

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org உயர்தர உயிரியல் புதிய பாடத்திட்டம்

ADVANCED LEVEL BIOLOGY NEW SYLLABUS

உயிரின் தொடர்ச்சி CONTINUITY OF LIFE

ிமைக் கோலங்கள்

தலைமுறையுரிமைக் கே கூர்ப்பு

செ.ரூபசிங்கம் B.Sc. Dip in Ed.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

பெயர்

ஆசிரியர்

: உயர்தர உயிரியல் உயிரின் தொடர்ச்சி

: செ. ரூபசிங்கம் வவுனியா தமிழ் மத்திய கல்லூரி வவுனியா.

உரிமை செல்வி. விரூபிண்யா ரூபசிங்கம் ஆசிரியா் விடுதி வவுனியா தமிழ் மத்திய கல்லூரி வவுனியா

கணனி வடிவமைப்பு : ஜெய்னிகா சென்ரர்,குருமன்காடு . வவுனியா.

அட்டை வடிவமைப்பு : ஜெய்னிகா சென்ரர்,குருமன்காடு , வவுனியா.

் நவயோகா அச்சகம்

ഖിതെ

அச்சுப்பதிப்பு

: 100/-

நூன் முகம்

இது எனது நான்காவது நூல். காலத்தின் தேவை கருதி உயிரின் கொடர்ச்சி பற்றிய இந்நூல் வெளிவருகின்றது. எனது இரண்டாவது நூல் அடிப்படை உயிரியல் பகுதி 1 இல் உயிரியல் பாட விதானம் எழுந்த பின்னனியையும், தவிர்க்கமுடியாத காலத்தின் தேவையில் அதன் பங்களிப்பையம் தெளிவாகக் குறிப்பிட்டிருந்தேன். கீவ முமுவதும் பாடசாலைகளில் உயிரியல் பாடவிதானம் அமலாகி ஒருவருடம் பூர்த்தியாகிவிட்டது. இந்நிலையிலும் ஆங்காங்கே "விலங்கியலும்" "தாவரவியலும்" வலம் வந்து மாவணரைத் திணருச் செய்வதில் ஈடுபட்டிருப்பதைப் பார்க்கும் போது அறிவியல் உலகம் கண்ணீர் வடிக்கத்தான் செய்யும். ஆனாலும் இன்றைய மாணவர் உலகு சாகராணமானகல்ல. கள்ள வேண்டியகையம் கொள்ள வேண்டியதையும் பொருத்தமான முறையில் தெரிவு செய்து கொள்ளுமாயின் அது தப்பிப்பிழைக்கச் செய்யும். பெரும்பாலும் இது நடந்தே வருகின்றது. நிறைபோட்டி நிலவும் அறிவியல் ஆய்களத்தில் அன்னத்தை ஒத்த இத்தகைய செயற்பாடு அவசியமானதும் கூட.

இந்த நூலிலும் கருத்தியற் சிந்தனைத் தெளிவடன் பல புதிய பதங்களை கையாளச் செய்துள்ளேன். வியாபித்து வரும் உயிரியல் அரிவ மேலம் வளர்ச்சியடைவகங்கு இகு அவசியமானகே. நான் கண் முடித்தனமாக இதனை மேற்கொள்ளவில்லை. அவ்வாறு சிந்தனைத் தெளிவின்றி மேற்கொண்டிருப்பேனாயின் மாணவர்க்குத் தீங்கிமைத்த வனரவேன். சமகாலத்தில் வழக்கில் உள்ள சிங்களப் பதவாக்கப் போக். கைப் பின்பற்றியே இதனைப் பெரும்பாலும் மேற்கொண்டுள்ளேன். மேலும் உயிரியல் பாடவிதான ஆக்கக் குழுவில் அங்கம் வகித்த போசிரியர்களின் விருப்பு வெறுப்புக்களையும் கருத்திற் கொண்டுள்ளேன். பரீட்சை என்று வரும் போது அதனைப் புறக்கணிப்போமாயின் அதனால் முழு உயிரியல் ஆசிரியர்களும் மாணவர்களும் பாதிப்படைய வேண்டியேற்படும். சில பதங்களைப் பொறுத்தவரை ஆங்கிலத்திலும் சிங்களத்திலும் சற்று வித்தியாசமான ார்த்தங்கள் கற்பிக்கப்பட்டிருக்குமிடத்து சிங்கள மொழி மூல அடிப்படையையே கைக்கொண்டுள்ளேன். சில பதங்கள் தற்போதைக்கு தவ<mark>றானவையா</mark>கக் கருதப்படலாமாயினும் இடைமாறு கால கட்டத்தில் அவற்றால் பாதிப்பில்லை என்ற தெளிவுடன்

அவற்றையே பயன்படுத்தியுள்ளேன். ஏனெனில் வழக்கிலிருந்து புரட்சிகர விலகல்களை புகுத்தி மாணவர்கட்கும் ஆசிரியர்கட்கும் அவஸ்த்தையேற்படுத்தி விடலாகாது.

இச்சந்தர்ப்பத்தில் இத்தகைய பரிமாணங்களில் மேலம் நான் செயற்படக் காரணமாக இருந்த சில காரணிகளையும் நினைவு கூருகிறேன். இவற்றில் தலையானவை பல்கலைக்கழகங்கள். கொழும்பு , பேராதனை , யாழ்ப்பாணம் என்ற மூன்று பல்கலைக்கழகங்களிலும் மாணவனாகப் பெற்ற அறிவும் அனுபவமும் அளப்பரியன. பின்னர் துறைசார் தேர்ச்சியை ஆசிரியப் பணியில் வழங்கிய தேசியக் கல்வி நிறுவகமும் முக்கியமானது. எந்தவொரு பாடத்தையும் சிறப்பாகக் கையாள்வதற்கு அதனைக்கற்பிக்கும் எனது தமிழ் மொழித் தேர்ச்சிக்கு மொழியில் தேர்ச்சி வேண்டும். வித்திட்ட முனைவர்கள் இருவர். அவர்களில் ஒருவர் தாய் மாமனார் க.சிவானந்தசுந்தரம். இவர் என்னை நான் சிங்களத்தில் ஆரம்பித்த அரிச்சுவடியை தமிழிலும் தொடர்வதற்கு காரணமாக இருந்தவர். ஒரு மாமனிதர். மற்றவர் எனக்கு தமிழ் கற்பித்த எனது தாயின் காலஞ் சென்ற மதுரைத் திருஞான சம்பந்தர் ஆதீன கந்தை வித்துவானும் கொழும்பு தமிழ்ச் சங்க ஸ்தாபகருமான ഖ.(ഥ. கனகசுந்தரம்.

மேலும் மொழிபெயர்ப்புத் துறையில் காத்திரமான எனது கால் கோள் எடுத்த முன்னை நாள் ளோயல் பங்களிப்பக்கு கல்லூரி விலங்கியல் ஆசிரியர் திரு. எஸ். வைத்தியநாதன் எனது வாழ்நாளில் மறக்கப்பட முடியாதவர். தவிர அவர்களும் நாற்பது வயதிற்கிடையில் முழுநேர ஆசிரியப்பணியில் ஈடுபட்டுள்ள ஒருவன் ஆறு நால்களை வெளியிடுவது என்பது அழுத்தங்களும் சுமைகளும் நிறைந்த பணியாகும். அதிலும் இரண்டு நூல்கள் இந்த வகையில் இரண்டாவது பதிப்பை எதிர்நோக்கியுள்ளன. நான் கொடுத்து வைத்தவன். இது ஒரு தனிநபரால் அடையக் கூடியதொன்றல்ல. துறைசார்ந்த ஆசிரியர்கள் , மாணவர்கள் மற்றும் அனைவர்க்குமே இந்த வகையில் நான் கடமைப்பட்டவனேயாவேன். உயிரியல் உலகிடம் எனது இந்த நன்றி மறவா நெஞ்சுடன் ''உயிரின் தொடர்ச்சியை'' யும் ஒப்படைக்கின்றேன்.

செ.ரூபசிங்கம்.

சமர்ப்பணம்

உயர்தரத்தில் உயிரியல் கல்வியை

அறிமுகம் செய்த

பேராசிரியர் கே.டி.

டி. அருட்பிரகாசம்

அவர்கட்கு

________ - 1

தலைமுறை உரிமைக் கோலங்கள்

அறிமுகமும் வரலாறும்

தலைமுறையுரிமை அல்லது பாரம்பரியமென்பது அங்கிகளில் அடுத்தடுத்த சந்ததிகளினூடாக இயல்புகள் பிரதிபலிக்கப் படுகின்றமை அல்லது அங்கிகளின் அடுத்தடுத்த சந்ததிகளிடையே நிலவுகின்ற சேதன தொடர்பு.

பாரம்பரியம் பற்றிய அறிவு ஆதிகாலம் முதலே மக்களிடையே நிலவி வந்தது. எனினும் முதன் முதலாக Austria நாட்டில் கிறிஸ்தவப் பாதிரியாரான Gregor John Mendel என்பவரால் தனது ஆச்சிரம தோட்டத்தில் பட்டாணிக் கடலைத் தாவரங்களில் மேற்கொள்ளப்பட்ட பரிசோதனைகளுடன் விஞ்ஞானபூர்வமான ஆய்வுகள் முன்னெடுக்கப்பட்டன. இவர் தனது பரிசோதனை முடிவுகளை உள்ளூர் இயற்கை வரலாற்று கழகத்தில் சமர்ப்பித்து மறுவருடம் 1856 இல் அவை அக்கழக வெளியீட்டில் பிரசுரமாயின. மெண்டலின் பரிசோதனைகளை ஒத்த பரிசோதனைகள் வேறுபலராலும் மேற்கொள்ளப்பட்ட போதும் இவரது பரிசோதனைகள் விஞ்ஞான பூர்வமாக மேற் கொள்ளப்பட்டமையானது முடிவுகள் வெற்றிகரமாக அமையக் காரணமாயின.

பரிசோதனையின் பொருட்டு பொருத்தமான தாவரத்தை தெரிவு செய்தமை, பரிசோதனைகள் எளிமையானவையாக காணப்பட்டமை, ஒரு சந்தர்ப்பத்தில் ஒரு மாறி தொடர்பாக கருத்திற் கொண்டமை, பரிசோதனை முடிவுகளை புள்ளிவிபரவியல் ரீதியில் பகுப்பாய்வு செய்தமை, பெறுபேறுகளை விளக்குவதற்கு பொருத்தமான கருதுகோள்களை உருவாக்கியமை, திட்டமிடப்பட்ட பரிசோதனைகள் வாயிலாக இக்கருதுகோள்களை வாய்ப்பு பார்த்தமை போன்றவை விஞ்ஞான முறையில் மேற்கொள்ளப்பட்ட நடவடிக்கைகளாகும். ஆயினும் அக்காலப்பகுதிகளில் இயற்கை விஞ்ஞானிகளின் கவனம் Darwin இன் கூர்ப்பு கொள்கையின்பால் ஈர்க்கப்பட்டிருந்த மையால் மென்டலின் முடிவுகள் கருத்திற் கொள்ளப்படவில்லை.

பின்னர் 20ம் நூற்றாண்டின் ஆரம்பத்தில் 1900ம் ஆண்டளவில் Hugo de vries, Eric von Tschermerk, Karl Correns என்பவர்களால் மென்டலின் முடிவுகள் மீண்டும் பரிசோதனை ரீதியாக கண்டுபிடிக்கப்பட்டன. இவர்களுள் Hugo de vries Mendel இன் முடிவுகள் பிரசுரிக்கப்பட்ட சஞ்சிகையைக் மண்டு பிடித்து வெளிப்படுத்தினார். இதைத் தொடர்ந்து பாரம்பரியம் பற்றிய அறிவு துரித கதியில் வளர்ச்சி யடையலாயிற்று. இதற்கு நுணுக்குக்காட்டி பேணுக்குக் காட்டி என்பவற்றின் கண்டுபிடிப்புகள் பெரிதும் உதவின.

பொருளடக்கம்

அலகு	க்கம்
1. தலைமுறையுரிமைக் கோலங்கள் அறிமுகமும் வரலாறும்	1
2. இயல்புகள்	4
3. மென்டலின் இனக்கலப்பு பரிசோதனைகள்	8
4. மும்மை இனக்கலப்பு பரிசோதனை	17
5. மென்டலின் விதிகளில் இருந்தான விலகல்கள்	21
6. விகாரம்	44
7. குடித் தொகைப் பிறப்பு ரிமையியல்	52
8. பிரயோக பிறப்புரிமையியல்	56
9. கூர்ப்பு	63
10. மனிதக் கூர்ப்பு	81
அனுபந்தங்கள் i. மனிதனில் மட்டும் காணப்படும் இயல்புகள்	89
ii. சருக்கக்குறிப்பு அட்டவணை	91
iii. DNA ஐ வேறாக்கல்	92
iv. செயற்கையான பரம்பரைஅலகுத் தயாரிப்பு	93

கலத்தினுள்கரு, கருவினுள் நிறமூர்த்தங்கள் காணப்படுகின்றன ,இவை அமைப்பொத்தவை, நிறமூர்த்தங்களில் பரம்பரை அலகுகள் நோகோட்டொழுங்கில் காணப்படுகின்றன என்ற விபரங்கள் வெளிப்படுத்தப்பட்டன. Watson , Crick போன்றவர்களால் DNA மாதிரியுரு வெளிப்படுத்தப்பட்டது. இந்த வரிசையில் இடம் பெற்ற முக்கிய நிகழ்வுகள் சில வருமாறு.

Haeckel - கரு பாரம்பரியத் தகவல் களின் அடிப்படையாக இருக்கலாம் எனப் பெரிதும் சந்தேகித்தார்.

Hertwig - கடல் முள்ளியில் கருக்கட்டலின் போது புணரிகளின் கருக்கள் ஒன்றுடனொன்று இணைந்ததைக் கண்டு பிடித்தார்.

Boveri, Flemming :- இழையருப்பிரிவை விபரித்தனர்.

Weisman :- ஒடுக்கற்பிரிவின் போதான நிறமூர்த்தங்களின் நடத்தையை விபரித்தார்.

William Shutton, Theodor Boveri - தனித்தனியாக மெண்டலின் காரணிகட்கும் ஒடுக்கற் பிரிவின் போதும் கருக்கட்டலின் போதுமான நிறமூர்த்தங்களின் நடத்தைக்கும் இடையேயான சமாந்தர தன்மையை கண்டு பிடித்தனர். 1903 இல் இருவரும் ஒருங்கே தலைமுறையுரிமை தொடர்பான நிறமூர்த்தக் கொள்கையை முன் வைத்தனர். தொடர்ந்து Bateson, Morgan போன்றவர்கள் இக் கொள்கையின் பொருட்டான பரிசோதனை ரீதியிலான ஆதாரங்களை முன் வைத்தனர்.

பயன்படுத்தும் என்ற சொல்லை Johnson :- பரம்பரை அலகு -Gene-நடைமுறையை ஆரம்பித்தார்.

Shull :- இனக்கலப்பின் மூலம் வீரியமுள்ள எச்சங்கள் தோற்றுவிக்கப்படலாம் என காண்பித்தார்.

உரு1:- DNAயின் மாதிரியுருவைப் பிரேரித்த Watson (இடது) உம் Crick (வலது) உம்

-2-

Gregor Johann Mendel

Charles Darwin

Jean Baptiste Lamarck

Hugo De Vries

உரு2:- உயிரின் தொடர்ச்சி தொடர்பான சில உயிரியலாளர்கள்

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

அலகு - 2

இயல்புகள்

இயல்பென்பது அங்கிகளால் வெளிக்காட்டப்படும் அல்லது பிரதிபலிக்கப்படும் தன்மை அல்லது பண்பு. பொதுவாக பின்வரும் வகைகளாகப் பிரிக்கலாம்.

புறத்திற்குரிய இயல்பு அல்லது புறத்தோற்ற இயல்பு

- அங்கிகளின் புறத்தோற்றத்தில் அவதானிக்கப்படக் கூடியவை. உதாரணம்:- தக்காளியில் கோளவடிவ, நீள்வட்டவடிவ பழங்கள் மனிதனில் சோணைகொண்ட, சோணையற்ற காது.
- 2. உடற்கூற்றியல்பு

அங்கிகளின் உடலமைப்பிற்குரிய இயல்புகள்

உதாரணம்:- கலன்கட்டுமடல் , குடல்வளரி

இவை சிலவேளைகளில் புறத்திற்குரியனவாகவும் காணப்படலாம். உதாாணம்:- சிறநா

3. உடற்தொழிலியல்பு

உடற் தொழிற்பாடுகள் நடைபெறும் ஒழுங்கு தன்மை போன்றவை உதாரணம்:- சுவாசம்

4. இரசாயன இயல்பு

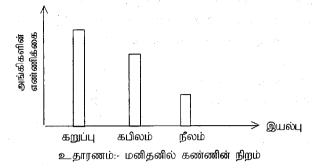
அங்கிகளின் இரசா**யன ஆக்கக்கூறுகளின் அமைப்பை அடிப்படையாகக்** கொண்ட பண்புகள்

உதாரணம்: Chlorophyll இல் Mg, Haemoglobin இல் Fe

5. நடத்தை இயல்புகள்

அங்கிகளின் மாறும் செயற்பாடுகள் பற்றிய விபரங்கள்

- உதாரணம்:- Chlamydomonas இல் நடைபெறும் இரசனை அசைவு.
- 6. உள இயல்புகள்
 - உளாீதியான பண்புகள்


உதாரணம்:- விவேகம் , மந்தம்

எவ்வாறாயினும் புறத்தோற்ற இயல்புகளும் இரசாயன இயல்புகளுமே பெரும்பாலும் பிறப்புரிமையியல் ஆய்வுகளில் பயன்படுபவை.

பண்பறி இயல்பும் அளந்தறி இயல்பும்

பண்பறி இயல்பு.

இயல்பின் அடிப்படையில் அங்கிக் கூட்டத்தை தெளிவான பிரிவுகளாக வேறுபடுத்தலாம். இயல்பு பொது வீச்சொன்றினுள் அமைய மாட்டாது. தெளிவாகப் பிரிக்கப்படக் கூடியது. இயல்பு தொடர்ச்சியற்ற முறையில் மாறும். பண்பறி இயல்புகள் ஒரு சில பரம்பரை அலகு சோடிகளால் பிரதிபலிக்கப்படுபவை.

பட்டாணி கடலை தாவரத்தில் முழுவளர்ச்சி நிலையில் உயரம். அளந்தறி இயல்பு

இயல்பின் அடிப்படையில் அங்கிக் கூட்டத்தை தெளிவாகப் பிரிக்க முடியாது. இயல்பு குறித்த வீச்சுள் மாறுபடுவதாய் காணப்படும். இயற்கையான குடித்தொகை ஒன்றில் ஒரு சராசரிப் பெறுமானத்தைச் சூழ அங்கிகளின் இயல்புகள் வேறுபடும். இங்கு இயல்பின் பெறுமான மாறல் தொடர்ச்சியான மாறல் எனப்படும். வரைபு மணி வடிவினதாய் காணப்படும். இத்தகைய இயல்புகள் பலசோடி பரம்பரை அலகுகளினால் பிரதிபலிக்கப்படுபவை.

உதாரணம்:- மனிதனில் உயரம் , உடலின்நிறம் , பட்டாணி கடலை

இயல்ப

🗱 தூய இயல்பும் தூய்மையற்ற இயல்பும்

(தாவரங்களில் தன் மகரந்தச் சேர்க்கை[ு]மூலமும் விலங்குகளில் உள்ளக விருத்தி மூலமும் இயல்பொன்று பல சந்ததிகளுக்கு மாற்றமின்றி பிரதிபலிக்கப்படுமாயின் அவ்வியல்பு தூய இயல்பு எனப்படும்.)

÷х

-4-

-5-

இவ்வாறு இனப்பெருக்கம் மேற் கொள்ளும் போது இயல்பில் மாற்றம் எதுவும் தோன்றுமாயின் அவ்வியல்பு தாயமையற்ற இயல்பு எனப்படும்**(உ**ள்ளக விருத்தி என்பது ஒரே பெற்றோரின் எச்சங்கட்கிடையே தொடர்ந்து இனக்கலப்பை மேற்கொள்வது.)

பரம்பரை இயல்பும் பெற்ற இயல்பும்

அங்கிகளில் சந்ததி சந்ததியாக பரதிபலிக்கப்படும் இயல்பு பரம்பரை இயல்பாகும். அங்கியொன்று தனது வாழ்க்கை காலத்தில் பெற்றுக் கொண்ட இயல்பு பெற்ற இயல்பாகும்.

உதாரணம்:-

1. ஒருவர் கற்ற சங்கீதம்

- சீனத்துப் பெண்கள் இரும்பு காலணி அணிவதன் மூலம் சிறீய பாதத்தைபெற்ற போதிலும் அவர்களுக்குப் பிறந்த குழந்தைகள் இரும்புச் சப்பாத்தை அணியாத பட்சத்தில் பாதங்கள் வழமையான அளவிற்கு விருத்தியடைந்தன.
- நிழலில் வளரும் தாவரங்களில் மேற்றோலில் பச்சைய உரு மணிகள் தோன்றும்.

உறழ்பொருவியல்புகள்.

அங்கி ஒன்றின் ஒரு தன்மைக்கு காண்பிக்கின்ற பல்வேறு பண்புகள் உறழ் பொருவியல்புகள் எனப்படும். உதாரணம்:- பட்டாணிக் கடலைத் தாவர உயரம் -நெட்டை,குட்டை- இவை ஒன்றுக்கொன்று எதிரானவை அல்ல. ஒன்றையொன்று விலக்குபவை. அதாவது ஒரு சந்தர்ப்பத்தில் ஒன்று மட்டுமே பிரதிபலிக்கப்படும். பட்டாணிக் கடலைத் தாவரத்திலும் பழ ஈயிலும் அவதானிக்கப்படும் சில உறழ்பொருவியல்புகள் வருமாறு.

பட்டாணிக்கடலைத் தாவரம் Pisum sativum

இயல்பு	ģ
வித்தின்நிறம்	Ļ
உ_யரம்	G
பூவின்நிலை	(
பூவின் நிறம்	G
காயின் நிறம்	ι
காயின் மேற்பரப்பின் தன்மை	ţ
வித்தின் மேற்பரப்பின் தன்மை	ķ

தன்மை மஞ்சள், பச்சை நெட்டை , குட்டை முனைக்குரியது , கக்கத்திற்குரியது வெள்ளை , சிவப்பு மஞ்சள், பச்சை திரங்கியது , அழுத்தமானது திரங்கியது, அழுத்தமானது -6பழச Drosophila melanogaster

உடலின்நிறம்	a para di Antara	கறுப்பு , கருங்கபிலம் , சாம்பல்
கண்ணின்நி றம்		சிவப்பு , வெள்ளை
செட்டை		விருத்தி , பதாங்கம்.

பட்டாணிக் கடலைத் தாவரத்தில் காணப்பட்ட சாதகமான அம்சங்கள்

 குறுகிய வாழ்க்கை வட்டமுடையது. எனவே பல சந்ததிகளுக்கு பரிசோதனை மேற்கொள்ளக் கூடியதமாக இருந்தமை.

2. பட்டாணிக் கடலை தாவரங்களை இலகுவாகப் பயிரிடக் கூடியதாயிருந்தமை. தாவரங்கள் ஒப்பீட்டளவில் சிறிய பருமனுடையவையாதலால் பெருமள வெண்ணிக்கையிலான தாவரங்களை ஒரு சிறிய பரப்பில் பயிரிடக் கூடியதாக இருந்தது.

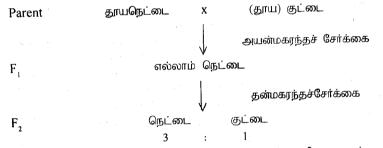
3. தாவரங்கள் பெருமளவு வித்துக்களை உண்டாக்கக் கூடியவை.

4. பட்டாணிக் கடலைத் தாவரத்தில் பல சோடி உறழ் பொருவியல்புகள் காணப்பட்டமையால் (34 வர்க்கங்கள் காணப்பட்டமை) பரிசோதனைகளில் இவற்றைத் தெளிவாகப் பயன்படுத்தக் கூடியதாய் இருந்தது.

5. பூக்கள் இருபாலானவை. எனவே அவை மலர முன்னர் அரும்புகளை மூடி கட்டி தன்மகரந்தச் சேர்க்கையை உறுதிப்படுத்திக் கொள்ளலாம். குறிமுதிர முன் கேசரங்களை அகற்றி குறிமுதிரும் போது மகரந்தமணிகளை இன்னொரு தாவரத்தில் இருந்து இடமாற்றுவதன் மூலம் அயன் மகரந்தச் சேர்க்கையை செயற்கையாக மேற் கொள்ள முடியும்.

-7-

உ (ҧ3:- Pisum sativum


Drosophila melanogaster

மென்டலின் இனக்கலப்பு பரிசோதனைகள்

மென்டலின் முதலாம் பரிசோதனை.

மென்டல் தனது முதலாம் பரிசோதனையில் ஒரு சோடி உறழ் பொருவியல்புகளை கருத்திற்கொண்டார். பிறப்புரிமையியலில் ஒருசோடி இயல்புகள் கருத்திற் கொண்டு மேற்கொள்ளப்படும் சோதனை ஒற்றை இனக் கலப்புப் பரிசோதனை எனப்படும்.

உதாரணம்: உயரம் என்ற தன்மையினது நெட்டை குட்டை பண்புகள், பட்டாணி கடலைத் தாவரங்களில் தூய நெட்டைத் தாவரங்களை குட்டைத் தாவரங்களுடன் கலந்த போது விளைவுகள் அனைத்தும் நெட்டையானவையாய் காணப்பட்டன. இவற்றுள் தன்மகரந்தச் சேர்க்கையை அனுமதித்த போது தோன்றிய விளைவு களுள் 3பங்கு நெட்டையானவையாயும் 1 பங்கு குட்டையானவையாயும் இருந்தன.

ெமன்டல் இதே வகையான முடிவுகளை பட்டாணி கடலைத் தாவர எனைய இயல்புச் சோடிகளிலும் பெற்றார்.

மென்டலின் தத்துவங்கள் அல்லது கொள்கைகள் 1. காரணிக் கொள்கை

இரண்டு சந்ததிகளிடையே தொடர்பு ஏற்படுத்துபவை புணரிகளாகும். புணரிகள் இணைந்து நுகமாகும். புணரிகளோ நுகங்களோ இயல்புகளைப் பிரதிபலிப் பதில்லை. எனவே இவை இயல்புகளுக்குரிய காரணிகளை கொண்டிருக்க வேண்டும்.

2. இரு காரணிக்கொள்கை

இலிங்கமுறை இனப்பெருக்கம் நடைபெறும் அங்கிகளில் ஒவ்வொரு நுகமும் ஆண், பெண் புணரிகளின் சோக்கையால் உருவானது.எனவே நுகங்கள் இவ்விரு புணரிகளு**டாகவும் பெற்றோ**ரிடம் இருந்து காரணிகளைப் பெற்றிருக்க வேண்டும்.

3. ^ ஆட்சியுடமையும் பின்னிடை[®]வும்

முதலாம் மகட்சந்ததி (F₁) இரண்டு பண்புகளுக்கும் தூயபெற்றோரின் சேர்க்கையால்பெறப்பட்டது. எனவே இரண்டு தன்மைகளுக்குமுரிய காரணிகள் காணப்படவேண்டும். எனினும் ஒரு தன்மையே வெளியில் பிரதிபலிக்கப்படுகின்றது. இவ்வாறு வெளியில் பிரதி பலிக்கப்படும் இயல்பு ஆட்சியானது எனவும் ஆட்சியான இயல்பு பிரதிபலிக்கப்படும் வேளையில் மறைக்கப்படுவது பின்னிடைவு இயல்பு எனவும் குறிப்பிடப்படும்.

இன்னொரு வகையில் சமநுக நிலையிலும் , இதர நுகநிலையிலும் வெளிக்காட்டப்படும் இயல்பு ஆட்சியான இயல்பு , சமநுக நிலையில் மட்டும் வெளிக்காட்டப்படும் இயல்பு பின்னிடைவான இயல்பு.

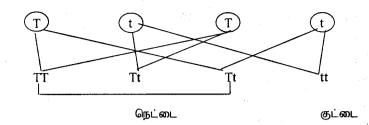
மென்ட**லின் முத**லாம் விதி

ஒற்றை இனக்கலப்பு பரிசோதனை ஒன்றில், ஒரு சோடி உறழ்பொருவியல்புகள் தொடர்பான பரிசோதனை ஒன்றில் சோடி உறழ் பொருவியல்பலகுகளுள் புணரியாக்கத்தின் போது ஒன்று மட்டும் ஒரு புணரிக்குள் செல்லும். மெண்டலின் முதலாம் விதியை புணரிகளின் தூய்மை அல்லது தனிப்படுத்துகை விதி எனவும் குறிப்பிடுவர்.

விதிக்கான விளக்கம்

F, சந்ததி உயரம் என்ற இயல்பின் தூய பெற்றோரின் சேர்க்கையால் பெறப்பட்டது. இரு காரணிக் கொள்கைக்கிணங்க இங்கு ஆட்சி பின்னிடைவு இயல்புகளுக்குரிய நெட்டைக்கும் குட்டைக்குமான இயல்பலகுகள் காணப்பட வேண்டும்.

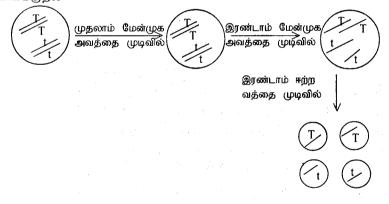
பிநட்டை , குட்டை பண்புகள் பண்பறி இயல்புகளுக்குரியவை ஆதலால் இங்கு இடைத்தரமான உயரம் எதுவும் பெறப்படவில்லை. F_2 சந்ததி தன்மகரந்தச் சேர்க்கைக்கு உட்படுத்தியதன் மூலம் பெறப்பட்டதாகும். இங்கு தோன்றிய குட்டைக்குரிய காரணிகள் F_1 இல் இருந்தே பெறப்பட்டிருக்க வேண்டும். இரு காரணிக் கொள்கை, ஆட்சி பின்னிடைவுக்கொள்கை வன்பவற்றிற்கிணங்க குட்டைத் தாவரங்கள் பெறப்பட வேண்டுமாயின் F_1 சந்ததியில் காணப்படக்கூடிய நெட்டை, குட்டை தன்மைகளுக்குரிய அலகுகள் பிரிக்கப்பட்டிருக்க வேண்டும். மென்டல்னால் காரணிகள் என குறிப்பிடப்பட்டவை நவிகுதியில் காணப்படக்கூடிய நெட்டை, குட்டை தன்மைகளுக்குரிய அலகுகள் பிரிக்கப்பட்டிருக்க வேண்டும். மென்டல்னால் காரணிகள் என குறிப்பிடப்பட்டவை நவிகுதழியவியல் ஆய்வுகளின் கீழ் கண்டுபிடிக்கப்பட்ட பரம்பனை அலகுகளாகும். பொதுவாக இருமைிய நிலையில் பண்பறி இயல்பொன்றிற்கு 2 பரம்பனை அலகுகள் காரணமானவையாய் அமைவதுண்டு இவை இரண்டையும் ஒருங்கே எதிருருக்கள் -allels- என்பதுண்டு. எதிருரு என்பது குறித்த நிறமூர்த்தம் ஒன்றின் குறித்த அமைவிடம் ஒன்றில் காணப்படுகின்ற பரம்பரை அலகொன்றின் 2 அல்லது 2இற்கு மேற்பட்ட மாற்று வடிவங்களுள் ஒன்றாகும்.


இப்பரம்பரை அலகுகள் அல்லது எதிருருக்கள் N - உப்பு மூல ஒழுங்கில் ஒன்றுக்கொன்று சர்வசமனாய்க் காணப்படலாம். அல்லது சற்று வேறு படுபவையாய் காணப்படலாம். சர்வசமனானவையாய் காணப்படும் போது இரண்டையும் ஒருங்கே சமநுகத்திற்குரியது எனவும் , சற்று வேறுபட்டிருக்குமாயின் இதர நுகத்திற்குரியது எனவும் குறிப்பிடுவதுண்டு. சமநுகங்கள் தூய்மையாவவை இதர நுகங்கள் தூய்மையற்றவை.

எனவே தற்கால அறிவின் அடிப்படையில் மென்டலின் முதலாம் விதியை ஒரு சோடி எதிருருக்களுள் புணரியாக்கத்தின் போது ஒன்று மட்டும் ஒரு புணரியினுள் செல்லுமெனவும் குறிப்பிடலாம்.

பிறப்புரிமையிலில் Punnet என்பவர் குறியீட்டு முறையை பயன்படுத்தி வரைபு முறையாக விளக்கங்களை பெற்று கொள்ளலாம் எனக் குறிப்பிட்டார். இக்குறியீடுகள் பயன்படுத்தப்படும் சில முறைகள் வருமாறு.

	······	· · · · · · · · · · · · · · · · · · ·
ഗ്രഞ്ഞ	ஆட்சியான	பின்னிடைவான
பிரித்தானிய முறை	Т	t
அமெரிக்க முறை	S	S
சர்வதேச முறை	t	sh
குறியீட்டு முறையில் TT P தூயநெட்டை	tt	ட மதலாம் பரிசோதனை ப) குட்டை
G ₁ (T) F ₁ எல்	ர லாம் நெட்டை Tt) அ.ம.சே
G ₂ T	t	


இவை ஒருவகைக்குரிய புணரிகளாயின் இவ்வாறே மற்றைய வகை பணரிகளும் தோன்றும். புணரிகளின் சேர்க்கை வருமாறு.

புணரிகளின் சேர்க்கையை கண்டறிய Punnet இன் சதுரங்க முறையையும் பயன்படுத்துவதுண்டு.

+0	Т	t	
Т	TT	Tt	
t	Tt	tt	

நிறமூர்த்த கொள்கை அடிப்படையில் முதலாம் விதியை பட மூலம் விளக்குதல்

🛚 ரு 4 :- F, சந்ததி தாவரங்களில் புணரிகள் பெறப்படும் விதம்

ீ**தாற்ற** அமைப்பும் பிறப்புரிமை அமைப்பும்

பிறப்புரிமையியல் சோதனைகளில் புறத்தோற்ற அடிப்படையில் அங்கிகளை வகைப்படுத்தும் போது தோற்றவகைக்குரியன எனப்படும். அங்கிகளை அவற்றீன் பரம்பரை அலகுத் தொகுப்பை அடிப்படையாயக் கொண்டு வகைப்படுத்தும் போது அவை பரம்பரை வகைக்குரியவை எனப்படும். உதாரணமாக ஒற்றை இனக்கலப்பு பரிசோதனையில் F, சந்ததி விளைவுகளை தோற்ற அமைப்பு ரீதியில் நெட்டைக்கு 🗸 குட்டை = 3 : 1 என வகுக்கலாம். பிறப்புரிமை அமைப்பு ரீதியில் சமநுக ஆட்சி 1 பங்கு , இதரநுக ஆட்சி 2 பங்கு, பின்னிடைவு 1 பங்கு என பிரித்துக் கொள்ளலாம்.

புறத்தோற்ற அமைப்பு

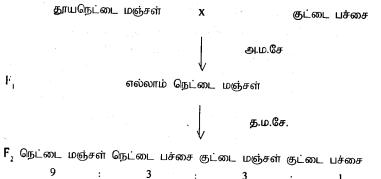
பிறப்புரிமை அமைப்பால் தீர்மானிக்கப்படும் அங்கி ஒன்றின் குறித்த இயல்பொன்றிற்கான வெளித்தோற்றம்

பிருப்புரிமையமைப்பு

தனியனொன்றை நிறமூர்த்த மொன்றினுடைய அமைப்பொக்க சோடியில் குறித்த அமைவிடம் ஒன்றில் காவப்படும் எதிருருக்களின் சேர்க்கையை அடிப்படையாகக் கொண்டு வகைப்படுத்து அது.

சமங்கம்

அமைப்பொத்த நிறமுர்த்தங்களில் காணப்படும் பரம்பரை அலகொன்றினுடைய எதிருருக்கள் இரண்டும் ஒன்றையொன்று ஒத்திருத்தல்.


இதரங்கம்

அமைப்பொத்த நிறமூர்த்தங்களில் காணப்படும் பரம்பரை அலகொன்றினுடைய எதிருருக்கள் இரண்டும் ஒன்றில் இருந்து இன்னொன்று வேறுபடுதல்.

மென்டலின் இரண்டாவது பரிசோதனை

பிறப்புரிமையியலில் இரண்டுசோடி உறழ் பொருவியல்புகளை கருத்திற் கொண்டு மேற்கொள்ளப்படும் பரிசோதனை இரட்டை இனக் கலப்பு பரிசோதனை எனப்படும். உயரம்; நெட்டை , குட்டை வித்தின் நிறம்; மஞ்சள் , பச்சை

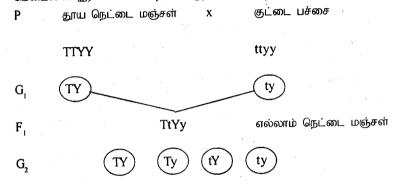
இவ்விரு இயல்புகளையும் ஒருங்கே கருதி மென்டல் இரட்டை இனக்கலப்பு பரிசோதனையை மேற் கொண்டார்.

மென்டல் இதே விளைவுகளையே ஏனைய இயல்புச் சோடிகளிலும் பெற்றார்.

1

விதிக்கான விளக்கம்

பெற்றோர் இரண்டு சோடி இயல்புகளுக்கும் தூயவையாதலால் F சந்ததியில் இரண்டு சோடி இயல்புகளுக்குமான உறுழ் பொருவியல் பலகுகளும் அதாவது எதிருருக்களும் காணப்பட வேண்டும். எனினும் குட்டை பச்சை தன்மைகள் வெளிக்காட்டப் படவில்லை. எனவே நெட்டை மஞ்சள் தன்மைகள் .ஆட்சியான இயல்புகளாகும். குட்டை பச்சைத் தன்மைகள் பின்னிடைவு இயல்புகளாகும். மென்டலின் முதலாம் விதிக்கிணங்க சோடியான **எதி**ருருக்களுள் ஒன்று மட்டும் ஒரு புணரிக்குள் செல்லும்.


F, சந்ததியில் நெட்டை மஞ்சள் / , குட்டை பச்சை தாவரங்களின் இயல்புகள் பெற்றோரின் பெற்றோரில் காணப்படும் இயல்பு சேர்க்கைகளாகும். இத்தாவரங்களைப் பெற்றோர் வகை என்பர்.

F, இல் நெட்டை பச்சை , குட்டை மஞ்சள் தாவரங்களும் **தோ**ன்றியுள்ளன. இவை சந்ததியில் காணப்படாதவைகளாகும். இவற்றை மீளச் **சே**ர்க்கைகள் என்பர். இவை நெட்டைக்குரிய அலகுடன் பச்சைக்குரிய அலகும் றட்டைக்குரிய அலகுடன் மஞ்சளுக்குரிய அலகும் ைற்று சோந்து **புண**ரியாகியிருப்பின் மட்டுமே சாத்தியமாகலாம். இதுவே மென்டலின் இரண்டாம் விதிக்குரிய அடிப்படையாகும்.

மென்டலின் இரண்டாம் விதி

இரண்டு சோடி உறழ் பொருவியல்புகள் தொடர்பான கலப்பொன்றில் ஒரு சோடி உறழ் பொருவியல்பலகுகளுள் அல்லது எதிருருக்களுள் ஒன்று மற்ற சோடியுள் யாதாயினும் ஒன்றுடன் சேர்ந்து புணரியாகலாம். இவ்விதியை தன்வயத்த தொகுப்பு விதி எனவும் குறிப்பிடுவதுண்டு.

மென்டலின் இரண்டாம் சோதனை குறியீட்டு வடிவில்;

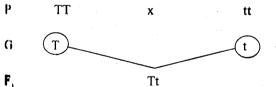
இவ்வாறே மற்றைய வகை புணரிகளும் தோன்றலாம். புணரிகளின் சேர்க்கை வருமாறு.

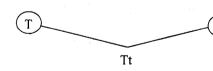
₽ 8 7	TY	Ту	ťY	ty
TY	TTYY	TTYy	TtYY	TtYy
Ту	TTYy	ТТуу	TtYy	Ttyy
tY	TtYY	TtYy	ttYY	ttYy
ty	TtYy	Ttyy	ttYy	ttyy

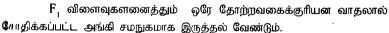
நெட்டை பச்சை குட்டை மஞ்சள் குட்டை பச்சை நெட்டை மஞ்சள் 3 3 Q

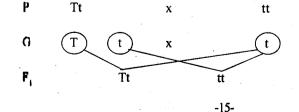
மேற்படி F, விளைவுகளை தோற்றஅமைப்பு,அவற்றின் விகிதம் பிறப்புரிமை அமைப்பு , அவற்றின் விகிதம் என்பவற்றைக் குறித்து அட்டவணை படுத்தினால் அட்டவணை வருமாறு அமையும்.

தோ.அ.	தோ.அ. வி.	பி.உ. அ.	பி.உ.அ.வி
பட டைமஞ்ச ள்	9	TTYY,TtYY,TtYy,TTYy	1:2:4:2
கூடடை பச்சை	3	TTyy, Ttyy	1:2
ுடலட மஞ்சள்	3	ttYY, ttYy	1:2
ு, லட பச்சை	1	ttyy	1

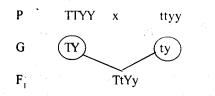

சோதனைக் கலப்பும் பின்முகக் கலப்பம்

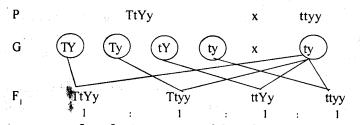

ோதனைக்கலப்ப (Test Cross)


ஆட்சியான இயல்படைய அங்கியின் பிரப்புரிமை அமைப்பைக் துணியும் பொருட்டு பின்னிடைவியல்புடைய அங்கியுடன் கலத்தல் சோதனைக் கலப்பு எனப்படும். இவ்வாறு கலக்கும் போது தோன்றும் எச்சங்களின் தோற்ற அமைப்பு விகிதத்தின் அடிப்படையில் குறித்த அங்கியின் பிறப்புரிமை அமைப்புத் தீர்மானிக்கப்படும்.


இனவிருத்தியாளர்களால் மேற் கொள்ளப்படும் இனவிருக்கிச் பெயன்முறையின் போது வேறுபட்ட **இ**யல்புகள் கொண்ட அங்கிகளின் பிழப்புரிமை அமைப்பைக் துணியும் பொருட்டு சோகனை இனங்கலப்ப பயன்படுகின்றது.

ஒற்றை இனக்கலப்பு பரிசோதனை ஒன்றின் போது F, சந்ததியில் தோன்றும் எச்சங்களின் பிறப்புரிமை அமைப்பு சம நுகத்ததாக அல்லது இதர யுகத்ததாக காணப்படலாம். எனவே:




-14-

F சந்ததியில் தோன்றியவை 1:1 என்ற விகிதத்தில் காணப்படுமாயின் சோதிக்கப்பட்ட அங்கி இதர நுகத்திற்குரியதாகக் காணப்படும்.

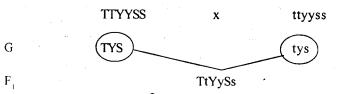
இவ்வாறே இரட்டை இனக்கலப்பு பரிசோதனை ஒன்றின் போதும் F, சந்ததியில் தோன்றும் எச்சங்களின் பிருப்புரிமை அமைப்பு 2இற்கும் சமநுகமாக அல்லது 2இற்கும் இதரநுகமாக...... போன்றவையாகக் காணப்படலாம்.

இங்கு F.இல் ஒரே தோற்றவகை பெறப்படுவதால் சோதிக்கப்பட்ட பெற்றோர் இரண்டு இயல்புகட்கும் சமநுகமாகும்.

தோற்ற அமைப்பு விகிதம் நெட்டை மஞ்சள் : நெட்டை ഞ്ഞവോ பச்சை : குட்டை மஞ்சள் : குட்டை பச்சை 1:1:1:1 இற்கு என்று அமைவதால் சோதிக்கப்பட்ட பெற்றோர் இரு இயல்பிற்கும் இதரநுகமாகும். இவ்விரட்டை இனக்கலப்பு சோதனை இனக்கலத்தலானது மெண்டல் தனது பரிசோதனை அவதானங்களின் அடிப்படையில் உருவாக்கிய கருதுகோள்களை வாய்ப்புப் பார்ப்பதற்**காக பயன்**படுத்தப்பட்டது.

பின்முக இனங்கலத்தல (Back Cross)

சோதனைக் கலப்பை ஒத்த கலப்பொன்றில் யாகாயினும் அங்கியொன்றுடன் அதன் பெற்றோர் அல்லது பெற்றோரின் பெற்றோரை கலக்கின்றமை பின்முக இனங்கலத்தல் எனப்படும்.


இதன் மூலம் இனவிருத்தி செயற்பாடுகளின் போது பெற்றோரில் காணப்படும் இயல்பின் அளவை எச்சங்களில் அதிகரித்துக் கொள்ளலாம்.ஒரு சில சந்தர்ப்பங்களில் சோதனைக் கலப்பும் பின்முக இனங்கலத்தலும் செய்முறை **ரீ**தியில் ஒத்தனவாகக் காணப்படும்.

மும்மை இனக்கலப்பு பரிசோதனை

அலகு

உறுழ்பொருவியல்புகளை கருத்திற் சோம ഗ്രത്മ്പ கொண்டு ்மற்கொள்ளப்படும் பரிசோதனை. உயரம் நெட்டை குட்டை வி**த்தின்நிற**ம் மஞ்சள் பச்சை வி**த்தின்தன்மை** அழுத்தம் திரங்கியது P

தூயநெட்டை மஞசள் அழுத்தம் x குட்டை பச்சை திரங்கியது

நெட்டை மஞ்சள் அழுத்தம்

தன்மகரந்தச் சேர்க்கை அனுமதிக்கப்படுமாயின் பின்வரும் புணரிகள் தோன்றும்.

TYS TYS TyS Tys tYS tYs tyS tys

இவ்வாறே மற்றைய வகைப் புணரிகளும் பொப்படும்.

Punnet இன் சதுரங்க முறையில் இப்பணரிகளின் சேர்க்கையை பின்வருமாறு பொலாம்.

₽ ₽	TYS	TYs	TyS	Tys	tYS	tYs	tyS	tys
TYS	TTYYSS	TTYYSs	TTYySS	TTYySs	TtYYSS	TtYYSs	TtYySS	TtYySs
TYs	TTYYSs	TTYYss	TTYySs	TTYyss	TtYYSs	TtYYss	TtYySs	TtYyss
TyS	TTYySS	TTYySs	TTyy SS	TTyySs	Tt YySS	TtYySs	TtyySS	TtyySs
Tys	TTYySs	TTYyss	TTyySs	TTyyss	TtYySs	TtYyss	TtyySs	Ttyyss
tYS	TtYYSS	TtYYSs	TtYySS	TtYySs	ttYYSS	ttYYSs	ttYySS	ttYySs
tYs	TtYYSs	TtYYss	TtYySs	TtYyss	ttYYSs	ttYYss	ttYySs	ttYyss
tyS	TtYySS	TtYySs	TtyySS	TtyySs	ttYySS	ttYySs	ttyySS	ttyySs
tys	TtYySs	TtYyss	TtyySs	Ttyyss	ttYySs	ttYyss	ttyySs	ttyyss

F, நெ.ம.அ Grb. Q

-17-

3

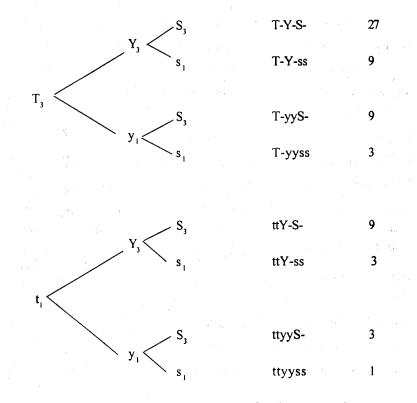
3

3

-16-

Q

۵


27

noolaham.org | aavanaham.org

இங்கும் தோற்ற அமைப்புக்கள் அவற்றின் விகிதம் பிறப்புரிமை அமைப்புக்கள் அவற்றின் விகிதம் என்பவற்றை அட்டவணைப்படுத்தினால் அட்டவணை பின்வருமாறு அமையும்.

தோற்றஅமைப்பு	தோ.அ.வி.	பி.உ.அ.	பி.உ.அ. விகிதம்
	27.	TTYYSS, TTYYSs,	
நெட்டைமஞ்சள்	27	TTYySS, TTYySs	
அழுத்தம்	and the second sec	TtYYSS, TtYySs,	· · ·
		TtYySS, TtYYSs	1:2:2:4:2:8:4:4
நெட்டை மஞ்சள்		TTYYss, TTYyss,	
திரங்கியது	9	TtYyss, TtYYss	1:2:4:2
நெட்டை பச்சை	•	TTyySS, TTyySs,	
அழுத்தம்	9	TtyySS Ttyyss	1:2:2;4
குட்டை மஞ்சள்		ttYYSS, ttYYSs,	1:2:2:4
அழுத்தம்	9	ttYySS, ttYySs	1.2.2.4
குட்டை பச்சை வாலர் யல்	3	ttyySS, ttyySs	1.2
அழுத்தம்			
நெட்டை பச்சை		1	
திரங்கியது	3	TTyyss, Ttyyss	1:2
	+	· · ·	
குட்டை மஞ்சள்	· · · · · ·		
திரங்கியது	3	ttYYss,ttYyss	1:2
குட்டை பச்சை			
திரங்கிய து	1	ttyyss	1

எனினும் இதற்குப் பதிலாக இணைக்கவர் கிளைகொள்ளல் முறையை பயன்படுத்தி தோற்ற அமைப்பு விகிதங்களை துணிந்து கொள்ளலாம்.

உரு 5 :- தோற்ற அமைப்பு விகிதங்களை வெளிப்படுத்தும் இணைக்கவர்

சுட்டி

-18-

இவ்வாறே பிறப்புரிமையியலில் வேறு சில சுருக்கத் தொடர்புகளை கையாளுவதன் மூலம் சில விபரங்களை அறிந்து கொள்ளலாம்.

Mendel இன் பரிசோதனை நிபந்தனையின் கீழ் கலப்புக்களை மேற்கொள்ளும் போது சோடிக் காரணிகளின் எண்ணிக்கையை n என்க.

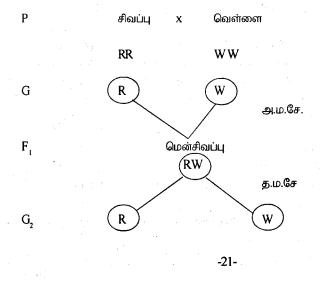
F ₁ இல் தோன்றும் புணரிகளின் எண்ணிக்கை	- 2 ⁿ
F ₂ இல் தோன்றும் தோற்ற அமைப்புக்களின் எண்ணிக்கை	- 2ª
F ₂ இல் தோன்றும் பிறப்புரிமை அமைப்புக்களின் எண்ணிக்கை	- 3"
F 2 இல் தோன்றும் நுகங்களின் சேர்க்கை	- 4ª

இத்தொடர்புகளை இரட்டை இனக்கலப்புக்கும் மும்மை இனக் கலப்புக்கும் பீரயோகிக்கும் போது;

இரட்டை இனக்கலப்புப் பரிசோதனையில்	n=2
F , இல் தோன்றும் புணரிகளின் எண்ணிக்கை	2²=4
F ₂ இல் தோன்றும் தோற்றஅமைப்பு எண்ணிக்கை	2²=4
F ₂ இல் தோன்றும் பிறப்புரிமை அமைப்பு எண்ணிக்கை	3 ² =9
F ₂ இல் தோன்றும் நுகங்களின் சேர்க்கை	$4^2 = 16$
and a second	
மும்மை இனக்கலப்பு பரிசோதனையில்	n=3
• • •	
ு F ,இல் தோ ன்று ம் புணரிகளின் எண்ணிக்கை	2 ³ =8
	2 ³ =8 2 ³ =8
F _i இல் தோன்றும் புணரிகளின் எண்ணிக்கை	·
F ₁ இல் தோ ன்று ம் புணரிகளின் எண்ணிக்கை F ₂ இல் தோன்றும் தோற்றஅமைப்புக்களின் எண்ணிக் கை	2 ³ =8

அலகு - 5

மென்**டலின் வி**திகளில்


இருந்தான விலகல்கள்

1.நிறைவிலாட்சியும் இணையாட்சியும்

நிறைவிலாட்சி

Mirabilis jalapa என்பது அந்திமந்தாரை. இவற்றில் சிவப்பு பூ கொண்டவற்றை வெள்ளைப் பூ கொண்டவற்றுடன் கலந்த போது F₁ சந்ததி விளைவுகளனைத்தும் மென்சிவப்பு நிற பூ கொண்டவையாய் காணப்படுகின்றன. மென் சிவப்பு நிறம் சிவப்பைச் சார்ந்ததெனவோ வெள்ளையைச் சார்ந்ததெனவோ கூற முடியாது. Mendel இன் தத்துவங்களின் படி யாதாயினும் ஒரு தன்மையே பிரதிபலிக்கப்படலாம். ஆனால் இங்கு 2 தன்மைகளுக்கும் இடைப்பட்ட சந்ததியில் ஏற்கனவே இல்லாத ஒரு பண்பே வெளிக்காட்டப் படுகின்றது. இதனை நிறைவிலாட்சி அல்லது ஆட்சி பின்னிடைவு அற்ற நிலை என்பர்.

F₁ சந்ததி தாவரங்களை தன்மகரந்தச் சேர்க்கைக்கு உட்படுத்திய போது ஒருபங்கு சிவப்பு பூத்தாவரங்களும் 2 பங்கு மென்சிவப்பு பூத்தாவரங்களும் ஒரு பங்கு வெள்ளைப்பூ தாவரங்களும் தோன்றியிருந்தன. வழமையான மென்டலின் விகிதம் இங்கு வேறுபடுகின்றது. நிறைவிலாட்சியை விளக்க தனித்தனி எழுத்துக்களை பயன்படுத்துவதுண்டு.

-20-

		<u> </u>
Q B	R	w
R	RR	Rw
w	Rw	ww
	·	

: 2

இதே போல் மற்றவகை புணரிகளும் தோன்றும் இவற்றின் சேர்க்கை வருமாறு.

சிவப்பு : மென்சிவப்பு : வெள்ளை

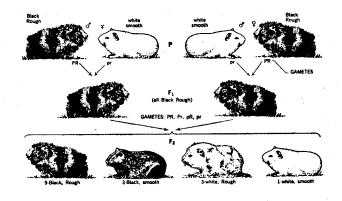
* : 1

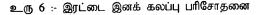
பிரயோக பரம்பரையியலில் முற்றிலும் தூய இயல்புடைய அங்கிகளையும் புறத் தோற்ற அமைப்பின் அடிப்படையில் பிறப்புரிமைஅமைப்பு துணியக் கூடியதான அங்கிகளையும் நிறைவிலாட்சியுடைய இயல்புகளில் பெற்றுக் கொள்ளலாம்.

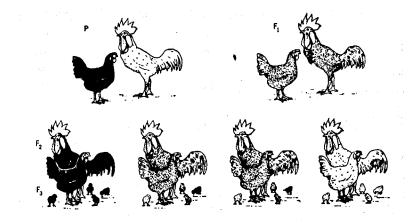
மேலும் இதர நுக அங்கிகளிடையே தன் மகரந்தச் சேர்க்கையையோ அல்லது உள்ளக விருத்தியையோ அனுமதிப்பதன் மூலம் சமநுக அங்கிகளின் எண்ணிக்கையை கூட்டிக் கொள்ளலாம். மேலும் இங்கு சோதனை கலப்பின்றியே பிரப்புரிமை அமைப்பைத் துணியலாம்.

இணைஆட்சி

நிறைவிலாட்சியை ஒத்ததாயினும் F₁சந்ததியில் இதரநுக அங்கிகளில் கலக்கப்பட்ட 2 இயல்புகளும் பகுதி பட பிரதிபலிக்கப்படும். சில உதாரணங்கள் வருமாறு.


- மாடுகளில் வெள்ளை, சிவப்பு நிறங்கொண்டவற்றை கலக்க இரண்டு நிறங்களுமே F, சந்ததியில் தொட்டந் தொட்டமாக பிரதிபலிக்கப்படும்.
- மனிதனின் குருதி கூட்டங்களில் A,B புரதங்களை உருவாக்கக் காரணமான பரம்பரை அலகுகள் I^A,I^B ஒன்றுக் கொன்று இணையாட்சியுடையவை. இரண்டு பரம்பரை அலகுகளும் காணப்படும் போது இரண்டு வகையான பாதங்களும் செங்குழிய உரைகளில் தோற்றுவிக்கப்படும்.
- சில ஆபிரிக்க இனத்தவரில் அரிவாட்போலி செங்கல நிலை H^sH^s - சாதாரணம்

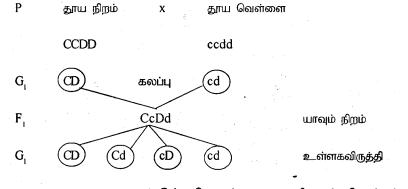

H^sH^s - காவி


H^sH^s - நோய் நிலை

 Andalusian கோழிகளில் கறுப்பு நிறம் கொண்டவற்றை வெள்ளை நிறம் கொண்டவற்றுடன் கலக்கும் போது 2 நிறங்களும் கொண்ட எச்சங்கள் தோன்றும்.

தாவரவியலாளரை பொறுத்தவரை நிறைவிலாட்சியையும் இணை ஆட்சியையும் ஒன்றாய் கருதுவதுண்டு

உரு 7 :- Andalusian கோழிகளில் இணையாட்சி


-22-

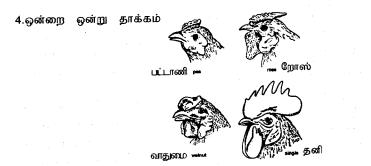
2. அந்தர்த்தாக்கம்.

இதுவரை ஒரு இயல்பு ஒரு சோடி உறழ்பொருவியல்பு அலகுகளினால் பிரதிபலிக்கப்படுவது பற்றியே நோக்கப்பட்டது. எனினும் ஒரு இயல்பு ஒன்றுக்கு மேற்பட்ட சோடி பரம்பரை அலகுகளினால் தீர்மானிக்கப் படுகின்றமையும் சில உதாரணங்கள் மூலம் வெளிப்படுகின்றது. எலிகளில் தூய நிறம் கொண்ட எலிகளை தூய நிறமற்ற எலிகளுடன் கலந்தபோது F₁ சந்ததியில் எல்லாம் நிறம்கொண்ட எலிகளாகவே இருந்தன. இவற்றுள் உள்ளக விருத்தியைமேற் கொண்ட போது F₂ சந்ததியில் 9 பங்கு நிறம் கொண்ட எலிகளும் 7பங்கு நிறமற்ற எலிகளும் தோன்றின. இத்தோற்றப்பாட்டை விளக்குவதற்கு அந்தர்த்தாக்கம் எனும் உண்மை பயன்படுத்தப் படுகின்றது.

நிறத்திற்குரிய அலகுகள்	C > c
நிறவிருத்தியாக்கிக்குரிய அலகுகள்	D > d

ஆகக் குறைந்தது இதர நுக நிலையிலாவது நிறத்திற்குரிய அலகும் நிற விருத்தியாக்கத்திற்குரிய அலகும் காணப்படுமாயின் மட்டுமே நிறம் தோன்றும். அதாவது இரண்டு வகை அலகுகளும் ஒருங்கே நிறம் வெளிப்படுகின்றமைக்கு காரணமாகின்றன.

இவ்வாறே மற்றைய புணரிகளும் தோன்றும். புணரிகளின் சேர்க்கை வருமாறு.


р Р	CD	Cd	cD	cd ·
CD	CCDD	CCDd	CcDD	CcDd
Cd	CCDd	CCdd	CcDd	Ccdd
cD	CcDD	CcDd	ccDD	ccDd
cd	CcDd	Ccdd	ccDd	ccdd
F ₂	நிறம் 9	:	நிறமற்ற 7	து ஆட
	2			ഞ ബോ ക

3. மேலாட்சி

எனவே கருது**கோ**ள் உண்மை.

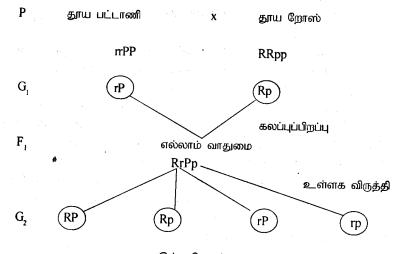
ஒரு பரம்பரை அலகினுடைய செயற்பாடு இன்னொரு பரம்பரை அலகினால் பாதிக்கப்படலாம் எனவே இயல்பானது இரண்டு பரம்பரை அலகுகளினுடைய எதிருருக்களினாலும் ஒன்றாகத் தீர்மானிக்கப்படுகின்றது. இவ் விளைவு மேலாட்சி எனப்படும். மேலாட்சியானது இணைந்த விளைவாகவோ நிரோதிப்பதாகவோ அமையலாம். மேலே விபரித்த அந்தர்த்தாக்கம் இணைந்த விளைவிற்கான உதாரணம் ஆகும். இத்தகைய பிறிதொரு உதாரணம் சர்க்கரைப் பட்டாணியில் அவதூனிக்கப் படுகின்றது. இங்கு CP என்னும் பரம்பரை அலகுகள் ஆகக் குறைந்தது இதர நுக நிலையில் தானும் ஆட்சியானவையாகக் காணப்படுமாயின் மட்டுமே ஊதாநிறப்பூக்கள் உருவாகும். இரண்டு பரம்பரை அலகுகளிலும் யாதாயினும் ஒன்று தானும் இரட்டைப் பின்னிடைவு நிலையில் காணப்படுமாயின் வெண்ணிறப் பூக்களே உருவாகும் எனவே CCPP , CcPP , CcPp, CCPp என்ற பிறப்புரிமை அமைப்புக்கள் ஊதா நிறப்புக்கள் உண்டாகவும் ccPP, ccPp, CCpp, Ccpp என்ற பிறப்புரிமை அமைப்புக்கள் வெள்ளை நிறப்பூக்கள் உண்டாகவும் காரணமாகும்.

மேலாட்சி நிரோதிப்பு விளைவுக்கு கோழிகளின் உடல் நிறம் உதாரணமாகும். கோழிகளில் C பர்ம்பரை அலகு ஆட்சியான நிலையில் நிறம் கொண்ட இறகுகள் தோன்றும். ஆனால் பரம்பரை அலகு I ஆட்சியான நிலையில் பரம்பரை அலகு C யின் விளைவை நிரோதிக்கும். நிறம் கொண்ட இறகுகள் தோன்றுவது எதிருரு Cயும் எதிருரு i ஐயும் இரட்டைப் பின்னிடைவு நிலையில் காணப்படும் போது மட்டுமேயாகும். CCII, CCII, CcII, CcII நான்கும் வெள்ளை நிறம் கொண்ட இறகுகள் தோன்றக் காரணமாகும். CCii உம் Ccii உம் நிறங் கொண்ட இறகுகள் தோன்றக் காரணமாகும்.

உரு8:- ஒன்றையொன்று தாக்கத்திற்கு உதாரணமாக கோழிகளில் கொண்டை

வீட்டுப்பறவைகளில் - கோழிகளில் கொண்டை அந்தர்த் தாக்கத்தைப் போல இரண்டு சோடி உறழ்பொருவியல்பலகுகளால் தீர்மானிக்கப்படுவதாகும். எலிகளில் போலல்லாது இங்கு 4 வகையான தோற்ற அமைப்புக்கள் கிடைக்கின்றன.

> Rose இற்கு உரிய அலகு R > r பட்டாணிக்கு உரிய அலகு P > p


இரண்டு வகையான அலகுகளிலும் ஒவ்வொன்றும் யாதாயினுமொரு நிலையிலாவது ஆட்சியாக காணப்படும் போது R - P - வாதுமை தோன்றும்.

பட்டாணிக்குரிய அலகுகள் 2ம் சமநுகப்பின்னிடைவாய் காணப்படும் போது Rose இற்குரிய அலகு யாதாயினும் ஒரு நிலையில் ஆட்சியானதாய் காணப்படும் ஆயின் R - pp Rose தோன்றும்.

இரண்டு சோடி உறழ்பொருவியல்பலகுகளும் சமநுக பின்னிடைவாய் காணப்படும் போது தனி தோன்றும்.

rose இற்குரிய அலகுகள் சமநுகப் பீன்னிடைவாகவும் பட்டாணிக்குரிய அலகுகள் யாதாயினும் ஒரு நிலையிலாவது ஆட்சியானவையாய் காணப்படுமாயின் பட்டாணி தோன்றும்.

தூய பட்டாணி கொண்டையுடைய பறவைகளை தூய றோஸ் பறவைகளுடன் கலந்த போது F_1 சந்ததியில் எல்லாப் பறவைகளும் வாதுமைகளாகக் காணப்பட்டன. இவற்றை உள்ளக விருத்திக்கு உட்படுத்திய போது F_2 சந்ததியில் 9 பங்கு வாதுமை 3 பங்கு Rose 3 பங்கு பட்டாணி ஒருபங்கு ஒற்றை அல்லது தனி என்பன விளைவுகளாய் பெறப்பட்டன. இந்த விகிதம் இரட்டை இனக் கலப்பு பரிசோதனைக்குரியதாயினும் இங்கு மேற்கொள்ளப்பட்டது இரட்டை இனக்கலப்பு பரிசோதனை அல்ல.

இவ்வாறே மற்றைய வகை புணரிகளும் தோன்றும்.

புணரிகளின் சேர்க்கை வருமாறு

₽ ₽	RP	Rp	rP	rp		
RP	RRPP	RRPp	RrPP	RrPp		
Rp	RRPp	RRpp	RrPp	Rrpp	•	
rP	RrPP	RrPp	rrPP	rrPp		
rp	RrPp	Rrpp	rrPp	rrpp		
வாதுன	ю	றோஸ்		பட்டாணி	h	த னி
9		3		3		1

எனவே கருதுகோள் உண்மையானது.

-26-

மென்டலின் இயல்புகளின் கீழ் ஒவ்வொரு சோடி மென்டலின் காரணி அல்லது பரம்பரை அலகுகளால் இயல்புகள் பிரதிபலிக்கப் படுவதாக அறியப்பட்டன. பொதுவாக அங்கிகளில் ஏராளமான இயல்புகள் வெளிப்படுத்தப்படும் எனவே ஏராளமான பரம்பரை அலகுகள் காணப்பட வேண்டும்.

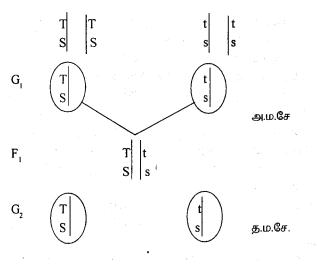
அந்தர்த் தாக்கத்திலும் ஒன்றைபொன்று தாக்கத்திலும் ஒரு இயல்புக்கு ஒன்றுக்கு மேற்பட்ட சோடி காரணிகள் பொறுப்பாய் இருக்கின்றமை அவதானிக்கப்பட்டது. இவற்றைப் பரம்பரை அலகு சிக்கல் என்பர்.

இயல்புகளின் எண்ணிக்கையை விட பரம்பரை அலகு சோடிகளின் எண்ணிக்கை உயர்வாய் காணப்பட வேண்டிய தேவை இதன் மூலம் வெளிப்படுகின்றது. அங்கிகளில் காணப்படும் பரம்பரை அலகுகள் அனைத்தும் ஒருங்கே பரம்பரை அலகுத் தொகுப்பு எனப்படும்.

ஒரே இனத்தை சார்ந்த தனியன்களிடையே பரம்பரை அலகுகளின் அமைப்பொழுங்கு அமைவிடம் போன்றவற்றில் சில வேறுபாடுகள் காணப்படும். இதனாலேயே ஒரே இனத்தைச் சார்ந்த தனியன்களிடையே கூட வேறுபாடுகள் உருவாகின்றன. இவ்வேறுபாடுகள் பெரும்பாலும் குறுக்குப் பரிமாற்றத்தாலும் சிலவேளை விகாரத்தாலும் ஏற்படலாம். எவ்வாறாயினும் ஒரே பரம்பரை அலகுத் தொகுப்பை கொண்டுள்ள ஒரு தாய்த் தாவரத்தில் இருந்து பதிய முறையில் பெறப்படும் எச்சங்களிடையே கூட ஒட்டிப் பிறக்கும் இரட்டைக் குழந்தையர் இடையே கூட சில வேறுபாடுகள் தோன்றலாம். இது சூழலின் தாக்கத்தால் ஏற்படுவதாகும். எனவே அங்கியின் தோற்ற அமைப்பு;

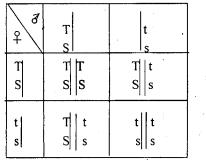
தோற்ற அமைப்பு = பிறப்புரிமை அமைப்பு x சூழல்

என்ற தொடர்புபாட்டின் மூலம் வெளிப்படுத்தப்படுவதாய் கொள்கிறோம். உதாரணமாக வித்தொன்றுதாவரமாக வியத்தமடைவதற்கு வேண்டிய பரம்பரை அலகுத் தொகுப்பைக் கொண்டிருந்த போதும் சூழல் காரணிகள் சாதகமாக இருந்தால் மட்டுமே அவ்வித்து ஒரு தாவரமாக வியத்தமடையும். ஒரு அங்கியின் தோற்ற அமைப்பானது அதன் பிறப்புரிமை யமைப்பினதும் அதன் அகப்புறச் கூழல் காரணிகளினதும் இடைத்தாக்கத்தின் விளைவாக உருவாவதாகும். 5. இணைப்பு அல்லது தொடுப்பு.


ஏராளமான பரம்பரை அலகுகள் காணப்படுகின்ற போதும் கருவில் காணப்படுகின்ற நிறமூர்த்தங்களின் எண்ணிக்கை குறைவானது. மட்டுப்படுத் தப்பட்டது. எனவே ஒரு நிறமூர்த்தத்தில் ஒன்றுக்கு மேற்பட்ட பரம்பரை அலகுகள் காணப்பட வேண்டும். இவ்வாறு ஒரு நிறமூர்த்தத்தில் ஒன்றுக்கு மேற்பட்ட பரம்பரை அலகுகள் காணப்படல் இணைப்பு அல்லது தொடுப்பு எனப்படும். இது தொடர்பான விபரங்கள் Punnet, Bateson, T.H. Morgan என்பவர்களால் வெளிப்படுத்தப்பட்டன. எனினும் T.H. Morgan னின் பெயர் இணைப்புடன் பெருமளவு சம்பந்தப்படுகின்றது. ஏனெனில் இவர் தொடர்ச்சியான சோதனைகளை Drosophila melanogaster - பழ சு யில் மேற்கொண்டமையாகும்.

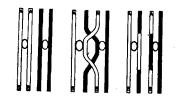
இவ்வாறு பிறப்புரிமையியல் பரிசோதனையை மேற் கொள்ள இப்பூச்சியில் காணப்படுகின்ற வாய்ப்பான இயல்புகள் வருமாறு;

- சிறிய உடலமைப்பு -- பெருமளவு குடித்தொகைகளை ஆய்வு கூடத்தில் இலகுவாக வளர்க்கலாம்
- 2. வாழ்க்கை வட்டக் காலம் குறுகியது:- ஒவ்வொரு இரண்டு வார காலத்திற்கும் புதிய சந்ததி ஒன்றைப் பெறலாம். குறுகிய காலத்துள் பெண் நூற்றுக் கணக்கான முட்டைகளை இடக் கூடியது
- இவற்றின் உமிழ் நீர்ச்சுரப்பிக் கலங்களில் இராட்சத நிறமூர்த்தங்கள் காணப்படுகின்றன. இதனால் நிறமூர்த்தம் தொடர்பான படிப்பை இலகுவாக மேற் கொள்ளலாம்.


சர்க்கரைப் பட்டாணியில் நெட்டை அழுத்தம் தாய முறை விருத்தி செய்யும் தாவரங்களை குட்டை திரங்கியவற்றுடன் கலந்த போது F₁ சந்ததியின் விளைவுகள் அனைத்தும் நெட்டை அழுத்தமானவையாய் காணப்படுகின்றன. இவற்றுக்கிடையே தன் மகரந்தச் சேர்க்கையை அனுமதித்த போது நெட்டை அழுத்தமானவை மூன்று பங்கும் குட்டை திரங்கியதுமான விளைவுகள் ஒரு பங்கும் கிடைத்தன. உண்மையில் இரட்டை இனக் கலப்புச் சோதனையில் தோன்றியிருக்க வேண்டிய 9:3:3:1 என்ற விகிதம் இங்கு பெறப்படவில்லை. மீளச் சேர்க்கைகள் உருவாகவில்லை. உறழ்பொருவியல் பலகுகள் தனித்தனி ' நிறமூர்த்தங்களில் காணப்பட்டிருக்குமாயின் அலகுகள் சுயாதீனமாய் தன்வயத்தம் அடைந்து தொகுக்கப்படுவதன் மூலம் 9:3:3:1 என்ற விகிதமே பெறப்பட்டிருக்க வேண்டும். ஆனால் இங்கு அவ்வாறில்லை. எனவே இயல்புகளுக்குரிய காரணிகள் அதாவது பரம்பரை அலகுகள் இணைப்புற்றிருக்க வேண்டும். இதனை வரைபு முறையில் பின்வருமாறு விளக்கலாம். நெட்டை T > t குட்டை அழுத்தம் S > s திரங்கியது

P தூய நெட்டை அழுத்தம் x குட்டை திரங்கியது

இவ்வாறே மற்ற வகைப் புணரியும் உருவாகும். புணரிகளின் சேர்க்கை


வருமாறு;

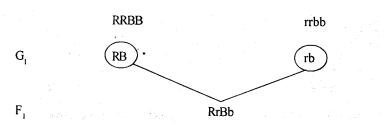
3

நெட்டை அழுத்தம் : குட்டை திரங்கியது

இணைப்பில் குறுக்குப் பரிமாற்றத்தால் ஏற்படும் விளைவு

உரு9: குறுக்குப் பரிமாற்றத்தால் மீளச் சேர்க்கைகள் தோன்ற வழியுண்டாகும்.

சில இணைப்பு பரிசோதனைகளில் மீளச் சேர்க்கைகளும் குறைந்தளவில் தோன்றுவது அவதானிக்கப்பட்டுள்ளது. இது புணரியாக்கத்தின் போது குறுக்குப் பரிமாற்றம் ஏற்படுவதால் சாத்தியமாகலாம்.


பரம்பரை அலகுகளுக்கு இடையிலான தூரம் கூட குறுக்குப் பரிமாற்ற வீதம் கூடும். நிறமூர்த்தம் ஒன்றின் அடுத்தடுத்த புள்ளிகளின். பே காணப்படும் பரம்பரை அலகுகளிடையே கோட்டிக்கள் உருவாகி அவை பிரிக்கப்படுவதற்கான சாத்தியம் இல்லை. இத்தகைய நிலையில் பரமபரை அலகுகள் முற்றாக இணைப்புற்றுள்ளன எனப்படும்

உதாரணம்:- சோளத்தில் நிறமுள்ள தன்மை நிமற்ற தன்மைக்கு ஆட்சியானது. பூரண வித்தகவிழையம் திரங்கியதற்கு ஆட்சியானது. தூயமுறை விருத்தி செய்கின்ற நிறமுள்ள பூரண வித்தகவிழையம் கொண்ட தாவரங்களை நிறமற்ற திரங்கிய வித்தக விழையம் கொண்டவற்றுடன் கலந்த போது நிறம் கொண்ட பூரண வித்தக விழையம் கொண்ட எச்சங்கள் தோன்றின. வழமையான முறையில் தன்மகரந்தச் சேர்க்கையை அனுமதித்த போது F₁ விளைவுகள் பின்வருமாறு காணப்படுகின்றன.

நிறமுள்ள பூரண வித்தகவிழையம்	403 5			
நிறமுள்ள திரங்கிய வித்தகவிழையம்	149			
நிறமற்ற பூரண வித்தகவிழையம்	152			
நிறமற்ற திரங்கிய வித்தகவிழையம்	4032			
முடிவுகளைப் பின்வருமாறு விளக்கலாம்.				

நிறமுள்ளது R ច្រាលប់រំបាង r R > r

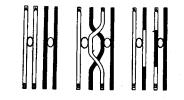
பூரணவித்தகவிழையம் B திரங்கியது b B > b

யாவும் நிறமுள்ள பூரண வித்தகவிழையும்

தாய நிறமுடைய வித்தக விழையம் x நிறமற்ற திரங்கிய வித்தகவிழையம்

F₁ தற்கலப்புச் செய்த போது உருவாகிய எச்சங்கள் 25:1:1:25 எனப்பெறப்பட்டது. வழமையாக மென்டலின் விதிக்கமைய விகிதம் 9:3:3:1 என அமைய வேண்டும். இங்கு மென்டலின் விதியில் இருந்து பிறழ்வு நிகழ்ந்துள்ளது. பெற்றோரை ஒத்தவை அதிகமாயும் மீளச் சேர்க்கைகள் குறைவாயும் உள்ளன. எனவே இணைப்பு காணப்பட்டுள்ளது. இது பூரணமற்றது காரணம் குறுக்குப் பரிமாற்றம் நிகழ்ந்துள்ளது. இதன் போது புணரிகள் பின்வருமாறு உண்டாகும்.

Р	R r B b	x	R r B b
G	R	R	r
	B	b	B


இங்கு இரண்டு சோடி உறழ் பொருவியல்புகள் கருத்திற் கொள்ளப்படுகின்றன இவை பூரணமாகத்தன்வயத்தம் அடைந்திருப்பின் 9:3:3:1 என்ற விகிதம் பெறப்பட்டிருக்க வேண்டும். மாறாய் இணைப்புற்றிருப்பின் பெற்றோர் வகைகள் மட்டும் 3:1 என்று உருவாகியிருத்தல் வேண்டும். இவை இரண்டும் இங்கு நடைபெறவில்லை. 27:1:1:27 என்ற வகையில் பெற்றோர் வகைகள் கூடியளவில் தோன்றியுள்ளன. எனவே பெற்றோர் வகைக்குரிய இயல்புகளிடையே இணைப்பு காணப்பட வேண்டும்.

r

b

அதாவது நிறமுள்ள பூரணவித்தகவிழைய முள்ளதற்கான அலகுகளும் நிறமற்ற, திரங்கிய வித்தகவிழையமுள்ளதற்கான அலகுகளும் இணைப்புற்றிருக்க வேண்டும். எனினும் மீளச் சோக்கைகளும் குறைந்த விகிதத்தில் தோன்றியுள்ளன. இது குறுக்குப் பரிமாற்றத்தால் மட்டுமே சாத்தியமாகக் கூடியது.

பெற்றோர் வகை எப்போதும் கூடத் தோன்றக் காரணம

உரு10:- அடுத்துள்ள அரைநிறவுருக்களே பெரும்பாலும் குறுக்குப் பரிமாற்றத்தில் பங்கு கொள்கின்றன.

ஒடுக்கற் பிரிவின் போது குறுக்குப் பரிமாற்றம் நிகழ்கையில் அமைப்பொத்த நிறமூர்த்தச் சோடியின் அடுத்துள்ள அரை நிறவருக்களே பெரும்பாலும் கோப்புக்களை உருவாக்குகின்றன. வெளிப்புறமாய் காணப்படும் அரை நிறவருக்கள் பெரும்பாலும் மாற்றமின்றியே காணப்படும். எனவே இவ் வெளிப்புற அரைநிறவுருக்களை கொண்டுருவாகும் புணரிகள் பெற்றோர் வகை தோன்றக் காரணமாய் அமையும். மேலும் குறுக்குப் பரிமாற்றம் எப்போதும் நடைபெற வேண்டும் என்பதுமில்லை. அல்லாமலும் ஒரு தடவை கோப்பு உருவாக்கப்பட்ட பகுதிகள் மீண்டும் பழைய நிலைக்கு மீளலாம். மேலும் ஒன்றுக்கு மேற்பட்ட கோட்புகள் மூலம் பெற்றோர் வகைகளே உருவாக்கபடலாம். அவை மாத்திரமன்றி இணைப்புற்ற பரம்பரை அலகுகளுக்கிடையேயான தூரமும் குறுக்குப் பரிமாற்றத்தை பாதிக்கும். தூரத்தின் அளவு கூடக் கூட இடமாற்றப்படுவதற்கான சாத்தியப்பாடு அதிகரிக்கும். இதனைப் பின்வரும் சமன்பாட்டின் மூலம் பிரதிபலிக்கலாம்.

-33-

இணைப்பு வீதம் = 100 - மீளச்சேர்க்கை வீதம்

-32-

P

இணைப்புக் கூட்டம் Linkage Group

இணைப்புடன் தொடர்பான சோதனைகளை மீண்டும் மீண்டும் மேற்கொள்ள மூலம் ஒரு அங்கியில் எவ்வெவ் இயல்புக்குரிய பரம்பரை அலகுகள் எல் இயல்புக்குரிய பரம்பரை அலகுடன் இணைப்புற்றுள்ளன என்பதைக் காணலாம். தனி நிறமூர்த்தம் ஒன்றில் காணப்படும் பரம்பரை அலகுகள் அனைத்தும் ஒருங்கே இணைப்புக் கூட்டம் எனப்படும். இருமடிய நிலையிலான அங்கிகளில் இவை சோடிகளாகக் காணப்படும். அதாவது ஒரு இயல்பினுடைய வெவ்வேறு தன்மைகளுக்குப் பொறுப்பான அமைப்பொத்த நிறமூர்த்தச் சோடிகள் ஒவ்வொன்றும் இணைப்புக் கூட்டச் சோடிகள் ஆகும். இது எப்பொழுதும் இருமடிய நிறமூர்த்த எண்ணிக்கையைக் கரும்.

மனித ன்	-	23 சோடி
தேரை	-	11 சோழ
பட்டாணி	-	7 சோடி
Drosophila	- 1	4 சோடி

இணைப்புக் கூட்டச் சோடிகள் எண்ணிக்கையில் மட்டுமன்றி தோற்றத்திலும் தற்சிறப்பானவை. *Drosophila* வில் ஒரு நீளமானதும் ஒரு குறுகியதும் 2 இடைத்தரமானவையும் காணப்படும்.

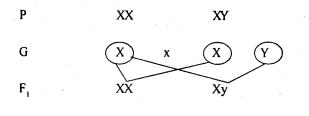
நிறமூர்த்தப்படமாக்கல்

இணைப்புக் கூட்டங்களில் இணைப்புற்ற பரம்பரை அலகுகளின் விபரங்கள் அறியப்பட்ட போதிலும் இவை எவ்வெவ் ஒழுங்குகளில் காணப்படலாம் என்பது வெளிப்படுத்தப் படுவதில்லை. இணைப்புடன் தொடர்பான பரிசோதனைகளின் போது பெரும் பாலும் குறுக்குப் பரிமாற்ற வீதம் மாறாமல் இருப்பது கண்டு பிடிக்கப்பட்டது. குறுக்குப் பரிமாற்றம் பரம்பரை அலகுகளுக் கிடையிலான தூரத்தைக் குறிக்கும். அத்தூரங்களை பரிசோதனை ரீதியாகக் கண்டு இவற்றின் அடிப்படையில் நேர் வரைபொன்றில் பரம்பரை அலகுகளை குறியீடுகள் வாயிலாக குறித்து ஒழுங்குபடுத்தி பெறப்படும் படம் நிறமூர்த்தப் படம் எனப்படும். இவ்வாறு ஒழுங்குபடுத்திக் கொள்வது நிறமூர்த்தப் படமாக்கல் எனப்படும். மீளச் சேர்க்கை வீதம் ஒவ்வொன்றும் ஒரு படமாக்கல் (Map Unit) அலகு தூரமாகக் கொள்ளப்படும். இந்த வகையில் தயார் செய்யப்படும் சில நிறமூர்த்தப் படங்கள் வருமாறு.

	இணைப்பு %	குறுக்குப்பரிமாற்ற வீதம்
P - S	85%	15%
Q-R	90%	10%
S - R	96%	4%
Q-S	94%	6%
P - R	89%	11%

 $\frac{\langle 11 \rangle \langle 4 \rangle \langle 6 \rangle}{P R S Q}$

	இணைப்பு %	குறுக்குப்பரிமாற்ற வீதம்
A - C	84%	16%
B-D	85%	15%
A - B	99%	1%
C-D	98%	2%


 $\xrightarrow{1} \xleftarrow{14} \xleftarrow{2} B A D C$

	இணைப்பு %	குறுக்குப்பரிமாற்ற வீதம்
L - P	80%	20%
N - M	· 90%	10%
M - O	96%	4%
0 - P	99%	1%
L-N	95%	5%
	$ \cdots \rightarrow $	$\xrightarrow{10} \stackrel{4}{\longrightarrow} \stackrel{4}{\longleftrightarrow} \stackrel{1}{\longleftrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\longleftrightarrow} \stackrel{1}{ $
	L N	M O P

இலிங்க நிர்ணயம்

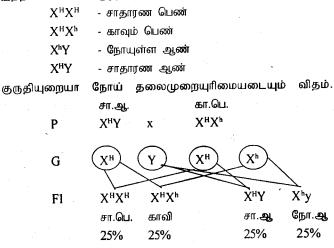
அங்கிகளின் ஏனைய இயல்புகளைப் போலவே இலிங்கத்தை தீர்மானிக்கும் பரம்பரை அலகுகள் மூலமாக இலிங்கம் தீர்மானிக்கப்படும். இலிங்க நிர்ணயத்திற்கு பொறுப்பான பரம்பரை அலகுகளைக் கொண்ட நிறமூர்த்தம் இலிங்க நிறமூர்த்தம் எனப்படும். ஏனையவை உடல் நிறமூர்த்தம் எனப்படும். மனிதனில் பால் நிர்ணயத்திற்கு பொறுப்பாக X,Y என குறியீடு செப்யப்படுகின்ற இரண்டு விசேட நிறமூர்த்தங்கள் காணப்படுகின்றன. இவை 23ம் சோடி நிறமூர்த்தங்கள்.

ஆண் தனியொரு X நிறமூர்த்தத்தையும் பிறிதொரு Y நிறமூர்த்தத்தையும் கொண்டவன். இதரநுக நிலையிலுள்ளவன். பெண் XX என ஒரே மாதிரியான நிறமூர்த்தங்களை கொண்டவள். சமநுக நிலையிலானவள். எனவே இலிங்க நிர்ணயம் பின்வருமாறு நடைபெறும்.

1

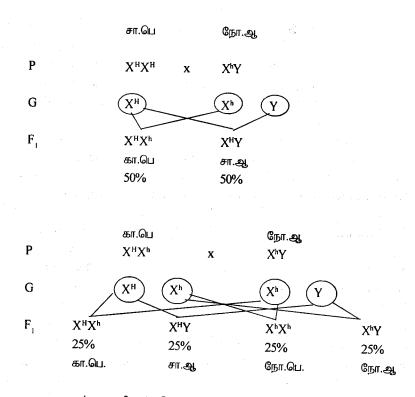
எனவே ஆண் பெண் எச்சங்கள் ஏறத்தாழ சமனான எண்ணிக்கையில் தோற்றுவிக்கப் படுகின்றன. எனினும் ஆண்களின் எண்ணிக்கையிலும் பார்க்க பெண்களின் எண்ணிக்கை சற்று அதிகமாக காணப்படுதல் வழமையாகும். எனவே இலிங்க நிர்ணயம் ஆரம்ப காலங்களில் தாயால் அல்லது பெண் புணரிகளால் மேற்கொள்ளப் படுவதாய் கருதப்பட்ட போதிலும் உண்மையில் ஆண் புணரிகளே இலிங்க நிர்ணயத்திற்குப் பொறுப்பானவையாகும். இவற்றின் அடிப்படையில் X,Y நிறமூர்த்தங்களைப் பிரித்து விரும்பிய படி கருக்கட்டலில் பயன் படுத்துவதன் மூலம் குறித்த வகைக்குரிய எச்சங்களைப் பெறலாம். மனிதனில் Y நிறமூர்த்தங்களிடையே குறுக்குப் பரிமாற்றம் நடைபெறு வதற்கான சாத்தியம் பெரிதும் குறைவாகும். சில பூச்சிகளில் Y நிறமூர்த்தம் அறவே காணப்படுவதில்லை. எனவே இவற்றில் ஆண் பூச்சிகளின் பிறப்புரிமை அமைப்பு X0.

1

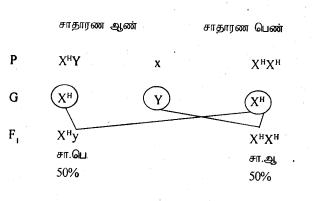

இலிங்கமிணைந்த இயல்புகள்.

இலங்கத்தை தீர்மானிக்கின்ற பரம்பரை அலகுகளைக் கொண்ட நிறமூர்த்தத்தில் வேறு இயல்புகளுக்குரிய காரணிகளும் காணப்படலாம். இத்தகைய காரணிகளால் பிரதிபலிக்கப்படும் இயல்புகள் இலிங்கமிணைந்த இயல்புகள் எனப்படும்.

மனிதனில் குருதிஉறையா நோய், நிறக்குருடு, இளமையில் தசை தூர்ப்போசணை, விற்றமின் D எதிர்ப்பு என்புருக்கி, ஆண்களில் புறக் காதுச் சோணையில் மயிர்கள் , *Drosophila* வில் உடல் நிறம் , கண் நிறம் போன்றவை இலிங்கமிணைந்த இயல்புகட்கான சில உதாரணங்களாகும்.

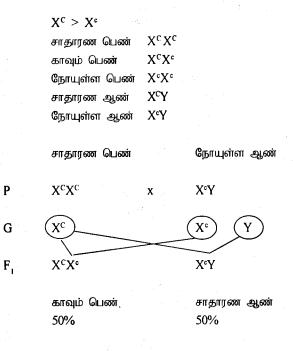

குருதியுறையா நோய்

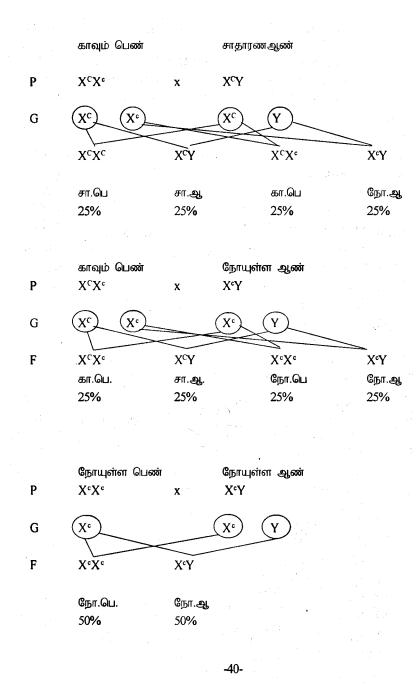
இதன் போது காயங்கள் ஏற்பப்பின் குருதியுறையமாட்டாது. தொடர்ச்சியாய் வெளியேறி குருதிப் பற்றாக்குறை ஏற்பட்டு இறுதியில் இறப்பு நிகழும். இந்நோய் X நிறமூர்த்தத்தில் காணப்படுகின்ற பின்னிடைவுப் பரம்பரை அலகு காரணமாக உருவாகின்றது. எனவே இரட்டைப் பின்னிடைவு நிலையில் அல்லது பின்னிடைவு பரம்பரை அலகு தனியாகக் காணப்படும் நிலையில் இந்நோய் வெளிக் காண்பிக்கப்படும். எனினும் X^hX^h நிலையில் தாயில் கருச்சிதைவு ஏற்படும். இத்தகைய பெண் குழந்தை பிறக்கமாட்டாது.

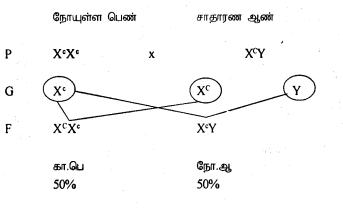


-36-

-37-

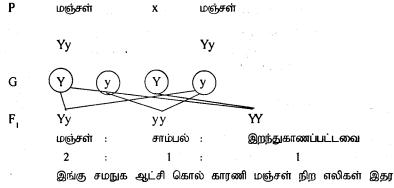

எவ்வாறாயினும் நோயுள்ள பெண் முதிர்மூலவுரு நிலையிலேயே கருச்சிதைவு நடைபெறும்.


-38-

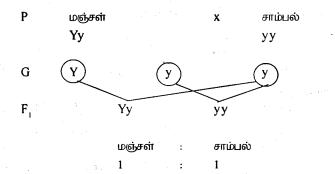

நிறக்குருடு ·

சிவப்பு நிறத்தை பச்சை நிறத்திலிருந்து வேறுபிரித்தறிய முடியாத தன்மை. இதுவும் X நிறமூர்த்தத்தில் காவப்படும் பின்னிடைவு பரம்பரை அலகால் பிரதிபலிக்கப்படும். எனவே இரண்டும் சமநுகப் பின்னிடைவாய்க் காணப்படும் போது அல்லது பின்னிடைவுப் பரம்பரை அலகை மட்டும் கொண்டிருக்கும் போது நோய் நிலைமை வெளிக்காட்டப்படும். இங்கு சம நுகப் பின்னிடைவு நிலையில் பெண்கள் உயிர் வாழ்வர். Hemophilia இல் நடைபெற்றது போல் கருச்சிதைவு நடைபெறாது.

-39-



6. கொல்காரணி


பிறப்புரிமை அமைப்பொன்று உடையவரை கொல்லுமாயின் அது கொல்காரணி எனப்படும். முளைய நிலையிலேயே கொல்லுமாயின் முற்றான கொல் காரணி எனப்படும். வாழ்க்கைக்காலத்தில் அகால இறப்புகளுக்கு காரணமாகுமாயின் அது குறை கொல் காரணி எனப்படும்.

மஞ்சள் நிற எலிகளை உள்ளக விருத்திக் குட்படுத்திய போது 2 பங்கு மஞ்சள் நிற எலிகளும் 1 பங்கு சாம்பல் நிற எலிகளும் விளைவுகளாகக் கிடைத்தன. குட்டியீன்ற எலிகளை வெட்டிப் பார்த்த போது கருப்பையில்1/4 பங்கு முளையங்கள் இறந்து காணப்பட்டன.

நுகமானவை. இது சோதனைக் கலப்பு மூலம் உறுதிப்படுத்தப்படும்.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

7.மடங்கு எதிருருக்கள்

இதுவரை அவதானிக்கப்பட்ட பிறப்புரிமை அமைப்புக்கள் ஒரு சோடி எதிருரு அல்லது பரம்பரை அலகுகளால் பிரதிபலிக்கச் செய்யப்பட்டன. மடங்கு எதிருருக்களில் மொத்த குடித்தொகையிலும் ஒரு இயல்பைப் பிரதிபலிக்க இரண்டிற்கு மேற்பட்ட பரம்பரை அலகுகள் காரணமாகின்றன. எனினும் ஒரு தனியனில் ஒரு சோடி அலகுகள் மட்டுமே காணப்படும். எவ்வாறாயினும் மேற்படி அலகுகளிடையே ஒரு ஆட்சி நிரை ஒழுங்கொன்று காணப்படும். உதாரணம்:- முயல்களின் உடல் நிறம்

C - முற்றான உடல் நிறம் - மஞ்சள்

cc

C^{ch} - சிஞ்சிலா - நரை நிறம்

C^h - ஹிமாலயன் - உடல் மஞ்சள் , மூக்கு , செவி , வால்நுனிகள் கறுப்பு நிற அடையாளம் கொண்டவை.

c - ചെണ്ണെ

வெள்ளை -

ஆட்சி நிரை ஒழுங்கு C>C^{Ch} > C^h > c

எனவே வெவ்வேறு நிறம் கொண்ட முயல்களின் பிறப்புரிமை அமைப்புக்கள் வருமாறு -முற்றான உடல் நிறம் - CC, CC^{ch}, CC^h, Cc சிஞ்சிலா - C^{Ch}C^{Ch}, C^{ch}C^h, C^{ch}c ஹிமாலயன் - C^hC^h, C^hc மனிதனின் குருதிக் கூட்டம் மடங்கு எதிருருக்களால் தீர்மானிக்கப்படுகின்றது.

A வகை குருதி	-	I ^A	$I^{A} > I^{o} (I^{o} = i)$
B வகை குருதி	-	IB	$I_B > I_o$
O வகை குருதி	-	Io	$\mathbf{I}^{\mathbf{A}} = \mathbf{I}^{\mathbf{B}}$
	1		
A கூட்டம்	-	I^I^, I^I	0
B கூட்டம்	•	I [₿] I [₿] , I [₿] I⁰	
AB கூட்டம்	-	IAIB	
0 கூட்டம் •	-	I°I°	

8. பல் பரம்பரை அலகு இயல்புகள்.

பல சோடிப் பரம்பரை அலகுகளால் இயல்பொன்று தீர்மானிக்கப்பட போது அது பல்பரம்பரை அலகு இயல்பு எனப்படும். உதாரணமாக $T_1, T_2, T_3, T_4,$ t_1, t_2, t_3, t_4 என 4 சோடி பரம்பரை அலகுகளால் மனிதனில் உயரம் நிர்ணயிக்கப்படுகின்றது என்க. $T_1, T_2, ..., > t_1, t_2, ...$ என்றவாறு ஆட்சீ ஒழுங்குடையவை.

பரம்பரை அலகுகள் ஒவ்வொன்றும் உயரத்தின் சிறிய பங்கு பிரதிபலிக்கப்பட பொறுப்பானவை. இப்பரம்பரை அலகு வகைகள் ஒவ்வொன்றினாலும் பிரதிபலிக்கப்படும் உயரங்களிடையேயான வேறுபாடு புறக்கணிக்கத்தக்கது. ஆனால் இவற்றின் கூட்டல் விளைவால் பிரதிபலிக்கப்படும் உயரங்கள் பொருளுண்மை அல்லது குறிகருத்து மிக்கவை.

T...... ஒன்றாகக் காணப்படும் போது அதியுச்சப் பெறுமானம்

t₁ ஒன்றாகக் காணப்படும் போது ஆகக் குறைந்தளவு உயரம் பிரதிபலிக்கப்படும். இவற்றிற் கிடையிலான கலப்புகளாகக் காணப்படுகின்ற போது இடைத்தர உயரங்கள் கிடைக்கும். எனவே குடித்தொகை முழுவதிலும் இயல்பு தொடர்ச்சியான மாறலைக் காட்டும். இயல்பு வெளிப்படுத்தப் படுவதில் சூழல் காத்திரமான பங்களிப்பைச் செய்யும்.

மனிதனில் அறிவு, விவேகம், நிறம், உயரம், ஆளுமை பயிர்த் தாவரங்களில் பூக்களினதும் காய்களினதும் எண்ணிக்கை, பழங்களின் பருமன், வித்துக்களின் எண்ணிக்கை, பண்ணை விலங்குகளில் அவற்றின் பால், இறைச்சி போன்ற விளைவுகள் முதலான இயல்புகள் பல்பரம்பரை அலகு இயல்புகளாகும்.

-42-

-43-

அலகு-6

விகாரம்

அங்கிகளின் பிறப்புரிமை அமைப்பில் ஏற்படுகின்ற தலைமுறையுரிமை அடையக் கூடிய மாறல் விகாரம் எனப்படும். தலைமுறையுரிமை அடைதல் எனும் போது அடுத்தடுத்த சந்ததிகளில் பிரதிபலிக்கக் கூடியது என்ற கருத்தாகும்.

விகாரம் என்பது இன்னொருவகையில் சடுதியாக ஏற்படுகின்ற தெடர்ச்சியற்ற மாறலாகும். விகாரத்தின் போது DNA இன் கட்டமைப்பிலும் அல்லது அளவிலும் அல்லது இரண்டிலும் மாற்றம் ஏற்படலாம்.

1902 இல் Hugodevries Oenothera lamarckiana என்ற செடியில் அசாதாரண உயரம் கொண்டவற்றைக் கண்டார். இது விகாரத்தால் ஏற்பட்டது எனவும் தலைமுறை யுரிமையடையக் கூடியது எனவும் விபரித்தார். விகாரத்தின் போது பாரம்பரிய இயல்புகளுக்கு பொறுப்பாயுள்ள DNA இல் மாற்றம் ஏற்படுகின்றது. இதன் தொழிற்பாட்டலகு பரம்பரையலகாகும். ஒரு பரம்பரை அலகு ஒரு Polypeptide ஆக்கத்திற்கு வேண்டிய தகவல்களைக் கொண்டுள்ளது. நூற்றுக் கணக்கான Nucleotide களால் ஆனது.

DNA இல் காணப்படும் Nucleotide தொடர்ச்சி - Nucleotide இன் அமைப்பிலும் , ஒழுங்கிலும் , எண்ணிக்கையிலும் விகாரத்தின் போது மாறுபாடுகள் தோன்றும். இதன் போது பரம்பரை அலகில் மாற்றம் ஏற்படும் குறிப்பான பகுதி muton எனப்படும்.இத்தகைய muton கள் பல சேர்ந்து இயங்கும் போது அது ஒரு Cistrone எனப்படும்.

DNA இன் அமைப்பு அது தோற்றுவிக்கும் mRNA அமைப்பைத் தீர்மானிக்கும். m - RNA இல் காணப்படும் உப்பு மூல ஒழுங்கு சம்பந்தப்படும் t - RNA ஐத் தீர்மானிக்கும். இதற்கிணங்க அமினோ அமிலங்கள் வேறுபடும். உருவாகும் Polypeptide தீர்க்கப்படும். Polypeptide தனித்தோ அல்லத இணைந்தோ புரதங்களை ஆக்கும். புரதங்கள் கட்டமைப்புக் குரியவையாய் அல்லது தொழிற்பாட்டிற் குரியவையாய் காணப்படலாம். அமைப்புகளிலும், தொழில்களிலும் மாற்றம் ஏற்படும். எனவே அங்கியின் இயல்பில் மாற்றம்ஏற்படும். அங்கிகளின் உடலை,

1. உடல் மூர்த்தம் - சாதாரண தொழிற்பாடுகளை மேற் கொள்ளும் உடற் பகுதி

2. உயிர் மூர்த்தம் - சனனிகள் என இரண்டாகப் பிரிக்கலாம்.

இதற்கிணங்க உடற் கலங்களில் ஏற்படும் விகாரம் உடல் விகாரம் எனவும் , உயிர்க்கலங்களில் ஏற்படும் விகாரம் உயிர் விகாரம் எனவும் குறிப்பிடப்படும். சில வகையான புற்று நோய்கள் உடல் விகாரங்களாகும்.

எவ்வாறாயினும் உடல் விகாரமும் உயிர் விகாரமும் ஒரே மாதிரியாகவே பிரதிபலிக்கப்படும். எனினும் உடல் விகாரம் அடுத்தடுத்த சந்ததிகளுக்கு கடத்தப்படாது. ஆனால் உடல் விகாரம் உடற்கலங்கள் பிரிவடைவதன் மூலம் அடுத்தடுத்த சந்ததி கலங்களில் அதே அங்கியில் பிரதிபலிக்கப்படும்.

உயிர் விகாரம் தலைமுறை யுரிமையடையும். இவ்விகாரம் இயற்கையாயும் செயற்கையாயும் தூண்டப் படலாம். இயற்கையாய் நடைபெறும் விகாரங்கள் எழுந்தமானமானவை. தன்னிச்சையானவை. இயற்கையில் விகாரங்கள் அரிதாகவே நடைபெறும். 1x10⁶ புணரிகளுள் 1- 30 வரையான புணரிகளே விகாரமடைந்தனவாயும் 5x10⁵ பேரில் ஒருவ**ரே** விகாரியாயும் காணப்படுவர். இவர்களும் ஒரு பரம்பரையலகில் மாத்திரம் விகாரமுற்றவராய் இருப்பர்.

ஆட்சியான பரம்பரை யலகொன்று விகார மூலம் பின்னிடைவு இயல்பிற்குரியதாய் மாறி இருந்திருப்பின் அது அதனை ஒத்த இன்னொரு பரம்பரை அலகுடன் சோந்து சமநுக நிலையை அடையும் போதே அவ்வியல்பு வெளிப்படுத்தப் படலாம். எனவே விகாரங்கள் இயற்கையில் மந்தமாய் தோன்றுகின்றன. பிரதிபலிக்கப்படுகின்றன. இவை இதே வகையில் கோன்றும் விகாரங்களால் காலப்போக்கில் பிரதியிடப்படலாம்.

பொதுவாக விகாரங்கள் தீமை பயப்பவை. ஏனெனில் அங்கியின் சிறப்பாய் தொழிற்படும் வகையிலான அமைப்பொழுங்கில் மாற்றங்கள் ஏற்பட இவை காரணமாய் அமைகின்றன.

விகாரங்கள் சூழலால் தூண்டப்படும். ஆனால் நெறிப்படுத்தப்பட மாட்டாது. அதாவது சூழல் குறித்த விகாரத்தை மட்டும் தோற்றுவிப்பதில்லை. புறச்சூழல் நிபந்தனைகளில் மட்டுமன்றி அகச்சூழல் நிபந்தனைகளும் விகாரம் ஏற்படக் காரணமாகும்.

செயற்கையாய் விகாரங்கள் விகாரமாக்கு கருவிகளால் தூண்டப்படும். HNO₂, HgCl ₂, H₂O₂, methyl - ethyl sulphate, methyl cholatrin, Di Benzylhydrazene, Phenol, Colchicine, Urethane, X - rays, γ - rays, UV - rays, Cosmic - rays, Mustard gas, அதீத வெப்பம் போன்றவை இத்தகைய விகாரமாக்கு கருவிகளுக்கு சில உதாரணங்களாகும். இவ்விகாரமாக்கு கருவிகள் அனைத்தும் எல்லா வகையங்கிகளிலும் ஒரே செறிவில் ஒரே விதமாக விகாரத்தைத் தூண்ட வேணடும் என்பதில்லை.

HNO₂, DNA இல் உள்ள Adenine ஐ Amine ஆக மாற்றும். எனவே Adenine, Guanine போல தொழிற்படும். கடுகு வாயு DNA இல் உள்ள Guanine ஐ வேறு உப்பு மூலங்களால் பிரதியிடும். X - rays நிறமூர்த்தத்திலும் பரம்பரை அலகுகளிலும் கட்டமைப்பு ரீதியில் பாதிப்புகளை ஏற்படுத்தும்.

விகார வகைகள்

விகாரங்கள் பொதுவாக

1. நிறமூர்த்த விகாரங்கள்

2. பரம்பரை அலகு விகாரங்கள் என இரண்டு வகையாய்ப் பிரிக்கப்படலாம்.

நிறமூர்த்த விகாரங்கள்

நிறமூர்த்த அமைப்பு, எண்ணிக்கை போன்றவற்றில் ஏற்படும் மாற்றங்கள் இவை நுணுக்குக் காட்டிகளூடு அவதானிக்கப்படக் கூடியவை. நிறமூர்த்தங்களின் எண்ணிக்கையில் மாற்றங்கள் ஏற்படும் போது அவை அதிகரிப்புக்களாக அல்லது குறைவுகளாக இருக்கலாம்.

நிறமூர்த்த எண்ணிக்கைகளில் ஏற்படும் அதிகரிப்புக்கள் இதுவும் பலவகைப்படும் 1. நிறமூர்த்தங்களின் மொத்த தொடையிலும் மாற்றங்கள் ஏற்படுதல் ஒருமடியம் - வகைக்குரிய நிறமூர்த்தம் ஒன்று ஒன்றாகக் காணப்படல் இருமடியம்-வகைக்குரிய நிறமூர்த்தம் இரண்டு இரண்டாகக் காணப்படல் பன்மடியம் - வகைக்குரிய நிறமூர்த்தம் இரண்டிற்கு மேற்படக் காணப்படல் பன்மடியம் , மும்மடியம் , நால்மடியம்......என வேறுபடலாம்.

பண்மடியம் அடிப்படையில் இரண்டு வகை

அ. தன்பன்மடியம் - அதிகரிப்பால் பெறப்பட்ட நிறமூர்த்த வகை ஏற்கனவே காணப்பட்ட வகைக்குரியதாய் இருத்தல்.

ஆ. அன்னியபன்மடியம் - அதிகரிப்பால் பெறப்பட்ட நிறமூர்த்த வகை ஏற்கனவே அவ்வங்கியில் காணப்படாத வகைக்குரியதாய் இருத்தல். மடிய அதிகரிப்பு n, 2n, 3nஎன்றவாறாய் நடைபெறுமாயின் கிரம மடியம் எனப்படும். 2. நிறமூர்த்தங்களில் உதிரியாய ஏற்படும் மாற்றங்கள்

மொத்த தொடையில் அல்லாது ஆங்காங்கே தனித்தனி நிறுமூர்த்தங்களில் ஏற்படும் மாற்றங்கள்.

இவையும் அதிகரிப்புக்களாகவோ அல்லது குறைவுகளாகவோ இருக்கலாம். அ. தனிமூர்த்த முள்ள

பொதுவான இருமடிய நிலையிலுள்ள அமைப்பொத்த நிறமூர்த்த சோடிகளில் ஒன்று இழக்கப்பட்டிருக்கும். பெண்களில் XX என்ற நிலையில் இருந்து X நிறமூர்த்தம் இழக்கப்பட்டு X0 எனும் நிலையை அடைகின்றது. இந்நிலை Turner's Syndrome எனப்படும். புறத்தோற்றத்தில் இவர்கள் சாதாரண பெண்களை ஒத்தவராயினும் மார்பகம், சனனிகள் விருத்தி குன்றிக் காணப்படுவர். ஆ. பல்மூர்த்தமுள்ள

ஆண்களில் XY எனும் நிறமூர்த்த ஒழுங்கிற்குப் பதிலாக XXY எனும் ஒழுங்கு காணப்படும். இந் நிலைமை Klinefelter's Syndrome எனப்படும். இத்தகைய ஆண்கள் புறத்தோற்றத்தில் சாதாரண ஆண்களைப் போன்றவராயினும் விருத்தியடைந்த மார்பகம், முதிரா விதைகள், சுக்கிலத்தில் குறைந்த எண்ணிக்கையான விந்துக்களைக் கொண்டவராய் இருப்பர்.

மனிதனில் அடையாளப் படுத்தப்பட்ட 21ம் சோடி நிறமூர்த்தத்துடன் மேலதிகமாக நிறமூர்த்தமொன்று காணப்படும். இது ஒடுக்கற் பிரிவின் போது குறித்த நிறமூர்த்த சோடி பிரிக்கப்படாமையால் (Non disjunction) தோன்றும் அசாதாரண புணரியுடன் சாதாரண புணரி கருக்கட்டுவதால் ஏற்படும். இத்தகைய குழந்தைகள் மூளை, மனவளர்ச்சி குன்றியவர்களாக 10 வயது வரையான வாழ்க்கைக் காலமுடையவர்களாக காணப்படுவர். அவர்களின் கண்கள் சதா தாக்க நிலையில் காணப்படுவது போல தோன்றும். இவர்கள் தொற்றுக்களுக்கு எதிரான நிர்ப்பீடனத்தை குறைவாய் கொண்டவர்கள்.

இ. அமைப்பொத்த நிறமூர்த்த சோடி ஒன்று முற்றாகவே இல்லாதிருத்தல் இவர்களை நலமிலிப்போலிகள் என்பர்.

உதிரியாய் நிறமூர்த்த எண்ணிக்கை குறைவுபடுவதையோ அல்லது அதிகரிக்கப்படுவதையோ குறை மடிய நிலை என்பர்.

நிறமூர்த்த அமைப்பில் ஏற்படும் மாற்றங்கள்

1. நிறமூர்த்தமொன்றின் சிறியபகுதி இழக்கப்படல் (deletion)

 இழக்கப்பட்ட நிறமூர்த்தப்பாகம் அதே நிறமூர்த்தப் பகுதியுடன் அல்லது வேறொரு நிறமூர்த்தப் பகுதியுடன் ஒட்டிக் கொள்ளல்.

-46-

-47-

- இழக்கப்பட்ட நிறமூர்த்தப் பகுதி நேர்மாறு ஒழுங்கில் அதே நிறமூர்த்த பாகத்துடன் இணைதல்
- 4. நிறமூர்த்தத்தின் குறித்த பாகம் அதிகரித்துக் கொள்ளல்
- 5. நிறமூர்த்தத்தில் தடங்கள் தோன்றல்

பரம்பரை அலகு விகாரங்கள்

பரம்பரை அலகுகளின் எண்ணிக்கை , அமைவிடம் , அமைப்பு , உப்பு மூல ஒழுங்குகள் போன்றவை மாறுபடலாம்.

தனியொரு Nucleotide இல் ஏற்படும் மாற்றம் புள்ளி விகாரம் எனப்படும். பரம்பரை அலகுகளின் எண்ணிக்கை அதிகரிப்பிற் குரியதாய் அல்லது குறைவுபடுவதாய் இருக்கலாம். இவையும் மேலும் வகைப்படலாம்.

1. குறைவுபடுதல்கள்

முனைக்குரிய	ABCD	\rightarrow	ABC
இடைபுகுந்த	ABCD	\rightarrow	ABD
முனைக்குரிய சமநுகத்திற்குரியதாக	<u>ABCD</u> abcd		<u>ABC</u> abc
இடைபுகுந்த சமநுகத்திற்குரியதாக	<u>ABCD</u> abcd	\rightarrow	<u>ABD</u> abd
முனைக்குரிய இதரநுகம்	<u>ABCD</u> abcd	>	<u>ABCD</u> abc
இடைபுகுந்த இதரநுகம்	<u>ABCD</u> abcd	→	<u>ABD</u> abcd

பரம்பரை அலகுகளில் இழப்புகளால் இயல்புகள் பிரதிபலிக்கப்படாமல் போகலாம். சிலவேளை போலியான ஆட்சி நிலமை தோன்றலாம்.

2. அதிகரிப்புகள்

குறித்த பரம்பன முனைக்குரிய	ர அலகுகளின் <u>ABCD</u>	ഒൽ്ഞിക്കെ —>	அதிகரித் தல் . <u>A B C D D</u>
இடைபுகுந்த	ABD	\rightarrow	ABCD
முனைக்குரிய சமநுகம்	ABC abc	→	ABCD abcd
முனைக்குரிய இதரநுகம்	<u>ABC</u> abc	→	<u>ABC</u> abcd
3. இடமாற்றம்	ABCD	\rightarrow	ABDC

பரம்பரை அலகுகள் நிறமூர்த்தத்தில் ஏற்கனவே காணப்பட்ட ஒழுங்கு மாறி அமைந்து கொள்கின்றன.

இரட்டித்தல் அல்லது அதிகரிப்புகளால் இழப்பில் போல் இயல்பு முற்றாக பிரதிபலிக்கப்படாமல் போகாது. ஆனால் உடற் தொழில் சமநிலை குழம்பும்.

பரம்பரை அலகின் அமைப்பில் ஏற்படும் மாற்றங்கள்.

பரம்பரை அலகுகளை அமைக்கும் Nucleotide உப்பு மூலங்கள் அமைப்பு ரீதியில் அமைவிட ரீதியில் மாறுபாடு கொள்ளும் போது விகாரம் தோன்றும். எவ்வாறாயினும் இவை மிகக் குறைவாகவே பிரதிபலிக்கப்படும்.

மனிதப் பாரம்பரியம்

ஏனைய தாவர விலங்குகளைப் போல மனிதனில் பிறப்புரிமையியல் சம்பந்தமான பரிசோதனைகளை எழுந்தமானமாய் மேற் கொள்ளமுடியாது. சர்வதேசரீதியான சட்டங்கள், உயர் மனிதப் பண்புகள் போன்றவை இதற்கு இடம் கொடுக்க மாட்டா. எனவே மனிதனுடன் தொடர்பான பிறப்புரிமையியல் உண்மைகளை தகவல்களைத் திரட்டல் , விபரங்களைப் பதிவு செய்தல் , பகுப்பாய்வு செய்தல் , மட்டுப்படுத்தப்பட்ட நிபந்தனைகளின் கீழ் பரிசோதனூனைய மேற் கொள்ளல் போன்ற நடவடிக்கைகள் மூலம் பாரம்பரியம் தொடர்பான அறிவை விருத்தியாக்கிக் கொள்ளலாம்.

மனிதனில் காணப்படும் சில ஆட்சியான இயல்புகள்.

1. தோலில் நிறமணிகள் தோன்றல்

2. கண்களில் கபில நிறத் தன்மை

3. Phenyl Thio carbamide ஐ சுவைக்கக் கூடிய தன்மை

4. நாவுருட்டக் கூடிய தன்மை

5. சோணை கொண்ட காது •

6. நேரிய தலைமயிர்

7. ஆண்களில் இளம் வயீதில் வழுக்கை விழுதல்

மனிதனில் காணப்படுகின்ற சில பின்னிடைவு இயல்புகள்

1. வெல்லநீரிழிவு / மதுநீரிழிவு

2. புற்று நோய்கள் சில

3. சிலரில் காணப்படுகின்ற தசை செயற்றிறன் இழப்பு

4. வெளிறி நிலமை (Albinism)

5. Phenylketonuria

6. சோணையற்ற காது

7. கன்னங்களில் தோன்றும் குழி

8. நேரிய பெருவிரல்

9. நாவருட்ட முடியாத தன்மை

Albinism- வெளிறல் நிலை

இலிங்க நிறமூர்த்தம் தவிர்ந்த உடல் நிறமூர்த்தம் ஒன்றில் காவப்படுகின்ற பின்னிடைவு பரம்பரை அலகால் ஏற்படுத்தப்படுகின்றது. இரட்டைப் பின்னிடைவு நிலையில் மெலனின் நிறமணிகள் உருவாகமாட்டா. Tyrosine அமினோஅமிலத்தை மெலனின் ஆக மாற்றும் நொதியம் காணப்பட மாட்டாது. தோல், மயிர்கள், கதிராளி போன்றவை வெளிறிக் காணப்படும். தோலிலும் , கதிராளியிலும் காணப்படும் குருதிக்கலன் செறிவு காரணமாக தோல் கதிராளி போன்றவை இளம் சிவப்பு நிறமாய் காணப்படும். கண்கள் சாதாரண ஒளிச் செறிவின் கீழும் கூசுவனவாய்க் காணப்படும். ஒப்பீட்டளவில் வாழ்தகவு குறைந்தவர்கள்.

Phenylketonuria

உடல் நிறமூர்த்தம் ஒன்றில் காவப்படுகின்ற பின்னிடைவுப் பரம்பரை அலகினால் ஏற்படுகின்றது. இரட்டைப் பின்னிடைவு நிலையில் Phenyl alanine அமினோஅமிலத்தை Tyrosine ஆக மாற்றுவதற்கு வேண்டிய நொதியம் உருவாக மாட்டாது. Phenylalanine, Phenylketone களாக மாற்றப்படும் இது மூளையில் அசாதாரண நிலைமைகளை ஏற்படுத்தி மனவளர்ச்சி குன்றுவதற்கும், பக்கவாதம் ஏற்படுவதற்கும் காரணமாகும். Ketone உடல்கள் சிறுநீருடன் கழிக்கப்படுவதால் சிறுநீருக்கு விசேடமான மணம் ஏற்படும்.

Sickle cell anemia அரிவாட்போலிச் செங்கல நிலை

உடல் நிறமூர்த்தம் ஒன்றில் காவப்படுகின்ற பின்னிடைவுப் பரம்பரை அலகொன்றால் ஏற்படுவது. சமநுகப் பின்னிடைவு நிலையில் இவர்களில் சாதாரண Hbயிலும் பார்க்க வேறுபட்ட Hb உருவாகும். இதனை ஆக்கும் Globin புரதத்தில் ஒரு அமினோஅமிலம் மட்டும் சாதாரணத்திலும் பார்க்க நேறுபட்டது. இத்தகைய நிலையில் தோன்றும் Hb ஐ Hb^s என்பர். இது கணுயும் தகவு குறைந்தது. O₂ செறிவு குறைவான நிலையில் பளிங்குருவானதாய் மாறும். இதனால் RBC சாதாரணமான இருபுறம் குழிந்த வட்டத்தட்டுருவான தோற்றத்திற்கு மாறாக அரிவாளுருவானதாக மாறும். இத்தகைய நிலையில் மேற்பரப்பு / கனவளவு விகிதம் மாறும். குழியத்தின் O₂ காவும் இயல்பு பாதிக்கப்படும். இதனால் இழையங்கள் O₂ பற்றாக்குறையால் பாதிப்படையும். மொத்த மனித வர்க்கத்திலும் 0.2% மானவர்களிலே இந்நிலை காணப்படுகின்றது. இது இறப்பிற்கும் காரணமாகும். இதர நுக நிலையில் அசாதாரணHb 30-40% வரை உருவாகிக் காணப்படும். எனவே இங்கு இணையாட்சி நிலைமை காணப்படுகின்றது. சில விசேட நிபந்தனைகளின் கீழல்லாது இழையங் களுக்கான O₂ பற்றாக்குறை சாதாரண நிலைமைகளில் ஏற்படமாட்டாது.

பாதிப்புகளின் போது உடனடியாக குருதி மாற்றீடு மேற் கொள்ளப் படலாம். உயிர் இரசாயனப் பரிசோதனைகள் வாயிலாக மட்டுமே Hb தன்மை அறிந்து கொள்ளக் கூடியதாய் இருக்கும். அரிவாட்போலி செங்கல நிலையு டையவர்கள், இதர நுக நிலையிலுள்ளவர்கள் *Plasmodium vivax* ஆல் பாதிக்கப்பட மாட்டார்கள்.

அலகு - 7

குடித்தொகைப் பிறப்புரிமையியல்

Hardy, Weinberg எனும் விஞ்ஞானிகள் சில நிபந்தனைகளின் கீழ் குடித்தொகைகளுக்கு மென்டலின் தத்துவங்களை பயன்படுத்தலாம் என நிரூபித்துள்ளார்கள். பரிசோதனை ரீதியில் பெறப்பட்ட பிறப்புரிமையியல் உண்மைகளை குடித்தொகைகளுக்கு வாய்ப்புப் பார்த்தல் குடித்தொகை பிறப்புரிமையியல் எனப்படும்.

Hardy Wein berg ഖിക്കി

பெரிய குடித்தொகை ஒன்றில் விகாரம் குடிபெயர்வு - குடி வரவு , குடிஅகல்வு தெரிவு - இயற்கையானதும் , செயற்கையானதும் என்பன இல்லாமலும் ஒவ்வொரு தனியனுக்கும் இன்னொரு எதிர்ப்பால் தனியனுடன் மருவுவதற்கான வாய்ப்பு கட்டுப்படுத்தப் படாமல் காணப்படுகின்ற போது பரம்பரை அலகு அதிர்வெண் , பிறப்புரிமை அமைப்பு அதிர்வெண் என்பன சந்ததி சந்ததியாக மாற்றமின்றி பேணப்படும். கருக்கட்டல் வீதம் மாறாமை, சகலவிதமான பிறப்புரிமை அமைப்புக்களும் ஒரே விதமான வாழ்தகவுடையவை, சலிகற்ப இறப்பு ஏற்படாமை போன்றவை இவ்விதியின் பொருட்டான மேலதிக நிபந்தனைகள் ஆகும்.

நிகழ்தகவு அல்லது அதிர்வெண் அல்லது மீடிறன்

ஒரு நிகழ்ச்சி நடைபெறுவதற்கான சாத்தியக் கூறு. உதாரணமாக 1- 6 வரை அடையாளப்படுத்தப்பட்ட அறுமுகியை 6 தடவை சுண்டும் போது 1 என இலக்கமிடப்பட்ட முகம் மேற்புறமாய் வருவதற்கான சாத்தியக்கூறு1/6.

பரம்பரைஅலகு அதிர்வெண்

குறித்தவொரு குடித்தொகையில் குறித்ததோர் பரம்பரை அலகு அதன் எதிருருக்கள் சார்பாக வெளிப்படுத்தப்படுகின்ற விகிதம்.

பரம்பரை அலகுத் தடாகம்

ஒரு குடித்தொகையில் காணப்படும் மொத்த பரம்பரை அலகுகளினதும் தொகுப்பு. இதனை பரம்பரை அலகுக் குட்டை எனவும் அழைக்கலாம். பெரிய குடித்தொகை

குடித்தொகை பெரியதாய் இல்லாத பட்சத்தில் நோய்கள் , பீடைகள் போன்ற தாக்கங்களால் பெருமளவு மாற்றங்கள் ஏற்பட்டு விடும்.

விகாரம்

குடித்தொகையில் விகாரத்தால் பிறப்புரிமை அமைப்பு, பரம்பரை அலகு அதிர்வெண் போன்றவை மாற்றத்திற்குள்ளாகும். விகாரம் அடைந்தவற்றுள் நன்மை பயக்கும் இயல்பு கொண்டவையே இயற்கையில் நிலைக்கும். இதனால் குறித்த குடித்தொகையில் குறித்த காலப்பகுதியின் பின்னர் பரம்பரை அலகுப் பாய்ச்சல் (gene drift) நிகழ்ந்திருக்கும்

குடிபெயர்வு

சடுதியாய் நடைபெறுகின்ற பெருமளவிலான குடிவரவும் குடி அகல்வும் பிறப்புரிமை அமைப்பு பரம்பரை அலகு அதிர்வெண் என்பவற்றில் மாற்றத்தை ஏற்படுத்தும்.

தெரிவு

யாதாயினும் இயல்பொன்றை செயற்கையாய்த் தெரிந்து பயன்படுத்தும் போது அடுத்தடுத்த சந்ததிகளில் தேரப்பட்ட அங்கிகளின் எண்ணிக்கை அதிகரித்துச் செல்ல ஏனையவை குறைந்து செல்லும். இயற்கை தேர்விற்கும் இது பொருந்தும்.

எழுந்தமானமான மருவுதல்

குடித்தொகை ஒன்றில் காணப்படும் தனியனுக்கு அத்தொகையில் காணப்படும் எதிர்ப்பாலைச் சேர்ந்த எந்தத் தனியனுடனும் மருவுவதற்கான வாய்ப்பு இருக்க வேண்டும். மனிதனில் சோடியைத் தெரிவு செய்வதற்கான சாத்தியப்பாடு கட்டுப்படுத்தப் படவில்லை. இவ்வாய்ப்பு கட்டுப்படுத்தப் படுமாயின் பரம்பரை அலகு அதிர்வெண் பிற்ப்புரிமை அமைப்பு அதிர்வெண் என்பன பாதிப்புக்குள்ளாகும்.

கருக்கட்டல் திறன்

சகல வகைக்குரிய வளமான புணரிகளும் கருக்கட்டும் திறனை உடையனவாய்க் கொள்ளப்படும். இது மாறுபடுமாயின் பிறப்புரிமை அமைப்பு பரம்பரை அலகு அதிர்வெண் போன்றவற்றில் மாற்றம் ஏற்படும்.

வாழ்த**கவு**்

குடித்தொகையில் சமநுகஆட்சி, இதரநுகஆட்சி, சமநுகப் பின்னிடைவு என்னும் மூன்று பிறப்புரிமை அமைப்புக்களும் ஒரே வகையான வாழ்தகவு டையவையாய் இருக்க வேண்டும். அல்லா விடின் பரம்பரை அலகு பிறப்புரிமை அமைப்பு அதிர்வெண் என்பவற்றில் மாற்றம் ஏற்படும்.

மேற்படி நிபந்தனைகள் இயற்கையான குடித்தொகைகளில் பெரும்பாலும் நிலவுவதில்லை. காலப் போக்கில் எதிருருக்களின் அதிர்வெண்கள் மாற்றம் காண்கின்றன. இதுவே கூர்ப்புக்கான அடிப்படையாகும்.

Hardy Wein berg சமன்பாடு

p+q=1

(p + Q)² = 1 எனும் இரண்டும் Hardy Weinberg சமன்பாட்டுக் கூறுகளாகும். முதலாம் சமன்பாடு பரம்பரை அலகு அதிர்வெண்ணுடன் தொடர்பானது. இரண்டாம் சமன்பாடு பிறப்புரிமை அமைப்புக்களின் அதிர்வெண் தொடர்பானது.

குடித்தொகை ஒன்றில் 16% மானவர்கள் Phenyl thio carbamide சேர்வையைச் சுவைக்க முடியாதோர். இவ்வியல்பு இரட்டைப் பின்னிடைவு நிலையில் பிரதிபலிக்கப் படுவதாகும். எனவே

 $q^2 = 0.16$

q = 0.4 இதனை (p + q) = 1 என்னும் சமன்பாட்டில் பிரதியிடின் p = 0.6ஏனேனில் ஒவ்வொரு குடித்தொகையிலும் மென்டலின் தத்துவப் படி எதிருருக்கள் ஒன்று மற்றையது சார்பாக பிரதிபலிக்கப்படும் அதிர்வெண்களின் கூட்டுத் தொகை 1 ஆகும். இப்பெறுமானங்களை இரண்டாம் சமன்பாட்டில் பிரதியிட; $p^2 + 2pq + q^2 = 1$

0.36 + 0.48 + 0.16 = 1

இதனை மென்டலின் தத்துவப்படி பின்வருமாறு பெறலாம்.

 $\begin{array}{c} T_{(0.6)} & t_{(0.4)} \\ T_{(0.6)} & 0.36 & 0.24 \\ t_{(0.4)} & 0.24 & 0.16 \end{array}$

இங்கு T யின் அதிர்வெண் p tஇன் அதிர் வெண் q

குடித்தொகையில் ஆரம்பத்தில் tt பிறப்பரிமை அமைப்பு அலகுகளின் அதிர்வெண் (உடையவர்களின் எண்ணிக்கை) 0.16. T இனதும் , t இனதும் அதிர்வெண் கூட்டுத்தொகை1

அடுத்த சந்ததியில் மூன்று வகையானவற்றினதும் அதிர்வெண்கள் வருமாறு; -54TT -0.36 Tt -0.48

tt - 0.16

இவர்களில் உருவாகும் ஆண் , பெண் புணரிகளுள் T,t கொண்டனவற்றின் அதிர்வெண்கள்;

Т	t i
0.36	0.12
0.12	0.12
0.12	0.16
0.6	0.4

ஏனெனில் குடித்தொகையில் Phenyl thiocarboamide ஐ சுவைக்கக் கூடியவர்கள் 84% சுவைக்க முடியாதவர்கள் 16% ஆகும். இத்தகைய சமநிலையை Hardy Wein berg சமநிலை என்பர்.

இன்னொரு வகையில் எழுமாறான கலப்பின் பெறுபேறு பின்வருமாறு அமையும்.

_	பெற்றோர்	ត់ទំខាន់សំពាំ				
			TT	Tt	tt	
	TT		1/1 6			
۱/₄	$TTx \langle 1/2 Tt$		1/1 6	1/16		
$\frac{1}{4} \operatorname{TTx} \begin{cases} \frac{1}{4} \operatorname{TT} \\ \frac{1}{2} \operatorname{Tt} \\ \frac{1}{4} \operatorname{tt} \end{cases}$	U_4 tt			1/16		
		ст. ₁ .				
	$\int \frac{1}{4} TT$		1/1 6	1/ 16		
۱/,	$Ttx < \frac{1}{2} Tt$		1/16	2/16	1/16	
${}^{1}/_{2}$ Tt x $\begin{cases} {}^{1}/_{4} \text{ TT} \\ {}^{1}/_{2} \text{ Tt} \\ {}^{1}/_{4} \text{ tt} \end{cases}$	$\mathbf{L}^{1/4}$ tt			1/1 6	1/16	
	2 · · · · · · · · · · · · · · · · · · ·		10.00			
	$\mathfrak{tt} \times \begin{cases} \frac{1}{4} \mathrm{TT} \\ \frac{1}{2} \mathrm{Tt} \\ \frac{1}{4} \mathrm{tt} \end{cases}$			1/ 16		
¹ / ₄ tt x	tt x $\left< \frac{1}{2} \operatorname{Tt}$ is the equation of the second sec		1.1.1	1/16	1/16	
	$\int \frac{1}{4} \mathrm{tt}$				1/ 16 ·	
	எச்சங்களின் வி கிதம்		4/16	8/16	4/16	

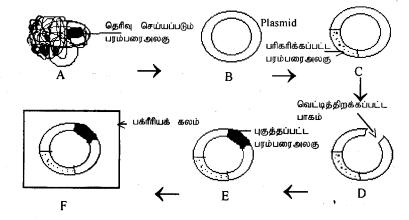
எனவே Hardy Weinberg சமநிலை நிபந்தனைகளின் கீழ் அடுத்தடுத்த சந்ததிகளில் பரம்பரை அலகு பிறப்புரிமை அமைப்பு அதிர்வெண்கள் என்பன மாற்றமின்றிக் காணப்படும்.

பிரயோக பிறப்புரிமையியல்

பிறப்புரிமையியல் அறிவை பிரயோகரீதியில் பொருளாதார மேம்பாட்டின் பொருட்டு பயண்படுத்தும் போது அது பிரயோக பிறப்புரிமையியல் எனப்படும். வரலாற்றுக் காலங்களில் இருந்தே இவற்றில் சில நடைமுறையில் இருந்து வந்துள்ளன. நவீன வடிவம் பெற்று வருகின்றன. சில பிரயோக பிறப்புரிமையியல் நடவடிக்கைகள் வருமாறு.

1. பிறப்புரிமைப் பொறியியல் (Genetic Engineering)

2. மரபு வழி ஆலோசனை (Genetic Councelling)


பிறப்புரிமைப் பொறியியல்

அண்மைக்காலங்களில் உயிரியல் மூலக் கூற்று ரீதியில் வளர்ச்சி கண்டு வருகின்றது. தனிக்கலப் புரதத் தொகுப்பு, நிர்ப்பீடனங்களை ஏற்படுத்திக் கொள்ளல், நுண்ணுயிர்க்கொல்லிகளை உருவாக்கல், கனிப்பொருட்களைப் பிரித்தெடுத்தல் , நொதியங்கள், புரதங்கள் , விற்றமின்கள் போன்றவற்றை உருவாக்கல் புணரிகளை வேறாக்கிப் பீயன்படுத்துதல் செயற்கை முறைச் சினைப்படுத்தல் , முளைய இட மாற்றம், சோதனைக் குழாய் சிசு போன்றவை இத்தகைய சில முக்கியமான நடவடிக்கைகள் ஆகும்.

பிறப்புரிமையியல் அறிவைத் தொழில் நுட்ப ரீதியாகப் பயன்படுத்தும் துறை பிறப்புரிமைப் பொறியியல் எனப்படும், பிறப்புரிமைப் பொறியியலில் தெரிவு செய்யப்பட்ட பாரம்பரிய அலகுகள் விருந்து வழங்கி கலங்களுள் புகுத்தப்படும். இதன் மூலம் அவ்விருந்து வழங்கிக்கலம் பிறப்புரிமை ரீதியாக மாற்றி அமைக்கப்படும்.

பொதுவாய் உயிருள்ள கலங்கள் வெளியில் இருந்து புகுத்தப்படும் பொருட்களை இலகுவில் ஏற்றுக் கொள்ளமாட்டா. பிறபொருட்களாகக் கருதி பிறபொருள் எதிரிகள், நச்சு எதிரிகள் கொண்டு அழித்து விடுவதே வழமையாகும். எனினும் பிறப்புரிமைப் பொறியியலில் சில விசேட நுட்பங்களைப் பயன்படுத்தி புதிய பரம்பரை அலகுகளோ அல்லது பாரம்பரியப் பொருட்களோ படிப்படியாகப் புகுத்தப் படுகின்றன. சில வைரசுக்கள் நீங்கலாக DNA வைரசுக்களும் ஏனைய உயிரிகளும் DNA கொண்டவை. DNA ஆனது அதன் பௌதீக இரசாயன இயல்புகள் பாதிப்படையா வண்ணம் கலங்களிலிருந்து வேறாக்கப்படக் கூடியது. புரோக்கரியோட்டா DNA histone வகைப் புரதத்துடன் சேர்ந்து காணப்படாத படியால் இது கையாளப்படுவதற்கு மிகவும் உவப்பானதாகும்புரதத் தொகுப்பின் பொருட்டான உப்பு மூலத் தகவல்களும் புரதத் தொகுப்பு படிமுறையும் ஒரு சில சந்தர்ப்பம் நீங்கலாக மனிதன் உட்பட ஏனைய உயிரிகள் அனைத்திலும் ஒரேமாதிரியானவை. நியமமானவை. பிறப்புரிமைப் பொறியியலில் பிறப்புரிமைப் பதார்த்தத்தை வேண்டிய இடத்தில் துண்டிக்கவும் இணைத்துக் கொள்ளவும் ஏராளமான நொதியங்கள் பயன்படுத்தப் படுகின்றன.

பிறப்புரிமைப் பொறியியல் படிமுறைகள்

உரு 11 - பிறப்புரிமைப் பொறியியல் படிமுறைகள்

A:- தெரிவுசெய்யப்பட்ட பரம்பரை அலகுகள் Restriction endo nuclease, நொதி கொண்டு ஏனைய பகுதிகளில் இருந்து பிரித்து வேறாக்கப்படும். சில, வேளைகளில் பரம்பரை அலகுகள் mRNA யைப் பயன்படுத்தி செயற்கையாகத் தயாரிக்கப்படுவனவாயும் இருக்கும்.

B:- பரம்பரை அலகை நேரடியாகக் கலங்களினுள் புகுத்துவது கடினமானது. இவற்றைப் புகுத்தச் சில காவிகள் பயன்படுத்தப்படுகின்றன.

 Plasmid - இவை பக்ரியாக் கலங்களுள் காணப்படும் சிறிய நிறமூர்த்தங்களை ஒத்த அமைப்புகள் சில இயல்புகளை பிரதிபலிக்கக் காரணமான பரம்பரை அலகுகள் சிலவற்றைக் கொண்டவை.

-56-

2. Bacterio phage, Retro virus - பெரும்பாலும் விலங்குக் கலங்களின் பொருட்டு¹பயன்படுத்தப்படுகின்றன. வைரஸ்களைக் காவியாகப் பயன்படுத்தும் போது அவற்றால் ஏற்படக் கூடிய தீங்கு பயக்கக்கூடிய விளைவுகளைத் தவிர்க்கும் வகையில் நடவடிக்கை மேற்கொள்ளப்பட வேண்டும்.

C:-. காவிகளின் சில பகுதிகள் அடையாளப் படுத்தப்படும். இப் Plasmid பயன்படுத்தப்படும் போது சில பரம்பரை அலகுகள் குறித்த நுண்ணுயிர்க் கொல்லிக்கு எதிராக எதிர்ப்பியல்பு பிரதிபலிக்கக் காரணமாய் இருக்கும். சில பரிகாரங்கள் மூலம் இவ்அடையாளப்படுத்தல் மேற் கொள்ளப்படும். காவி செயற்படத் தொடங்கும் போது இத்தன்மை வெளிப்படுத்தப்படும்.

D:- தெரிவு செய்யப்பட்ட பரம்பரை அலகை பொருத்துவதற்கு வசதியாக Plasmid இன் குறித்த தடம் வெட்டிஅகற்றி திறக்கப்படும்.

E:- காவியில் தெரிவு செய்யப்பட்ட பரம்பண அலகு பொருத்தப்படும் பொதுவாக பிறப்புரிமைப் பொருட்கள் ஒட்டிக் கொள்ளும் தன்மையுடைவை எனினும்Ligase எனும் நொதியைப் பயன்படுத்துவதன் மூலம் பொருந்திக் கொள்வது தாண்டப்படலாம். இன்னொரு வகையில் தயார் செய்யப்படும் பரம்பரை அலகும் காவியும் நிரப்புமிழைச் சோடிகள் கொண்டவையாயின் அவை இலகுவான முறையில் பொருந்திக் கொள்ளும்.

F:- மேற்படி தொகுதி Bacteria, மதுவங்கள், தாவர, விலங்கு உடற்கலங்கள் போன்றவற்றுள் வேண்டியபடி புகுத்தப்படும். காவிகளாய் வைரசுக்கள் பயன்படுத்தப் பட்டிருப்பின் அவை தாமாகவே பிறப்புரிமைப் பொருளைச் செலுத்தும்.

விருந்து வழங்கிக் கலத்துள் பிப்புரிமைப் பொருள் பிரிந்து பெருகும் புகுத்தபட்ட பிறப்புரிமைத் தகவலுக்கிணங்க புரதத்தொகுப்பு வழிநடத்தப்படும். இயல்புகள் பிரதிபலிக்கப்படும். விருந்து வழங்கிக் கலங்கள் பிரிந்து பெருகும். பரிகரிக்கப்பட்ட நுண்ணுயிர்க்கொல்லிக்கு எதிரப்பியல்பு காண்பிக்கப் படுவதைக் கொண்டு புகுத்தப்பட்ட பரம்பரை அலகு செயற்படுவதை நிதானித்துக் கொள்ளலாம்.

அன்னிய DNAயினையோ அல்லது செயற்கையான பரம்பரை அலகையோ விருந்து வழங்கிக் கலத்தில் செலுத்துவதைத் தவிர ஏனைய பிறப்புரிமைப் பொறியியல் நடைமுறைகள் அனைத்தும் நவீன தொழில் நட்பங்களைப் பயன்படுத்தி மிக இலகுவாய் மேற்கொள்ளப்படக் கூடியன. பிறப்புரிமைப் பொறியியல் ஆனது இதன் போது DNA யின் கட்டமைப்பு மாற்றியமைக்கப்படுவதனால் Recombinant DNA technology எனவும் இதன் போது பரம்பரை அலகுகள் பெருக்கப்படுவதால் பரம்பரை அலகுப் பெருக்கம் Gene Cloning எனவும் அழைக்கப்படும். சிலர் இதனை பரம்பரை அலகு முளைவகையாக்கம் எனவும் குறிப்பிடுகின்றனர்.

பிறப்புரிமைப் பொறியியலின் முக்கியத்துவங்கள்.

- 1. வர்த்தக ரீதியில் நொதியங்களின் உற்பத்தியைத் தூண்டிக் கொள்ள Amylase, Protiase, Renin, Invertase, Pectinase
- 2. நைதரசன் பதித்தல் Bacteria களில் Nitrogenase நொதிச்சுரப்பைத் தூண்டும் வகையில்
- Hormone உற்பத்தியைத் தாண்டுதற்கு Insulin, Humulin, Somatotrophin, Penicillin
- மருத்துவத் துறையில் சிகிச்சைகளை மேற்கொள்ள.
 தலைமுறையுரிமை அடையக் கூடிய நோய்களை சிகிச்சிக்க
- 5. தலையீட்டுப் புரதங்களைத் தயாரித்து பயன்படுத்த தடிமன் , herbs , hepatities -b , Cancer
- நிர்ப்பீடனத் துறையில் நோயக்கெதிரான எதிர்ப்பியல்பை உண்டாக்கிக் கொள்ள
- விவசாயத்துறையில் விளைச்சலை அதிகரிக்கக் கூடிய பேதங்களை உருவாக்க.
- 8. நோய்பீடைகளுக்கு எதிர்ப்பியல்புள்ள பேதங்களை உருவாக்க.
- பீடை நாசினிகள், களைநாசினி, கிருமிநாசினி எதிர்ப்பியல்புள்ள பேதங்களை உருவாக்க.
- 10. C, தாவரங்களை C, தாவரங்களாக மாற்றுதற்கு
- கழலைகள் உருவாகத் தூண்ட தேவையான காரணிகளைப் பகுத்துவதன் மூலம் கழலைகளை உருவாக்க
- 12. கனியநெய்களால் மாசாக்கம் ஏற்படும் போது அவற்றைப் பயன்படுத்தும் Bacteriaகளை பயன்படுத்துவதன் மூலம் சூழல் மாசாக்கலை தவிர்க்கலாம்.

பிறப்புரிமைப் பொறியியல் தொழில் நுட்பங்களைப் பயன்படுத்தி சட்ட மருத்துவத் துறையிலும் பல்வேறு பயன்கள் அடையப்படுகின்றன கொலையாளியை இனம் காணல் குழந்தை ஒன்றின் உண்மையான பெற்றோரை இனம் காணல் -DNA finger printing- போன்றவை இத்தகைய சில நடவடிக்கைகளாகும்.

DNA Finger Printing.

ஒவ்வொரு தனிநபரினதும் DNAயின் மூலக்கூற்று ஒழுங்கமைப்பு அவ்விலங்குக்கே தனித்துவமானதாகும். இது நைதரசன் உப்பு மூலத்தொடரால் தீர்மானிக்கப்படுவது. இது ஒவ்வொருவரினதும் கைவிரல் அடையாளங்கள் தனித்துவமானதாக காணப்படுவதனை ஒத்தது. ஒவ்வொருவரினதும் DNAயின் மூலக்கூற்றமைப்பைத் துணிவது மிகவும் இலகுவான நடைமுறையாகும். இந்நடை முறையின் போது

- * மாதிரிக் கலங்களிலிருந்து முதலில் DNA தனியாக்கப்படும்.
- * Restriction endonuclease நொதியினால் DNAயானது துண்டுகளாகத் துண்டிக்கப்படும்.
- * துண்டங்கள் ஒவ்வொன்றும் Electrophorosis எனப்படும் மின்னயன முறையைப் பயன்படுத்தி வேறாக்கப்படும்.
- * இத்துண்டங்கள் Southen blotting என்ப்படும் முறை மூலம் நைலோன் மென்சவ்வொன்றுக்கு இடமாற்றப்படும்.
- * DNA மூலக்கூற்றுத் துண்டங்கள் DNA probe எனப்படும் கதிர்ச்சமதானி கொண்ட நியம மூலக்கூற்றினால் கவரப்படும்
- * இவ்வாறு கவரப்படாத மூலக்கூற்றுத் துண்டங்கள் X கதிர்ப்படத்தாள் ஒன்றின் மீது படிவிக்கப்படும்.
- * கதிர்ச்சமதானி கொண்ட DNA probe ஐ பயன்படுத்தி அதனுடன் ஒத்த துண்டங்களை அடையாளப்படுத்திக் கொள்ளலாம்.

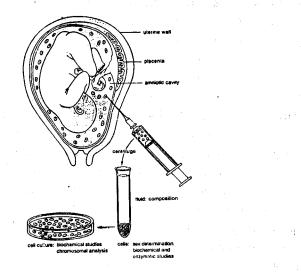
இந்நுட்பமுறையைப் பயன்படுத்தி அறியப்படாத DNA மாதிரி ஒன்று அடையாளங் காணப்பட முடியும். இதன் மூலம் கொலையாளியை இனங்காணவோ பெற்றோரை வெளிப்படுத்தவோ வேண்டிய சந்தர்ப்பங்களில் அதனைச் செய்து கொள்ளவோ வெவ்வேறு நபர்களிடையேயான பாரம்பரியத் தொடர்புகளை வெளிப்படுத்திக் கொள்ளவோ முடியும்.

தற்கொலைத்தாக்குதல் மூலம் கொலையை மேற்கொண்ட ஒருவரின் DNA ஐ அவரது இயல்பான DNAயுடன் ஒப்பு நோக்கி கொலையாளியை அடையாளப்படுத்திக் கொள்ளலாம். இதற்கு ஒரு சில குருதிக் கலங்கள் அல்லது தோற்கலங்கள் அல்லது விந்துக்கள் போன்றன போதுமானவையாகும். ம**னித பரம்பரை அ**லகு செயற்றிட்டம்

உயிரிகளினது பரம்பரை அலகு சிக்கல் தொடர்பான தகவல்களைத் திரட்டி இலட்சிய பூர்வமான தேவையின் பொருட்டு பயன்படுத்த பிறப்புரிமைப் பொறியியலுடன் தொடர்பான அறிவு பயன்படுகின்றது. மனிதனில் இதனை மேற்கொள்ளும் போது அது மனித பரம்பரை அலகு செயற்றிட்டம் Human genome Project எனப்படும். மனித குலம் முழுவதிலும் பல்வேறு பரம்பரை அலகுகளினதும் நியூகிளியோரைட்டுத் தொடர்களை அறிந்து கொள்ளும் நடவடிக்கை இதுவாகும். இதன் பயனாக தீமைபயக்கக் கூடிய பரம்பரை அலகுகளை மனித குலத்திலிருந்து இல்லாமலாக்கி விடவும் நன்மை பயக்கும் பரம்பரை அலகுத் தொகுப்புக்களுடனான எச்சங்களைத் தோற்றுவிக்கவும் செய்யலாம். இத்திட்டம் பெருமளவு பணச் செலவுகளுடன் அமெரிக்காவில் DNAயின் மாதிரியுருவை வெளிப்படுத்தியவர்களுள் ஒருவரான Watson னின் தலைமையில் குழுவொன்றினால் ஆரம்பித்து நடைமுறைப்படுத்தப் பட்ட போதும் தற்பொருது அது கைவிடப்பட்ட நிலையில் உள்ளது.

மரபுவழி ஆலோசனை

பிரப்பரிமைக் காரணிகளால் நோய்கள் ஏற்படல், இந்நோய்களால் சமூகத்தில் ஏற்படும் விளைவுகள் போன்றவை பற்றி ஆலோசனைகளை வழங்கல் மரபு வழி ஆலோசனை எனப்படும். பாரம்பரிய பிறழ்வுகளுக்குக் காரணமான பரம்பரை அலகுகளைக் காவுபவர்கள் , அவர்களின் சந்ததியினர் மேற்படி பிறழ்வுகளால் பாதிப்புக்குள்ளாக வேண்டி ஏற்படலாம். இத்தகையவர்களுக்கு ஏற்படும் ஆபத்துக்களை அறியத் தருவதும் அவற்றை அல்லது எதிர் கொள்வது போன்றவற்றை பற்றிய எந்தளவு தவிர்ப்பது, தீர்மானங்களை எடுக்க வழிகாட்டல் மரபு வழி ஆலோசனை எனப்படும். இதன் போது திருமணம் தொடர்பான தீர்மானங்களை எடுத்தல் குழந்தையை எம்முறையில் பெற்றுக் கொள்வது, பிறக்கும் போது குழந்தைகளின் பிறழ்வுகளை குழந்**தை** பிறந்த பின் நோய் விருத்தியாகும் தன்மையை நிதானித்த**ல்.** நிதானித்தல், தேவையான சிகிச்சையை ஆரம்பித்தல், வேதனையைக் குறைத்தல், சிகிச்சை முறையின் பொருட்டான செலவைக் குறைத்தல் , சிகிச்சை முறையைத் கீர்மானிக்கல் சட்ட பர்வமானதும் சமூகரீதியிலானதுமான பிரச்சனைகளை எதிர்கொள்ளல் என்பன தொடர்பான வழி காட்டல் இதில் இடம் பெறும்.


-61-

இதன் போது பரம்பரை அட்டவணைகள் குருதி மாதிரிகளை பரிசோதித்தல் Amniocentesis நிறமூர்த்தப் படங்களைப் படித்தல் நொதியங்கள் தொடர்பான பரிசோதனைகள் போன்றவை மேற் கொள்ளப்படும்.

பரம்பரை அட்டவணையைப் படிப்பதன் மூலம் வழித்தோன்றல்களில் நோய் வெளிப்படுவதற்கான சாத்தியக் கூறு இருக்குமாயின் இதற்கான நிகழ் தகவு அடுத்தடுத்து பிறக்கும் எல்லாக் குழந்தைகளிலும் ஒரே மாதிரியாக காணப்படும்.

திருமணத்தின் பின் பெற்றுக் கொள்ளும் குழந்தையை மூலக்கூற்று உயிரியல் நுட்பங்களை பயன்படுத்துவதால் செவிலித் தாய்மாரில் பெற்றுக் கொள்ளலாம். குருதி மாதிரிகள் அமினியன்பாயி கோரிபோன் சடை முளைகளைப் பரிசோதிப்பதன் மூலம் பாதிப்புடனான முளைய விருத்தியைத் தடுத்து கருச்சிதைவை மேற் கொள்ளலாம்.

பீறந்தபின் Phenylketonuria போன்ற நோய்கள் விருத்திய டையுமாயின குருதியில் அடையாளப்படுத்தி Phenyl alanine அற்ற அல்லது குறைவாய் கொண்ட உணவுகளை வழங்கிவரலாம்.மேற்படி நடவடிக்கை களை மரபு வழி ஆலோசனையின் பொருட்டான genetic screening என்பர்.

உரு 12 -- அமினியப் பாயிப் பகுப்பு மேற்கொள்ளப்படும் முறை -62-

.

கூர்ப்பு

அலக - 9

பிரபஞ்சத்தினுடைய தோற்றம் உயிரின் உற்பத்தி அங்கிகளின் பரிணாமம் என்பன பற்றிப் படிக்கும் பகுதி கூர்ப்பாகும். இரண்டு பிரதான பிரிவுகளாக நோக்கப் படுகின்றது.

1. இரசாயனக் கூர்ப்பு அல்லது உயிர் இரசாயனக் கூர்ப்பு

2. அங்கிக் கூர்ப்பு அல்லது சேதனக் கூர்ப்**பு**

இவை தவிர பிரபஞ்ச உற்பத்தி , பூமியின் உற்பத்தி என்பன பற்றியும் இப்பகுதியில் கற்கப்படும். இது புவி சரிதவியல் கூர்ப்பு எனப்படும். பிரபஞ்ச உற்பத்தி

பூமியை அடக்கிய அண்டகோளம் ஏறத்தாழ 18 பில்லியன் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில் ஒரு பெரு வெடிப்பின் மூலம் தோன்றியது. இத்தகைய அண்ட கோளங்கள் நூறு மில்லியன் வரை இந்தப் பிரபஞ்சத்தில் காணப்படலாம் என நம்பப் படுகின்றது. ஆரம்ப காலங்களில் தாசி புகார் படிவுகளாய் காணப்பட்ட வஸ்த்துக்கள் நட்சத்திர ஒளிக் கற்றைகளால் தாக்கப்பட வெப்பமின் கதிர்ப்புகள் ஏற்பட்டன. பௌதிக மாற்றங்கள் ஏற்பட்டன. சூரியன் தோன்றியது. 4.6 பில்லியன் வருடங்களுக்கு முன்னர் சூரியனைச் சூழக் காணப்பட்ட படிவுகள் சிதறிக் கோள்களான போது பூமி தோன்றலாயிற்று.

இக்காலப்பகுதியில் இதன் மேற்பரப்பில் நெருப்பு மலைகளும் பள்ளங்களும் கொண்டதாய் இருந்தது. தொடர்ச்சியாய் நடைபெற்ற அசைவுகள் குளிர்தல் செயற்பாடுகள் காரணமாக நடைபெற்ற ஒடுங்குகைகளினால் மலைகளும் பள்ளங்களும் கொண்டதாய் மாறச் செய்தது. ஆரம்ப காலங்களில் மேற்ப்பரப்பு வெப்பநிலை 4000° c - 8000° c வரை காணப்பட்டது. இக்காலப் பகுதியில் Fe, Ni, Si, C போன்ற பாரமான மூலகங்கள் குளிர்ந்தொடுங்கி பூமியின் உள்ளகத்தை ஆக்கலாயிற்று. திரவநிலையிலான உள்ளீட்டுப் பதார்த்தங்கள் அவ்வப்போது ஏற்பட்ட வெடிப்புகள் மூலம் மேற்ப்பரப்பிற்கு கொண்டு வரப்பட்டன.

படிப்படியாய் வெப்பநிலை குறைய பூமியின் ஆரம்ப வளிமண்டலம் தோன்றலாயிற்று. இது CH₄, CO₂, CO, H₂O, NH₃, N₂, H₂S, HCl என்பவற்றை கொண்டதாய் இருந்தது. நாளடைவில் பூமியின் மேற்பரப்பு வெப்பநிலை தொடர்ந்து குறையச் செய்தது. இதன் பேறாக குழல் வளிமண்டல வெப்பநிலை குறைந்தது. மழைபெய்யத் தொடங்கியது எனினும் இம்மழை பூமியின் மேற்பரப்பை அடைய முன்பே ஆவியாகச் செய்தது. இதன் பின் நீண்ட கால அடிப்படையில் கணிசமானளவு மட்டத்திற்கு வெப்பநிலை குறைந்ததை தொடர்ந்து, பூமியல் மழை நீர் தேங்கலாயிற்று சமுத்திரங்கள் தோன்றலாயின.

அறியப்பட்ட வரையில் பூமியல் மட்டுமே உயிர்கள் காணப்படுகின்றன. வேறு சில கோள்களில் உயிரிகள் தோன்றுவதற்கான நிலைமைகள் காணப்படுகின்றன. செவ்வாய் கிரகத்தில் சுவட்டு நிலையிலான பக்ரீரியாக்கள் அடையாளப் படுத்தப்பட்டுள்ளன. எவ்வாறாயினும் அவ்வாறு தோன்றிய அவை ஏதோ காரணத்தினால் இல்லாமலாகி இருக்கலாம்.

உயிரின் உற்பத்தி

பூமி மிகப் பெரிதும் மிகச் சிறியதுமல்லாத ஒரு நடுத்தரவளவுள்ள கோள். இதன் ஈர்ப்பு விசை நடுத்தர அளவானது. சூரியனில் இருந்து மிகத் தொன்லவிலும் மிக அண்மையிலும் இல்லாது காணப்படுவதால் நடுத்தர அளவு வெப்பவீச்சு உடையதாய் காணப்படுகின்றது. இதனால் நீரானது மூன்று அவத்தைகளிலும் காணப்படுகின்றது. மேலும் வளிமண்டலம் சமநிலையில் காணப்படக் கூடியதாயுள்ளது. வளிமண்டலத்தில் நீராவி , CO₂ என்பன காணப்படுகின்ற மையானது வெப்பவீச்சு மாறுபாடுகள் கட்டுப்படுத்தப்பட காரணமாகின்றது. இந் நிலமைகள் காரணமாக புவியில் உயிரிகள் தோன்றவும் நிலைபெறவும் காரணமாகின்றது. உயிரின் உற்பத்தி தொடர்பாய் 5 கொள்கைகள் காணப்படுகின்றன.

1. சிறப்புப் படைப்புக் கொள்கை

புவியில் உயிரிகள் அனைத்தும் ஒரே காலத்தில் கடவுளினால் இன்றுள்ளவாறே படைக்கப்பட்டது என்று கூறுவதாகும். சிலர் மீண்டும் மீண்டும் இவ்வாறு படைக்கப்படுவதாய் நம்புகின்றனர். இக்கொள்கைக்கு எதிரான சான்றுகளாக உயிர்ச்சுவடுகள் காணப்படுகின்றன. இக்கொள்கை செய்முறை ரீதியில் விளக்கப்பட முடியாதது. எனவே ஏற்றுக் கொள்ளப் படுவதில்லை.

2. தொடர்ச்சியான நிலை பெறுகை தொடர்பான கொள்கை

பிரபஞ்சம், சூரிய குடும்பம், உயிரி போன்றவை எக்காலத்திலும் தோன்றவில்லை எனவும் அனாதி முதலாகவே காணப்பட்டு வருகின்றன எனவும் குறிப்பிடுகின்றது. எனவே உயிரிகள் அனாதியானவை . தொடர்ச்சியாய் அவ்வண்ணமே நிலவிவருகின்றன.

3. அண்டவுயிர்க் கொள்கை

பிற கோள்களில் இருந்து உயிரிகள் பூமியை வந்தடைந்திருக்கலாம் என குறிப்பிடுகின்றது. இதுவும் பிறகோள்களில் தானும் உயிரின் உற்பத்தியை விளக்கவில்லை. மேலும் இது ஒரு கோளில் இருந்து இன்னொரு கோளுக்கு மாற்றப்பட வேண்டிய இடைவெளியில் உயிர்ப் பண்புகள் பேணப்படுவதற்கான நிபந்தனைகள் காணப்படுவது இல்லையாதலால் வலுவில்லாததாகின்றது.

4. தன்னிச்சைப் பிறப்பாக்கற் கொள்கை

இது உயிரிகள் சுயாதீனமாக சேதனப் பார்த்தங்களில் இருந்து உருவாகியதாய் குறிப்பிடுகின்றது. சேற்று நிலங்களில் முதலைகள் , பழைய துணிகளில் எலிகள் சாணத்தில் வண்டுகள் என்றவாறு உருவாவதாக குறிப்பிடுகின்றது. லூயி பாஸ்ரர் அன்னக்கழுத்துக் குடுவைப் பரிசோதனை மூலம் இது தவறானது என ஆதாரபூர்வமாக நிரூபித்தார். ஆயினும் முதலுயிரியின் தோற்றத்திற்கு சேதன பொருளே காரணம் என குறிப்பிடப்படுகின்றது.

5. இயற்கை உயிர் உற்பத்தி கொள்கை

இயற்கை உயிர் உற்பத்தியை விளக்கும் கொள்கை J.B.S. Haldane, Alexander Oparin என்பவர்களால் 1923 இல் முன் மொழியப்பட்டு விளக்கப்பட்டது. எளிய அசேதன சேதன, இரசாயனங்களில் இருந்து சிக்கலான சேதன இரசாயனங்களும் அவற்றில் இருந்து முதலுயிரியும் தோன்றியது என்பதை இது விளக்குகின்றது.

உ_யிரின் உற்பத்திக்கு வேண்டிய சிக்கலான சேதன இரசாயனங்கள் தோன்றியமை பற்றி மூன்று வித கொள்கைகள் நிலவுகின்றன.

 ஆரம்ப காலத்தில் இருந்தே காணப்பட்டமை HCHO இல் இருந்து வெல்லங் களும், CN இல் இருந்து N - bases உம் உருவாகலாம். என்பதனால் ஆரம்ப காலங்களிலே சில இரசாயன பதார்த்தங்கள் காணப்பட்டிருக்க வேண்டும்.
 விண்கற்கள் மூலம் எளிய இரசாயனப் பதார்த்தங்கள் பூமியை அடைந்தி ருக்கலாம் என்பது. இதற்காதாரமாக சில N - bases விண் கற்களில் அடையாளப் படுத்தப்பட்டுள்ளன.

 வளிமண்டலத்தில் காணப்பட்ட வாயுக்கள் பல்வேறு தாக்கங்கள் மூலம் சிக்கலான சேதன இரசாயன பதார்த்தங்களை தோற்றுவித்தன என்பது.

-65-

-64- •

ஏறத்தாழ 3.5 பில்லியன் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில் பூமியைச் சூழக் காணப்பட்ட வளிமண்டலத்தில் ஏற்பட்ட பௌதீக மாறுபாடுகள் காரணமாக வெப்பநிலை குறைந்து முதலுயிரி தோன்றுவதற்குரிய நிலமை ஏற்படலாயிற்று. இந் நிலமையில் CH₄, NH₃, CO₂, H₂O போன்றவாயுக்கள் காணப்படுகின்றன. O₂ வளிமண்டலத்தில் காணப்படவில்லை. காணப்பட்டிருக்கக் கூடியவையும் Fe, S போன்ற பாரமான மூலகங்களுடன் சேர்ந்து பாரமான ஒட்சைட்டுக்களை ஆக்கின. தாழ்த்தும் தன்மைபுடையதாய் காணப்படுகின்றது. வெப்பநிலை 100°c யிலும் குறையும் வரை நீர் நீராவியாக காணப்படுகின்றது. இத் தாழ்த்தும் தன்மையை ஆதியான பாறைகளில் FeO கூடுதலாகக் காணப்படுகின்றமை சான்று படுத்துகின்றது.

இவ்வேளை புவி மேற்ப்பரப்பில் நிலவிய மின்னிறக்கங்கள் , உயர் ஊதாக் கதிர் வீசல்கள் அயனாக்க கதிர்வீசல் போன்றவை மேற்படி மூலக்கூறு களிடையில் மோதுவதன் மூலம் இரசாயன தாக்கங்களை ஏற்படுத்தி எளிய அமினோஅமிலங்கள் , காபோவைதரேற்றுக்கள் , இலிப்பிட்டுக்கள் போன்றவற்றை ஆக்கின. படிப்படியாய் புரதங்கள் சிக்கலான இலிப்பிட்டுக்கள் போன்றவையும் நீண்ட கால அடிப்படையில் நியூக்கிளிக்கமிலங்கள் ATP, Porphyrin வளையம் போன்றவையும் தோன்றின.

Stanly Miller தொடர்ச்சியான பரிசோதனைகள் வாயிலாக CH₄, NH₃, H₂O, H₂ என்பவற்றுக்கு 80°C- 90°C இடைப்பட்ட வெப்பநிலையில் சக்தி மூலம் வாயிலாக UV கதிர் வீசல்களை வழங்கி எளிய அமினோஅமிலங்களை தொகுத்தார். இவ்வாறு தொகுக்கப்பட்ட அமினோஅமிலம் Glycine. தொடர்ந்து கொழுப்பமிலம், பொலிசக்கரைட்டுக்கள் போன்றவை வெவ்வேறு சந்தர்ப்பங்களில் உருவாக்கப்பட்டன. Harold Urey யினாலும் இத்தகைய சோதனைகள் மேற்கொள்ளப்பட்டன. இப்பரிசோதனைகள் இயற்கை உயிர் உற்பத்தி கொள்கைக்கு ஆதாரமாய் அமைந்தன.

இறுதியாய் பெய்த மழைநீருடன் மேற்படி சேதன இரசாயன பதார்த்தங்கள் சமுத்திரங்கள், ஏரிகள், குளங்கள், ஆறுகள் போன்றவற்றில் காணப்படலாயின. இவை கூழ்களாக காணப்பட்டன. இதனை ஆதி கூழ் (premodial soup) என்பர்.இக்கூழில் காணப்பட்ட எளிய சேதன இரசாயனப் பதார்த்தங்கள் எழுந்தமானமாய் மோதி சிக்கலான சேதன இரசாயனப் பதார்த்தங்களை ஆக்கின. மேற்படி சிக்கலான சேதனப் பதார்த்த கலவைகள் சிறு கோளங்களாக திரண்டன. இதனை Oparin, Coacevates என குறிப்பிட்டார். இவை தம்மை ஒத்த சுறுகளுடன் சேரவும் எளியசேதன அசேதன பதார்த்தங்களை தம்முள் கட்டின்றி அனுமதித்து வளர்ந்து பிளவடையவும் கூடியனவாய் இருந்தன. தொடர்ச்சியாய் ஏற்படக் கூடிய பிளவுத் தொழிற்பாட்டைக் கட்டுப்படுத்த பதார்த்தங்களின் உள்ளெடுத்தலானது மட்டுப்படுத்தப்பட வேண்டிய தேவை ஏற்பட்டது. பகுதிபட ஊடுபுகவிடும் இயல்புடைய பிளவடையும் இயல்புடைய மென்சவ்வால் சூழப்பட்ட முதற்கலங்களாக மேற்படி முன்னோடி கலங்கள் பிணமித்தன.

இவற்றுள் காணப்பட்ட Nucleic acids பிறப்புரிமைப் பொருள்களாக தொழிற்பட்டன. இம் முதற் கலங்கள் Bacteriaகள் ஆகும். இவை மேற்படி கூழில் காணப்பட்ட எளிய வெல்லங்களையே உணவு அடிப்படையாய் பயன்படுத்தின. பீறபோசணை வழக்குடையவை. இரசாயனப் பொருளுண்ணிகள். காற்றின்றி வாழிகள். இனப் பெருக்கம் இலிங்கமில் முறையிலானது.

இத்தகைய பிறபோசணிகளில் இருந்து எதேச்சையாய் நடைபெற்ற நிகழ்வுகளும், பிறபோசணிகளிடையே ஏற்பட்ட போட்டியும் தற்போசணிகளின் தோற்றத்திற்கு காரணமாயிற்று. முதலில் இரசாயனத் தொகுப்பாளர்களும் பின்னர் ஒளித்தொகுப்பாளர்களும் தோன்றலாயினர். Porphyrin வளையம் தோன்றி Chlorophyll இன் அடிப்படை கட்டமைப்பு உருவானது.

இதனால் ஒளிச்சக்தியை பயன்படுத்தி ஒளித்தொகுப்பாளாகள் உணவைத் தொகுக்கலாயின. ஒளித்தொகுப்பின்போது உண்டான O₂ வளிமண்டலத்தில் படிப்படியாகச் சேர்ந்து முற்றிலும் தாழ்த்தும் நிலையில் காணப்பட்ட வளிமண்டலத்தை ஒட்சியேற்றும் நிலைக்கு மாற்றின. O₂ தோன்றியமையைத் தொடர்ந்து கதிர்வீசல் செயற்பாடுகளால் படிப்படியாய் O₃ தோன்றி புவியைச்சூழ ஒரு படலத்தை அமைத்தது. அதன் பின்பே சிக்கலான உயிர்கள் தோன்றலாயின. ஆதியுயிர்கள் கடலிலேயே தோன்றியமைக்கு சகல உயிர்களிலும் NaCl காணப்படுகின்றமை சான்றாய் அமைகின்றது.

-67-

-66-

அங்கிக் கூர்ப்பு

எளிய சிக்கல் தன்மை குறைந்த அங்கிகளில் இருந்து நீண்டகால அடிப்படையில் சிக்கலும் பன்மைத்துவமும் வாய்ந்த அங்கிகள் தோன்றுவது அங்கிக் கூர்ப்பு எனப்படும்.

இன்னொரு வகையில் உயிர்ப் பரிணாமம் என்பது அங்கிக் கூட்டம் ஒன்று நீண்டகால அடிப்படையில் படிப்படியாய் மாற்றங்கண்டு இன்னொரு அங்கிக் கூட்டமாக மாறுவது.

பரிணாமத்தின் போது குடித்தொகையொன்றின் பரம்பரையலகு அதிர்வெண் மாறுபடச் செய்யும். இவ்வேளையில் Hardy Weinberg சமநிலைகள் நிலவமாட்டா. பரிணாமத்தின் போது தெளிவான மாறுபாடுகள் அங்கிகளில் தோன்ற நீடித்த காலப்பகுதி தேவை.

எவ்வாறாயினும் சில சந்தர்ப்பங்களில் சிக்கல் வடிவங்களில் இருந்து எளிய வடிவங்களும் தோன்றலாம். ஒட்டுண்ணிகளில் இது பெரும்பாலும் நடைபெறுகின்றது. சில உயிரியலாளர்களின் கருத்துப்படி Virus களே கூர்ப்பில் முன்னேற்றமானவை. இவை இனப்பெருக்கத்தின் பொருட்டு கூட வேறு அங்கிகளின் பிறப்புரிமைப் பொருட்களை பயன்படுத்துபவை. சில மனித செயற்பாடுகள் குறுகிய காலப்பகுதியுள் கூர்ப்பு நடைபெற காரணம் ஆகும். அங்கிக் கூர்ப்பு தொடர்பான வரலாற்று ரீதியான சில தகவல்கள் வருமாறு. * கி.மு. 500ம் ஆண்டளவில் எப்பிடொக்கிளிஸ், எப்பிகியூரஸ், போன்றோர் அங்கிகள் சூழல் தாக்கம் காரணமாக படிப்படியான மாற்றங்களிற்கு உட்பட்டு புதிய இனங்கள் தோன்றுகின்றன என்றனர். சமய கொள்கைகள் காரணமாக இக்கருத்து ஏற்றுக் கொள்ளப்படவில்லை.

* கி.பி. 17ம் நூற்றாண்டில் Lineaus சாதிகள் படைக்கப்பட்டன எனவும் இனங்கள் கூர்ப்பால் உருவானவை எனவும் கூறினார்.

* 18ம் நூற்றாண்டின் பிற்பகுதியில் பியூபொன், றஸ்மஸ் டாவின் போன்றவர்கள் அங்கிகளில் சூழலின் தாக்கம் , உள்ளெண்ணம் காரணமாக மாற்றம் ஏற்பட்டு கூர்ப்பு நடைபெறும் எனக் கூறினர்.

* Charles Lyell (1797-1875) என்பவர் பூமியில் வெவ்வேறு காலப்பகுதிக் குரியனவாக காணப்படுகின்ற பாறைப் படிவுகளில் காணப்படும் உயிர்ச்சுவடுகள் அந்தந்தக் காலப்பகுதிகளில் தோன்றிய உயிரினங்களின் சரிதைக் கிரமத்தைக் காண்பிக்கின்றன எனக் கூறினார்.

* Thomas Malthus வாழ்க்கைப் போட்டிகளின் போது தக்க இயல்புகளைக் கொண்ட அங்கிகள் பிழைக்க அல்லாதன மடியும் என்ற கருத்தை மனித சனத் தொகை மாற்றங் களுக்கான காரணங்களை ஆராய்ந்து முன் வைத்தார். * Jean Baptiste Larmarck - 1809 :- தர்க்கரீதியாக ஏற்றுக் கொள்ளப்படக் கூடிய திட்டமான ஒரு கூர்ப்பு கொள்கையை முதன் முதலில் வெளியிட்டார் எனினும் எதிர்ப்புகள் எழலாயின. முக்கியமாக மூலவுயிர் முதலுருக் கொள்கை (வீஸ்மன்) இதற்கு எதிரான சான்றாயிற்று. இதே காலத்தில் குவியர் உயிர்ச் சுவடு பற்றிய ஆராய்ச்சியை மேற்கொண்டு மீண்டும் மீண்டும் படைத்தற் கொள்கையை முன் வைத்தார் இவர் ஒரு அரசியல்வாதியாய் இருந்தமையால் அவரின் கருத்துக்கள் விஞ்ஞானிகளால் கூட ஏற்றுக் கொள்ளப்படலாயின.

* Charles Darwin - 1859:- சான்றா தாரங்களுடன் கூடிய இயற்கைத் தேர்வு கொள்கையை முன் வைத்தார். இதற்கு இவர் Beagle என்ற கப்பலில் இயற்கை விஞ்ஞானியாக உலகின் பல பகுதிகளிலும் சஞ்சரித்து திரட்டிய தகவல்களையும் , சான்றுகளையும் ஆதாரமாய் சமர்ப்பித்தார். இதே காலப்பகுதியில் Alfred Russel Wallace என்பவரும் இதே முடிவிற்கு வந்து தனது முடிவுகளை Darwin இற்கு அறிவித்தார். எனினும் Origin of Species என்ற 400 பக்கங்களால் ஆன சிறிய எழுத்துக்களைக் கொண்ட புத்தகத்தை வெளியிட்டமையால் இயற்கைத்தேர்வுக் கொள்கை டாவினுடைய பெயரால் வழங்கப் படலாயிற்று. எவ்வாறாயினும் அண்மைக்காலத்தில் இருவரினுடைய பெயராலும் வழங்கப்படுகின்றது.

* Hugo devries -1902- இன் விகாரம் தொடர்பான கண்டு பிடிப்புகளை தொடர்ந்து அங்கிகளில் ஏற்பட்ட மாறல்களுக்கு காரணமான பின்னணிகள் வெளிப்படலாயின. மேலும் மென்டலின் பரிசோதனைகள் தொடர்பான பிறப்புரிமையியல் தகவல்களும் வெளிக்கொண்டு வரப்பட்டன. இத்தகவல்களின் அடிப்படையில் Darwin இன் இயற்கைத் தேர்வுக் கொள்கை திருத்தப்பட்டு Neo Darwinism உருவாக்கப்பட்டு வழங்கப்படுகின்றது.

இலாமாக்கின் பாவிப்பு பாவிப்பின்மைக் கொள்கை ஐந்து உப தலைப்புகளின் கீழ் விளக்கப்படுகின்றது.

 மாறல்கள் :- ஒரே இனத்தைச் சார்ந்த அங்கிகளில் கூட வேறுபாடுகள் காணப்படுகின்றன. இவ்வேறுபாடுகள் சூழலின் தாக்கத்தால் ஏற்பட்டவையாய் இருக்கலாம். சூழல் அங்கிகளின் தோற்றத்தையும் ஒழுங்கமைப்பையும் மாற்றும் இவை அங்கிகளை அவற்றின் சூழலில் திறம்படவாழ சாத்தியப் படுத்துகின்றன. இவ் இயல்புகளை அங்கிகள் தாமாகவே விரும்பி வளர்த்துக் கொள்கின்றன.
 பாவிப்பு:- அங்கியொன்று திறம்படவாழ யாதாயினும் ஒரு இயல்பை அஸ்லது அமைப்பை பயன்படுத்தும். அவ்வாறு தொடர்ந்து பயன்படுத்தும் அங்கம் விருத்தியடைந்து பருமனில் கூடும்.

-68-

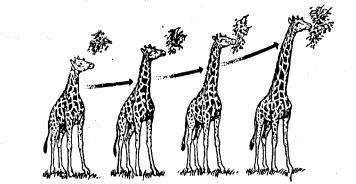
-69-

3. பாவிப்பின்மை:- அங்கியொன்று திறம்பட வாழ ஒரு இயல்பை அல்லது அமைப்பை பயன்படுத்தாது விடலாம் இவ்வியல்பு அல்லது அங்கம் படிப்படியாய் இழிந்து சென்று இறுகியில் மறையவும் செய்யலாம்.

4. தலைமுறையுரிமை அடைதல்:- இவ்வாறு விருத்தியடைந்த அல்லது இழிந்து சென்ற இயல்புகள் அதாவது பெற்ற இயல்புகள் ஒரு சந்ததியில் இருந்து அடுத்த சந்ததிக்கு கடத்தப்படும்.

5.புதிய இனம் தோன்றுதல்:- பாவிப்பு பாவிப்பின்மை காரணமாக பெறப்பட்ட இயல்புகளை கொண்ட ஆரம்ப இனத்தில் இருந்து அவற்றுடன் இனங்கலக்க முடியாத புதிய இனம் படிப்படியாய் தோன்றும், கூர்ப்பு நடைபெறுகின்றது.

பாவிப்பு கொள்கைக்கு ஆதாரம்


ஒட்டகச் சிவிங்கிகள் ஆரம்ப காலங்களில் குறுகிய கழுத்து டையவையாய் இருந்தன. இக்காலத்தில் வாழ்ந்த சூழலில் சிறிய செடிகளில் இருந்து உணவைப் பெற்றன. சூழலில் ஏற்பட்ட மாற்றங்களால் குறுகிய செடிகள் அழியவும் பெரிய மரங்களின் கிட்டிய கிளைகளில் இருந்து உணவைப் பெற கழுத்தை பாவித்தன. இதனால் கழுத்து விருத்தியடைந்து அடுத்தடுத்த சந்ததிகளிலும் சூழல் நிலமைகள் மாறாததினால் கழுத்து நீண்டு சென்றது. இதனால் பெற்ற இயல்பு தலைமுறையுரிமை அடையும். சிறிய கழுத்து ஒட்டகச் சிவிங்கிகளில் இருந்து நீண்ட கழுத்து ஒட்டகச் சிவிங்கிகள் தோன்றின. கூர்ப்பு நடைபெற்றுள்ளது. பாம்புகளில் நாக்கு விருத்தியடைந்து கொள்கின்றமையும் சேற்று நிலங்களில் வாழும் பறவைகளில் விரல் இடைப்படலம் விருத்தியடை கின்றமையும் இந்த வகையிலேயே ஆகும்.

பாவிப்பின்மை கொள்கைக்கு ஆதாரம்

குதிரைகள் ஆரம்ப காலங்களில் ஐந்து விரல்களைக் கொண்ட தட்டையான பாதங்களைக் கொண்டவையாய் இருந்தன. இவை வாழ்ந்த சூழல் மாறுபாடுகள் காரணமாக விரைவான இடப்பெயர்ச்சியை மேற்கொள்ள வேண்டி ஏற்பட்டது. இதற்கு குறுகியவையாய் காணப்பட்ட 1ம், 5ம் விரல்கள் இடையூறாய் அமைந்தன. அவை பாவிக்கப்படவில்லை. எனவே இழிவடைந்து சென்று மறைந்தன. மூன்று விரல் கொண்ட நிலை தோன்றியது. சூழல் நிலமைகள் மாறுபடவில்லை 2ம்,4ம் விரல்களும் இழக்கப்பட 3ம் விரல் மட்டும் கொண்ட குதிரைகள் தோன்றின. 5 விரல் கொண்ட நிலையிலிருந்து பெற்ற இல்புகள் தலைமுறைபுரிமை அடைந்ததால் ஒரு விரல் கொண்ட குதிரைகள் தோன்றின. கூர்ப்பு நடைபெற்றது. இவ்வாறே பாம்புகளில் கால்கள் இழக்கப்பட்டமைக்கும் விளக்கம் அளிக்கலாம்.

Larmarck தனது கொள்கைளை Philosophie Zoologique எனும் நூலில் வெளிப்படுத்**தினார்**. Larmarck இன் கொள்கை ஊகங்கள் நிறைந்ததாய் சான்றுகள் ஆதாரங்கள் அற்றதாயும் பரிசோதனை வாயிலாக நிருபிக்க முடியாததாயும் இருந்தது. Larmarck மாறல்கள் எவ்வாறு தோன்றுகின்றன, பற்றிக் குறிப்பிடவில்லை. உடல் மூர்த்தத்தில் ஏற்படும் மாறல் என்பகு எவ்வாறு தலைமுறையுரிமை அடையும் என்பதை விளக்கவில்லை. பெற்ற இயல்ப கலைமுளையரிமை அடையலாம் என்பகங்கு சான்றில்லை. பிருப்புரிமையியல், மூலக்கூற்று உயிரியல் , உயிர் இரசாயன வியல் அறிவின் എഥ്പാനെപ്പിல് இதனை விளக்க முடியாது. ஏனெனில் குமலில் ஏற்பட்ட மாற்றம் நேரடியாய் பிறப்புரிமைப் பொருளில் மாற்றம் ஏற்படுத்தும் முறைகள் அடையாளப் படுத்தப்படவில்லை. மேலும் வீஸ்மனின் மூலவுயிர் முதலுருக் கொள்கை அது தொடர்பான பரிசோதனைகள் என்பவை எதிரான சான்றாய் அமைந்தன. காசில் பிலிப்ஸ் போன்றவர்கள் கினிப்பன்றிகளில் வெள்ளை நிறமானவற்றிற்கு கறுத்த நிறமானவற்றின் சூலகங்களை மாற்றி நட்ட போது அடுத்தடுத்த சந்ததிகளில் கருநிற கினிப் பன்றிகளே தோன்றின.

எவ்வாறாயினும் சில இடங்களில் இக்கொள்கையைக் கொண்டே கூர்ப்பு விளங்கப் படுத்தப்படும். சில குகைகளில் வாழும் புழுக்கள் , அம்பிபியாக்கள் போன்றவற்றில் கண்கள் இல்லை. இதற்கு சூழல் மாறுபாடு ஏதோ ஒரு வகையில் பிறப்புரிமைப் பொருளிலும் மாற்றத்தை உண்டாக்குவதன் மூலம் பெறப்பட்ட இயல்பு தலைமுறையுரிமை அடையலாம் எனக் குறிப்பிடலாம்.

உரு13:- பாவிப்பின் மூலம் ஒட்டச் சிவிங்கிகளில் கழுத்து நீளுகின்றது -71-

-70-

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org சாள்ஸ் டாவினின் இயற்கைத் தேர்வுக் கொள்கை

இதுவும் ஐந்து உபதலைப்புகளின் கீழ் விளக்கப்படுகின்றது. 1.மாறல் கள்

அங்கிகளில் கட்டமைப்பு தொழில், நடத்தை ரீதியிலான மாறுபாடுகள் இயல்பாகவே காணப்படுகின்றன. இயற்கையில் ஒரே இனத்தைச் சார்ந்த அங்கிகளிடையே கூட இவ்வேறுபாடுகள் நிலவுகின்றன. பதியமுறையில் இனம் பெருகும் தாவரங்களிடையே கூட மாறல்கள் காணப்படுகின்றன. வான் வகைகளிலும் பார்க்க வளர்க்கப் படுவனவற்றில் வேறுபாடுகளின் அளவு கூடவாய்க்காணப்படும். மாறல்கள் தொடர்ச்சியானவை தொடர்ச்சியற்றவை என இருவகைப்படும்.

2. அபரிமிதமான உற்பத்தி

எந்தவொரு தனியனும் தனது இனத்தை நிலைபெறச் செய்யும் வகையில் எச்சங்களை உருவாக்கும். பக்ரீரியாக் கலம் ஒன்றின் சராசரி வாழ்க்கைக்காலம் அரை மணித்தியாலம். இதனைத் தொடர்ந்து பிரிவடைய அனுமதிப்பின் சில நாட்களில் உலகையே நிரப்பி விடலாம். நீடித்த ஆயுட் காலம் கொண்ட விலங்குகள் கூட இத்தகைய போக்கிலேயே பெருகுகின்றன. உதாரணமாக 100 வயது ஆயுட் காலம் கொண்ட 30 வருடத்தில் இன விருத்தி செய்ய ஆரம்பிக்கும் ஒரு சோடி யானைகள் 750 வருட காலத்தில் 19 x10° ஆகப் பெருகச் செய்யும். ஆகவே அங்கிகளின் உற்பத்தி பெருக்கல் விருத்தியடிப் படையிலானதாக அமையும். இது எப்பொழுதும் இயற்கையில் இனம் நிலைபெறத் தேவையான அளவிலும் பார்க்க அதிகமானது.

மாறல்கள் அபரிமிதமான உற்பத்தி என்ற தோற்றப்பாடுகள் இயற்கையில் தெளிவாய் அவதானிகக் கூடிய உண்மைகள்.

3. வாழ்க்கைப் போட்டி

அங்கிகள் ஏராளமான எண்ணிக்கையில் காணப்படும் பொழுது அவற்றிடையே வாழ்விடம் , உணவு , இனப்பெருக்கத்தின் பொருட்டான சோடி சேர்தல் போன்ற தேவைகளின் பொருட்டு போட்டி நிலவுகின்றது. இப் போட்டியானது இனவிடைப் போட்டி அல்லது இன அகப் போட்டியாக அமையலாம். 4. தக்கன பிழைத்தலும் அல்லன மடிதலும்

போட்டியின் போது தப்பிப் பிழைப்பதற்கான அனுகூலங்களை கொண்டவை தப்பிக்கின்றன. இவை போட்டியில் வளங்களை பெற்றுக் கொள்வதற்கான வாய்ப்பு கூடவாகக் காணப்படும். இவை பெருகுகின்றன. பாதகமான இயல்புகளைக் கொண்ட அங்கிகள் மடிகின்றன. அருகி மறைகின்றன. இது நீண்ட கால அடிப்படையில் நடைபெறுகின்றதாயினும் உடனடியாய் இவற்றிற்கு, இனவிருத்திக்கான சந்தர்ப்பம் மறுக்கப்படும். பெரும்பாலும் இவை இலவிருத்தி அவத்தையை அடைவதற்கு இடையிலேயே இறந்து விடும்.

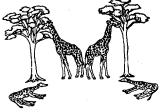
5. இயற்கைத் தேர்வு

சாதகமும் பாதகமுமான இயல்புகளைக் கொண்ட அங்கிக் கூட்டத்தில் இருந்து பாதகமான இயல்புகளைக் கொண்ட அங்கிக் கூட்டம் அருகி மறைய அல்லது அவற்றின் இனப்பெருக்க ஆற்றல் குறைந்து செல்ல சாதகமான இயல்புகளைக் கொண்ட அங்கிகள் மீண்டும் மீண்டும் பெருகிக் கொள்கின்றன. எனவே சாதகமான இயல்புகளைக் கொண்ட அங்கிகள் இயற்கையாய்த் தெரிவு செய்யப்படுகின்றன. எஞ்சுகின்ற பாதகமான இயல்புகளைக் கொண்ட அங்கிகளி குடித்தொகையினின்றும் மறைகின்றன. சாதகமான இயல்புகளைக் கொண்ட அங்கிகளின் அவ் இயல்புகள் இயற்கையால் காக்கப்படுகின்றன. சாதகமான இயல்புகள் குழலின் பொருட்டான இசைவாக்க இயல்புகளாகும்.

மேற்படி மூன்று உண்மைகளும் முன்னைய இரண்டு அவதானங்களில் இருந்து ஊகித்துப் பெறப்பட்ட கருதுகோள்கள். இவற்றைப் பரிசோதனை வாயிலாகவோ சான்றாதாரங்கள் வாயிலாகவோ விளக்கலாம். இத்தகைய உதாரணங்கள் இரண்டு வருமாறு.

1. லண்டன் பேமிங்காம் நகரில் லங்காசயரில் Biston bitularia என்னும் சாம்பல் , மஞ்சள் நிற அந்துக்கள் காணப்பட்டன. சாம்பல் அந்துகளின் எண்ணிக்கை ஆரம்பத்தில் குறைவாய் இருந்தது. கைத்தொழில் புரட்சியைத் தொடர்ந்து தொழிற்சாலைப் பகுதிகளில் சாம்பல்களும் மாசுக்களும் படிந்தன. அந்துக்களில் சாம்பல் மஞ்சள் நிறங்கள் காணப்படு கின்றமையானது இவற்றிடையேயான மர்றலாகும். இவை தலைமுறையுரிமை அடையக் கூடியவை சில ஆண்டுகளின் பின் இவ் அந்துக்களைச் சேகரித்த போது சாம்பல் நிறத்தைப் பெருமளவிலும் மஞ்சள் நிறத்தைக் குறைந்தளவிலும் அல்லது அற்றுப் போனதையும் அவதானிக்கக் கூடியதாய் இருந்தது.

சாம்பல் நிறம் மாசடைந்த சூழலில் எதிரிகளிடமிருந்து தப்பிப்பிழைக்க சாதகமான இயல்பாய் காணப்பட்டது. எனவே இவ்வியல்பு இயற்கையால் தெரிவு செய்யப்பட்டது. இவ் அங்கிகள் அடுத்தடுத்த சந்ததிகளில் தொடர்ச்சியாய் பெருகுகின்றன. எதிரியால் அடையாளப்படுத்தப்படும் பாதகமான மஞ்சள் நிறத்தவை அருகி மறைந்தன.


-72-

-73-

படிப்படியாய் சாம்பல் நிற அந்துக்கள் சூழலுடன் இசைவாக்கம் அடைந்து கொண்டன. எனவே மஞ்சள் சாம்பல் நிறமான அந்துக்களினின்றும் சாம்பல் நிற அந்துக்கள் இயற்கையால் தெரிவு செய்யப்பட்டதைத் தொடர்ந்து கூர்ப்பு இடம் பெற்றுள்ளது.

2. இலங்கையில் மலேரியாவிற்கு எதிராக 2ம் உலக மகா யுத்த காலப்பகுதியில் நுளம்புகளைக் கட்டுப்படுத்த DDT பயன்படுத்தப்பட்டது. இதனைத் தொடர்ந்து சில வருடங்களில் மலேரியா ஏறத்தாழ முற்றாக கட்டுப்பாட்டின் கீழ் வந்தது. எனினும் பின் நுளம்புகளின் அதிகரிப்பால் மலேரியா தலையெடுக்கச் செய்தது. DDT பயன்படுத்திய காலப்பகுதியில் அவற்றால் பாதிக்கப்படக் கூடியனவும் எதிர்ப்பியல்புடைய விகாரிகளும் இயற்கையில் காணப்பட்டன. இவ் இயல்புகள் இவற்றில் காணப்படுகின்ற தலைமுறையுரிமை அடையக் கூடிய மாறல்கள். DDT பயன்படுத்தப்பட்டதைத் தொடர்ந்து தப்பிப் பிழைக்கும் ஆற்றல் அற்ற பாதிக்கப்படக் கூடியன அழிந்து சென்றன. பாதிக்கப்பட முடியாதன சூழலில் ஏற்பட்ட மாறுபாடு காரணமாக பெருகிக் கொண்டன. எதிர்ப்பியல்பானது சூழலின் பொருட்டான இசைவாக்க இயல்பாகக் காணப்படுகின்றது. எனவே இயற்கை இதனைத் தெரிவு செய்தமையால் கூர்ப்பு இடம் பெற்றது. இவ்வாறே நெட்டைக் கழுத்துடைய ஒட்டகச் சிவிங்கிகள், ஒரு விரல் கொண்ட குதிரைகள், அவயவங்கள் அற்ற பாம்புகள், விரலிடைப் படலம் உள்ள தாராக்கள் என்பன தோன்றியமையையும் விளக்கலாம்.

இவ்வாறு டாவினினால் முன் வைக்கப்பட்ட இயற்கைத் தேர்வு கொள்கை பற்றிய விபரங்கள் சம கால விஞ்ஞானியான Alfred RusselWallace இனாலும் ஆதாரபூர்வமாய் வெளிப் படுத்தப்பட்டது. இவ்விருவரும் இணைந்து Linnean சங்கத்தில் இயற்கைத் தேர்வுக் கொள்கை தொடர்பான ஆய்வுக் கட்டுரையைச் சமர்ப்பிக்கச் செய்தனர். அக்கால விஞ்ஞானிகள், மதவாதிகளின் விமர்சனங்களுக்கு இலக்காகினர். அக்கட்டுரை அவ்வளவு தூரம் பிரசித்தம் அடையவில்லை.

உரு 14:- தக்கன பிழைக்க அல்லவை மடிகின்றன

புதியஇயற்கைத் தேர்வுக் கொள்கை

Darwin, Wallace இன் இயற்கைத்தேர்வுக் கொள்கை;

- 1. மாறல்கள் எவ்வாறு தோன்றுகின்றன என்பதை விளக்கவில்லை
- மாறல்கள் எவ்வாறு தலைமுறையுரிமை அடைகின்றன. என்பதை விளக்க வில்லை.
- பெற்ற இயல்புகளுக்கும் தலைமுறையுரிமை அடையும் இயல்புகளுக்குமான வேறுபாட்டை எடுத்துக் காட்டவில்லை.
- டார்வின் கூர்ப்பு நடைபெறுவதற்கான கால அளவு பற்றிக் குறிப்பிடவில்லை.
- 5. கூர்ப்புப் பொறிமுறை பற்றி விளக்கவில்லை.
- 6. உயிரின் உற்பத்தி பற்றி விளக்கவில்லை.

இவை மேற்படி கொள்கையில் காணப்படுகின்ற பிரதான குறைபாடுகளாகும். டாவின் எச்சங்கள் பெற்றோரின் இயல்புகளினுடைய இடைத்தர இயல்புடையனவாய் காணப்படும் என கருதினார். டாவின் மிக மெதுவாய் இடம் பெறுவனவும் சிறியளவில் வேறுபடுகின்றவையுமான மாறல்களைப் பற்றிய விளக்கங்களைக் கொண்டிருந்தார் - அதாவது தொடர்ச்சியான மாறல் பற்றி மட்டுமே சிந்தித்திருந்தார்.

மாறல்களின் மூலங்கள்

மரறல்கள் என்பவை ஒரே இனத்தைச் சேர்ந்த அங்கிகளிடையே குறிப்பாக குடித்தொகை ஒன்றின் அங்கத்தவரிடையே கட்டமைப்பு தொழில் நடத்தை முதலான இயல்புகளில் ஒன்றில் இருந்து இன்னொன்று காண்பிக்கும் வேறுபாடுகளாகும். மாறல்கள் தலைமுறையுரிமை அடையக் கூடியனவாக தலைமுறையுரிமை அடைய முடியாதனவாகக் காணப்படலாம். வாழ்க்கைக் காலத்தில் பெற்றுக் கொண்ட இயல்புகள் உடல் நிறமூர்த்தத்தில் ஏற்படும் மாறல்கள் தலைமுறையுரிமை அடையமுடியாதவையாகும். தலைமுறையுரிமைய**டைக் கூ**டிய மாறல்களுக்கு

- 1. விகாரம்
- 2. கடக்கல்
- நிறமூர்த்தங்கள் சுயாதீனமாக பிரிக்கப்படல்
- 4. நிறமூர்த்தங்கள் தன்வயத்தமாக தொகுக்கப்படல்
- 5. இலிங்கமுறை இனப்பெருக்கம்

போன்றவை காரணமாய் அமையலாம்.

1. விகாரம்.

சடுதியாய் ஏற்படுகின்ற தலைமுறையுரிமை பெறுகின்ற தொடர்ச்சியான மாறல்களுக்கு காரணமான நிகழ்வாகும். Devries ஆல் இதனுடன் தொடர்பான விபரங்கள் முன் வைக்கப்பட செய்தன.

Devries மாறல்களுக்கான பிரதான மூலமாக விகாரத்தைக் குறிப்பிட்டார். எனினும் இயற்கையில் விகாரம் நிகழும் வீதமானது 1/10000 இல் இருந்து 1/50 000 அல்லது வேறு சிலவற்றில் 1/200 000 ஆகக் காணப்படுகின்றது. இது மிகவும் குறைந்த வேகமாகும் எனவே இலிங்க முறை இனப் பெருக்கம் நடைபெறும் அங்கிகளில் விகாரம் கூர்ப்பின் பொருட்டான மாறல்களுக்கு முக்கிய மூலமாகக் காணப்படமாட்டாது. எனினும் இலிங்கமில் முறை இனப்பெருக்கம் மேற் கொள்ளும் அங்கிகளில் விகாரமே பிரதான மூலமாகும்.

2. கடத்தல் அல்லது குறுக்குப்பரிமாற்றம்

அமைப்பொத்த நிறமூர்த்தங்களில் ஒத்த தானங்களில் காணப்படும் எதிருருக்கள் ஒன்றில் இருந்து இன்னொன்று வேறுபடலாம். இவை உறழ் பொருவியல்பு அலகுகளாகும்.

ஒடுக்கற் பிரிவின் போது அமைப்பொத்த நிறமூர்த்தங்களில் அரைநிறவுருக்களிடையே பகுதிகள் பரிமாறிக் கொள்ளப்படுகின்றமை கடத்தல் எனப்படும். எனவே கடத்தல் ஆரம்பத்தில் காணப்படுகின்ற பரம்பரைஅலகுச் சேர்க்கையில் இருந்து வேறுபட்ட பரம்பரை அலகுச் சேர்க்கைகள் தோன்றக் காரணமாகும். எனினும் கடத்தல் எப்பொழுதும் நடைபெற வேண்டும் என்பதில்லை. மீண்டும் மீண்டும் கடத்தல் நடைபெற்று பழைய நிலமை பெறப்படலாம்.

நிறமூர்த்தங்கள் சுயாதீனமாகப் பிரிக்கப்படல்

ஒடுக்கற்பிரிவின் போது மத்திய கோட்டுத் தளத்தின் இருபுறமும் நிறமூர்த்தங்கள் அடுக்கப்படும். இதன் மூலம் இவை ஒன்றில் இருந்து ஒன்று சுயாதீனமாய்ப் பிரிக்கப்படும். எனினும் இவற்றில் காணப்படுகின்ற இணைப்புற்ற பரம்பரை அலகுகள் ஒன்றாகவே கடத்தப்படுவனவாகும். எனவே இணைப்புற்ற பரம்பரை அலகுகளை கருத்தில் கொள்ளும் போது முற்றான இணைப்பில் உள்ளவை சுயாதீனமாய்ப் பிரிக்கப்படமாட்டா. நிறமூர்த்தங்கள் தன்வயத்தமாகத் தொகுப்படைதல்

அமைப்பொத்த நிறமூர்த்தச் சோடி ஒன்று மற்றச் சோடியுள் யாதாயினும் ஒன்றுடன் சேர்ந்து தொகுப்படையலாம். இவ்வாறு தன்வயத்தமாய்த் தொகுப்படைவதன் மூலம் வேறுபட்ட இயல்பு சேர்க்கைகள் தோன்றலாம். இது ஒடுக்கற்பிரிவின்போது எப்போதும் நடைபெறும் மாறல்களுக்கரன மூலமாகும். 5. இலிங்கமுறை இனப்பெருக்கம்.

உருவாகிய மாறல்களுக்கான மூலங்களுடனான புணரிகள் ஒனறில் இருந்து இன்னொன்று வேபடுபவையாய் இருக்கும். இவை இலிங்கமுறை இனப்பெருக்கத்தின் போது எழுந்தமானமாய் இணைந்துருவாகும் நுகங்களும் ஒன்றில் இருந்து இன்னொன்று வேறுபடச் செய்யும்.

இலங்கமுறை இனப்பெருக்கமானது மேற்படி மூன்று நிகழ்வுகளையும் தன்னகத்தே கொண்டிருப்பதால் மிகப்பெருமளவு மாற்றம் தோன்றக் காரணமாகும். மேலும் ஒடுக்கற்பிரிவின் போது நிகழும் நிகழ்வுகளும் இலங்கமுறை இனப் பெருக்கத்தின் போது வெளிப்படலாம்.

குடிபெயர்வுகளும் தெரிவு செய்த இனக்கலப்புகளும்

குடித் தொகைகளுக்கு இடையே ஏற்படும் குடிவரவுகளும் குடிஅகல்வுகளும் பரம்பரை அலகுத் தொகுப்பில் மாற்றங்களை ஏற்படுத்தும். தவிர தெரிவு செய்யப்பட்ட இனக்கலப்புகளை மேற் கொள்ளும் போது மாறல்கள் ஏற்படும். இவை தலைமுறை யுரிமையடையவும் செய்யும்.

மாறல்கள் கூர்ப்பிற்கு க**ாரண**மாகும் விதம்

எந்தவொரு பரம்பரை அலகுக்கான அமைவிடத்திலும் காணப்படக் கூடிய பரம்பரை அலகுகள் பொதுவாக ஏராளமானவை. இது நாற்பது வரையில் இருக்கலாம் எனக் கணிக்கப்பட்டுள்ளது. இனச் சேர்க்கைகளின் போது 10 சோடி அமைவிடங்களில் 10 வகையான பரம்பரை அலகுகள் அமையலாம் எனக் கொள்ளின் அவற்றினால் ஏற்படக் கூடிய வேறுபட்ட சேர்க்கைகள் 10¹⁰ ஆகும். இது கடத்தல் சுயாதீனமாயப் பிரிக்கப்படல், தன்யவத்த தொகுப்பு, இலிங்கமுறை இனப்பெருக்கம் என்பவற்றால் மேலும் அதிகரிக்கப்படும்.

சுர்ப்பென்பது இயற்கையான குடித்தொகைகளில் ஏற்படும் பரம்பரை அலகு அதிர்வெண்ணிலான மாற்றமாகும். இன்னொரு வகையில் சுர்ப்பின் போது பரம்பரை அலகுப் பாய்ச்சல் இடம் பெறும். தனியன்களின் தக்கன பிழைக்கும் இயல்பு அக்குடித் தொகையின் பரம்பரை அலகு கொண்ட களஞ்சியத்தில் எஞ்சக் கூடிய பரம்பரை அலகுகளை எந்தளவில் கொண்டிருக்கின்றன என்பதில் தங்கியதாகும். மாறல்களைக் கொண்ட அங்கி சூழல் தெரிவிற்குள்ளாகும். சூழலுடன் பொருத்தப் பாடடையும். இவ்வாறு பொருத்தப்பாடு அடைந்து கொள்வதில் அச்சூழலின் பொருட்டான இவற்றில் காணப்படுகின்ற இசைவாக்க மாறல்கள் உதவுகின்றன. அங்கிகள் இசைவாக்கம் அடைகின்றன.

இசைவாக்கங்கள்

ஒரு கூட்ட அங்கிகளில் அவற்றின் உயிர் வாழ்க்கையை உறுதிப்படுத்தும் வகையில் அவற்றினால் பங்கிடப்படுகின்ற தொழில் கட்டமைப்பு ரீதியிலான திரிபுகள். சிறப்பான சூழற் திதிகட்கு இணங்க இனங்களில் இது படிப்படியாக நடைபெறும்.

இது உயிரிகளின் அமைப்பொழுங்குத் தொடரில் சகல நிலைகளிலும் அவதானிக்கப்படும் ஒரு நிகழ்வு. இசைவாக்க மாறல்களைக் கொண்ட அங்கிகள் வாழ்ந்து பெருகிக் கொள்கின்றன. குறித்த மாறல்களைக் கொண்ட அங்கிகள் ஆட்சி பெறுகின்றன. புதிய இனம் ஒன்று தோன்றுகின்றது. மிகக் கூடியளவு சிறப்பான இசைவாக்க மாற்றங்கள் அடையப் பெற்ற பின்னர் மேலும் மாறல்கள் உண்டாவது இனத்திற்கு பாதகமான அம்சமாகும். எனவே இதன் பின்னர் மாறல்கள் விரும்பப்படமாட்டாது. தேர்வானது மாறல்களுக்கு எதிராக செயற்படும். கூர்ப்புப் பாதையில் சிறத்தலடைதல் ஒரு முடிவு நிலையை அடையும். இதனாலேயே பெரும்பாலான ஆரம்பகாலங்கட்குரிய இனங்கள் மாற்றங்கள் இல்லாமலேயே முன்னேற்றம் அடைந்த இனங்களுடன் இன்றைக்கும் வாழ்ந்து வருகின்றன. மிகையான சிறத்தல் அடைதல்கள் சூழல் நிலமைகள் மாறும் போது இனங்களின் அழிவுக்கு காரணமாகி விடும்.

குறைந்தளவு சிறத்தலடைதல்களைக் கொண்ட முன்னேற்றமடையாத இனங்கள் சூழல் மாறுபாடுகளுடன் உயர்ந்த வீதத்தில் சுர்ப்படையும் திறனுடையவை. இதனாலேயே புவிசரிதையின் சில காலப்பகுதிகளில் சுர்ப்பின் வேகம் உயர்வாகவும் சில காலப்பகுதிகளில் குறைவாகவும் உள்ளது. பெரிதும் பயன்பாடுள்ள ஒரு இயல்பு கூர்ப்பின் போது பெறப்படுமாயின் இவ்வியல்பைக் கொண்ட அங்கிகள் வெவ்வேறு சூழல்கட்கும் உரியனவாக பரிணாமம் உற்று பூமியில் ஆட்சி மிக்கவையாக மாறும். தடித்த ஓடு கொண்ட முட்டைகள் காரணமாக ஊர்வன பெருமளவில் பரிணமித்தமை இத்தகைய காரணத்தினாலேயே ஆகும். ஒரு மூதாதையினம் ஒன்றிலிருந்து வெவ்வேறு வாழிடங்களில் வெவ்வேறு வாழ்க்கை முறைகளைக் கொண்ட அங்கிகள் உருவாவது இசைவாக்க விரிகையாகும். வெவ்வேறு மூதாதையினங்களில் இருந்து ஒரே இயல்புடைய அங்கிகள் உருவாவது சமாந்தரக் கூர்ப்பாகும். அங்கிகளில் உருவாகும் பயன் மிக்க அடிப்படை இயல்புகள் படிப்படியாக ஒன்று சேர்ந்து சிக்கற் தன்மை அதிகரிப்புக்கும் ஒட்டு மொத்தமான மேம்பாட்டிற்கும் காரணமாகும். கூர்ப்பில் பெரிதும் மேம்பட்ட இனங்கள் வெவ்வேறு காலங்களில் தோன்றிய சிறப்பியல்புகளின் சேர்க்கைகள் படிப்படியாக செறிவாக்கப்பட்ட அங்கிக் கூட்டங்களாகும்.

எனவே புதிய இயற்கைத் தேர்வுக் கொள்கை - நவ டாவினிசம்-என்பது Darwin, Wallace போன்றவர்களால் சமர்ப்பிக்கப்பட்ட கொள்கையை அதன் தவறுகளைத் திருத்தி புத்தாக்கம் செய்யப்பட்டதே ஆகும். Mendel, Devries, Huxly, Haldane போன்றவர்களது கருத்துகளின் அடிப்படையில் இது மேற்கொள்ளப்பட்டது. புத்தாக்கத்தின் பொருட்டான சான்றுகள் உயிர் இரசாயனவியல், மூலக்கூற்று உயிரியல், பிறப்புரிமையியல் , தொல்லுயிரியல், சூழலியல் போன்ற துறைகளில் இருந்து பெறப்பட்டன.

இனவாக்கம்

தம்முள் இனங்கலப்பதன் மூலம் வளமான எச்சங்களைத் தோற்றுவிக்கக் கூடிய அங்கிக் கூட்டம் இனம் **என**ப்படும்.

இவ் வரைவிலக்கணம் கலப்புப் பிறப்பை அடிப்படையாகக் கொண்டது. எனினும் பிறப்புரிமையியல், உருவவியல், சூழலியல் என்பவற்றின் அடிப்படையிலான வெவ்வேறு வரைவிலக்கணங்களும் உள்ளன. இவை அனைத்தையும் கருத்தில் கொண்டு பரந்தரீதியிலான வரைவிலக்கணத்தை உருவாக்குவோமாயின் உயிர் இரசாயன இயல்புகள் உட்பட மற்றும் பல்வேறு இயல்புகளில் ஒன்றையொன்று ஒத்த ஒன்று அல்லது ஒரு சில இயல்புகளில் ஏனைய அங்கிக்கூட்டம் அனைத்திலும் இருந்து வேறுபடுகின்ற தம்முள் இனங்கலப்பதன் மூலம் பெரும்பாலும் வளமான எச்சங்களைத் தருகின்ற அங்கிகள் ஒரு இனமாகும்.

இனவாக்கம் என்பது காணப்படும் ஒரு இனமொன்றில் இருந்து ஒன்று அல்லது மேற்பட்ட இனங்கள் உருவாவது ஆகும். இனவாக்க அலகாக குடித்தொகை ஒன்றே காணப்படும். எனவே கூர்ப்பிற்கான அலகும் குடித்தொகையே ஆகும். தனியன் அல்ல. இனவாக்கத்தின் போது;

 குடித்தொகையானது மாறல்களின் அடிப்படையில் சிறிய அலகுகளாகப் பிரிக்கப்படும் அல்லது பிரிந்து கொள்ளும்

-78-

 2. ஒவ்வொரு அலகு அங்கிகளில் பல புதிய வேறுபாடுகள் சேர்ந்து கொள்ளும்.
 3. குறித்த காலப்பகுதியில் இவ்வலகுகள் தம்முள் இனங்கலக்க முடியாதவாறு புதிய இனங்களாக பரிணமிக்கும்.

இனவாக்கத்திற்கு புவியியல் ரீதியிலான தனிப்படுத்துகையும் பன்மடிய உண்மையும் பிரதான காரணங்களாய் அமைகின்றன. புவியியல் ரீதியான தனிப்படுத்துகை பெரிய பாதைகள், எரிமலைச் செயற்பாடுகள், மண்சரிவுகள் , ஆறுகள் போன்றவை காரணமாய் நடைபெறுகின்றது. தனிப்படுத்துகை காரணமாய் நடைபெறும் இனவாக்கம் அற்றிய இனவாக்கம் எனப்படும். இது விலங்குகளிடையே மிகவும் பொதுவானது.

பன்மடியவுண்மை தாவரங்களிலேயே மிகவும் பொதுவானது. பன்மடியவுண்மைக்கு ஆளாகியவற்றுக்கும் ஏனைய அங்கத்தினர் களிடையேயும் பரம்பரையலகுப் பாய்ச்சல் நடைபெறுவது தடைப்படும். இவை ஏனையவற்றுடன் இடையினம் கலக்கமுடியாமல் போகும். இவை ஒரு தனிஇனமாகப் பரிணமிக்கும். இவ்வாறான இனவாக்கத்தை ஒரு பிரதேசத்திற்குரிய , ஒரு நாட்டிற்குரிய இனவாக்கம் என்பர். (Sympatric speciation)

கூர்ப்பிற்கான சான்றுகள்

உயிர்ச்சுவடுகள், தொல் உயிரியல், குழியவியல், புவிப்பரம்பல், முளையவியல் ஒப்பீட்டு உடலமைப்பியல், ஒப்பீட்டு உடற்தொழிலியல், மூலக்கூற்று உயிரியல் நீரப்பாயவியல், பாகுபாடு, பிறப்புரிமையியல், உடற் கூற்றியல் போன்ற துறைகளினின்றும் பெறப்படும். உடலமைப்பியல் சான்றுகளுள் பதாங்க அங்கங்கள் குறிப்பானவை. பதாங்க அங்கங்கள் என்பது கணவரலாற்றின்போது தொழிற்பட்டு பின்னர் விருத்தி குன்றிச் சென்ற அங்கங்களாகும்.

உதாரணம் :- குடல்வளரி

அலகு - 10 மனிதக் கூர்ப்பு

மனிதன், மனிதனும் உயர் விலங்குகளும் அடக்கப்படும் பொதுவான அங்கிக் கூட்டத்தில் இருந்து தொடர்ச்சியாய் இடம் பெற்ற பரிணாமம் காரணமாக தோன்றியவன். மனிதன் ஒரு சிறப்பு விலங்கு. மனிதன் Order:- Primates

Sub order:- Anthropoidea

Family:- Hominidae என்ற பாகுபாட்டுப் பிரிவுகட்குரியவன்.

மனிதன் Sub order Anthropoidea இல் அடக்கப்பட்டமைக்கான காரணங்கள் பின்வருமாறு.

1. பெருங்குடையம் தலையின் கீழ்புறமாகக் காணப்படுகின்றமை

2. துடுப்புப் போன்ற வெட்டும் பல் காணப்படுகின்றமை

3. முகத் தசைகளை அசைப்பதன் மூலம் முக பாவம் பிரதிபலிக்கப்படல்

4. வெளிப்பிதுக்கப்பட்ட மேலுதடு காணப்படுகின்றமை

5. புறக்காதுச் சோணை முகத்துடன் ஒப்பிடும் போது குறுகியது.

6. புறக்காதுச் சோணை தலைமீது மிக அணித்தாக காணப்படுதல்

7. கட்குழியின் பிற்பக்கச் சுவர் என்பாலானதாகக் காணப்படல்

8. மூளைய அரைக்கோளங்கள் மூளியின் மீது பின்புறமாய் வளர்தல்

9. மூக்குத் துவாரத்தைச் சூழக் காணப்படும் தோலில் மயிர் அற்றிருத்தல்

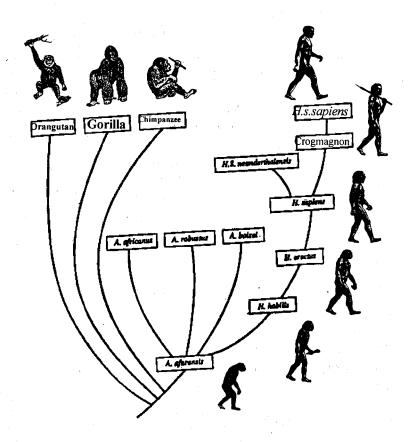
10. தலையோடு பருமனில் கூடிக் காணப்படல்

11. முன் அவயவம் பின் அவயவத்திலும் நீண்டு காணப்படல்

12. எப்பொழுதாவது நிமிர்ந்த நிலையில் நிற்கக் கூடியமை

13. விரல் நுனியல் காணப்படும் நகங்கள் தட்டையானவை

15. மாதவிடாய்ச் சக்கரம் கொண்டவை.


இவ்உபவருணத்துள் குரங்குகள், மனிதக் குரங்குகள் , மனிதன் என்பன அடங்குவர்

Family Hominidae யின் சிறப்பியல்புகள்.

முளைய அரைக்கோளங்கள் பெரிதும் விருத்தியடைந்துள்ளன.

2. மண்டையோட்டின் பருமலும் கொள்ளளவும் கூடுதலாகக் காணப்படல்

மண்டையோட்டிலும் பார்க்க முகம் சிறிதாகக் காணப்படல்

உரு 15:- மனிதக் கூர்ப்பு நடைபெற்ற விதம்

4. கட்புருவ முகடுகள் குன்றிச் செல்லும்.

5. கீழ்த்தாடை பிதுக்கப்படும் அளவு குன்றும்

பற்கள் ஏறத்தாழ ஒத்த பருமன் உடையவையாகக் காணப்படுதல்.

7. காற்பெருவிரல் ஏனைய விரல்களுக்கு எதிர் அடையாது.

 தலைம்பிர்கள் நீண்டவையாயும் தொடர்ச்சியாய் வளர்பவையாயும் காணப்படுதல்.

9. உடலின் ஏனைய பகுதிகளில் மயிர்கள் குறைக்கப்படுதல்.

10. உடலில் தோலில் கொழுப்பு படிவுகள் காணப்படுகின்றமை

11. வில்லுருவான பல் வரிசை காணப்படுதல்

12. வேட்டைப் பல் பருமனில் சிறியது

13. முன் கடவாய்ப்பல் இரண்டு கூர் கொண்டது

14. நீண்ட குழந்தைப்பருவம் உடையவை

65 மில்லியன் வருடங்களுக்கு முற்பட்ட காலப் பகுதியில் முன்னோடிப் Primates இல் இருந்து பல்வேறு Primates கூர்ப்பிக்க ஆரம்பித்ததுடன் மனிதக் கூர்ப்பு தொடங்கலாயிற்று. 30 மில்லியன் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில்

i. புதிய **உ**லகக் குரங்குகள் - அமெரிக்காவில் காணப்பட்டன.

2. பழைய உலகக் குரங்குகள் - ஆசியா , ஆபிரிக்கா , ஐரோப்பா போன்ற நாடுகளில் காணப்பட்டன. இவற்றில் முப்பரிமாணப் பார்வையும்

போன்ற நாடுகளால் காணப்பட்டன். இவற்றல் முப்பாமாணப் பாணவுட நிறப்பார்வையும் விருத்தியடைந்திருந்தன.

தொடர்ந்து வந்த காலப்பகுதியில் முன்னோடி Apes தோன்றுகின்றன. இவை ஆசியா, ஆபிரிக்கா, ஐரோப்பூக் கண்டங்களில் அவதானிக்கப்படுகின்றன. இவற்றில் ஒரளவு நிமிர்ந்த நிலை, நீண்ட புயங்கள், வால் இழக்கப்பட்டமை போன்ற இயல்புகள் காணப்படுகின்றன. இக்காலப்பகுதியில் புவி மேற்பரப்பில் நிலவி வந்த குளிரான நிலமைகள் மாறுபடச் செய்தன ஆங்காங்கே புல் வெளிகள் தோன்றின. உலர்காலநிலை நிலமைகள் நிலவலாயின. 14 மில்லியன் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில் முன்னோடி apes இருந்தன.

இவற்றுள் ஒரங்உட்டன் ,கொறில்லா, சிம்பன்சி போன்றவை இன்றைக்கும் உயிர் வாழ்பவையாய் இருக்கின்றன. கொறில்லாவின் மண்டையோட்டுக் கனவளவு சராசரியாக 400ml இவற்றுள் சிம்பன்சி மனிதனுக்கு மிகவும் நெருக்கமானது. இதன் நெற்றி சாய்வானது. மூக்கு சிறியது. உதடுகள் பிதுக்கமுற்றுமடியாதவை.

Digitized by Noolaham Foundation noolaham.org | aavanaham.org

-83-

12 மில்லியன் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில் Ramapithecus தோன்றியது. இதன் தாடை பரவளைவடிவானது. வன்மையானது. தாடையில் நெருக்கமாய்ப்பற்கள் அடுக்கப்பட்டுள்ளன. பற்கள் ஏறத்தாழ மனிதர்களினதை ஒத்தவை. இரைகளைக் கிழிக்கப் பயன்படுத்துகின்றன. இருபாத முறை இடப்பெயர்ச்சி இவற்றில் காணப்பட்டுள்ளது.

Australopithecus afarensis

உயரம் 1m - 1.5m. நிறை 25 kg - 60kg வரை. தலைமனிதக் குரங்கைப் போன்றது. தாடைகள் பெரியவை. பெரிய வெட்டும் பற்களைக் கொண்டவை. தலையில் கூடியளவு தசைகள் விருத்தியடைந்துள்ளன. உணவாக கிழங்கு , வித்துக்கள் போன்றவற்றைப் பயன்படுத்தியுள்ளன. தலையோட்டுக் கொள்ளளவ 350ml - 550 ml ഖന്റെ. முழுமையான இருபாதமுளை இடப்பெயர்ச்சியை மேற்கொண்டுள்ளன. ஆபிரிக்காவின் சவன்னாப் பல் வெளிகளை அண்டி வாழ்ந்துள்ளன. தற்போதைக்கு கண்டு பிடிக்கப்பட்ட மிகப் பழைய மனித உயிர்ச்சுவடான lucy Australopithecus afarensis ஆகும். இதுவே முதல் மனித உயிர்ச்சுவடு. Australopithecus afarensisஇல் இருந்து A. africanus, A. robustus, A. boisei என்ற 3 மனித இனங்கள் பரிணமிக்கின்றன. அதே வேளை மனித பரிணாமப் பாதை இன்னுமொரு திசையில் எடுத்துச் செல்லப்படுகின்றது. இப்பாதையில் காணப்படும் இடைநிலைகள் Homo habilis Homo erectus என்பன ஆகும். மேற்படி Australopithecus சாதியைச்சேர்ந்த 4இனங்களும் வரங்கே Australopithecus என்னும் கூட்டத்தைக் குறிக்கும் பெயரால் குறிப்பிடப் படுவதுண்டு.

இவற்றின் பொது இயல்புகள் வருமாறு;

1- 1.5 m உயரம். முழுமையான இருபாத இடப்பெயர்ச்சியை கொண்டிருந்தன. முற்றான நிமிர்ந்த நிலை இளம் பருவங்களைத்தூக்குவதன் பொருட்டு காணப்பட்டுள்ளது. உணவை சேகரிப்பதன் பொருட்டு மேலவயவங்கள் பயன்படுத்தப்பட்டுள்ளன. இவற்றின் தலை வானரங்களை ஒத்தது. மண்டையோட்டு கொள்ளளவு 380ml - 550ml பெரியதாடைகள். பெரிய அரைக்கும் பற்கள். தலையில் பெருமளவு தசைகள் விருத்தியடைந்துள்ளன. தாவர போசணிகளாகக் காணப்பட்டுள்ளன.

Homohabilis

habilis என்பதன் கருத்து கைதேர்ந்தவன் என்பதாகும். 1.5 - 2 மில்லியன் வருடங்களுக்கு இடைப்பட்ட காலப்பகுதியில் வாழ்ந்துள்ளன. ஆபிரிக்காவின் உலர் சவன்னா புல்வெளிகளில் வாழ்ந்துள்ளன. உயரம் 1.5m. தலையோட்டுக் கொள்ளளவு 700ml. புத்திசாலிகளாகக் காணப்பட்டுள்ளன. உடல் பெரிதும் நிமிர்ந்தது நேரானது. நடப்பதன் பொருட்டு வாய்ப்பானது. நெற்றி பின் புறமாய் சாய்வானது. கட்புருவங்கள் நன்கு விருத்தியடைந்துள்ளன. கைவினைத்திறன் மிக்கவை. கைகள் பெரும்பாலும் கிழங்குகள் தோண்டவும் விலங்குகளை வேட்டையாடவும் கருவிகளை ஆக்கவும் பயன்படுத்தப் பட்டுள்ளன. அனைத்துமுண்ணி களாகக் காணப்பட்டுள்ளன. பெரும்பாலான காலம் கிழங்குகள் வேர்களைப் பயன்படுத்தியுள்ளன. பற்களில் மனிதனுக் குரித்தான பண்புகள் பிரதிபலிக்கப் படுகின்றன. *Homo habilis* ஐ சேர்ந்த உயிர்ச்சுவடுகள் தன்சானியாவில் அடையாளப் படுத்தப்பட்டுள்ளன.

Homo erectus

1.5 - 0.25 மில்லியன் வருடங்களுக்கு இடைப்பட்ட காலப்பகுதியில் வாழ்ந்துள்ளன. வட ஆபிரிக்கா முழுவதும், ஆசியாவில் இந்தோனேசியா , வரையும் தெற்கு ஐரோப்பாவிலும் பரந்து வாழ்ந்துள்ளன. உயரம் 1.3 - 1.8m வரை. தலையோட்டு கொள்ளளவு 800ml - 1350ml வரை. Homo habilis லும் பார்க்க நிமிர்ந்த தோற்றம் கொண்டவை. கீழ்த்தாடை பெரியது. நெற்றி பின்புறம் சாய்வானது. நன்கு விருத்தியான கட்புருவம். மூக்கு அகன்றது. தலையோட்டில் முலையுரு முளை தோன்றியுள்ளது. தலையோட்டு என்புகள் வன்மையானவை. நாடி இல்லை. கால்கள் மெல்லியவை. நடக்கும் இயல்பு கூடியளவு காணப்படுகின்றது. கைக்கோடரி , கிழிக்கப்பட்ட என்புகள் , சிராய்கள் கரடுமுரடான கட்டமைப்புகள் போன்றவற்றை கருவிகளாகப் பயன்படுத்தியுள்ளன. இவை Homo habilis பயன்படுத்திய ஆயுதங்களிலும் சிக்கலானவை. தனரயைத் விலங்குகளைக் கொல்லவும் கொன்றவற்றில் இருந்து கோண்டவம் இவற்றை பயன்படுத்தியுள்ளன. மான்கள் , இறைச்சியை வேறாக்கவும் குதிரைகள், யானைக்கள் Rhinocerous போன்றவற்றை வேட்டையாடியுள்ளன. தன்னின முண்ணிகளாகவும் கருதப்படுகின்றனர் நீண்ட என்புகள் வெடிப்புற்ற **தலையோ**டுகள் போன்றவை இதற்கு சான்றுகளாக உள்ளன. கீவிரமான வேட்டைக்காரர்களாய் வளர்ந்துள்ளனர்.

-85-

முதன் முதல் தீயை பயன்படுத்தியுள்ளனர். விலங்குகளை ஒன்று சேர்ந்து வேட்டையாடவும் உணவை சமைக்கவும் குளிர் காலங்களில் குளிர் காயவும் தீயை பயன்படுத்தியுள்ளனர் கற்குகைகளிலோ, பரந்த வெளிகளிலோ கூட்டங்களாக உறைந்துள்ளனர். சமூகங்களாக வாழ்ந்துள்ளனர். வேட்டையாடியுள்ளனர். உணவைப்பங்கிட்டு உட் கொண்டுள்ளனர். பெண்கள் பழங்கள் வித்துக்கள் போன்றவற்றை சேகரித்தமைக்கு சான்றுகளுள்ளன. வெட்டுமரங்களை பயன்படுத்தி வாழ்விடங்களை அமைத்துள்ளனர் விலங்குகளின் தோலை உடலைச் சூழப் போர்த்தியுள்ளனர். முதன் முதல் ஆடை அணிந்துள்ளனர். மொழியைக் கொண்டிருந்து கதைக்கும் ஆற்றல் கொண்டவையாக வாழ்ந்துள்ளனர். தாம் கற்ற விடயங்களை அடுத்த சந்ததிக்கு கற்றுக் கொடுத்துள்ளனர். இவற்றின் அடிப்படையில் தமக்கென திட்டமான சமூக ஒழுங்கமைப்பையும் கலாசாரத்தையும் கொண்டிருந்துள்ளனர். யாவா மனிதன், பீகிங் மனிதன், கிடல்பேக் மனிதன் என்பன *Homo erectus* ஐச் சேர்ந்த சுவடுகளாகும். 1080ம் தசாப்தத்தில் Kenya இல் மனிதஆண் முழுமையாக கண்டு பிடிக்கப்பட்டுள்ளது.

Homo sapiens neanderthalensis

Homo sapiens neanderthalensis 75000 - 35000 வருடங்களுள் வாழ்ந்துள்ளன. ஜரோப்பா, ஆசியாவின் பெரும்பாலான பகுதிகள், ஈரானில் இருந்து மேற்கு ஜரோப்பாவனை , அபிரிக்கா போன்ற இடங்களில் வாழ்ந்துள்ளன. உயரம் 1.5-1.7 m வரை நல்ல தேகக்கட்டுடையவர்கள். வலிமையானவர்கள். இவற்றின் என்புக்கூடுகள் திண்மையானவை. தலையோடு திடமானது. மேற்புறம் தட்டையானது. பக்கப்பாடாயும் பின்புறமாயும் அகன்றது. கொள்ளளவு 1500 ml. இது ஏறத்தாழ நவீன மனிதனின் தலையோட்டை ஒத்தது. கட்பருவங்கள் துருத்தி காணப்படுகின்றன. நெற்றி சாய்வானது. மேற்தாடை முக்கென்பு என்பவை கூடியளவு வளர்ச்சிடைந்துள்ளன. உடல் கூன் விழுந்த அமைப்புடையது. தொடையிலும் பார்க்க கணைக்கால் தட்டையானது. இது நடைலாவகம் தற்போதும் குறைவாய் இருப்பதைக் காண்பிக்கின்றது. முன்னைய பாரமான ஆயுதங்களுக்கு பதில் கூரிய கல் நுனி பொருத்தப்பட்ட தடிகளையும் மெல்லிய தட்டையான ஆயுதங்களையும் பயன்படுத்தியுள்ளன. இவை கலையம்சம் மிக்கவையாய் காணப்படுகின்றன. அம்பு, ஈட்டி, கத்தி போன்றவை பயன்படுத்தப் பட்டுள்ளன. கொறியுயிர்கள், மான்கள், பறவைகள் போன்றவற்றை வேட்டை யாடியுள்ளன. சிலவேளைகளில் பெரிய விலங்குகளை குழிகள் அல்லது சாய்வான பகுதிகளை நோக்கி விரட்டி வீழ்த்தி கொன்று உணவாக்கியுள்ளன. மேற்படி தட்டையான ஆயுதங்களை கொண்டு தோலை சுத்திகரித்துள்ளன. இறைச்சியை நெருப்பை கொண்டு சுட்டு உண்டன. தோலை ஆடையாகப் பயன்படுக்கினர்.

சமூக உணர்வுகள் கொண்டிருந்துள்ளனர். இறந்தவர்களைப் புதைத்துள்ளனர். மறுபிறப்பு பற்றிய நம்பிக்கையுடையவர்களாக வாழ்ந்துள்ளனர். பல்வேறு வித சடங்குகளை மேற் கொண்டுள்ள இவர்கள் தன்னின முண்டமைக்கும் சான்றுகளுள்ளன இம்மனிதன் திடீரென கூர்ப்பு வரலாற்றில் இருந்து மறைந்தமையை அவதானிக்கக் கூடியதாய் உள்ளது. சொலமன் , றொடிசியன் போன்றவை Homo sapiens neanderthalensis ஐச் சேர்ந்த உயிர்ச்சுவடுகளாகும்.

Homo sapiens sapiens

500 ஆயிரம் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில் Homo erectus இலிருந்து Homo sapiens தோன்றியதாகக் கருதப்படுகின்றது. இது ஆபிரிக்காவில் இடம் பெற்றதற்கு சுவட்டு ஆதாரங்கள் உள. Homo sapiens இன் வேறுபட்ட வடிவங்கள் இக்காலப்பகுதியில் வாழ்ந்துள்ளன. 400 ஆயிரம் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில் ஆதி H. sapiens இன் ஒரு கூட்டத்தில் இருந்து Homo sapiens sapiens பரிணமிக்கச் செய்தது. இதனை சாந்த உயிர்ச்சுவடான Cromagnan, France இல் கண்டுபிடிக்கப்பட்டுள்ளது. இவர்கள் அமெரிக்கா , அவுஸ்திரேலியா போன்ற இடங்களில் பரம்பி இருந்தனர். உயரம் 1.7 - 1.8m வரை. முகம் வன்மையானது. கண்கள் பெரியவை. புருவமுகடுகள் தெளிவற்றவை. புருவங்கள் தெளிவானவை.. நாடி தெளிவானது. நன்கு விருத்தியடைந்தது. பிடரி வட்டமானது. மண்டையோட்டு கொள்ளளவு 1590ml வரை. பெரிதும் முன்னேற்றமான கருவிகளைப் பயன்படுத்தினர். ஆக்கப்பட்ட கோடரி, வில், வாள் கலையழகு கொண்ட விதத்தில் என்பவற்றையும் மெல்லிய சீவப்பட்ட கற்களையும் பயன்படுத்தி வந்தனர். விவேகம் மிக்கவர்களாக காணப்படுகின்றனர். தோலாலான ஆடையைப் பயன்படுத்தினர். தைக்க ஊசியைப் பயன்படுத்தினர். ஒடங்களை ஆக்கி தூண்டில் கொண்டு மீன்பிடித்தனர் சமூகமாக பயன்படுத்தினர். நாடோடிகளாயத்திரிந்து வேட்டை ஆடினர். விவசாய நடவடிக்கைகளை, கால் அழகியல், மத உணர்வு நடை வளர்ப்பை மேற் கொண்டுள்ளனர். ஒட்சைட்டினாலும் கரியினாலும் கொண்டவாகளாய் வாழ்ந்துள்ளனர். நிறமூட்டப்பட்ட மண்ணை விலங்கு கொழுப்பில் குழைத்து ஒவியம் வரைந்துள்ளனர். இறப்பிற்கு பின்னான வாழ்க்கை பற்றிய நம்பிக்கை கொண்டிருந்தனர். இறந்தவர்களைப் புதைத்தனர் . நடுகற்களைப் பயன்படுத்தினர். தெய்வச் சிலைகளை வடிவமைத்துள்ளனர். தம்மைப்பற்றிய உணர்வு கொண் வர்களாய் வாழ்ந்துள்ளனர்.

-86-

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org -87-

சமிக்ஞைகளையும் குறியீடுகளையும் சொற்களையும் கொண்டதொகுதிகளை கட்டி எழுப்பியுள்ளனர். இவற்றின் அடிப்படையில் சிக்கலான கலாசாரம் கொண்டவர்களாய் வாழ்ந்துள்ளனர். எவ்வாறாயினும் 12 ஆயிரம் வருடங்களுக்கு முற்பட்ட காலப்பகுதியில் இம்மனிதர்களும் அற்றுப் போயினர். எனினும் அதன்பின் தோன்றியவர்களுக்கும் இவர்களுக்கும் கட்மைப்பு ரீதியான வேறுபாடுகள் காணப்படவில்லை. ஆனால் கலாச்சார ரீதியான வேறுபாடுகள் தெளிவாய் தென்பட்டன.

இவர்கள் Cromagnon மனிதன் மேற்கொண்ட நாடோடி வாழ்க்கை முறையை கைவிட்டு நிரந்தரமாய் தங்கி வாழ ஆரம்பித்தனர். இந் நவீன மனிதர்கள் விலங்கு பயிர் வேளாண்மைகளை பழகிக் கொண்டனர். உகந்த சாதக இயல்பு கொண்ட பேதங்களை , வர்**க்கங்களை தெ**ரிவு செய்து பயிர் செய்ய ஆரம்பித்தனர். கற்களால் , தடிகளால் ஆன ஆயுதங்கள் கைவிடப்பட்டு உலோகங்களால் ஆன கருவிகள் ஆயுதங்களாகப் பயன்படுத்தப்பட்டு வந்தன. தாம் வசித்த இடத்திலேயே விலங்கு பயிர் வேளாண்மை என்பன மூலம் போதியளவு உணவை உற்பத்தி செய்தனர். பால் இறைச்சி போன்றவற்றைப் பெற்றுக் கொண்டனர். இதனால் நீர் கிடைக்கும் இடங்களில் சில நகரங்கள் படிப்படியாய் தோன்றலாயின. மேலதிக விளைபொரு**ட்களை** களஞ்சியப்படுத்**தி** பயன்படுத்தச் செய்தனர். வேளாண்மை நடவடி**க்கைகளி**ல் **ஈடுபடா**தவர்கள் தொழிற் பங்கீட்டால் கருவிகள் உபகரணங்கள் போன்றவற்றை உருவாக்கினர். இவை மக்கள் கூட்டத்தின் பொருட்டு விநியோகம் செய்யப்பட்டன. இவற்றால் வியாபார வாணிப நடவடிக்கைகள் விரிவடைந்தன். இதன் பொருட்டு கணிது மும் எழுத்தறிவும் வளர்ந்தது. எழுதுதல், எழுத்துப் பதிவுகளைப் பேணல் போன்றவற்றின் பொருட்டான தொழில் நுட்பங்கள் அடுத்தடுத்த சந்ததிகளுக்கு கற்றுக் கொடுக்கப்பட்டன. கற்றல் வினைத்திறனாய் வளர்ந்தது. நோய்த்தடுப்பு நடவடிக்கைகளும் கட்டுப்பாட்டு நடவடிக்கைகளும் மேற் கொள்ளப்பட்டன. சூழலை அதியுயர் அளவில் மாற்றியமைத்தமை **இம்மனி**தர்களால் மேற்கொள்ளப்பட்ட முக்கிய நடவடிக்கையாகும்.

அனுபந்தம் - 1

மனிதனில் மட்டும் காணப்படும் இயல்புகள்

உடலுடன் ஒப்பிடுகையில் மிகப் பெரிய மூளை. நிறைவுடலி நிலையில் மூளை கனவளவு 1500cc. நிறை 1400g. மூளைய அரைக்கோளங்கள் பெருமளவு வியத்தமடைந்தவை. மூளைய மேற்பரப்பளவு உடல் மேற்பரப்பளவுடன் ஒப்பிடும் போது உயர்வானது. மனித முளை சிக்கலானது. இதனால் ஞாபகத்தில் இருத்தல், கற்றுக் கொள்ளல், தர்க்கரீதியாய் சிந்தித்தல் , விவேக ஈவு போன்றவை உயர்ந்தளவுகளில் காணப்படுகின்றன. தலையோடு அழுத்தமானது. முகிழ்ப்புகள் எதுவும் அற்றது. கீழ்த்தாடை நன்கு விருத்தியடைந்துள்ளது. முலையுருமுளை நன்கு விருத்தியடைந்துள்ளது. கீழ்த்தாடைக்குப் பலம் கொடுக்கும் தசைகள் பெரியவை. முகம் வட்டமானது. அகன்ற நெற்றி காணப்படும். தாடைக்கோணம் பெருமளவினது. உதடுகள் வெளிப்புறமாய் பிதுக்கப்பட்டவை. முத்தமிடல் பண்பு கொண்டவை. மொழியை உருவாக்கி கருத்துப்பரிமாறும் ஆற்றலுள்ளவை. முகத்தால் உணர்வுகளும் பாவங்களும் பிரதிபலிக்கப்படும் அளவு உச்ச அளவில் காணப்படுகின்றது. இதன் பொருட்டு சிக்கலான தசைகள் முகத்தில் காணப்படுகின்றன. மேல் அவயவங்கள் நீளத்தில் குறைந்தவை. கீழ்அவயவங்கள் நீளத்தில் கூடியவை. மேல்அவயவங்கள் இடப்பெயர்ச்சியில் இருந்து விடுவிக்கப்பட்டமையினாலும் கீழ்அவயவங்கள் இடப்பெயர்ச்சியில் முழுமையாய் பயன்படுத்தப் படுவதாலும் இடப்பெயர்ச்சி வினைத்திறன் கூட்டப்படுகின்றது. காற் பெருவிரல் எதிரடைய மாட்டாது. பாதம் நீளப் போக்கிலான இரட்டை விற்களையும், குறுக்கான ஒருவில்லினையும் கொண்டது. பாதம் முக்காலி கொண்ட தன்மையடையது நடக்கும் போது புவியீர்ப்பு மையம் இதனாடு நிலைப்படுத்தப்படும். முற்றான நிமிர்ந்த நிலை அடையப்பட்டுள்ளது. இதற்கு முள்ளந்தண்டென்பு கோவையில் காணப்படும் வளைவுகள் காரணமாய் அமைகின்றன. விருத்தியின் போது கர்ப்பப்பையில் இடம் போதாமையால் வளைவுகள் தோன்றின. நிமிர்ந்தநிலை காரணமாக முள்ளந்தண்டென்பொன்று அதற்குமேல் காணப்படும் முள்ளந்தண் டென்பின் பாரத்தையும் தாங்க வேண்டியுள்ளது. இதனால் **கீழ்ப்பு**றமான என்புகள் உயரத்தில் குறைந்து அகலத்தில் அதிகரிக்க வேண்டியுள்ளன. இப்போக்கு காரணமாக திருஎன்பு பருமனில் அதிகரிக்கின்றது. இது உடலகத்தங்கங்களின் பாதுகாப்பிச உதவுகின்றது. வலளவுகள் காரணமாக புவியீர்ப்பு மையத்தில் ஏற்படக்கூடி களம்பல்கள் பேணப்படுகின்றன. பிருஷ்டத் தசைகள் பெருமளவு

-89-

விருத்தியடைந்தவை. முற்றான நிமிர்ந்த நிலை காரணமாகவும் பெரும்பாலான அங்கங்கள் முற்புறம் கொண்டு செல்லப்பட்டதாலும் ஏற்படும் உடற்சமநிலை பிறழ்ச்சியை பேணி முண்டத்தை நேராய் வைத்திருக்க இவை உதவுகின்றன. இடுப்பு வளையமானது Basin வடிவாய்க் காணப்படும். இது புடை தாங்கி என்புகள் மேற்புறமாய் அகலித்துசெல்வதால் பெறப்படுகின்ற இயல்பாகும். இடப் பெயர்ச்சியின் போது புவியீர்ப்பு மையம் இடுப்புவளையத்துள் எப்போதும் பேணப்படக் கூடியதாயுள்ளது.

முற்றான நிமிர்ந்த நிலை காரணமாய் தலையோடு மிகவும் உயர்வான இடத்தில் பேணப்படுகின்றது.அதற்கு பெருங்குடயமும் பிடரென்புக்குமிழும் மிகவும் கீழ்ப்புறமாய் கொண்டுவரப்பட்டு வசதி ஏற்படுத்தப்பட்டுள்ளது.இதனால் பரந்த பார்வைப்புலமும் நீண்ட எறியற்புலமும் பெறப்பட்டிருக்கின்றது. பற்கள் அரை வட்டவடிவ தாடைகளில் நெருக்கமாய்க் காணப்படுகின்றன. தலை , கக்கம் , பூப்பென்பு பகுதிகளில் மட்டும் பெரிய மயிர்கள் காணப்படுகின்றமை. ஏனைய இடங்களில் சிறிய மயிர்கள் காணப்படுகின்றமை. தலைமயிர் தொடர்ந்து வளர்த்து செல்லும் ஆற்றலுடையது. பெண்களில் பெருமளவு வியத்தமடைந்த முலைச்சுரப்பிகள், நீண்ட குழந்தைப்பருவம் காணப்படுகின்றமை. நெருப்பின் பயன்பாடு , கருவிகள் , ஆயுத உபயோகம் , பயிர் , விலங்கு வேளாண்மை மத நம்பிக்கைகள் , மற்றும் பழக்கவழக்கம் காரணமாக நன்கு வியத்தமடைந்த சமூக ஒழுங்கமைப்பு கலாச்சாரமும் கொண்டவர்களாகக் காணப்படுகின்றனர்.

அனுபந்தம் - 02

சுருக்கக் குறிப்பு அட்டவணை

அ.ம.சே.	- ,	அயன் மகரந்தச் சேர்க் கை
த.ம.சே.	-	தன் மகரந்தச் சேர்க்கை
நெ.ம.அ.	-	நெட் டை மஞ்சள் அழுத்தமானது
_ நெ.ம.தி.		நெட்டை மஞ்சள் திரங்கியது
நெ.ப.அ.	÷	நெட்டை பச்சை அமுத்தமானது
நெ.ப.தி.	-	நெட்டை பச்சை திரங்கியது
கு.ம.அ.	-	குட்டை மஞ்சள் அழுத்தமானது
கு.ம.தி.	-	குட்டை மஞ்சள் திரங்கியது
கு.ப.அ.	-	குட்டை பச்சை அழுத்தமானது
கு.ப.அ.	•	குட்டை பச்சை அழுத்தமானது
கு.ப.தி.	-	குட்டை பச்சை திரங்கியது
0-2		
கா.பெ.	-	காவிப் பெ ண்
கா.பெ. சா.பெ.	•	
சா.பெ.	-	சாதாரண பெண்
சா.பெ. சா.ஆ.	• • •	சாதாரண பெண் சாதாரண ஆண்
சா.பெ. சா.ஆ. நோ.ஆ.	- - - -	சாதாரண பெண் சாதாரண ஆண் நோயுள்ள ஆண்
சா.பெ. சா.ஆ.	-	சாதாரண பெண் சாதாரண ஆண்
சா.பெ. சா.ஆ. நோ.ஆ. நோ.பெ.	• • •	சாதாரண பெண் சாதாரண ஆண் நோயுள்ள ஆ ண் நோயுள்ள பெண்
சா.பெ. சா.ஆ. நோ.ஆ. நோ.பெ. P	• • • • • • •	சாதாரண பெண் சாதாரண ஆண் நோயுள்ள ஆண் நோயுள்ள பெண் பெற்றோர்
சா.பெ. சா.ஆ. நோ.ஆ. நோ.பெ. P P		சாதாரண பெண் சாதாரண ஆண் நோயுள்ள ஆ ண் நோயுள்ள பெண் பெற்றோர் முதலாம் பெற்றோர் சந்ததி
சா.பெ. சா.ஆ. நோ.ஆ. நோ.பெ. P P F		சாதாரண பெண் சாதாரண ஆண் நோயுள்ள ஆண் நோயுள்ள பெண் பெற்றோர் முதலாம் பெற்றோர் சந்ததி முதலாம் மகட் சந்த தி
சா.பெ. சா.ஆ. நோ.ஆ. நோ.பெ. P P		சாதாரண பெண் சாதாரண ஆண் நோயுள்ள ஆண் நோயுள்ள பெண் பெற்றோர் முதலாம் பெற்றோர் சந்ததி முதலாம் மகட் சந்த தி இரண்டாம் மகட் சந்ததி
சா.பெ. சா.ஆ. நோ.ஆ. நோ.பெ. P P F		சாதாரண பெண் சாதாரண ஆண் நோயுள்ள ஆண் நோயுள்ள பெண் பெற்றோர் முதலாம் பெற்றோர் சந்ததி முதலாம் மகட் சந்த தி

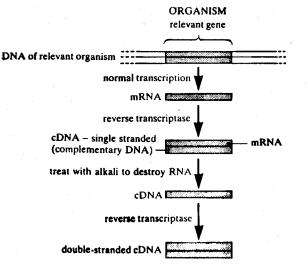
> அட்சியானது > பின்னிடைவானது

-90-

-91-

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

அலுபந்தம் - 04


அனுபந்தம் - 03

DNA ஐ வேறாக்கல்

சகல உயிரிகளிலும் DNA ஒரே வகைக்குரியதாக காணப்படுகின்றது. புரதத் தொகுப்புச் செயற்பாடுகளின் பொருட்டு DNAயினால் வழங்கப்படும் தகவல்களும் பெரும்பாலும் சகல உயிரிகட்கும் நியமமானதாகவே காணப்படுகின்றது. மேலும் DNA உயிர் பண்புகளின் பிரதி பலிப்புக்கான அடிப்படையாக காணப்படுகின்ற போதும் அது உயிரற்ற ஒரு சேதனப் பதார்த்தமேயாகும். ஏனைய சேதனப் பதார்த்தங்களினின்றும் வேறுபட்டு இது குறித்த நிபந்தனைகளின் கீழ் உயிர்ப்பண்புகளை பிரதிபலிப்பதற்கான அடிப்படையாக காணப்படுகின்றது. புரதங்கள் காபோவைதரேற்றுக்கள் போன்ற சேதனப் பொருட்களின் இயல்புகள் DNAயினைப் போல எல்லா உயிரிகளிலும் கட்டமைப்பு ரீதியிலும் தொழில் ரீதியிலும் ஒத்துக் காணப்படுவதில்லை.

அங்கிகளில் காணப்படும் DNAகளை வேறாக்குவது கூட மிக இலகுவாக மேற் கொள்ளப்படக் கூடியதாகும். அதிலும் புரோக்கரியோற்றாக்களில் காணப்படும் DNA யானது இயூக்கரியோற்றாக்களில் காணப்படுவது போல ஹிஸ்ரோன் வகைக்குரிய புரதத்தினால் படலிடப்பட்ட நிலையில் காணப்படு வதில்லை. தவிர இவை இயுக்கரியோற்றாக்களில் காணப்படுவதைப் போல பெரிய மூலக்கூறுகளுமல்ல. எனவே இவற்றைப் பெரும்பாலும் துண்டுகளாக துண்டிக்காமல் முழுமையாகவே கலங்களிலிருந்து வேறுபடுத்திக் கொள்ளலாம். DNAயினை கலங்களிலிருந்து அதனைக் கொண்டுள்ள கலத்தின் கரு கலச்சுவர் என்பவற்றை நொதியங்கள் மூலம் சிதைத்த பின்னர் கல உள்ளடக்கத்தை அடர்த்தி படித்திறன் அடிப்படையில் மைய நீக்கலுக்குள்ளாக்கி வேறுபடுத்திக் கொள்ளலாம். இவ்வாறு வேறுபடுத்தியதை மின்னயன முறை மூலம் தனிப்படுத்திக் கொள்ளலாம். தனிப்படுத்தி தூய்தாக்கிய DNA ஐ 90°C வெப்பநிலைக்கு உயர்த்தும் போது அதன் இரண்டு தடங்களுக்கும் இடையிலான ஜதரசன் பிணைப்புக்கள் உடைந்து ஒன்றிலிருந்து மற்றது தனிப்படும்.இதனை DNAயினுடைய அமைப்பழிவு என்பர். இந்நிலையில் இத் தனித் தடங்களை நைதரோ செலிலோசு தாளில் ஒற்றிக் கொள்ளலாம். வெப்பநிலை குறைக்கப்படும் போது பிணைப்புகள் தோன்றுவதன் மூலம் மூலக்கூறு இரட்டைத் தடங் கொண்டதாக மாறும்.உயிர் கலங்களினின்றும் வேறாக்கப்படும் DNA வெளியில் உயிர்ப்பண்புகளை பிரதிபலிக்காத போதும் மீண்டும் உயிர்க் கலங்களினுள் பகுத்தப்படும் போது பழையபடி உயிர்ப்பண்புகளை பிரதிபலிக்கச் செய்யும்.

செயற்கையான பரம்பரையலகை உருவாக்கிக் கொள்ளல்

உரு 16:- mRNAயில் இருந்து பரம்பரை அல**கை உ**ருவாக்குதல

பொருத்தமான பரம்பரை அலகு தெரிவு செய்யப்படும். இத6 பிரதியெடுத்தலால் தோன்றும் mRNA வேறாக்கப்படும். இதனை Reverse transcriptase கொண்டு பரிகரிக்கும் போது இதற்கான நிரப்பும் DNA யின் தனித்தடம் தோன்றும். இக்கலவையைக் காரம் கொண்டு பரிகரிக்கும் போது mRNA சிதைந்து DNAயின் நிரப்பு தடம் மட்டும் எஞ்சும். இத்தனித்தடத்தை மீண்டும் Reverse transcriptase கொண்டு பரிகரிக்கும் போது DNAயானது இரட்டைத் தடம் கொண்டதாக உருவாகும். இதனை செயற்கையாகத் தயரரித்த பரம்பரையலகாக பயன்படுத்திக் கொள்ளலாம்.

ஆசீரீயாீன் ஏனைய நூல்கள்

, 1.	விலங்கு நடத்தையியல்
2.	<i>ஷப்படை உயிரிய</i> ல் I
3.	அழப்படை உளிரியல் II
4.	அழ்றடை உளிரியல் III
5.	உயிரின் தொடர்ச்சி
6.	ஷொழிற்படும் தாவரம்
7.	தொழிற்படும் விலங் கு

NANAYOGA PRINTERS

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org