Easy Coing MATHEMATICS

11+

Acknowledgements

First and foremost I would like to thank god who has given me the guidance and knowledge to make this series of book. My heartfelt thanks goes to my family for their tremendous support and encouragement throughout the making of this book.

I express my gratitude towards Nijea and Sharugi who has provided their valuable time to proof read and design this book. Last but not least I express my gratitude towards my students for their inspiration and progressive feedback which has only led me to improve this book.
M.Nat

First Edition 2014
Second edition 2016
Third edition 2018

Copyright © LEC Publishers, 2014, First Edition

All rights reserved. No part of this publication may be reproduced, transmitted or used in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage or retrieval system, without the prior written permission of the publisher.

Published by LEC Publishers, 101A Blyth Road, Hayes, UB3 1DB
www.leceducation.com
M.Nat BSc, BEd, P.G.C.E Diploma in computer programming, Diploma in supervisory Management

EASY GOING

MATHEMATICS

11+ (CEM)
BOOK 4

This book belongs to:
M. NAT BSc, BEd, PGCE

Contents

Chapter 1

Homework	1.1: Area of Rectangle	5
	1.2: Area of Rectangle 2	6
	1.3: Area with conversion of units	7
	1.4: Area with conversion of units 2	8
	1.5: Area \& Perimeter	9
	1.6: Area \& Perimeter 2	10
	1.7: Area of compound shapes	11
	1.8: Missing Length	13
	1.9: Area \& Perimeter word problems	14

Chapter 2

Homework

2.1: Calculate the Volume17
2.2: Missing Side 19
2.3: Volume Word Problems 20
Chapter 3

Homework

3.1: Converting Lengths 23
3.2: Converting mass, capacity and time 24
3.3: Converting mass, capacity and time $2 \quad 25$
3.4: Mixed Questions 26

Homework

4.1: Identifying Elements 29
4.2: Drawing Venn Diagrams 31
4.3: Venn Diagram Problems 35
4.4: Venn Diagram Problems 237

Chapter 5
Probability
Homework

Chapter 6
Homework

	6.1: Line of Symmetry	48
	6.2: Line of Symmetry 2	49
	6.3: Rotational Symmetry	50
	6.4: Mixed Questions	51

Chapter 7
Co-ordinates

Homework
7.1: Plotting Co-ordinates

Chapter 8

Homework

Key Terms

Perimeter: is the distance all the way around the outside of a shape. It is calculated by adding all the sides around the shape.

Area: is a measure of the surface contained within the shape.

Square

Rectangle

Triangle

Trapezium

Parallelogram

Example:

Find the area of each rectangle with these sides. Remember to add units at the end.

1) 11 cm by $8 \mathrm{~cm}=$ \qquad 2) 12 cm by $9 \mathrm{~cm}=$
2) 10 cm by $8 \mathrm{~cm}=$ \qquad
3) 10 mm
by
$11 \mathrm{~mm}=$
\qquad
\qquad
4) 2 mm by $8 \mathrm{~mm}=$ \qquad 6) 6 mm by $7 \mathrm{~mm}=$ \qquad
5) 3 mm by $4 \mathrm{~mm}=$ \qquad
6) 8 mm by $9 \mathrm{~mm}=\quad$
7) 7 m by $5 \mathrm{~m}=$ \qquad
8) 4 m by $5 \mathrm{~m}=$
9) 12 mm by $9 \mathrm{~mm}=$ \qquad 12) 7 mm by $8 \mathrm{~mm}=$ \qquad
10) 2.4 cm by $10 \mathrm{~cm}=\square$
11) 12 mm by $10 \mathrm{~mm}=$ \qquad

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Find the area of each rectangle with these sides. Remember to add the units at the end.

1) 1.2 cm by $5 \mathrm{~cm}=\square$
2) 8.5 mm by $2 \mathrm{~mm}=$ \qquad 4) 1.2 mm by $2.4 \mathrm{~mm}=$
3) 7.5 mm by $2 \mathrm{~mm}=$
4) 14 mm by $2 \mathrm{~mm}=$
5) 25 mm by $2 \mathrm{~mm}=$
6) 15 mm by $1.2 \mathrm{~mm}=$
7) 10 mm by $2.6 \mathrm{~mm}=$
8) 30 cm by $4.0 \mathrm{~m}=$
9) 3 m by $2.0 \mathrm{~m}=$
10) 7.2 mm by $1.2 \mathrm{~mm}=$ \qquad
11) 9.6 mm by $10 \mathrm{~mm}=$ \qquad
\qquad
\qquad -
12) 1.8 mm by $3 \mathrm{~mm}=\quad$
13) 7.9 m by $100 \mathrm{~m}=$ \qquad
\qquad
\qquad
\qquad
\qquad _

Example: To calculate the area of a rectangle with different units, first convert to make both the units the same, then multiply the length by height.
6.8 mm by $2 \mathrm{~cm} \longrightarrow 0.68 \mathrm{~cm}(6.8 \div 10)$ by $2 \mathrm{~cm}=1.36 \mathrm{~cm}^{2}$

Remember to add the unit at the end

Find the area of each rectangle. Give your answers in $\mathbf{c m}^{2}$.

1) 11 cm by $8 \mathrm{~m}=$
2) 12 cm by $9 \mathrm{~mm}=$
3) 10 mm by $8 \mathrm{~cm}=$
4) 10 m by $711 \mathrm{~mm}=$
5) 12 mm by $8 \mathrm{~cm}=\quad$
6) 6 cm by $27 \mathrm{~mm}=$
7) 58 mm by $9 \mathrm{~cm}=$
8) 3 m by $54 \mathrm{~cm}=$
9) 4 m by $95 \mathrm{~cm}=\quad$
10) 7 m by $105 \mathrm{~cm}=$
11) 12 m by $9 \mathrm{~mm}=\quad$
12) 7 cm by $28 \mathrm{~mm}=$
13) 2.4 cm by $30 \mathrm{~mm}=$ \qquad 14) 4.5 cm by $3 \mathrm{~cm}=$
14) 12 mm by $10 \mathrm{~mm}=$ \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Find the area of each rectangle. Give your answers in $\mathbf{c m}^{2}$.

1) 11.2 mm by $5 \mathrm{~cm}=\quad$
2) 8.5 mm by $2 \mathrm{~cm}=$ \qquad 4) 1.2 cm by $2.4 \mathrm{~mm}=$ \qquad
3) 7.5 m by $72 \mathrm{~cm}=$
4) 14 cm by $12 \mathrm{~mm}=$ \qquad
5) 7.9 m by $100 \mathrm{~cm}=$ \qquad

路
-
10) 25 cm by $62 \mathrm{~mm}=$ \qquad
12) 703.0 cm by $2.0 \mathrm{~m}=$ \qquad
11) 30 mm by $4 \mathrm{~cm}=$ \qquad
14) 7.2 cm by $31.2 \mathrm{~mm}=$ \qquad
13) 9.6 cm by $10 \mathrm{~mm}=$ \qquad
15) 9.5 mm by $10 \mathrm{~mm}=$ \qquad

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example : To calculate the area of a triangle use the formula, where b is the base, h is the height.

Remember to add the unit at the end.

Find the area (A) and the perimeter (P) of the following shapes.
1)

3)

5)

7)

9)

$\leftarrow 2 \mathrm{~cm} \rightarrow$
2)

$A=\square$
$P=$ \square
4)

A $=$ \square
$P=$ \square
6)

$A=\square$
$P=$ \square
8)

$$
A=\square
$$

$$
\mathrm{P}=\square
$$

10)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

1)

2)

7)

A =

6)

8)

4)

9)

10)

Example : To calculate the area of a compound shapes:

Remember to add the unit at the end.

1) Make shape that you can find areas for, in this example we have 2 rectangle, which is shown by the dotted line.
2) Find the area of each shape:

Area of $A=3 \times 1=3 \mathrm{~cm}^{2}$
Area of $B=5 \times 1=5 \mathrm{~cm}^{2}$
3) Add the areas of each of the shape.

Area of compound shape $=$
$3+5=8 \mathbf{c m}^{2}$

Find the area (A) and the perimeter (P) of the shaded compound shapes.
1)
1)

2)

3)

4)

5)

$A=\square$
$P=$ \square
6)
13 cm

11)

12)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example: Find the missing length of the shape

		$42 \div 6=7$
$42 \mathrm{~cm}^{2}$	a cm	$a=7$

Find the length of the missing side (a).
1)

$$
a=
$$ cm

3)

$a=$ \qquad cm
5)

$a=$ \qquad cm
4)

a =
\qquad cm
6)

a cm

$$
\mathrm{a}=\ldots \mathrm{cm}
$$

7)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example: What is the area of a field if the length is 5 m and the width is 6 m ?

$$
\begin{aligned}
\text { Area of field } & =5 \times 6 \\
& =30 \mathrm{~m}^{2}
\end{aligned}
$$

Answer the questions by reading the information carefully.

1) A stamp is 20 mm by 30 mm .
a) Calculate the area of the stamp in mm^{2} ?
b) How many mm^{2} are there in $1 \mathrm{~cm}^{2}$?
c) Find the area of the stamp in cm^{2}
2) A square sheet of gift stamps measures 9 cm by 9 cm . If each stamp measures 3 cm by 3 cm , how many does the sheet contain?
3) A square lawn measures 5 m by 5 m , and it is to be covered with pieces of turf which measures 50 cm by 50 cm . How many pieces of turf are required?
4) A square yard measures 8 m by 8 m , and it is to be covered with paving slabs which measure 2 m by 80 cm . How many slabs are required?
5) A wall space in a bathroom measures 1 m by 2 m , and it is to be covered with square tiles which measure 10 cm by 10 cm . How many tiles are required?

Area \& Perimeter word problems

6) A square yard measures 12 m by 12 m , and it is to be covered with paving slabs which measure 4 m by 80 cm . How many slabs are required?
7) A wall space in a bathroom measures 3 m by 2 m , and it is to be covered with square tiles which measure 10 cm by 10 cm . How many tiles are required?
8) Meena has made some toffee in a tray which measures 30 cm by 15 cm . She cuts the toffee into square pieces which measures 3 cm by 3 cm . How many pieces will there be?
9) Mr Peter wants to build a driveway in front of his house. The driveway measures 28 cm by 30 cm . He has to use 40 stabs for this. What must be the measurement of one of the slab?
10) A model of a house, needs its carpet changed for its living room. The living room dimension is 48 cm by 12 cm . How much carpet does it require?

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Volume: It is the measure of the amount of space inside of a solid figure, like cube. It's unit is always 'cubic' like cm^{3}.

Volume

VOLUME $=$ LENGTH \times WIDTH \times HEIGHT
VOLUME $=a \mathrm{~cm} \times b \mathrm{~cm} \times \mathrm{ccm}=a b c \mathrm{~cm}^{3}$

Find volume using a shape's area

If the area of the shaded circle is $5 \mathrm{~cm}^{2}$ and the height of the cylinder is 6 cm .

Volume = Area of shape x height
Volume $=5 \times 6$
$=30 \mathrm{~cm}^{3}$

Example : Find the volume of the following shape.

For each of the following cuboids, calculate the volume.
1)

$$
V=\square
$$

3)

$$
V=\square
$$

5)

$$
V=\square
$$

4)
5)

$$
V=\square
$$

6)

$$
V=\square
$$

7)

$$
V=\square
$$

9)

$$
V=\square
$$

12)

\square
8)

10)

$V=\square$
13)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example : What is the value of the missing side?

Length	Width	Height	Volume
2 cm	3 cm	1 cm	$6 \mathrm{~cm}^{3}$

Working out: $6 \mathrm{~cm} \div(2 \mathrm{~cm} \times 3 \mathrm{~cm})=1 \mathrm{~cm}$.

Find the value of the missing measurement.

	Length	Width	Height
1)	Volume		

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example: A rectangle container is 20 cm long and 25 cm wide. If it holds 5 litres of water when full, what is the height of the container (5 litre $=5000 \mathrm{~cm}^{3}$).
Volume $=$ height x length x width
$5000=h \times 20 \times 25$
$h \quad=10 \mathrm{~cm}$
Answer the following questions by reading the questions carefully. (1 litre $=1000 \mathrm{~cm}^{2}$)

1) The water tank in a house has a square base measuring 20 cm by 20 cm . If it is filled with water to a depth of 40 cm , how many litres does it contain?
2) A rectangular coffee urn has a base which measures 10 cm by 35 cm and it is 30 cm high. How many litres of coffee does it contain when full?
3) A paraffin can has a base measuring 20 cm by 25 cm , and it is filled to a depth of 50 cm . How many times can the tank of a heater be filled from this quantity of paraffin if the tank measures 25 cm by 10 cm by 20 cm ?
4) A small oil can has dimensions 10 cm by 7.5 cm by 4 cm .
a) Find its volume in cm^{3}
b) Find its capacity in millilitres
c) Find its capacity in litres
5) A man is driving a car which suddenly runs out of petrol. In the boot of the car is a full can of petrol which measures 25 cm by 15 cm by 8 cm . If the man is 50 km from home and his car travels 17 km on every litre of petrol, has he enough to get home?
6) A metal block, measuring 30 cm by 10 cm by 8 cm is measured. How many litres of liquid metal are there?
7) Find the capacity, in litres, of a rectangular carton measuring 20 cm by 15 cm by 10 cm .
8) A rectangular box is 30 cm long, 20 cm wide and 5 cm deep. How many litres of water will it hold?
9) Look at the cube diagram and answer the following questions.
a) Find the capacity of the water tank.
b) If they filled one third of the tank, then how much water is needed to fill the tank?

10)

The letter T shape is made by sticking together 2 cuboids as shown in the diagram on the left. What is the total volume in cm^{3} of the letter T.

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Length

1 kilometre (km)
$=1000$ metres (m)
1 metre (m)
$=1000$ millimetres (mm)
1 centimetre (cm) = 10 millimetres (mm)
1 metre $(\mathrm{m})=100$ centimetres (cm)

Mass

1 tonne (t) $\quad=1000$ kilograms (kg)
1 kilogram (kg) = 1000 grams (g)

Capacity

1 litre (I)
$=1000$ millilitres (ml)
1 litre (I)
$=100$ centilitres (cl)
1 centilitre (cl)
$=10$ millilitres (ml)
1 litre (I)
$=1000$ cubic centimetres $\left(\mathrm{cm}^{3}\right)$
1 millilitre (ml)
$=1$ cubic centimetre $\left(\mathrm{cm}^{3}\right)$
1000 litres (I)
$=1$ cubic metre $\left(\mathrm{m}^{3}\right)$

Time

1 hour (hr)	$=$
1 year	$=$
1 decade	$=$

Example: Convert 8 cm to mm .
8 cm to 80

As 1 cm is 10 mm , you will have to multiply 8 by 10 .

Convert the values for the following questions to the correct units.

1)	10 cm	to	mm	2)	42000 cm	to	m
3)	26 cm	to	mm	4)	75000 cm	to	m
5)	18 cm	to	mm	6)	90000 cm	to	m
7)	45 cm	to	mm	8)	7000 cm	to	m
9)	180mm	to	cm	10)	5km	to	m
11)	760 mm	to	cm	12)	223m	to	cm
13)	70 mm	to	cm	14)	330 m	to	cm
15)	400 mm	to	cm	16)	600m	to	cm
17)	6 m	to	cm	18)	40m	to	cm
19)	42m	to	cm	20)	4500 cm	to	m

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example: Convert 275 cm to m and cm .

As 100 cm is 1 m , you will have to divide 275 by 100 . The whole number will be metre and reminder will be centimetre.

Convert the values for the following questions to the correct units.

1)	235 cm	to	m	cm
2)	645 cm	to	m	cm
$3)$	305 cm	to	m	cm
4)	1595m	to	km	m
5)	4320m	to	km	m
6)	7654 kg	to	ton	kg
7)	9875 kg	to	ton	kg
8)	4535 kg	to	ton	kg
9)	6542 ml	to	1	$m l$
10)	4500ml	to	1	ml

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Convert the values for the following questions to the correct units.

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Express the given quantity in terms of the units specified.

1) $4 m$ \square 2) 12 km \square
2) $7 m$ \square 4) 1 km \square
3) $\quad 1 \mathrm{~kg}$ \square 6) 52 mm \square
4) 5 cm

5) 8 km \square
6) 14 cm

7) 8586 g
kg

Read the question carefully and answer the following questions.
11) Find the total weight in grams, of 200 g of sugar, 3 kg of potatoes and 2 kg of flour.
12) Find the total length in millimetres, of piece of wood 85 cm long and another piece of wood 350 mm long.
13) Tom travelled from his house to the shop, which is 54 km away, then he went to his friends house, which is 12 km . How much did he travel in total, including getting back to his house?

Calculate the following sums, giving your answer in the required units.
14) $35 \mathrm{~cm}+70 \mathrm{~mm}=\square \mathrm{mm}$
15) $7 \mathrm{~cm}+4.5 \mathrm{~mm}=\square \mathrm{mm}$
16) $32 \mathrm{~cm}+12 \mathrm{~mm}+2 \mathrm{~m}=\square \mathrm{mm}$
17) $2 \mathrm{~cm}+4 \mathrm{~m}+2.8 \mathrm{~cm}=\square \mathrm{mm}$
18) $4 \mathrm{~kg}+200 \mathrm{~g}$ \square g
19) $2 \mathrm{~kg}+0.6 \mathrm{~kg}+450 \mathrm{~g}=\square$
20) $9 \mathrm{~kg}+0.8 \mathrm{~kg}+750 \mathrm{~g}=\square$ g

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example

$A=\{2,3,5,7\} ; B=\{2,4,6,8\}$
Illustrate this information on a Venn diagram.

The middle area (which is in both sets) represents $A \cap B=\{2\}$ The whole diagram represents $A \cup B=\{2,3,4,5,6,7,8\}$

Example: From the Venn diagram below list the elements in
a) set A
b) set B
c) $A \cap B$
d) $A \cup B$

Answers:
a) $2,3,5$
b) $7,3,9,8$
c) 3
d) $2,3,5,7,8,9$

Answer the following questions.
1)

From the Venn diagram below list the elements in:
a) $\operatorname{set} X$
b) set Y
c) $X \cap Y$
d) $X \cup Y$
2) From the Venn diagram below list the elements in:
a) set P
b) set Q
c) $P \cap Q$ \qquad
d) $P \cup Q$ \qquad
3)

From the Venn diagram below list the elements in:
a) set P \qquad
b) set Q
c) $P \cap Q$ \qquad
d) $P \cup Q$ \qquad
4) From the Venn diagram below list the elements in:
a) set A
b) set B \qquad
c) $A \cap B$ \qquad
d) $A \cup B$ \qquad

5)

From the Venn diagram below list the elements in:
a) set A
b) set B \qquad
c) $A \cap B$
d) $A \cup B$

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example: Draw a Venn diagram with the information given.

$$
\begin{aligned}
& X=\{3,6,9,12,15,18\} \\
& Y=\{4,8,12,16,20\}
\end{aligned}
$$

For the following questions, draw a Venn diagram in the space given, using the information provided.

1) $\quad A=\{2,3,4,5,6,8,12\}$
$B=\{4,5,13,16,17,18\}$

2) $X=\{D, R, O, W, N\}$

$$
Y=\{D, O, C, T, R, I, N\}
$$

3) $\quad P=\{1,4,9,16\}$ $Q=\{4,8,12,16,20\}$

4) $\quad A=\{6,12,18,24,30,36,42,48\}$ $B=\{9,18,27,36,42,48\}$

5) $M=\{B, A, T, H\}$ $N=\{B, A, T\}$

6) $\quad X=\{4,8,12,16,20,24,28\}$

7) $P=\{F, L, Y\}$
$Q=\{H, I, G, H\}$

8) $\quad M=\{2,4,8,16\}$ $N=\{2,5,8,11,13,15\}$

9) $X=\{S, A, I, L\}$ $Y=\{N, A, I, L\}$

10) $A=\{T, R, A, I, N\}$
$B=\{R, A, I, N\}$

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Use the Venn diagram below to answer the following questions.

1) How many students have been surveyed?
2) Who only play Tennis?
3) Who only plays cricket?
4) Who play both cricket and tennis?
5) Who does not play cricket?
\qquad
6) Who does not play Tennis?
7) Who neither plays Cricket nor plays Tennis?
8) Who does not play Cricket, but plays Tennis?
9) Who does not play Tennis, but Cricket?
10) Who either play Cricket or plays tennis but not both?

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Use the Venn diagram below to answer the following questions.

1) How many play Rugby?
2) How many play only Tennis?
3) How many are there in the class? \qquad
4) How many play only Rugby? \qquad
5) How many play both? \qquad
6) How many play neither?
7) How many do not play Rugby?
8) How many play Tennis but not Rugby? \qquad
9) How many do not play Tennis? \qquad
10) How many play Rugby but not Tennis?

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

The probability scale

If an event is impossible, we say that there is a probability of 0
If an event is certain, it has a probability of 1.
If an event has an even chance, then it has a probability of 1 in 2 or $\frac{1}{2}$

The probability of an event happening

The probability (P) of an event happening is:

$$
\mathrm{P}=\frac{\text { number of successful events }}{\text { total number of all possible results }}
$$

Example

Nine counters numbered $1,2,3,4,5,6,7,8,9$ are placed in a box. If one counter is drawn out at random, what is the probability that it is a counter with a number divisible by 3 ?

Number of successes $=3:$ these are 3, 6 and 9

Total number of possibilities $=9$
$\therefore P=\frac{3}{9}=\frac{1}{3}$

Example: The probability that there is life on the moon is:

Mark on the scale, the probability of these events happening.

1) I will get tail when I toss a coin.

2) It will snow tonight.

3) The lion will fly.
impossible
possible
evens
probable
certain
4) Christmas will fall on $25^{\text {th }}$ December this year.
impossible
probable
certain

5) At the age of 5, you grow another leg.
impossible

evens probable certain
6) Everyone's birthday is the day they were born.

7) You toss a coin and get a head.

8) If today is Friday, tomorrow is Saturday.

9) It will rain tomorrow.

10) You can live in the past.
impossible

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example: What is the probability of throwing a six with a normal die?
Answer: In a normal die there is six numbers. So Probability is $\frac{1}{6}$

Complete the following questions. Remember to simplify your answers where appropriate.

1) Six counters numbered $1,3,4,5,8,9$ are placed in a box. If one counter is drawn out random, what is the probability that it is a counter:
a) with an odd number \qquad b) with an even number
\qquad
2) If a dice (numbers 1 to 6) is thrown, what is the probability that the score is:
a) A prime number
b) A square number
3) When one card is chosen at random from normal pack of cards, what is the probability of choosing diamond?
4) If a letter is chosen at random from the word PROBABILITY, what is the probability that it will be B ?
5) Twelve counters labelled A, B, C, D, E, F, G, H, I, J, K, L are placed in a box. If one counter is drawn out at random, what is the probability that it is a counter:
a) with a consonant letter \qquad
b) with a vowel letter
6) In a classroom 20 boys and 15 girls are there. The teacher selects a student randomly for the cultural event, what is the probability for the following:
a) A boy
b) A girl
7) If two coins are tossed simultaneously, what is the probability of:
a) two heads
b) two tails
c) one head and one tail
8) When a normal die is rolled, what is the probability that it will give a square number?
9) In a bus, there are 16 adults and 23 children. The bus driver is picking a person at random, what is the probability that it will be an adult?
10) There are 5 yellow counters, 2 red counters and 10 blue counters. I select a counter randomly without looking. What is the probability that I will select:
a) A blue counter
b) A red counter
\qquad

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example: If the probability of coming to school is $\frac{1}{-}$ what is the probability that he is not coming to the school?$P(\text { Event })+P(\text { not that event })=1 \quad \longrightarrow P(\text { not coming })=1-\frac{1}{4}=\frac{3}{4}$	

Complete the following questions. Remember to simplify your answers where appropriate.

1) If a normal die is rolled, what is the probability of throwing:
a) less than four
b) not 5
c) not a prime number \qquad
2) If a card is withdrawn at random from a pack of 52 playing cards, what is the probability that it is:
a) An ace \qquad b) not an ace
c) a picture card \qquad d) not a picture card
3) A class of 30 boys contains 18 with dark hair, 8 with blonde hair, and 4 with red hair. If the class proceeds to the assembly hall in random order, what is the probability that the first to enter the hall has:
a) dark hair \qquad b) non dark hair
c) red hair \qquad d) non red hair

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Complete the following questions. Remember to simplify your answers where appropriate.

1) What is the probability of throwing a four with a normal die?
2) Six counters numbered $2,7,8,9,10,11$ are placed in a box. If one counter is drawn out random, what is the probability that it is a counter:
a) with an prime number
b) with an odd number
\qquad
3) If a dice (numbers 1 to 6) is thrown, what is the probability that the score is:
a) An odd number \qquad b) A prime number
\qquad
4) When one card is chosen at random from normal pack of cards, what is the probability of choosing clubs?
5) If a letter is chosen at random from the word CONDITIONAL, what is the probability that it will be N ?
6) If a normal die is rolled, what is the probability of throwing:
a) less than five
b) $\operatorname{not} 6$
c) not a even number
7) If a card is withdrawn at random from a pack of 52 playing cards, what is the probability that it is:
a) A club \qquad b) not a diamond
c) not a picture card \qquad d) not an ace card
\qquad
8) A class of 40 boys contains 20 with dark hair, 12 with blonde hair, and 8 with red hair. If the class proceeds to the assembly hall in random order, what is the probability that the first to enter the hall has:
a) dark hair \qquad b) non dark hair
c) red hair \qquad d) non red hair
\qquad
\qquad
9) When one card is chosen at random from normal pack of cards, what is the probability of choosing diamonds?
10) If a dice (numbers 1 to 6) is thrown, what is the probability that the score is:
a) An even number \qquad b) A triangular number
\qquad

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

LINE SYMMETRY

A shape has line symmetry if a central dividing line can be drawn to show that both sides are the same.

Some shapes have more than one line of symmetry

Rotational Symmetry

A figure has rotational symmetry if you can turn it round a fraction of a turn so that it then looks the same.

The order of rotational symmetry is equal to the number of times that the shape will look the same in one full turn.
Example 1

Original

Turn 1

Turn 2
This shape has rotational symmetry. Order of rotation is 5 .

Turn 3

Turn 4

Turn 5

Example 2

Order of rotation is 3

Original

Turn 1

Turn 2

Turn 3

These patterns all have line of symmetry. Draw the lines of symmetry on the picture.

3)
2)

4)

5)

9)

10)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

These patterns are partly completed. Fill in the missing squares so that pattern is symmetrical about the line of symmetry shown.
1)

2)

3)

4)

5)

6)

8)

9)

10)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

For these diagrams with rotational symmetry write down the order.

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

These shapes all have line of symmetry. Draw the lines of symmetry on the shapes.
1)

2)

These patterns are partly completed. Fill in the missing squares so that they form the mirror image.
3)

4)

For these diagrams with rotational symmetry write down the order.
6)

7)

8)

9)

10)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Example

What are the coordinates of the points A, B and C ?

$$
A(5,7) \quad B(7,6) \quad C(2,4)
$$

Answer the following questions.

5) Write down the y coordinate of E
6) Find the difference in the x coordinate of F and B
7) Find the difference in Y coordinate of A and F
8)

1) Write down the x coordinate of F ?
2) Write down the y coordinate of D ?
3) Write down the coordinate of C ?
4) Write down the x coordinate of B ?
\qquad
\qquad
\qquad
\qquad

Mark the points; $P(1,2), Q(7,2)$, $R(8,5)$ and $S(2,5)$ on the grid.

Join P to Q, Q to R, R to S and S to P.
A) What is the name of the figure PQRS?
\qquad
B) Does this shape have any line of symmetry?

Mark these points on the grid on the left:

$$
\begin{array}{ll}
\mathrm{A}(1,7) & \mathrm{B}(1,2) \\
\mathrm{C}(8,2) & \mathrm{D}(8,4) \\
\mathrm{E}(3,4) & \mathrm{F}(3,7)
\end{array}
$$

Join the points in alphabetical order, starting from A and finishing at A.

What letter have you drawn?
\qquad
10) Mark these points on the grid on the right:

$P(2,6)$	$Q(4,8)$
$R(6,6)$	$S(4,1)$

Join the points in alphabetical order from P to P.
A) What shape is PQRS?
\qquad
B) The shape has a line of symmetry, draw it on your grid.

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

Find the length of the missing side (a).
1)

2)

$a=$ \qquad cm

$$
\mathrm{a}=
$$

\qquad cm
3)

Missing Side

Find the value of the missing measurement.
1)
14 m
\square
2)
$5 m$ \square $210 \mathrm{~m}^{3}$ $7 m$
600 cm
$420 \mathrm{~m}^{3}$
3) \square
$6 m$
1000 cm
$480 \mathrm{~m}^{3}$

Find the volume in cm^{3}, of each of these solids.

$$
\square=1 \mathrm{~cm}^{3}
$$

1)

2)

$\mathrm{V}=$

3)

\square
4)

$$
V=\square
$$

Converting Lengths

Convert the values for the following questions to the correct units.
1)
89km
to \square
m
2) 132 km
4) 240 km to $\square \mathrm{m}$
3)
40km
to

6) 54000 m
to

5) 200 km
to \square m 6)
8) 65000 m to

9) 93000 m
to \square m
10)
7900m
to \square

Convert the values for the following questions to the correct units.

1)	470 days	to	year	days
2)	1456m	to	km	m
3)	2678 cm	to	m	cm
4)	3450g	to	kg	g
5)	95 mm	to	cm	mm
6)	2378g	to	kg	g
7)	1500 cm	to	m	cm

Drawing Venn Diagrams

For the following questions, draw a Venn diagram in the space given, using the information provided.

1) $P=\{H, A, I, R\}$
$Q=\{H, E, R, O\}$

2) $M=\{T, O, W, E, L\}$

3) $\mathrm{A}=$ \{Bats, Stumps, Ball\} $B=$ Racquets, Net, Ball\}

4) $P=\{5,1,3,7\}$
$Q=\{1,3,6,10\}$

5) $\quad A=\{2,4,6,8\}$ $B=\{1,3,5,7\}$

Probability of an event not happening

Complete the following questions. Remember to simplify your answers where appropriate.

If a dice is thrown, what is the probability that the score is:
a) an even number
b) not an even number
c) a triangular number
d) not a triangular number

Line of Symmetry 2

These patterns are partly completed. Fill in the missing squares so that pattern is symmetrical about the line of symmetry shown.
11)

12)

Attempts	No. of Corrections	Date	Sign
Attempt 1			
Attempt 2			

OUR PUBLICATIONS (LEC)

NO	Year Group	NAME	STATUS	AUTHOR
1	2	English Classwork Book	Published	R. Myra
2	2	English Homework Book	Published	R. Myra
3	3	Mathematics Classwork Book	Published	M. Nat
4	3	Mathematics Homework Book	Published	M. Nat
5	3	English Book 1	Published	J. Suki
6	3	English Book 2	Published	J. Suki
7	4	Mathematics Classwork Book	Published	M. Nat
8	4	Mathematics Homework Book	Published	M. Nat
9	4	Verbal Reasoning Book 1	Published	M. Nat
10	4	Non-Verbal Reasoning	Published	M. Nat
11	5	Mathematics Book 1	Published	M. Nat
12	5	Mathematics Book 2	Published	M. Nat
13	5	Mathematics Book 3	Published	M. Nat
14	5	Mathematics Book 4	Published	M. Nat
15	5	Mathematics Book 5	Published	M. Nat
16	5	Verbal Reasoning Book 1	Published	M. Nat
17	5	Verbal Reasoning Book 2	Published	M. Nat
18	5	Verbal Reasoning GLS Book	Published	M. Nat
19	5	Comprehension Book 1	Published	R. Myra
20	5	Non Verbal Reasoning Book 1	Published	M. Nat
21	5	Non Verbal Reasoning Book 2	Published	M. Nat
22	6	Mathematics Classwork Book	Published	M. Nat
23	6	Mathematics Arithmetic Book	Published	M. Nat
24	6	Maths Practice Paper Book	Published	M. Nat
25	7	Mathematics Book 1	Published	M. Nat
26	7	Mathematics Book 2	Published	M. Nat
27	8	Mathematics Book 1	Published	M. Nat
28	8	Mathematics Book 2	Published	M. Nat
29	9	Mathematics Book 1	Published	M. Nat
30	9	Mathematics Book 2	Published	M. Nat
31	10	Mathematics Practice Book	Published	M. Nat
32	11	Mathematics Book 1	Published	M. Nat
33	11	Mathematics Book 2	Published	M. Nat

LUXMI EDUCATION CENTRE

Walock youn portential

Courses

Subjects

Maths, English, Science, Physics, Chemistry, Biology , Statistics, Mechanics

11+

Verbal Reasoning (CEM Style), Non Verbal reasoning (CEM style),
Mathematical Reasoning and English
Contact:
0208573 0368, 07852810285
Email: luxmieducation@gmail.com
Web: www.leconline.co.uk

