விவரண புள்ளிவிபரவியல் Descriptive Statistics

A.B FOUZUL ALEEM "HNDA" (CIONA B) COM
Diplome in Accommency DE

செல்லேயா இளங்குமரன் B. Sc. (Hons.), Grad. I. S., LIDPM.

விவரண புள்ளிவிபரவியல் DESCRIPTIVE STATISTICS

செல்லேயா இளங்குமரன்
B. Sc. (Hons.), Grad. I. S., LIDPM
உதவி விரிவுரையாளர்,
கணித, புள்ளிவிபரவியல்துறை
யாழ்ப்பாணப் பல்கலேக்கழகம்
யாழ்ப்பாணம்.

வெளியீடு:

பட்டப் பழப்புகள் கல்லூரி, 48/1, ஸ்ரான்வி வீதி, யாழ்ப்பாணம் வெளியீடு — 9 முதற்பதிப்பு ஏப்பிரல் — 1987

(சகல உரிமைகளும் ஆக்கியோனுக்கு உரியவை)

அச்சுப்பதிவு :

திருமகள் அழுத்தகம்,

சு**ன்கைம்**்

1987

an 30/

முன்னுரை

இலங்கைப் பல்கலேக்கழகங்களிலும், உயர்கல்வி நிறுவனங்களிலும் புள்ளியியல் முக்கியமான பாடமாக விளங்குகிறது. அத்துடன் புள்ளியியலானது தூய விஞ்ஞானத்துறையில் (Pure Science) மட்டு மன்றி ஏனேய சமூக விஞ்ஞான (Social Science), மருத்துவ, விவசாயத் துறைகளிலும் பரவலாகப் பயண்படுத்தப்படுவதனுல் இதன் முக்கியத் துவம் மேலும் உணரப்பட்டு வருகிறது. புள்ளியியலின் தேவை வளர்ச்சியடைந்து வருவதற்கேற்ப அதன் பயனே வேண்டி நிற்கும் தமிழ் மாணவர்களுக்குத் தேவையான உசாத்துணே நூல்கள் தமிழில் இல் லாமை ஒரு பேரும் குறைபாடாகும். இக்குறைபாட்டை இந்நூல் ஒரளவுக்காவது நிவர்த்தி செய்யும் எண்பதில் ஐயமில்லே.

இந்நூலானது பட்டப்படிப்பை மேற்கொள்ளும் விஞ்ஞானமாணி (B. Sc.), வணிகமாணி (B. Com), முகாமைத்துவமாணி (BBAd), கல் மாணி (B. A.) மாணவர்கள் பயணடையக் கூடிய வகையில் எழுதப்பட்டாலும் ஆசிரியபயிற்கி, வணிக டிப்ளோமா (Dip. in Commerce), IDPM, CIMA, பட்டயக் கணக்காளர் (Chartered Accountancy) மாணவர்களுக்கும் ஏற்ற நூலாக இது விளங்கும். மேலும் இந்நூல் ஆரம்பபகுதிகள் க. பொ. த (உயர்தர) மாணவர்களும் பயனடையும் சில விடயங்களேக் கொண்டுள்ளது. விஞ்ஞான மாணவர் தவிர்ந்த ஏனேயோர் இந்நூலில் கையாளப்பட்டுள்ள தேற்றங்களின் நிறுவல்களேக் தேவைப்படாதவிடத்துக் கவனிக்காது விடலாம் என்பது எமது கருத்தாகும்.

இந்நூலின் முதலாம் அத்தியாயம் புள்ளிவிபரவியலின் அறிமுகத் திணச் சுருக்கமாகத் தருகிறது. இரண்டாம், மூன்ரும் அத்தியாயங்கள் புள்ளிவிபரவியலின் ஆரம்ப படிகளான உரவு சேகரித்தல், வகுப்பாக் கல், அட்டவணேப்படுத்தல், சமர்ப்பித்தல் என்பவற்றைத் தெளிவாக விளக்குகிறது. நான்காம், ஐந்தாம், ஆரும் அத்தியாயங்கள் புள்ளி விபரவியலின் முக்கிய படியான தரவுகளேப் பகுப்பாய்வு செய்தல், விளக்கமளித்தல் என்பவற்றை விளக்குகிறது. விவரண புள்ளிவிபர வியலின் முக்கியமான இணேவு (Correlation) எனும் அத்தியாயம் பிரயோகப் புளினிபரவியலின் கீழும் வருவதால் இந்நூலில் சேர்த்துக் கொள்ளப்படவில்லே.

இந்நூலினே வெளியிடுவதற்கு ஊக்கமும், நிதியுதவியும் அளித்த யாழ் பட்டப் படிப்புகள் கல்லூரிக்கும், அதன் இயக்குநர் திரு. இராசா சத்தீஸ்வரன் அவர்களுக்கும், அணிந்துரை வழங்கிய எனது தறைத் தவேவர் திரு. பொ. மகினன் அவர்களுக்கும் எனது நன்றியைத் தெரிவிக்கிறேன்.

நன்றி

கணிதை, புள்ளிவிபரவியல் தாறை பொழ்ப்பாணப் பல்கீலேக்கழைகம், யாழ்ப்பாணம்.

செ. இளங்குமரன்

அணிந்துரை

தமிழில் கல்வி கற்க வேண்டும் என்னும் ஆர்வம் மாணவர்க ளிடையே கூடிக்கொண்டுபோகும் இத்தருணத்தில் தமிழில் போதிய அளவு பாடப்புத்தகங்கள் இல்லாமையால் இவர்களின் ஆர்வம் நிறை வேருமல் இருக்கின்றது. இதில் ஒரு பகுதியைப் பூர்த்தி செய்யும் நோக்க மாக ''விவரண புள்ளிவிபரவியல்'' என்னும் பாடப்புத்தகத்தை திரு. செ. இளங்குமரன் முன்வேந்து தமிழில் எழுதியுள்ளார்.

இது விஞ்ஞானரீதியாகவும், பல்கூகக்கழக மாணவர்களின் படிப் புக்கு உகந்ததாகவும் எழுதப்பட்டுள்ளது. இப்புத்தகத்தில் 2, 3 அத்தியாயங்களில் தரவுகளின் சேகரிப்பு, வகுப்பாக்கல், அட்டவணேப் படுத்தல், சமர்ப்பீத்தல், பகுப்பாய்வு, விளக்கமளித்தல் போன்றவை விரிவாகக் கூறப்பட்டுள்ளது. அத்தியாயம் 4, 5, 6 என்பவற்றில் அளவைகள் பற்றி விரிவாகத் தரப்பட்டுள்ளது.

இந்நூல் குறிப்பாக மு**தல்வருட** பு**ள்ளிவி**பரவியல் மாணவர்களுக் கும், பகுதி [இல் வர்**த்தகம், தொழில்** நிர்வாகம், க**ே**லத்துறை விசேட மாணவர்களுக்கும், கற்பிக்கும் ஆகிரியர்கட்கும் இன்றியமை யாததாக இருக்கும்.

திவோர், கணிதை, புள்ளிவிபேரவியல் துறைை, யாழ்ப்பாணப் பல்கிலேக் கழகம், போ. மகினன்

உள்ளடக்கம்

		பக்கைய
1.	புள்ளியியல் நோக்கம், பொருள், கேள்வி	
	(Meaning, Scope & Inquiry of Statistics)	
	1 . 1. பொருள், தோக்கம், கேள்வி	
	1 · 3. புள்ளிவிபர சிறப்பியல்பு. மாறி	. (
2.	தரவுகளி ன் சேகரிப்பு, வகுப் பாக்கல் , அட்ட வ ‱ரம படுத் த ல்	
	(Collection, Classification & Tabulation of data	7
	2 • 1 . தரவு சேகரித்தல்	. 7
	2 ் 2. வகுப்பாக்கல், அட்ட வ ணேப்படுத்தல்	9
	2 3. மீடிறென் பெரம்பல்கள்	10
3.	தரவுகளின் குறித்துக்காட்டல், பகுப்பாய்வு, முடிவுகளில் விளக்கமளித்தல் (Presentation, Analysis, Interpretation of data)	18
	3 · 1. குறித்துக்காட்டல் அல்லது செமர்ப்பித்தல்	18
	3` 2. வரைபடங்கள்மூலம் தரவுகளேக் குறித்தல்	18
	3 - 3. வரைபு முறை குறித்துக்காட்டல்கள்	26
	3 ் 4. தரவுகெளின் பெகுப்பாய்வு, விளக்கமேளித்தல்	33
• , ,	மைய நாட்ட அளவைகள்	35
	(Measure of Central tendency)	
	4 · 1. இடை	3 5
	4 ் 2. இடை யம்	46
	4 • 3. இடையத்துடன் தொடர்புடைய சில அளவைகள்	50
	4 ் 4 . ஆகாரம் (முக்டு)	56

		கம்
5.	விலகல் அளமைவகள்	63
	(Measure of Dispersion)	
	5 15 வீச்ச	64
	5 ் 2. நியம விலகல்	68
	5 · 3. மீடிறென் பெரம்பல்களோ ஒப்பிடல்	76
	5 * 4. விலகலளவையுடன் தொடர்புடைய சில அளவைகள்	78
6.	ஓராய அளவையும், குடில அளவையு ம்	8 .3
	(Measure of Skewness & Kurtosis)	
	6 ் 1. ஓராய அள்ளை	83
	6 . 2. குடிலை அளவைை	96

எனது வழிகாட்டிகளான பெற்றேருக்கும், புள்ளி விபரவியல்துறை வழிகாட்டிகளான பேராசிரியர் J. B. செல்லேயா, டாக்டர் S. கணேசலிங்கம் அவர்களுக்கும் சமர்ப்பணம்.

அறிமுகம் :

(Introduction)

- 1. புள்ளியியல் நோக்கம், பொருள், கேள்வி (Meaning, Scope & Inquiry of Statistics)
- 1. 1. பொருள், நோக்கம், கேள்வி

'' புள்ளியியல் '' எனும் பதம் பல்வேறு கருத்துக்களில் தொக்கி நிற்கிறது. அவை,

- (a) காரணிகளின் எண்பெறுமான வெளியீடுகள்,
- (b) தரவுகளின் பகுப்பாய்வுக்கும், விளக்கமளித்தலுக்குமான விஞ் ஞான முறைகள்,
- ு) மாதிரி **அவ**தானிப்புகளில் **அளவி**டு**கள்** எ**ன்பனவா**கும்.

பெரும்பாலான இயற்கை நிகழ்வுகளில் காலத்துக்குக் காலம் மாறி நங்கள் ஏற்படுகின்றன. இவை பரிசோதனேகளாக உள்ளபோது பௌதீக மாற்றங்கள், இரசாயன மாற்றங்கள் என்பவற்ருல் வீளக்கப்படுகின்றன. இங்கு கருதப்படும் ஒவ்வொரு சிறப்பியல்பும் காரணிகளால் வரை யறுக்கப்படுகின்றன. பௌதீக மாற்றத்தையோ, இரசாயன மாறிறத்தையோ கொண்ட பரிசோதண்கள் யாவும் வெளியீடுகளே (Outcomes) கொண்ட வையாகும். இவ்வெளியீடுகள் யாவும் அவதானிப்பினுல் அல்லது அளவீடுகளினுல் பெறப்படுவதால் அவதானிப்புகள் (Observations) எனப்படுகின்றன.

அவதானிப்புகள் யாவும் ஒரு நோ**க்கத்**தி**ற்காகவே பெறப்படுவதால்** அவை அந்நோக்கத்திற்கான தரவுகள் (Data) எனப்படுகின்றன. இத் தரவுகள் இருவகைப் படுத்தப்படலாம். அவை,

- (a) எண் பெறுமான தரவுகள் (Quantitative data)
- (b) சிறப்பியல்பு தரவுகள் (Qualitative data) என்பனவாகும்.

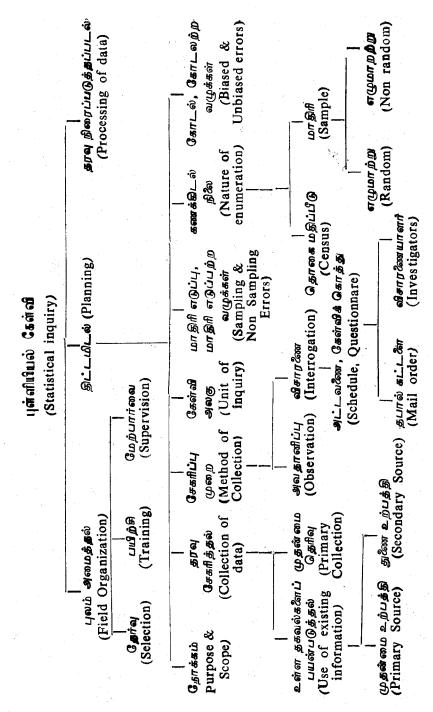
இத்தை விளக்கப்பட்ட தரவுகள் யாவும் புள்ளிவிபரங்கள் (Statistics) எனவும் சொல்லப்படுகின்றன. புள்ளி விபரங்கள் பற்றிய பாட நெறியாக இருப்பதாலேயே புள்ளிவிபரவியல் எனும் சொல் வழங்கப் பட்டது. புள்ளியியலின் பயண்பாட்டுக்கான சில எடுத்துக்காட்டல்கள் (Illustrations) பின்வருவனவாகும்.

- (i) ஓர் வர்த்தக நிறுவனத்தின் நடைமுறை இயங்குதலே ஆராய் வதற்கு உற்பத்தி புள்ளி விபரங்கள் தொகுக்கப்படுகின்றன.
- (ii) தரவுகளேக் குறித்துக்காட்டுவதையும், ஆராய்வதையும் புள்ளி விபரங்கள் இலகுவாக்குகின்றன.
- (iii) ஓர் பெரிய தரவுத் தொகுதியைப்பற்றிய அநுமானங்களே மேறி கொள்வதற்கு, சிறியமாதிரி கூட்டமொன்றைப் பயன்படுத்து வதன்மூலம் நேரத்தை, செலவைக் குறைப்பதற்கு உதவு கின்றது.

புள்ளியியலின் கேள்வி பின்வரும் வகைகளில் இருத்தல் வேண்டும்.

- (i) ஓர் விசாரணேயின் நோக்கம் தெளிவா**ன பிரச்ச**ண வடிவில் கணிதமுறையில் உணர்த்தப்படல்.
- (ii) விசாரணேக்கான தரவு சேகரித்தலுக்கோ அன்றி வேற தேவைக்கோ கேள்விக் கொத்துகள் பயன்படுத்தப்படல்.
- (iii) மாதிரி அளவீட்டுத் திட்டம் பயன்பெடுத்தப்பட வேண்டியிருப் பின் மோதிரிப் பருமன், மாதிரி எடுத்தல் முறை என்பன தெளி வோகத் திட்டமிடப்படல்.
- (iv) பெறப்படும், பயன்படுத்தப்படும் தரவுகள் யாவும் திட்ட வட்டமான வரையறைக்குட்பட்டிருத்தல்.
- (v) தரவுகளின் பகுப்பாய்வில் அளிக்கப்படும் விளக்கங்கள் யாவும் புள்ளியியல் செயல்முறைகளே வலிதாகப் பயன்படுத்தி அளிக் கப்பட்டவையாகவிருத்தல்.

புள்ளியியல் கேள்வி, வரிப்படமூலம் படிகளில் பிண்வருமாறு தரப் படலாம்.



்புள்ளியியலின் முக்கிய படிகள் :

மேலே தரப்பட்டவாறு விளக்கமாகப் புள்ளியியல் கேள்வி தரப்பட் டாலும் அதன் முக்கியமான படிகள் பொதுவாகப் பின்வருமாறு இருக் கும். அவை முறையே,

- (a) தரவு வடிவங்களேத் தேர்தலும், சேகரித்தலும் (Selection and Collection of data)
- (b) தரவுகளின் வகுப்பாக்கலும், அட்டவணப்படுத்தலும் (Classification and Tabulation of data)
- (c) தரவுகளின் குறித்துக்காட்டலும், மேலோட்ட விளக்கமும் (Presentation and nature of data)
 - (d) தரவுகளின் பகுப்பாய்வு (Analysis of data)
 - (e) விளக்கமளித்தல் (Interpretation)

1. 2. 55 au (Data)

தரவு உற்பத்தி (Origin of data):

தரவுகளின் அல்லது புள்ளி விபரங்களின் இயற்கை நிலே காணப் படும் இடங்கள் யாவும் த**ரவு உற்பத்**திகளாகும்.

அலகு (Unit or Element):

ஒவ்வொரு எதேச்சையான புள்ளி விபரமும். அது ஆரம்ப நிலேயி லுள்ளபோது அதாவது மேலும் பிரிக்கமுடியரத நிலேயிலுள்ளபோது அலகு என வரையறுக்கப்படும்.

குடி (Population):

ஒரு புள்ளியியல் கேள்வி அல்லது விசார‱யின்போது கருத்திற் கொள்ளப்படும் எல்லா இயல்தகு உறுப்புக்களேயும் அல்லது அலகுகளே யும் கொண்ட தொகுதி குடி எனப்படும்.

மாதிரி (Sample):

அநுபவத்தில் அல்லது செயல்முறையில் ஓர் குடியிலுள்ள எல்லா அலகுகளேயும் அல்லது உறுப்புகளேயும் எடுத்து பகுப்பாய்வு செய்தல் இலகுவானதல்ல. அவ்வாறு மேற்கொள்ளும்போது நேரமும், செலவும் கூடுதலாகத் தேவைப்படும். இந்நிஃயில் குடியினது பொருத்தமான பகுதியொன்று மட்டுமே தெரிவுசெய்யப்பட்டு பகுப்பாய்வுக்குட்படுத்தப் படும். இப்பகுதி மாதிரி எனப்படும். அதாவது குடியிலுள்ள சில உறுப் புக்களின் தொடை அல்லது சேர்க்கை மாதிரி எனப்படும். மேலும் மாதிரி குடியிலுடைய ஓர் தொடைப் பிரிவுமாகும்.

தரவு வகைகள் (Types of data):

தரவு அல்லது புள்ளிவிபரம் என்பது சேகரிக்கப்பட்ட அல்லது சேகரிக்கப்படவுள்ள அவதானிப்பாகும். எனவே தரவுகளே இருவகைப் படுத்தலாம். அவை,

- (a) முதன்மை தரவு
- (b) **துணே த**ரவு என்பனவாகும்.

முதன்மை தரவு (Primary data) :

தரவுகளின் உற்பத்திகளேத் தரவு சேகரிப்போன் தேடிச்சென்று அவற்றைப் பெற்றுக்கொள்ளும்போது அவை முதன்மைத் தரவுக ளெனப்படும். எனவே ஒரு புள்ளியியல் கேள்வியின்போது தரவுகள் ஆராய்ச்சியாளனிடம் இல்லாவிடில் அவை உற்பத்தியில் பெறப்படும் போது முதன்மை தரவுகளாகவிருக்கும்.

துளேதரவு (Secondary data):

ஓர் நோக்கத்திற்குத் தரவு தேவைப்படும்போது அவை ஏற்கனவே ஓர் புள்ளியியலாளஞல் சேர்த்துவைக்கப்பட்டிருந்தால் அவற்றைப் பாவிப்பதே செலவை, நேரத்தை மீதப்படுத்தும் வழியாகும். இந்நினே யில் பெறப்படும் பழைய தரவுகள் துணே தரவுகள் எனப்படும்.

பரமானம் (Parameter):

ஒரு குடியினேக் கருதும்போது அது தொடர்பான கில கிறப்பு ஒருமைகள் முக்கியமானவையாகவிருக்கின்றன. உதாரணமாகக் குடி சராசரி, குடி மொத்தம் போன்றவை. இவை பொதுவாகத் தெரியாப் பெறுமானங்களாகவேயிருக்கும். இவை அக்குடியின் உடமைகள் எனப் பட்டு பரமானங்கள் என அழைக்கப்படுகின்றன.

ஓர் புள்ளியியல் அலகு திருப்தி செய்யவேண்டிய நிபந்த‱கள் பின் வருவனவாகும்.

- (a) வழுவற்றதாகவும், குறிப்பிடத்தக்கதாகவுமிருத்தல்.
- (b) ஏகவினமான தாயிருத்தல், அல்லாவிடில் பெறப்படும் முடிவுகள் நம்பத்தகா தவையாயிருக்கும்.
- (c) நிலேயானதாயிருத்தல், நிலேயற்றுக் காணப்படுமாயி**ன் பகுப்** பாய்**வி**ற்கு மு**ன்ன**ர் அவ**ற்**றில் திரு**த்தங்கள்** செய்ய**ப்பட**் வேண்டியிருக்கும்.
- (d) புள்ளியியல் கேள்விக்குப் பொருத்தமானதாயிருத்தல்.
- (e) ஆராய்வதற்குத் **த**குதியுடையதாயிருத்தல்.

மாதிரி வழுக்கள் (Sampling errors):

மாதிரி கோடலுற்றுக் காணப்படின், அதாவது அம்மாதிரி குடியைச் சரியாகப் பிரதிபலிக்காவிடில் அது வழுவுடையதெனவும், ஏற்றுக்கொள்ள முடியாதெனவும் சொல்லப்படும். இந்நிஃயில் பின்வரும் நடவடிக்கைகள் மாதிரியில் வழுவினே அல்லது கோடலேக் குறைக்கக்கூடியவையாக விருக்கும்.

- (i) ஆராய்ந்து மாதிரி அவகுகளேத் தெரிதல்.
- (ii) மாதிரியில் எழுமாருக ஒன்றை இன்னென்ருல் பிரதியிடல்.
- (iii) மாதிரி அலகுகளின் தெரிவுக்கு முழு குடியையும் பய**ைப**டுத் தாது விடல்.
- (iv) எழுமாற்றுத் தெரிவி**ண** ஒழுங்கி**ன்றி**ச் செய்தல் புள்ளியியல் ஒழுங்குவிதி (The law of Statistical regularity):

பகுப்பாய்வுக்குத் தெளியப்படும் மாதிரி பின்வரும் ஒழுங்குகளுக்கு அமைவாயிருத்தல் விரும்பத்தக்கதாகும்.

- (a) ஒவ்வொரு அலகின் தெரிவும் முற்ருக எழுமாருயிருத்தல்.
- (b) அசாதாரணமான அலகுகளின் தாக்கத்தைக் குறைக்குமுக மாக மாதிரிப் பருமனே இயன்றளவு பெரிதாக வைத்திருத்தல்

1.3. புள்ளி*விபர* சிறப்பியல்பு, மாறி

(Statistical Characteristic, Variable)

இறப்பியல்பு:

ஓர் அலகினது அல்லது உறுப்பினது சிறப்பு அம்சம் சிறப்பியல்பு எனப்படும். இச் சிறப்பியல்பு இருவகைப்படுத்தப்படும்.

- (i) மாறிச் சிறப்பியல்பு (Variable characteristic)
- (ii) பண்புச் சிறப்பியல்பு (Attribute characteristic)

உதாரணமாக ஒரு குழுவிலுள்ள மனிதர்களின் கிறப்பியல்புகளே நோக்குவோமாயின் அவர்களின் உயரங்கள், நிறைகள், வயதுகள் போன்றன எண் பெறுமானங்களினுல் உணர்த்தப்படுவதால் அவை அம் மனிதர்களுள் ஒருவருக்கு ஒருவர் மாறுபவையாகவுமிருப்பதால் மாறிச் கிறப்பியல்புகளெனப்படும். ஆளுல் அவர்களின் தோற்றங்கள், நிறங்கன் போன்றவை பண்புகளால் உணர்த்தப்படுவதுடன் வித்தியாசமானவை யாகவுமிருப்பதால் பண்புச்சிறப்பியல்புகள் எனப்படுகின்றன.

புள்ளிவிபரமாறி (Statistical Variable):

ஓர் புள்ளியியல் அலகின் மாறிச் சிறப்பியல்பு அலகுக்கு அலகு வேறுபடுத்தப்படுவதை ஓர் மாறியிஞல் குறிச்சுலாம். இம்மாறி புள்ளி யியல் மாறி எனப்படும். இப்புள்ளி விபர மாறிகள் இருவகைப்படும்.

- (a) தொடர்ச்சியான மாறி (Continuous Variable):
- (b) பின்னகமான மாறி (Discreate Variable)

உதாரணமாக ஒரு காரின் மைல் — மணி கதியின் நிமிடத்துக்கு நிமிடம் பதிவோமாயின் அது ஒரு தொடர்ச்சியான பெறுமானங்களேக் கொண்டதாக விருக்கும். இங்கு கதி தொடர்ச்சியான மாறியாகும். ஒரு நகரத்திலுள்ள குடும்பங்களிலுள்ள பிள்ளேகளின் எண்ணிக்கைகளேப் பதிவோமாயின் அது ஒரு முழு எண்களேக்கொண்ட தொடையாக விருக் கும். இங்கு பிள்ளேகளின் எண்ணிக்கை என்பது ஒரு பின்னைகமான மாறியாகும்.

2. தரவுகளின் சேகரிப்பு, வகுப்பாக்கல், அட்டவணேப்படுத்தல்

(Collection, Classification & Tabulaton of data)

2.1. தரவு சேகரித்தல் (Collection of data)

புள்ளியியலின் ஆரம்ப முக்கியபடி தரவு சேகரித்தலாகும். முத லாவது அத்தியாயத்தில் தரவுகளேப்பற்றிய விளக்கங்களேப் பெறலாம். புள்ளியியல் கேள்விக்கேற்ப தரவுகளின் உற்பத்திகளேத் தீர்மானித்தல் தரவுசேகரிக்கும் புள்ளியியலாளனின் முதல் நடவடிக்கையாகும். இரு வகையான தரவுகள் இருக்கலாம் என முன்னர் விளக்கப்பட்டுள்ளது. அங்கு துணேதரவின் வரைவிலக்கணப்படி தரவு சேகரித்தல் பொருத்த மற்றதாகும். எனவே முதன்மைத் தரவுகளுக்கு மட்டுமே தரவு சேகரித்

சேகரிப்பு முறைகள் (Methods of Collection)

(a) தனிப்பட்ட நேரடி புலனுய்வுமுறை:
(Direct personal investigation)

இம்முறை நேர்முகப்பரீட்சை, அவதானிப்பு என்னும் இரு முறை களில் நடைபெறும். முதல்முறையில் சேகரிப்பவர் குடியில் அல்லது உற்பத்தியில் நேரடியாக ஒவ்வொரு உறுப்பையும் சந்தித்து உரையாடல் மூலம் தகவல்களேப் பதிவுசெய்தல் ஆகும். மற்றைய முறையில் உரை யாடலின்றி ஒவ்வொரு உறுப்பையும் அவதானித்து தகவல்களேப் பதிவு செய்தலாகும். அவதானிப்பைவிட உரையாடல் சிறந்தது. ஏனெனில் சந்தேகத்துக்கிடமானவை உரையாடலில் நிச்சயப்படுத்தப்படலாம்.

அநுகலம், பிரதிகலம்; இம்முறையில் நேரடியாக தரவு பெறப் படுவதால் நம்பத்தகுந்தவை (reliable) ஆகும். இங்கு உடன் சேர்க்கை யான தகவல்களேப் பெறவும் சந்தர்ப்பமுண்டு. ஆஞல் மாதிரிப் பருமன் மிகப் பெரிதாக உள்ளபோது நேரத்தையும், செலவையும் கூட்டுவது ஓர் குறைபாடாகும்.

(b) மறைமுகமான வாய்மூல புலனுப்வு முறை: (Indirect Oral investigation)

இம்முறை ஒவ்வொரு உறுப்பையும் நேரடியாக அணுகமுடியாத விடங்களில் அல்லது சேகரிப்பதற்கு சிக்கலான சந்தர்ப்பங்களில் அல்லது பகுதி தகவல்கள் வித்தியாசமாயுள்ள இடங்களில் பயன்படுத்தப்படும் இம்முறையில் சேகரிப்போன் மூன்றும் மனிதனேயோ, அல்லது சாட்சி கீரியோ தகவல்களேப் பெறப் பயன்படுத்தலாம். அநுகலம், பிரதிகலம்; இம்முறை ஓர் மிகப் பெரிய உற்பத்திக்கு அதாவது குடிப்பருமன் மிகப் பெரியதாயுள்ள குடிகளுக்கு சிறந்த தாகும். மேலும் நேரம், செலவினே இம்முறை குறைக்கலாம். ஆனல் தரவுகள் மூன்ரும் மனிதனுல் பெறப்படுவதால் நம்பத்தகாதவையாக வும் இருக்கலாம்.

(c) உள்ளூர் முகவர், உள்ளூர் தொடர்புமுறை:
(Information from Local agencies and Correspondents)

இம்முறையில் சேகரிப்போணுல்லாமல், பதிலாக உள்ளூர் முகவர் களே நியமித்தோ அல்லது உள்ளூர் தொடர்பின் மூலமோ அவர்கள் சேகரித்தவற்றைச் சேகரித்தலாகும். எனவே இது துணேதரவுக்கே பொருந்தும்.

அநுகூலம், பிரதிகூலம்; பரந்த பிரதேசத்தில் பல முகவர்களால் பெறப்படுவதால் செலவு குறைக்கப்படும், பரந்த பிரதேசம் கருத்தில் கொள்ளப்படும்: ஆஞல் தரவுகள் நம்பத்தகுந்தவையல்ல.

(d) தபால் மூல கேள்ளிக்கொத்து, அனுபந்தமுறை: (Mailed questionnare and Schedules)

இம்முறையில் கேள்விகளேயும், விடைகளுக்கான இடைவெளிகளே யும் கொண்ட கேள்விக்கொத்துகள் தயாரிக்கப்பட்டு உற்பத்தி உறுப் புக்களுக்கு தபால்மூலமோ அல்லது நேரடியாகவோ விநியோகிக்கப் படும். இவை உறுப்புக்களிஞல் இரக்கியமாக நிரப்பப்பட்ட பிண்னர் மீளப் பெற்றுக்கொள்ளப்படும். இம்முறையே பொதுவாக ஆராய்ச்சி நிறுவனங்களிஞல் கையாளப்படும் முறையாகும். இங்கு கேள்விக்கொத் திண் தரம், தகவல்களின் நம்பத்தகவு என்பனவே நோக்கத்தை வெற்றியாக்கும்.

அநுகலம், பிரதிகலம்; இது செலவைக் குறைக்கும், பரந்த பிரதே சத்தைப் பிரதியவிக்கும், உறுப்புக்களேச் சுதந்திரமாக விடையளிக்க வசதி செய்யும் முறையாகும். ஆளுல் நேரத்துக்குக் கிடைக்காத, முற்றுக நிரப்பப்படாத, பிழையான தகவல்களேக் கொண்டவையாகக் கேள்விக் கொத்துக்கள் காணப்படலாம்.

- ஒரு கேள்விக்கொத்தில் அமையவேண்டியலை பின்வருவனவாகும்.
- (i) பருமனில் சிறிதாயிருத்**த**ல்.
- (ii) கேள்விகள் எளியனவாக,விளக்கமானவையாக, பல பொருளற் றனவாக, தர்க்கரீதியான வரிசையிலுள்ளனவாகவிருத்தல்.
- (iii) சுருக்கமான விடைகளே (ஆம், இல்லே) தரக்கூடியனவாக, சுருக்கமானவையாக கேள்விகள் இருத்தல்.

சேகரிக்கப்பட்ட தரவு**கள்** திருப்தி செய்யவேண்டியவை பின் வரு வ**னவா**கும்:

- (i) ந**்பத்தகவு** (Reliablity)
- (ii) பொருத்தம் (Suitablity)
- (iii) போதுமானவை (Adequacy)

கணக்கிடல் (Enumeration):

சேகரிக்கப்பட்ட தரவுகள் அடுத்தபடியாகக் கணக்கிடப்படல்வேண் டும். இதற்கு இரண்டு முறைகள் கையாளப்படும்.

- (i) தொகை மதிப்பீடு (Census)
- (ii) மாதிரி மதிப்பீடு (Sample)

2.2. வகுப்பாக்கல், அட்டவணப்படுத்தல்

பச்சைத்தரவு (Row data):

பொதுவான தேரவுக் கட்டங்களே நோக்கும்போது அவை புதிதாகப் பெறப்பட்டிருப்பின் அவற்றிலுள்ள புள்ளிவிபரங்கள் யாவும் ஒழுங் காகவோ, கூட்டமாகவோ அல்லது வெவ்வேருகப் பிரிக்கப்பட்டவை யாகவோ இருப்பதில்ஃ. இவ்வாருன தரவுக்கூட்டங்கள் பச்சைத் தர வுகள் எனப்படும். அதாவது இத்தரவுக்கூட்டத் தரவுகள் ஏகவினை மற்றவையாகவிருக்கும்.

வகுப்பாக்கல் (Classification):

ஒரு பச்சைத் தரவுக்கூட்டப் பெறுமானங்களே அவற்றின் ஏகவேனத் தன்மைக்கு அமைவாகவோ அல்லது சிறப்பீயல்புகளுக்கமைவாகவோ அல்லது அறிமுகப்படுத்தப்பட்ட புள்ளிவிபர மாறிகளின் வீச்சுக்களுக் கமைவாகவோ பிரித்து வேளுக்குதல் வகுப்பாக்கல் எனப்படும். இவ் வாறு பெறப்படும் ஒவ்வொரு உபகூட்டமும் ஏதவினமான தரவுகளேக் கொண்டவையாக விருத்தல் வேண்டும்.

வகுப்பாக்கல் விதிகள் (Rules of Classitication):

ஒரு பச்சைத்தரவு வகுப்பாக்கப்படுகையில் பின்வரும் விதிவகைகள் பின்பற்றப்படும்.

ஒவ்வொரு தரவினதும்

- (a) பூரண**த்துவ**ம் (Exhaustive)
- (b) தனியாக்கப்படல் (Mutually Exclusive)
- (c) பொருத்தம் ஒற்றுமை (Suitablity)
- (d) நிலேயான தன்மை (Stability)

- (e) ஏகவினத்தன்மை (Homogenity)
- (f) இணக்கம் (Flexiblity)

சில பொதுவா**ன** வகுப்பாக்கல் **விதங்க**ள் பி**ன்வருவன**வற்றை அடிப்படையாகக் கொண்டவையாகவிருக்கலாம்.

- (a) புவியியல் பிரதேச ரீதியானவை
- (b) வரிசை, உலக, சரித்திர சம்பந்**தமானவை**
- (c) பண்பு சிறப்பியல்புகளுக் கமைவா**னவை**
- (d) எண் பெறுமான, அளவீட்டு வகைகள்.

அட்டவணேப்படுத்தல் (Tabulation):

வகுப்பாக்கப்பட்ட தரவுக்கூட்டங்கள் தொடர்ந்த பகுப்பாய் வுக்கோ அன்றி மேலோட்டமான விளக்கமளித்தலுக்கோ ஒழுங்காக வெளிப்படுத்தப்படல் அவசியமானதாகும். எனவே வகுப்பாக்கப் பட்ட தரவுகளேத் தெளிவாகவும், சுருக்கமாகவும் சிறப்பியல்புகளுக் கேற்ப வெளிப்படுத்துவதே அட்டவணேப்படுத்தவின் நோக்கமாகும்.

2.9. மீடிறன் பரம்பல்கள் (Frequency distributions)

தரவுக்கூட்டங்களின் வகுப்பாக்கலும், அட்டவணேப்படுத்தலும் ஆரம்ப புள்ளியியவில் மீடிறன் பரம்பல்களே அமைப்பதன்மூலம் நடத் தப்படுகின்றன.

எண்ணுருவில் ஒருமுகப்படுத்தப்படாத தரவுகளேப் பந்தி உருவில் அமைத்து அவற்றைத் திட்டமாக வகுப்பாக்கிப் பெறப்படுவதே மீடிறன் பரம்பல்களாகும். தரவுகள் பல தொகுதிகளாகவோ அல்லது வகுப்புக்களாகவோ வேருக்கப்பட்டு ஒவ்வொரு தொகுதிக்குமுரிய தரவுகளின் எண்ணிக்கை அவதானிக்கப்பட்டு வரவுக்குறிகளின் (Tally marks) மூலம் பதியப்படுகின்றன. ஒவ்வொரு வகுப்புக்குமுரிய தரவுகளின் எண்ணிக்கை அவ்வகுப்புக்காண மீடிறன் (Frequency) எனப் படும். ஒவ்வொரு வகுப்பும் வகுப்பாயிடைகள் (Class intervals) எனப் படும். எல்லாம் சம அகலங்களே (மேல், கீழ் எல்லகளின் வித்தியாசம்) கொண்டிருப்பின் அவற்றின் அகலங்கள் சம அகலங்களேணவும், வகுப்பாயிடைகள் சம அகலங்களே

மீடிறன் பரம்பல்களே யமைத்தல் (Construction of Frequency tables)

ஒரு பச்சைத் தரவுக்கூட்டம் மீடிறன் பரம்பலாக மாற்றப்படுவ தற்குப் பின்வரும் படிகளினூடாக அணுகப்படும்.

(i) வீச்சு (Range):

தரவுக்கூட்டமொன்றின் மிகப்பெரிய, மிகச்சிறிய பெறுமானங் **சளின் வி**த்தியாசம் அத்தரவுக் கூட்டத்தின் வீச்சு எனப்படும். இது **முத**லில் அறியப்படும்.

(ii) வகுப்பாயிடைகளின் எண்ணிக்கை:

(Number of class intervals)

ஒரு தரவுக்கூட்டத்தின் வீச்சுப் பெறுமானத்தை வைத்துக்கொண்டே வகுப்பாயிடைகளின் எண்ணிக்கை தீர்மானிக்கப்படும். மேலும் அவை

- (a) மொத்த உறுப்புக்**களின் எ**ண்ணிக்கை
- (b) உறுப்புக்களின் எண் பெறுமானம்

என்பனவற்றிலும் தங்கியிருக்கும். பொதுவாக வகுப்பாயிடைகளின் எண்ணிக்கை அவற்றின் பருமனுக்குச் சமமாயிருக்குமாறு தோந்தெடுக்கப் படும். அநேகமான மீடிறன் பரம்பல்கள் அவற்றின் எல்லா வகுப்பா யிடைகளினதும் பருமன்கள் சமமாயிருக்குமாறே தெரிவு செய்யப்படு கின்றன.

ஸ்ரேஜ் எ**ன்பவர்** வகுப்பாயிடைகளின் எண்ணிக்கை பின்வருமா றிருக்கலாமென அபிப்பிராயம் தெரிவித்தார். இது ஸ்ரேஜ் விதி எனப்படும்.

$$K = 1 + 3.222 \, \omega_{-10} \, N$$

இங்கு N திரட்டு மீடிறனும், K வகுப்பாயிடைகளின் எண்ணிக்கையும் ஆகும். K கிட்டிய முழு எண்ணுக்குத் திருத்தப்படும்.

(iii) வகுப்பாயிடைகளின் அகலம்:

(width of class intervel)

எல்**லா வ**குப்பாயிடைகளிலும் சம அகலங்க**ோ**க் கொண்டிருக்**க வேண்டு**மெனத் தீர்மானிக்கப்படின்

ஸ்ரேஜ் விதியின்படி,

$$W = \frac{R}{1 + 3.222 \, \omega L_{10} \, N}$$

(iv) மத்திய பெறுமானம் (Mid Value):

வகுப்பாயிடைகள் ஒவ்வொன்றும் வசதியானதொரு மையப் பெறுமானத்தைக் கொண்டிருத்தல் வேண்டும்.

(v) வரவுக்குறி (Tally Mark);

வகுப்பு மீடிறன்களேப் பெறுவதற்கு வரவுக்குறிகள் பயன்படுத்தப் படுகின்றன. இவ்வரவுக்குறிகள் N என்ற வடிவத்திலுள்ள, ஒவ்வொண் றும் ஐந்து தரவுகளேக் குறிக்கும் குறியீடுகளால் தரப்படுகின்றன.

(vi) மீடிறன் (Frequency):

ஒவ்வொரு வகுப்பாயிடையிலுமுள்ள வரவுக்குறிகள் கணக்கிடப் பட்டு அவை மீடிறன்களாகக் குறிக்கப்படுகின்றன.

உதாரணம் 2 . 1 ; ஒரு தொழிற்சாஃயில் வேலே செய்யும் இருபத் தைந்து தொழிலாளர்களின் நாளாந்த வருமானம் ரூபாக்களில் பிண் வரும் பச்சைத் தரவுக் கூட்டத்தினுல் தரப்படுகிறது.

இ தன்	ழிடிற	ன் ப	சந்தி அ ட	<u>_</u>	ண பின்	வரும்	<i>ர றிரு</i> க்கு	தம்.
16	15	16	22	18	18.	17	19	
14	20	17	14	13	19	19	22	
15	14	16	21	21	17	20	18	13

கூவி வரவுக் மீடி **றன்** (ருபாக்களில்) குறி X F 13 TT 14 III 15 П 16 III 17 Ш 18 III 19 III .3 20 \mathbf{II} 2 21 τl 22

இங்கு கூலியை புள்ளிவிபரமாறி X குறிக்கிறது. இம் மீடிறன் பரம்பல் ஓர் பின்னகப் பரம்பலாகக் கருதப்படலாம். ஏனெனில் X இனது பெறுமாணங்கள் யாவும் பின்னகமாயுள்ளன. இவ்வாறு பெரிய தரவுக் கூட்டங்களுக்கு மீடிறன் பரம்பல் அமைப்பது இலகுவாணதல்ல. எனவே பின்வரும் வகையிலான, முன்னர் விபரிக்கப்பட்ட படிகளுடளுன, தொடர்ச்சியான பெறுமானங்களேக் கொண்ட புள்ளிவிபரமாறியாக X உள்ள, மீடிறன் பரம்பல் அமைக்கப்படலாம்.

சுலி வகுப்பு	வர வுக்குறி	மீடிறை ன்	, மத்திய
X		F	பெறுமானம்
13 — < 15 15 — < 17	ini Mi	5	14
17 - < 19	MI I	5 6	16 18
$egin{array}{ll} 19 & < 21 \ 21 & < 23 \end{array}$	IIII	5	20
	HU	4	22

இங்கு கூலிவகுப்பையே புள்ளிவிபரமாறி X குறிக்கிறது. இருந்த போதிலும் பகுப்பாய்வின்போது ஒவ்வொரு வகுப்பாயிடையினதும் மையப் பெறுமானமே அவ்வகுப்புக்கான மாறிப் பெறுமானமாகக் கொள்ளப்படும்.

இம்மீடிறேன் பரம்பஃப் பாவித்து தரவுக்கூட்டத்தின் இயல்புகளே மேலோட்டமாக விளக்கமுடியும். உதாரணமாக 17 ரூபாவும், அதற்குக் கூடவும் ஆனுல் 19 ரூபாவிலும் குறைவாகவும் ஊதியம் பெறுவோரின் எண்ணிக்கை 6 என்பேதை அட்டவணே காட்டுகிறது.

நிரட்டுமீடிறன் (Cumulative Frequency),

மீடிறன்களே வரிசையாக தொடர்ச்சியாக கூட்டிப் பெறப்படுபவை திரட்டு மீடிறன்களாகும். இவை,

- (a) குறைந்த வகை திரட்டு மீடிறன் (Less than type)
- (b) கூடியவகை திரட்டு மீடிறன் (Greater than type) என இரு வகைப்படும்.

இவை முறையே புள்ளிவிபரமாறியின் பெறுமானங்களின் ஏறு வரிசையிலும், இறங்கு வரிசையிலும் கூடப் பெறப்படுபடையாகும்.

உதாரணம் 2.2; உதாரணம் 2.1 இனக் கருதுவோம்.

கூலி வகுப் பு	மீடிறன்	குறைந்தவகை திரட்டு மீடி ற ன்	கூடிய வகை திரட்டு மீடிறன்
12 - < 15	5	5	25
15 — < 17 17 — < 19	5 6	10 16	20 15
19 - < 21 $21 - < 23$	5	21	9
21 - < 23	4	25	4

இத்திரட்டு மீடிறன் பரம்பலில் இருந்து பின்வரும் கேள்விகளுக்கு விடைகாண முடியும்.

- (a) 17 ரூபாவிலும் குறையக் கூலி பெறுவோர், 10 பேர் என்பது மூன்ரும் நிரலிலிருந்து பெறப்படும்.
- (b) 19 ரூபாவும், அ<u>திலு</u>ம் கூட கூலிபெறுவோர். 9 பேர் என்பது நான்காம் நிரலிலிருந்து பெறப்படும்.
- (c) 15 ரூபாவும், அதிலும் கூட ஆனுல் 21 ரூபா**வி**லும் **குறைய கூ**லி பெறுவோர் என்பது 5+6+5=16 என இரண்டாம் நிரலிலிருந்தோ அல்லது 21—5==16 என மூன்ரும் நிரலிலிருந்தோ அல்லது 20—4 = 16 என நான்காம் நிரலிலிருந்தோ பெறப்படும்.

மீடிறன் பரம்பலின் வகைகள்: (Types of frequency distribution)

வகுப்பாயிடைகளின் அமைவினே அடிப்படையாகக் கொண்டு மீடிறன் பரம்பல் இருவகைப்படுத்தப்படும்.

- (a) தொடர்ச்சியான வகை (Continuous case)
- (b) பின்னகமான வகை (discreate case)

தொடர்ச்சியான வகை பரம்பல்கள் எனப்படுபவை அடுத்தடுத்து வரும் இரு வகுப்பாயிடைகளில் முறையே மேல் எல்லே, கீழ் எல்லே என்பன ஒரே பெறுமானமுடையவையாக வுள்ளவையாகும். ஆனுல் சில பரம்பல்களில் அவை சமமற்றிருக்கலாம். அவ்வாளுன பரம்பல்கள் தொடர்ச்சியான <u>து</u>ம் **பின்ன**கமான தும் எனப்படும்.

உதாரணம்: 2.3; மேலே விளக்கப்பட்ட உதாரணம் தொடர்ச்சி யான மீடிறென் பேரம்பலுக்கானதாகும், பின்னகமான மீடிறென் பெரம்பல். தொடர்ச்சியான தும் பின்ன கமான துமான மீடிறன் பரம்பல் என்பன இங்கு தரப்படுகின்றன.

பின்னகப் பாம்பல்

*தொடர்ச்சிய*ம் பி**ன்னகமானதுமான பா**ம்பல்

மாறி	மீடிறன்	மா றி வ குப்பு	மீடிற ி
15 25	6 8	0 — 20 21 — 40	4
35 4 5	14 12	41 — 60	7
55	7	61 80	5

இருமாறி மீடிறன் பரம்பல்கள்: (Bi-Variate frequency distribution)

சில தரவுக் கூட்டங்களில் மீடிறன்கள் இரண்டு புள்ளிவியர மாறி **களுடன் சேர்க்கையாக**ப் பெறப்படக்கூடியவையா**கவி**ருக்கும். இவற்றுக் கான மீடிறன் பரம்பல் பின்வரும் உதாரணத்திஞல் விளக்கப்படும்.

உதாரணம்: 2.4:

*	10-<20	20<30	30<40	மொ த்தம்
10—<15	5	6	4	15
15-<20	9	7	2	18
20-<25	6	5	6	14
மொத்தம்	20	18	12	50

தொடர்பு மீடிற**ன்** பரம்பல்கள்*!* (Relative frequency distribution)

ரை மீடிற**ன்** பரம்பலில் ஒவ்வொரு வகுப்பி**ன**தும் மீடிறன் ச**த**வீ**தத்** நிற்கோ அல்லது நியமமாக்கப்பட்ட எண்ணுக்கோ மாற்றப்பட்டு தரப் படுமாயின் அம்மீடிறன்களேக் கொண்ட பரம்பல் தொடர்பு மீடிறன் பரம்பல் எனப்படும்.

உதாரணம்: 2.5; உதாரணம்: 2.1 இனே எடுத்துக்கொள்வோம். இதில் நியமமாக்கப்பட்ட எண் 50 எனக் கொள்க.

கூலி வகுப்பு	மீடிற ன்	நியம் எண்ணுக்கு தொடர்பு மீடிறன்	சதவீ தத்திற்கு தொடர்பு மீடிறன்
13—<15	5	10	20
15<17	5	10	20
17—<19	6	12	24
19—<21	. 5	10	20
21— <23	4	8	16
மொத்த ம்	25	50	100

ஓரமீடிறன் பரம்பல்கள்: (Marginral Frequency distribútions)

இருமாறி மீடிறன் பரம்பல்களிலிருந்து குறித்த ஒரு மாறிக்காக அமைக்கப்படுபவை ஓரமீடிறன் பரம்பல் அல்லது தனிமீடிறன் பரம்பல் எனப்படும்.

x, y என்பன தேரப்பட்ட இரு புள்ளி விபேரமாறிகளாகவும் அவற் றுக்காண இருமாறி மீடிறன் பேரம்பலும் தரப்படின் x இணக்கவனிக் காது y இன் மீடிறேன்களேத் திரட்டிப் பெறப்படுவது y இனதும், yஇணக் வேனிக்காது x இன் மீடிறேன்களேத் திரட்டிப் பெறப்படுவது x இனதும் ஒரமீடிறேன் பரம்பல்களெனப்படும்.

உதாரணம் 2 . 6; உதாரணம் 2 . 4 இணே எடுத்துக்கொள்வோம். x . y என்பனவற்றின் ஒரமீடிறன் பரம்பல்கள் பின்வருமாறிருக்கும்.

X	F
10-<15	15
15—<20	18
20 — < 25	17
- 1 4 -	

Y	F
10-€20	20
20 - < 30	18 ,
30-<40	12

நிபந்தனே மீடிறன் பரம்பல்கள்: (Conditional Frequency distributions)

இருமாறி மீடிறன் பரம்பலில் குறித்தவொரு மாறிக்கு, மற்ற மாறியின் நிலேயான பெறுமானத்துக்கோ அல்லது நிலேயான வகுப் புக்கோ மீடிறன்களேத் தொகுத்துப் பெறப்படுபவை நிபந்தனே மீடிறன் பரம்பல்களாகும்.

உதாரணம்: 2.7; உதாரணம்: 2.4 இண் எடுத்துக்கொள்வோம். X இனது நிபந்தீணப் பரம்பல்கள் பின்வருவனைவாகும்.

10 < y < 20 இற்கு

20 < y < 30இற்கு

30 < y < 40இற்கு

10 < y < 20இற்கு		
X	F	
10—<15	5	
15-<20	9	
30 —<25	6	
	· .	

20 < y < 30இற்கு			
x	F		
10—<15 15—<20 20—<25	6 7 5		
20 - < 25	5		

30 < y <	40இற்கு
x	F
10—<15	4
15<20	2
20-<25	6

y இனது நிபந்த**ுனப் ப**ரம்பல்∎ள் பின்வருவனவாகும்.

<u>10 ≤ x <</u>	15இற்கு
Y	F
10-<20	5
20<30	6
30< 40	4

_13 ≤ X <	20 இந
Y	F
10—<20 20—<30 30—<40	9 7 2

		307- 0
	Y	F ′
	10—<20	6
	20—<30 30—<40	5 6
ı		

20 < 🗙 < 25இற்கு

மீடிறன் அடர்த்தி (Frequency density):

ஓர் வகுப்பாயிடையின் மீடிறன் அடர்த்தி என்பது அவ்வகுப்பில் ஓரலகுக்கான உறுப்புக்களின் எண்ணிக்கையாகும். இவற்றைக் கணிப் பதன் மூலம் / அடர்த்திகூடிய வகுப்பாயிடையை அதாவது தரவுக் கூட்டத்தின் செறிவு வீச்சிண் அறிய முடியும்.

மீடிறு அடர்த்தி = வகுப்பு மீடிற**ன்**/வ**குப்பின் ப**ருமன் ஓர் மீடிறன் பர**ம்பலில் அ**மைந்திருக்க வேண்டியவை.

- (i) புள்ளியியல் **கே**ள்வியை, பொரு**த்தத்தை** திருப்தி செய்**யுமா**று விஞ்ஞான முறையில் **தயா**ரிக்**கப்பட்**டிருத்தல்.
- (ii) முற்ளுக் சுய**மாக, இலகுவாக வி**ளங்கக்கூடி**யதாக இருத்தல்.**
- (iii) நீண்டு ஒடுங்கியதாகவோ அல்லது குறுகி அகன்றதாகவோ இல்லாததாகவிருத்தல்.
- (iv) தர்க்கரீதியாக உறுப்புக்கள் ஒழுங்காக்கப்பட்டிருத்தல்

3. தரவுகளின் குறித்துக்காட்டல், பகுப்பாய்வு, முடிவுகளில் விளக்கமளித்தல்

(Presentation, analysis & Interpretation of data)

3.1. குறித்துக்காட்டல் அல்லது சமர்ப்பித்தல் (Presentation)

வகுப்பாக்கி அட்டவணேப்படுத்தப்பட்ட தரவுக் கூட்டத்தினே, மேலோட்டமான விளக்கமளித்தலுக்காக மேலும் வெளிக்கொணர் தலே குறித்துக்காட்டல் அல்லது சமர்ப்பித்தல் எனப்படும். இதற்கு கேத்திரகணித உருவங்கள். வரைபுகள் பயண்படுத்தப்படுகின்றன. இங்கு எண்பெறுமான தரவுகள் மட்டுமண்றி எண்பெறுமானமைற்ற தரவுகளும் பயன்படுத்தப்படலாம். உருவங்கள், வரைபுகளுக்கேற்ப இவை இரு வகைப்படுத்தப்படும்.

- (a) வரிப்படமூலம் குறித்தல் (Diagramatic Presentation)
- (b) வரைபுமூலம் குறித்தல் (Graphical Presentation)

இதில் முதலாவது முறை பலவகைத் தரவுகளுக்குப் பயண்படுத்தக் கூடியதாகவிருந்த போதிலும் இரண்டாவது முறையே தொடர்ந்த பகுப்பாய்வுகளுக்கு மிக உபயோகப்படுகிறது. பொதுவாக தரவுகளேத் திரட்டுவதும், அவற்றைப் பகுப்பாய்வுக்குத் தயார் செய்வதும் குறித்துக் காட்டலாகும்.

3 . 2. வரைபடங்கள்மூலம் தரவுகளேக் குறித்தல்

கேத்திர கணித உருவங்களின்படி, பரிமாணங்களின்படி வரிப்படங் கள் பின்வருமாறு பாகுபடுத்தப்படும்.

- (i) ஒருபரிமாண வரிப்படங்கள் (One dimentional diagrams)
- (ii) இருபரிமாண வரிப்படங்கள் (Two dimentional diagrams)
- 'iii) முப்பரிமாண வரிப்படங்கள் (Three dimentional diagrams)
- (iv) சித்திரவரையங்கள் (Pictograms)
- (v) புள்ளிவிபர நிலப்படங்கள் (Cartograms)

ஒரு பரிமாண வரிப்படம்—சலாகை வரிப்படம் (Bar diagram):

இவை ஒரே திசையில் நீளத்தில் அளக்கப்படுவதால் சலாகைகளால் அல்லது பார்களால் குறிக்கப்படுகின்றன: சலாகை வரிப்படங்களின் வகைகள் பின்வருவனவாகும்.

- (a) எளிய சலாகை வரிப்படம் (Simple)
- (b) கூருக்கப்பட்ட சலாகை வரிப்படம் (Sub-devided)
- (c) கூட்டு சலாகை வரிப்படம் (Multiple)
- (d) விகிதாசார சலாகை வரிப்படம் (Percentage)
- (c) விலகல் சலாகை வரிப்படம் (Deviation)

இச்சலாகை வரிப்படங்களில் எண்பெறுமானங்களுக்கு விகிதசம மாகுமாறு நீளங்களேயும், சம அகலங்களேயும் கொண்ட செவ்வகங்கள் அல்லது செவ்வக கூட்டங்கள் சம இடைவெளிகளில் கிடையாகவோ அல்லது நிலேக்குத்தாகவோ வரையப்படும். நடு மூன்று வகைகளிலும் ஒவ்வொரு மட்டத்திலும் தரவுகள் வேருக்கப்படுவதற்கு நிறங்கள் அல்லது குறியீடுகள் பயன்படுத்தப்படுகின்றன. இவற்றுக்கான சுட்டிகள் ஒவ்வொரு படத்திலும் காட்டப்படும்.

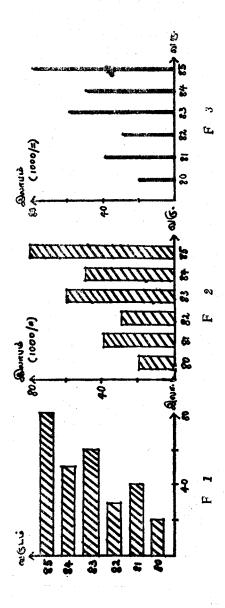
எளிய சலாகை வரிப்படம் :

இவை ஒற்றை மாறியின் வெவ்வேறு மட்டங்களேக் காட்டுவதற்கு வரையப்படும். உதாரணமாக விற்பனே, உற்பத்தி, சனத்தொகை போன்றன இடங்களுக்கோ, காலங்களுக்கோ அமைவாக உள்ள தரவுக் கூட்டங்கள்.

உதாரணம் 3 . 1: ஒரு நிறுவனத்தின் இலாபம் பற்**றிய** விபரம் 1980இலிருந்து 1985 வரை பின்வருமாறு இருந்தது.

வருடம்	(1000 ரூபாக் களில்) இலா பம்
1980	20
1981	40
1982	30
1983	60
1984	50
1985	80

இவ்வகை தரவுகளுக்கு சிலவேளேகளில் கோட்டுவரைப் படங்களும் (Line graphs) வரையப்படுகின்றன. F1, F2 என்பன எளிய சலாகை வரிப் படங்களேயும், F3 கோட்டுவரைப் படத்தையும் காட்டுகிறது.



கூருக்கப்பட்ட, கூட்டுச் சலாகை வரிப் படங்கள்:

இங்கும் மாறியின் வெவ்வேறு மட்டங்கள் ஆஞல் ஒவ்வொரு மட் டத்திலும் கூறுகள் காணப்படும் வகைக்கே வரையப்படுகின்றன.

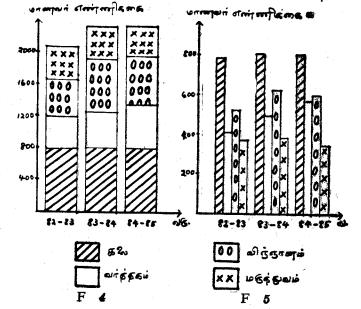
உதாரணம்: 3.2; யாழ்ப்பாண பல்கலேக்கழகத்தில் 1982/83, 1983/84, 1984/85 எனும் கல்வியாண்டுகளில் கல்வி பயின்றுகொண் டிருந்த மாணவர்களின் எண்ணிக்கை பாடநெறிகள் அடிப்படையாக, அண்ணைளவாக பின்வருமாறிருந்தது.

மாணவர் எண்ணிக்கை

பாடநெறிகள்					
வருடம்	# 200	வர்த்தகம்	விஞ்ஞான ம்	மரு த்துவ ம்	<i>மொத்த</i> ம்
1982/83	790	410	520	370	2090
1983/84	810	490	630	<i>380</i> ~	2310
1984/85	800	570	600	340	2310

(மூலம் ; பல்கலேக்கழக மானியங்கள் ஆணேக்குழு)

கூருக்கப்பட்ட, கூட்டுச் சலாகை வரிப்படங்கள் இவ்வுதாரணத் துக்கு முறையே F4, F5 என்பனவற்றுல் காட்டப்படுகின்றன.



வித்தாசார் சலாகை வரிப்படம்:

இது ஒரு மாறியின் வெவ்வேறு மட்டங்கள் கூறுகளுடன் ஆனுல் ஒவ்வொரு மட்டமும் நூற்று வீதத்தில் கூறுகளுடன் தரப்பட்டவறி றுக்கு வரையப்படும். இவை ஒவ்வொரு மட்டத்தினதும் தொடர்பு மாறில் ஆராய்வதற்குப் பயன்படுகின்றன.

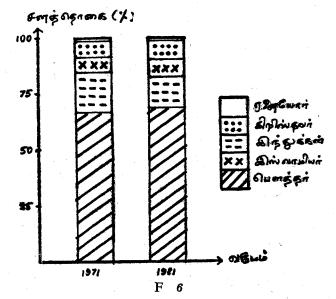
உதாரணம்: 3.3; இலங்கையின் சனத்தொகை 1971ஆம், 1981ஆம் ஆண்டுகளில் குடிசன தொகை மதிப்பீட்டின்போது பின்வெருமாறிருந் தது.

சனத்தொகை (1000இல்)

			ம த ங் கள்		
வருடம்	பௌத்தர்	இந்துக்கள்	இலைரமியர்	கிறிஸ் தவர்	ஏ ஊேயோர்
1971	853 6.9	22 3 8.7	901.8	1004.3	8.3
1981	10288.3	2297.8	1121.7	1130.6	8.3

(மூலம்: புள்ளிவிபர தொகை மதிப்பீட்டுத் திணேக்களம்)

•		1971		1981			
மதங்கள்	1000 இல்	% இல்	திரட்டு%	1000இல்	% Q ė	திர ட்டு %	
பௌ த்த ர்க ள்	8536.9	67.27	67.27	10288.3	69. 3 0	69.30	
இந்துக்கள்	2238.7	17 64	84.91	2297.8	15.48	84.78	
இஸ் லா மியர் கள்	901.8	7.11	92.02	1121.7	7.5 5	92.33	
கிறிஸ் தவர்க ள்	1004.3	7.91	99.93	1130.6	7.61	99. 94	
ஏணேயோர்	8. 3	0.07	100.00	8. <i>3</i>	0.06	100.00	
மொத்தம்	12690.0	100.00	-	14846.8	1 0 0. 0 0		



விலகல் சலாகை வரிப்படம்:

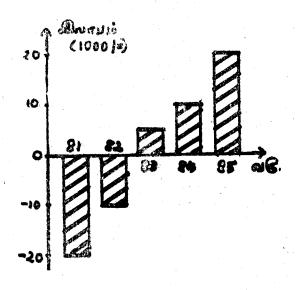
இவ்வகை படங்கள் தேறிய அளவீடுகளே ஒரு மாறியின் வெவ்வேறு மட்டங்களில் காட்டுவதற்குப் பயன்படுகின்றன. உதாரணமாக அதி கம், இலாபம், பற்ருக்குறை, நட்டம் போன்றன இப்படங்களினுல் காட்டப்படும்.

உதாரணம்: 3.4; ஒரு நிறுவணத்தின் 1981 இலிருந்து 1985 வரையி லான வரவு, செலவுகளேப் பின்வரும் அட்டவணே தருகிறது.

ஆயிரம் ரூபாக்களில் வரவு, செலவு

வருடம்	வரவு	செலவு	இலாபம்
 1981	50	70	20
1982	60	70	_10
198 3	80	75	+ 05
1984	100	90	+10
1985	120	100	+ 20

இங்கு இலாபத்திற்கான விலகல் சலாகை வரிப்படம் F7இல் தரப் பட்டுள்ளது.



F 7

இருபரிமான, முப்பரிமாண வரிப்படங்கள்:

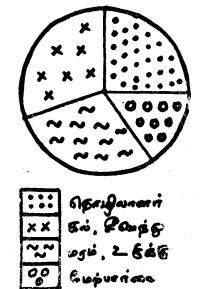
இருபரிமாண வரிப்படங்கள் இரு நிசைகளில் அளக்கப்படுவதால் வட்டங்கள், சதுரங்கள், செவ்வகங்கள் போனுறனவற்றின் பரப்புகளால் தரவுகள் குறிக்கப்படுகின்றன. ஒரு வட்டத் தினுளிளே கூருக்கிக் குறிக்கப்படுகின்றன. ஒரு வட்டத் தினுளினே கூருக்கிக் குறிக்கப்படும் படங்கள் பரிதி வரைப்படங்கள் (Pie diagrams) எனப்படும். முப்பரிமாணை வரிப்படங்கள் மூன்று திசைகளில் அளக்கப்படுவதால் செவ்வக குறிறிகள், கனங்கள், உருளேகள் என்பனவற்றின் கணவளவுகளால் தரவுகள் குறிக்கப்படுகின்றன.

பரிதி வரைப்படம் (Pie diagrams)

தரவின் கூறுகளின் விகிதசமத்திற்கேற்ப வட்ட பரிதியைப் பாகை களால் பிரித்துப் பரப்புகளில் (ஆரைச் சிறைகளில்) குறிக்கப்படுபவை பரிதி வரைப்படங்கள் ஆகும்.

உதாரணம்: 3,5; ஒரு கட்டிட நிர்மாணத்தின்போது செலவுகள் பல்வேறு வகைகளில் நூற்று வீதத்தில் பின்வருமாறிருந்தன. இதற்கான பரிதி வரைபடம் F8இல் தரப்படுள்ளது,

ി ഴയ ലു ഖങ്ടെ	செலவு வீ தம்	பரிதி பாகை
தொழிலாளர்	25%	90
கல், சிமெந் <i>து</i>	3 0 %	108
மரம், உருக்கு	30 %	108
மேற்பார்வை	15%	54
மொ <i>த்த</i> ம்:	100%	<i>36</i> 0



F 8

இத்தேர வரையங்கள் (Pictogram):

தரவு கூட்ட மட்டங்கள் ஒவ்வொன்றும் மடங்குகளாக மாற்றப் பட்டு மடங்குகளின் எண்ணிக்கையளவு பொருத்தமான சித்திரங்களே வரைந்து காட்டுதல் சித்திரவரைய**ங்கள்** எனப்படும்,

உதாரணம்: 3.6; ஓர் கார் தொழிற்சாலேயின் கார் உற்பத்தி 1980—81, 1982—83, 1984—85 எனும் வருடங்களில் முறையே அண்ணைவாக 500, 750, 875 ஆகவிருந்தன.

இ**தற்கான சித்**திர **வரை**யம் F9இல் தர**ப்பட்டுள்ளது.**

અહ.	100 ~ 250 600 em
1980]	多色
1982] 1983]	ஷைஷ
1984) 1985)	क्रिक्कक्र

F 9

புள்ளி விபர நிலப்படங்கள் (Cartograms)

இவை புள்ளியியல் ரீதியான புறவுருவப் படங்களில் அவற்றுடன் தொடர்பான சனத்தொகை, மழைவீழ்ச்சி போன்றளவைற்றைக் குறித்துக்காட்டப் பயன்படும். (இது ஒரு தனியான பகுதியாதலால் இங்கு சேர்த்துக் கொள்ளப்படவில்ஃ).

3 . 3. வரைபு முறை குறித்துக்காட்டல்கள்

வகுப்பாக்கி அட்டவணேப்படுத்தப்பட்ட தரவுகள் கேத்திரகணித வரைபுகளாலும் சமர்ப்பிக்கப்படலாம். ஓர் கணிதவியலாளனுக்கு வரிப்படமுறையைவிட வரைபுமுறை முக்கியமானதாகும். ஏனெனில் தொடர்ந்த பகுப்பாய்வுகள் யாவும் கணித வரைபு முறையிலேயே அணுகப்படுகின்றன. வரைபு முறை குறித்துக்காட்டல்கள் பின்வரும் படிகளுடேயே நடைபெறுகின்றன.

- (a) இழைவரையம் (Histogram)
- (b) மீடிறன் பல்கோணி (Frequency polygon)
- (c) மீடிறன் வளேயி (Frequency Curve)
- (d) திரட்டு மீடிறன் வளயிகள் அல்லது ஒகிவுகள் (Cumulative frequency curves or Ogives)

இழைவரையம்

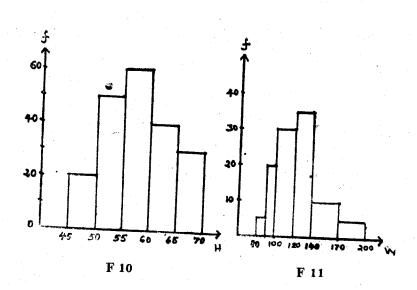
இவை எளிய சலாகை வரிப்படங்களின் நிலேக்குத்தான வகை போல் ஆஞல் தொடர்ச்சியானவையாக, அதாவது செவ்வகங்க ளிடையே இடைவெளிகளின்றி வரையப்பட்டுப் பெறப்படுபவையாகும். சம அகலங்களேக் கொண்ட வகுப்பாயிடைகளுக்கு X அச்சில் சம அகலங்களிலும், வகுப்பு மீடிறண்கள் Y அச்சில் உயரங்களிலும் குறிக்கப்பட்டு செவ்வகங்கள் அமைக்கப்படும். வகுப்பு அகலங்கள் சமமற்ற வகையில் X அச்சில் அகலமும் ஆஞல் வகுப்புமீடிறன் செவ்வகத்தின் பரப்புக்கு விதிதசமமாகுமாறு Y அச்சில் உயரமாகவும் குறிக்கப்படும்.

உதாரணம் 3 . 7; ஒருபாடசாஃயில் கல்விகற்ற 200 மாணவர்களின் உயரங்கள், நிறைகள் பெற்றிய விபரங்கள் பின்வரும் இரு மீடிறன் பரம் பல்களிருல் தரப்படுகின்றன

உயர வகுப்பு H (அங்குலங்களில்)	மாணவர் எண்ணிக்கை f
45-50	20
50—55	50
55 —60	60
6 0 — 65	40
65—7 0	30

மாணவர் f எண்ணிக்கை
5
20
60
70
30
15

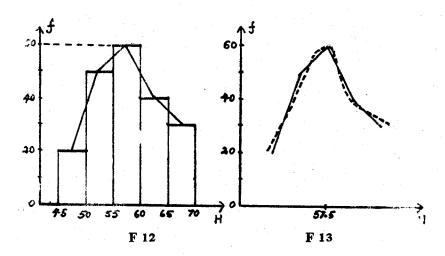
இங்கு உயரபரம்பல் சம அகல வகுப்பாயிடைகளேயும் ஆணுல் நிறைப்பரம்பல் சமமற்ற அகல வகுப்பாயிடைகளேயும் உடையதைக் காணலாம். எனவே நிறைப்பரம்பலின் கடைசி நான்கு வகுப்பாயிடைகளுக்குமான மீடிறன்கள் மாற்றப்படவேண்டியவை. இதில் நடு இரண்டும் முதல் இரண்டை விட இருமடங்கு அகலமுடையதால் மீடிறன் அரை மடங்காகவும். இறுதி இரு வகுப்புக்களின் அகலங்கள் மும்மடங்காக இருப்பதால் மீடிறன் மூன்றி வாருபங்காகவும் மாற்றப் பட்ட மீடிறன்கள் முறையே 5, 20, 30, 35, 10, 5 என்பன ஆகும். மேலே தரப்பட்ட இருவகை பரம்பல்களும் முறையே F 10, F 11, என்பனவற்றில் தரப்பட்டுள்ளன.



மீடிறன்பல்கோணியும், மீடிறன்வளேயியும்:

மாறிக்கு எதிராக மீடிற**ன்** குறித்த பு**ல் விக**ேன், அதாவது இழை வரையத்தின் உச்சிப்புள்ளிகள் ஒழுங்காக அடுத்தடுத்து இணத்துப் பெறப்படும் உருவம் மூடப்படாத பல்கோணியுருவிலிருக்கும். இது மீடிறன் பல்கோணி எனப்படும். இம்மீடிறன் பரம்பலின் வகுப்பா யிடை அகலங்களேக் குறைக்கும்பொழுது வகுப்பாயிடைகளின் எண்**ணிக்** கைகள் கூடும். அப்போது மீடிறன் பல்கோணியின் பக்கங்களின் எண்ணிக்கை கூடுவதால் மேலும் அகலம் குறைக்கப்படும் பொழுது மீடிறன் பல்கோணி ஓர் வளேயியாக உருமாறும், இது மீடிறன் வளேயி எனப்படும். அல்லது மீடிறன் பல்கோணியின் மருவீச் செல்லுமாறு

உதாரணம் 3.8; உதாரணம் 3.7 இலுள்ள உயரத்துக்கான மீடிறன் பரம்பலே எடுத்துக்கொள்வோம். மீடிறன் பல்கோணியும், மீடிறன் பல்கோணியும், மீடிறன் வளயியும் F12, F13இல் தரப்பட் டுள்ளன.F13இல் கோட்டுத்துண்ட வளேயி மீடிறன் வளேயியாகும்.



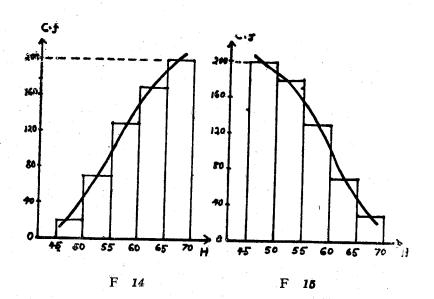
திரட்டு மீடிறன் வளயி அல்லது ஒகிவு :

மீடிறன் பரம்பலொன்றுக்கு இரண்டுவகை திரட்டுமீடிறன்களேக் காணமுடியும் என முன்பு வீளக்கப்பட்டுள்ளது. மீடிறன் பல்கோணியி லிருந்து மீடிறன் வளேயி எவ்வாறு பெறப்பட்டதோ அதேபோல் இரண்டுவகை திரட்டு மீடிறன்களாலும் அமைக்கப்படும் இருவகை திரட்டு மீடிறன் பல்கோணிகளிலிருந்த முறையே இரண்டுவகை திரட்டு மீடிறன் வளேயிகளேயும் பெறமுடியும். இவை பொதுவாக ஒகிவு எனவும் சொல்லப்படும்.

உதாரணம் 3 . 9 : உதாரணம் 3 . 7 இலுள்ள உயரத்துக்கான மீடிறைப்பைம் வடுத்துக்கொள்வோம். திரட்டுமீடிறன் அட்டவண் பின்வருமாறிருக்கும் :

உயர வகுப்பு	மீ டி ற ன்	குறைந் த வகை திர ட் டு மீடிறன்	கூடியவகை திரட்டு மீடிறன்
45—50	20	20	200
50 —55	50	70	180
55 60	6 0	130	130
60—65	40	170	70
65—70	30	200	30

குறைந்தவகை, கூடியவகை திரட்டுமீடிறன் வளேயிகள் முறையே F14, F15இல் காட்டப்பட்டுள்ளன.

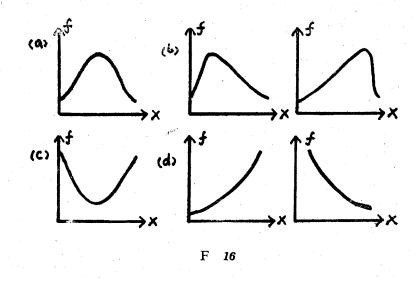


முன்னுள்ள அத்தியாயத்தில் தொடர்பு மீடிறன் விளக்கப்பட்டுள் ளது. அதற்கு தொடர்பு திரட்டு மீடிறன் காணமுடியும். இத் தொடர்பு திரட்டு மீடிறனுக்கும் இதேபோன்ற ஒகிவுகளே வரைய முடியும். இதன்மூலம் மீடிறன் பரம்பல்கள் ஒப்பிடப்படுகின்றன.

மீடிறன் வீளயிகளின் வகைகள் (Types of frequency Curves)

- (a) சமச்சீர் வளேயிகள்
- (b) சமச்சீரற்ற வளாயிகள்
 - (i) இடப்பக்கம் சரிந்த வ**ோயிகள்**
 - (ii) வலப்பக்கம் சரிந்த வளேயிகள்
- (c) U வடிவ வீளயிகள்
- (d) J வடிவ வளேயிகன்

இவை முறையே படம் F16இல் தரப்பட்டுள்ளன.



லோறன்ஸ் வளேயி (Lorenz Curve):

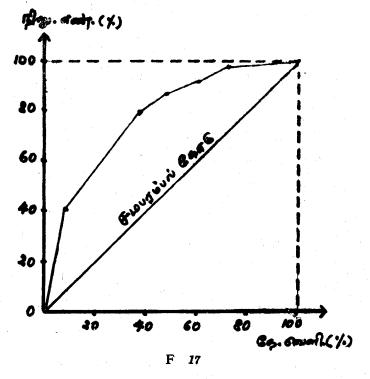
லோறன்ஸ் வளேயி தொடர்பு திரட்டு மீடிறன் வளேயிக்குத் தொடர் புடையதாகும். ஓர் மீடிறன் பரம்பலில் அதற்குத் தொடர்பாக இன்னு மொரு சிறப்பியல்பு தரப்படுமாயின், அதாவது ஒவ்வொரு வகுப்பா யிடைக்கும் ஒத்த இன்னெரு மாறிப் பெறுமானங்கள் தரப்படுமாயின் மீடிறனுக்கும் அம்மாறிக்குமே இவ்வளேயி வரையப்படும். ஆனுல் அவை திரட்டாக மாற்றப்பட்டு சதவீதத்தில் வரைவுபடுத்தப்படும்.

உ**தாரணம் 3 . 10** : ABC கம்பனி பற்றிய விபரங்கள் :

ஈராசரி தொழிலாளர் களின் எண்ணிக் கை	நிறு வனங்களின் எண்ணிக்கை	தேறிய வெளியீடு (மில்லியன் ரூபாக்களில்)
20 -< 200	205	16
200 —< 600	200	60
600 — < 1000	3 5	18
1 00 0 — < 1 5 00	3 0	2 6
1500 — < 2000	20	26
2000 —< 3000	10	54

நிறுவனங்களின் எண்ணிக்கை	தி ரட்டு மீடிற ன்	திர ட் டு வீ த ம்	தேறிய வெளியீடு	திரட் டு வெளியீடு	த ரட்டு வீ த ம்
205	205	41	16	16	8
200	405	81	60	76	38
35	440	88	18	94	47
<i>30</i>	470	94	26	120	60
20	490	98	26	146	73
10	500	100	45	200	100

இங்கு வகுப்பாயிடைகள் கவனத்தில் கொள்ளப்படவில்லே என்ப தணேக் கவனிக்கவும்.



ஓர் குறிப்பிட்ட கணியம் (தேறிய வெளியீடு) குடியினூடு சம**மாகப்** பரப்பப்பட்டுள்ளதா என வரைபு முறையில் அறிவதற்கு வோறன்ஸ் வளேயி பயன்படும்.

லோறன்ஸ் வளயிகளின் பயன்கள்:

சேமிப்பு, வரிவழங்கல், இலாபம், வித்தியாசமான குழுக்களில் உற் பத்தி, பரீட்சைப் புள்ளிகள், கூலி ஆகியவற்றின் பரம்பல்களுக்கு இவை மிக உபயோகமானவை.

3.4. தரவுகளின் பகுப்பாய்வு, விளக்கமளித்தல்

வகுப்பாக்கி அட்டவணேப்படுத்தப்பட்ட தரவுகளில் மேலோட்ட மாக விளக்கங்களே அளிப்பதற்கு வரிப்பட அல்லது வரைபுமுறை குறித் துக் காட்டல்களேப் பயன்படுத்தலாம். ஆஞல் இவ் விளக்கங்கள் கணித விஞ்ஞான முறையில் அநேகமாக அமைந்திருப்பதில்லே. அதாவது திட்டவட்டமான விளக்கங்களேத் தருவதில்லே. எனவே தொடர்ந்த பகுப்பாய்வுகள் அவசியமாகும். இதற்கு முன்பு விளக்கப்பட்டபடி மீடிறன் வளயிகளே பயன்படுத்தப்படுகின்றன. ஏனெனில் ஒரு தரவுக் கூட்டத்தின் வகுப்பாக்கம், ஒழுங்கு, சமர்ப்பணங்களே ஓர் மீடிறன் பரம்பலே கணிதமுறையில் தருகின்றது. எனவே ஓர் தரவுக் கூட்டத் தைப் பகுப்பாய்வு செய்வதற்கு அதன் மீடிறன் வளேயியைப்பற்றி ஆராய்தல் போதுமானதாகும். பொதுவான மீடிறன் வளேயியைப் பற்றிய ஆய்வுகள் பின்வருவனவாகும்.

- (a) மையநாட்ட அளவை (Measure fo Central Tendency)
- (b) விலகல் அளவை (Measure of dispersion)
- (e) ஓராய அளவை (Measure of Skewness)
- (d) குடில அளவை (Measure of Kurtosis)

மையநாட்ட அளவையும், விலகலளவையும்:

ஓர் தரவுக் கூட்டப் பெறுமானங்களே நோக்குவோமாயின் அவற்றில் பெரும்பாலானவை ஓர் மையப் பெறுமானத்தைச் சூழ்ந்து காணப் படுவதைக் காணலாம். இதனே மீடிறன் வளேயியின் வடிவம் இலகுவாகத் தரும். எனவே இம்மையப் பெறுமானத்தை ஆராய்ந் தறிதல் அவசியமாகும். இதனே அளவிடுவதற்காக வரையறுக்கப்படு மளவைகள் மையநாட்ட அளவைகள் எனப்படும். மேலும் பெறுமானங்கள் குறிப்பிட்டளவு சிதறியும் காணப்படும். எ**னவே இதன்** சிதறல் அல்லது விலகல் பற்றி ஆராய்ந்தறிதலும் அவசியமாகிறது. இதனே அளவிடுவதற்காக வரையறுக்கப்படு மளவைகள் விலகல**ளவைகள்** எனப்படும். இவையிரண்டும் மிக முக்கியமான அளவைகளாகும்.

ஒராய அளவையும், குடில அளவையும்:

ஓர் தரவுக்கூட்ட மையப் பெறுமானம், விலகல் அளைக்கப்பட்டா லும், அம்மையப் பெறுமானம் சார்பாகத் தரவுக்கூட்டப் பெறுமா னங்கள் சமச்சீரானதா, இல்லேயா என்பதை ஆராய்தலும் அவசிய மாகும், இதனே மீடிறன் வளேயி இலகுவாகக் காட்டியபோதிலும் அளவைகள் ஒப்பீட்டு ரீதியாக முக்கியமானவை. இவ்வளவைகள் ஓராய அளவைகளெனப்படும். மேலும் ஓர் நியம தரவுக் கூட்டம் அவ்லது உத்தம தரவுக்கூட்டம் ஓர் உத்தம அல்லது நியம மீடிறன் வளேயியைக் கொண்டிருக்கும். எனவே இவ்வளேயி சார்பாகத் தரப்படும் பரம்பல் களின் வளேயிகள் தட்டையானவையா அல்லது குவிந்து உயர்ந்தவையா என்பதை அறிவது அவசியமாகும். இதற்கான அளவை குடில அளவை

முடிவுகளில் விளக்கமளித்தல்; (Interpretation of Results)

பகுப்பாய்வுபற்றிய விடயங்கள் மேலே விளக்கப்பட்டுள்ளன. பொது வான நான்குவகை பகுப்பாய்வுகளும் ஒவ்வொரு தரவுக்கூட்டத்திலும் மேற்கொள்ளப்படும். இப் பகுப்பாய்வு முடிபுகள் உதாரணமாக இடை, நியம விலகல், ஓராயம், குடிலம் பற்றிய கணிப்பீடுகள் விளக்கமளித் தலுக்கு எடுத்துக்கொள்ளப்பட்டு விளக்கங்கள் மேற்கொள்ளப்படும். பின்வரும் அத்தியாயங்களில் இவற்றைக் காணலாம்.

4. மையநாட்ட அளவைகள் (Measure of central terderey)

ஒரு தரவுக் கூட்டத்தின் மையப்பகுதியில் அவை கொத்தாக இருப் பதனுல் மையநாட்ட அளவை முக்கியமானது என முன்பு விளக்கப் பட்டுள்ளது. அதாவது புள்ளிவிபரமாறியிணப் பிரதிபலிக்கும் தரவுக் கூட்ட மையப் பெறுமானத்திண் அறிவதற்கு மையநாட்ட அளவை பிரயோசனப்படுகிறது.

ஒரு மையநாட்ட அளவையின் உடமைகள் :

- (i) புள்ளிவிபரமாறியின் பெறுமானுங்களின் அலகிடுமை, பரிமாணத் திடுமையே இதுவும் கொண்டிருக்கும்.
- (ii) தரவுக்கூட்டப் பெறுமானங்கள் **யாவற்றையும் பயன்படுத்**தி**த்** திட்டமான சூத்திரத்திஞல் வரையறுக்கப்பட்டிருக்கும்,
- (iii) எளிய கணிப்பீட்டிகோக் கொண்டிருப்பதோடு, மாதிரி ஏற்ற இறக்கம் (Fluctuation) மிகச் சிறிதாக இருக்கும்.
- (iv) தொடர்ந்த கணித செய்கைகளுக்கு உட்படுத்தப்படக்கூடியவாறு வரையறுக்கப்பட்டிருக்கும்:

பொதுவான மையநாட்ட அளவைகள் :

பொதுவாக வழக்கத்திலுள்ள மையநாட்ட அளவைகள் மூ**ன்று** வகையாகும். அவையாவன :

- (a) இடை அவ்வது சராசரி (Mean or average)
- (b) இடையம் (Median)
- (c) ஆகாரம் அல்லது முகடு (Mode) என்பனவாகும்.

4 . 1. இடை

இடைகள் அல்லது சராசரிகள் மூன்று வகைப்படும். அவையாவன:

- (a) கூட்டலிடை (Arithmetic mean)
- (b) பெருக்கவிடை (Geometric mean)
- (c) இசையிடை (Harmonie mean)

கூட்டலிடை :

கூட்டற் சூத்திரத்திஞல் வரையறுக்கப்படும் சராசரிகள் கூட்ட லிடைகளாகும். தரப்பட்ட புள்ளிவிபரமாறியினே X எனவும் அது எடுக் கும் பெறுமானங்களே X₁, X_{2,0}.......X_n எனவும் கொள்வோம். மேலும் மீடிறன் பரம்பலில் அவற்றின் மீடிறன்களே முறையே f_1 , f_2 f_n எனவும் கொள்வோமாயின் AM அல்லது X என்பதனுல் குறிக்கப்படும் கூட்ட விடை பின்வருமாறு வரையறுக்கப்படும்.

$$\overline{X} = \frac{f_1 \times 1 + f_2 \times 2 + \dots + f_n \times n}{f_1 + f_2 + \dots + f_n}$$

$$\begin{array}{ccc}
 & & \text{fi} \times i \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

இங்கு மொத்த மீடிறன் ∑ fi = N எனக் குறிக்கப்படும்.

மீடிறனற்று அதாவது தரவுக்கூட்டப் பெறுமானங்கள் ஒற்றைப் பெறுமானங்களாயிருப்பின்:

$$X = \sum xi/N$$
 ஆகும்.

உதாரணம் 4.1: ஒரு பாடசாஃயில் தேர்ந்தெடுக்கப்பட்ட பத்து மாணவர்கள் ஒரு பரீட்சையில் பெற்ற புள்ளிகள் முறையே 45, 55, 50, 75 65, 60, 80, 40, 60, 50 எண்பனவாயின் அவற்றின் கூட்ட லிடை அதாவது அவர்கள் பெற்ற சராசரிப்புள்ளி,

$$\bar{X} = \frac{1}{10} (45 + 55 + 50 + 75 + 65 + 60 + 80 + 40 + 60 + 50)$$

$$=\frac{1}{10} \times 580 = 58$$
 புள்ளிகள் ஆகும்.

உதாரணம் 4.2: ஒரு தொழிற்சாஃயில் வேஃலசெய்யும் 70 தொழி லாளர்கள் ஒரு வாரத்தில் பெறும் ஊதியம் பற்றிய விபரங்களேப் பின் வரும் மீடிறன் பரம்பல் தருகிறது.

ஊ தியம் (ரூபா வி ல்) X	தொழிலாளர் எண்ணிக் கை F
10	12
20	16
30	20
40	14
50	8

இத் தொழிலாளர்கள் பெற்ற சராசரி ஊதியம் பின்வருமாறு கணிக் கப்படும்.

$$\overline{X} = rac{12 imes 10 + 16 imes 20 + 20 imes 30 + 14 imes 40 + 8 imes 50}{12 + 16 + 20 + 14 + 8}$$

$$= rac{2000}{70} = 28.57$$
ருபாக்கள் ஆகும்.

குறிப்பு :

இரண்டு உதாரணங்களும் பின்னகமான மீடிறன் பரம்பல்களில் எவ்வாறு கூட்டலிடைகள் கணிக்கப்படுகின்றன என்பதணேக் காட்டு கின்றன. பின்வரும் உதாரணம் தொடர்ச்சியான மீடிறன் பரம்பலில் கணிப்பீடுகளே விளக்குகிறது.

உதாரணம்: 4.3: ஒரு பாடசால்யிலுள்ள 100 மாணவர்களின் உயரங்கள் பற்றிய விபரங்களேப் பின்வரும் மீடிறேன் பரம்பல் தருகிறது.

உயரம் (அங்குலங்களில்) X	மாணவர் எண்ணிக்கை F
45— < 50	15
5 0—< 55	25
55—<60	<i>35</i>
60—<65	20
65—<70	5

இவ்வகைகளுக்கு ஒவ்வொரு வகுப்பினதும் மாறிப் பெறுமானமாக அவ் வகுப்பின் மையப் பெறுமானம் எடுத்துக்கொள்ளப்படும். அதா வது இத்தொடர்ச்சிவகை மீடிறன் பரம்பல்கள் பின்னகப் பரம்பல்க ளாகக் கருதப்பட்டுக் கணிப்பீடுகள் மேற்கொள்ளப்படும். இங்கு சில வேளேகளில் ஒரு குறித்த வகுப்பின் மத்திய பெறுமானம் அவ்வகுப்பி ஆள்ள பெறுமானங்களேப் பிரதிபலிக்காமல் விடக்கூடும். இருப்பினும் இம்முறையே ஓரளவு திருத்தமான சரிசாரிகளேத் தருகின்றது.

மத்திய பெறுமானம் (அங்குலங்களில்) X	மாணவர் எண் F	FX
47.5	15	712.5
52.5	25	1312.5
57.5	<i>35</i>	2012.5
62.5	20	1250.0
67.5	5	337.5
<i>மொத்த</i> ம்	100	5625.0

இ**ம்மாணவ**ர்களின் சராசரி உயரம்,

$$\bar{X} = \frac{\sum fx}{\sum f} = \frac{5625}{100} = 56.25$$

அங்குலங்கள் ஆகும்.

கூட்டலிடயின் உடமைகள்:

(t) தரவுக்கூட்டத்தின் ஒவ்வொரு பெறுமானங்களினதும் கூட்ட லிடையிலிருந்தான விலகல்களின் கூட்டுத்தொகை பூச்சிய மாகும்.

அதாவது
$$\sum_{i=1}^{n} (xi - \overline{x}) = 0$$

စားကြောက်း
$$\overline{X} = \frac{\sum xi}{n}$$
 $\longrightarrow \sum xi = n \overline{x}$
 $\longrightarrow \sum xi - n \overline{x} = 0$
 $\longrightarrow \sum (xi - \overline{x}) = 0$

(ii) X தரப்பட்ட புள்ளி விபரமாறி யாவும் a, b என்பன மாறிலி களாகவும் இருக்கும்போது புதிய புள்ளிவிபரமாறி y ஆனகு.

y = ax + b என வரையறுக்கப்படுமாயின் y = ax + b ஆக விருக்கும்:

ஏனெனில் X இன் பெறுமானங்கள் $x_1, \, x_2, \dots$, Xn என்பண வற்றை எடுத்துக்கொள்வோமாயின் $y_1 = ax_1 + b$, $y_2 = ax_2 + b$,, $y_n = ax_n + b$ ஆகும். இவ் n சமன்பாடுகளேயும் கூட்ட

(iii) உடமை (ii) இணே விரிப்போமாயின் அதாவது z = au + bv + cw + dx + ey எனும் தொடர் பின் u, v, w, x, v என்பன புள்ளி விபரமாறிகளாகவும் a, b, c, d, e என்பன மாறிலிகளாகவுமிருக்குமாயின்

 $\overline{Z} = a \overline{U} + b \overline{V} + c \overline{W} + d \overline{X} + e \overline{Y}$ ஆகும். இங்கு ஏக பரிமாண (நேர்கோட்டு) தொடர்பு முக்கியமான தாகும்.

சுருக்கு முறை (Coding method)

புள்ளி விபரமாறி X இன் பெறுமானங்கள் பெரியவையாக இருக்கு மாயின் உடமை (ii) இணப் பிரயோகிப்பதன் மூலழ் கிறிய பெறுமானங் களே எடுக்கும் புதிய புள்ளி விபரமாறி Y இணே வரையறுத்துக் கணிப் பீடுகளே இலகுவாக்கலாம்.

உதாரணம்: 4.4; உதாரணம்: 4.3இலுள்ள மீடிறன் பரம்ப**ி** எடுத்துக்கொள்வோம்.

х	F	$y = \frac{1}{5}(x-575)$	FY	
47.5 52.5 57.5 62.5 67.5	15 25 35 20 5	- 2 - 1 0 1 2	-30 -25 0 20 10	$\frac{\mathbf{Y} = \mathbf{\Sigma} \mathbf{f} \mathbf{y}}{\mathbf{X} \mathbf{f}}$ $= \frac{-25}{100}$
 மொ <i>த்த</i> ம்	100	_	2 5	= -0.25

$$y = \frac{1}{5} (x - 57.5) \longrightarrow y = \frac{1}{5} (x - 57.5)$$

$$x = 57.5 + 5 y$$

$$= 57.5 - 5 \times 0.25$$

🛥 56.25 அங்குலங்கள்

இதனே உதாரணம் 4.3 இன் விடையுடன் ஒப்பிடுக.

,கூட்டு மீடிறன்பரம்பலின் கூட்டலி**டை**

பல மீடிற**ை ப**ரம்பல்கள் கூட்டமாகத் **த**ரப்படும்பொழுது அவற் றின் **பொ**துவான கூட்டலிடையை ஒவ்வொரு மீடிறன் பரம்பலினதும் கூட்டலிடைகளேப் பயன்படுத்திப் பெறமுடியும்.ஒவ்வொன்றும்முறையே n_1, n_2, \dots, n_k உறுப்புக்களேக் கொண்ட k மீடிறன் பரம்பல்கள் கூட்ட மாகத் தரப்பட்டுள்ளன எனக் கொள்வேம். அவற்றின் கூட்டலிடைகளே முறையே $\overline{X}_1, \overline{X}_2, \dots, \overline{X}_k$ எனவும் கொள்வோம்.

மீடிறன் பரம் பல்	பரம்பல் அவதானிப்புகள்	மொத்தங்கள்	இடைகள்
1	X ₁₁ , X ₁₂ ,, X _{1nt}	X _{i=i} X _{ij}	\overline{X}_1
2	$X_{21}, X_{22},, X_{2n2}$	j=i Aij	$\overline{X_2}$
3	X_{31} , X_{43} ,, X_{3n3}		212

		Process	*****
	Whatel		
k	X_{k_1} , X_{k_2} ,, X_k n_k	nk ∑ j= i Xkj	\overline{X}_{k}

 \geq ni = N---(2)

 $(1),(2) \longrightarrow \sum_{\substack{i \ j \ \\ \overline{X} \text{ni} \ i}} \sum_{\substack{i \ j \ \\ \overline{X}} \text{ni} \ \overline{X} \text{i}} = \frac{\sum_{\substack{i \ N}} \text{ni} \overline{X} \text{i}}{N}$ $\longrightarrow \overline{X} = \frac{\sum_{\substack{i \ N}} \text{ni} \overline{X} \text{i}}{N}$

உதாரணம் 4.5:

ஒரே விளுத்தாளில் விடையளித்த, முறையே 25, 40, 60 மாண வர்களேக்கொண்ட வகுப்புகள் A, B, C என்பணவற்றின் சராசரி புள்ளிகள் முறையே 55, 60, 65 என்பணவாகும். மூன்று வகுப்புக்களும் ஒரே வகுப்பாகச் சேர்க்கப்படின் சராசரிப் புள்ளி என்னவாகும்.

$$n_1 = 25$$
, $n_2 = 40$, $n_3 = 60 \longrightarrow N = 125$
 $\widetilde{X}_1 = 55 \ \widetilde{X}_2 = 60$, $X_3 = 65$
சேர்க்கப்பட்ட கூட்டு வகுப்பின் சராசரி \widetilde{X} ஆயின் $\widetilde{X} = \frac{n_1\widetilde{X}_1 + n_2\widetilde{X}_2 + n_3X_3}{N}$
 $= \frac{1}{125} (25 \times 55 + 40 \times 60 + 60 \times 65)$
 $= \frac{7675}{125} = 61.4$ புள்ளிகள்.

பெருக்கலிடை:

பெருக்கற் சூத்திரத்திஞல் வரையறுக்கப்படும் சராசரிகள் பெருக்க லிடைகளாகும். புள்ளிவிபரமாறி N இன் பெறுமானங்கள் X_1 X_2 , ..., X_n என்பன முறையே மீடிறண்கள் f_1 , f_2 , ..., f_n உடன் மீடிறன் பரம்ப லாகத் தரப்படின் GM என்பதஞல் குறிக்கப்படும் பெருக்கலிடை பின்வருமாறு வரையறுக்கப்படும்.

$$GM = \begin{pmatrix} f_1 & f_4 & f_n \\ X_1 & X_2 & \dots & X_h \end{pmatrix} \frac{1}{N} \quad \text{wis} N = \sum_{i=1}^n f_i$$

$$= \begin{pmatrix} \frac{n}{i+1} \times i \end{pmatrix} \frac{1}{N}$$

மீடிறனற்ற தரவுக் கூட்டத்திற்கு

$$GM = \left(\underset{i=1}{\overset{n}{\square}} \times i \right) \frac{I}{n}$$

உதாரணம்: 4.6;

ஒரு நாட்டின் சனத்தொகை முதல் பத்தாண்டுகளில் 20% இனுலும், அடுத்த பத்தாண்டுகளில் 25% இனுலும், கடைசி பத்தாண் டுகளும் 44% இனுலும் அதிகரித்திருந்ததாகக் காணப்பட்டது. பொது வான சராசரி பத்தாண்டு அதிகரிப்பு வீதத்தைக் காண்க.

இங்கு கூட்டலிடை பொருத்தமற்றதகுகும். ஏனெனில் ஒவ்வொரு அடுத்தடுத்த பத்தாண்டு அதிகரிப்பு வீதமும் ஒன்றிலொன்று தொடர் புடையது. இதற்கு வரைவிலக்கணத்திலிருந்து பெருக்கலிடையே சிறந்ததாகும். எனவே சராசரி அதிகரிப்பு வீதம்:

G =
$$(20 \times 25 \times 44)^{\frac{1}{3}}$$

 $\omega \subseteq G = \frac{1}{3} \quad \omega \subseteq (20 \times 25 \times 44) = 1.4475$
 $G = 28.02\%$

பெருக்கலிடைகளின் உடமை:

x, y என்பவ இரு புள்ளி விபர மாறிகளாயின் w = xy, z = x/y என்பவற்றுக்குரிய பெருக்கலிடைகள் x, y என்பவைற்றின் பெருக்க லிடைகளால் தரப்படலாம்.

அதாவது
$$G_w = G_x G_y$$
 , $G_z = G_x / G_y$
ஏனெனில்,
$$G_x = (x_1 x_2 x_n)_n^1$$
$$G_y = (y_1 y_2 y_n)_n^1$$
$$G_x G_y = (x_1 x_2 x_n)_n^1 (y_1 y_2 y_n)_n^1$$
$$= [(x_1 y_1) (x_2 y_2) x_n y_n)]_n^1$$
$$= (w_1 w_2 w_n)_n^1 = G_w$$

இதேபோல் Gz உம் காட்டப்படலாம்.

இசையிடை :

இசையிடை என்பது கூட்டலிடைக்குத் தொடர்புடையதாகும் தரவுப் பெறுமானங்களின் தஃலகீழ்களின் கூட்டல் சராசரியின் தஃலகீழ் இசையிடை என வரையறுக்கப்படும். புள்ளிவிபர மாறி Xஇன் பெறு மானங்கள் X_1 , X_2 , X_3 , X_4 , X_5 , X_5 , X_6

$$HM = \frac{1}{\frac{1}{N} \left(\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_n}{x_n} \right)}$$

$$HM = \frac{1}{\frac{1}{N^2} \sum_{i=1}^{N} \frac{F_i}{x_i}}$$

மீடி**னற்**ற தரவுக் கூட்டத்துக்கு
$$HM = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i}}$$

உதாரணம்: 4.7; மஃ யொன்றின் அடியிலுள்ள புகையிரதநிஃபை மொன்றிலிருந்து 100 கி. மீ. தூரத்தில் மஃயின்மீதுள்ள நிஃயத்துக்கு ஓர் புகையிரதமானது 30 கி.மீ./ மணி எனும் வேகத்தில் செல்கிறது. திரும்பி வரும்போது 20 கி.மீ./மணி வேகத்துடன் வந்திருந்தால் மொத்தப் பயணத்தின்போதும் புகையிருதத்தின் சராசரி வேகம் யாது?

இதன் தீர்வுக்குக் கூட்டவிடை

மேல்நோக்கிச் சென்றபோது தூரம் 100 கி.மீ., வேகம் 30 கி.மீ/மணி எனவே எடுத்தநேரம் = $\frac{100}{30}$ = $3\frac{1}{3}$ மணி.

கீழ்நோக்கி வந்**தபோ**து தூரம் 100 கி. மீ., வேகம் 20 கி. மீ/மணி எனவே எடுத்த நேரம், = 100 = 5 மணி

மொத்தப் பயணத்தின்போது தூரம் 200 கி. மீ., நேரம் 8½ மணி.

எனவே வேகம்
$$=\frac{200}{8\frac{1}{3}}=24$$
 கி. மீ/ மணி.

எனவே கூட்டலிடை பொருந்தாது.

இசையிடை
$$HM = \frac{1}{\frac{1}{2} \left(\frac{1}{30} + \frac{1}{20} \right)}$$
$$= \frac{2 \times 600}{50} = 24 \text{ Ω. மீ/ மணி.}$$

இது பொருத்**த**முடை**யதாகும். எனவே** இவ்**வகையிலானஉ**தாரணங் களுக்கு இசையிடை பயன்படுத்தப்படும்.

தேற்றம் 4.1; ஓர் மீடிறன் பரம்பலின் கூட்டல், பெருக்கல், இசையிடைகள் முறையே A, G, H ஆயின் அவற்றினிடையே தொடர்பு பொதுவாக

 $\mathbf{A} \geq \mathbf{G} \geq \mathbf{H} \geq$ ஆகவிருக்கும். இங்கு தரவுக்கூட்டப் பெறுமா னங்கள் நேராயிருத்தல் அவசியமாகும்:

நிறுவல்; தரவுக்கூட்டப் பெறுமானங்களே X_1, X_2, \dots, X_n எனவும் அவை எல்லாம் நேர் எனவும் கொள்க.

Gurgians
$$\left(\sqrt{X_{1}}-\sqrt{X_{2}}\right)^{2} \geq 0$$
 & ≤ 0 .

 $X_{1}-2\sqrt{X_{1}X_{2}+X_{2}} \geq 0$
 $X_{1}+X_{2} \geq \sqrt{X_{1}X_{2}+X_{2}} = 0$
 $X_{2}+X_{3} \geq \sqrt{X_{1}X_{2}+X_{3}} = 0$

(3)

(4)

எனக் காட்டலாம்.

$$\underbrace{\left(\begin{array}{cc} (3) & \textbf{(4)} & \textbf{@ode, fig.} \\ \underbrace{\left(\begin{array}{cc} X_1 + X_1 \\ 2 \end{array}\right)}_{2} + \underbrace{\left(\begin{array}{cc} X_3 + X_4 \\ 2 \end{array}\right)}_{2} \geq \sqrt{\left(\begin{array}{cc} X_1 + X_2 \\ 2 \end{array}\right) \left(\begin{array}{cc} X_1 + X_4 \\ 2 \end{array}\right)}$$

இதில் (3), (4) இணேப் பிரயோகிக்க.

$$\frac{X_1 + X_2 + X_3 + X_4}{4} \ge \sqrt{\sqrt{X_1 X_2} - \sqrt{X_3 X_4}}$$

அதாவது
$$\frac{X_1 + X_2 + X_4 + X_4}{4} \ge \sqrt[4]{X_1 X_2 X_3 X_4} \dots (5)$$

இதேபோல் (5) இன்ப் பாவித்து

$$\frac{X_1 + X_2 + X_3 + \dots + X_8}{8} \ge (X_1 X_2 \dots \frac{1}{8})_{\frac{1}{8}}$$

எனுக் காட்டலாம்.

தொடர்ந்து செய்**வதன்** மூல**ம்**

$$\frac{X_1 + X_2 + + X_n}{n} \ge (X_1 X_2 X_n)_{\frac{1}{n}}$$
 என n என்பது

2்இன் அடுக்குகளாக உள்ளபோது காட்டலாம். எனவே

$$A > G \cdot n = 2^{m}$$

இங்கு m நேர் முழு எண்களாகும்.

 $\mathbf{n} \neq 2^m$ ஆயின் $\mathbf{n} < 2^m$ ஆகுமாறு மிகச்சிறிய \mathbf{m} இதணத் தெரிவு செய்க. எனவே $\mathbf{X_7}$, $\mathbf{X_2}$ $\mathbf{X_n}$ உடன் தேர்பெறுமானங்கள் $\mathbf{X_{n+1}}$, $\mathbf{X_{n+2}}$,, $\mathbf{X_{2m}}$ என்பவற்றை ஒவ்வொன்றும் Aஇற்குச் சமமாகுமாறு தெரிவு செய் வோம். எனவே,

$$X_1, X_1, \dots, X_n, X_{n+1}, X_{n+2}, \dots, X_{2m}$$

எனும் புதிய பெறுமானங்களுக்கு மேலே பெறப்பட்ட முடிவைப் பயன் படுத்தலாம். அதாவது,

$$\frac{X_1 + X_2 + \dots + X_n + A + \dots + A}{2^m}$$

$$\geq (X_1 X_2 X_n A A)_2^{1m}$$

$$A = \frac{X_1 + X_2 + + X_n}{n}$$
 என்பதால்

$$\frac{nA + (2^m - n)A}{2^m} \ge (X_1 X_2, ..., X_n)^{\frac{1}{2}m} A^{\frac{2^m - n}{2^m}}$$

$$G = (X_1 X_2 X_n)^n$$
 என்பதால்

$$\begin{array}{ccc} A \geq G \stackrel{n}{\underline{a_m}} A \stackrel{1}{\underline{\dots}} \stackrel{n}{\underline{a_m}} \\ \longrightarrow A \stackrel{n}{\underline{n}} \underline{a_m} \geq G \stackrel{n}{\underline{a}} \underline{a_m} \end{array}$$

n. m என்பன நேர் பெறுமானங்களாதலால்

$$A > G \dots (6)$$

அதாவது எல்லா nகளுக்கும் A > G ஆகும்.

மேலும் X₁, X₂,, X_n எல்லாம் நேரானதால்

$$rac{1}{X_1}$$
, $rac{1}{X_2}$,, $rac{1}{X_4}$ எல்லாம் நேரானவையாகும்.

6, 7இவிருந்து

 \rightarrow G > H(7)

4 . 2, இடையம்

இடையம் எனும் மையப் பெறுமானம் தரவுக்கூட்டம் ஏறுவரிசையிலோ அல்லது இறங்குவரிசையிலோ ஒழுங்குபடுத்தப்பட்ட பின்பே வரையறுக்கப்படுகிறது.

வரிசைப்பட்ட புள்ளிவிபரங்கள் (Ordered Statistics)

ஒரு தரவுக்கூட்டப் பெறுமானங்கள் X_1 , X_2 , , X_n என்பன வாயின் எண் பெறுமானப்படி அவை ஏறுநிரைப்படுத்தப்படும். இக் கூட்டத்தின் \mathbf{n}^1 வரிபைசமாற்றங்களில் யாதுமொரு ஒழுங்கே உண்மை யாக விருக்கும்.

உதாரணமாக $X_{s} < X_{n-1} < X_{l} < < X_{n} < X_{s}$ எனவும் இருக்கலாம் இவை முறையே

$$X(_1) < X(_2) < ... < X_{n-}(_1)$$
 $< X(_n)$ எனக் குறிக்கப்படும். அதாவது

 $X(_{s}) = X_{s}, \ X(_{s}) = X_{n_{-1}}, \dots, X(_{n}) = X_{s}$ ஆகும். இங்கு X(i) என்பது தரவுக் கூடடத்தின் iஆவது வரிசைப்பட்ட புள்ளி விபரம் எனப்படும்.

வரைவிலக்கணம் :

ஒரு தரவுக்கூட்ட ஒழுங்குபடுத்தப்பட்ட பெறுமானங்களே இருபுற மும் 50%களாகப் பிரிக்கும் புள்ளி விபரமாறியின்பெறுமானம் இடைய மென வரையறுக்கப்படும். தரவுக்கூட்ட பெறுமானங்கள் Xı,, X,...., X_n ஆயின் வரிசைப்பட்ட புள்ளிவிபரங்கள் $X(_1)$, $X(_2)$,... , $X(_n)$ ஆகும். எனவே n ஒற்றையாயின் n=2m+1 ஆயுள்ளபோது $X(_{m+1})$ எனும் வரிசைப்பட்ட பு**ள்ளிவிப**ரம் இடையமாகும். n இரட்டையாயின் n=2m ஆயுள்ளபோது $X(_1)$ இலிருந்து $X(_m)$ வரை 50%உம் $X(_{m+1})$ இலிருந்து $X(_n)$ வரை 50%உம் ஆகும். எனவே இடையம் $\frac{1}{2}\left(X(_m)+X(_{m+1})\right)$ எனும் சராசியாகும்.

பின்னகப் பரம்பல்களுக்கு,

உதாரணம்: 4.8; உதாரணம்: 4.1இணக் கருதுவோமாயின் வரிசைப்பட்ட புள்ளிவிபரங்கள் பின்வருவனவாகும்.

$$40 < 45 < 50 < 55 < 60 < 60 < 65 < 75 < 80$$
 n = 10, m = 5, $X(m) = 55$, $X(m+1) = 60$ តធានិស இடையப்பள்ளி

$$Me = \frac{55 + 60}{2} = 57.5$$
 புள்ளிகள்.

40 புள்ளிகள் எடுத்த மாணவன் அக்குழுவிலிருந்து நீக்கப்பட்டால் புதிய வரிசைப்பட்ட புள்ளி விபரங்கள்

$$45 < 50 < 50 < 55 < 60 < 60 < 65 < 75 < 80$$
 n = 9. m = 4, $X(m+1) = 60$ តសាធិល இடையப்புள்ளி Me = 60 புள்ளிகள்.

உதாரணம்: 4.9; உதாரணம் 4.2 இலுள்ள மீடிறென்பரம்பலேக் கருதுக. இவ்வாருன பரம்பல்களில் நடுப்பெறுமாளத்தை அறிவதற்குக் குறைந்த வகை திரட்டு மீடிறன் பயன்படுத்தப்படும்,

X (ருபாக் களி ல்) ஊ திய ம்	f தொழிலாளர் எண்ணிக்கை	cf திர ட் டு மீடிற ன்
10	1 2	12
20	16	28
30	20	48
40	14	62
50	8	70

மொத்தமாக 70 தொழிலாளர் உள்ளதால் 35ஆம், 36ஆம் தொழி லாளர்களின் ஊதிய சராசரியே இடையமாகும். திரட்டு மீடிறனில் 48இனத் தரும் வகுப்பே இதனத் தருகிறது.

எ**கைவே இடைய** ஊதியம்

Me =
$$\frac{30 + 30}{2}$$
 = 30 ருபாக்கள்

குறிப்பு; எனவே இவ்வகை பின்னகப்பரம்பல்களில் X_1 , X_2 X_n மீட்டிறன்கள் f_1 , f_3 ,..... , f_n என்பனவற்றுடன் தரப்படின் X இடையமாயிருப்பதற்கு

$$k-1 \atop \Xi \text{ fi } < \frac{1}{2} \Xi \text{ fi } < \Xi \text{ fi } \atop i=1 \qquad i=1 \qquad k \atop i=1 \qquad (8)$$

எனும் நிபந்துணே திருப்தி செய்யப்படல் வேண்டும்.

உதாரணம் 4.10: தொழிற்சாலே யொன்றில் தொழிலாளர்கள் செய்து முடித்த பொருட்களின் எண்ணிக்கை பற்றிய விபரம் பின் வருமாறு,

பொருட்கள் எண்ணிக்கை X	தொழிலாளர் எண்ணிக்கை f	திர ட்டு மீடி றென் cf
16	4	4
24	5	9
34	6	15
46	9	24
<i>50</i>	6	30

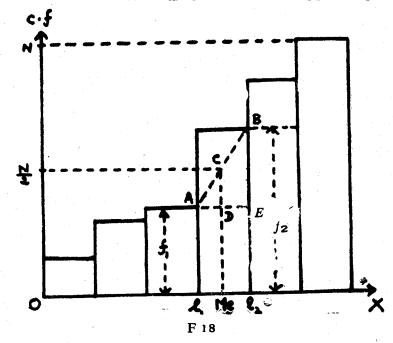
இவ்வகை மீடிறை பரம்பல்களில் சிறிய வித்தியாசமொன்றுண்டு. ஏ**னெனி**ல் திர**ட்டு**மீடிறன் N = 30 ஆகும்.

எனவே 15ஆம், 16ஆம், தொழிலாளர்களின் சராசரியே இடைய மாகும். திரட்டு மீடிறனிலிருந்து

$$X(_{16}) = 34$$
, $X(_{16}) = 46$
∴ இடையம் $Me = \frac{34+46}{2} = 40$ பொருட்கள்.

தொடர்ச்சியான பரம்பல்களுக்**கான** பொதுவான இடையச் சூத் **திரம் இ**ழைவரையத்திலிருந்து பின்வருமாறு பெறப்படும். தொடர்ச்சி மீடிறன் பரம்பல்களுக்கான இடையச் சூத்திரம் :

தொடர்ச்சியான வகுப்பாயிடைகளேக்கொண்ட மீடிறன் பரம்பல் களுக்குரிய இழை வரையத்தின் எடுத்துக்கொள்வோம். இங்கு குறைந்த வகைத் திரட்டு மீடிறனிலிருந்தே இடையம் தீர்மானிக்கப்படுவதால் அதற்கான திரட்டு மீடிறன் இழை வரையத்தைக் கருதுவோம்?



நிபந்தனே (8) திருப்தி செய்யப்படும் வகுப்பாயிடை (1்.—1்,) ∤என்க. அதுவே இடைய வகுப்பு எனப்படும்.

இடைய வகுப்புக்கு முன்னுள்ள வகுப்பு வரையுமுள்ள திரட்டு மீடிறணே f₁ எனவும், இடைய வகுப்பு வரையுமுள்ள திரட்டு மீடிறனே f₂ எனவும் கொள்க.

முக்**கோணிகள் ACD, ABE என்பன** சர்வசமமானவையாதலால் AD/ AE = CD/ BE

$$\frac{Me - l_1}{l_2 - l_1} = \frac{N/2 - l_1}{f_2 - l_1}$$

$$Me = l_1 + {N/2 - l_1 \choose f_2 - f_1} (l_2 - l_1) - (9)$$

இச்சூத்திரத்தில் l_1 , l_2 , f_1 , f_2 , N என்பன பிரதியிடப்பட்டு இடையம் பெறப்படும்.

உதாரணம் 4.11: 176 மனிதர்களேக் கொண்ட ஒரு கூட்டத்தி லிருந்த மனிதர்களின் நிறைகளே கிலோகிராமில் பின்வரும் மீடிறன் பரம்பல் தருகிறது,

நிறைவகுப்பு	மனி தர் எண்ணிக்கை	திர ட்டு மீடிற ன்
25.5—35. 5	7	7
35,5-45.5	36	43
45.5—55.5	50	93
55 5-65.5	45	138
65.5—75.5	25	163
75.5—8 5 .5	11	174
85.5 - 95.5	. 2	176

எல்லாமாக 176 மனிதர்களின் நிறைகள் உ**ள்ளதால் ஏறு**நி**ரைப்படு**த் தப்பட்ட நிறைகளில் 88, 89ம் நிறைகளின் சராசரியே இடையமாகும். இவை இரண்டும் நிபந்தனே (8) திருப்திசெய்யுமாறு காணப்படிண் (45.5—55.5) எனும் நிறை வகுப்பில் கிடப்பதாக அறியலாம்.

N=176, $l_1=45.5$, $l_2=55.5$. $f_1=43$, $f_2=93$ எனவே இடையநிறை சூத்திரத்திலிருந்து

Me =
$$45.5 \div \left(\frac{176/2 - 43}{93 - 43}\right) (55.5 - 45.5)$$

= $45.5 \div \frac{45}{50} \times 10$
= 54.5×6 Con Strain.

4 , 3, இடையத்துடன் தொடர்புடைய சில அளவைகள்

இடையத்தின் வரைவிலக்கணத்தைப்போன்று ஒரு தரவுக்கூட்டத் துக்கு வரையறுக்கப்பட்ட சில அளவீடுகள் பின்வருவனவாகும்:

- (a) காலணேகள் (Quartiles)
- (b) தசமணேகள் (Deciles)
- (c) சதமணேகள் (Percentiles)

காலணேகள் :

ஒரு தரவுக் கூட்டப் பெறுமானங்களே (ஒழுங்குபடுத்தப்பட்ட) 25% களாகப் பிரிக்கும் புள்ளிவிபரமாறி X இனது மூன்று பெறுமானங் களும் காலணேகள் என வரையறுக்கப்படும். இவை முறையே கீழ்க் காலணே (முதற் காலணே), நடுக்காலணே (இரண்டாம் காலணே), மேறி கால‱ (மூன்ரும் காலண்)கள் எனப்பட்டு முறையே Q_1 , Q_2 , Q_3 இருல் குறிக்கப்படும். எனவே வரைவிலக்கணப்படி Q_2 ஆனது தரவுக்கூட்டத்தை 50% களாக பிரிப்பதால் அதுவே இடையம் Meஉம் ஆகும்.

சூத்திரம் (9) இணப்போன்று Q₁. Q ₂ Q₃ என்பனவற்றுக்கும் சூத் திரங்களேப் பெறமுடியும்.

அவையாவன:

$$Q_{1} = l_{11} + \left(\frac{N/4 - f_{1}}{f_{12} - f_{11}}\right) (l_{12} - l_{11})$$

$$----10$$

$$Me = Q_{2} = l_{21} + \left(\frac{N/2 - f_{21}}{f_{22} - f_{21}}\right) (l_{22} - l_{21})$$

$$-----11$$

$$Q_{3} = l_{3q} + \left(\frac{3N/4 - f_{31}}{f_{32} - f_{31}}\right) (l_{32} - l_{33})$$

இங்கு l_{11} , l_{21} , l_{31} என்பன முறையே கோலணே வகுப்புக்களின் கீழ் எல்லேகளும் l_{12} , l_{22} , l_{32} , என்பன முறையே காலணே உகுப்புகளின் மேல் எல்லேகளும் f_{11} , f_{21} , f_{31} என்பன முறையே காலணே வகுப்புக்களின் களுக்கு முன்னுள்ள வகுப்புக்கள் வரையிலுமுள்ள திரட்டு மீடிறேன் களும் f_{12} , f_{23} , என்பன முறையே காலணே வகுப்புக்கள் வரையிலு முன்ன வகுப்புக்களின் திரட்டு மீடிறேன்களும் ஆகும்.

உதாரணம்: 4.12; உதாரணம்: 4.11இலுள்ள மீடிறன் பரம்பலே எடுத்துக்கொள்வோம்.

$$N/4 = 176/4 = 44$$

 $N/2 = 176/2 = 88$
 $3N/4 = 3 \times 176/4 = 132$

எனவே, காலணே வகுப்புக்களே நிபந்தனே (8)இணப் பாவித்துக் காணும்போது அவை முறையே பின்வருவனவாகும்.

&
$$f_{11} = 43$$
, $f_{12} = 98$
 $f_{21} = 43$, $f_{21} = 93$
 $f_{31} = 93$, $f_{32} = 138$

இவற்றை சூத்திரங்கள் (10), (11), (12)இல் பிரதியிட

$$Q_{1} = 45.5 + \left(\frac{44 - 43}{93 - 43}\right) (55.5 - 45.5)$$

$$Q_{2} = 45.5 + \left(\frac{88 - 43}{93 - 43}\right) (55.5 - 45.5)$$

$$Q_s = 55.5 + \left(\frac{132 - 93}{138 - 93}\right) (65.5 - 55.5)$$

$$Q_1 = 45.5 + \frac{1}{50} \times 10 = 45.7 \text{ s. s.}$$

$$Q_2 = 45.5 + \frac{45}{50} \times 10 = 54.5 \text{ s. s.}$$

$$Q_3 = 55.5 + \frac{39}{45} \times 10 = 64.1 \text{ s. s.}$$

தசம**ணேக**ள்:

ஓர் ஒழுங்குபடுத்தப்பட்ட தரவுக்கூட்டப் பெறுமானங்களே 10% களாகப் பிரிக்கும் Xஇன் ஒன்பது பெறுமானங்களும் தசமணேகள் என வரையறுக்கப்படும். இவை முறையே மு தலாம் தசமணே, இரண்டாந் தசமணே , ஒன்பதாம் தசமணே எனப்பட்டு, D_1 , D_2 ,....., D_9 இஞல் குறிக்கப்படும். எனவே வரைவிலக்கணைப்படி D_5 ஆனது தரவுக் கூட்டத்தை 50%களாகப் பிரிப்பதால் அதுவே இடையம் Meஉம் ஆகும்.

சூத்திரங்கள் (9), (10), (11), (12) என்பனவற்றைப் போன்று தசமணேகளுக்கும் பெற முடியும். அவை பின்வருவனவாகும்.

இங்கு li_1 , li_2 என்பன முறையே i ஆவது தசமணே வகுப்பின் கீழ், மேல் எல்லேகளும் fi_1 , fi_2 என்பன முறையே i ஆவது தசமணே வகுப்புக்கு மூன்னுள்ள வகுப்பு வரையிலுமுள்ள, தசமணே உகுப்புவரையிலு முன்ன வகுப்புக்களின் திரட்டு மீடிறன்களுமாகும்.

உதாரணம்: 4.13; உதாரணம்: 4.11இலுள்ள மீடிறன் பரம்பலே எடுத்துக்கொள்வோம். அதற்கு மூன்மும் ஏழாம் தசமணேகளேக் காண்போம்.

$$3N/10 = 3 \times 176/10 = 52.8$$

 $7N/10 = 7 \times 176/10 = 123.2$

எனவே தசமணே வகுப்புக்களே நிபந்தண (8) இனப் பிரயோகித்துக் காணும்போது அவை பின்வருவனவாகும்.

மூன்ரும் தசமணே வகுப்பு (45.5 — 55.5). ஏழாம் தசமணே வகுப்பு (55.5 — (5.5).

$$l_3^1 = 45.5$$
, $l_{11} = 55.5$
 $l_{71} = 55.5$, $l_{72} = 65.5$

&
$$f_{31} = 43$$
, $f_{52} = 93$
 $f_{71} = 93$, $f_{72} = 138$

இவற்றைச் சூத்திரம் (13)இல் பிரதியிட

$$D_{s} = 45.5 + \left(\frac{52.8 - 43}{93 - 43}\right) (55.5 - 45.5)$$

$$D_7 = 55.5 + \left(\frac{123.2 - 93}{138 - 93}\right) (65.5 - 55.5)$$

$$----- D_1 = 45.5 + \frac{9.8}{50} \times 10 = 47.46 \text{ s. s.}$$

$$D_{\tau} = 55.5 + \frac{30.2}{45} \times 10 = 62.21 \ \text{s. s.}$$

சதமணேகள் :

ஓர் ஒழுங்குபடுத்தப்பட்ட தரவுக்கூட்ட பெறுமானங்களே 1% களாகப் பிரிக்கும் Xஇன் தொண்ணூற்றெனுப்பது பெறுமானங்களும் சதமணேகள் எனப்படும். இவை முறையே முதலாம் இரண்டாம்,, தொண் ணூற்றெனுப்பதாம் தசமணேகளேனப்பட்டு. P_1 , P_2 ,, P_9 , என்பவற் ருல் குறிக்கப்படும். எனவே வரைவிலக்கணப்படி P_{50} ஆனது தரவுக் கூட்டத்தை 50% களாகப் பிரிப்பதால் இடையமாகும். அதாவது:

$$Me = Q_1 = D_5 = P_{50}$$
 ஆகும்.

இவற்றைக் காண்பதற்கான சூத்திரங்கள் முன்பு பெறப்பட்டது போல் **பீன்வ**ருமாறி**ருக்கும்.**

Pi = li₁ +
$$\left(\frac{iN/100 - fi_1}{fi_2 - fi_1}\right)$$
 (li₁ - li₁)
____(14)

i = 1, 2, 99

இற்கு li_{1} , li_{1} , fi_{1} , fi_{2} என்பவை (13) இல் குறிப்பிடப்பட்டவை போலாகும்.

உதாரணம்: 4.14; உதாரணம்; 4.11இலுள்ள மீடிறன் பரம் பஃபோ எடுத்துக்கொள்வோம். அதற்கு நான்காம், பதினேழோம், ஐம்பத்திநான்காம் சதம‱ககீளக் காண்போம்.

$$4N/100 = 4 \times 176/100 = 7.04$$

 $17N/100 = 17 \times 176/100 = 29.92$
 $54N/100 = 54 \times 176/100 = 95.04$

எனவே நிபந்தனே (8) இலிருந்து சதமணே வகுப்புகள் பின்வருமா றிருக்கும்:

3.53a
$$l_{41} = 35.5, l_{41} = 45.5$$
 $l_{171} = 35.5, l_{172} = 45.5$
 $l_{541} = 55.5, l_{542} = 65.5$
& $f_{41} = 7, f_{42} = 43$
 $f_{171} = 7, f_{172} = 48$
 $f_{541} = 93, f_{511} = 138$

சூத்திரம் (14) இருந்து,

$$P_{4} = 35.5 + \left(\frac{7.04 - 7}{43 - 7}\right) (45.5 - 35.5)$$

$$P_{17} = 35.5 + \left(\frac{29.92 - 7}{43 - 7}\right) (45.5 - 35.5)$$

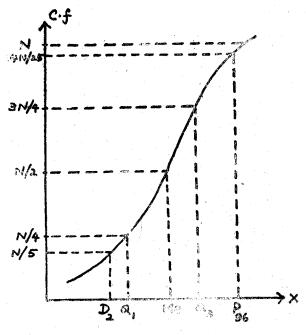
$$P_{54} = 55.5 + \left(\frac{95.04 - 93}{138 - 93}\right) (65.5 - 55.5)$$

$$P_{4} = 35.5 + \frac{0.04}{36} \times 10 = 35.51 \, \text{s. s.}$$

$$P_{17} = 35.5 + \frac{28.92}{36} \times 10 = 41.87 \, \text{s. s.}$$

$$P_{54} = 55.5 + \frac{2.04}{45} \times 10 = 55.95 \, \text{s}. \, \text{s}.$$

குறிப்பு: இவ் அளவைகள் படம் F18இல் இடையம் பெறப்பட்டது போல் பெறப்படும் என விளக்கினேம். மேலும் திருத்தமாக ஒகிவு வரைபுபடுத்தப்படும்போது வரைபிலிருந்தும் இடையம், காலணேகள், தசமணகள், சதமணேகள் பெற்றுக்கொள்ள முடியும். இதனே படம் F19 காட்டுகிறது.



F 19

இவ்வளவைகளின் பீரயோகத்தீல் விளக்கம்

இடையம், காலணேகள், தசமணேகள், சதமணேகளின் கணிப்பீடுகளே 4.11, 4.12, 4.13, 4.14 என்பன விளக்குகின்றன. இவ்வுதாரணங்களில் தரப்பட்ட ஒரு கூட்டம் மனிதர்களின் நிறைபற்றிய மீடிறன் பரம்பலே எடுத்துக்கொள்வோம்.

இங்கு இடையம் **54.5** கி. கி. எனவும், முதலோம், மூன்றும் காலணே கள் முறையே 45.7 கி. கி. 64.1 கி, கி. எனவும், மூன்றும் ஏழாம் தசமண்கள் முறையே 47.46 கி. கி., 62.21 கி. கி. என்பணவும் பதி சோழாம், ஐம்பத்திநான்காம் தசமமணேகள் முறையே 41.87 கி. கி. 55.95 கி. கி. எனவும் கணிப்பிடப்பட்டுள்ளது எனவே இம் மனிதர் களில் 50% ஆனவர்கள் 54.5 கி. கி. இலும் குறைவாகவும், 25% ஆன வர்கள் 45.7 கி. கி. இலும் குறைவாகவும், 75% ஆனவர்கள் 64.1 கி.கி. இலும் குறைவாகவும் நிறையுடையவர்களாகும். மேலும் 30% ஆன வர்கள் 47.46 கி. கி. இலும் குறைவாகவும், 70% ஆனவர்கள் 62.21 கி. கி. இலும் குறைவாகவும், 17% ஆனவர்கள் 41.87 கி. கி. இலும் குறைவாகவும், 54% ஆனவர்கள் 55.95 கி. கி. இலும் குறைவாகவும் நிறையுடையவர்களாகும்.

4 . 4. ஆகாரம் (முகடு)

ஆகாரம் என்னும் மையப்பெறுமானம் தரவுக்கூட்டப் பெறுமானங் களில் எது அதிக எண்ணிக்கை யுடையதாக உள்ளதோ அதாவது அதி யுயர் மீடிறணேக் கொண்டுள்ளதோ அதுவே என வரையறுக்கப்படும். மீடிறன் வளயியில் உச்சியிணே இது தருவதால் முகடு எனவும் சொல் லப்படும். மேலும் வகுப்பாயிடைகளாக அமைக்கப்பட்ட மீடிறன் பரம் பலில் எந்த வகுப்பாயிடை அதி கூடிய பெறுமானங்களேக் கொண்டுள் ளதோ அதாவது அதியுயர் மீடிறனே உடையதோ அதுவே ஆகாரத் தைக் கொண்டுள்ள தெனவும், அது ஆகாரவகுப்பு எனவும் சொல்லப் படும்.

குறிப்பு: தரவுக்கூட்டப் பெறுமானங்கள் ஒவ்வொன்றும் வெவ்வே ருனவையாயின் ஆகாரம் வரையறுக்க முடியாது. இவ்வகைத் தரவுக் கூட்டங்கள் வகுப்பாயிடைகளேக் கொண்ட தொடர்ச்சியான வகையாக மாற்றி ஆகாரம் கணிக்கப்படும்.

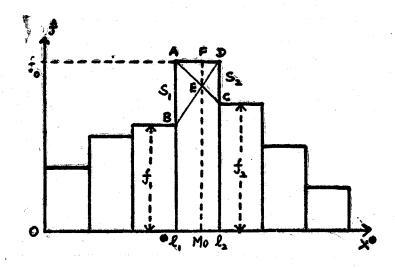
பின்னகப் பரம்பல்களுக்கு அதியுயர் மீடிறனேத் தரும் புள்ளிவிபர மாறியின் பெறுமானம் ஆகாரமாகும்.

X	f
X,	f_1
X,	f,
"	
1 '''	***
X n	fn

Max (f₁, f₂, ..., f_n) கர் ஆயின் X_i என்பது இவ்வகைப் பரம்பலின் ஆகாரமாகும். உதாரணம் : 4.15; உதாரணம் : 4.9இலுள்ள மீடிறன் பரம்ப**ி** எடுத்துக்கொள்வோம்.

தொடர்ச்சியான மீடிறன் பரம்பல்களுக்கான ஆகாரச் சூத்திரம்:

தொடர்ச்சியான வகுப்பாயிடைகளேக்கொண்ட பரம்பல்களுக்குரிய இழைவரையத்தின் எடுத்துக்கொள்வோம். மேலும் இங்கு எல்லா வகுப்பாயிடைகளின் அகலங்களும் சமமாயிருத்தல் முக்கியமாகும்.



F 20

அதியுயிர் மீடிறனே f_0 எனவும், அதஞைல் தரப்படும் ஆசார வகுப்பின் மேல், கீழ் எல்லேகளே l_2 , l_1 எனவும், அவ்வகுப்புக்கு மூன்னுள்ள பின்னுள்ள வகுப்புக்களின் மீடிறன்களே முறையே f_1 , f_2 எனவும் கொள்வோம்.

$$AB = f_0 - f_1 = s_1$$

 $CD = f_0 - f_2 = s_2$

முக்கோணிகள் AEB, CED எனபன இயல்பொத்தவையாதலால் AF / AB = DF / CD

(M₀ - l₁) / s₁ = (l₁ - M₀) / s₂

$$(S_2 M_0 - l_1 s_2 = l_2 s_1 - s_1 M_0)$$

$$(s_1 + s_2) M_0 = l_2 s_1 + l_1 s_2$$

$$= l_1 (s_1 + s_2) + (l_2 - l_1) s_1$$

$$M_0 = l_1 + \left(\frac{s_1}{s_1 + s_2}\right) (l_2 - l_1) - (15)$$

அல்லது

$$M_0 = l_1 + \left(\frac{f_0 - f}{2f_0 - f_1 - f_2}\right) (l_2 - l_1) - (16)$$

உதாரணம் 4, 16; உதாரணம் 4, 11இலுள்ள நிறைக்கான மீடிறன் பரம்பலே எடுத்துக்கொள்வோம்.

Max
$$f = 50$$
 : $f_0 = 50$

எனவே ஆகாரவகுப்பு (45.5 – 55.5)

$$M_0 = l_1 + \left(\frac{f_0 - f_1}{2f_0 - f_1 - f_1}\right) (l_s - l_1)$$

$$= 45.5 + \left(\frac{50 - 36}{100 - 36 - 45}\right) (55.5 - 45.5)$$

$$= 45.5 + \frac{14}{19} \times 10 = 52.87$$
 a. a. a. a. a. a. a.

உதாரணம்: 4.17: ஒரு அசாதாரணமான மீடிறன் பரம்பல் பின் வருமாறு தரப்படுகின்றது:

X	F
0—10	14
10—20	?
20—30	27
30—40	?
40—50	15

இப்பரம்பலின் இடையம், ஆகாரம் என்பன முறையே 25, 24 ஆயின் பரம்ப லில் தரப்படாத மீடிறன்களேயும், பரம்ப லின் இடையையும் காண்க: தரப்படாத மீடிறன்களே f₁, f, எனக்கொ**க்**வோம்.

x	F	CF	மத்திய பெறுமானம்
0—10	14	14	5
10-20	$\mathbf{f_1}$	14+f ₁	15
20-30	27	41+f ₁	25
30—40	$\mathbf{f_2}$	$41+f_1+f_2$	<i>35</i>
4050	15	$56 + f_1 + f_2$	45

இடையம், ஆகாரம் என்பன 25, 24 ஆதலால் இடைய வகுப்பும் ஆகார வகுப்பும் (20—30) ஆகவேயிருக்கும்.

$$Me = 25$$
. $Mo = 24$

ஆகாரச் சூத்திரத்தைப் பிரயோகிப்பின்,

Mo =
$$l_1 + \left(\frac{f_0 - f_1}{2f_0 - f_1 - f_2}\right)$$
 ($l_2 - l_1$)

$$l_1 = 20$$
, $l_2 = 30$, $f_0 = 27$

$$24 = 20 + \left(\frac{27 - f_1}{54 - f_2 - f_2}\right) \quad (30 - 20)$$

$$\frac{27 - f_1}{54 - f_1 - f_2} = 0.4$$

$$27 - f_1 = 21.6 - 0.4 f_1 - 0.4 f_1$$

$$0.6 f_1 - 0.4 f_1 = 5.4$$

இடையச் சூத்திரத்தைப் பிரயோகிப்பின்,

$$Me = l_1 + \left(\frac{N/_2 - f_1}{f_2 - f_1}\right)(l_2 - l_1)$$

(சூத்திரத்திலுள்ள குறியீடுகள் f₁, f₂, என்**பன** இவ்**வு தா**ரணத்தி**லி**ருந்து வேறுபட்டவை என்பதை அவதானிக்க.)

(1)

$$Me = 24$$
, $l_1 = 20$, $l_2 = 30$

$$N = 56 + f_1 + f_2$$

$$24 = 20 + \left(\frac{(56 + f_1 + f_2)/2 - (14 + f_1)}{27}\right) (30 - 20)$$

$$4 = \frac{10}{27} (28 + f_1/2 + f_2/2 - 14 - f_1)$$

$$14 - f1/2 + f2/2 = 10.8$$

$$f_1 - f_2 = 6.4$$

(1), (2) இண்த் தீர்க்கும்போது f₁ = 14.2, f₂ = 7.8 ஆகும்.

அதாவது f₁ = 14, f2 = 8 எனத் திரு**த்த**ப்படலாம்.

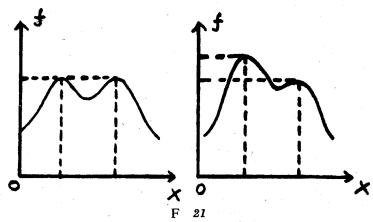
$$\geq f = 14 + 14 + 27 + 8 + 15 = 78$$

$$\geq$$
 fx = 14 \times 5 + 14 \times 15 + 27 \times 25 + 8 \times 35+15 \times 45=1910

$$2 - \overline{X} = \frac{\sum fx}{\sum f} = \frac{1910}{78} = 24.48.$$

ஆகாரம் கணிக்கமுடியாத பரம்பல்கள்:

கில மீடிறன் வீளயிகளில் ஒன்றுக்கு மேற்பட்ட முகடுகள் காணப படும். இவற்றுக்கு ஆகாரங்களேக் கணிப்பதற்கு ஆகாரவகுப்புத் தெரிய முடியாதிருக்கும். இப் பரம்பலுக்கு ஆகாரத்தைத் தவிர்த்து ஏனேய மைய நாட்ட அளவைகளேத் தெரிவுசெய்தல், கணித்தல் சிறந்ததாகும். உதா ரணமாக அப்பரம்பல்கள் பின்வருமாறிருக்கலாம்.



தொடர்ச்சியானதும், பின்னகமானதுமான மீடிறன் பரம்பலின் இடையமும், ஆகாரமும்;

இடைய வகுப்பு, ஆகார வகுப்பு என்பனவற்றின் கீழ் எல்லேகள் மேல் எல்லேகள் தொடர்ச்சியற்றவையாக விருப்பதால் மேலே பெறப்பட்ட இடைய சூத்திரமும், ஆகாரச் சூத்திரமும் நேரடியாகப் பயன்படுத்த முடியாது. இவ்வாருன பரம்பல்களில் தொடர்ச்சித்தன்மை முதலில் ஏற்படுத்தப்படும். இதணப் பின்வரும் உதாரணம் விளக்குகிறது. இதே திருத்தம் மேற்கொள்ளப்பட்ட பின்னரே காலணேகள், தசமணேகள், சதமணேகளும் கணிக்கப்படலாம்.

உதாரணம்: 4.18; ஒரு பாடத்தில் ஒரு வகுப்பு மாணவர்கள் பெற்ற புள்ளிகள் பின்வெரும் மீடிறன் பரம்பலில் வகுப்பாச்சுப்பட்டு அட்டவணேப்படுத்தப்பட்டுள்ளது.

பு ள்ளிவ குப்பு	மாணவர் எண்ணிக்கை
11 — 20	4
21 - 30	8
31 - 40	12
41 50	11
<i>51 — 60</i>	7
61 - 70	5

திருத்தப்பட்ட பரம்பல் ;

புள்ளி வகுப்பு	மாணவர்	எண்ணிக்கை
10.5 — 20.5		4
20.5 — 30.5		8.
30.5 - 40.5		12
40.5 - 50.5		11
50.5 - 60.5		7
60.5 - 70.5		5

எலில்களற்ற மீடிறன் பரம்பல்களின் மையநாட்ட அளவைகள்:

கீழ் **எல்லேகள்**, மேல் எல்லே**கள்** அல்லது இரண்டும் திட்டமாகத் தரப்படாத மீடிறன் பரம்பல்களுமு**ள்**ளன. அவை பின்வரும் வகைக ளில் இருக்கலாம்.

I		II			III		
X	f		x	f	<u> </u>	X	f
a 1 இன் கீழ் a1 — a2 a2 — a3 a3 — a4	f ₁ f ₂ f ₃ f ₄		a ₁ — a, a, — a, a, — a, a, இன் மேல்	f ₁ f ₂ f ₃ f ₄		a ₁ இண் கீழ் a ₁ — a ₂ a, — a ₃ a ₃ இண் மேல்	f ₁ f ₂ f ₃ f ₄

இவ்வகையான மீடிறன் பரம்பலுக்குப் பொருத்தமான மையநாட்ட அனைவ இடையமேயாகும். ஏனெனில் இவ்வகைப் பரம்பல்களுக்கு இடை கணிக்கப்படும்போது மத்திய பெறுமானம் கணிக்கப்படும். மேலே தரப்பட்ட முதல் பரம்பலில் முதலாம் வகுப்பாயிடைக்கும், இரண்டாம் பரம்பலில் கடைசி வகுப்பாயிடைக்கும், மூன்ரும் பரம்பலில் முதல், கடைசி வகுப்பாயிடைகளுக்கும் மத்திய பெறுமானம் பணில் முதல், கடைசி வகுப்பாயிடைகளுக்கும் மத்திய பெறுமானம் கணிக்கமுடியாததாகும். எனவே இடையினேத் திருத்தமாகக் கணிக்கமுடியாது. ஆகாரம் கணிக்கப்படுவதற்கு எல்லா வகுப்பாயிடைகளின் அகலங்கள் திடமாகத் தரப்படவில்லே. எனவே ஆகாரத்தினேயும் திருத்தமாகக் கணிக்கமுடியாது, ஆணுல் இடையத் தினேக் கணிப்பதற்கு எந்த நிபந்தனேயும் தடையாக இருக்கவில்லே. ஆதலால் இவ்வகை பரம்பல்களுக்கு இடையமே பொருத்தமானதாகக் களின்ப்படும்.

மையதாட்ட அளவைகளிடையே தொடர்பு:

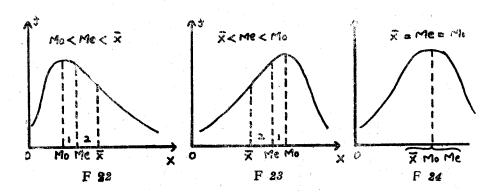
இடை, இடையம், ஆகாரம் என்னும் மூன்று மைய நாட்ட அள வைகளிடையேயுமுள்ள தொடர்பு பொதுவாக எல்லாப் பரம்பல் களுக்கும்

$$(இடை — ஆகாரம்) = 3 (இடை — இடையம்)$$

என அறியப்பட்டுள்ளது. அதாவது :

$$(\overline{X} - Mo) = 3(\overline{X} - Mc)$$
 3 ($\overline{X} - Mc$)

மூன்றுவகையான மீடிறென் பரம்பல்களும் அவற்றின் இடை, இடையம், ஆகாரம் என்பவற்றின் தொடர்பும் படங்கள் F22, F23, F24 என்பவற்றில் தரப்படுகின்றன.



5. விலகல் அளவைகள்

(Measure of Dispersion)

ஒரு தரவுக் கூட்டத்திலுள்ள உறுப்புக்களே விளக்குவதற்கு மைய நாட்ட அளவைக்கு அடுத்ததாக விலகல் அளவை பயன்படுத்தப்படு கிறது. தரவுக் கூட்டப் பெறுமானங்கள் எவ்வாறு சிதறியுள்ளன அதாவது எவ்வாறு விலகிக் கிடக்கின்றன என்பதை அறிவதே இவ்வள வீடுகளின் நோக்கமாகும்.

உதாரணமாக இரு வகுப்புக்கள் A, B என்பனவற்றிலுள்ள மாண வர்கள் ஓர் குறித்த பாடத்தில் பெற்ற புள்ளிகள் பின்வருவனவாகும்.

A; 22, 02, 98, 84, 75, 55, 15, 49

B; 50, 54, 46, 45, 52, 60, 47

இவ்விரண்டு கூட்டங்களேயும் ஒப்பிடுவோமாயின் A இலுள்ள பெறு மானங்கள் 02—98 எனும் வீச்சிலும். B இலுள்ள பெறுமானங்கள் 45—60 எனும் வீச்சிலும் பரவியுள்ளன. இதிலிருந்து B உடன் ஒப் பிடும்போது A இலுள்ளவை பெரிய விலகலேக் கொண்டுவளை என் கிரும்.

ஓர் விலகல் அளவையின் உடமைகள்:

- (i) புள்ளி விபரமாறியின் பெறுமானங்களின் அலகிணேயே, பரி மாணத்திணயே இதுவும் கொண்டிருக்கும்.
- (ii) **த**ரவுக்கூட்டப் பெறுமானங்கள் யாவற்றையும் பய**ன்படு**த்தித் திட்டமான சூத்திரத்தினுல் வரையறுக்**கப்ப**ட்டிருக்கும்.
- (iii) தொடர்ந்த கணிதச் செய்கைகளுக்கு உட்படுத்தப்படக்கூடிய வாறும், எளிய கணிப்பீட்டினேக் கொண்ட தாகவும் வரையறுக் கப்பட்டிருக்கும்.

பொதுவான விலகல் அளவைசுள்:

பொதுவாக வழக்கத்திலுள்ள விலகல் அளவைகள் பின்வருவன வாகும்.

- (a) வீச்சு (Range)
- (b) காலணே விலகல் அல்லது அரை இடைக்கால்வழி வீச்சு (Quartile deviation or Semi-inter quartile range)
- (c) இடை விலகல் (Mean dsisaten)
- (d) நியமவிலகல் (Standard deisation)

5.1. வீச்சு

ஓர் தரவுக்கூட்டப் பெறுமானங்களின் அதிகூடிய, அதி குறைந்த பெறுமானங்களின் வித்தியாசம் அத்தரவுக்கூட்டத்தின் வீச்சு என வரை யறுக்கப்படும், மீடிறன் பரம்பல்களே அமைத்தலிலும் இது விளக்கப் பட்டது. தரவுக்கூட்டப் பெறுமானங்கள் $X_1, X_2, ..., X_n$ ஆயின் அவற்றின் வரிசைப்பட்ட புள்ளி விபரங்கள் X(1), X(2), ..., X(n) ஆகும். எனவே அதிகூடிய, அதிகுறைந்த பெறுமானங்கள் முறையே X(n), X(1) என்பனவாகும். எனவே வீச்சு

$$R = X(n) - X(1)$$
 ஆகும்.

உதாரணம்: 5.1: ஒரு குறிப்பிட்ட பாடத்தில் 10 மாணவர்கள் பெற்ற புள்ளிகள் பின்வருமாறு,

24, 32, 54, 56, 57, 62, 64, 65, 66, 68 ②505 X Max = X (10) = 68, XMin = X (1) = 24 365 R = 68 - 24 = 44

இவ்வு தாரணத்திலுள்ள பெறுமானங்களே நோக்குவோமாயின்

24, 32 என்பன அசாதாரணமானவையாகும். இவற்றை நீக்கியபின் பெறப்படும் வீச்சே ஓரளவு ஏற்றுக்கொள்ளக்கூடிய வீச்சாகும். எனவே வீச்சு எனும் விலகலளவை திருத்தமானதல்ல.

வீச்சுக் குணகம் (Co - efficient of range):

மீடிற**ை** பரம்பல்களின் ஒப்பீட்டுக்கு வீச்சி**ணவிட வீச்**சுக் குணகம் சிறந்**ததாகப்** பயன்படுத்தப்படுகிறது. வீச்சுக்குணகம் C_R பின்வருமாறு வரையறுக்**கப்படும்.**

$$C_R = \frac{X_{(n)} - X_{(1)}}{X_{(n)} + X_{(1)}}$$

மேலே தரப்பட்ட உதாரணத்துக்கு

$$C_R = \frac{68 - 24}{68 + 24} = \frac{44}{92} = 0.478$$

காலணே விலகல்:

ஒர் தரவுக்கூட்டத்தின் அசாதாரண உறுப்புக்களே (கூடிய, குறைந்த இரு பகுதியிலும்) அகற்றுவதற்காக வரையறுக்கப்படுவதே காலணே விலகலாகும். இவற்றை நீக்குவதற்கு Q1, Q3 என்பன எல்ஃப் பெறு மானங்களாகக் கருதப்படுகின்றன. காலணே விலகல் Q p பின்வருமாறு வரையறுக்கப்படும்.

$$Q(d) = \frac{Q_3 - Q_1}{2}$$

ஓர் சமச்சீர்ப்பரம்பலுக்கு $Q_3 - Q_1 = 2 (Q_3 - Q_2)$ = $2 (Q_2 - Q_1)$ ஆதலால்

அப்பரம்பல்களுக்கு
$$Q_D = Q_3 - Q_2$$

= $Q_2 - Q_1$ ஆகும்.

உதாரணம் 5.2; உதாரணம் 4.12 இன் எடுத்துக்கொள்வோம்.

அங்கு
$$Q_3 = 64.1$$
, $Q_1 = 45.7$ ஆகும்.

அப்பரம்பலுக்கு:
$$Q_D = \frac{64.1 - 45.7}{2} = 9_{\bullet}2$$

இடை விலகல்:

தரவுக்கூட்டப் பெறுமானங்கள் யாவற்றினதும் ஒரு குறித்துரைக் கப்பட்ட உற்பத்தி A இலிருந்தான விலகல்களின் சராசரி இடை விலகல் அல்லது சராசரி விலகல் என வரையறுக்கப்படும். தரவுக்கூட்டப் பெறுமானங்கள் X_1, X_2, \dots, X_n ஆயின் இடைவிலகல்

$$M_D = \frac{1}{n} \sum_{i=1}^{n} /X_i -A/$$
 ஆகும்.

அது ஓர் மீடிறை பரம்பலாயின் அதாவது: (X_i, f_i); i = 1, 2,, n ஆயின்

$$M_D = \frac{1}{N} \sum_{i=1}^{n} f_i / X_i A/; N = \sum_{i=1}^{n} f_i$$
 ஆகும்.

உற்பத்தி $\mathbf{A} = \overline{\mathbf{X}}$ ஆயின் இவ் அளவை இடைபற்றிய இடைவிலகல் எனப்படும்.

$$\mathbf{M}_{D} = \frac{1}{N} \sum_{i=1}^{n} \mathbf{f}_{i} / X! - X/$$

உற்பத்தி A = Me, இடையமாயின் இவ் அளவை இடையம் பற்றிய இடைவிலகல் அல்லது இடையவிலகல் எனப்படும்

$$M_D = \frac{1}{N} \sum_{i=1}^{n} fi/Xi - Me/$$

பொதுவாக இடைவிலகல் எனப்படுவது இடைபற்றிய இடைவில கவேயேயாகும். இவ் அளவை வீச்சு, காலணே லிலகல் என்பவற்றிலுள்ள குறைகளேப் போக்குவதுடன் அவற்றை விடச் சிறந்ததுமாகும்.

உதாரணம் 5.3; ஒரு வகுப்பிலுள்ள மாணவர்களின் உயரங்கள் அங்குலங்களில் பின்வருமாறு, 50, 54, 46, 52, 45, 51, 52, 47. இவ் வுயரப் பரம்பலின் இடை, இடைய விலகல்களேக் காண்க.

 \therefore இடைவிலகல் $\frac{1}{n}$ $\ge |X_i - \bar{X}| = \frac{21.76}{8} = 2.72$ அங்குலங்கள்

வரிசைப்பட்ட புள்ளி விபரங்**கள்**,

45, 46, 47, 50, 51, 52, 52, 54.

இடையம்
$$Me = \frac{X_{(4)} + X_{(5)}}{2} = \frac{50 + 51}{2} = 50.5$$
 அங்குலங்கள்

$$\underset{i=1}{\overset{8}{>}} /Xi - Me/ = \underset{i=1}{\overset{5.5 + 4.5 + 3.5 + 0.5 + 0.5}{+ 1.5 + 1.5 + 3.5}}$$

- 21

். இடையவிலகல்
$$\frac{1}{n}$$
 \geq $/{\rm Xi}-{\rm Me}/=\frac{21}{8}=2.62$ அங்.

தேற்றம் 5.1; ஓர் பி**ன்னக** மீடிறன் பரம்ப**றுக்கு இடையம் பற்றி**ய இடைவிலகலே இழிவானதாகும்.

நிறுவல்; மீடிறன் பரம்பலின் (Xi, fi); i = 1, 2,, n என்போம்.

உற்பத்தி 🗛 பற்றிய இடைவிலகல்

$$U = \frac{1}{N} \ge fi \mid Xi - A \mid ; N = \ge fi$$

A எனும் உற்பத்தி *தரவுக்*கூட்டப் பெறு**மான**ங்களிடையே உள்ள தால் Xi < A, Xi, > A என தரவுகள்

இருகு**ருக்கப்**படலாம்.

$$: U = \frac{1}{N} \ge fi/Xi - A/ + \frac{1}{N} \ge fi/Xi - A/$$

$$Xi < A \qquad Xi > A$$

இது A இனே நகர்த்தும்போது மாற்றமடையுமாதலால், U ஆனது A இனுடைய சார்பாகும்.

அதாவது
$$U=f(A)$$
 U இழிவடைவதற்கு $\frac{dU}{dA}=O$ ஆகவும், இதன் $\frac{d^2U}{dA^2}>O$ ஆகவும் இருத்தல் வேண்டும்.

மேலும்

$$U = \frac{1}{N} \ge \text{fi } (A - Xi) + \frac{1}{N} \ge \text{fi } (Xi - A)$$

$$Xi < A \qquad Xi > A$$

$$\frac{dU}{dA} = \frac{1}{N} \sum_{Xi < A} fi + \frac{1}{N} \sum_{Xi > A} (-fi)$$

$$= \frac{1}{N} \left\{ \sum_{Xi < A} fi - \sum_{Xi > A} fi \right\}$$

$$\frac{dU}{dA} = O \text{ Sulisin } \sum_{Xi < A} fi = \sum_{Xi > A} fi$$

அதாவது Aஇற்கு இடதுபுறமுள்ள உறுப்புக்களின் எண்ணிக்கையும், வலது புறமுள்ள உறுப்புக்களின் எண்ணிக்கையும் சமம் ஆகும். எனவே வரைவிலக்கணப்படி A இடையமாகும்.

$$\frac{dU}{dA} = 0 \longrightarrow A = Me$$

$$\frac{dU}{dA} = \frac{1}{N} \left\{ \begin{array}{l} \Xi fi - \Xi fi \\ xi < A xi > A \end{array} \right\}$$

Aஇன் பெறுமதி அதிகரிக்கப்படும்போது xi < A அதிகரிக்கும், xi < A

குறையும். அதாவது $\frac{dU}{dA}$ ஆனது Aஇனது ஓர் அதிகரிக்கு ம் சார்பாகும் (Increasing function). எனவே $-\frac{d}{dA}\left(\frac{dU}{dA}\right)$ எப்போதும் நேரானதாகும். அதாவது, $-\frac{d^2U}{dA^2}>0$ ஆகும்.

:. A = Me என்பது Uஇனே இழிவுபடுத்தும் பெறுமானமாகும்.

அதாவது $\mathbf{U} = \frac{1}{N} \geq \mathrm{fi/xi} - A/$ என்பது $\mathbf{A} = \mathrm{Me}$ ஆயின் இழிவடையும். எனவே இடைய விலகலே இடைவிலகல்களுள் இழிவுப் பெறுமானத்தைத் தரும்.

$$U_{\min} = \frac{1}{N} \ge fi/xi - Me/.$$

5.2. நியமனிலகல் (Standard Deviation)

நியமவிலகலே வரையறுப்பதற்கு முன் இதனுடன் தொடர்புடைய அளவை இடை வர்க்க விலகலே வரையறுப்போம். இது ஓர் விலகலளவை அல்லவாயினும் விலகலளவையுடன் தொடர்புடையதாகும்.

தரவுக் கூட்டப் பெறுமானங்களின் உற்பத்தி A இலிருந்தான வில கல்களி**ன் வ**ர்க்கங்களின் சராசரி இடைவர்க்க விலகல் என வரையறுக் கப்படும். தரவுக்கூட்ட பெறுமானங்கள் X₁, X₂,....., X_n ஆயின் இடைவர்க்க விலகல் (Mean square deviation),

$$\mathsf{MS}_\mathsf{D} = rac{1}{n} \sum_{i=1}^n (X_i - A)^2$$
 ஆகும். மீடிற**ை ப**ரம்பல்களுக்கு

$$MS_{D} = \frac{1}{N} \sum_{i=1}^{n} f_{i} (X_{i} - A)^{2}, N = \sum_{i=1}^{n} f_{i} \text{ agais.}$$

இடைபற்றிய இடைவர்க்க விலகலின் நேர்வர்க்கமூலம் நியம விலகல் என வரையறுக்கப்படும். இது ் (சிக்மா) விஞல் குறிக்கப்படும்.

$$\mathbf{d} = \sqrt{\frac{1}{N}} \sum_{i=1}^{n} \operatorname{fi} (X_i - \overline{X})^2$$

உதாரணம் 5.4; உதாரணம் 4.2 இலுள்ள மீடிறன் பெரம்பஃ எடுத்துக் துக்கொள்வோம். அங்கு இடை $\overline{X} = 28.57$ ஆகும். இது ஓர் பின்னக மீடிறன் பரம்பலாகும்.

x	f	$X - \overline{X}$	$(X - \overline{X})^2$	$f(X-\overline{X})^2$	
10 20	12 16	-18.57 - 8.57	3 44.84 73. 4 4	4138.08 1175.04	$\sum_{i=1}^{5} fi(X_i - X)^2$
30 40	20 14 8	1.43 11.43 21.43	2.04 130.64 459.24	40.80 1828.96 3673.92	= 1085 6.80
50 மொ	த்தம் த்தம்		409.24	10856.80	$\sum_{i=1}^{5} fi = N = 70$

$$\mathcal{S} = \sqrt{\frac{1}{N}} \sum_{i} f_{i} (x_{i} - \overline{x})^{2} = \sqrt{\frac{10856.8}{70}}$$
= 12.45 enum is soit.

உதாரணம் 5.5; உதாரணம் 4.3 இல் தரப்பட்ட தொடர்ச்சியான மீடிறன் பரம்பலே எடுத்துக்கொள்வோம். இதன் இடை 56.25 ஆகும்.

உயர வகுப்பு	மத்திய பெறுமா ன ம் X	f	$(X - \overline{X})^2$	$\int f(X-\overline{X})^2$
45 - < 50	47.5	15	76.56	1148.4
50 - < 55	52.5	25	14.06	351. 5
55 - < 60	57.5	35	1,56	54.6
60 - < 65	62.5	20	39.06	781 .2
65 - < 70	67.5	5	126.56	632.8

$$\sum_{i=1}^{5}$$
 fi $(Xi - \overline{X})^2 = 2968.5$, $\sum_{i=1}^{5}$ fi = 100

ර =
$$\sqrt{\frac{2968.5}{100}}$$
 = 5.45 அங்குலங்கள்

தேற்றம் 5 . 2; இடைபற்றிய இடைவர்க்க விலகலே இடைவர்க். விலகல்களில் இழிவானதாகும். நிறுவல் ;

MS = 1/N ≥ fi (Xi — A)²எனும் Aபற்றிய இடைவர்க்க விலகவேக் கருதுவோம்.

$$MS = \frac{1}{N} \ge fi (Xi - \overline{X} + \overline{X} - A)^{2}$$

$$= \frac{1}{N} \ge fi (\overline{Xi} - \overline{X})^{2} + \frac{2}{N} \ge fi (Xi - \overline{X}) (\overline{X} - A)$$

$$+ \frac{1}{N} \ge fi (\overline{X} - A)^{2}$$

$$-\frac{1}{N} \sum_{i} \operatorname{fi} (Xi - \overline{X})^{2} + \frac{2}{N} (\overline{X} - A) (\sum_{i} \operatorname{fi} Xi - \overline{X} \sum_{i} \operatorname{fi})$$

$$+ \frac{1}{N} (\overline{X} - A)^{2} \sum_{i} \operatorname{fi}$$

$$\longrightarrow \overline{X} \not \ge fi = \not \ge fi Xi$$

$$\therefore MS = \frac{1}{N} \ge fi(Xi - \overline{X})^2 + O + \frac{1}{N} (\overline{X} - A)^2 N$$

ஆகவே MS =
$$\frac{1}{N}$$
 \ge fi (Xi − \overline{X}) 2 + (\overline{X} − A) 2

இக்கோவையில் A = X ஆயின் மட்டுமே MS இழிவடையும். மேலும்

$$MS_{Min} = \frac{1}{N} \ge fi (Xi - \overline{X})^2$$

அதாவது A = X ஆயின் MS இழிவடையும். என்வே இடைபற்றிய இடைவர்க்க விலகல் இடைவர்க்க விலகல்களுள் இழிவானது. மாறற்றிறன் (Variance):

இடைபற்றிய இடைவர்க்க விலகல் மாறற்றிறன் என வரையறுக்கப் படும். மேலும் இடைபற்றிய இடைவர்க்க விலகலின் நேர்வர்க்க மூலம் நியம விலகலாதலால், நியமவிலகலின் வர்க்கம் மாறற்றிறளுகும். தரவுக்கூட்டப் பெறுமானங்கள் X_1, X_2, \ldots, X_n ஆயின் மாறற்றிறன்

V =
$$\frac{1}{n}$$
 $\sum (xi - \overline{x})^2$ ஆகும். மீடிறன் பெரம்பலுக்கு.

$$V = \frac{1}{N} \ge fi (xi - x)^{\frac{1}{2}}; N = \ge fi - g$$

நியம விலகல், மாறற்றிறனின் உடமைகள்:

(i) X தரப்பட்ட புள்ளிவிபரமாறியாகவும் a, b என்பன மொறிவிக ளாகவும் இருப்பின் புதிய புள்ளிவிபர மாறி yஆனது y = a × + b என வரையறுக்கப்படுமாயின் V_y = a²V_x ஆக்ஷம் ठ_y = ao_x ஆக்ஷம் இருக்கும்.

Xஇன் மாதிரிப் பெறுமானங்களே X₁, X₂, ..., X_n என்க. y == ax + b இஞல் தரப்படும் இவற்றிற்கொத்த பெறுமா எங்களே y₁, y₂, y_n என்க.

$$v_i = aX_i + b; i = 1, 2, ..., n$$

$$V_{y} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$

$$= \frac{1}{n} \sum_{j=1}^{n} \left[(aXi + b) - (a\overline{X} + b) \right]^{2}$$

$$= a^{2}, \frac{1}{n} \ge (Xi - \overline{X})^{2}$$

$$Vy = a^2 Vx,$$

$$\longrightarrow \delta y = a\delta x.$$

(ii) X, Y என்பன இணேவற்ற புள்ளிவிபரமாறிகளாகவும் a, b என்பன மாறிலிகளாகவுமிருப்பின்

மாறற்றிறனுக்கான இள்னுமொரு குத்திரம்;

$$V_{x} = \frac{1}{n} \sum (xi - \overline{x})^{2}$$

$$= \frac{1}{n} \sum (Xi^{2} - 2Xi \overline{X} + \overline{X}^{2})$$

$$= \frac{1}{n} \sum Xi^{2} - \frac{2\overline{X}}{n} \sum Xi + \frac{1}{n} \sum \overline{X}^{2}$$

$$= \frac{\sum Xi^{2}}{n} - \overline{2X}, \overline{X} + \frac{1}{n}, n \overline{X}^{2}$$

$$V_{X} = \frac{\sum Xi^{2}}{n} - \overline{X}^{2}$$

அதாவது

மாறற்றிறன் = வர்க்கங்களின் இடை - இடையின் வர்க்கம் Variance = Mean of squares - Square of mean ஆகும்.

சுருக்குமுறை:

புள்ளி விபரமாறி × இன் பெறுமானங்கள் பெரியவையாயின் உடமை (i) இண்ப் பயன்படுத்தி, சிறிய பெறுமானங்களேயுடைய புதிய புள்ளி விபரமாறி y இண் வரையறுத்து இலகுவாகக் கணிப்பீட்டினே மேற்கொள்ளலாம்.

உதாரணம் 5.6; உதாரணம் 4.4 இண் எடுத்துக்கொள்வோம்.

$$y = \frac{1}{5} (X - 57.5)$$

X	f	y	fy	fy²
47.5	15	- 2	-30	60
52.5	25	- 1	-25	25
57.5	35	0	0	0
65.5	20	1	20	20
67.5	5	2	10	20
மொ	 த்தம்	_25	1 25	

$$\sum f = 100$$

$$\sum fy = -25$$

$$\sum fy^2 = 125$$

$$V_y = \frac{\sum fy^2}{\sum f} - \overline{y^2} \quad \overline{y} = -0.25 \text{ area}$$

உதாரணம் 4.4 இல் கணிக்கப்பட்டது.

$$V_{y} = \frac{125}{100} - (-0.25)^{2} = 1.25 - 0.0625$$
$$= 1.1875$$

நியமவிலகல்
$$\delta_+ = \sqrt{29.6875}$$

= 5.448.

கூட்டுமீடிறன் பரம்பலின் நியமவிலகல், மாறற்றிறன்:

ஒவ்வொன்றும் \mathbf{n}_1 , \mathbf{n}_2 ,, \mathbf{n}_k உறுப்புக்கணேக்கொண்ட \mathbf{k} பரம்பல் கள் அல்லது மாதிரிகள் தரப்பட்டுள்ளன. அவற்றின் இடைகளே முறையே $\overline{\mathbf{X}}_1$, $\overline{\mathbf{X}}_2$,....., $\overline{\mathbf{X}}_k$ எனவும், நியமவிலகல்களே முறையே $\mathbf{0}_1$, $\mathbf{0}_2$,...., $\mathbf{0}_K$ எனவும் கொள்வோம்

பரம்பல்	பரம்பல் அவ தானிப்பு கள்	இடைகள்	நியம விலகல்கள்
1 2	$X_{11}, X_{12}, \dots, X_{1n}$ $X_{2_1}, X_{22}, \dots, X_{2n}$	$\overline{\overline{X_1}}$ $\overline{\overline{X_2}}$	δ ₁ δ ₂
: k	X _{k1} , X _{k2} ,, X _{knk}	$\frac{\vdots}{X_{K}}$	€ o _k

கூட்டுப் பரம்பவின் அல்லது கூட்டு மாதிரியின் உறுப்புக்களின் எண்ணிக்கையை N எனவும், அதன் இடை, நியமவிலகல்களே முறையே X, ் எனவும் கொள்வோம்.

$$\overline{X} = \frac{\sum \operatorname{ni} \overline{Xi}}{\sum \operatorname{ni}}$$
 என முன்பு நிறுவப்பட்டது.

$$\sigma_{1}^{2} = \frac{1}{n_{1}} \sum_{i=1}^{r_{1}} (X_{1i} - \bar{X}_{1})^{2} = \frac{1}{n_{1}} \geq X_{1i}^{2} - \bar{X}_{1}^{2}$$

$$\sigma_{2}^{2} = \frac{1}{n_{2}} \underset{i=1}{\overset{n_{2}}{\succeq}} (X_{2i} - \overline{X}_{2})^{2} = \frac{1}{n_{2}} \succeq X_{2i}^{2} - \overline{X}_{2}^{2}$$

$$\begin{aligned}
\sigma_{k} ^{2} &= \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} (X_{ki} - \bar{X}_{k})^{2} = \frac{1}{n_{k}} \geq X_{ki}^{2} - \bar{X}_{k}^{2} \\
&\longrightarrow \sum_{i=1}^{n_{1}} X_{1i}^{2} = n_{1} (\sigma_{1}^{2} + \bar{X}_{1}^{2}) \\
&\stackrel{n_{2}}{\geq} X_{2i}^{2} = n_{2} (\sigma_{2}^{2} + \bar{X}_{2}^{2})
\end{aligned}$$

$$\sum_{i=1}^{n_k} X_{ki}^2 = n_k (\delta_k^2 + X_k^2)$$

இக் k சமன்பாடுகளேக் கூட்ட

$$\sum_{i \ = \ 1}^{k} \quad \sum_{j \ = \ 1}^{ni} \ X_{ij}^{\ 2} \ = \sum_{i \ = \ 1}^{k} \ n_i \ o_i^{\ 2} \ + \sum_{i \ = \ 1}^{k} \ n^i \ \bar{X_i}^2$$

கூட்டுப் பரம்பலுக்கு

$$\sigma^{2} = \frac{1}{N} \underset{i}{\succeq} \underset{j}{\succeq} X_{ij}^{2} - \overline{X}^{2}$$

$$\underset{i}{\succeq} X_{ij}^{2} = N \left(\sigma^{2} + \overline{X}^{2}\right) \qquad (2)$$

(1), '2) இலிருந்து

$$N\left(\sigma^{1} + \overline{X}^{2}\right) = \sum_{i} n_{i} \sigma_{i}^{2} + \sum_{i} n_{i} \overline{X}_{i}^{2}$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{k} n^{i} \left(\sigma^{12} + \overline{X}_{1}^{2}\right) - \overline{X}^{2}$$

$$\text{where } N = \sum_{i=1}^{k} n_{i}, \ \overline{X} = \frac{1}{N} \sum_{i=1}^{k} n_{i} \overline{X}_{i} \text{ and } \overline{X}_{i}$$

உதாரணம் 5.7; உதாரணம் 4.5 இண் எடுத்துக்கொள்வோம். அங்கு A, B, C வகுப்பு மாணவர்களின் புள்ளிகளின் நியம விலகல்களே முறையே 5, 10, 5 எனக் கொள்வோம்.

$$N=125$$
, $\widetilde{X}=61.4$ என முன்பு கணிக்கப்பட்டது.

$$\bar{X}_1 = 55, \quad \bar{X}_2 = 60, \quad \bar{X}_3 = 65$$

$$d_1 = 5, \quad d_2 = 10, \quad d_3 = 5$$

$$n_1 = 25$$
, $n_2 = 40$, $n_1 = 60$

$$6^{2} = \frac{1}{125} \left[25 \left(55^{9} + 5^{2} \right) + 40 \left(60^{2} + 10^{2} \right) + 60 \left(65^{2} + 5^{2} \right) \right] - 61.4^{2}$$

$$= \frac{1}{25} (15250 + 29600 + 51000) - 3769.96$$

= 64.04

எனவே மாறற்றிறன் 64.04

ර =
$$\sqrt{64.04}$$
 = 8.002 நியமவிலைகல் 8.002 புள்ளிகள்.

றியம புள்ளி விபரமாறி (Standard statistical Variable):

யாதுமோர் புள்ளி விபரமாறிக்கு இடை, நியமவிலைகல் எனும் இரு முக்கிய அளவைகளேயும் கணிக்க முடியும். எனவே இடை Mஉம் மாறற்றிறன் ර² உம் உடைய புள்ளி விபரமாறி Xஇணிக் கருதாக.

 $\overline{X} = M$, $V_x = \delta^2$, $\delta_x = \delta$ இது பொதுவான புள்ளிவிபரமாறியாகும். இடை பூச்சியமும், நியமவிலகல். மாறற்றிறன் ஒன்றுமுடைய புள்ளி விபேரமாறி நியம புள்ளி விபேரமாறி எனப்படும். அது Z ஆயின்

$$\overline{Z} = 0$$
, $\delta_Z = 1$, $V_Z = 1$

எ**ந்த ஒரு** புள்**ளி வி**பரமாறியும் சுருக்க சூத்திர**த்தைப் பயண்ப**டுத்தி நியம் புள்ளி விபர மாறியாக மோ**ற்**றப்படலாம்.

அதாவது

$$\overline{Z} = \frac{X - \overline{X}}{\sigma_X} + \sigma_X$$

ගුලිනැන්නේ
$$\overline{Z} = \frac{1}{\sigma_X} (\overline{X} - (\overline{\overline{X}}))$$

$$= \frac{1}{\sigma_X} (\overline{X} - \overline{X}) = 0$$

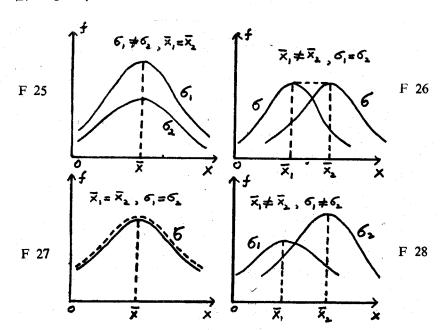
$$V_z = \frac{1}{dx^2} V_x = \frac{1}{dx^2}. dx^2 = 1$$

5 . 3. மீடிறன் பரம்பல்களே ஒப்பிடல் (Comparison of distributions)

ஓர் மீடிறன் பரம்பலின் இரு முக்கிய சிறப்புகள் மைய நாட்ட அளவையும், விலகலளவையுமாகும். இவற்றை இதுவரை ஆராய்ந்துள் ளோம். சிறந்த அளவைகளாக இவை முனறயே இடை, நியம விலகலி ஞல் அளக்கப்படும். இரண்டு மீடிறன் பரம்பல்கள் தரப்பட்டால் அவற்றின் இடை, நியம விலகல் என்பன கணிக்கப்படும். இவை பின் வரும் வகைகளில் வித்தியாசப்படலாம்.

- (i) இரண்டினதும் இடைகள் சமமாகவும், நியமவிலகல்க**ள் வித்தி** யாசமுமான வகை
- (ii) நியமவிலகல்கள் சமமாகவும், இடைகள் வித்தியாசமானது மான வகை
- (iii) இடையும், நியம விலகலும் சமமான வகை
- (iv) இரண்டுமே சமமற்ற வகை.

இவை முறையே படங்கள் F25, F26, F27, F28 எ**ன்ப**னவற்றில் தரப்படுகின்றன.



இவ்வகைகள் யாவற்றையும் அவதானிப்போமாயின் அவற்றின் புள்ளி விபரமாறிகள் ஒன்றேயாகும். அவற்றின் அலகுகளும் சமமாகும்.

 $\overline{X}_1 = \overline{X}_2$, $\overline{X}_1 < \overline{X}_2$, $\overline{X}_1 > \overline{X}_2$ ஆயின் மையநாட்ட அளவை சார்பாக பரம்பல்களே சமம், சிறிது பெரிதென ஒப்பிட முடியும். $\delta_1 = \delta_2$, $\delta_1 < \delta_2$, $\delta_1 > \delta_2$ ஆயின் விலகலளவை சார்பாக பரம்பல் களின் விலகல்களே சமம், சிறிது, பெரிதென ஒப்பிடமுடியும். பொதுவாக ஒரே குடியிலிருந்து பெறப்பட்ட இரு மாதிரிகளுக்கு இரு மீடிறன் வீளயிகளே வரைவோமாயின் அவை வகை (iii) ஆகவும் படம் F 27இலுள்ளது போலவும் இருக்கும்.

தொடர்பு விலகலளவைகள் (Relative measure of Dispersion):

இரு மீடிறன் பரம்பல்களிலும் வெவ்வேறு புள்ளிவிபேரமாறிகள் வெவ்வேறு அலகுகளுடன் தரப்படின் அவற்றை நேரடியாக இடை, நியமவிலகஃப் பயன்டேடுத்தி ஒப்பிட முடியாது. ஏனெனில் உதாரண மாக 50 kg இற்கும் 80 kg இற்குமிடையில் நிறைகளேக் கொண்ட மீடிறன் பரம்பஃலயும், 150 cm இற்கும் 250 cm இற்குமிடையிலுள்ள உயரங்களேக் கொண்ட மீடிறன் பரம்பஃலயும் நேரடியாக இடை, நியம விலகலேக் கணித்து ஒப்பிடல் கருத்தற்றதாகும். எனவே இவற்றின் இடைகளே ஒப்பிடுவதை விட விலகஃ ஒப்பிடுவதே பொருத்தமானதா கிறது. மேலும் இவை வெவ்வேறு அலகுகளேயுடையதால் அலகற்ற குணைகம் ஒன்றை ஒப்பீட்டுக்கு வரையறுத்தல் அவசியமாகிறது.

பொதுவான தொடர்பு விலகலளவைகள் :

பொது**வாக வழ**க்**கத்**திலுள்ள தொடர்புவிலக**லளவைகள் பின்** வருவனவாகும்.

- (i) மாறற் குணகம் (Co-efficient of Variation)
- (ii) இடைவிலகல் குண கம் (Co-efficient of Mean deviation)
- (iii) காலணே விலகல் குணகம் (Co-efficent of quartile deviation)

இவை மூன்றும் மையநாட்ட அளவையினே, விலகலளவையினுல் பிரிப்பதால் வரையறுக்கப்படுகின்றன.

மாறற் குணகம்
$$\mathbf{CV} = \frac{\mathbf{O}}{\overline{X}}$$

இடைவிலகல் குணகம் $\mathbf{CM_D} = \frac{\mathbf{M_D}}{\overline{\mathbf{v}}}$

കാനസ്ത്ത ബ്സെക്സ്
$$CQ_D = \left(\frac{Q_3 - Q_1}{8}\right) / \left(\frac{Q_3 + Q_1}{2}\right)$$

$$= \frac{Q_3 - Q_1}{Q_2 + Q_1}$$

இவை மூன்றும் அலகற்றவையாகவுள்ள அதேவேளேயில் விலகலள வைகள் 6, M_D, Q_Dஇல் 6 சிறந்ததால் மாறற்குணம் CVயே பொது வாக ஏற்றுக்கொள்ளப்படும் தொடர்பு விலகலளவையாகவுள்ளது.

உதாரணம் 5.8; உதாரணம் 4.3 இலுள்ள உயரத்துக்காண மீடிறன் பரம்பலே எடுத்துக்கொள்வோம்.

X—உயரம், $\overline{X}=56.25$ அங்., உதாரணம் 5.6 இலிருந்து $\delta x=5.448$ அங்., உதாரணம் 4.2 இலுள்ள ஊ தியத்துக்கான மீடிறன் பரம்ப**ீல** எடுத்துக்கொள்வோம். X — ஊதியம், $\overline{X}=28.57$ ரூபாக்கள். உதாரணம் 5.4 இருந்து $\delta_X=12.45$ ரூபாக்கள்.

ு CV
உயரம் =
$$\frac{5.448}{56.25}$$
 = 0.096
CV
ஊதியம் = $\frac{12.45}{28.57}$ = 0.436

இம்மாறற் குணங்களே ஒப்பிடுவதன்மூலம் உயரப் பரம்பலின் விலகல் ஊதியப் பரம்பலின் விலகஃவிடச் சிறிது எனும் முடிவுக்கு வரலாம்.

5 . 4. விலகலளவையுட*ன்* தொடர்புடைய சில அளவைகள்

திருப்பங்கள் (Moments):

திருப்பங்கள் மூன்று வகையாகும். அவையாவன:

- (a) பொதுவான திருப்பம் (General moment)
- (b) **பச்**சைத் திருப்பம்

(Row moment)

(c) மையத் திருப்பம்

(Central moment)

பொதுவான திருப்பங்கள்:

தரவுக்கூட்டப் பெறுமானங்களே X_1 , X_2 , ..., X_n எனவும். அவற் றிடையேயிள்ள ஓர் உற்பத்தியை A எனவும் கொள்வோமாயின் A பற் றிய தரவுக் கூட்டத்தின் r ஆம் திருப்பம் M_r^A இதஞல் குறிக்கப்பட்டு பின்வருமாறு வரையறுக்கப்படும்.

$$M_r^A = \frac{1}{n} \sum_{i=1}^n (X_i - A_i),$$
 மீடிறன் பரம்பலுக்கு

$$M_r^A = \frac{1}{N} \sum_{i=1}^n fi (Xi - A)^r; \quad N = \sum_{i=1}^n fi$$
 ஆகும்.

குறிப்பு: $A = \overline{X}$, r = 2 ஆயின்

$$\mathbf{M}_{2}^{\overline{\mathbf{X}}} = \frac{1}{\overline{\mathbf{N}}} \mathbf{X} \mathbf{f}_{1} (\mathbf{X}_{1} - \overline{\mathbf{X}})^{2} = \mathbf{V}_{\mathbf{X}}$$
 again.

அதாவது இடைபற்றிய 2ஆம் திருப்பம் மாறற்றிறனுகும்.

பச்சைத் திருப்பங்கள்:

உற்பத்தி பூச்சியமாகத் தெரிவுசெய்யப்படின் பொதுவான திருப்பங்கள் பச்சைத் திருப்பங்கள் எனப்படும். r ஆம் பச்சைத் திருப்பம் M¹ இணல் குறிக்கப்பட்டு பின்வருமாறு வரையறுக்கப்படும்.

M_r =
$$\frac{1}{n} \stackrel{n}{\underset{i=1}{M}} \chi_i^r$$
, மீடிறன் பரம்பலுக்கு

$$\mathbf{M}_r^1 = \frac{1}{N} \mathbf{Z} \text{ fi } \mathbf{X}_r$$
; $\mathbf{N} = \mathbf{Z} \mathbf{fi}$ ஆகும்.

குறிப்பு: r = 1 ஆயின்

$$M_1^1 = \frac{1}{N} \sum_{i=1}^n f_i \ X_i = \bar{X} = 36$$

அதாவது முதலாம் பச்சைத்திருப்பம் இடையாகும்.

மையத் திருப்பங்கள்:

உ**ற்ப**த்தி இடையாகத் தெரிவுசெய்யப்படின் பொதுவான திருப் பங்கள் மையத் திருப்பங்கள் எனப்படும். 1 ஆம் மையத்திருப்பம் M, இஞல் குறிக்கப்பட்டுப் பின்வருமாறு வரையறுக்கப்படும்.

$$\mathbf{M}_r = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{X}_i - \overline{\mathbf{X}})^r$$
, மீடிறன் பரம்பலுக்கு

$$M_r = \frac{1}{N} \sum_i f_i (X_i - \overline{X})^r; \quad N = \sum_i f_i \quad \text{28.65} \dot{\omega}.$$

குறிப்பு; r = 2 ஆயின்

$$M_2 = \frac{1}{N} \ge \text{ fi } (\mathbf{x}\mathbf{i} - \overline{\mathbf{X}})^2 = V_x + \mathbf{x} \mathbf{g}$$

அதாவது இரண்டாம் மையத்திருப்பம் மாறற்றிறனுகும்.

பொதுவான திருப்பத்துக்கும், மையத்திருப்பத்துக்குமுள்ள தொடர்பு பின்வருமா நிருக்கும்.

$$M_r^A = \frac{1}{n} \sum_{i=1}^n (X_i - A)^r$$

$$= M_{r}^{1} - {r \choose 1} M_{r-1}^{1} A + {r \choose 2} M_{r-2}^{1} A^{2} \dots + {(-1)^{r}} A^{r}$$

தேற்றம் 5.3; பொதுவான திருப்பத்துக்கும், மையத்திருப்பத்துக் கும் உள்ள தொடர்பு,

$$M_r = M_r^A - \binom{r}{1} M_{r-1}^A M_1^A + \binom{r}{2} M_{r-2}^A M_{r-2}^{A2} \dots \dots + (-1)^{r-2} \binom{r}{r-2} M_2^A M_1^{Ar-2} + (-1)^{r-1} (r-1) M_1^{A1}$$

நிறுவல் ;

$$M_{r} = \frac{1}{N} \sum_{i=1}^{n} f_{i} (X - \overline{X})^{r}$$

$$M_{r}^{A} = \frac{1}{N} \sum_{i=1}^{n} f_{i} (x_{ia} - A)^{r}$$

$$X_i - A = y_i$$
 , $\overline{X} - A = d$ simes.

$$\therefore M = \frac{1}{N} \sum_{i=1}^{h} f_i y_i$$

$$M_r = \frac{1}{N} \geq f_i (X_i - X)^r = \frac{1}{N} \geq f_i [(x_i - A) - (\overline{X} - A)]^r$$

$$M_{r} = \frac{1}{N} \geq f_{i} (y_{i} - d)^{r}$$

$$= \frac{1}{N} \geq f_{i} \left\{ y_{i} - \binom{r}{i} y_{i}^{r-1} d + \binom{r}{2} y_{i}^{r-8} d^{2} \dots + (-1)^{r-1} \binom{s}{r-1} y_{i}^{r} d^{r-1} + (-1)^{r} \binom{r}{r} d^{r} \right\}$$

அதாவது

$$M_{r} = \left(\frac{1}{N} \geq f_{i} y^{ir}\right) - \binom{r}{1} \left(\frac{1}{N} \geq f_{i} y_{i}^{r-1}\right) d$$

$$+ \binom{r}{2} \left(\frac{1}{N} \geq f_{i} y_{i}^{r-2}\right) d^{2} \dots \dots$$

$$\dots + (-1)^{r-1} \binom{r}{r-1} \left(\frac{1}{N} \geq f_{i} y_{i}\right) d^{r-1}$$

$$+ (-1)^{r} d^{r}$$

$$= M_r^A - \binom{r}{1} M_{r-1}^A d + \binom{r}{2} M_{r-2}^A d^2 \cdots \cdots + (-1)^{r-1} \binom{r}{2} M_r^A d^{r-1} + (-1)^r d^r$$

දුගෝ
$$M_1^A = \frac{1}{N} \ge f_1 (X_i - A) = \frac{1}{N} \ge f^i X_i - \frac{1}{N} A \ge f_i$$

அதாவது $M_1^A = \tilde{X} - A = d$

உதாரணம் 5.9; ஓர் மீடிறன் பரம்பவீன் 2 பற்றிய முதல் மூன்று திருப்பங்களும் முறையே 1, 16, — 40 ஆயின் அப்பரம்பலின் இடை, மாறற்றிறன்களேக் காண்க

$$M_1^2 = 1$$
, $M_2^2 = 16$, $M_3^2 = -40$ ពេល និងប្រើប្រាក់ Θ ទាំង និងប្រាក់ $M_3^2 = -40$ ពេល និងប្រាក់ $M_3^2 = -40$

$$M_1^2 = \frac{1}{N} \ge \text{ fi } (Xi - 2)$$

$$\therefore 1 = \frac{1}{N} \ge \text{ fi } Xi - \frac{2}{N} \ge \text{fi}$$

$$=\overline{X}-2$$

$$\longrightarrow \overline{X} = 3$$

$$M_{2^2} = \frac{1}{N} \ge f_i (X_i - 2j^2)$$

16 =
$$\frac{1}{N} \ge f_i [(X_i - 3) + 1]^2$$

$$16 = \frac{1}{N} \ge f_i (X_i - 3)^2 + \frac{2}{N} \ge f_i (X_i - 3) + \frac{1}{N} \ge f_i$$

$$16 - \vee_{x} + 2\left(\frac{\sum f_{i} X_{i}}{N} - 3\right) + 1$$

$$16 = V_x + 2(\overline{X} - 3) + 1$$

$$\longrightarrow V_x = 15$$

எனவே இடை 2 உம் மாறற்றிறன் 15 உம் ஆகும்.

உதாரணம் 5.10; மேலே தரப்பட்ட உதாரணத்தில் முதல் மூன்று பச்சைத் திருப்பங்களேயும் காண்க,

$$M'_1 = \frac{1}{N} \ge f_i X_i = \overline{X} = 3$$

$$M'_2 = \frac{1}{N} \ge f_i X_i^2 - \frac{1}{N} \ge f_1(X_i - 2 + 2)^2$$

$$= \frac{1}{N} \ge f_i (X_i - 2)^2 + \frac{2}{N} \ge f_i (X_i - 2) \cdot 2 + \frac{1}{N} \ge f_i \cdot 4$$

$$= M_2^2 + 4 M_1^2 + 4$$

$$= 16 + 4 \times 1 + 4$$

= 24.

$$M'_{3} = \frac{1}{N} \ge f_{1} X_{1}^{3} = \frac{1}{N} \ge f_{1} (X_{1} - 2 + 2)^{3}$$

$$= \frac{1}{N} \ge f_i [(X_i - 2)^3 + 3(X_i - 2)^2 \cdot 2 + 3(X_i - 2) \cdot 4 + 8$$

$$= \frac{1}{N} \ge f_i (X_i - 2)^3 + \frac{6}{N} \ge f_i (X_i 2)^2$$

$$+\frac{12}{N} \ge f_i(X-2) + \frac{8}{N} \ge f_i$$

$$= -40 + 6 \times 16 + 12 \times 1 + 8$$
$$= 76.$$

6. ஓராய அளவையும், குடில அளவையும்

(Measure of Skewness & Kurtosis)

6.1. 97111 Amma (Mesaure of Skewness)

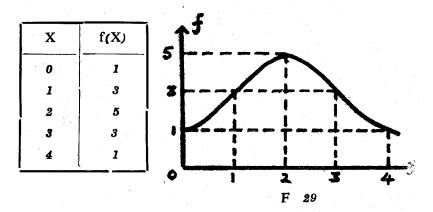
ஒவ்வொரு தரவுக் கூட்டமும் சமச்சீரிலிருந்து எவ்வாறு சரிந்திருக் கின்றது என்பதை அளவிடுவதே ஒராய அளவைகளின் நோக்கமாகும்.

சமச்சிர் மீடிறன்வளேயி (Symetrical frequency curve):

சமச்சீர் அச்சுக்கு இருபுறமும் சமதூரங்களில் சம உயரங்களில் புள்ளிகளேக் கொண்ட வளேயிகள் அவ்வச்சுப்பற்றி சமச்சீரானவை யாகும். X = X₀ பற்றி மீடிறன் வளேயி f(X) சமச்சீர் ஆனதாயின் எல்லா h பெறுமானங்களுக்கும்

$$f(X_0 - h) = f(X_0 + h)$$
 ஆயிருத்தல் வேண்டும்.

உதாரணம் 6.1; பின்வரும் மீடிறன் பரம்பலக் கருதுக.



இங்கு f(2-h) = f(2+h) ஆகுமாறு h எவ்வாறும் தெரியப்படலாம். எனவே இது சமச்சீர் வீளயியாகும். சமச்சீர் அச்சு X=2 ஆகும்.

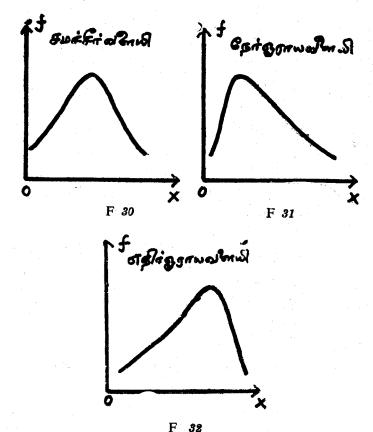
ஓராயம்

சமச்சீரற்ற வளேயிகள் யாவும் ஓராய வளேயிகள் எனப்படும். ஓ**ராயம் என்பது** சமச்சீரற்றது என்**பதைக்** குறிக்கிறது. ஓராய வளேயிகள் இருவகைப்படும்.

- (i) நேர் ஓராயவளேயி (Positively skewed curve)
- (ii) எதிர் ஓராய வளேயி (Negatively skewed curve)

ஒராய வள்யியின் நெடிய வால்பகு பெரிய பெறுமானங்களே நோக்கியிருப்பின் அது நேர் ஒராய வள்யி யெனவும், சிறிய பெறு மானங்களே நோக்கியிருப்பின் அது எதிரோராய வள்யி யெனவும் சொல்லப்படும். பொதுவான மீடிறன்வள்யிகள் அத்தியாயம் 3இல் தரப்பட்ட (a), (b) வகைகளாகவே இருக்கும். (c), (d) வகைகள் மிகவும் அரிதாகவே இருக்கும். எனவே (a), (b) வகைகளுக்கு மட்டும் ஒராயத்தைப் பரிசோதித்தல் போதுமானதாகும். ஒராய வள்யிகளே படங்கள் F 30, F 31, F 32 இலும் அவதானிக்கலாம்.

ஓராய வள்யிகள் ச



தேற்றம் 6.1; சமச்சீர்ப் பரம்பலுக்கு எல்லா ஒற்றை மையத் திருப்பங்களும் பூச்சியமாகவும், நேர்ஓராயப் பரம்பலுக்கும் எதிர் ஒராயப் பரம்பலுக்கும் அவை பூச்சியமற்றதாகவும் இருக்கும்.

நிறுவல் ;

சமச்சீர்ப் பரம்பலுக்கு எல்லா ஒற்றை மையத் **தி**ருப்பங்களும் பூச்சியம் எனக் காட்டுவோம். பொதுமைப் பண்புகளில் மாற்றமின்றி Xoஆனதை இடை X எனவும் h >o எனவும் எடுத்துக்கொண்டோல், Xo பற்றி சமச்சீரான மீடிறேன் வேளேயி f(X)இற்கு

எல்லா hஇற்கும் f(Xo + h) = f (Xo - h)____ (i) எனவே மையத்திருப்பங்கள்,

$$M_{r} = \frac{1}{N} \sum_{i=1}^{n} (X_{i} - X_{0})_{r} f(X_{i}); \quad N = \sum f_{i}$$

$$= \frac{1}{N} \left[\sum_{X_{i}} (X_{i} - X_{0})_{r} f(X_{i}) + \sum_{X_{i}} (X_{i} - X_{0})_{r} f(X_{i}) \right]$$

I ஒற்றையாயி**ன்**,

$$M_{r} = \frac{1}{N} \left\{ \sum_{X_{i} < X_{0}} (X_{0} - X_{i})^{r} f(X_{i}) \right\} + \sum_{X_{i} > X_{0}} (X_{i} - X_{0})^{r} f(X_{i})$$

$$X_i = egin{cases} X_0 - h ; &$$
 எல்லா $X_i < X_0$ இத்தம் $X_0 + h ;$ எல்லா $X_i > X_0$ இற்கும்

$$\therefore M_t = \frac{1}{N} \left\{ \sum_{i < X_o} [-h^r f(X_o - h)] - \sum_{X_i > X_o} h_r f(X_o + h) \right\}$$

$$\therefore M_r = \frac{h^r}{N} \left\{ \underset{X_1 > X_0}{\succeq} f(X_0 + h) - \underset{X_1 < X_0}{\succeq} f(X_0 - h) \right\}$$

----(2)

ஆணல் (1)இவிருந்து

$$f(X_0+h) = f(X_0-h)$$
 எல்லா hஇற்கும்

அதாவது r ஒற்றையாயின் சமச்சீர்ப்பரம்பல்களுக்கு மையத்திருப்பம் Mr பூச்சியமாகும்.

ஒராயப் பரம்பல்களுக்கு அதாவது சமச்சீரற்றவைகளுக்கு
$$f(X_o + h) \neq f(X_o - h)$$
 ஆதலால் $M_r \neq 0$ ஆகும்.

குறிப்பு; முதலாம மையத்திருப்பமும் ஓர் ஒற்றை மைய**த் திருப்ப** மாகு**ம். ஆ**ளுல் இது எல்லாப் பரம்பல்களுக்கும் (ச**ம**ச்சீர், சமச்சீ ர**ற்**ற) பூச்சியமாகும்.

$$M_{r} = \frac{1}{N} \sum_{i} f_{i} (X_{i} - \overline{X})^{i}$$

$$= \frac{1}{N} \sum_{i} f_{i} X_{i} - \frac{\overline{X}}{N} \sum_{i} f_{i}$$

$$= \overline{X} - \overline{X} = 0$$

பொதுவான ஓராய அளவைகள் :

பொதுவாக வழக்கத்திலுள்ள ஓராய அளவைகள் பின்வகுவண வாகும்.

- 1. M_3 , β_1 , \aleph_1 ,
- 2. கால்-பியர்சனின் ஓராய குணகம் (Karl Pearson's Co-efficient of Skewness)
- 3. காலணே ஓ**ராய அளவை அல்லது வோலியின் ஓராய**க் குணகம்

(Quartile measure of Skewness or Bowley's Co-efficient of Skewness)

4. தசமணே ஒராய அளவை, சதமணே ஓராய அளவை அல்லது கெலியின் ஒராயக்குணகம்

(Decile, Percentite measure of Skewness or Kelly's Co-efficient of Skewness)

M_3 , β_1 , β_1

மூன்*ரு*ம் மத்திய திருப்**ப**ம் M₃;

சமச்சீர்ப்பரம்பலுக்கு ஒற்றை மத்திய திருப்பங்கள் பூச்சியமாகவும், நேர் ஓராயப் பரம்பலுக்கு அவை நேராகவும், எதிர் ஓராயப் பரம் பலுக்கு அவை நேராகவும், எதிர் ஓராயப் பரம் பலுக்கு அவை எதிராகவும் இருக்கும். ஆணில் முதலாம் திருப்பம் எல்லாவற்றுக்கும் பூச்சியமாதலால் விதிவிலக்கானது. எனவே அடுத்த ஒற்றை மையத்திருப்பம் M₃ பயண்படுத்தப்படுகிறது. இது அலகுள்ள தாகவும், கருத்தற்றதாகவும் இருப்பதால் β₁ எனும் குணகம் வரையறுக்கப்படுகிறது.

 $eta_i = M_3^2 / M_2^3$, ஆளுல் இவ் அளவை பரம்பல்களே சமச்சீர், சமச் சீர \hat{p} ந்தது எனப் பிரிக்கவே உதவும். இதன்மூலம் நேர், எதிர் ஓராயப் பரம்பல்களே இனம் காணமுடியாது. எனவே eta_1 வரையறுக்கப்படு கிறது.

$$8_1 = \begin{cases} + \sqrt{M_3^2/M_2^3} & : M_3 < O \\ - \sqrt{M_3^2/M_2^3} & : M_3 < O \end{cases}$$

 $M_3>0$ ஆயின் $\chi_1>0$ ஆகவும், $M_3>0$ ஆயின் $\chi_1>0$ ஆகவுமிருப்ப தால் $\chi_1>0$ ஆகவுமிருப்ப

கால்-பியர்சனின் ஓராயக் குணகம் :

மேலே குறிப்பிடப்பட்ட அளவையை விடச் சிறந்**த அளவை** ஒன்றைப் பியர்சன் என்பவர் வரையறுத்தார். இவ் அளவை இடை. இடையம், ஆகாரம் என்பவற்றின் நிலேகளே அடிப்படையாகக் கொண்டு வரையறுக்கப்பட்டது. அத்தியாயம் 4இலுள்ள மீடிறன்வளேயிகள் F22, F23, F24 என்பனவற்றை எடுத்துக்கொள்வோம்.

எனவே மேற்குறிப்பிடப்பட்ட பரம்பல்களுக்கு முறையே பூச்சிய, நேர், எதிர் பெறுமாணங்களேத் தரும், அலகற்ற ஓராய அளவையாக பியர் சனின் ஓராயக் குணகம் பின்வருமாறு தரப்படுகிறது. இது Gஇனல் குறிக்கப்படும்.

$$G = \frac{\overline{X} - Mo}{\sigma} = \frac{g_{\infty} - 3 s_{\pi} r_{\mu}}{g_{\mu} r_{\mu}}$$

சில பரம்பல்களில் ஆகாரம் Moஇனது திருத்தமான பெறுமானங் களேப் பெறுதல் இலகுவானதல்ல. இவ்வகைக்கு அத்தியாயம் 4இலுள்ள தொடர்பு (17) பயன்படுத்தப்படும். அதாவது ஆகாரத்துக்கு பதில் இடையம் பயன்படுத்தப்படும். அத் தொடர்பு

$$\overline{X}$$
 — Mo = $3(\overline{X}$ — Me) ஆதலால் $G = \frac{3(\overline{X} - Me)}{3}$ ஆகும்.

உதாரணம் 6.2; ஓர் மீடிறன் பரம்பலின் இடை, நியம விலகல், பியர்சனின் ஒராயக் குணகம் என்பன முறையே 29.6, 6.5, 0.32 ஆகும். இப்பரம்பலின் இடையம், ஆகாரம் என்பனவற்றைக் காண்க.

$$\overline{X} = 29.6$$
, $6 = 6.5$, $G = 0.32$

G நேர்ப்பேறுமானமாதலால் இது ஓர் நேர் ஓராயப் பரம்பலாகும். அதாவது இதன் மீடிறன் வளேயி இடதுபுறம் சரிந்ததாகும். இதன் இடையம், ஆசாரம் என்பவற்றை முறையே Me, Mo என்க.

$$G = \frac{X - M o}{\delta}$$

$$\therefore 0.32 = \frac{29.6 - Mo}{6.5}$$

$$\therefore Mo = 29.6 - 0.32 \times 6.5$$

= 27.52

மேலும் நேர் ஓராயப் பரம்பலுக்கு $ar{X} > Me > Mo$ உம் ஆகும்.

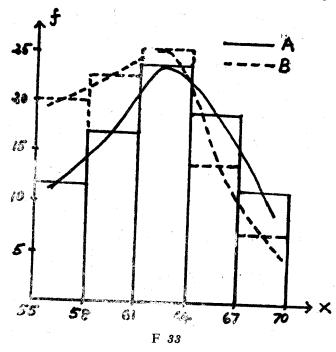
$$\overline{X}$$
 — Mo = 3 (\overline{X} — Me)
$$\overline{X}$$
 — Me = $\frac{1}{3}$ (\overline{X} — Mo)
$$29.6$$
 — Me = $\frac{1}{3}$ (29.6 — 27.52)
$$= 0.693$$
Me = 28.907 .

உதாரணம் 6.8; ஓராயக் குணகங்களேக் கணிப்பதன் மூலம் பின் வரும் இரு மீடிறன் பரம்பல்களில் எது அதிகூடிய சரிவுடையதெனக் காண்க.

இருவகுப்புகள் A, Bஇல் மாணவாகள் ஒரு விஞ**த்தா**ளில் பெற்ற புள்ளிகளே இம்மீடிறன் பரம்பல்கள் குறிக்கின்றன.

பு ள்ளி வகு ப் ப	மாண	மாணவர் எண்ணிக்கை			
	வகுப்பு	A வகுப்பு B			
55 — 5 8	12	20			
58 61	17	22			
61 - 64	23	25			
64 — 6 7	18	13			
67 — 70	11	7			

ஓ**ர**ாயக் குணகங்களே வைத்து ஒப்பிடுமுன்னர் இர**ண்டின**தும் மீ**டிறன்** வ*ோ*யிகளே ஒரே வரைபில் வரைவதன்மூலம் ஒப்பிடுவோம்.



இவ்விரு வீளயிகளேயும் நோக்குவோமாயின் அவை நடுப்புள்ளிக்கு இடதுபுறம் உயர்ந்தும் வலதுபுறம் பதிந்தும் இருப்பதைக் காணலாம் எனவே அவை இரண்டினதும் வால்பகுதிகள் இடப்பக்கமுள்ளன அதாவது அவையிரண்டும் எதிர்ஓ**ராய வ**ீளயிகளாகும். ஆஞல் அவற் றில் சரிவு கூடியது எது என்பதை விளக்குவதற்கு ஓராயக்குணைகமே தேவையாகும்.

இதற்கு சுருக்கு முறையினேப் பயண்படுத்துவோம்:

பு ள் ளி மத்திய வகுப்பு		y	வகுப்பு A			வகுப்பு B		
	X		f	fy	f y 2	f	fy	fy ²
55—58 58—61 61—64 64—67 67—70	56.5 59.5 62.5 65.5 68.5	-2 -1 0 1 2	12 17 23 18 11	24 17 0 18 22	48 17 0 18 44	20 22 25 13 7	40 22 0 13 14	80 22 0 13 28
)மா த்தம்		81	-1	127	87	35	143

இங்கு சுருக்கத்தொடர்பு y = $\frac{1}{3}$ (X—62.5) ஆகும். பரம்பல் A இற்கு ;

$$\overline{y} = \frac{\sum fy}{\sum f} = \frac{-1}{81} = -0.012$$

$$V_y = \frac{\sum fy^2}{\sum f} - \frac{1}{y^2}$$

$$= \frac{127}{81} - (-0.012)^2 = 1.5678$$

$$y = \frac{1}{8}(x - 62.5)$$

$$\longrightarrow \overline{X} = 62.5 + 3\overline{V} \& V_x = 9 V_y$$

$$\therefore \ \overline{X} = 62.5 - 3 \times 0.012, \ \nabla_{x} = 9 \times 1.5678$$

$$= 62.46 = 14.11$$

$$\therefore c_{*} = 3.756$$

எனவே வகுப்பு Aஇலுள்ள மாணவர்களின் சராசரிப் புள்ளி 62 46உம், நியமலிலகல் 3.756உம் ஆகும்.

A இல் அதி உயர்மீடிறன் 23 ஆகும். எனவே ஆகாரவகுப்பு (61 — 64) ஆகும்.

$$M_0 = l_1 + \left(\frac{f_0 - f_1}{2f_0 - f_1 - f_2}\right) (l_2 - l_1)$$

$$\therefore$$
 1, = 61, 1, = 64, f₀ = 23, f₁ = 17, f₂ = 18

$$\therefore M_0 = 61 + \left(\frac{23 - 17}{46 - 17 - 18}\right) (64 - 61)$$

$$= 61 + 1.636$$

$$= 62.636$$

பரம்பல் Bஇற்கு;

$$\overline{y} = \frac{-35}{87} = -0.402$$

$$V_y = \frac{143}{87} - (0.402)^2 = 1.482$$

$$\overline{X} = 62.5 - 3 \times 0.402$$
 & $V_x = 9 \times 1.482$
= 61.294 = 13.338
 $\therefore G_z = 3.652$

எனவே வகுப்பு Bஇலுள்ள

மாணவர்களின் சராசரிப்புள்ளி 61.294உம், நியமவிலைகல் 3.652உம் ஆகும்.

Bஇல் அதியுயர் மீடிறன் 25 ஆகும். எனவே ஆகாரவகுப்பு (61 — 64) ஆகும்.

$$\therefore$$
 1, = 61, 1, = 64, f₀ = 25, f₁ = 22, f₂ = 13

$$\therefore M_0 = 61 + \left(\frac{25 - 22}{50 - 22 - 13}\right) (64 - 61)$$

$$Mo = 61 + 0.6 = 61.6$$

அதாவது
$$\overline{X}_{A} = 62.46$$
, $\overline{X}_{B} = 61,294$

$$\phi_{A} = 3.756$$
, $\phi_{B} = 3.652$

$$Mo_A = 62.626$$
, $Mo_B = 61.6$

ஓராயக் குணகம்
$$G = \frac{\overline{X} - Mo}{\diamond}$$

$$\therefore G_{A} = \frac{62.46 - 62.636}{3.756} = -0.046$$

$$G_{B} = \frac{61.294 - 61.6}{3.652} = -0.083$$

இக் குணக**ங்களி**லிருந்**து.** இரண்டும் மறைப்பெறுமா**னங்கள**ாதலால் இரண்டு**ம்** எதிர் ஓராயப் பரம்பலாகும். இது முன்பும் விளக்கப்பட்டது.

இவற்றின் தனிப் பெறுமானங்களே நோக்கின் பரம்பல் Bஇற்குப் பெரிதோகும். எனவே பரம்பல் B ஆனது A ஐ விடக் கூடிய சரிவடையது.

தேற்றம் 6.2; பியர்சனின் ஒராயக் குணகத்தின் மட்டுப்பெறு மானம் எப்பொழுதும் மூன்றிலும் சிறியதாகும்.

அதாவது — 3 \leq G \leq 3 ஆகும்.

நிறுவல்; மீடிறன் பரம்பலின் இடை, இடையங்களே X, Me என்கை. ஆயின்,

$$|X_{i} - M_{e}| = |\frac{1}{n} \sum_{i=1}^{n} X_{i} - M_{e}|$$

$$= |\frac{1}{n} \sum (X_{i} - M_{e})|$$

$$= \frac{1}{n} |\sum (X_{i} - M_{e})|$$

$$< \frac{1}{n} \sum |X_{i} - M_{e}|$$

அதாவது
$$|\overline{X} - Md| \le \frac{1}{n} \ge |X_i - Me|$$
 ______(1) $a_i = |X_i - \overline{X}|$, $b_i = 1$; $i = 1, 2, \ldots, n$ என்க,

$$\sum_{i=1}^{n} a_{i}^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= n \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} - n\sigma^{2}$$

$$\sum_{i=1}^{n} bi^{2} = \sum_{i=1}^{n} = n$$

$$\sum_{i=1}^{n} a_{i} b_{i} = \sum_{i=1}^{n} / X_{i} - \overline{X}/$$

ஆனுல்

$$(\ge a_i b_i)^2 < (\ge a_i^2) (\ge b_i^2)$$

$$\therefore (\sum / x_i - \overline{X}/)^2 \leq (no^2)(n) = n^2 o^2$$

$$\therefore \sum_{i=1}^{n} / X_i' - \overline{X} / \leq n \sigma$$

அதாவது
$$\frac{l}{n} \sum_{i=1}^{n} /X^{i} - \bar{X} / \leq \sigma$$
 ______ (2

ஆனல் ஓர் மீடிறன் பரம்பலுக்கு இடையம்பற்றிய இடை விலகலே இழிவானதாகும். (தேற்றம் 5.1)

(3)

$$= \frac{1}{n} \sum_{i=1}^{n} /X_i - Me / \leq \frac{1}{n} \sum_{i=1}^{n} /X_i - \overline{X} /$$

$$(1)$$
 , (4) இவிருந்து $/$ \overline{X} — $Me/$ \le δ

Agrange
$$-6 < (\overline{X} - Me) < 6$$

ஆஞல்
$$\overline{X}$$
 - Mo = 3 (\overline{X} - Me)
∴ - 36 < (X - Mo) < 36

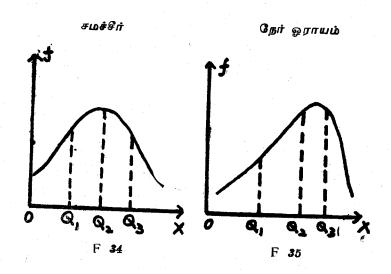
$$\therefore -3 \leq \overline{\overline{X} - Mo} < 3$$

9

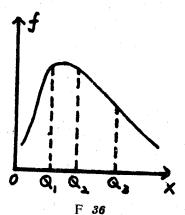
∴ — 3 <u>< G < 3 அ</u>ல்லது | G | <u>< 3</u> எ**ணவே தேற்ற**ம் உண்மையாகும்.

காலிண ஓராய அளவை (வோலியி**ல்** ஓராயக் குணகம்) :

இது காலணேகளின் நிஃகளே அடிப்படையாகக் கொண்டு வரை யறுக்கப்படுகிறது.



எதிர் ஓராயம்



சம்சீச் பரம்பலுக்கு Q₁ — Q₁ = Q₂ — Q₁ ஆகும்.

நேர் ஓராயப் பரம்பலுக்கு $\mathrm{Q_{i}}-\mathrm{Q_{2}}>\mathrm{Q_{2}}-\mathrm{Q_{1}}$ ஆகும்.

எதிர் ஓராயப் பரம்பலுக்கு $\mathrm{Q_3}-\mathrm{Q_2}<\mathrm{Q_3}-\mathrm{Q_1}$ ஆகும்.

இதனே அடிப்படையாகக் கொண்டு அலகற்ற காலணே ஓராய அளவை G^1 வரையறுக்கப்படுகிறது.

$$G^1 = \frac{(Q_3 - Q_2) - (Q_4 - Q_1)}{Q_D}$$

$$\therefore G^{1} = \frac{Q_{3} + Q_{1} - 2 Q_{2}}{\frac{1}{2} (Q_{3} - Q_{1})}$$

இவ் அளவையிலுள்ள ஓர் குறைபாடு யாதெனில் பரம்பலின் எல்லாப் பெறுமானங்களும் கருத்தில் கொள்ளப்படுவதில்லே. எனவே பியர்சனின் ஓராயக் குணகம் இதனேவிடச் சிறந்ததாகும்.

G¹ இன் வரைவிலக்கணத்திலிருந்து மேலேயுள்ள நிபந்தனேகளேப் பாவிப்பதன் மூலம் சமச்சீர், நேர், எதிர் ஓராயப் பரம்பல்களுக்கு முறையே G¹ ஆனது பூச்சியம், நேர், எதிர் பெறுமானங்களே எடுக்கும்.

உதாரணம் 6.4; ஓர் மீடிறன் பரம்பலின் மேல், கீழ் காலணை களின் வித்தியாசம் 15உம், மொத்தம் 35உம், இடையம் 20உம் ஆகும். இப்பரம்பலின் சமச்சீர்த்தன்மையை ஆராய்க.

$$Q_3 - Q_1 = 15$$
, $Q_3 + Q_1 = 35$, $Q_2 = Me = 20$

$$\therefore G^{1} = \frac{35 - 2 \times 20}{\frac{1}{2} \times 15} = -0.66$$

எனவே இப்பரம்பல் எதிர் ஓராயப் பரம்பலாகும்.

தேற்றம் 6.3; வோலியி**ன்** ஓராயக்குணகத்தின் மட்டுப்பெறுமானம் எப்பொழுதும் இரண்டிலும் சிறிதாகும்.

நிறுவல்;
$$Q_1 < Q_2 < Q_3$$

$$\therefore /(Q_3 - Q_2) - (Q_2 - Q_1)/ < /(Q_3 - Q_2) + (Q_3 - Q_1)/$$

அதாவது /
$$(Q_s - Q_2) - (Q_2 - Q_1) / < / (Q_3 - Q_1) /$$

$$\left| \frac{(Q_{s} - Q_{s}) - (Q_{s} - Q_{1})}{\frac{1}{2}(Q_{s} - Q_{1})} \right| \leq 2$$

அதாவது $\mid G^{\dagger}\mid \leq 2$

எனவே தேற்றம் உண்மையாகும்.

கெலியின் ஓராயக்குணகம்:

இது தசமணேகளின் நிலேகளே அடிப்படையாகக் கொண்டு வரை யறுக்கப்படுகிறது. சமச்சீர், நேர் ஓராய, ஒதிர் ஓராயப் பரம்பல் சளுக்கு முறையே

$$D_9 - D_5 = D_5 - D_1$$
 $D_9 - D_5 > D_5 - D_1$
 $D_9 - D_5 < D_5 - D_1$
 $\mathcal{L}_{50} = \mathcal{L}_{50} = \mathcal{L}$

என்வே ஓராய அளவை

$$K = \frac{(D_9 - D_5) - (D_5 - D_i)}{\frac{1}{2}(D_9 + D_i)}$$

என வரையறுக்கப்படும். இது மேற் சொல்லப்பட்ட பரம்பல்களுக்கு முறையே பூச்சிய, நேர், எதிர்ப் பெறுமாணங்களே எடுக்கும்.

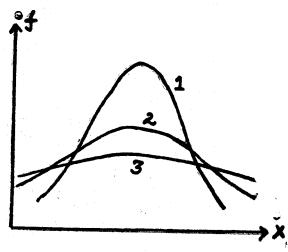
மேலும்

$$K = \frac{(P_{99} - P_{50}) - (P_{50} - P_{1})}{\frac{1}{2}(P_{99} + P_{1})}$$

எனவும் வரையறுக்கப்படும். இங்கு D_i , P_i என்பன முன்பு வரை யறுக்கப்பட்ட i ஆம் தசமணே , i ஆம் சதமணே ஆகும்.

6.2. குடில அளவை (Measure of Kurtosis)

சமச்சீரான வளேயிகளே எடுத்துக்கொள்வோம். இரு சமச்சீரான பரம்பல்களின் மையநாட்ட அளவைகளும், விலகல்களும் சமமாயிருந் தாலும் அவை ஒரே பரம்பல் எனக் கூற முடியாது. ஏனெனில் அவற் நின் தட்டைத்தன்மை அல்லது உயரம் வீத்தியாசப்படலாம்.



F 37

எனவே, இவற்றை வேறுபடுத்குவதற்கோ அல்லது ஒப்பீடுவதற்கோ ஒர் அளவை அவசியமாகும். இது குடில அளவை எனப்படும். இவ்வாறு வேறுபடுத்துவதற்கு ஒர் நியமவளேயி (நியம பரம்பலுக்கானது) அவசிய மாகும். இது செவ்வன் வளேயி எனப்படும், இவ்வளேயியுடன் ஏணேய வளேயிகள் ஒப்பிடப்படும். அதனே விட தட்டையானவையா அல்லது உயர்ந்தவையா என அளவிடப்படும். ஓப்பீட்டு ரீதியில் இரண்டு வளேயி களில் எது உயரம் குறைந்தது, எது கூடியது என அளவிடப்படும்.

பொதுவான குடில அளவை :

பொதுவாக பயன்**ப**டுத்தப்படும் குடில **அளவை** கால் — பியர்ச**ி** எ**ன்ப**வர் வரையறுத்த குடிலக் குணகமாகும். இது β₂ இளுல் குறிக்கப் படும்.

$$\beta_2 = M_4 / M_2^2$$

இது அலகற்றதாகும். மேலே தரப்பட்ட படம் F 37 இல் வண்யி கள் 1, 2, 3 இல் 2 பொதுவான செவ்வன் வளேயியாகும். வண்யி 1 அதனேவிடக் குவிவாகவும் வளேயி 3 அதனே விடத் தட்டையான துமாகும்.

ஒப்பிடு ; செவ்**வன் வ**ள்யிக்கு $eta_2=3$ ஆகவும், அத**்ன**விட தட்டையானவைக்கு $eta_3<3$ ஆகவும், அத**்ன**விட குவிவானவைக்கு $eta_2>3$ ஆகவும் இருக்கும்.

இதனேவிட 8 , எனும் ஓர் அளவையும் வரையறுக்கப்படும். அதாவது $\mathbf{8}_* = \mathbf{\beta}_2 - \mathbf{3}_*$ ஆகும்.

இவ் அளவையில்; செவ்வன், தட்டையான, குவிந்த பரம்பல் களுக்கு முறையே பு = O, பு < O, பு > O ஆவிருக்கும்.

உதாரணம் 6.5; பின்வரும் பரம்பில்க் கருதுக.

x	x—X	$(X-\overline{X})^2$	(X— <u>X</u>)4	
2 3 7	4 3 1	16 9 1	256 81 1	இங்கு X = 6 ஆகும்
8 10	2 4	16 16	16 256	
மொத்தம்	o	46	610	

$$M_2 = \frac{1}{n} \ge (X^i - \overline{X})^2 = \frac{46}{5} = 9.2$$

$$M_4 = \frac{1}{n} \ge (X^i - \overline{X})^4 = \frac{610}{5} = 122$$

$$\beta_1 = M_4 / M_2^2 = 122 / (9.2)^2$$

= 1.4

β, < 3 ஆதலால் இப்பரம்பல் தட்டையானதாகும்.

ஓராய அளவைக்கும், குடில அளவைக்கும் உள்ள தொடர்பு:

β₁ , β₂ என்ப**ன** முறையே ஓரா**ய**. குடில **அளவைகளாகும். இவை இரண்டும் திருப்பங்களேக்கொண்டு வரையறுக்கப்பட்டவையாகும். எனவே இவையிரண்டும் ஒப்பிடக் கூடியவையாகும்.**

இது
$$eta_2>eta_1+1$$
 இஞல் தரப்படும்.

உசாத்துணே நூல்கள்

- 1. C. G. Ramamoorthy, K. Viswanathan & P. U. Surendran (1974)
 - "A concise book on Statistics,"
- 2. D. C. Sancheti & V. K. Kapoor (1985) "Statistics theory. Methods & Application"
- 3. B. D. Gupta & O. P. Gupta (1971) "Mathematical Statistics"
- 4. Taro Yamane (1973)

 "Statistics, an introductory analysis"

இரும்கள் அழுத்தகம், கண்ணகம்