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ABSTRACT

Genéral equations are derived for shallow-flow over a two-dimen-
sionally curved bed; the Saint-Venant and the recent Dressler
equations are recovered as special cases. The concept of Froude
number is generalized,and the validity of the Dressler equations
discussed. The Dressler equations are solved for steady flow,
including transition profiles. Application of these equations to
a tested spillway crest reproduces its head-discharge relation-
ship and the pressure distribution in remarkable agreement with
the experimental data. Predictions for a spillway toe alsoc com-
pare with earlier theory and experiment. Finally,new experiments
were carried out for steady flow over a symmetric and an unsym-
metric profile,and the Dressler eqguations are found to be appli~
cable in the range =2 $:«xh £ 0.54 for steady frictionless flow
over curved beds. Roll waves in curved bed open channels are

briefly discussed in an appendix.
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page numbers 1-1, 2-1 and 2-5,

Subscripts h, 0 (or o) denote values at the free surface and at the bed
respectively.

Bold type signifies vector or matrixz character.
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I INTRODUCTION

Open channel hydraulics is one of the oldest disciplines of human civiliza-
tion. However, it was during the relatively recent Western scientific revol~
ution that the Saint-Venant (1871) equations were established to study vari-
ous problems in open channel flow—uniform, nonuniform, steady or unsteady.
The basic assumption is that vertical acceleration of fluid particles is
negligible,or equivalently that the vertical pressure distribution is hydro-
static. Although the basic equations are inviscid, energy loss due to fric-
tion at channel boundaries has been incorporated by invoking either the
Chézy (1769) or the Manning(1889) formula. The simplicity of the Saint-Venant
equations, and their successful application to various problems in hydrau-
lics, has led to their wide acceptance by engineers who by experience toler-
ate the errors introduced by the basic assumptions.

Using an asymptotic approximation in terms of a “shallowness" parameter,
Friedrichs (1948) re-derived in a Cartesian frame the Saint-Venant equations
for flow over flat beds. KXeller (1948) applied Friedrichs' method to two-
and three-dimensional flows over curved bed channels, and obtained higher-
approximation equations that are either not very different from Saint-Venant
or otherwise difficult to solve. On the other hand potential theory
conformal mapping techniques applied to flow over curved beds,such as spill-
ways and sills, theoretically demonstrated the importance of bed curvature.
However these solution procedures are usually lengthy, and there is no con=
venient way of including viscous dissipation.

Recently Dressler (1978) produced new shallow-flow equations with bed curva-
ture by applying an asymptotic approximation in terms of a "shallowness"
parameter to the exact formulation of the problem in curvilinear coordinates
—one coordinate directed along the bed and the other normal upwards from
it. In terms of a local Froude number, he identified regions of flow separ-
ation, subcritical flow, and supercritical flow. He suggested the range
-0.85 £ Kh £ 0.5 (K : bed curvature, h : free surface location normal to the
bed) for applicability of his equations, subject to future experimental
verification.

After a detailed literature review in Chapter II, this thesis emphasises
theoretical and experimental work on the Dressler equations. In Chapter III
the generalized shallow-flow equations are derived for flow over a two=-
dimensional Riemannian manifold; the Saint-Venant and Dressler equations are
recovered as special cases. Further, the concept of Froude number is gener-
alized, and the validity of the Dressler equations discussed. In Chapter IV,
steady solutions of the Dressler equations are obtained, and applied to
steady flow over an experimentally tested spillway crest and spillway toe.
New experiments to verify the Dressler equations, involving steady flow over
a symmetric and an unsymmetric bed profile, are described in Chapter V.
Conclusions and recommendations are presented in Chapter VI.The experimental
bed geometry of Chapter V is detailed in Appendix 4, and roll waves over
curved bed open channels are briefly discussed in Appendiz B.



II LITERATURE REVIEW

free surface

X
Figure 2.1 Definition sketch: Saint- Venant equations

For more than a century, almost all open channel flow analyses have been
based upon the Saint-Venant (1871) equations (for a rectangular channel;
figure 2.1) viz.

on oq uh = flow per unit width. (2.1)

continuity, 3t + =" 0, . qtS
o 2
momentum, g—: + g %f:: =0, EE C+h+;_g = total energy head. (2.2)

The classical derivation of these equations (Lamb (1945), Stoker (1948) and
Fox(1977)) assumes two-dimensional incompressible irrotational inviscid flow
in the constant gravitational field, over a linear bed (either horizontal or
with only a small inclination, 3Z/9x), with negligible particle acceleration
in the vertical dirvection of flow.

In fact, the vertical acceleration is negligible (i.e. the vertical pressure
distribution is hydrostatic and the vertical velocity component vanishes
identically) whenever the streamlines have neither substantial curvature nor
divergence. From figure 2.2, the respective intrinsic equations of conti~
puity and irrotationality are

QJIQJ

¢(h,pv) = 0 or l%‘pg%*- va =0,

(h¢v) =0 or %—\pg—:") - Kgv =0,

g

3h, dh
where Kq_, = - - ——i’- and K¢ = - - - ———?- are respectively the curvatures of
hlllhtb ¢ h¢h‘P Y i

the equipotential line and the streamline (figure 2.3); equivalently

grad v = VK, K= (-K‘P R Kd’)‘

2-1
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equipotential line

y-anis streamiine

—e= -axis

1/
7 \\ (’
e
’/l/g, \\\
‘T/ v ) N
contre of curvature of centre of ourvature
equipotential line ot P of streamiine ot P
— X

Figure 2.2 Definition sketch: intrinsic equations.

y-axie

From similar triangles D and @ AN | 3
3 \
Sy =—{h,o0}&¢ 3 N
ho¥ gttty . 1 o
1/5y ) Ky = nyhy % ‘\{/ g—;SQ
and similarly from @ and @
3
h$6¢ ) W{h¢5¢}6w R _aﬁ
-1k, ‘Hp‘s“’ ¢ hghy, B

Figure 2.3 x’ ond L
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Hence from Euler's equation of steady motion under gravity
- grad(p+pgz) = pv grad v = pvzw B
the vertical acceleration a, is
5 .
- 5;(p+932) =a, = vk (Kk: vertical unit basis)

or a; =0 <+ K=0 ++ ptpgz = f(z). (2.3)
Therefore strictly speakipg (2.2) is applicable with great accuracy to grad-
ually varied flow (since the change in depth of flow is so mild that the
streamlines have neither appreciable curvature (K¢=0) nor divergenge (Kw=0))
as well as to uniform flow. i
Further, the kinematic boundary conditions at both the curved bed and the

non-horizontal free surface are violated,since (2.3) defines the instantane-
ous streamlines to be straight and horizontal.

- axis

Case of substantial streamline curveture Case of streamline divergence

Friedrichs (1948) re-derived the Saint-Venant equations for flow over a flat
horizontal bed, using asymptotic approximations in terms of a '"shallowness"
parameter,and Keller (1948) obtained equations for two- and three-dimensional
flows over a curved bed. However, Keller's equations for two-dimensional
flow are similar to (2.1) and (2.2), with the slight nonlinear bed effects
only accounted for by the term 97/9x. Keller did derive higher-order appro-
ximate equations by extending this asymptotic method to better include the
effects of bed curvature, but these equations proved difficult to solve and
have not been exploited by engineers, (Dressler, 1978).

Another approach is to treat flow over a curved bed by potential theorxy.
Watters and Street (1964) considered two-dimensional steady ideal fluid flow
over sills in open channels. By means of complex functions and conformal
mapping, they developed a theory for flow over a single step, then extended
it to flow over a sill made out of finite line segments, and finally gene-
ralized it to flow over a smooth gill. Their general theory enables the
calculation of velocity, pressure and free surface location for an arbitrary
local change in the channel bed.

Literature Review . 2-4

Cassidy (1965) studied irrotational flow over circular weirs, and spillways
of finite height shaped after weir-nappe profiles; he suggested a numerical
technique to solve the Laplace equation. His work involved the mapping of
the problem into the complex-potential plane (rectangular), the sketching of
an initial approximate flow net, and the use of numerical methods. Although
his theoretical discharge coefficients for irrotational flow were slightly
but notably greater than experimentally measured values, the pressure and
velocity distributions and free surface coordinates were in remarkable agre-
ement with experiment. Curves for minimum pressure on the spillway surface
were also developed in this study. However, the required computer storage
and time (=6 hours) were high.

Ali (1972) investigated flow over rounded spillways, assuming the velocity
distribution dv/0n = v/r (consistent with irrotational flow); linear vari-
ation of streamline curvature (r) between the upper and lower nappes, para-
bolic or cubic forms of normals to the streamlines; and cubic form for the
upper nappe (free surface). This approach does not 'require any initial
approximate flow net. He found that the choice of parabolic noxmal (in this
event the discharge need not be known) greatly simplified the solution, and
that the experimental upper nappe can be fitted quite well by general cubic
equations. His calculated discharges, pressure and velocities agreed well
with experimental results provided that these were measured downstream of
the crest. The required computer time was around one minute.

Flow in open channels with smooth curved boundaries was analysed by Moayeri
(1973). He derived a pair of integro-differential equations expressing the
potential flow over a smooth step in open channels in terms of the approach
Froude number, and an unknown distribution of elevation as a function of
velocity potential on the flow boundaries. Numerical solutions using appro=-
priate quadrature and differentiation formulae were obtained for flows with
approach Froude number F = 0.4 and 1.7. Free surface geometry, flow net and
pressure distribution were also given for each value of F.

As pointed out by many investigators, (including Watters and . Street (1964),
and Ali (1972)), the flow of a real liquid with air above its free surface
has several complications. For example, in the case of spillways, the deve-
lopment of a turbulent boundary layer downstream of the crest, and the con-
sequent aeration of the flow, are governed by viscosity of the liquid and
the roughness of the solid boundary,amongst other parameters. Unfortunately,
there is no convenient way of modifying potential theory to include the non-
conservative viscous dissipation. On the other hand, friction may be treated
as an external force in the Euler's equation; an extra term (as given appro-
priately by the Chézy or Manning formula) representing lumped frictional
effects may be "glued" to Saint-Venant and Keller equations. For example,
the Saint-Venant equation (2.2) becomes

- E%iL : Chézy (1769) friction term, (2.4)
C
18, 38
g ot Ox alu
- ;:4;;%7; : Manning (1889) friction term, (2.5)
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where C and # are Chézy and Manning roughness coefficients,respectively; and
R is the hydraulic mean radius. However, the lack of attention to bed cur-
vature effects may make these classical equatiohs ingccuxate.

Centre of curvature at P

Free surface, N = his,t)
{ Constant atmosphsric pressure, ph' o]

(I= xn)r

eravity, Sl
wis,n,t)

uis,n,t}
Radius of curvaturs at P E r(s) '
Curvature at P = |/r 5 K(s) : s~ axis

Impervious
bed, n= 0O

g+ncose Zis

Arbitrary datum X 1 - %= axls

Figure 2.4 Definition ll:m::m Dressler's derivation

Dressler (1978) derived new nonlinear shallow-flow equations with bed curva-
ture; used (s,n) coordinates, where s is the arc length measured downstream
along the curved bed,and n is normal upwards from it; figure 2.4. He relaxed
the assumptions of linear bed and negligible vertical acceleration of parti-
cles; and applied the more familier types of boundary layer asymptotics
(Prandtl (1905), Friedrichs and Dressler (196l)) to the exact formulation of
the flow problem, by introducing new independent variables (see p.3-6) that
stretch the flow domain to keep it from vanishing as the shallowness paxame-
ter approaches its limit.

Dressler's first order results are (figure 2.4):

h 1 o [lngo)) o
ot (1~¢n)? ©3s (1-kh)K | 3s

1 dk| «h In(l-xh)

szs[(l-Kh)z 1-kh ] -0 (2.8
Buo 1 3\10 Kué oh
Yy + ——-——-—-—(l_Kh)z LYry + [g cos® + _——(I-Kh)a] e

: 2
. ug ,
- [Kg 8ind - %m}h + g 8inf =0 , (2.7)

Literature Review 2-6
where ( ) uo(s,t) -
uls,n,t) = 5——— (2.8)
‘ [1n@xn) )% 1 oac( kn In(-kn)) o
wisn,t) [(l—Kn)K ]38 - k2ds (l-Kn)z + 1-Kn Juo ' (2.9)
and B
1 2 1 1
,n,t) = h-n)cosgB + - - 2.10
p(s,n,t) = pg(h-n)cos Epu°[(1-n<h)2 (1-|<n)2] ( )
Also, he derived the mass conservation relation
h
3 | 8q = -2 -
(1-Kkh)zr + 52 =0, q = f u an < in(l-kh), (2.11)
0

from (2.6) and (2.8); we have shown (see Section 3.5B) that this could be
realized independently from the principle of mass conservation itself. More-
over, his momentum equation (2.7) failed to exhibit compactness in terms of
any physically understandable quantity.

Dressler showed that his equations are hyperbolic’,a.nd give the Saint-Venant
equations as the bed curvature approaches =zero. With the definition of a
local Froude nurber (f=ué/ghcosey figure 2.5) he identified regions of flow
separation; and supercritical and subcritical flows.

or
) where
L lnd uz
eiliptic . ¥- theos®
% 7 e - (R
. x
separation o
(bed prasaurs p <P} 20-w?
hem G
t i supercritical
at g .- =% inli- )
[ o} B . = [t + in(t= x)]
s}
. s
|
| - H Figure 2.5 Regions of flow separation; and
. T
gi suboritical ; I supercritical and subcritical flow
. L]
LS — is ) {after Dressler, 1978)

il 1
-0 -0.8 ~08 -04 02 O 02 04 06 08 IO
% § kh —»

! The type of a partial differential equation is an invariant under frame

transformations.
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Further, by assuming the drag at the channel surface as -Xuz(s,n,t), he
suggested a generalization of the Chézy formula for wide channels; and men-
tioned that the term

w2 [
- é_hg_ [1 - 5-}21] , (2.12)

where A : measure of rougﬁhess,
h : “hydraulic radius" (wide channels),
can be added to the right hand. side of his momentum equation (2.7) when
needed. He also stated that, for steady flow, the new equations define a
generalization of the Bresse (1860) profile equation,when a Chézy resistance
term (modified for curvature) is added.
Dresslex did not present any experimental verification of his theory, put
tentatively suggested the range :

- 0.85 S kh S 0.5 (2.13)

subject to experimental check.

III THEORY OF SHALLOW-FLOW
OVER CURVED BEDS

The fundamental flow equations in vector form stated below are first repre-
gsented 1in general coordinates suitable for flow over a curved bed (a two-
dimensional Riemannian manifold). General shallow-flow equations are then
derived, and the Saint-Venant and the Dressler equations are recovered as
special cases. The theoretical validity of the Dressler equations 1is dis-
cusged in terms of a generalized Froude number.

3.1 Basic Assumptions and Fundamental Equations

For an incompresstble irrotational inviscid flow under constant gravity (g)
with a stable free surface of negligible surface tension, over an Lmpervious
stationary bed, the fundamental governing equations are:

divw = 0 (continuity) (3.1)
gg + grad (gE) = 0 (momentum) (3.2)
curlv =0 (irrotationality) (3.3)

subject to boundary conditions of kinematic type:

2h ]
—_ . 3.4
5e Vi grad h = W (stable free surface) (3.4)
wo =0 (impervious stationary bed), (3.5)
and of dynamic type:
P, = I (negligible surface tension), (3.6)

where the subscripts h, 0O denote values at the free surface and at the bed
respectively (this notation is used throughout this chapter) and

- time

- flow velocity 2

- total energy head, gE = O + Ry % (3.7)
- gravitational potential P

~ pressure

fluid density

- normal coordinate from the bed (c.f. figure 3.1)
- flow depth normal to the bed

- velocity component in the n-direction

- constant atmospheric pressure

=MEPBOT oML ot
'

In deriving (3.2), we make use of (3.3) and the identity
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v-gradv = gradiv?/2) - vx curlv
in the Euler equation of motion:
v 1
-aT+y~gradv = F- -‘-)—gradp

with the body force F given by the gravitational field ~grad Q.

3.2 Gegretry

The choice of coordinates is commonly determined by reference to the bound-
ary,and the geometry associated with a curved boundary (the bed) is strictly
speaking not Euclidean but Riemannian., Thus the (s,n) - coordinates adopted
by Dressler (1978) lead to direct involvement of bed curvature (K), charac-
teristic of the differential geometry of the space.

Regarding the bed as a smooth two-dimensional Riemannian manifold R?, we may
introduce Gaussian coordinates &°, .§ (generally non-orthogonal) with cova-
riant symmetric metric surface tensor auB (see figure 3.1). The operations

; Z - direction
n- axis {opposite to gravity)

Figure 3.1 Geametry of the bed
ds? = (Va,,8E' + Va,,06%c08®)? + (Va,,0E%sind)?

= a SEQBEB, where @,, = @ va . a, cosé.
aB k!

2 T8 T 4%,

2 Greek indices ave assigned to the gurface and Italic indices are assigned
to the space; thus 0,8 € {1,2} and 1,3,k e {1,2,3}.
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grad, div and curl in.R® are (Kyrala, 1967):

rad ¢ =

grad ¢ = ¢ 4

. 1 a
duz) F= = (va ¥),q (3.8)
1 aB

e e

ur% F= /e FB,G
where ¢ is a scalar field, Fa and Fa are the respective contravariant and
cggariant components of a surface vector® F ,q denotes the determinant IauB"
[

the usual completely antisymmetric double index symbol (of Levi-Civita),
and 9/9E% is denoted by an G following a comma.

With coordinate n normally upwards from the bed so that n=0 is R? ana
n=h(€1,Ez,t) is the free surface of flow, the (£*,8%,n) - space“ is a three-
dimensional Riemannian manifold R® with covariant symmetric metric space
tensor

2

‘Jxau JxJzaxz

{gij}- J3a, Ja, o], (3.9)

0 [¢] 1

O, - centrs of normal curvature 0,q A
. o R in gl - dicection I$‘(‘
\
AN ‘I / AN
N O!- centre of normal curvature \ \ol
of RZ in Ea- direction I W

Figure 3.2 Geamnetry of the space a. B
PA/PGA, = J, and PB/PGB, = Jy) ds’= g o6E 6E"+ (8a)?,

I, 0 llay, a9, ©
where {gaB}= ‘

0 J,)(%2; Q)0

3 A surface vector at any point P on the surface is any vector on the tan-
gent plane to the surface at P.

% Whenever K,> 0 or K,> 0, the condition for unique representation of pointe
“n the flow domain by the normal coordinate n is n < min.{k7l,k31}.
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where .
I (€, % n) 21 - Kkgn. , (3.10)

and Ka(El,Ez) denotes the normal curvature of R* in the £%-ajrection (c.f,
figure 3.2). In Ra, we recall the well known formulae (Kyrala; 1967)

grad ¢ = ¢ ;
dvy = &= (G v | (3.11)
3 . vg B sl
1 idk
curg g = /5 e .3

where v' and v; are the respectiﬁe coptravariant and covariant components of
a space vector V , g denotes the determinant |gi|, and e13% tne usual com-
pletely antisymmetric triple index symbol(of Levi-Civita). Further,from(3.9)

{gj= -Z'f-;'Jz\/a_ . (3.12)
Moreover, if we define the covariant symmetric tensor
‘ J%a  J3a
‘ 171 1"2712
{98} = (3.13)
: 2
T271%,3 J2%2,
. : , af oy
the associated contravariant tenseor (defined by g gBY = 6Y ) is
139, _1 4
=
v J1 a J1‘J2 a
{g®B} = (3.14)
j - _l_.gil EégkL
VJZJl a J2 a
and at the bed (n=0)
- ‘ ad . qoB 15
9480 auB ;and g 0 a R (3.15)

. : s : 2
where aae is the associated contravariant metric surface tensor of R®.

Hence the fundamental equations may be re-written

%Ea{lez'/‘; gaevsl + g; {3,3,/aw} =0 (3.1)+

§3.2 Geometry 3-5
v OE
HNo -
3¢ + 8 -3—Eu 0 (3.20) %
-0 oE X
T t83 =0 (3.2n)*
v 9w
=~ . =
5 'a—éu 0 (3.3a)*
-a-‘-'-f - EY—; =0 (3.3n)*
9g 13
oh o oh
3t+ vha_éu-'wh (3.4)*
L 0 (3.5)*
p, =1 : (3.6)*
where Q = gz = g({+ncosd), and o8 )
g vuvs +w

(3.7)*

E S [ + ncosb + e +
- P8 2g

Here 0 denotes the angle n makes with z (c.f. figure 3.3); (v',v?,w) and
(vl,vz,w) are respectively the contravariant and covariant components of the
flow velocity v (a space vector).

Figure 3.3 Flow over a
curved bed

horizontal datum
(zx m Q)
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3.3 Shallow-Flow Assumptions

For shallow-flow it is assumed that the normal length scale (n-direction)
relative to the characteristic length (E®-direction) is small, One can infer
from continuity (3.1)* - that |w] << [v@|, so that in terms of a "tag" € << 1
the termms in the fundamental equations are ordered as tabulated below.

Ea n h E v“,vu w
1 1 € € 1 1 €
3.2 '
vl S € 1 1 € (3.16)
g; et et 1

The following alternative approach to the shallow-flow approximation has
been widely used by hydraulic engineers in the study of open chanpel flow
(Wehausen and Laitone, 1960). Here it is essential to nondimensionalize the
variables so that the vertical (n) and the horizontal (s) distances are
stretched by different amounts. Let L be a scale for horizontal measurement
and H one for the vertical measurement. Defining a "shallowness parameter”
o= (H/L)2 and introducing new nondimensional variables §, fi, ... by the
equations

§ = s/o V= v//g £ = 8/0
i=n W= wo/g R=n
t = t/go B = p/esg

we can arrive at the same conclusion as (3.16) regarding the relative order
of magnitude of texms in the fundamental equations. This ordering is of
course the initial step of the asymptotic derivation given by Dressler:(1978)
for plane shallow-flow over a curved bed (c.f. figure 2.4).

3.4 General Shallow-Flow Equations

Using (3.16), neglecting O(El) terms with respect to O(Ej) for i-j % 2, the
fundamental equations reduce to the general shallow-flow equations:

L %h, ~ :
(J.l']z)b et du{ Ghvo =0 (3.17)
2o d (3.18)

5? + gr*a2 8E) = O .
=0 (3.19)

eurg, vy

§3.4 General Shallow-Flow Equations 3-7
where
E(E',E2,t) = € + hoos® + 2B 4 g8 YagVE0 (3.20)
’ ’ pg h 2g .
vo (€ €% n,t) = vy (82,0 (3.21)
w(E,E%,n,t) = -~ == div Gv (3.22)

3,3, 2 [¢]
p(gl !Ezlnlt) - P

Ao (h- aB - 4u8} Yo0'B0
T (h-n)cosb + {g L - g } % (3.23)
and
n
L2 1 3 Gz
G= {6} = { /3,5,9%an}= 0 (3.20)
-0 2 n
a
- n %21 E;.;.Jildn
a a J,
0

For shallow-flow, (3.2n)* and (3.3a)* imply that the total energy head E and
the covariant space velocity components v,, v, are uniform across the flow
depth - i.e. E = E(E),E%,8) = B, and vy = vyo(E,E%,6).

From (3.1)*, (3.5)* and (3.21) we get (3.22); and since E is independent of

n from (3.21) we get (3.23). In deriving (3.17) we integrate (3.1)* over
the flow depth using (3.21) to get

h d
- {J?JZVE-W}O = _[ sgu{Jlsza-gquB}dn

0
h
d
= 2—50‘/&- [ j JlngaBdn]vBo - {o,3,va v} 5%“
0

and then invoke the kinematic boundary conditions at the bed and free
surface (viz. (3.5)* and (3.4)*). Equations (3.18) and (3.19) follow immedi-
ately from (3.20)* and (3.3n)* respectively, on using (3.21).

We now show that both Saint-Venant and Dressler equations are special cases
of these general shallow-flow equations.
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3.5 Special Cases
3.5A OSaint-Venant Equations

Saint-Venant equations describe plane shallow-flow over a flat bed (c.f.fig-
ure 3.4), In this Euclidean limit K;= K,Z 0 and, for Cartesian coordinates
X,y on R?, g = GGB ; thus the Jacobian J,F 1, the metric tensor go8 = 603'

ﬁnd G = ns%B,

Ficqure 3.4 Definition sketch;
Saint-Venant equatians

horizontal datum
(2 m0)

Since v = (u,0,w), the shallow-flow equations are

%% + %;1hu) =0, [e.£. (2.1)]
du )2)
e %
where ) [c.£. (2.2)]
P,
E(x,t) 2 L + heosb + by 2 B

Pg 2g
u{x,n,t) = on(x’t)'

Ca
L

w(x,n,t)

and
p(x,n,t) - Py

Pe

(h-n)coad : hydrostatic.

3.5B Dressler Equations

Dressler equations describe plane shallow-flow over a curved bed (c.f.figure
3.5). Orienting the axes as shown we have K;= K and K;= 0, and with arc
lengths s,r measured orthogonally on R : a8 = éaB' The Jacobian J = l-Kn,

§3.5 Spectal Cases 3-9

Figure 3.5 Definition sketch:
Dressler equations

horizontal datum

(z =0}
2 1
J ] -=lng 0
the metric tensor {gaB} = + and {Gaa} - . .
0o 1 0 n{l - 53)

Noting that the physical, the contravariant and the covariant components of
the velocity V are related by

V= (u,0,w) = (av',0,w) = (v,/3,0,W),
and at the bed
1

uo-vo-vlo,

the shallow-flow equations are

3 u
Jh 5%-+ %;{- Epln Jh] =0, fc.£. (2.11)] (3.25)
Buo 3E
* t8%TY
where , blef. (2.7)] (3.26)
E(s,t) = [ + heoad + i + J72 2o
! pg  h 2g '
u, (s,t)
u(s,n,t) = 3 ’ (3.27)
13 1Y%
w(s,n,t) = 3 BS{K in J]
In J]%vs 1 a&x[Iln 3 . kn
= [_JK J—a-s— - -Ezd—s-[ K] + 37 uo {(3.28)
and
p(s,n,t) - _ ., ol
#’l‘.. (h-n)coed + [th -J Z]ﬁ (3.29)
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’

rate of increase of fres surface storage m J.dl*

{ h
|_—— storage, Sds= I J ds dn "EJE(": -és

bed, n=0 %

The rate of increase of storage = g; (s dl) » .I.dl%l'l .

h
Inflow rate, qa = I udn = —T‘:!In»lh
| )

Figure 3.6 Mass conservation: g—i—+ gg =0

NOTES: 1 Equation (3.25) defines mass conservation for unit channe}l width—
c.f. figure 3.6.

2 Equation (3.26) is a more compact form of Dressler's momentum
equation (2.7), and displays the relation with energy.

3 Equation (3.27) may be re-written
(R-n)pu = Rpug

where R = k7! is radius of curvature—thus angular momentum about
the local centre of curvature ie constant,

3.6 Generalized Froude Nuvber

The characteristice of Dressler equations (2.6) and (2.7) are defined by®

z
ds _ in(l-x) Kug
3t 'X) /// (1_X)K[gcose + TI:;;gJ TR (3.30)

where X = kh. Hence, for eritical flow defined by ds/dt = 0

§3.7 Validity of the Dressler Equations 3-11

® Equations (2.6) and (2.7) can be written as
10

or ar a b
8 + 50T = f, vhere r= (hw),8= [c a] and T = [0 1]'

; ar 4., or - : s_ T
Noting that 5o ds + 5o dt = dr, the real eigenvalues given by ‘ds - 3¢|=0s

i.e. %% = a t vbe , correspond to the characteristic directions.

nQ-x) ug
IV// 10K [gcose + i X)3
ug a-? ma-y
gheos® = " X1 + in(1-x)] °

Dressler (1978) defined the left membexr as the local Froude number ¥ and
identified the right member as the local critical Froude number ¥ .

or (3.31)

Recalling that w, = u,/(1-X), (3.31) can be re-written as

w =c*, (3.32)

- /o 1-0ind-x)
where ¢ = // XL+ Zn (1) ghecost (3.33)

is identifiable as the celerity (i.e. the speed of small disturbances at the
free surface) in curved bed flow, and clearly as K =+ 0 (flat bed) the known
result ¢ = Ygheos® is recovered.®

Thus at the critical flow, any small disturbance at the free surface travels
with the same fluid particles. One may therefore preserve the definition of
Froude number, originally introduced for flow over flat beds (kK = 0), as the
ratio of free surface speed to celerity

F = |ulse, (3.34)

which is 1 for eritical flow irrespective of bed curvature; we recall that
the flow is suberitical/supercritical according as F S 1. From (3.31) note

that
F=VY/% (3.35)

c

3.7 Validity of the Dressler Equations

The singularity in the celerity (c.f. (3.33)) occurring where l+In(l-x)=0 or
X = l-e”! = 0.6321 defines an absolute upper bound X, = 0.6321 for validity
of the Dressler equations, Dressler(1978) suggested X, = 0.5 and lower bound
Xg = -0.85 (c.f. (2.13)). Within (Xg sX,) @ small gzsturbance at the free
surface sprads faster over a concave bed («>0), and slower over a convex bed
(k<0), than over a flat bed (k=0)—c.f. figure 3.7.

The shallow-flow approximation of the fundamental equations (3.1) to (3.7)
due to Dressler (1978) is first order, and in theory could be extended to
higher order to extend the range of validity. Experimental verification of

¢ Eliminating geos® in (3.30) using (3.33), we get

ds _ Y%, ¢ = =
3 = Ty * e i+ (1 -FHnwa-x ,

which in the flat bed limit (k - 0) reduces to the well known result asso-
ctated with the Saint-Venant equations—ds/dt = w, * vghcost .
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F

Figure 3.7 "Relative celerity"
¢/vYghcosB versus dimensionless
curvature X. (The curve is im-
aginary for X > 0.6321, and has
minimum 0.8776 at X = -5.0091.)

"t/Vghcoso —_—

e " “

=10 -0.8 [] L 0.8 0632
Y ——

the Dressler equations for steady flow is considered in subsequent chapters.

For steady flow we note that the kinematie boundary condition (3.4)

2h . Y, dh
-a—t- + a—h- 'a-ws— = wh
expressed as
w o _Lld
Ui Jyds
implies :
lan| << |3,4s] (3.36)

under the shallow-flow assumption |w| << |ul,(3.16). It is clear that (3.36)
is more readily satisfied for convex beds (< < 0) as h increases —c.f. fig-
ure 3.8.

\
convex bed S

Figure 3.8 Geametrical interpretation of |dh|<<|sas|

v STEADY SOLUTIONS OF
THE DRESSLER EQUATIONS

Steady flow solutions of the Dressler equations are considered in this Chap-
ter. Suberitical,critical and supercritical solutions exist and the location
of the critical flow is identified. Flow stability is discussed, and the
trangition profile derived. Finally, application of the theory to flow over
a tested spillway is described.

4.1 Steady Flow
For steady flow, (3.25) and (3.26) with Py Z 0 reduce to
- uo
qi-2 In(1-kh) = constant (4.1)
uz p
E = £ + heoad + 5% {1-kh)~* = constant, (4.2)
so that eliminating u, gives tha equation for the free surface(defined by h)
2.2
E = L + heosb + 355— [ (1-kh) In (1-kh) 172 (4.3
or
Y(X) = o+ B, (4.4)
where
o = 2g(E-0)/(a)?
B = -2gcoab/ (q2x?)
X = Kh (4.5)
and  Y(X) = [(-0)In@1-x)]"% .

The graphical solution of (4.4) is sketched in figure 4.1,and is interpreted
as follows.

Y(x)

a+BX tor K> 0 Figure 4.1 i?il)ltiog-:;)f(
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Theorem(l) F § 1+ |y'x| 5 [8]. ' (4.6)

To prove this we recall(3.3i) and (3.35); using (4.1} to eliminate uy

[xg/in(1-x)1* ¢ _ (1-X)3Zn(l-x)
F§ 75 ghoost $ - X [+in(ion]
2[1+In(1-x) ]
-0 -1 X

2gceost
q2K3

=
AV

or

Comparing with (4.5), we get : :
FEF, +r-BY % -y OX -
Therefore, when
X>0:F$F, B2 -y (X
X<0:F§F, ~ B3 Y
Hence ip figure 4.1 we identify the roots

] <-> 18] 3 [v 00 ls gep.

X~ , xt + suberitical flow

Xg xt > eoritical flow
X5 » X4 > supercritical flow
Note that ) 5
2 _ ["n)*_F _y'qo _2_ i+ln(l=0 .
B [c } B f. 8 TR [ In(1-x)]® (4.7)

Differentiating (4.3) with respect to the horizontal coordinate we have
g_E.=d_ C+h0086+ﬁ()
ax - ax 2g X

2K3

' dh
2056 Y (X)]case = = 0,(4.8)

&, gk . &
= A-Xgg + g LYooy X2l + 1+ 5

since dO/dx = (d0/ds)/(dx/ds) = k/cos®, tanb = dy/ax and X = Kh, Using
{4.4), (4.5) and (4.7) this reduces to -

&g, OK 2 ., a-F? &
= (1 x)dx+ z {a+(1+ F /2)Bx]dx+ (1~ F“)cost = 0. 54.9)

The above equation relates df/dx, dk/dx and dh/dx, and implies:

Theorem(2) In ideal shallow-flow over bed profile
L = r(x), the eritical flow normally
oceurs at a point defined by
Y- S &
(1 x)dx + g (01+3S)(/2)dx 0, (4.10)

where x.is given by (4.4).
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eritical depth

Figure 4.2 Symmetrical
convex crest

NOTE: For symmetrical profiles d4f/dx = dK/dx = 0 at the point of symmetry,
where (4.10) is trivially satisfied,

At the oritical section, from (4.7) B = y'(X) ox

Hence, the discharge coefficient (excluding any viscous effect)

- o vy 1772 La-m@a-]*
Cq = 280080 h¥2 Xy )] = //C 233 [1+In(1-Y) ] (4.11)

Foxr example, for K - 0: Cd = 1//5'= 0.707.

4.2 stability

dh _1dx X dk
Since ax " Kax o ktax ' from (4.9)

& 1o, o F2)2080 &, &K 2/2) By- (1= F2) o080 8% |5,
3 (1 x)i + (- F)— + 2 a+(l+ F*/2)Bx-(1- F )aoseq T
, ) ac _ - _ 2gcosf _ a _dba - d
or, recalling that I sinb, oK - B and 35 = 35 a8 30 !
4 . (1oy)ei - F? ax , gk? ax
38 (L1-x)8ind + (1- F“)cosb 30 + 75 (2u+3B)()da .. (4.12)

In a steady flow with viscous dissipation the momentum equation is
dE
Frialie Sg ¢ . (4.13)

where the energy slope S, may be given by a generalized Chézy Sformula.Hence,
from (4.12) and (4.13),we get the differential equation for the free surface

2.2
-5, - (1-y)aind - 35 e
a _ Se (1-x)8ind Zg (2c~z+3[3)()de
ae (1- F2)cosb :
When there is no dissipation(Se30),the solution of (4.14) is of course(4.3).

(4.14)

To study the stability of flow,let us take the simplest case of frictionless
flow over a constant curvature bed, when (4.14) reduces to
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ax _ _ _(1-x)sind
ae - ———%———T(l_}? Yoosd (4.15)

Let us introduce an independent variable A (parameter) such that

§§ = 0(8,x) = ~(1-x)sinb , ]

, » (4.16)
9 . . 2 - 1+In (1-x) !
x WW&’—Q F*)ecosh ww+o[u#anpP ‘

where 0 = q°k’/g. The autonomous system(4.16)has a singular point P(6,30,X,)

defined by $(0,,X,) = ¥(65,X,) = 0.

Expanding ® and Y as Taylor series about P:

(6,x) = 2(0,x,) + {ggJPe + {g%JP(X~X°) +oeen = =(1o()0 + eee
¥Y(0,x) = ¥(0,xy) + [g%}Pe + [%%}p(X_XQ) b oree = Umz(l‘Xo)(X-Xo)
where : 25]2 u
m? (1-xg) = %{%%JP =3 L%Tii;:?;n:léig);“gg > o. (4.17)

The integral curves of (4.16) define the free surface, and their nature in
the vicinity of the singular point P can be determined from  the approximate
linear system: '

K o - (1mxe)§
ai o7 %
an 2 {4.18)
T (1-Xo) (X~Xo) ¢
thus :
_ o8 do
(I-xg)ar = 0 EETTR:XZT
or L
846 + sz(x—xo)dx =0,
whence ) .
8% + sz()(—)(o)z = congtant. (4.19)

The integral curves are thus ellipses when 0 > 0 (i.e. K > 0) and hyperbolae
when 0 < 0 (i.e. K < 0).

NOTES: 1 Concave Bed
When K > 0, the singular point of the approximate linear system
(4.18) is a centre (also called vortex); pence, is either a centre
or a focus for the original autonomous system (4.16). But
dy/d8 = ¢/¥ has an integral (given by Y(X) = o + BX),therefore the
singular point of the‘original autonomous system is a centrg .and
weakly stable (Plaat, 1971).
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2 Convex Bed
When K < O, the singular point is a saddle and always unstable.

3 At the singular point P, Y(8,%)=0; hence,from (4.16) F=l1—i.e. the
flow is critical at P and Xg = Xg °F XZ .

4.3 Transition Profile

In (4.8), writing derivatives with respect to s rather than x, and noting
that dZ/ds = 8ind and dE/ds = -S,, we get the backwater curve for flow over
curved beds:

1-(a/q.)?
dh n
= .1 .2
P (1~x) tand T-(@/ag? * (4.20)
where the quasi-normal discharge q , and the eritical discharge q_ are given
by 1o .
q; : 5 (1-X)s2nd (4.21)

K . [
" EE[2Y(X)+Y xxlzg
2 - =-2gcosb

= =73 . 4.22
e = KYTR0 { )

In the flat bed limit (K > 0) )

Se/q2 + 1/(c*nY), (C : Chézy coefficient)
K3Y' () + -2/h?

so that

2 2,3,
4, > -C'hgsind, } (4.23)

qé +> ghécose ,
where hy and h. denote respectively the normal and the critical depths for
flat bed channel flow.
The transition profile is the locus of the transition points defined by
9, = 9 (Escoffier, 1958); that is
- (1~y)81inbd - ~2gcosB
Se, « T L S A U
g 2g[2Y(x)+Y 0xlgg

oxr S
T(x) = m(x) + E(x,x)a% (4.24)

where, on using Y(x) = [(IAX)Zn(l-x)]-z, d8/ds = k, and dx/ds = cos6 and
K = (d%r/ax?)cos°6, we have

= A-)y' () - (L-x) [1+In(1-x) ] )
T = 2y O +y' () x] (1) ' (4.25a)
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e 93Q,

——

(a) centre (v > 0)

(b) saddle (k < 0)

Figure 4.3 Flow profiles around a singular point
f—flow profiles; f*—flow profiles passing through
P and asymptotic to q = 9

£ cot ax _ g [1+(z?) _

m(x) < s AL 3, (4.25b)
and
.2 ' -
€(x,X) = —%?ie—[zy(x)w'(x)x] ! (4.25¢)

a prime (') in m(x) denotes d/dx, Figure 4.3 depicts flow profiles around a
singular point (c.f. section 4.2),

At a point where df/dx = dK/ds = 0 the transition profile is not defined;
however, in a frictionless flow. the transition profile passes through the
critical point (Theorem(2)).

The transition profile for a friotionless flow over the bed [(x) is given by
((4.24) with sq = 0) "
?(X) = m(x). (4.26)

From figure 4.4, note that (4.26) can be solved when K > 0 only if m £ 0,and
when K < 0 only if m < -4.9108,

~11.3402 ] . 0,632! x

_____ L] Fiqure 4.4 Sketch of the
solution for T(x) = m(x)

T
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4.4 Flow Over a Spillway Crest

We apply the shallow~flow equations with bed curvature to steady flow over a
spillway crest. In dimensionless form (4.3) becomes

KHy

E_L}_ cose). ]2 4.27
[Hd Hd] - [KHdJX ¥ F{(l‘x)zn(l'x)J ' -2

where Hy denotes a reference head ("design head")

2

X = xh, F=siy (4.28)

ng
The dimensionless pressure head at the bed (n=0)

Po _[E_z) [ )? (4.29)
ogHy = [Hd Hd] F[Zn(l-x) '

where p, denotes the pressure at the bed.

Chow (1959) has summarised model tests by the U.S. Army Engineers Waterways
Experiment Station of so-called WES shapes for high overflow spillways. We
consider the case of vertical upstream face without piers described in Sec-
tion 14.6 of that book.

The spillway crest is given nondimensionally by

. —i[i‘-]l'es (4.30)
Hd 2 Hd

and experimental coordinates of the upper nappe profile are given for dimen-
sionless operating heads (excluding the velocity head) H/Hgz = 0.50, 1.00 and
1.33. We consider the nappe coordinate domain 0.2 < X /Hj < 1.8, for which
the ranges of ¥ are summarised in the table:

*n *n
H/ B 0.2 D= 1.8
fa Ay R
0.50 -0.320 -0.016
1.00 -0.745 -0.059
1.33 ~-1.029 -0.110

It is notable that X< -0.85 near the crest for H/Hy = 1.33, somewhat ?utside
the tentative range of validity suggested by Dressler(1978) for experimental
check of the equations.

Setting E = H, we calculated the values of the parameter F (related'to the
Froude number) in (4.27) to fit the experimental upper nappe ‘pr?flles at
the nine tabular points x,/Hy =0.2(0.2)1.8. The pointwise deviation of F
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from its average value is not more than "4%, as shown in figure 4.5.? The
inferred dimensionless flows per unit width (V/F) for operating heads
H/Hd = 0.50, 1,00 and 1.33 are 0,163, 0.512 and 0.815; weirs of simpler
shapes are often used for flow measurements (see for example Ackers et al.,
1978). Further, a logarithmic plot of averaged /F against operating head
H/Hg shown in figure 4.6 yields the formula

1.65
7%};?5 = 0,51 [% ) (4,31}
8 Hy g
H 0.15
- L:A 4.31)*
7f§9555 0.51[Hd) ( )

Introducing a local Froude number as defined by Dressler (1978) wviz.
2
Yo
T cm——— 4.32
¥ ghcost ( )

with E = H, (4.2) reads

-
1]

g+ [l + ﬁf]hcoae

whence
KH a

20— 2B - & - 1} ' (4.33)
2(1=x) [[Hd Hd]xcose ’

-
[ ]

7 Equation (4.27) defines the relation between (E/Hg, F, X). To test this
relation experimentally ome must at least know either (E/Hg, X) or (F,X).
For instance, given the energy (E/Hq) and the spillway and nappe profilea
(X for different x), (4.27) defines F uniquely; energy losa due to the
build up of a turbulent boundary layer as we go dowun from the crest ac-
counts for any slight error trend in estimating F (c.f. figure 4.5). How=
ever, given either the energy or the flow (q),using (4.31) and (4.27) ong
ean golve numerically for the unknown nappe. :
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The local Froude number as a function of X (shown in figure 4.7) corresponds
to supercritical flow with or without separation.

Using the averaged values of F found from the upper nappe profiles, we com~
puted theoretical pressure profiles from (4.29) for H/Hy = 0.50, 1.00 and
1.33, to compare with the experimental profiles in the range 0 < x/Hg < 1.2
reproduced in Chow (1959) figure 14-13: see figure 4.8. These experimental
pressure profiles at the bed are affected by separation at larger heads and
build up of local turbulence, particularly behind curvature discontinuities
that should be avoided (Rouse and Reid, 1935) but are clearly indicated in
Chow's figure. Slight modification of the results to allow for the influence
of the neglected approach velocity head might be expected. We also fitted
the experimental pressure profiles shown in Chow (1959) as best we could to
(4.29), to obtain new parameter values vF* = 0,160, 0.507 and 0.797 for the
respective dimensionless operating heads H/H4q = 0,50, 1.00 and 1.33: we ob-

tained
H 1.65
e - 0-so[2 |

d a

4.5 Flow Over a Spillway Toe

Assuming negligible potential energy, various authors have given analytic
solutions for steady ideal flow over a spillway toe. Douma (1954) and
Balloffet(1961) used a "free-vortex" approximation,and Henderson and Tierney
(1963) used a hodograph transformation to study irrotational flow for large
curvature. A detailed discussion of their assumptions may be found in
Henderson (1966) and also in Dobson (1967), who computed solutions by finite
difference methods.
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The irrotational nature of the shallow-flow egquations implicit in (3.27)
leads to an identical solution if the potential energy is neglected. It
follows from the Bernoulli equation (c.f. {(3.7)* or (4.2)) that the particle
speed at the free surface is constant (u;, say); hence from (4.1) and (3.29)
we have the dimensionless curvature

@l zxn, =0 (4.34)

and the pressure coefficient

cp = I - 1-92' (4.35)

where Q = l-kh,, P, is the bed pressure at the point of symmetry, and h;, h,
are the initial and central depths respectively (c.f. figure 4.9). This sol-
ution is identical with that of ‘"free-vortex" theory and is valid when
Kh,‘S 1/6 or khy £ 0.185 according to Henderson and Tierney (1963).

Of course the shallow-flow equations also readily permit a solution in-
cluding the potential energy. 1In the symmetric case shown in figure 4.9 for
example, it follows from (4.1) and (4.2) that

1
@ Tz - AL+ oy, (4.36)

where A = 2a°F7}, u = a®-2a%(a-1)F]'cos¢, a = (kh,)”' as before,
and F, = uf/(ghl).

The bed pressure at the point of symmetry (po) now consists of a hydrostatic
component

Pg = p8h,
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and a centrifugal component

1 -
3 pull (1-kh,)"%-1]4

P, =
ox correspondingly
= pS 2a .

Cs = = 5 (1-0) (4.37)
2 puy
P .

Cc =7 & T = (1-0%) (a0t 10072, (4.38)
7 P4

When the potential energy is neglected(F,* ®) the hydrostatic part vanishes,
so that Cp = Cc. The root e' s § <1 of (4.36) that corresponds to the low
potential energy limit (infinite Froude number) described above is shown in
figure 4.10,8 Corresponding centrifugal pressure profiles for various Froude
numbers are shown in figure 4.11, and we note that the bed pressure at the
point of symmetry is increased when the potential energy is included. Thick-
ening of the flow layer associated with increasing centrifugal pressure is
illustrated in figure 4.12. We dote that the solution validity is as before,
and that we have continued to neglect surface disturbances that may occur at
high Froude number. ‘

®  Since x ¥ l-e”! (=0.6321), we have 2 = 1-x § e}

v/ ¥ pu

Figure 4.11 Maximm centrifugal pressure
versus toe curvature, for 2¢ = 45°

e experiment by Henderson and Tiexney {(1963)

03 ! 1 i
.8 0.9 Lo ]

hy /h) ——

Figure 4.12 Flow layer thickening with
increasing centrifugal pressure, for 2¢ = 45

Q



V  EXPERIMENT

The experimental setup to test the Dressler equations for steady flow is
illustrated and the measurements made ave outlined.The processing of experi-
mental data to a form readily comparable with theoretical values is first
described, before reaults for a symmetric and an unsymmetriq profile are
discussed. . o

5.1 Experimental Setup

The experimental setup is shown in figure 5.1. The experiments were carried
out in a 915 em X 75 em X 44.5 em flume made of a steel frame with glass
windows on both vertical sides. . The bed was elevated by 10 em using 1.5 em
thick plywood, to house the plastic tubes connecting the piezometer tappings
along the centre line of the curved bed model (c.f. figure 5.2) and the
piezometers. The flume width was vertically partitioned along the entire
channel length into two compartments, again using 1.5 om plywood. The larger
compartment was 30 em wide and served as the test channel for steady flow
over curved bed models. The test section was at a distance of 366 om from
the inlet box. The bed pressure-piezometers were set up within the smaller
compartment. The inflow to the inlet box through a 15.24 em (6 in)dié, cast
iron pipe was controlled by a gate valve, ‘

The Dressler equations were examined for steady flow over two curved bed
models, one a symmetric profile shaped after the normal distribution and the
other an unsymmetric profile fashioned by B-Splines (c.f. Appendiz-A). 1In
each case the model was fabricated as described in figure 5.2.

5.2 bkﬁunuxments

A Discharge, q

A 7.26 cm (3 in) dia. orifice, placed well before the control valve in the
15.24 em (6 in) dia. inflow pipe,was employed to rate the inflow. Because of
rapid oscillation of the mercury column in the. U-tube manometer attached to
both sides of the orifice, about 25 readings of the simultaneous mercury
levels in both legs of the manometer were recorded at about lOgec. intervals
to estimate the average mercury level difference H(cm). The accuracy of the
manometer scale was 0.1 em. The orifice equation (at 27°¢0)

Q = 30 x 157,03 vH cm®/s. ' (5.1)
was used to give the steady unit width dischargé

q-= Q/3q,'é"?' ‘em®/s.om, (5.1)*

5-1
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Figure 5.1
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§5.2 Measurements

5-3
B Ene Head, E
A portable trolley carrying a point gauge of accuracy 0.01 ¢m was placed on

the two rails fixed along the flume top. At a flat bed section of the chan-
nel (e.g. the section 350 ¢m from the inlet box), the water depth D '(cm) was

o
i measured using this point gauge to give the energy head
$£43 o2
!if E=D+ _Lr2gD em. (5.2)
113
= * — C Free Surface

The point gauge mentiocned above was used to measure the water depth at every
5 om horizontal interval along the centre line of the curved bed model.

D Bed Pressure, p_./pg

Along the centre line of the curved bed model, 0.32 em (1/8 in) dia. copper
piezometer tappings were fixed at 5 om horizontal intexvals (c.f. figure
5.2); these were connected by long plastic tubes (0.63 em = 1/4 in internal
dia.) to vertical water-piezometers (0.63 cm = 1/4 in external dia. glass
tubes) of reading accuracy 0.1 cm.

1/4 in internal dia.
connecting plastic tube

Reading during
steady flow

Reading just after
the flow; dry bed

centrifugal

P,/P9

Dissection showing the comstruction
of the curved bed

Arbitrary Datum

Figure 5.2

piszometer

Figure 5.3 Reading the bed pressure

H
-
.EE As depicted in figure 5.3, the recorded piezometric level difference between
s > - the steady flow and the dry bed condition (i.e. just after slowly draining
g2 L all water from the flume) gave the bed pressure head po/pg-— c.f. Plate-I.

E Flow Pattern

Potassium permanganate solution was injected from an overhead container
through a 0.15 cm dia. nozzle at different points in the flow field,to trace

the flow pattern—~c.f. Plates-II & III.

/4 in thick
PVC sheet
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Steady flow over the unsymmetric profile
A= 1116.5 on’ /.o and B = 34.7.om

65,3 Erperimental Duta wid Teory [

3.3 BExperimental Data and Theory

Although the theory definos the free surface by the eobrdinate n normal to
the bed, experimental location of the free surface was made using the verti-
cal coordinate 2. Vertlcal measurements  are technleally easler to control
than measurements normal to the bed which lnvolve varying the inclination of
the gauge f£rom poelnt to polnt, and we compute the depth normal to the bed
corresponding to the experimentally recorded. wertical depth, As shown in
Eigure 5.4, at peint X, the vertical depth [, on the Eﬂd-nt gauge gives the
experimental free surface coordinates (X,, E, = [ +0,})", and we ccmpute the
thesretical Ffrae surface location ht., :.J on the same bed-normal throwgh
(X, E;) as follows.

= ——= Thaarslical irss aeioca [rayd

Espivimantal Ires srlagd

Fiqura 5.4
= mls X, [+
Given the bed profile [ix}, the sclution of
Clx) =2,
L 1] = 5.3)
=, Clfu) + 1 Q [

is the base (x,, L, = Lix,;)) of thiz bed-normal, and at this point we have

banf, = L"(xg). (5.4}
Ky = L™ lxglaoe {5.5)
the experimental flow dapth
By = iy -xp) 2402800 2, i5.8]
and
xaxpari. e : (5.1

* Upper ouse demots the sxperimental values, and lower cose the thecrettcul
valuas,
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The theoretical X is the solution of (4.4); that is
YX) = oy + BoX (5.8)

where from (4.5), a, 3 2g(E-L,)/(aK,)? and B, = -2300392/(q2K2). The theor-
etical flow depth is : :

h3‘= X, /Ky ) (5.9)
hencg the theoretical location of the free surface is given by

x; = §; - h,8in0, 5.1
.10}

z, by t h,co88,

As previously described,the bed pressure was measured by a piezometer. Since
e = —qK/In(1l-x), from (3.29) the theoretical bed pressure at X, is given by

PoPh - coss 2k? K
—oh = S o+ T @Y 00, (5-10)

Hydrostatie  Centrifugal

part part
where ¥ is the solution of
Y(X) = a; + B;X . (5.12)
in which &, = 2g(E-Z;)/(aK,)?, B, = -2gcosb,/(q°k}); tand, and Kk, are re-

spectively the bed slope and curvature at X, (c.f. figure 5.4),calculated by
similar formulae as (5.4) and (5.5).

Finally, the experimental and theoretical Froude numbers were calculated

from (4.7); i.e.
_ /2 1+Iln(1-Y)
F= B, [ (I-xYIn(1-) 13 (5.13)

[Newton-Raphson iteration was used to solve (5.3), (5.8) and (5.12).}

5.4 Results and Piscussion
5.4A Symmetric Profile

Figures 5.5 to 5.9 show the experimental and theoretical free surface and
bed pressure for various g and E. (Although not shown, the theoretical bed

pressure profiles are also gymmetric about x = 0.) Agreement is excellent,

although for larger g the theoretical free surface is slightly below the ex-
perimental points in the subcritical region; the inadequacy of the shallow—
flow approximation where the flow is deep probably accounts for this. The
critical flow occurs exactly at the crest, as predicted by Theorem(2) (see
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also figure 5.10). Near the crest in the subcritical region,the experimental
points lie below the theoretical free surface of subcritical flow as the
flow accelerates into a transition region from sub to supercritical flow.
For low g, no solution of (4.4) exists near the tramsition point—c.f. the
discontinuity at the crest in figures 5.8 and 5.9. Change of velocity gradi-
ent may be large in the transition region, so that the basic assumptions of
the Dressler equations are questionable (viz. irrotational inviscid. flow).

TABLE-1

E Xmin. Xmax.

q
3
om*/8.om  cm experi. theory x{cm) | experi. theoxy x(cm)

1119.7 34.81 -0.380 -0.385 -5 0.427 0.417 -55
1014.4 34.0( -0.360 -0.370 =5 0.413 0.407 -55
770.3 31.7} -0.304 -0.310 -5 0.381 0.377 -55
561.0 29.6| -0.253 -0.256 -10 0.355 0.352 -50
359.9 27.21 -0.201 -0.201 -10 0.328 0.326 -50

Table-1 summarises extreme X values and their locations,for the flows (vari-
ous q and E) for which the symmetric profile was tested; and all values fall
within the range suggested by Dressler (c.f. (2.13)).

Figures 5.5 to 5.9 also show that the total bed pressure is accurately pre-
dicted, at least when centrifugal pressure is small. From (5.11), the theoxr-
etical centrifugal pressure is

2
Pq_
o = 2T A0, (5.14)

A ____xi%z:xz___T - (5.15)
[(A-x)In(1-x) 1% °

Considering the logarithmic partial differentation of (5.14) with respect to
K, we get

p

where

8Pc _ MO0 A
Pc A(X) 3

bp/Pe _ AT OOX _ 2[(x2-3x#3) Ini-x) +2x-x2]

.16
Ak /K Ay (2-) (=) In(1-x) ! (5.16)

where Apc is the error in centrifugal pressure due to an error AK  in bed
curvature.

Figure 5.11 depicts the variation with X of the ratio between error in the
centrifugal pressure and in the bed curvature. Both small local turbulence
and curvature error introduced by the flat end piezometer tappings may be
the cause of the systematic error pattern in the measured bed pressure pro-
files in the supercritical region—c.f. figures 5.5 to 5.9.



§5.4 Results and Discussion

(b) Bed pressure

- Eae s
f, ° \B\g
~. ,f‘
~._0_o’8f
PP TN - ntked
- \\\\ Centrifugol
N
‘10 1 e ~ i i A 1 - i i
50 40 30 SN0 10 [ - - - - =
‘e -2\ /lo 30 40 80 80
~
e
-gh

Figure 5.5 Steady flow over the symmetric profile
for q = 1119.7 em®/s.cm and E = 34.8 om

subcritical
w—-—= critical theory
..... supercritical
° experiment

§5.4 Results and Discussion

........ i i i L e ——
&0 L] 40 0 R0 10 [+ -0 =20 -30 ~40 -80 -$0
= {om}

(a) Free surface

(b) Bed pressure

————— - Centrifugel ’
- .

- ~.

o — . L l\\\ L " 1 A

L] 50 40 30 \\{0 10 ] -0 -30 -40 -80 -80

*— xlem) ~
-
~~--
-' -

Figure 5.6 Steady flow over the symmetric profile
for q = 1014.4 em*/s.cm and E = 34.0 om
subcritical
—-—— critical theory
----- supercritical
° experiment




§5.4 Resulte and Discussion §5.4 Results and Disoussion

5-10

{a) Free surface

3!{ Sl(
Bed T
(b) Bed pressure ®) pressure °
I 28
%
~ 20p
o
=
a? Torel
3
n-
e '}
e 5"~ 1 L)
© e e 6“‘“4.____,0.—4’. ___9--1--0--0-\"_"_‘2“ el
T ° Contritugal e — v Centritugal
€ RS P R S S N e
-sb -gk
Figure 5.7 Steady flow over the symetric profile Figure 5.8  Steady flow over the symmetric profile
for q = 770.3 em®/e.cm and E = 31.7 em ’ for g = 561.0 em®/s.cm and E = 29.6 am
subcritical subcritical
——=— critical _theory w-—— critical theory
----- supercritical ' ----- supercritical

° experiment : ° experiment



§5.4 Regults and Discussion 5-13

§5.4 Results and Discussion ) 5-12

(a) Free surface
! “"‘/‘r SUPERCRITICAL
_ =P inti-n
sob . i ¢ x[1+mnu-x)]
(b) Bed pressure ‘ : . P / C
28 L
T i X T osl SUBCRITICAL
3 b i
= 20,' N O L] 5
\i Total \\i L
1sh . ‘\\
.
D O.18
o} a
A L L
Experi. D
s p::: q (em3/s.cm) 0.0
— L O L)
-‘;“9"&""-.J-T‘v--g--a_.‘r-""‘ Contritugal " 1119.7 N .
et \ \ / o 1014.4 o ma— o = T
6 80 40 30  ~co—e—os o 20 -30 -40 - - A \-—_
o %0 60 o 7703 k . %a
o 561.0 .
a

Figure 5.9 Ste?dy flow over the symmetric profile 0,005 A A

= 359.9 . = 27.2 L L It I . 1 I 1 I J
for q sugcritiagaie om and E e -0.4 -0.3 -0.2 -0 (] .l 0.2 0.3 0.4 (o33
—w=— critical theory . % —
_____ supercritical

° experiment
Figure 5.10 ‘'Theoretical and experimental F versus x
for the symmetric profile



§5.4 Results and Disoussion §5.4 Results and Discussion 5-15

5.4B Unsymmetrie Profile

In the symmetric profile, the experimental X values fell within tye range
suggested by Dressler (c.f. (2.13)). To test the validity of this range an

ap, /p, unsymmetric bed profile, skewed upstream, was designed using a B-splined
oK /K shape. Figures 5.12 to 5.15 show the experimental and theoretical free sur-

face and bed pressure for different g and E. (Again, the theoretical bed
pressure profiles are not continued through the crest.) The transition zone
in which the flow changes from sub to supercritical is more extensive in
this case, and apparently the critical flow does not occur at the crest but
somewhat downstream as expected (c.f. Theorem(2), Chapter IV), The following
table gives the extreme X values and their locations. These extremes are
outside Dressler's suggested range (2.13), especially for negative X (c.f.
also section 3.7).

2.5379%

TABLE-2

E Xmin. ‘ Xmax.

em®/s.om  om

experi. theory x(am) |experi. theory x(cm)

1116.5 44.7 | -2.808 -3.020 40 0.543 0.543 5
905.3 42,9 [ -2.236 -2.445 45 0.526 0.527 5
0.8 745.8 41.6 | -2.070 ~-2.260 45 0.521 0.523 5
375.0 37.8 | -1.608 -1.692 40 0.502 0.506 5

Bed pressure cannot be predicted for certain x (e.g. 3<x<8 em and 23<x<46 cm
for q = 1116.5 cma/s.cm c.f. figure 5.12), because the X values are outside
the theoretical limit-—i.e. ¥ = 0.6321. The shaded areas in figures 5.12 to
5.15 indicate the domains where no theoretical solution exists. For larger
. q, the free surface prediction is not unigue for certain x near the origin.
Elgure 5.11 Variation of error ratio For instance,when q = 1116.5 em®/s.cm (c.f. figure 5.12) the bed normals for
i;;zc versus x (equation (5.16)) i:§;2ihi: g;ve the freﬁ surf;fe mar%ed"by %. an§ for x>46 cm give B. Let us

phenomenon "normal-crossing"—since it corresponds to bed normals
crossing each other. If normal-crossing occurs within the flow, then the bed
normals between the respective crossing normals appear redundant for free
surface prediction but necessary for bed pressure. If the domain of no sol-
ution (X 2 0.6321) does not exist within normal-crossing,then these bed nor-
mals give a third free surface prediction! Dressler's non-zero Jacobian at
the free surface, i.e.

-3.0 -2.8 ~2.0 =18 ~1.0 -0.8 0 0.632

XrZF - 1oy >
2] - o,

seems insufficient for uniqueness of the predicted free surface.

There is no continuous prediction of either free surface or bed pressure
across the transition point (c.f. figures 5.12 to 5.15). Apart from curva-
ture error introduced by the piezometer tappings, other model fabrication
curvature errors probably accounts for larger systematic errors in the bed
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pressure. (Matched B-splines give a clasg-2 curve—i.e. continuous together
with its first +two derivatives—therefore K is continuous but not dk/dx
everywhere; the discontinuity in. dk/dx causes the kinks in the theoretical
bed pressure.) : ;

The theoretical X = Kh values are plotted against the experimental X values
in figures 5.16 and 5.17, for the symmetric and the unsympetric profiles
respectively. Therxe is remarkaple agreement for

=2 $ kh $ 0.54 , (5.17)

beyond Dressler's recommended rxange of validity for his equations.
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VI CONCLUSIONS AND
RECOMMENDATIONS

6.1 Conclusions

From comparison with tested spillway and new experimental data, we reach the
following major conclusions.

(a)

(b)

The Dressler equations ave easy to use to accurately predict the free
surface and bed pressure (hydrostatic + centrifugal) for steady flow
over curved beds, when frictional effects are negligible.

The equations ave valid for convex beds of larger curvature than is the
case for concave beds; the experimental range was

-2 £ kh £ 0.54

with remarkable agreement between the theory and experiment (c.f.
Dressler's range: -0.85 S kh $ 0.5).

Other conclusions are:

(a)

(b)

(c)

6.2

(a)

(b)

the location of the critical flow can be accurately predicted;

in supercritical flow, any error in the bed curvature affects the bed
pressure considerably;

near the singular point (i.e, transition point), the basic assumptions
of the Dressler equations are questionable.

Recammendations

The present study emphasises steady flow, and solution of the Dressler
equations for unsteady flow is recommended for future research. Dynamic
pressure variation on spillway crests during the spill of a short dur-
ation flood wave, difficult to assess experimentally, is an important
engineering problem for example.

Experimental formulae are available for the "friction factor" F=f( R,€)
of a flat bed, where R and € denote the Reynolds number and relative
roughness of the channel surface respectively. Dimensional analysis
suggests that for curved beds f=f(R,€,kh),and its evaluation is import-
ant in order to generalize . the existing Moody diagram to extend the
Chézy formula to curved beds. The discussion on roll waves given in
Appendix-B could then be extended.



APPENDIX-A On the Geometry of
Curved Bed Profiles

A.l Symmetric Profile

The symmetric profile of length 120 om is described by the normal distribu~

tion:
1{z)?
C = Zoexp[} —[EZJ ] - (A1)

A.2 Unsymmetric Profile

The unsymmetric profile of length L = 150 om is designed using B-gplines
(De Boor, 1978) as follows.

%et I; be x-intervals: X <z < Xi+1 , and A2 = (xm, ¥, ) be vertices, wherxe
t=0,1,---,m-1; Vg £ (0,0) and Vv = (L,0). If temms of parameter s € {0, 1}
in I; , a point (E(s), T(s)) on the spline curve is given by

3 2

nis) = %{s 8“8 1)[{-1 3 -3 1|[v;4 (a.2)
3 -6 3 0}}vg
-3 0 3 0||Viy
1 4 1 0]}|Vigo

where N + £ when V + X, and n + I when V + Y. Artificial vertices

Vol § 2 - vy . }
Vil = 2Vp = Vel

il

(A.3)

are defined so that the curve has zero curvature at the end points Vg and
V. The entire curve from Vo to Vy is of class-2—i.e. the curve is continu=-
ous together with its first two derivatives(so that slope 6 and curvature K,
but not necessarily its derivatives, are continuous}.

At a given abscissa &, to find the slope tand = d;/df and the curvature

K = (d%z/at?)cos®0, we splve
E(s) - £=0 (a.4)

for s (using Newton-Raphson iteration) to find £',C', £" and " (where prime
denotes differentiation with respect to s) so that

dE ’/gl

. (A.5)
SE = emEDT - EVEN G

A-1

For the unsymmetric profile we take m

= 11 and:
i X3 Y35
0 0. 0.
1 9,225681 -0.109890
2 31.011056 3.846153
3 40.140415 12.318963
4 45.675620 20.524091
5 48.524623 26,700479
6 53,408628 32.155536
7 71.438746 26.294730
8 88.980463 11.732882
9 107.890720 2.787639
10 141,578144 0.008453
11 150, 0.




APPENDIX-B  Roll Waves

B.l1 Roll Waves in Flat Bed Open Channels

It has been observed that in steep channels steady, gradually varied, turbu-
lent flow theory fails beyond a certain critical Froude number as free sur-
face instability results in roll waves of various wave-length, amplitude
and phase-velocity (Cornish 1934; Rouse 1938). Dressler (1949) showed theor-
etically that roll waves cannet occur if the flow resistance is too large,
although they cannot be formed without it, He considered Saint-Venant equa-~
tions (c.f. p.2-1) with resistance given by the Chézy formula for wide chan=
nels (c.f. p.2-4), and obtained a simple necessary condition for the initi=-
ation of roll waves viz. 4g/c2 < tan® (g-gravity, C-constant Chézy coef-
ficient, and 6-channel inclination),or eqﬁivalently the Froude number F > 2.

Iwasa (1954) described one-dimensional flow in a prismoidal channel by con=-
tinuity and momentum equations (c.f, figure B.l):

A + (UA) = O, (B.1)

I_
pR '

Uy + BUU, + 0088 Hy + (1-B)3 Ay = gaind - (8.2)

y - suis

average velocity Ulx,t}

ree surtace
o ity Ay Ttheel :

local velocity
profile uix,y,t)

X - aule

L P
™ flow area A(x,N)

Figure B.l
where
A - flow area x - coordinate along flat bed
g - gravity y = coordinate normal to bed
H - flow depth T - shear stress at channel surface
R - hydraulic radius p ~ fluid density
t - time ) 8 - channel inclination
u ~ local velocity _ 2
U - average velocity B = GETY J u?’dA - momentum coefficient

and partial derivatives with respect to x and t are denoted by suffices.

He established a necessary condition for roll waves:

F > {[—5‘- iﬁ[éf - f} - (B-l)‘]z’ - e(e.—l»)}—'_’. (B.3)

2f dA|dR R

where the Froude number and friction factor are given by -

u/ g[A/g—;—]cose . f = sr/put. (8.4)

since f  is assumed to vary (i.e. Chézy coefficient not constant, unlike
Dfessler's derivation), (B.3) gives a family of curves relating the critical
Froude number, Reynolds number and the friction factor (c.f. Rouse  (1965)).

1]

F

Berlamont (1976) studied the roll wave phenomenon taking into account verti-
cal velocity and acceleration. Assuming that

(a) the velocity profiles are "similar" in all cross-sections;l
(b) the flow is gradually varied;
(c) the bed shear stress T = f(U,H)Uz/B;

{d) the product of lower order derivatives of U and H are small
compared with the higher order derivatives;

he integrated the continuity and momentum equations to yield:

Hy + (UH)y = O, (B.5)

Uy + BUUx + geos® Hy + (1-8)% He
2 2
HU® |a b . U
+ 5 [——U Heee + 5 Hyxt + ctht] = gaind - f ikl (B.6)

where constants a, b and ¢ depend wupon the shape assumed for the velocity
profiles, and the Darcy-Weisbach :friction factor f is calculated from the
White-Colebrook (Thijsse) formula:

1_ ks/R_, 3.03
F= -2.03 10910[12.20 + ﬁ;}ri (B.7)

Here the Reynolds number R = 4UH/V (v-kinema:ic viscosity), and Kg is char-
acteristic bed roughness height.

Berlamont (1976) derived a fourth-order linearised equation for small ampli-
tude disturbances of uniform flow. He observed a lower critical Froude num-
ber F for roll wave formation as a function of R, ks /R, velocity distribu-

Vof.e. ulx,y,t) = q;(%) U(x,t). This is exact for Llaminar flow (parabolic
velocity profile) and holds approximately for turbulent flow.
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tion and wave-Zgngth A (c.f, figure B.2); and also explained the existence
of an upper critical Froude number, beyond which no roll waves are formed.
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Figure B.2 ‘- lLower critical
Froude nurber for R=1, A=
(after Berlamont, 1976)
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B.2 Roll Waves in Curved Bed Open Channels

B.2A General Equation
for Lower Critical Froude Number

Shallow-flow in a curved bed open channel is defined by the Dressler equa-
tions (c.f. p.3-9)

3h 3q
f 3 t 5 0, (B.8)
dug 3E
% tes; = F (B.9)
where
Q = 1-kh
uy(q,h,s) = -gk/Infd (B.10)

2.2
E(q,h,8) = L + hoosd + %E—m nQ) 2

and F(q,h,s) denotes frictional dissipation at the rough channel surface.

In this Section, the stability of steady flow is considered.

If § = constant and h(s) denote the steady flow,the perturbed quantities are
als,t) = g (1+¢)

! : {8.11)
h(s,t) = R (1+n)

where ¢(s,t), n(s,t) are small (i.e. [¢],|n] << 1). 1Introducing (B.1ll) into
(B.8) and (B.9), and retaining only linear terms in ¢, N we get

Ny = - 53 0y ¢ (.12)

| = (g_g q)q) +(%f-:- h)n (B.13)
From (B.10) )
(G d-n ()--%4

(B.14)

(Fa) - (B - o woem

where {I = 1-kh, G, = Go/ﬁ, and P is given by .(3.35). Partial derivatives

with respect to s and t are denoted by subscripts.

Differentiating (B.13) with respect to t and eliminating Ny using (B.1l2), we
get a second order linear equation in ¢:

Gobpe + 2830pg * gy + Mbp + Moy = O, (B.15)
here _
er L= - %(1— F?)geost
oF
= g2y - fq o : .16
M= (uh)s (q Bq) (B.16)

1

N = Lg + 5% Q}%%)

Equation (B.15) is general,and from its solution one may determine the lower
critical Froude number based on a stability criterion.

B.2B Speecial Case:
"Plane Wave" Approzimation

Let us suppose that hg is small, to consider a "plane wave" approximation
¢(s,t) = a exp[ta(s-ot)] (B.17)

in which ¢ = 0r+i0i is a complex constant; 4,0,0, and g; are real constants
and © = Y-1. (B.16) now simplifies to (hg®0, Kg¥0)

L= - %(1- F?)gcost

e - (g 9F (B.18)
ne- (8 |
N 3 gKeind + & (h Sh
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since d8/ds = K, and & 'F’geosd is a function of kh only.

Setting (B.17) in (3;15), taking real and imaginarylparts we get (o # 0)

(g2 2 2
u g - 0p) + 20,00, + MOy - L& = 0, (B.19),

2

200,07 = 2uy

adg + MOp - N = 0, (B.20)
on omitting the bars for the steady flow quantities.,
The stability depends on the sign of 0; ; if og > 0; the amplitude wiil grow

with time and the flow will be unstable. Considering marginal atability
(0 = 0), from (B.19) and (B.20) we get ‘

2 2

8Opn o = 24,0, o + L =0, (B.21)

Op,c = N/M, {8.22)

where 0 . denotes the oritiogl phase-velocity; eliminating Oj wg hgve
2 . 02

uN? = 2u’nm + w4’ = 0, (B.23)

to be solved for the eritical Froude number F. below which no roll waves are
formed. )

Setting (B.18) in (B.23), and using ué/(ghaose) =¥ = LF?, Qug = - K~Ying,
and = 1-x {(c.f. Section 3.6) we get
Fo = Leln (1) 5 (B.24)
Iniiey) + [1 - p xima- )]
X
where )
= BX8ind + h3E/dh ‘ '
D qBF(aq (B.25)

For the flat bed limit (K =+ 0), (B.24) reduces to
F¢ = 1/|1+p]. (B.26)

If F I Au’/m® = xqz/hm+2, then 3F/dh = -(m+2)F/h, 9F/3q = 2F/q; and hence
(B.26) gives

Fo = 2/m (B.27)

This recovers the familiar results Fo = 2 and 1.5, respectively, for Chéay
(m=1) and Marning (m=4/3) resistance terms (c.f. figure B.2),
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