 cm இரச நிரல்

உதாரணம் 1 27°C இலும் 570 mm அமுக்கத்திலும் ஐதரசனின் கன வளவ 600 cm³ ஆகும். நி. வெ. அ. இல் இதன் கனவளவைக் கணிக்க.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$P_1 = 570 \text{ mm} \qquad P_2 = 760 \text{ mm}$$

$$T_1 = 300^{\circ} \text{K} \qquad T_2 = 273^{\circ} \text{K}$$

$$\frac{570 \times 600}{300} = \frac{760 \times V_2}{273}$$

$$V_2 = \frac{570 \times 600 \times 273}{300 \times 760}$$

$$= 409.5 \text{ cm}^3$$

உதாரணம் 2 91°C இலும் 950 mm அமுக்கத்திலும் ஒட்சிசனின் கனவளவு 800 ml ஆயின், நி. வெ. அ இல் இதன் கனவளவு யாது?

$$\frac{950 \times 800}{364} = \frac{760 \times V_2}{273}$$

$$V_2 = \frac{950 \times 800 \times 273}{364 \times 760}$$
= 750 ml.

விஞக்கள்

ஐதரசனும் குளோரீனும் ஒன்றுடன் ஒன்று தாக்கமுறும் கனவளவு விகிதத்தைத் துணியும் நோக்குடன் பின்வரு<mark>ம் ஆய்வு செய்யப்</mark> பட்டது.

ஒரே அளவான இரு கொதிகுழாய்கள் ஒவ்வொன்றிலும் அரைக் கணவளவு நிரம்பிய ஐதரசனும் குளோரீனும் தனித்தனி நீரின் மேல் சேகரிக்கப்பட்டன. சேகரிக்கப்பட்ட ஐதரசன். குளோரீனேக் கொண்ட கொதி குழாய்க்குள் செலுத்தப்பட்டது. பின்னர் (நீரின் மேல்) இவ்வாயுக் கலவையைக் கொண்டுள்ள குழாய் மறை சூரிய ஒளியில் வைக்கப்பட்டது.

- (அ) இவ்வாயுக் கலவையை மறை சூரிய ஒளியில் வைத்த பின் நீர் பெறக்கூடிய ஒரு அவதானத்தைத் தருக.
- (ஆ) உமது அவதானத்திற்கான காரணங்களேத் தருக.
- (இ) மேற்படி கலவை நேர்ச் சூரிய ஒளியில் வைக்கப்படாது, மறை சூரிய ஒளியில் வைக்கப்பட்டதற்கான காரணங்களேத் தருக.
- ் (ஈ) பரிசோதனேயைச் செய்த பொழுது பெறப்பட்ட அவதானம் எதிர் பார்த்தவாறு இருக்கவில்லே. இதற்கான காரணங்களேத் தருக.
- (உ) ஐதரசண்யும் குளோர்கோயும் சம கனவளவுகளில் (இரசத்தின் மேல்) கொண்ட ஒரு கொதி குழாயை மறை சூரிய ஒளியில் வைத்தால், யாது அவதானிக்கப்படும்?
- (ஊ) (உ) இல் நீர் பெற்ற அவதானத் திலிருந்து, விளேவு பொருளின் கனவளவு பற்றி யாது கூறமுடியும்.

- (எ) ஐத**ர்சன்,** குளோரீன், வாயு வி**ீ**ளவு பொருள் ஆகியவற்றின் கனவளவு விகிதம் என்ன?
- NO உம் O₂ உம் கனவளவு ரீதியில் எவ்வாறு ஒன்றுடன் ஒன்று சேர்கின்றன என்பதை அறியுமுகமாக பின்வரும் பரிசோதனே செய் யப்பட்டது.
 - NO ஐ (நீரின் மேல்) கொண்ட ஒரு அளவு சாடியினுள், ஓவ்வொன்றும் $20\,\mathrm{ml}$ கொள்ளளவுள்ள 4 சோதனேக் குழாய்கள் நிரம்பிய O_2 செலுத்தப்பட்டது.
- (அ) O₂ குமிழிகள் அளவு சாடியினுள் செல்லும் போது நீர் பெறும் அவதானங்களே எழுதுக
- (ஆ) சாடிக்குள் உண்டாகிய புதிய பதார்த்தம் யாது?
- (இ ஒரு கொதி குழாய் நிரம்பிய O₂, அளவு சாடிக்குள் செலுத்தப் பட்ட பின், சாடிக்குள் எழும் நீ**ரின் கன**வளவு என்ன?
- (ஈ) பரிசோ தணேயில் பயன்படுத்தப்பட்ட O₂ இன் மொத்**த**க் க**னவ**ளவு என்ன?
- (ஆ) (ஈ) இல் நீர் கூறிய கனவளவு O₂ உடன் தாக்கமடைந்த NO இன் மொத்த கனவளவு யாது?
- (ஊ) தாக்கமடைந்த NO இனதும் O₂ இனதும் கனவளவுகளின் எளிய விகிதத்தைக் கணிக்க.
- (ள) வாயுக் கனவளவுகள் ஒரே வெப்பநிலே அமுக்கத்தில் அளக்கப் பட்டதெனின், (ஊ) இல் நீர் பெற்ற விடைகளேக் கொண்டு வாயுச் சேர்க்கை பற்றி யாது சுறமுடியும்.
- (ஏ) } கொதி குழாய் நிரம்பிய (நீரின் மேலுள்ள) NO உக்குள் அதே யளவான இன்னெரு கொதி குழாயின் } கனவளவு நிரம்பிய O₂ ஐச் செலுத்தும் போது நீர் பெறக்கூடிய அவதானங்களே எழுதுக.
- 3. (2) $N_2 + 3H_2 = 2NH_3$

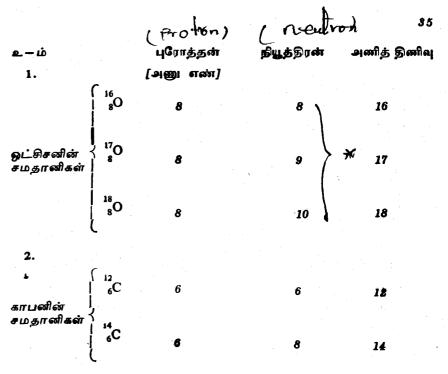
150 ml H₂ உடன் தாக்கமடையும் N₂ இன் கனவளவையும், தாக்கத்தின் விளேவாக உண்டாகிய NH₃ இன் கனவளவையும் கணிக்க (எல்லா வாயுக்களும் ஒரே வெப்பநிலே அமூக்கத்திலுள்ளன எனக் கொள்க)

 $(2) \quad 2CO + O_2 = 2CO_2$

- அறை வெப்பநிலேயிலும் 1 வளிமண்டல அமுக்கத்திலும் அளக்கப்பட்ட 100 ml CO ஆனது O₂ இல் முற்ருக எரிந்து உண்டாக்கும் CO₂ இன் கனவளவு அதே வெப்பநிலே அமுக்கத்தில் என்னவாக இருக்கும்.
- (இ) ஒரு பரிசோதனேயில் 30°C இலும் 750 mm அழுக்கத்திலும் 505 ml CO₂ சேகரிக்கப்பட்டது. இவ்வாயுவின் கனவளவை
 - (i) 100° C இலும் 🖁 வளிமண்டல அமுக்கத்திலும் கணிக்க.
 - (ii) நி. வெ. அ இல் கணிக்க.
- 4. 27° C இலும் 1 வளிமண்டல அமுக்கத்திலும் அளக்கப்பட்ட $100~{
 m ml~Cl}_2$, ${
 m H}_2{
 m S}$ வாயுவுடன் மறை சூரிய ஒளியில் தாக்க விடப்பட்டது.
- (அ) மேற் கூறிய தாக்கத்தின் போது **நீர்** பெறக்கூடிய அவதானம் ஒன்றி**ன்**த் தருக.
- (ஆ) Cl₂ உடன் தாக்கமடையத் தேவையான H₂S இ**ன் கனவளவு** 27°C இலும் 1 வளிமண்டல அமுக்கத்திலும் யாது?
- (இ) Cl₂ முற்ருகத் தாக்கமடைந்ததெனின், உண்டாகிய HCl வாயுவின் கனவளவு மேற்கூறிய நிபந்தனேகளில் யாது?
- (#) Cl₂ இல் n மூலக்கூறுகள் காணப்பட்டால்
 - (i) தாக்கமடைந்த H₂S மூலக்கூறுகளின் எண்ணிக்கை
 - (ii) உண்டாகிய HCl மூலக்கூறுகளின் எண்ணிக்கை என்பவற் றைக் கணிக்க.
- (உ) Cl_2 உடன் தாக்கமடையும் H_2S இன் கணவளவை நி. வெ. அ இல் கணிக்க.

அத்தியாயம் 3

சார் அணுத் திணிவும் சார் மூலக்கூற்றுத் திணிவும்


சார் அணுத் திணிவு

அணுந்திணிவு அலகு: மூலகங்களின் அணுத் திணிவுகளேத் துணி வதற்கு ஐதரசன் நியமமாகப் பயன்படுத்தப்பட்டு வந்தது. ஐதரசன் அணுவே மற்றைய எல்லா அணுக்களிலும் மிக இலேசானது. இதன் திணிவு = 1 அலகு என எடுத்துக்கொள்ளப்பட்டது. மற்றைய அணுக்களின் திணிவுகள், ஐதரசன் அணுவின் திணிவு சார்பாக அளவிடப் பட்டுள்ளன. ஐதரசன் அணுவின் திணிவு அணுத் திணிவு அலகாகப் பயன்படுத்தப்பட்டு வந்தது. இதனே நியமமாகக் கொண்டு துணியப் பட்ட மற்றைய அணுக்களின் திணிவுகள் சார் அணுத் திணிவுகள் என அழைக்கப்பட்டன.

ஒரு மூலகத்தின் சார் அணுத் தினிவு — அம் மூலகத்தின் அ**ளு** ஒன்றின் தி**ணி**வு

2 -- LD

- காபனின் சார் அணுத் திணிவு = 12. அதாவது, C இன் ஒரு
 அணு ஒரு H அணுனிலும் 12 மடங்கு பாரம் கூடியது என்ப
 தாகும்.
- ஒட்சிசனின் சார் அணுத்திணிவு = 16. அதாவது, ஒரு O அணு ஒரு H அணுவிலும் 16 மடங்கு பாரம் கூடியது என்பதாகும்.
- சமதானிகள்: சில மூலகங்கள் ஒவ்வொன்றும், வேறுபட்ட திணிவு களுடைய அணுக்களேக் கொண்டுள்ளன என இப்பொழுது அறியப்பட்டுள்ளது. ஒரு மூலகத்தின் வெவ்வேறு திணிவுகளுடைய அணுக்கள் சமதானிகள் என அழைக்கப்படுகின்றன

ஒரே அணு எண்ணேக் ஓகொண்ட ஆளுல் வேறுபட்ட அணுத் திணிவுகளுடைய அணுக்கள் சமதானிகள் ஆகும்.

1960 இற்கு**ப்** பின் **ஐத**ரசனுக்கு பதிலாக ¹⁶O என்ற ஒட்சிசனின் சமதானி, சார் அணுத் திணிவுகளேத் துணிவதில் நியமமாகப் பயன் படுத்தப்பட்டது. இங்கு ¹⁶O சமதானியின் திணிவின் 1/16, அணுத் திணிவு அலகாகப் பயன்பட்டது.

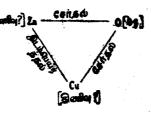
ஒரு மூலகத்தின் சார் அணுத் திணிவு $=rac{34b\ மூலகத்தின் அணு ஒன்றின் திணிவு}{16}$ ${}_{8}$ O சமதானியின் திணிவின் ${}_{18}$

தற்பொழுது ${C \atop 6}$ என்ற காபனின் சமதானியின் திணிவின் ${1 \atop 12}$, அணுத் திணிவு அலகாகப் பயன்படுத்தப்பட்டு வருகிறது.

ஒரு மூலகத்தின் சார் அணுத் திணிவு = $\frac{\frac{\text{அம் மூலகத்தின் அளு ஒன்றின் திணிவு}}{12}$ $\frac{1}{6}$ $\frac{1}{12}$ $\frac{1}{12}$

சார் மூலக்கூற்றுத் திணிவு

ஒரு மூலகத்தின் அல்லது சேர்வையின் சார் மூலக்கூற்றுத் திணி வானது, அம் மூலகத்தின் அல்லது சேர்வையின் ஒரு மூலக்கூறின் திணி விற்கும் $\frac{16}{8}$ O இன் திணிவின் $\frac{1}{16}$ இற்கும் அல்லது $\frac{12}{6}$ C இன் திணிவின் $\frac{1}{12}$ இற்குமுள்ள விதிதமாகும்.


சமவலுத் திணிவு

Zn, Cu ஆகிய மூலகங்களின் சமவலுத் திணிவுகளேத் துணியும் முறைகள்.

- 1. $Zn \longrightarrow ZnO$
- 2. Cu --- Cu O
- 3. $Zn + Cu SO_4 \longrightarrow Cu + Zn SO_4$ (Geůų ಕல்பேற்று) (நாக சல்பேற்று)

முதல் இரண்டு முறைகளிலும் $8g\ O_2$ உடன் த**னித்த**னி சேர்ந்துள்ள $Z_{\rm n}$ இனதும் $C_{\rm u}$ இனதும் திணிவுகள் துணிய**ப்படுகின்றன**.

மூன்ரும் முறையில், தெரிந்த திணிவுள்ள Zn ஆல் CuSO₄ கரை சேலிலிருந்து இடம் பெயர்க்கப்படும் Cu இன் திணிவு துணியப்படுகிறது.

பரிசோதனே I Zn ஐ ZnO ஆக ஓட்கியேற்றல்

$$Z_{n} \xrightarrow{Q \in p \cap HNO_{3}} Z_{n}(NO_{3})_{2} \xrightarrow{\triangle} Z_{n}O$$

நிறுக்கப்பட்ட கணியமான Zn செறிந்த HNO 3 இல் கரைக்கப்பட்டு, உண்டாகிய Zn(NO 3) 2 கரைசல் சூடாக்கி ஆவியாக்கப்பட்டு, மேலும் திணிவு குறையாத வரை பலமாகச் சூடாக்கப்படுகிறது. உண்டாகிய வீளவு பொருளாகிய ZnO இன் திணிவு துணியப்படுகிறது.

கணிப்பு 8g O_2 உடன் சேர்த்துள்ள Zn இன் திணிவைக் கணிக்க $0\cdot 122$ g O_2 உடன் சேர்ந்துள்ள Zn இன் திணிவு $=0\cdot 499$ g

⁸ g ,, ,, =
$$\frac{0.499}{0.122} \times 8$$
 g = 32.72 g

பரிசோத**ோ Cu ஐ CuO ஆக** ஓட்சியேற்றல்

செறி
$$HNO_3$$
 $Cu \longrightarrow Cu(NO_3)_2 \longrightarrow CuO$ செய்கை, பரிசோதணே I இல் போன்றது

அளவீடுகள்
$$Cu$$
 இன் திணிவு = 0.795 g CuO , , , = 0.995 g O_2 ,; , , = $0.995 - 0.795 = 0.200$ g

கணிப்பு $8 ext{ g } O_2$ உடன் சேர்ந்துள்ள Cu இன் தணிவைக் கணிக்க $0.2 ext{ g } O_2$ உடன் சேர்ந்துள்ள Cu இன் தெணிவு $=0.795 ext{ g}$

8 g ,, ,, ., ., =
$$\frac{0.795}{0.2} \times 8 \text{ g}$$

= 31.8 g

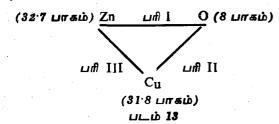
பரிசோதனே III Cu ஐ Zn ஆல் இடம்பெயர்த்தல் Zn + CuSO₄ ----- Cu + ZnSO₄

ஒரு கொதி குழாயில் ஏறக்குறைய 50 ml செறிந்த CuSO 4 கரைசலே எடுக்க. இதனுள் திணிவு தெரிந்த Zn தூளே (ஏறக்குறைய 0·2g) சேர்க்க. இக்கரைசலே இடைக்**கிடை** மென்மையாகக் குலுக்குக.

CuSO₄ கரைசலில் Zn தூள் கரைவதையும், CuSO₄ கரைசலின் நீல நிறச் செறிவு குறைவதையும், கொதி குழாயின் அடியில் செந்நிற Cu தூள் படிவதையும் அவதானிக்க.

தாக்கம் முற்றுப் பெற்ற பின் இக்கரைசலே வடிகட்டி, வடிதாளி லுள்ள Cu தாளே நீரிஞல் கழுவுக Cu தூளே ஒரு உலர்த்தியில் உவர விட்டுப் பின் அதன் திணிவைத் துணிக.

அளவீடுகள்


CuSO₄ கரைசலுடன் சேர்க்கப்பட்ட Zn இன் திணிவு == 0°250 g இடம் பெயர்க்கப்பட்ட Cu இன் திணிவு == 0°243 g

கணிப்பு 8 g O₂ உடன் சேர்ந்துள்ள Cu இன் திணிவை (ப**ாசொத**னே II இன் கணிப்பைக் காண்க), அதாவது 31°8 g Cu ஐ இடம் பெயர்க்கும் Zn இன் திணிவைக் கணிக்க

0.243g Cu ஐ இடம்பெயர்க்கும் Zn இன் திணிவு = 0.25g
31.8g ,, , =
$$\frac{0.25}{0.243} \times 31.8g$$

= 32.7 g

சுருக்கம்

பரிசோதனே I திணிவுப்படி விகிதம் Zn:O = 32.7 : 8 பரிசோதனே II ,, ,, Cu:O = 31.8 : 8 பரிசாதனே III ,, ,, Zn:Cu = 32.7:31.8

திணிவுப்படி 8 பாகம் O₂ உடன் தனித்தனி சேர்ந்துள்ள Zn இனதும் Cu இனதும் திணிவுகளே Zn உம் Cu உம் ஒன்றை யொன்று இடம் பெயர்க்கும் திணிவுகளாகும், (படம் 13). ஒட்சிசனின் சம வலுத்திணிவு 8 ஆகையால்Zn இனதும் Cu இனதும் சமவலுத் திணிவு கள் முறையே 32·7 உம் 31·8 உம் ஆகும்.

சமவலுத் திணிவு [அல்லது இரசாயனச் சமவலு]

தெணிவுப்படி 1 பாகம் H_2 , 8 பாகம் O_2 , 35·5 பாகம் Cl_2 ஆகிய ஒவ்வொன்றுடனும் சேரும் அல்லது அதின இடம் பெயர்க்கும் ஒரு மூல கத்தின் திணிவுப்படி பாகங்கள் அம்முலகத்தின் சமவலுத் திணிவு ஆகும்.

உடம்

- 1. 12g Mg, 8g O₂ உடன் சேரும் ∴ Mg இன் சமவலுத் திணிவு = 12
- 23g Na, 35.5g Cl₂ உடன் சேரும்.
 ∴ Na இன் சமவலுத் திணிவு == 23
- 23g Na, 1gH₂ ஐ நீரிலிருந்து அல்லது அமிலத்திலிருந்து இடம்பெயர்க்கும்.
 - ். Na இன் சமவலுத் திணிவு = 23
- 4 12g Mg, 1g H₂ ஐ அமிலத்திலிருந்து இடம்பெயர்க்கும். ∴ Mg இன் சமவலுத் திணிவு = 12

ஒரு மூலகத்தின் சமவலுத் திணிவு மற்றெரு முலகத்தின் சம வலுத் திணிவுடன் சேரும் அல்லது அதனே இடம்பெயர்க்கும்.

சில மூலகங்களின் சமவலுத் திணிவுகள்

்பு லகம்	சமவலுத் திணிவு	
Н 2	1.0	
Cl ₂	35.5	
O ₂	8 ·0	
Br ₂	80· 0	
F ₂	19 0	

	மூலகம்	சமவலுத்திணிவு	
	Na	23.0	
	Mg	12.0	
	Cu	31.8	
	Zn	3 2·7	
İ	Al	90	
•			

கிராம் சமவலுத் திணிவு [கிராம் சமவலு]

ஒரு மூலகத்தின் சமவலுத் திணிவு கிராமில் உரைக்கப்பட்டால் அது அம்முலகத்தின் கிராம் சமவலு எனப்படும்.

e_- i

H₂ இன் சமவலுத் திணிவு = 1.0

H₂ இன் கிராம் சமவது - 1.0g

சமவலுத் திணிவுகளேத் துணிவதற்கான கில பொது முறைகள்

1. 0 2 உடன் சேர்தல்

இம்முறையில், திணிவுப்படி 8 பாகம் O₂ உடன் சேரும் மற்**ரெ**ரு மூலகத்தின் திணிவுப்படி பாகம் துணியப்படுகிறது.

உதாரணம் மகனீசியமொட்சைட்டில் 40 சதவீதம் ஒட்சிசன் காணப் படின், மகனீசியத்தின் சமவலுத் திணிவைக் கணிக்க.

MgO இன் திணிவு = 100 g ஆயின்,

 O_2 , ... = 40 §

Mg , , = 60 g

40 g O2 உடன் சேர்த்துள்ள Mg இன் திணிவு = 60 g

 $\therefore 8 g , , , \qquad , \qquad = \frac{60}{40} \times 8 g$

- 12 g

Mg இன் சமவலுத் திணிவு = 12

2. Cl₂ உடன் சேர்தல்

திணிவுப்படி 35.5 பாகம் Cl₂ உடன் சேரும் மூலகமொன்றின் திணிவுப்படி பாகம் அதன் சமவலுத் திணிவு ஆகும்.

உதாரணம்: 2·0 g Ca ஐ மென்மையாகச் சூடாக்கி, அதன் மேல் Cl₂ ஐ செலுத்திய போது 5·55 g CaCl₂ பெறப்பட்டது. Ca இன் சமவலுத் திணிவு யாது?

CaCl, இன் திணிவு = 5.55 g

Ca ,, ,, = $2.00 \, \text{g}$

Cl₂ = 5.55-2.00=3.55g

8.55 g Cl₂ உடன் சேர்ந்துள்ள Ca இன் திணிவு = 2.0g

 $35.5 \,\mathrm{g}$,, ,, $=\frac{2.0}{3.55} \times 35.5 \,\mathrm{g}$

= 20 g

்Ca இன் சமவனுத் திணிவு 🛥 20

H₂ உடன் சேர்த்தல் அல்லது அதனே இடம்பெயர்த்தல்

திணிவுப்படி 1 பாகம் H_2 உடன் சேரும் அல்லது அத**ின** இடம்பெயர்க்கும் ஒரு மூலகத்தின் திணிவுப்படி பாகம் அம் மூல கத்தின் சமவலுத் திணிவு ஆகும்.

உதாரணம் 1. 0.81g HBr, 0.80g Br₂ ஐக் கொண்டுள்ளதெனின், Br₂ இன் சமவலுத் திணிவு யாது?

HBr இன் திணிவு - 0.81 g

 Br_2 ,, ... = 0.80 g

 H_2 , = 0.81 - 0.80 = 0.01 g

 $0.01 \mathrm{g} \ \mathrm{H}_2$ உடன் சேர்ந்துள்ள Br_2 இன் திணிவு $=0.80 \mathrm{g}$

Br₂ இன் சமவலுத் திணிவு = 80

உதாரணம் 2. $0\cdot 327$ g Z_n ஐ மிகையான ஐதான H_2SO_4 உடன் சேர்த்த போது $0\cdot 01$ g H_2 வெளிவிடப்பட்டது. Z_n இன் சமவலுத் திணிவைக் காண்க.

0·01 g H₂ ஐ இடம்பெயர்க்கும் Zn இன் திணிவு = 0·327 g

Zn இன் சமவலுத் திணிவு = 32.7

4. இடப்பெயர்ச்சி முறை

தாக்கம் கூடிய மூலகம் தாக்கம் குறைந்த மூலகத்தை அதண் உப்புக் கரைசலிலிருந்து இடம்பெயர்க்கும் ஒரு மூலகத்தின் சமவலுத் தெணிவு, இன்ளேரு மூலகத்தின் சமவலுத் திணிவை இடம் பெயர்க் கும் (படம் 13 ஐக் காண்க).

உ—ம் :

 $Fe + CuSO_4 = FeSO_4 + Cu$

 $Zn + FeSO_4 = ZnSO_4 + Fe$

 $Mg + ZnSO_4 = MgSO_4 + Zn$

 $Br_2 + 2 KI = 2 KBr + I_2$

 $Cl_2 + 2 KBr = 2 KCl + Br_2$

 $F_2 + 2 KCl = 2 KF + Cl_2$

தாக்கம் கூடியதிலிருந்து (மேலிருந்து கீழ்நோக்கி) குறையும் வரிசையில் சில மூலகங்கள்

உ லோ கங்கள்	அல்லுலோ கங்கள்
Mg	F
Mg Zn	Cl
Fe	Br l
Cu	I

உதாரணம்: 0·56 g இரும்பு அரத்தூள் CuSO₄ க**ரைசலு**டன் சேர்க்கப்பட்ட போது 0·636 g Cu இடம்பெயர்க்கப்பட் டுள்ளது. Fe இன் சமவலுத் திணிவைக் கணிக்க.

0. 636 g Cu ஐ இடம்பெயாக்கும் Fe இன் திணிவு = 0.56 g
31.8 g ,, ,, ,, =
$$\frac{0.56}{0.636} \times 31.8$$
 g
= 28 g
Fe இன் சமவலைத் திணிவு = 28

வாயுக்களின் சார்படர்த்தி [ஆவியடர்த்தி]

ஒரு குறித்த வெப்பநில் அமுக்கத்தில் அவ் ஒரு வாயுவின் சார்படர்த்தி = வாயுவின் ஒரு குறித்த கனவளவின் திணிவு அதே வெப்பநில் அமுக்கத்தில் அதே கனவளவு ஐதரசனின் திணிவு

ஒரு குறித்த வெப்பநிலே அமுக்கத்தில் வாயு, ஐத**ரசன் ஆகிய** ஒவ்வொன்றினதும் கனவளவு = Vcm³ ஆயின்,

சார்படர்த்தி
$$= \frac{\text{Vcm}^3 \text{ வாயுவின் திணிவு}}{\text{Vcm}^3 \text{ H}_2 \text{ இன் திணிவு}}$$

Vcm³ வாயுவில் n மூலக்கூறுகள் உண்டெனின், அவகாதரோ வின் விதிப்படி,

உதாரணம்: 0° C இலும் 760 m m அமுக்கத்திலும் 1·0 l Cl₂ இன தும் 1·0 l H₂ இனதும் திணிவுகள் முறையே 3·16 g உம் 0·089 g உம் ஆகும். குளோரீனின் சார்படர்த்தியையும் சார் மூலக்கூற்றுத் திணிவையும் கணிக்க.

$$\mathrm{Cl}_2$$
 இன் சார்படர்த்தி $=\frac{3\cdot 16}{0\cdot 089}=35\cdot 5$ Cl_2 இன் சார் மூலக்கூற்றுத் திணிவு $=35\cdot 5\times 2$ $=71\cdot 0$

வலு வளவு

ஒரு மூலகத்தின் ஒரு அணுவுடன் சேரும் அல்லது அதனுல் இடம் பெயர்க்கப்படும் ஐதரசன் அணுக்களின் எண்ணிக்கை அம்மூலகத்தின் வலு வளவு ஆகும்.

___i

1)
$$H_2 + Cl_2 = 2 HCl$$
 $Cl @ in aggreen = 1$
2) $2H_2 + O_2 = 2H_2O$ O ., ... $= 2$
3) $N_2 + 3H_2 = 2NH_3$ N ... $= 3$
4) $C + 2H_2 = CH_4$ C ... $= 4$
5) $2Na + 2H_2O = 2NaOH + H_2 Na$... $= 1$
6) $Mg + H_2O = MgO + H_2 Mg$... $= 2$

Cl இன் வலுவளவை 1 எனவும் O இன் வலுவளவை 2 என வும் எடுத்து மூலகங்களின் வலுவளவைக் கணிக்கலாம். உ--ம்: -

1)
$$2 \text{ Na} + \text{Cl}_2 = 2 \text{ NaCl}$$
 Na @sir appara = 1
2) Mg + Cl₂ = MgCl₂ Mg ... = 2
3) $4 \text{ Na} + \text{O}_2 = 2 \text{ Na}_2\text{O}$ Na ... = 1
4) $2 \text{ Mg} + \text{O}_2 = 2 \text{ MgO}$ Mg ... = 2
5) $4 \text{ Al} + 3 \text{O}_2 = 2 \text{ Al}_2\text{O}_3$ Al ... = 3
6) C + O₂ = CO₂ C ... = 4

உதாரணம்:- பின்வரும் சேர்வைகளில் O_2 உடனும் Cl_2 உடனும் சேர்ந்துள்ள மூலகங்களின் வலுவளவுகளே எழுதுக.

சேர்வை	மூலகம்	வலுவளவு
CuO	Cu	2
Cu ₂ O	Cu -	1
SO ₂	S	4
SO ₃	S	6
P_2O_3	P .	3
P ₂ O ₅	P	5
ZnCl ₂	Zn	2
AlCl ₃	A1	3
C CI4	C	4

அணுத் திணிவுக்கும் சமவலுத் திணிவுக்குமுள்ள தொடர்பு

உதாரணம் 1. Al இன் அணுத் திணிவு == 27, அதன் வலுவளவு == 3 ஆயின், அதன் சமவலுத் திணிவு யாது?

Al இன் சமவலுத் திணிவு
$$=\frac{27}{3}=9$$

உதாரணம் 2. Ca இன் அணுத் திணிவும் சமவலுத் திணிவும் முறையே 40 உம் 20 உம் ஆயின், அதன் வலுவளவைக் கணிக்க.

Ca இன் வலுவளவு =
$$\frac{40}{20}$$
 = 2

அணுத் திணிவுகளேத் துணிவதற்கான முறைகள்

முறை I. கனிற்சாரோவின் முறை

ஒரு மூலகத்தைக் கொண்ட ஆவிப் பறப்புள்ள அல்லது வாயு நிலேயிலுள்ள சேர்வைகளின் சார்படர்த்திகளும், அவற்றிலிருந்து அச் சேர்வைகளின் மூலக்கூற்றுத் திணிவுகளும் துணியப்படும்.

இச் சேர்வைகளின் ஒரு கிராம் மூலக்கூற்றுத் திணிவில் (மூலக் கூற்றுத் திணிவு கிராம் அலகில்) உள்ள அம்மூலகத்தின் திணிவு கிராம் மில் துணியப்படுகிறது. இச் சேர்வைகளின் மூலக்கூற்றுத் திணிவில் உள்ள அம் மூலகத்தின் மிகக் குறைந்த திணிவு அம்மூலகத்தின் அணுத் திணிவு ஆகும். ஏனெனில், சேர்வையின் ஒரு கிராம் மூலக்கூற்றுத் திணிவு (1 மூல்) ஆகக் குறைந்தது. அம் மூலகத்தின் ஒரு கிராம் அணுவையாவது (அணுத் திணிவு கிராம் அலகில்) கொண்டிருக்க வேண்டும்.

பின்வரும் **அட்டவ**ணே காப**னின் அணுத்** திணிவைத் துணியப் பயன்படுத்தப்பட்டுள்ளது.

சேர்வை	இரசாயனச்	சார் படர் த்தி		C இன திணி
	சூத் திரம்		திணிவு	வுப்படி பாகம்
மெதேன் .	CH ₄	8	16	12
ஈ தர்	C ₂ H ₅ OC ₂ H ₅	37	74	48
அசற்றலின்	C ₂ H ₂	13	2 6	24
புரெப்பேன்	C ₃ H ₈	22	44	36
பியூற் றேன்	C ₄ H ₁₀	29	58	48
காபஞே ரொட்	CO	14	28	12
சைட்டு				
காப னீரொட்	CO ₂	22	44	12
சைட்டு		-		

மேற்கண்ட அட்டவணேயில் காபனின் பல்வேறு சேர்வைகளின் மூலக்கூற்றுத் திணிவுகளிலுள்ள C இன் ஆகக் குறைந்த திணிவு 12 ஆகும். ஆகவே கனிற்சாரோவின் முறைப்படி C இன் அணுத்திணிவு 12 ஆகும்.

உலோகங்களின் அணுத் திணிவுகளேக் காண்பதற்கு கனிற்சாரோ வின் முறை ஏற்றதல்ல. ஏனெனில் உலோகங்கள் மிகச் சிறிய எண் ணிக்கையான ஆவிப்பறப்புள்ள சேர்வைகளே மட்டுமே உண்டாக்கு கின்றன.

எனினும் உலோகங்களின் சமவலுத்திணிவு அறியப்பட்டால், ஆவிப்பறப்புள்ள ஒரு குளோரைட்டின் சார்படர்த்தியிலிருந்து அதன் அணுத் திணிவைக் கணிக்கலாம்.

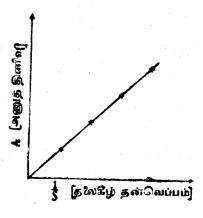
முறை II தூலோன் பெற்றிற்றர் விதியைப் பயன்படுத்தல்.

இம்முறை திண்ம மூலகங்களுக்கு மட்டுமே பயன்படும். திண்ம மூலகங்களின் அணுத் திணிவை தன்வெப்பத்தால் பெருக்குவதால் பெறப்படுவது அணுவெப்பம் ஆகும். இது ஒரு மாறிலி ஆகும்.

[தன்வெப்ப அலகு—கலோரி g -1 C -1; அணுவெப்ப அலகு—காலோரி gஅணு -1 C -1]

தூலோன் பெற்றிற்றர் விதியைப் பயன்படுத்தி ஒரு மூலகத்தின் அண்ணளவான அணுத் திணிவைப் பெறலாம்.

சில முலகங்களின் அனுவெப்பங்கள்


மூலகம்	அணுத் திணிவு	தன்வெப் பம்	அணு வெப்பம்
As	75	0.083	6. 22
Cu	63.6	0.094	5. 98
Pb	207	0.031	6. 42
Mg	24.3	0·24 9	6.05
Ni	58.7	0.108	6.34
Sn	118.7	0.055	6.53
Fe	56.0	0 · 115	6.40

அணுத் திணிவிற்கும் தன்வெப்பத்திற்குமுள்ள தொடர்பு

அணுத் தணிவைத் தஃஃகீழ் தன்வெப்பத்திற்கெதிரே இட்டுப் பெறப்படும் வரைபு படம் 14 இல் காட்டப்பட்டுள்ளது.

இவ்வரைபு y = mx என்ற வரை பை ஒத்தது.

$$A \propto \frac{1}{S}$$

படம் 14

தூலோன் பெற்றிற்றர் விதியை உபயோகித்துத் திருத்தமான அணுத் திணிவு பின்வருமாறு கணிக்கப்படுகிறது.

 ஒரு மூலகத்தின் அணுவெப்பத்தை தன்வெப்பத்தால் பிரித்தால் அம் மூலகத்தின் அண்ணளவான அணுத் திணிவு பெறப்படும்.

2. அண்ணளவான அணுத் திணிவைச் சமவலுத் திணிவால் பிரித்து வலுவளவு பெறப்படும்.

[வலுவளவு மிகக் கிட்டிய முழு எண் ஆகும்]

3; சமுவலுத் நிணிவை வலுவளவால் பெருக்கி அம் மூலகத்நின் திருத்தமான அணுத் திணிவு பெறப்படுகிறது.

உதாரணம்: Mg இன் சமவனுத் திணிவு 12·16 ஆகும். அதன் தன் வெப்பம 0·249 கலோரி g⁻¹ C⁻¹ ஆமின், Mg இன் திருத்த மான அணுத் திணிவைக் கணிக்க.

$$Mg$$
 இன் அண்ணளவான அணுத் திணிவு $=\frac{6\cdot 4}{0\cdot 249}=25\cdot 7$
 Mg இன் வலுவளவு $=\frac{25\cdot 7}{12\cdot 16}$
 $=2\cdot 1$
 $=2$ (இட்டிய முழு எண்)

தூலோன் பெற்றிற்றர் **சி**தி — யூல் (J) அலகில் கணிப்பு 1 கலோரி == 4 · 2 J

அணுத் திணிவு × தன்வெப்பம் (தன்வெப்பக் கொள்ளளவு)

$$= 26.8$$
 (..)

— மூலர் வெப்**ப**க்கொள்ளளவு

[தன்வெப்ப அலகு— Jg-1 K-1 ; மூலர் வெப்பக்கொள்ளளவு அலகு—Jmol-1K-1]

சில மூலகங்களின் மூலர் வெப்பக் கொள்ளளவு

மூலகம்	அணுத்திணிவு	தன்வெப்பக் கொள்ளளவு	மூலர் வெப்பக் கொ ள்ளனவு
Fe	56	0.480	26.9
As	75	0.347	26.0
Pb	207	0.130	26.9
Ni	58.7	0.451	26.5

3: திருத்தமான அணுத்திணிவு == சமவலுத் திணிவு × வலுவளவு

உதாரணம்: Fe இன் சமவலுத் திணிவு 28·0, அதன் தன்வெப்ப**க்** கொள்ளளவு 0·480 Jg⁻¹ K⁻¹ ஆகும். Fe இன் செம்மை யான அணுத் திணிவைக் கணிக்க.

Fe இன் அண்ணளவான அணுத்திணிவு
$$=$$
 $\frac{26.8}{0.480} = 55.83$
Fe இன் வலுவளவு $=$ $\frac{55.83}{28}$
 $= 1.99$
 $= 2 (கிட்டிய முழு எண்)$

Fe இன் செம்மையான அணுத் திணிவு = 28 x 2 = 56

சேர்வைகளின் சூத்திரங்கள்

ஒரு சேர்வையின் இரசாயன அமைப்பைக் காட்டும் சுருக்கமான முறை இரசாயனச் சூத்திரமாகும். இரசாயனச் சூத்திரம், ஒரு சேர் வையின் மூலக்கூறுகள் ஒவ்வொன்றிலுமுள்ள வெவ்வேறு அணுக்க ளின் (அல்லது மூலிகங்களின்) எண்ணிக்கையை எடுத்துக் காட்டுகிறது.

மூலகங்களினதும் மூலிகங்களினதும் வலுவளவுகளே அறிவோமா யின், அவற்ருலான சேர்வைகளின் சூத்திரங்களேப் பின்வரும் விதிக ளுக்கமைய நாம் எழுதலாம்.

 சம வலுவளவுள்ள இரு மூலகங்களின் அணுக்கள் (அல்லது மூலி கங்கள்) சேர்வையை உண்டாக்கின், இவற்றினது எண்ணிக்கை சமமாய் இருக்கும்.

2-10

(i)
$$H_2$$
 இன் வலுவளவு = 1 Cl_2 , . . = 1

ஐதரசன் குளோரைட்டின் சூத்திரம் HCl ஆகும்.

$$O_2$$
 , ... = 2

கல்சியமொட்சைட்டின் சூத்திரம் CaO ஆகும்.

4 🙊

- (iii) Na இன் வலுவளவு == 1 நைத்திரேற்று (NO₃-) மூலிகத்தின் வலுவளவு == 1 சோடியம் நைத்திரேற்றின் சூத்திரம் NaNO₃ ஆகும்.
- வெவ்வேறு வலுவளவுகளுள்ள மூலகங்களின் அணுக்கள் (அல்லது மூலிகங்கள்) ஒன்று சேரின், அவை தமது வலுவளவுகளுக்கு நேர்மாறு விகிதமான எண்ணிக்கையில் சேர்ந்திருக்கும்.

உடம்

- (i) H_2 இன் வலுவளவு =1 O_2 , , =2 நீரின் சூத்திரம் H_2O ஆகும்.
- (ii) P இன் வலுவளவு =5 O_2 , , =2 பொசுபரசு ஐயொட்சைட்டின் சூத்திரம் P_2O_5 ஆகும்.
- (iii) Al இன் வலுவளவு == 3 சல்பேற்று (SO₄²-) மூலிகத்தின் வலுவளவு == 2 அலுமினியம் சல்பேற்றின் சூத்திரம் Al₂(SO₄)₃ ஆகும்.

வலுவளவுகளேக் காட்டும் அட்டவணே

மூலகம்	வலுவளவு	
H, Na, K, Ag	1	
Mg, Ca, Sr, Ba, Zn	2	
Cu, Hg	1 அல்லது 2	
Fe	2 ,, 3	
Pb, Sn	2 ,, 4	
B, A1	3	

அமில மூலிகம்	କା ଆଧାରୀ ବା
குளோரைட்டு C1-	1
நைத்திரேற்று NO ₃ -	1
சல்பேற்று SO²₄¯	2
சல்பைற்று SO²₃⁻	2
காபனேற்று CO2 ₃ ~	2
பொசுபேற்றுPO³ ₄ ¯	3

[மேலும் விபேரங்களுக்கு பக்கம் 50 அ இலிலுள்ள அட்டவணேயைக் காண்கி

பயிற்சி: பின்வரும் சேர்வைகளின் இரசாயனச் சூத்திரங்களே எழுதுக. தேர்வை இரசாயனச் சூத்திரம்

- 1. கல்சியங் குளோரைட்டு
- 2. அலுமினியங் கா**ப**னேற்று
- 3. சோடியம் பொசுபேற்று
- 4. வெள்ளிக் காபனேற்று
- 5. கல்சியம் பொசுபேற்று

ஒட்சியேற்ற எண்

இரண்டிற்கு மேற்பட்ட மூலகங்களேக் கொண்டுள்ள ஒரு சேர்வை யிலுள்ள ஒரு குறித்த மூலகத்தின் வலுவளவை, ஒட்சியேற்ற எண் அடிப்படையில் கணிப்பது இலகுவாகும். ஏனெனில் ஒரு சேர்வையி லுள்ள மூலகமொன்றின் ஒட்சியேற்ற எண் அதன் வலுவளவுக்குச் சமமாகும்.

ஒட்டுயேற்ற எண் என்பது ஒரு மூலகத்தின் ஒரு அணு இழக்கின்ற அல்லது ஏற்கின்ற இலத்திரன்களின் எண்ணிக்கை, அல்லது பங்கிடு செய் வதற்கு வழங்குகின்ற இலத்திரன்களின் எண்ணிக்கையாகும்.

ஒட்சியேற்ற எண்ணேக் காண்பதற்கு உபயோவிக்கப்படும் விதிகள்:-

- ⊰1. சேர்ந்த நிஃயில் உள்ள O₂ இன் ஒட்சியேற்ற எண் 🛥 −2்
- 3. உலோகங்களினதும், ஒட்சிசனுடன் சேர்ந்த நிஃயிலுள்ள அல்லு லோகங்களினதும் ஒட்சியேற்ற எண்கள் சக (+) குறியுடையன.
- 4. ஒரு சேர்வையிலுள்**ள ஒட்**சியேற்ற எண்களின் கூட்டுத் தொகை == 0
- 5. சேர்வையிலுள்ள பின்வரும் சில மூலகங்களின் ஒட்சியேற்ற எண் களேப் பயன்படுத்தி மற்றைய மூலகங்களின் ஒட்சியேற்ற எண் களேக் கணிக்கலாம்.

மூலகம்	ஒட்சியேற்றஎண்
0	-2
Cl [Br, I]	- 1
Н	+1

மூலகம்	ஒட்சியேற்றஎண்	
Na, K	+ 1	
Mg, Ca, Zn	+ 2	
Al	+3	

உதாரணம் 1 HNO₃ இல் N இன் ஒட்செயேற்ற எண்*ணே (வலுவ* ளவை) கணிக்க.

HNO,

N இன் ஒட்சியேற்ற எண் == +5 ... N இன் வலுவளவு == 5

உதாரணம் 2. K₂Cr₂O₇ இல் Cr இன் ஒட்சியேற்ற எண்ணேக் கணிக்க.

> K₂ Cr₂ O₇ +2 +12 -14

2 Cr = +12

50 sq (அடைப்புக் குறிக்குளுள்ளவை) பொதுச் சேர்வைகளின் இரசாயனச் சூத்திரங்களும் அட்டவணே: வலுவளவுகளும் **ஒட்சைட்டு** குளோரைட்டு **நைத்திரேற்று** சல்பேற்று சல்பைற்று காபனேற்று சல் பைட்டு |இருகாபனேற்று |இருகுரோமேற்று|பொசுபேற்று O^{2-} C1- NO_3 SO S^{2-} SO CO HCO3-F-Br-I- Cr_2O_7 PO (2)(1) (1)(2) (2) (2) (2) (1) (2) (3) H (1) H_2O HCl HNO₃ H₂SO₄ H₂SO₃ H_2S H₂CO₃ H_2CO_3 H₂Cr₂O₇ H₃PO₄ [Li, K, Rb, Ag] Na (1)Na₂O NaCl NaNO 3 Na 2 SO 4 Na₂SO₃ Na₂S Na₂CO₃ NaHCO₃ Na₂Cr₂O₇ Na 3PO4 அமோனியம் NH4 (1)NH₄Cl NH₄NO₃ $(NH_4)_2SO_4$ (NH₄)₂SO₃ $(NH_4)_2S (NH_4)_2CO_3$ NH4HCO3 $(NH_4)_2Cr_2O_7$ $(NH_4)_3PO_4$ [Be, Ca, Sr, Ba, Zn] Mg (2) MgO $MgCl_2$ $Mg(NO_3)_2$ MgSO₄ MgSO₃ MgS $MgCO_3$ $Mg(HCO_3)_2$ $Mg_3(PO_4)_2$ **≁**குப்பிரசு Cu₂O (1) CuCl **ுகுப்பிரிக்கு** CuO CuCl₂ (2) $Cu(NO_3)_2$ CuSO. CuS CuCO₃ ⁴பெரசு (2) FeO FeCl₂ $Fe(NO_3)_2$ FeSO₄ FeS FeCO₁ (3) Fe₂O₃ FeCl₃ $Fe(NO_3)_3$ Fe₂(SO₄)₃ $Fe_2(CO_3)_3$ Al (3) Al₂O₃ AlCl₃ $Al_2(SO_4)_3$ $Al(NO_3)_3$ Al₂S₃ $Al_2(CO_3)_3$ AlPO₄ **⊿**மேக்கூரசு (1) Hg_2O Hg₂Cl₂ $Hg_2(NO_3)_2$ Hg **ுமே**க்கூரிக்கு (2) HgO HgCl₂ $Hg(NO_3)_2$ HgSO₄ HgS HgCO₃ **⊿**பிளம்பசு (2) PbO PbCl₂ $Pb(NO_3)_2$ PbSO₄ PbSO₂ PbS PbCO₃ PbCr₂O₇ Pb i

ுபிளம்பிக்கு

PbO₂

PbCl₄

(4)

பயிற்கி: பின்வரும் சேர்வைகளில் குறிப்பிடப்படும் மூலகங்களின் வலுவளவுகளே எழுதுக.

	சேர்வை	மூலகம்	வலுவளவு
1.	H ₂ SO ₄ = +6	S	+6
2.	P ₂ O ₅	P	+ 5
3.	KMnO ₄	Mn	+12
4.	Na ₃ PO ₄	P ·	/ts
5.	K ₂ Cr O ₄	Cr	T 6

இரசாயனச் சமன்பாடு

இரசாயன்ச் சமன்பாடு, ஒரு இரசாயனத் தாக்கத்தை விளக்கிக் காட்டும் சுருக்கமான முறையாகும். ஒரு இரசாயனச் சமன்பாடு, சமன்குறிக்கு இடது புறத்தே தாக்கிகளேயும், வலது புறத்தே, பரி சோதணேயின் போது பெறப்பட்ட விளேவுகளேயும் காட்டுகின்றது.

சமன்படுத்தப்பட்ட ஒரு இரசாயனச் சமன்பாட்டை எழுதும் போது அவதானிக்கப்பட வேண்டியன:-

- சமன் (=) அல்லது அம்பு (→) குறிக்கு இடது புறத்தும் வலது புறத்தும் உள்ள வெவ்வேறு மூலகங்களின் அணுக்களின் தனித்தணி எண்ணிக்கை சமமாக இருத்தல் வேண்டும்.
- சமன் குறிக்கு இரு புறத்துமுள்ள அணுத் திணிவுகளின் கூட்டுத் தொகை சமமாக இருத்தல் வேண்டும்.
- சமன்குறிக்கு இரு புறத்துமுள்ள மூலக்கூறுகளின் மூலக்கூற்றுத் திணிவுகளின் கூட்டுத் தொகை சமமாக இருத்தல் வேண்டும்.
- 4. சமன்குறிக்கு இரு புறத்துமுள்ள மூலக்கூறுகளின் எண்ணிக்கை சமமாக இருக்கவேண்டிய அவசியமில்ஃ.

உடம்

- 1. $2 \text{ Ca} + O_2 = 2 \text{ CaO}$
- 2. $2 H_2 + O_2 = 2 H_2O$
- 3. $2 \text{ Na} + 2 \text{ H}_2 \text{O} = 2 \text{ NaOH} + \text{H}_2$
- 4. $2 \text{ Ag NO}_3 + \text{BaCl}_2 = 2 \text{ Ag Cl} + \text{Ba(NO}_3)_2$
- 5. $2 \text{ Al} + 6 \text{ HCl} = 2 \text{ AlCl}_3 + 3 \text{ H}_2$

வி குக்கள்

- ெசம்பின் சமவலுத் திணிவைத் துணியும் நோக்கமா**கப்** பி<mark>ன்வ</mark>ரும் பரிசோதணே செய்யப்பட்டது.
 - 0 · 327 g Zn தூள், 75 ml செறிந்த CuSO₄ கரைசலுக்குள் இடப்பட்டு, தாக்கம் முடிவடைந்த பின் கரைசலே வடி கட்டிய போது 0 · 318 g Cu பெறப்பட்டது.
 - (அ) பரிசோதனேயின் போது நீர் பெறக்கூடிய அவதானங்கள் இரண்டினே எழுதுக.
 - (ஆ) கரைசல் வடிகட்டிய பின், வடிதாளிறுள்ள Cu நீரினுல் கழுவப்பட்டு உலர்த்தப்பட்டது. ஏன்?
 - (இ) CuSO₄ உக்கும் Zn உக்குமிடையே நிகழும் தாக்கத்திற் கான இரசாயனச் சமன்பாட்டினே எழுதுக.
 - (ஈ) Zn இன் சமவலுத் திணிவை 32 7 எனக் கொண்டு Cu இன் சமவலுத் திணிவைக் கணிக்க.
 - (உ) மேற்படி பரிசோதனேயில் Zn உக்குப் பதிலாக Ag ஐப் பயன்படுத்தலாமா?
 - (ஊ) (உ) இல் நீர் கொடுக்கும் விடைக்குக் காரணம் தருக.
- 2 (அ) பின்வருவனவற்றிற் கிடையேயுள்ள தொடர்பை எழுதுக.
 - (i) சார் அணுத் திணிவும் சமவலுத் திணிவும்.
 - (ii) சார் மூலக்கூற்றுத் திணிவும் சார்படர்த்தியும்.
 - (ஆ) M என்னும் உலோகம் குளோரீனுடன் சேர்ந்து MCl₂ என்னும் சூத்திரமுடைய சேர்வையை உண்டாக்குகிறது. M இன் சமவலுத் திணிவு 20 ஆகும்:
 - (i) M ஆனது சல்பேற்று மூலிகத்துடன் உண்டாக்கும் சேர்வையின் சூத்திரத்தை எழுதுக.
 - (ii) M இன் அணுத் திணிவைக் கணிக்க.
 - (இ) ஒரு குறித்த வெப்பநிலே அமுக்கத்தில் $1\cdot 0$ ி அமோனி யாவின் திணிவு $0\cdot 757$ g ஆகும். அதே வெப்பநிலே அமுக்கத்தில் $1\cdot 0$ l H_2 இன் திணிவு $0\cdot 089$ g ஆகும்.
 - (i) அமோனியாவின் சார்படர்த்தி யாது?
 - (ii) அதன் மூலக்கூற்றுத் திணிவு யாது?

- **9** ஒரு பரிசோதணேயில், 0 . **44**6 g ஈயவொட்சைட்டு ஒரு தகனக் குழாயில் சூடாக்கப்பட்டு H ₂ ஆல் தாழ்த்தப்பட்டபோது 0 **414** g Pb பெறப்பட்டது.
 - (அ) மேற்படி ஆய்வின் போது நீர் அவதானிக்கக்கூடியவை யாவை?
 - (ஆ) தாழ்த்தல் முடிவடைந்தபின், உபகரணம் ஆறவிடப்பட்ட போது H₂ தொடர்ந்து செலுத்தப்பட்டது. இதற்கு**ரிய** காரணம் யாது?
 - (இ) Pb இன் சமவலுத் திணிவைக் கணிக்க.
 - (ஈ) Pb இன் தன்வெப்பக்கொள்ளளவு 0 · 13 Jg⁻¹K⁻¹ ஆயின் அதன் அண்ணளவான அணுத்திணிவு யாது?
 - (உ) (இ) இலும் (ஈ) இலும் நீர் பெற்ற விடைகளிலிருந்து
 - (i) Pb இன் வேலுவளவு
 - (ii) Pb இன் செம்னமயான அணுத் திணிவு ஆகியவற்றைக் கணிக்க,
- 4 (அ) பின்வரும் சேர்வைகள் ஒவ்வொன்றினது**ம் சூத்**திர**த்**தி லுள்ள முதலாவது மூலகத்தின் வலுவள**வு யாது?** P₂O₃, SO₃, NH₃, CCl₄, K₂O
 - (ஆ) பின்வரும் சேர்வைகளின் இரசாயனச் சூத்திரங்களே எழுதுக.
 - (i) சோடியமிருகாபனேற்று NaNC 3
 - (ii) அமோனியமிருகுரோமேற்று (லாடி) உட்டிறி
 - (iii) பெரிக்கு**ச்சல்**பேற்று 🕫 🛇 🦠
 - (iv) மேக்கூரிக்குளோரைட்டு 🙌 🖒
 - (v) கல்சிய**மி**ருகாபனேற்று උဝස©ு
 - (இ) பின்வருவனவற்றைச் சமன்படுத்துக.
 - (i) $_{2}$ Cu + O₂ = $_{2}$ CuO
 - (ii) $/ \text{Na} + 2 \text{H}_2 \text{O} = 2 \text{NaOH} + \text{H}_2$
 - (iii) Al + AgNO₃ = Al(NO₃)₃ + Ag
 - (iv) $Na_2SO_4 + Pb(NO_3)_2 = PbSO_4 + NaNO_3$
 - (v) $KClO_3 = KCl + O_2$

அத்தியாயம் 4

மூல்

ஒரு மூலகத்தின் அல்லது சேர்வையின் மூலக்கூற்றுத் திணிவு கிராமில் உரைக்கப்படுமாயின் அது கிராம் மூலக்கூறு அல்லது மூல் எனப்படும்

மூல் = ஒரு மூலகத்தின் அல்லது சேர்வையின் இரசாயனச் சூத்திரத்திலுள்ள அணுத் திணிவுகளின் கூட்டுத் தொகை (சூத்திர நிறை) — கிராம் அலகில்

e - iò

- 1. H₂O இன் மூலக்கூற்றுத் திணிவு = 2+16 = 18 H₂O இன் 1 மூல் = 18 g
- 2. 1 முல் HCl = (1+35 · 5) g = 36 · 5 g
- 3. 1 முல் O₂ = (16 + 16) g = 32 g
- 4. 1 முல் H₂ = (1+1)g = 2g
- 5. 1 εφώ CaCO₃ = (40 + 12 + 48) g = 100 g

அவகாதரோ எண்

- 1.~~1 g ஐதரசனிலுள்ள H அணுக்களின் எண்ணிக்கை $=6\cdot02 imes10^{~23}$
- B. 16 g ஓட்சிசனிலுள்ள O ,, , , = $6\cdot02 imes10^{23}$
- 3.~~12 g காபனிலுள்ள C ., , , = $6\cdot02 imes10^{23}$
- 4. 2 g ஐதரசனி லுள்ள $m H_2$ மூலக்கு மூகளின் எண்ணிக்கை $=6:02 imes10^{23}$
- 5. 32 g ஓட்சிசனி லுள்ள O_2 ,, , = 6.02×10^{23}
- 6. 100 g CaCO₃ இலுள்ள CaCO₃ ,, $= 6.02 \times 10^{23}$
- 7. 23 g Na + இலுள்ள Na + அயன்களின் எண்ணிக்கை = 6.02×10^{23}

 $6\cdot 02 \times 10^{23}$ ஆனது 1 மூல் அல்லது அவகாதரோ எண் எனப்படும். இது N ஆல் குறிக்கப்படும்.

e_- in

- (அ) 1 g (1 கிராமணு) ஐதரசன் 1 மூல் (அவகாதரோ எண்) அணுக்களேக் கொண்டுள்ளது
- (ஆ) 2g (1முல்) ஐதரசன் 1மூல் (அவகாதரோ எண்) மூலக்கூறுகளேக் கொண்டுள்ளது

அவகாதரோ எண் என்பது, ஒரு மூலகத்தின் 1 கிராமணுவிலுள்ள அணுக்களின் எண்ணிக்கை, அல்லது ஒரு மூலகத்தின் அல்லது சேர்வை யின் 1 மூலிலுள்ள மூலக்கூறுகளின் எண்ணிக்கை, அல்லது 1 கிராம் அயனிலுள்ள அயன்களின் எண்ணிக்கையாகும்.

அவகாதரோ எண்
$$= 6 \cdot 02 \times 10^{23} = 1$$
 மூல்

- 1 கிராமணுவிலுள்ள அணுக்களின் எண்ணிக்கை, அல்லது 1 மூலி லுள்ள மூலக்கூறுகளின் எண்ணிக்கை, அல்லது 1 கிராமயனிலுள்ள அயன்களின் எண்ணிக்கை ஒரு மாறிலியாகும். [6 · 02 × 10 ²³]. இம் மாறிலி அவகாதரோவின் மாறிலி அல்லது அவகாதரோவின் ஒருமை என அழைக்கப்படுகிறது.
- உதாரணம் 1. ஒரு H அணுவின் திணிவைக் கிராமில் கணிக்க [H=1] 6.02×10^{23} H அணுக்களின் திணிவு =1 g

். 1 H அணுவின் திணிவு
$$=\frac{1}{6 \cdot 2 \times 10^{23}}$$
 g $=1 \cdot 66 \times 10^{-24}$ g

உதாரணம் 2. ஒரு O_2 ψ லக்கூறின் திணிவைக் கிரோமில் கணிக்க[0=16] $6\cdot02 imes10^{23}$ O_2 மூலக்கூறுகளின் திணிவு =32 g

$$O_2$$
 மூலக்கூறின் திணிவு $=rac{32}{6.02 imes10^{23}}$ g

உதாரணம் 3. 9 g நீரிலுள்ள நீர் மூலக்கூறுகளின் எண்ணிக்கை யாது? H₂O இன் 1 மூல் = 2+16 = 18 g

 $18 ext{ g H}_2\text{O}$ இலுள்ள H_2O மூலக்கூறுகளின் எண்ணிக்கை $= 6 \cdot 02 \times 10^{23}$

$$9g$$
 $=\frac{6 \cdot 02 \times 10^{23}}{18} \times 9$
= $3 \cdot 01 \times 10^{23}$

உதாரணம் 4 1·505×10²² CO₂ மூலக்கறகளின் திணிவு 1·10 g ஆயின், CO₂ இன் மூலக்கற்றத் திணிவைக்கணிக்க.

 $1.505 \times 10^{22} \text{ CO}_2$ மூலக்கூறுகளின் திணிவு = 1.10g

$$6.02 \times 10^{23}$$
 , $=\frac{1 \cdot 1}{1.505 \times 10^{22}} \times 6 \cdot 02 \times 10^{23}$

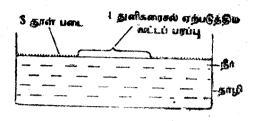
= 44·0 g CO₂ இன் மூலக்க<u>ுற்றுத்</u> திணிவு = 44·0 அவகாதரோ எண்ணேத் துணியும் முறை

பரிசோதனே:

அவகாதரோ எண் துணியப்படும் பதார்த்தம் – ஒலேயிக்கமிலம் [C_{1.7}H_{3.3}COOH]

C₁₇H₃₃COOH இன் மூலக்கூற்றுத் திணிவு = 282

ஒலேயிக்கமிலம் கரைக்கப்படும் ஆவிப்புறப்புள்ள திரவம் - பெற் ரேலியம் மதுசாரம் (இலேசான பெற்ரேல்)


ஒலேயிக்கமிலத்தின் இரு துளிகளே ஒரு அள**வியி**ஞல் 100ml பெற் ரேலியம் மதுசாரத்திலிட்டுக் க**ரை**சலாக்குக

இக்கரைசல், சுத்தமாக்கப்பட்ட அதே அளவியில் எடுத்து, அதனே அளவியிலிருந்து மெதுவாகத் துளிதுளியாக ஓடவிட்டு, 1ml இல் எத்தனே துளிகள் உண்டு எனக் காண்க.

ஒரு சுத்தமாக்கப்பட்ட **தாழியை நீ**ரிஞல் அ**ரைவா**சிக்கு **நிரப்புக.** பின்னர் நீர்ப்பரப்பின் மேல் கந்தகத் தூளே அல்லது சோக்குத் தூளே ஒரு துணியிஞல் அல்லது பரு**த்திப்பஞ்சிஞ**ல் நீரின் மேற்பரப்பு முழு வதும் மெதுவாகத் **தூவுக**.

பெற்ரேலியம் மதுசார்ம் + ஒலேயிக்கமிலக் கரைசலில் ஒரு துளியை அதே அளவியிலிருந்து நீரின் மேற்பரப்பின் மேல் இடுக. இவ்வேளேயில் கந்தகத்தூள் (S தூள்) வட்டவடிவமாக வெளித்தள்ளப் படுகிறது. உடனடியாக இவ்வட்டம் சற்று சுருங்குவதை அவதானிக் கலாம். [இது, பெற்ரேலியம் மதுசார மூலக்கூறுகள் ஆவியாகத் தப்பிச் செல்வதாலே ஏற்படுகிறது].

S தாள் படையின் வட்ட எல்லே நிலேயானதும், அவ்வட்டத்தின் விட்டத்தை உடனடியாக அளக்க இதன் அரைமடங்கு, வட்டத்தின் ஆரை (r) ஆகும் (படம் 15 அ, ஆ).

શુ

9

படம் 15

இதிலிருந்து ஒரு துளி கரைசலிலுள்ள ஒலேயிக்கமிலம் ஏற்படுத் திய வட்டப்பரப்பு [πτ²] கணிக்கப்படுகிறது (படம் 15 அ. ஆ)

இங்கு S தூள் படை, ஒற்றைத் துணிக்கை தடிப்புள்ளதென்றும், அதனே வெளித்தள்ளிய ஒலேயிக்கமிலத்தின் மூலக்கூறுகள் ஒற்றை மூலக்கூற்றுப் (ஒரு மூலக்கூறு தடிப்புள்ள) படையிலுள்ளன என்றும் எடுத்துக்கொள்ளப்படுகிறது (படம் 16).

ஒரு துளி கரைசலிலுள்ள ஒலேயிக்கமி லத்தின் (ஒற்றை மூலக்கூற்றுப் படையின்) கணவளவு V ml ஆயின், ஒற்றை மூலக்கூற் நுப் படையின் தடிப்பு (t) பின்வருமாறு கணிக்கப்படும் (படம் 16) மூலக்கூறு ஒற்றை மூலக்கூறுப் படும் 16

தடிப்பு (t) =
$$\frac{V}{\pi r^2}$$

தடிப்பு (t) = ஒரு ஒலேயிக்கமில மூலக்கூறின் விட்டம்

ஒரு மூலக்கூறின் ஆரை
$$(r_1)=rac{t}{2}$$

ஓலேயிக்கமில மூலக்கூறுகள் கோள வடிவம் உடையன எனக் கொண்டால்

$$1$$
 மூலக்கூறின் கணவளவு $=rac{4}{3}\pi r^3$ $r_1=rac{t}{2}$

் 1 மூலக்கூறின் கணவளவு =
$$\frac{4}{3}\pi$$
 $\left(\frac{t}{2}\right)^3$ (1) ஒலேயிக்கமிலத்தின் 1 மூல் = $282g$ ஒலேயிக்கமிலத்தின் அடர்த்தி = $0.89~\mathrm{gml}^{-1}$ 0.89g ஒலேயிக்கமிலத்தின் கணவளவு = 1 ml. 282g ,, , = $\frac{1}{0.89} \times 282~\mathrm{ml}$ (2) அவகாதரோ எண் (N) = $\frac{(2)}{(1)}$ = $\frac{1}{0.89} \times 282$ = $\frac{1}{3}\pi$ $\left(\frac{t}{2}\right)^3$ = $\frac{1 \times 282 \times 3 \times 8}{0.89 \times 4\pi \times t^3}$ = $\frac{282 \times 3 \times 8}{0.89 \times 4\pi \times t^3}$

[ஒரு துளி கரைசலிலுள்ள ஒலேயிக்கமிலத்தின் (C₁₇ H₃₃ COOH இன்) கனவளவு V ஐக் கணித்தல்:-

n துளிகள் = 1 ml (பரிசோதனே முறையால் காணப்பட்டது

2 துளிகள்
$$C_{17}H_{33}COOH$$
இன் கேனவோவு $=\frac{1}{n}\times 2ml=\frac{2}{n}ml$

 $100 \, \mathrm{ml}$ கரைசலிலுள்ள $C_{17} \, H_{33} \, \mathrm{COOH}$ இன் கனவளவு $= \frac{2}{n} \, \mathrm{ml}$

$$\frac{2}{n} \times 1 \text{ mi}$$

$$= \frac{2}{n} \times \frac{1}{100} \text{ mi}$$

். 1 துளி கரைசலிலுள்ள $\mathrm{C_{17}H_{33}COOH}$ இன் கனவளவு

$$= \frac{2}{n} \times \frac{1}{100} \times \frac{1}{n} ml$$
$$= V ml$$

t ஐக் கணித்தல்:-

$$t = \frac{V}{\pi r^2}$$

பரிசோதனே வாயிலாகக் காணப்பட்டவை n, r ஆகும். n இலி ருந்து V உம், V இலிருந்து t உம், t ஐக் கொண்டு N உம் கணிக் கப்படுகின்றன]

அவகா தரோ எண் (N) =
$$\frac{282 \times 3 \times 8}{0.89 \times 4\pi \times t^3}$$

மூல் — களித்தல்

மூல் = இரசாயனச் சூத்திரத்திலுள்ள அணுத்திணிவுகளின் கூட்டுத் தொகை (gஇல்).

ஒரு பதார்த்தத்தின் மூல் எண்ணிக்கை — அப்பதார்த்தத்தின் தரப்பட்ட திணிவு அப்பதார்த்தத்தின் மூலக்கூற்றுத் திணிவு

உதாரணம் 1. 49g H_2SO_4 இலுள்ள H_2SO_4 மூல்களேக் கணிக்க. $[H=1,\ S=32.\ O=16]$

 H_2SO_4 இன் மூலக்கூற்றுத் திணிவு = 2+32+64=98

$$H_2SO_4$$
 இன் மூல் $=\frac{49}{98}=0.5$ மூல்

அல்லது

98g
$$H_2SO_4 = 1$$
 (1) 1 (2) 1 (2) 1 (3) 1 (4)

மூலர்க் கரைசல்

ஒரு ப**தார்த்தத்**தின் 1 மூல் நீரில் கரைக்கப்பட்டுக் கரைசல் 1 இலீற்றர் (11) ஆக்கப்பட்டால், அக்கரைசல் 1 மூலர் (1M) க**ரை**சலாகும்.

அதாவது 1 k கரைசலில் ஒரு கரையத்தின் 1 மூல் கரைந்திருக்கு மாயின், அக்கரைசல் 1M கரைசலாகும்.

மூலர்த்திறன்

1 இலிற்றர் கரைசலிலுள்ள ஒரு கரையத்தின் மூல்களின் எண்ணிக் கை அக்கரைசலின் மூலர்த்திறன் எனப்படும். உ-ம்

$$53g~(0.5 em s)$$
 ,, $2l$, $\frac{0.5}{s} = 0.25 \, \mathrm{M}$ கரை

சலாகும்

உதாரணம் 1. 26·5 g Na₂CO₃ நீரில் கரைக்கப்பட்டுக் **கரைசல் 1·0** ஆக்கப்பட்டால், அக்கரைசலின் மூலர்த்திறன் யாது?

மூலர்த்திறன்
$$=\frac{2 \cdot 65}{1} = \frac{26 \cdot 5}{106} = 0 \cdot 25 M$$

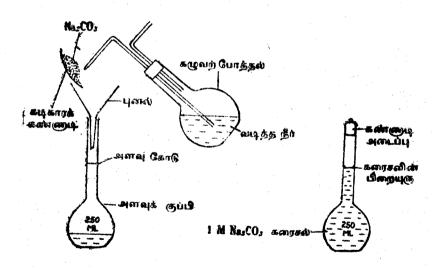
அல்லது

$$1$$
 மூல் ${
m Na}_2{
m CO}_3$ $1\cdot 0l$ கரைசலில் — $1~{
m M}$ ${26\cdot 5\over 106}$ மூல் , , , $-{1\over 1} imes{26\cdot 5\over 106}=0\cdot 25{
m M}$

உதாரணம் 2. 17·0 g Ag NO 3 ஐ 2·01 இல் கொண்ட ஒரு கரைசலின் மூலர்த்திறனக் கணிக்க [Ag=108, N=14, O=16] AgNO 3 இன் 1 மூல் = 108+14+48 = 170g

மூலாக்திறன் =
$$\frac{17}{170}$$
 = $\frac{17}{170 \times 2}$ = 0.05 M

அல்லது


$$1$$
 ဟုဆဲ Ag NO 3 $1\cdot 0l$ கரைசேலில் $-1M$ $\frac{17}{170}$ ဟုဆဲ , $1\cdot 0l$, $-\frac{17}{170}M$ $\frac{17}{170}$ ဟုဆဲ , $2\cdot 0l$, $-\frac{17}{170} imes \frac{1}{2}=0\cdot 05M$

ஒரு கரையத்தின் 1M கரைசலே ஆக்கல்

உடம்: $250 \text{ ml } 1M \text{ Na}_2\text{CO}_3$ கரைசீல ஆக்கல் $1000 \text{ ml } 1M \text{ Na}_2\text{CO}_3$ கரைசலிலுள்ள Na_2CO_3 இன் திணிவு = 106g $250 \text{ ml } 1M \text{ Na}_2\text{CO}_3$ கரைசலிலுள்ள Na_2CO_3 இன் திணிவு

=
$$106 \times \frac{250}{1000}$$
 g
= 26.5 g

26·5 g தூய உலர்ந்த Na_2CO_3 ஐத் திருத்தமாக நிறுத்தெடுத்து அதனே 250 ml அளவுக் குப்பிக்கு படம் 17 இல் காட்டியவாறு வடித்த நீர் சேர்த்து மாற்றுக. குப்பியின் உள்ளடக்கத்தை நன்கு கலக்கி Na_2CO_3 ஐக் கரைக்க. குப்பிக்குள் மேலும் வடித்த நீர் சேர்த்துக் கரைசலே அளவுகோடு வரை ஆக்குக.

படம் 17

இவ்வாறு ஆக்கப்பட்ட கரைசல் Na_2CO_3 இன் 1M கரைசலாகும்.

உ**தாரணம்: 2**50 ml 0·1M $N_{3}_{2}CO_{3}$ கரைசலே ஆக்குவதற்கு என்ன திணிவுள்ள தூய உலர்ந்த $N_{4}_{2}CO_{3}$ ஐ நிறுத்தெடுக்க வேண்டும்.

இவ்வாறு AgNO₃, Pb(NO₃)₂. BaCl₂ Na₂SO₄ போன்ற பதார்த்தங்களின் கிராம் மூலக்கூற்றுத் திணிவுகளேக் கணித்து, தேவைப் படும் கரைசலின் செறிவுக்கும் சுனவளவுக்கும் ஏற்ப இப்பதார்த்தங் களின் திணிவுகளேக் கணித்து அவற்றிலிருந்து கரைசலே ஆக்கிக் கொள்ளலாம்.

மூலல் கரைசல்

ஒரு கரையத்தின் 1 மூல் 1kg (1000g) கரைப்பானில் கரைந்திருப் பின், இக்கரைசல் 1 மூலல் கரைசல் எனப்படும்.

இக்கரைசலின் மூலற்றிறன் (மூலல்திறன்) = 1மூலல்

மூலற்றிறன்

ஒரு கரைசேலின் மூலற்றிறன், 1kg (1000g) கரைப்பாணில் கரைந் தோள் கரைய மூல்களின் எண்ணிக்கையாகும்.

உதாரணம்: Na₂CO₃ இன் 53 g, 1000 g நீரில் கரைந்திருப்பின். இக் கரைசலின் மூலற்றிறன் யாது?

1 மூல் Na₂CO₃, 1000 g நீரில் க**ரைந்திருப்பின் அதன்** மூலற்றிறன் = 1மூலல்

53 106 மல் Na₂CO₃ 1000g நீரில் கரைந்திருப்பின் அதன் மூல**ற்றிற**ன்

$$=rac{53}{106}$$
மூலல்
= 0.5 மூலல்

அல்லது

மூலற்றிறன் =
$$\frac{\frac{53}{106}}{\frac{1000}{1000}}$$
மூலல் = $\frac{53}{106}$ மூலல் = 0.5 மூலல்

மூல் பின்னம்

ஒரு கரைசலிலுள்ள ஒரு கரையத்தின் மூல் பின்னம் என்பது, அக்கரையத்தின் மூல்களின் எண்ணிக்கைக்கும் அக்கரைசலிலுள்ள மொத்த மூல்களின் எண்ணிக்கைக்கு முள்ள விகிதமாகும்.

உதாரணம் 1 0·1 மூலல் கரும்பு வெல்லக் கரைசலிலுள்ள கரும்பு வெல்லத்தின் மூல் பின்னத்தைக் கணிக்க[H = 1, O = 16]

கரும்பு வெல்லத்தின் மூல் பின்னம்
$$=rac{0.1}{0.1+rac{1000}{18}}$$

உதாரணம் 2 3·42 g கரும்பு வெல்லம் $(C_{1\,2}H_{2\,2}O_{1\,1})$, 100g நீரில் கரைந்திருப்பின், அக்கரைசலிலுள்ள கரும்பு வெல்லத்தின் மூல் பின்னம் யாது? $[C=12,\ H=1,\ O=16]$ $C_{1\,2}H_{2\,2}O_{1\,1}$ இன் மூலக்குற்றுத் திணிவு = 342

கரு**ம்**பு இவல்லத்தின் மூல் பின்னம் **க**
$$\frac{\frac{3\cdot42}{342}}{\frac{3\cdot42}{342}}$$
 $\frac{3\cdot42}{18}$ $\frac{0\cdot01}{18}$

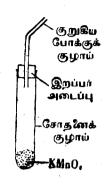
மூலர்க் கனவளவு [கிராம் மூலக்கூற்றுக் கனவளவு]

பரிசோதனே I O₂ இன் மூலர்க் கனவளவைத் துணிதல்

கொள்கை:- இப்பரிசோதஃனயில், எப்பதார்த்தம் சூடாக்கப்படும் போது O₂ ஐ மட்டும் வாயு விளேவாக வெளிவிடுமோ அப்பதார்த்தமே தேர்ந்தெடுக்கப்படுகிறது.

உ--ம்:-

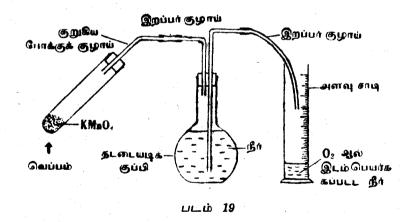
1.
$$2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2 \uparrow$$


வெப்பத்தின் விளேவாக, மேற்கண்ட பதார்த்தங்களில் ஏதேனு மொன்றில் ஏற்படும் திணிவு நட்டம், வெளிவிடப்படும் O_2 இன் திணிவுக்குச் சமமாகும். ஏனெனில் மற்றைய விளேவுகள் திண்மங் களாகும்

முன்னேற்பாடு:- உடம். KMnO₄ ஐச் சூடாக்கல்

KMnO₄ ஐச் சூடாக்கும் போது MnO₂ துகள்கள், சூடாக்கும் உபகரணத்திலிருந்து வெளியேற நாடும். அத்துடன் KMnO₄ ஐச் சூடாக்கி, அதன் திணிவிலேற்படும் நட்டத்தை துணியும் போது இவை திணிவு நட்டத்தை அதிகப்படுத்தும். இதஞல், வெளியேறிய O₂ இற் கான திணிவு திருத்தமாக இருக்காது. இவ்வழுவைப் பின்வருமாறு கவிர்க்கலாம்.

சோதனேக் குழாய்க்கு ஒரு குறுகிய போக்குக் குழாயைப் பொருத்தி திறைல், அதில் MnO₂ துகள்களும் KMnO₄ பதங்கமும் படியும். ஆகவே, இங்கு திணிவிலேற்படும் நட்டம் உண்மையாகவே O₂ இன் திணிவாகும். சூடாக்க முன்னும் பின்னும் KMnO₄ ஐக் கொண்ட சொதகோக் குழாயை, குறுகிய போக்குக் குழாயுடன் (படம் 18) நிறுக்க வேண்டும்.


[கு**றிப்பு: இவ்வுபகரணத்துக்குப் பதிலாக** KMnO₄ ஐக் கொண்ட சோதனேக்குழாயின் மேற் பகு**தியி**ல் அசுபெத்தோசை வைத்தும் பரிசோத**ணே**யைச் செய்யலாம்]

செய்கை: ஒரு சோதணேக்குழாய்க்குள் ஏறக்குறைய 5g KMnO₄ ஐ இட்டு, இக்குழாயை குறுகிய போக்குக்குழாய் பொருத்திய இறப்பர் அடைப்பால் மூடி,இவ்வுபகரணத்தைத் திருத்தமாக நிறுக்க. (படம் 18)

படம் 18

இக்குறுகிய போக்குக்குழாயை இ<mark>றப்பர்</mark> குழாய் ஒன்றிஞல் நீரைக் கொண்ட ஒரு குப்பியுடன் படம்] 19 இற் காட்டியவாறு தொடுக்க.

நீரைக் கொண்ட குப்பியிலிருந்து ஒரு இறப்பர் குழாய் அளவு சாடி ஒன்றினுள் செல்கிறது (படம் 19).

KMnO₄ ஐ **மென்மையாக**ச் சூடாக்கு**க.** இவ்வேளேயில் வெளி விடப்படும் O₂, நீரைக் கொண்ட குப்பிக்குள் செல்லும் போது, அறை வெப்பநிஃயிலும் வளிமண்டல அமுக்கத்திலும் தமக்குச் சம கனவள வான நீரை குப்பியிலிருந்து அளவு சாடிக்குள் இடம்பெயர்க்கும். ஏறக்குறைய 100ml நீர் அளவு சாடிக்குள் இடம்பெயர்க்கப்பட்ட தும், சூடாக்கஃ நிறுத்தி விட்டு, உபகரணத்தை ஆறவிட்டு, முன்பு நிறுத்த பகுதிகளேத் திரும்பவும் நிறுக்க. திணிவிலுள்ள வித்தியாசம் வெளிவிடப்பட்ட O₂ இன் திணிவாகும்.

அளவு சாடியிலுள்ள நீரின் கனவளவை குறிக்க. இக்கனவளவு, அறை வெப்பநிஃயிலும் வளிமண்டல அமுக்கத்திலும் O₂ இன் கன வளவாகும். அறை வெப்பநிஃயைை வெப்பமானியிலிருந்தும், வளி மண்டல அமுக்கத்தைப் பாரமானியிலிருந்தும் வாசித்தறியலாம்.

 ${
m O}_2$ இன் கனவளவை நி. வெ. அ இல் கணிக்க. இவற்றிலிருந்து 1மூல் (32 g) ${
m O}_2$ இன் கனவளவைக் கணிக்க. இதுவே ${
m O}_2$ இன் மூலர்க் கனவளவு ஆகும்.

அளவீடுகள்:- சூடாக்க முன்:

சோதனேக் குழாய் + போக்குக்குழாய் + KMnO₄ இன் திணிவு சூடாக்கிய பின்: = 28·13g

மேற்கண்ட உபகரணத்தின் திணிவு = 28.00g திணிவு நட்டம் = 28.13 - 28.00 = 0.13g

அதாவது, வெளிவிடப்பட்ட ${
m O}_2$ இன் திணிவு $=0\cdot13{
m g}$

வெளிவிடைப்பட்ட O_2 இன் கனவளவு = 101 ml

அறை வெப்பநி‰ = 30°C

அமுக்கம் = 760 mm இரசம்

கணிப்பு: நி. வெ. அ இல் O_2 இன் கனவளவு $=~101 imesrac{273}{303}=91~\mathrm{ml}$

நி. வெ. அ இல் 0.13g O_2 இன் கனவளவு $= 91~\mathrm{ml}$

 \therefore நி. வெ. அ இல் 32 g ${\rm O}_2$ இன் கணவளவு $= \frac{91}{0.13} \times 32~{
m ml}$

= 22400 ml

 $= 22 \cdot 4 l$

முடிவு:- 02 இன் மூலர்க் கனவளவு

= 22.4 l

பரிசோதனே 11. CO₂ இன் மூலாக் கனவளவைத் துணிதல்

கொள்கை:- இப்பரிசோ தணயில், எப்பதார்த்தம் சூடாக்கப்படும்போது CO₂ ஐ மட்டும் வாயு விளேவாக வெளிவிடுமோ அப்பதார்த்தமே தேர்ந்தெடுக்கப்படுகிறது. e - ib:

1. PbCO₃
$$\xrightarrow{\Delta}$$
 PbO + CO₂ \(\)

2.
$$MgCO_3 \xrightarrow{\Delta} MgO + CO_2 \uparrow$$

3. CaCO₃
$$\xrightarrow{\Delta}$$
 CaO + CO₂ \uparrow

முன்னேற்பாடு:- பரிசோதனே I இல் போன்றது.

செய்கை:- பரிசோதணே I இல் போன்றது, ஆளுல் KMnO₄ இற்குப் பதிலாக PbCO₃ ஐக் (ஈயக் காபனே ற்றைக்) கொண்டு பரிசோதனே யைச் செய்க.

அளவீடுகள்:- சூடாக்க முன்

சோதணக்குழாய் + போக்குக்குழாய் + PbCO₃ இன் திணிவு = 28·50g சூடாக்கிய பின்:

மேற்படி உபகரணத்தின் திணிவு = 28.30g

ചെണ്ടിലെப்பட்ட CO₂ இன் கேவவாவு = 113ml

= 760mm இரசம்

கணிப்பு: மேற்கண்ட தரவுகளிலிருந்து 1 மூல் (44g) CO₂ இன் கன வளவை நி. வெ. அஇல் கணிக்க.

நி. இன. அ இல்
$$CO_2$$
 இன் கனவளவு = $113 \times \frac{273}{303} = 102 \mathrm{ml}$

நி. வெ. அ இல் $0.20 {
m g~CO}_2$ இன் கணவளவு $= 102 {
m ml}$

$$\therefore$$
 ,, 44g $=\frac{102}{0.20} \times 44 \text{ ml}$

= 22400 ml

= 22.4 1

முடிவு:- CO₂ இன் மூலர்க் கணவளவு

= 22.4 l

சுருக்கம்

இவ்வாறு Cl_2 , N_2 , H_2 போன்ற வாயுக்களின் மூலர்க் கன வளவும் $22\cdot4$ l எனப் பரிசோதனே மூலம் துணியலாம்.

மூலர்க் கனவளவு அட்டவனே

நி. வெ. அ இல் எல்லா வாயுக்களினதும் 1 மூலின் கனவளவு 22.4 1 ஆகும். இக்கனவளவு மூலர்க் கனவளவு எனப்படும்.

மூலர்க் கனவளவு:

நி. வெ. அ இல் ஒரு வாயுவின் 1 மூலின் (1 இராம் மூலக்கூறின்) கனவளவு மூலர்க் கனவளவு எனப்படும்.

மூலாக் கனவளவு = $22 \cdot 4l = 22400 \text{ ml}$

உதாரணம்: பின்வருவனவற்றைக் கணிக்க.

- (அ) நி. வெ. அ இல் 0.8g O₂ இன் கனவளவு
- (ஆ) நி. வெ. அஇல் 2.81 CO 2 இன் திணிவு
- (இ) நி. வெ. அ இல் 5.6 l N₂ இன் திணிவு 7.0 g ஆயின் அதன் மூலக்கூற்றுத் திணிவு

(அ) நி. வெ. அ இல்
$$32\mathrm{g}$$
 O_2 இன் கனவளவு $=22.4~l$

,, 0.8g ,, ,, =
$$\frac{22.4}{32} \times 0.8l$$

= 0.56 l

(ஆ) நி. வெ. அஇல் 22.4 l CO2 இன் திணிவு = 44g

$$,, 2.8 l$$
 $,, 3.8$ $,, 4.8$

= 5.5g

(இ) நி. வெ. அ இல் 5·6 l N₂ இன் திணிவு = 7·0g

,, 22.41 ,, ,, =
$$\frac{7.0}{5.6} \times 22.4$$
g = 28g

N₂ இன் மூலக்கூற்றுத் திணிவு = 28

வி ஒக்கள்

- (அ) ஒலேயிக்கமிலத்தின் அவகாதரோ எண்ணேத் துணிவதற் கான பரிசோதணேயில் பெற்ளேலியம் மதுசாரம் கரைப் பாளுகப் பயன்படுத்தப்படுவதற்கான காரணங்கள் மூன் றினேத் தருக.
 - (ஆ) 0.9g நீரிலுள்ள
 - (i)_ H₂O மூலக்கூறுகளின் எண்ணிக்கை
 - (ji) H அணுக்களின் எண்ணிக்கை ஆகியவற்றைக் கணிக்க.
 - (இ) 1.505×10²² NH 3 மூலக்கூறுகளின் திணிவு 0.425g ஆயின் NH 3 இன் மூலக்கூற்றுத் திணிவு யாது?
- 2. (அ) 73 g HCl இலுள்ள HCl மூல்களின் எண்ணிக்கை யாது?
 - (ஆ) $250 \text{ ml } 0.5 \text{M} \text{ Na}_2 \text{CO}_3$ கரைசலிலுள்ள $\text{Na}_2 \text{CO}_3$ மூல் கீடோக் கணிக்க.
 - (இ) (ஆ) இலுள்ள Na_2CO_3 இன் திணிவைக் கிராமில் கணிக்க $[Na=23,\ C=12,\ O=16]$
 - (ஈ) $500~{\rm g}$ நீரில் $18~{\rm g}$ குளுக்கோசு (${
 m C}_6~{
 m H}_{1\,2}~{
 m O}_6$) கரைந்த கரைசேலிலுள்ள குளுக்கோசின் மூல் பின்னத்தை எழுதுக.
- 3. (அ) 0·4 g NaOH வடித்த நீரில் கரைக்கப்பட்டு. கரைசல் 2·0 l ஆக்கப்பட்டால். இக்கரைசலின் மூலர்த்திறன் யாது?
 - (ஆ) $17\cdot 0$ g. Ag NO_3 ஐ $0\cdot 5$ l இல் கொண்ட ஒரு கரைசலின் மூலர்த்திறனக் கணிக்க [Ag = 108, N=14]
 - (இ) $34\cdot 2$ g கரும்பு வெல்லம் ($C_{1\,2}$ $H_{2\,2}$ $O_{1\,1}$) $2\cdot 0$ Kg நீரில் கரைந்த கரைசலொன்றின் மூலற்றிறன் யாது?
 - (ஈ) $Pb(NO_3)_2$ இன் 500 ml 0·1M கரைச2ல ஆக்கத் தேவை யான $Pb(NO_3)_2$ இன் திணிவைக் கணிக்க [Pb=207]

- 4. 2.5 g CaCO₃ ஒரு வன்கண்ணுடிச் சோதனேக் குழாயிலிடப்பட்டு உபகரணம் திரும்பவும் நிறுக்கப்பட்டது. இவ்வுபகரணம் மாருத் திணிவு வரை சூடாக்கப்பட்டபின் ஆறவிட்டுத் திரும்பவும் நிறுக் கப்பட்டது.
 - (அ) CaCO₃ சூடாக்கப்பட்ட போது அதன் திணிவில் நட்டம் ஏற்பட்ட தெனின், இத்திணிவு நட்டத்திற்கு முக்கிய காரணம் யாது?
 - (ஆ) CaCO₃ இன் மீது வெப்பத் தாக்கத்திற்கான சமன் பாட்டை எழுதுக.
 - (இ) 2·5 g CaCO₃ ஐச் சூடாக்கியபோது. திணிவிலேற்பட்ட நட்டம் கொள்கையளவில் யாதாகும்? [Ca = 40, C = 12· O = 16]
 - (ஈ) பரிசோதனே செய்தபோது, ஏற்பட்ட திணிவு நட்டம் கொள்கைப் பெறுமானத்திலும் சற்று அதிகமாக இருந்தது. இதற்கு யாது விளக்கம் கொடுக்கலாம்.
 - (உ) (ஈ) இல் கூறப்பட்டுள்ள வழுவை எவ்வாறு தவிர்ப்பீர்?

அத்தியாயம் 5

பீசமானம்

ஒரு இரசாயனத் தாக்கத்தில் தாக்கிகள் ஒன்றுடனென்று தாக்க முறும் மூல் விகிதம் அத்தாக்கத்தின் பீசமானம் எனப்படும். ஒரு இரசாயனத் தாக்கத்திற்கான சமன்பாட்டில் தாக்கிகளின் மூலக்கூறு களுக்கு அல்லது அணுக்களுக்கு அல்லது அயன்களுக்குக் கொடுக்கப் பட்டுள்ள எண்ணிக்கை விகிதம் அத்தாக்கத்தின் பீசமானத்தை எடுத்துக்காட்டுவதாகும்.

உ-ம்:

1.
$$AgNO_3$$
 + $NaCl \longrightarrow AgCl \downarrow$ + $NaNO_3$
1 மூல் 1 மூல் 1 மூல் 1 மூல்

Ag NO₃ உம் NaCl உம் தாக்கமுறும் மூல் விகிதம் = 1 : 1 இத்தாக்கத்தின் பீசமானம் AgNO₃ : NaCl = 1 : 1

2.
$$Pb(NO_3)_2 + 2KI \longrightarrow PbI_2 \downarrow + 2KNO_3$$
1 www 2 www 1 www 2 www

இத்தாக்கத்தின் பீசமானம் Pb (NO 3)2: KI = 1:2

3. FeCl₃ + 3 NaOH → Fe(OH)₃ ↓ + 3 NaCl இத்தாக்கத்தின் பீசமானம் FeCl₃ : NaOH = 1 : 3

தாக்கிகளினதும் விளேவு பொருள்களினதும் மூல் விகிதம் (பீச மானம்) அறியப்பட்டால், ஒரு தாக்கியின் ஒரு குறித்த திணிவுடன் தாக்கமடையும் மற்றுரு தாக்கியின் திணிவையும், தாக்கத்தின் விளே வாக உண்டாகும் விளேவு பொருள்களின் திணிவுகளேயும் கணித்துக் கொள்ளலாம்.

உதாரணம்: 17.0 g AgNO₃ உடன் தாக்கமடையும்

- (அ) NaCl இன் திணிவையும்
- (ஆ) தாக்கத்தின் விளேவாக உண்டாகும் AgCl இன் திணி வையும் கணிக்க

$$AgNO_3 + NaCl = AgCl + NaNO_3$$
(170) (58.5) (143.5) (85)

(அ) 170 g AgNO 3 உடன் தாக்கமுறும் NaCl இன் திணிவு = 58.5 g

17 g , , , , =
$$\frac{58.5}{170} \times 17$$
 g

= 5.85 g

(ஆ) 170 g AgNO 3 உண்டாக்கும் AgCl இன் திணிவு = 143.5 g

17 g , , , , , , = $\frac{143.5}{170} \times 17$ g

= 14.35 g

ஒரு தாக்கத்தின் பீசமானத்தைத் துணியும் முறைகள்

l. தொடர் - மாற்றல் முறை

பெரிசோதேன் I. படிவே வீழ்த்தல் முறை [வீழ்படிவின் உயரத்தை அளவிடல்] பெரிசோதன் II.வெப்பநிலே மாற்ற முறை [வெப்பநிலே மாற்றத்தை அளவிடல்]

2. நியமிப்பு முறைகள் [கனமான முறைகள்]

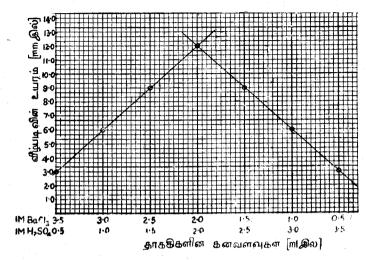
தொடர் - மாற்றல் முறை

இங்கு தாக்கிகளின் அளவு விகிதங்கள் மாற்றப்பட்டு, உண்டாகும் விளேவு பொருள்களின் அளவுகள் துணியப்படுகின்றன. வெவ்வேறு தாக்கிகளின் சம செறிவுள்ள கரைசெல்களின் வேறுபட்ட கணியங்கள் ஒன்று கலக்கப்படும் போது உண்டோகும் விளேவு பொருள்களின் அளவுகள் அளவிடப்படுகின்றன. விளேவு பொருள் உச்ச அளவில் உண்டாகியிருக்கும் போது தாக்கம் அதிகளவுக்கு நிகழ்ந்துள்ளதென் றும், தாக்கிகள் பீசமான விகிதத்தேலுள்ளன என்றும் அறியலாம்.

உச்ச விளேவு உண்டாதலே படிவு வீழ்த்தல் முறையால் அறிய லாம், அல்லது தாக்கத்தின் போது ஏற்படும் வெப்பநிலே மாற்றத்தி லிருந்து அறியலாம்.

பரிசோதனே I. படிவு வீழ்த்தல் முறை

கொள்கை:- இம்முறையில் இரு பதார்த்தங்களின் சம மூலர்த் திறனுடைய கரைசல்களின் வெவ்வேறு கனவளவுகள் ஒன்று கலக்கப் பட்டு, இவை ஒவ்வொன்றிலும் உண்டாகும் வீழ்படிவின் உயரம் அளவிடப்படுகிறது. வீழ்படிவின் உயரத்திலிருந்து தாக்கம் எந்தள வுக்கு நிகழ்ந்துள்ளது என அறியலாம். தாக்கிகளின் எக்கனவளவு விகிதத்தில் வீழ்படிவின் உயரம் மிக அதிகமானதோ, அங்கு தாக்கி கள் பீசமான விகிதத்தில் இருக்கும்.


உடம்:- BaCl₂ உக்கும் H₂SO₄ உக்குமிடையேயுள்ள தாக்கம்

செய்கை:- ஒரே அளவான 7 சோதணக் குழாய்களே எடுத்து, அவை ஒவ்வொன்றிலும் கீழ்க்காணும் அட்டவணேயில் (படம் 20) காட்டிய அளவுகளில் 1 M BaCl₂ கரைசஃயும் 1 M H₂SO₄ கரை சஃயும் ஒன்று கலக்க.

IM Bacla [ml]	3.5	3.0	2.5.	2.0	1.5	1.0	0.5
1M H ₂ SO ₄ [ml]	0.5	1.0	1.5	2.0	2.5	3.0	3.5
வீழ்படிவின் உயரம்[mm]	3:0	6.0	9.0	12.0	9.0	€.0	3.0
**	1	1	+	1	Į.	1	1
			111111111111111111111111111111111111111				
		படம்	b 20				

உண்டாகும் வீழ்ப்படிவுகளின் உயரங்களே குறித்த நேர இடை வேளேகளில் (1 மணி நேர இடைவேளேகளில்) அளவிடுக. வீழ்படிவு களின் உயரங்கள் குறைந்து செல்வதை அவதானிக்க (இது வீழ்படிவுத் துணிக்கைகள் அடைவதாலேயாகும்). வீழ்படிவுகளின் உயரங்கள் நிலே யானதும் இறுதி அளவீடுகளே எடுக்க.

வீழ்படிவுகளின் இவ்விறுதி உயரங்களே, தாக்கிகளின் ($BaCl_2$, H_2SO_4) குனவளவுகளுக் கெதிரே குறித்து வரைபு வரைக. (படம் 21)

படம் 21

இரு நேர் கோடுகள் பெறப்படுகின்றன. இந்நேர் கோடுகள் வெட்டும் புள்ளியில் தாக்கிகளின் வி**கிதத்தைப் பெறுக.** இவ்வி**கிதம்** தாக்கிகளின் மூல் விகிதம் ஆகும்.

முடிவு:- மிக அதிக வீழ்படிவு BaCl₂, H₂SO₄ ஆகிய ஒவ்வொன் றினதும் கனவளவு 2·0 ml ஆக உள்ள போது பெற**ப்படு** கிறது

BaCl₂ இலுள்ள மூல்கள்≀-

1000 ml 1M BaCl 2 இலுள்ள BaCl 2 மூல்கள் = 1

∴ 2.0 ml , , ,
$$=\frac{1}{1000} \times 2 = \frac{2}{1000}$$

 H_2SO_4 இலுள்ள மூல்கள்:-1000 ml 1M H_2SO_4 இலுள்ள H_2SO_4 மூல்கள் = 1

2.0 ml ,, ,, ... ,,
$$=\frac{1}{1000} \times 2 = \frac{2}{1000}$$

தாக்கிகளின் மூல் விகிதம்
$$BaCl_2: H_2SO_4 = \frac{2}{1000}: \frac{2}{1000}$$

தாக்கத்தின் பீசமானம் $BaCl_2: H_2SO_4 = 1:1$

$BaCl_2 + H_2SO_4 = BaSO_4 + 2HCl$

பரிசோதனே II. வெப்பநிலே மாற்ற முறை

கொள்கை:- பெரும்பான்மையான இரசாயனத் தாக்கங்களின் போது வெப்பம் வெளிவிடப்படுகிறது. வெளிவிடப்படும் வெப்பம் தாக்கம் நிகழ்ந்துள்ள அளவிற்கு நேர்விகிதசமமாகும்.

இரு பதார்த்தங்களின் சம மூலர்த்திறனுடைய கரைசல்களின் வெவ்வேறு கனவளவுகள் ஒன்று கலக்கப்பட்டு, ஒவ்வொரு சந்தர்ப் பத்திலும் ஏற்படும் வெப்பநிலே உயர்வு அளவிடப்படுகிறது. தாக்கி களின் எக்கனவளவு விகிதத்தில் வெப்பநிலே உயர்வு மிக அதிகமானதோ, அங்கு தாக்கிகள் பீசமான விகிதத்தில் இருக்கும்.

உடம்;- HCl உக்கும் NaOH உக்குமிடையேயுள்ள தாக்கம்

செய்கை:- ஒரு சுத்தமான தோதணேக் குழாயை, முகவை ஒன்றினுள் வைத்து, முகவைக்கும் சோதணேக் குழாய்க்கு மிடையேயுள்ள வெளியைப் பருத்திப் பஞ்சால் அடைக்க. இது வெப்பம் இழக்கப் படுவதைக் குறைப்பதற்கேயாகும்.

சோதுகுக் குழாய்க்குள் ஒரு அளவியின் உதவியால் 9·0 ml 1 M HCl கரைசலே இட்டு, அதன் வெப்பநிலேயை வெப்பமானி கொண்டு அளவிடுக. இதனுள் 1·0 ml 1 M NaOH கரைசலேச் சேர்த்து, கரைசலே வெப்பமானியால் கலக்கி, ஏற்படும் உச்ச வெப்பநிலே உயர்வை அளவிடுக.

இவ்வாருக, இதே உபகரண அமைப்பில் ஒன்றின் பின் ஒன்ருக 8·0 ml HCl + 2·0 ml NaOH, 7·0 ml HCl + 3·0 ml NaOH போன்ற கணியங்களே இட்டு, இவை ஒவ்வொன்றிலும் ஏற்படும் உச்ச வெப்பநிலே உயர்வை அளவிட்டு, பின்வருமாறு அட்டவணேப் படுத்துக.

அட்டவணே: -

1M	HCl (ml)	9.0	8.0	7.0	6.0 5.	0 4.0	3.0	2.0	1.0
1M	NaOH (ml)	1.0	2.0	3.0	4.0 5.	0 6.0	7.0	8.0	9.0
வெப்	பநிலே உயர்வு(°C)]				i	1	

தாக்கிகளின் கனவளவுகளுக்கெ**திரே வெ**ப்பநிலே உயர்வுகளேக் குறித்து வரைபு வரைக. இவ்வேளேயில் இரு நேர்கோடுகள் படம் 20 இல் போல் பெறப்படும். இந்நேர் கோடுகள் வெட்டும் புள்ளியில் தாக்கிகளின் விகிதத்தைப் பெறுக. இவ்விகிதம் தாக்கிகளின் மூல் விகிதமாகும்.

உதாரணம்:- மேற்படி பரிசோதணேயில் HCl, NaOH, ஆகிய ஒவ் வொன்றினதும் கனவளவு 5·0 ml ஆக உள்ளபோது மிக அதிக வெப்பநிஃயுயர்வு பெறப்படின், தாக்கத்தின் பீசமானத்தைக் காண்க.

HCl இன் மூல்கள்:-

1000 ml 1M HCl இலுள்ள HCl மூல்கள் = 1

5.0 ml ,, ,, ,, =
$$\frac{1}{1000} \times 5 = \frac{5}{1000}$$

NaOH இன் மூல்கள்:-

1000 ml 1M NaOH இலுள்ள NaOH மூல்கள் = 1

$$5.0 \text{ ml}$$
 ,, ... , $=\frac{1}{1000} \times 5 = \frac{5}{1000}$

தாக்கத்தின் பீசமானம் HCl: NaOH = 1:1சமன்பாடு:- $HCl + NaOH = NaCl + H_2O$

நியமிப்பு முறைகள்

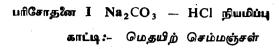
அமில — மூல் நியமிப்புக்கள்

வல்லமிலம்:- உ—ம் HCl, H₂SO₄, HNO₃

மெல்லமிலம்:- உ—ம் H_3PO_4 [பொசுபோரிக்கமிலம்] $H_2C_2O_4$ [ஒட்சாலிக்கமிலம்] CH_3COOH [அசற்றிக்கமிலம்]

வன்மூலம் [வன்காரம்]:- உடம் NaOH, KOH மென்மூலம்[மென்காரம்]:- உடம் Na₂CO₃, NH₄OH

குறிப்புகள் : -


- செறிவு அறியப்பட்ட ஒரு கரைசல் நியமக் கரைசல் எனப் படும்.
- 2. அமிலத்தினதும் மூலத்தினதும் நியமக் கரைசல்கள் ஒன்றுட ெனுன்று தாக்கமடையும் (ஒன்றையொன்று நடுநிஃலயாக்கும்) கனவளவுகளேத் துணிதல் நியமிப்பு அல்லது நியமித்தல் அல்லது வலுப்பார்த்தல் எனப்படும்.
- 3. அமிலம் மூலத்தால் அல்லது மூலம் அமிலத்தால் நடுநிலே யாக்கப்பட்ட நிலே முடிவு நிலே அல்லது ஈற்று நிலே அல்லது முடிவுப் புள்ளி எனப்படும்.
- 4. முடிவு நிலே அடையப்பெற்றதை, தமது நிறமாற்றத்தால் காட்டும் ஒரு பதார்த்தம் காட்டி எனப்படும்.

	gannan g auriq g auriq	Emospo por programme Summer	அமிலத்தில் நிறம்
1.	பாசிச்சாயம்	நீலம்	சிவப்பு
2.	மெதயி ற் செம்மஞ்சள்	மஞ்சள்	மெ ன்சிவப்பு
3.	பிஞேத் தலீன்	சிவப்பு	நிறம ற்றது
4,	செவ்வரத்தம் பூ இதழ்ச் சாறு	நீலம்	சிவப்பு

பினுத்தலீன் காட்டியை, அமோனியா அல்லது காபனேற்றுக்கள் சம்பந்தப்பட்ட நியமிப்புக்களில் பயன்படுத்த இய லாது.

மெதுயிற் செம்மஞ்சன் காட்டியை, மெல்லமிலங்கள் சம்பந்தப்பட்ட நியமிப்புக்களில் உபயோகிக்க இயலாது.

5. நியமிப்பின் மூலம் பெறப்பட்ட கனவளவுகள்,செறிவுகள் ஆகிய வற்றிலிருந்து தாக்கிகளின் மூல்களேயும் மூல்விகிதங்களேயும் கணிக்கலாம். தாக்கிகளின் மூல் விகிதமே தாக்கத்தின் பீச மானமாகும்:

10 ml 0·1M Na₂CO₃ கரைசல் ஒரு குழா யியிஞல் நியமிப்புக் குப்பியொன்றில் இட்டு அதனுடன் ஒரு துளி மெதயிற் செம்மஞ்சள் கரைசலேச்சேர்க்க சுரைசல் மஞ்சள் நிறமாகிறது.

இக்கரைசலுள், அளவியிலிருந்து 0·1M HCl கரைசஃத் துளிமயமாகச் சேர்த்துக் குலுக்குக. காரக் கரைசலின் நிறம் மஞ்சளிலிருந்து முதல் நிஃயான மென்சிவம்பு நிறமாகும் வரை HCl கரைசஃத் துளிதுளியாகச் சேர்க்க.

இதுவே நியமிப்பின் முடிவு நிலேயாகும்.

படம் 22

O·IM HC

குழாயடைப்ப

. நியமிப்புக் குப்பி

9·1M Na,CO, ் மெகமிற்

HCl கரைசலின் கனவளவை அளவியிலிருந்து அளவிடுக.

HCl கரைசலின் கனவளவுக்கான இரு பெறுமானங்**கள் மாரு** திருக்கும் வரை நியமிப்பை மீண்டும் செய்க.

அளவீடுகள்:--

$$0.1M$$
 Na₂CO₃ கரைசலின் கணவளவு = 10.00 ml $0.1M$ HCl ... = 20.00 ml

கணிப்பு:--

காரத்திலுள்ள Na₂ CO₃ மூல்கள்

 $1000 \text{ ml } 0.1 \text{M} \text{ Na}_2 \text{CO}_3$ கரைசலிலுள்ள $\text{Na}_2 \text{CO}_3$ மூல் = 0.1

10 ml ,, ,, =
$$\frac{0.1}{1000} \times 10$$

$$= \frac{1}{1000}$$

அமிலத்திலுள்ள HCl மூல்கள்

1000 ml 0·1M HCl கரைசேலிலுள்ள HCl மூல் = 0·1
20 ml .. ,, , , =
$$\frac{0·1}{1000} \times 20$$
= $\frac{2}{1000}$

தாக்கெளின் மூல் விதிதம்:- Na₂CO₃:HCl = $\frac{1}{1000}$: $\frac{2}{1000}$ = 1 : 2 தாக்கத்தின் பீசமானம்:- Na₂CO₃ : HCl = 1 : 2 சமன்பாடு:- Na₂CO₃ + 2HCl = 2NaCl + CO₂ + H₂O பரிசோதனே II HCl — NaOH நியமிப்பு காட்டி:- பினேத்தலீன்

25 ml 0'1M NaOH கரைசல் ஒரு குழாயியினுல் நியமிப்புக் குப்பியிலிட்டு, அதனுடன் 1 துளி பினுத்தலீணச் சேர்க்க. கரைசல் சிவப்பு நிறமாகிறது.

இதனுள் 0·1M HCl கரைசல் அளவியிலிருந்து துளிதுளியாகச் சேர்க்க. காரக் கரைசல் முதன் முதலாக நிறமற்றதாகும் வரை HCl கரைசலேக் சேர்க்க. இதுவே முடிவு நிலேயாகும்.

அளவீடுகள்:-

கணிப்பு :-

காரத்திலுள்ள NaOH மூல் =
$$\frac{0.1}{1000} \times 25 = \frac{2.5}{1000}$$
அமிலத்திலுள்ள HCl மூல் = $\frac{0.1}{1000} \times 25 = \frac{2.5}{1000}$
மூல் விதிதம் NaOH : HCl = $\frac{2.5}{1000} : \frac{2.5}{1000} = 1:1$

தாக்கத்தின் பீசமானம் NaOH : HCl = 1 : 1 சமன்பாடு:- NaOH + $HCl = NaCl + H_2O$

ப**ரிசோதனே** III. H₃PO₄ — NaOH நியமிப்பு காட்டி:- பிஞேத்தலீன்

30 ml 0·1M NaOH கரைசஃ நியமிப்புக் குப்பியிலிட்டு, அத னுடன் 1 துளி பினுத்தலீணச் சேர்க்க. கரைசல் சிவப்பு நிறமாகும்.

இதனுள் 0·1M H₃PO₄ கரைசல், காரக் கரைசல் சிவப்பிலிருந்து முதன் முதலாக நிறமற்றதாகு**ம் வரை து**ளிமயமாகச் சேர்க்க. இ**துவே** மு**டிவு நிலேயா**கும்.

அளவிடுகள் : -

$$0.1M$$
 NaOH இன் கனவளவு = 30.00 ml $0.1M$ H $_3$ PO $_4$,, $=10.00$ ml

ភពាប់ឬ:--

காரத்திலுள்ள NaOH மூல்
$$=\frac{0\cdot 1}{1000}\times 30=\frac{3}{1000}$$
 அமிலத்திலுள்ள H_3PO_4 மூல் $=\frac{0\cdot 1}{1000}\times 10=\frac{1}{1000}$ மூல் விகிதம் NaOH : $H_3PO_4=\frac{3}{1000}:\frac{1}{1000}=3:1$ தாக்கத்தின் பீசமானம் NaOH : $H_3PO_4=3:1$ சமன்பாடு:- 3 NaOH + $H_3PO_4=$ Na $_3PO_4$ + 3 H $_2O$ விருக்கள்

I. FeCl₃ உக்கும் Na₂CO₃ உக்குமிடையே நிகழும் தாக்கத்தின் பீசமானத்தைத் துணியும் நோக்கமாகப் பின்வரும் ஆய்வு செய்யப்பட்டது.

1M FeCl₃ கரைசலும் 1M Na₂CO₃ கரைசலும் பின்வரும் அட்டவணேயில் காட்டப்பட்டுள்ள கனவளவுகளில் ஒரே அளவான 9 சோதணேக் குழாய்களில் ஒன்று கலக்கப்பட்டு, உண்டான செங்கபில நிற வீழ்ப்படிவு முற்ருக அடைந்த பின் அவற்றின் உயரங்கள் அள விடப்பட்டு, அட்டவணேயில் கனவளவுகளுக் கெதிரே குறிக்கப் பட்டுள்ளன.

IM Na ₂ CO	(ml)	1	2	3	3	4	5	6	7	8	9	,
1M FeCl ₃	(ml)	9	j 8	1	7	6	5	4	3	2	. 1	Ţ
வீழ்படிவின் உயரம்	(mm)	5	12	, 1	19	26	33	40	30	20	10	,

(அ) கனவளவுகளுக் கெதிரே வீழ்படிவின் உயர**த்தை**க் குறி**த்து** வரைபு வரைக.

உமது வரைபிலிருந்து பின்வரும் விஞக்களுக்கு விடை எழுதுக.

6

- (ஆ) கரைசல்களின் கனவள்வ என்ன விகிதத்திலுள்ள போது மிக அதிக வீழ்படிவு உண்டாகியுள்ளது?
- (இ) மிக அதிக வீழ்படிவை உண்டாக்கிய கனவளவுகளிலுள்ள
 - (i) Na₂CO₃ மூல்கள்
 - (ii) FeCl₃ மூல்கள் என்பவற்றைக் கணிக்க.
- (ஈ) தாக்கிகளின் மூல் விகிதத்தைக் தருக.
- (உ) இத்தாக்கத்தின் பீசமானம் யாது?
- (ஊ) (உ) இல் உமது விடையிலிருந்து இத்தாக்கத்திற்கான சமன் பாட்டினே எழுதுக.
- 2. 3·31 g Pb(NO₃)₂ இன் நீர்க் கரைசலிலிருந்து Pb ஐ PbSO₄ ஆக முற்றுகப் படிவு வீழ்த்துவதற்குத் தேவையான
 - (அ) H₂SO₄ இன் மிகக் குறைந்த திணிவு
 - (ஆ) H2SO4 இன் மூல்கள்
 - 0·1M H₂SO₄ கரைசலின் கணவளவு ஆகியவற்றைக் கணிக்க [Pb = 207, N = 14, O = 16, H = 1, S = 321
- 3. NaOH உக்கும் HCl உக்குமிடையே நிகமும் நடுநிலேயாக்கல் தாக்கத்தின் பீசமானத்தை துணிவதற்கு பின்வரும் நியமிப்பு செய்யப்பட்ட*து* .

25 ml 0·1M NaOH கரைசவுடன் ஒரு துளி பிஞேத்தலீன் சேர்க்கப்பட்டு அதனுள், அளவியிலிருந்து 0·125 M HCl கரைசல். நிறமாற்றம் ஏற்படும் வரை துளிதுளியாகச் சேர்க்கப்பட்டது. சேர்க்கப்பட்ட HCl இன் கனவளவு 20:00 ml என அறியப்பட்டது.

[Na = 23, O = 16, H = 1, Cl = 35.5]

- (அ) நியமிப்பின் போது ஏற்பட்ட நிறமாற்றம் யாது?
- (ஆ) இந்நியமிப்பில் நீர் பயன்படுத்தக் கூடிய மற்டுரு, காட்டி யாது?
- (இ) (ஆ) இல் நீர் கூறும் காட்டி, முடிவுநிலேயில் என்ன நிற மாற்றமடையும்?
- (ஈ) NaOH கரைசலிலுள்ள NaOH மூல்களேக் கணிக்க.
- (உ) HCl கரைசலிலுள்ள HCl மூல்களேக் கணிக்க.
- (ஊ) தாக்கிகளின் மூல் விகிதம் யா<u>க</u>ு?

- (எ) இத்தாக்கத்தின் பீசமானத்தை எமுகுக.
- (ஏ) 4·0 g NaOH இலிருந்து உண்டாகக்கூடிய NaCl இன் திணி வைக் கணிக்க.

பல்தேர்வு வினுக்கள்

- 1. 50 ml N₂ உடன் சேரும் H₂ இன் கனவளவு அதே வெப்பநில அமுக்கத்தில்
 - 1. 50 ml
- 2. 100 ml
- 150 m
- 4. 75 ml
- 2. 0·1 g H₂ ஐ 0·9 g Al அமிலத்திலிருந்து இடம்பெயர்த்**ததெனின்**, Al இன் சமவலுத் டூணிவு
 - 1. 0.9
- 2. 9.0
- 3. 27.0
- 4. 18.0
- 5. $4\cdot 0$ g \mathbf{O}_2 உடன் சேரும் $\mathbf{C}\mathbf{a}$ இன் திணிவு $10\cdot 0$ g ஆகும். $\mathbf{C}\mathbf{a}$ இன் வலுவளவு 2 ஆயின், அதன் அணுத் திணிவு
 - 1. 10 · 0
- 2. 20.0
- 3. 30 0
- 40 . 0
- 4. M என்னும் உலோகத்தின் சமவலுத் திணிவும் அணுத் திணிவும் முறையே 12 உம் 24 உம் ஆயின், இவ்வுலோகம் குளோரீனுடன் உண்டாக்கும் சேர்வையின் சூத்திரம்
 - 1. MCl
- 2. MC1,
- 3. MCl.
- 4. MCla
- 5. ஓரணுக் கொண்ட முலக்கூறுகளுடைய ஒரு மூலகம் பின்வருவனவற் றுள் எதுவாகும்?
 - 1. நேயன்
- 2. ஒசோன்
- 3. நைதரசன்
- 4. குளோரின்
- 6. 22 g CO_2 இலுள்ள ஒட்சிசன் அணுக்களின் எண்ணிக்கை / C=120 = 161
 - 1. $\frac{6 \cdot 02 \times 10^{23}}{2}$ 2. $2 \times 6 \cdot 02 \times 10^{23}$
- $6 \cdot 02 \times 10^{23}$

- 7. \mathbf{O}_2 இன் மூலர்க் கனவளவு $22\cdot 4\,l$ ஆயின் 16 g \mathbf{O}_2 இன் கன வளவு நி. வெ. அ. இல்
 - 1. 22 · 4 l 2. 5 · 6 l 3. 44 · 8 l

- 4. 11 · 2 l

- அவகாகரோ எண் பற்றிய பின்வரும் கூற்றுக்களில் பிழையானது எது?
 - 1. ஒரு மூலகத்தின் 1 கிராமணுவிலுள்ள அணுக்களின் எண்ணிக்கை
 - 2. ஒரு மூலகத்தின் 1 மூலி வுள்ள மூலக்கூறுகளின் எண்ணிக்கை
 - 3. ஒரு சேர்வையின் 1 மூலிலுள்ள மூலக்கூறுகளின் எண்ணிக்கை
 - 4. ஒரு மூலகத்தின் 1 மூலிலுள்ள அணுக்களின் எண்ணிக்கை
- 9. பின்வருவனவற்றுள் எவை தனித்துச் சூடாக்கப்படும் போது 0 , ஐ ஒரேயொரு வாயு வினேவாகக் கொடுப்பன?
 - A. KNO₃
- B. $Cu(NO_3)_2$
- C. KClO₃
- D. AgNO₃

- 1. A. B
- 2. B. C $\sqrt{3}$. A. C 4. C. D
- 10. 273° K இலும் 1 வளிமண்டலம் அமுக்கத்திலும் ஒரு குறித்த திணி வடைய வாயுவின் கனவளவு 100 ml ஆயின், அமுக்கம் மாளுதிருக்க, 546° K இல் இவ்வாயுவின் கணவளவு
 - 1. 100 ml
- 2. 273 ml
- 3. 373 ml
- 4. 200 ml

4. 1800 cm³

- 11 30° C இலும் 1 வளிமண்டல அழக்கத்திலும் குறித்த திணிவடைய வாயு ஒன்றின் கனவளவு 600 Cm³ ஆயின், அதே வெப்பநிலேயி லும் 3 வளிமண்டல அமுக்கத்திலும் இவ்வாயுவின் கணவளவு யாது? 1. 600 cm³ 2. 300 cm³ 3 200 cm³
- 12. பின்வரும் சேர்வைகளில் எவற்றில் S இன் வலுவளவு 6 ஆகும்
 - A SO₂
- B. SO₃ C. H₂SO₄
- D. H.S

- 1. A, B 2. B, C 3. C. D
- 4. A. D
- 13. ஒரு மூலகம் X இனது வலுவளவு 5 ஆகும். இது O₂ உடன் உண் டாக்கும் ஒட்சைட்டின் சூத்திரம்

 - 1 X₅O 2. X₂O₅ 3. XO₅
- 4. X5O2
- 14. 53 g Na 2CO நிரில் கரைக்கப்பட்டு கரைசல் 1.0 / ஆக்கப்பட்டால், அக்கரைசலின் முலர்த்திறன் [Na=23, C=12, O=16]
 - 1. 0 · 5 M
- 2. 1 M
- 3. 2 M 4. 0 · 2 M
- 15. 2·0 g NaOH ஐ 500 ml கரைசலில் கொண்டுள்ள ஒரு கரைசலின் மூலர் நிறன் 0·1M ஆயின், NaOH இன் மூலக்கூற்றுத் திணிவு
 - 1. 2.0
- 40.0
- 3. 20.0
- 4. 4.0

16. 1·0 மூலல் கரும்பு வெல்லக் கரைசலிலுள்ள கரும்பு வெல்லத்தின் மூல் பின்னம்.

1:
$$\frac{0.1}{0.1 + \frac{1000}{10}}$$
 2. $\frac{0.1}{0.1 + \frac{18}{1000}}$ 3. $\frac{1}{1 + \frac{1000}{18}}$

4.
$$\frac{1}{1+\frac{100}{18}}$$

17. $2Ag NO_3 + BaCl_2 = 2AgCl + Ba(NO_3)_2$

1M AgNO 3, 0·5M BaCi ஆகிய ஒவ்வொன்றினதும் வேறுபட்ட கனவளவுகள் ஒன்று கலக்கப்படும் போது AgCl இன் மிக அதிக வீழ்படிவு, AgNO கரைசலுக்கும் BaCl கரைசலுக்கு முள்ள கன வளவு விகிதம் எதுவாக இருக்கும் போது பெறப்படுகிறது?

- 1 1:1
- 3. 1:2
- 4. 1:4

18 இலிருந்து 20 வரையுள்ள விஞக்கள் ஒவ்வொன்றும் இடது பக்கத்தில் ஒரு கூற்றையும் வலது பக்கத்தில் கூற்றுக்கான காரணத் தையும் கொண்டுள்ளது. பின்வரும் வழிகாட்டல் அட்டவணேக் கேற்ப கூற்றையும் காரணத்தையும் தீர்மானித்து விடையளிக்க.

வமிகாட்டல் அட்டவனே

	கூற்று	காரணைம்
1	உண்மை	உண் மையும் தகுந்த விளக்கமும்
2	உண் மை	பொ ய்
3	பொய்	உண்ளை ம
4	பொய்	பொய்
4		பொய்

கூற்று

காரணம்

- 18, Cu, Zn ஐ Zn இன் உப்புக் கரைசலிலிருந்து இடம் பெயர்க் கும்.
- மகனீசியமொட்சைட்டு ஒரு பீச மானச் சேர்வையாகும்.
- $20.~~{
 m Cl}_2$ இன் ஒரு மூலர்க் கனவள விலுள்ள ${
 m Cl}_2$ மூலக்கூறுக வின் எண்ணிக்கை $6\cdot 02\times 10^{23}$ ஆகும்.

Cu, Zn இலும் தாக்கம் கூடியது. ஆதலால் Zn ஐ இடம்பெயர்க்கும்.

மகனீசியமொட்சைட்டில் Mg உக்கும் O_2 உக்குமுள்ள திணிவுப்படி வித்தம் மாறுபடும்

மூலர்க் கனவளவு, நி. வெ. அ இல் அவ்வாயுவின் 1 மூலின் கன வளவாகும்.

* * *

விடைகள்

அத்தியாயம் 1 பக்கம் 13

- 2. (Q) 0.75 g (F) 0.70 g (2) 0 (201) 1
- 3. (a) 31.8 g, 31.8 g

அத்தியாயம் 2. பக்கம் 31

- 2. (2) 40.0 ml (4) 80.0 ml (2) 160.0 ml (201) 2:1
- 3. (4) 50·0 ml, 100·0 ml (4) 100 ml (例 (i) 306·7 ml (ii) 449 ml
- 4. (4) 100 ml (2) 200 ml (7) (i) n (ii) 2n (2) 91 ml

அத்தியாயம் 3 பக்கம் 53

- 1: (#) 3:18
- 2. (ஆ) (i) MSO₄ (ii) 40·0 (இ) (i) 8·5 (ii) 17**20**
- . (இ) 103·5 (#) 206 (2.) (i) 2 (ii) 2
- 4. P-3, S-6, N-3, C-4, K-1

அத்தியாயம் 4 பக்கம் 70

- 1. (4) (i) 3.01×10^{22} (ii) 6.02×10^{22} (9) 17.0
- 2. (அ) 2 (ஆ) 0·125 மூல் (இ) 13·25 g

$$\frac{0.1 + \frac{200}{18}}{0.1 + \frac{200}{18}}$$

- 3. (அ) 0.05 M (ஆ) 0.2 M (இ) 0.05 மூலல்
 - (#) 16.55 g
- 4. (2) 1.10 g

அத்தியாயம் 5 பக்கம் 81

- 1. (-3) Na₂ CO₃: FeCl₃ = 6:4
 - (இ)(i) $\frac{3}{500}$ ($\frac{3}{500}$ ($\frac{2}{500}$ ($\frac{2}{500}$ ($\frac{2}{500}$ ($\frac{2}{500}$ Na $_{2}$ CO $_{3}$: FeCl $_{3}$ = 3:2
 - (2) Na_2CO_3 : $FeCl_3 = 3:2$
- 2. (அ) 0.98 g (ஆ) 0.01 மூல் (இ) 100 ml
- 3. (F) $\frac{2.5}{1000}$ (P) $\frac{2.5}{1000}$ (P) $\frac{2.5}{1000}$ (P) NaOH: HCl = 1:1
 - (a) NaOH: HCl = 1:1 (a) 5.85 g

பல்தேர்வு வினுக்களுக்கான விடை பக்கம் 83

- 1 3 6 3 11 3 16 3 2 2 7 4 12 2 17 2
- 2 2 7 4 12 2 17 2 3 4 8 4 13 2 18 4
- 4 2 9 3 14 1 19 2
- 5 1 10 4 15 2 20

வஸ்டுயன் அச்சகம், யாழ்ப்பாணம்,