
GCE - A/L CHEMISTRY SERIES

REVISED & UPDATED

கைத்தொழில் இரசாயனம்

S. Thillainathan

கைத்தொழில் இரசாயனம்

க.பொ.த. உயர்தரம் (புதிய பாடத்திட்டம்)

ஆசிரியர் **எஸ். தில்லைநாதன்**

BSc, Dip. in Edu.

பதிப்பு விபரம்

முதற்பதிப்பு

ஜனவரி 2002

நூலாசிரியர்

எஸ். தில்லைநாதன்

பதிப்புரிமை

மனோ தில்லைநாதன்

தலைப்பு

கைத்தொழில் இரசாயனம்

கணினி வடிவமைப்பு :

பவானி கிருஷ்ணமூர்த்தி

நூல் வடிவமைப்ப

சு. கிருஷ்ணமூர்த்தி

Title

Kaithozhil Irasayanam

(Industrial Chemistry)

Author

S. Thillainathan

First Published

January 2002

Copyright

: Mano Thillainathan

Layout & Designing: Mr. & Mrs. S. Krishnamoorthy

நூன்முகம்

இப்புத்தாயிரம் ஆண்டிலிருந்து G.C.E (A\L) இரசாயன பாடத்தில் சில மாற்றங்கள் ஏற்பட்டுவிட்டன. மாணவன் தனது தேடலை விருத்தி செய்ய வேண்டிய அவசியம் இப்போது உள்ளங்கை நெல்லிக்கனி போலத் தெளிவாகின்றது.

மாணவரின் கற்றலிற்கு வழிகோலுமுகமாகவும் எமது பாடத்திட்டத்தின் இறுதி அலகைப் பூர்த்திசெய்யுமுகமாகவும் இந்நூல் வெளிவருகின்றது. இது உங்கட்கு ஓரளவு உதவியாக அமையும் என நம்புகிறேன்.

இந்நூலில் பாடப்பரப்புக்கு வெளியேயும் சற்று உலா வரவேண்டியுள்ளது. பரீட்சையை மையமாக மட்டுமன்றி அறிவு விருத்தி கருதியும் இந்நூல் எழுதப் பட்டுள்ளது. உதாரணமாக, 'சீமெந்து தயாரிப்பு' இல்லை. புவியிரசாயனமும் இல்லை. இறப்பர் பால் பற்றிய பகுதியும் இல்லவே இல்லை. ஆயினும் ஏன் இங்கு அவை சேர்க்கப்பட்டுள்ளன?

10^{ம்}, 11^{ம்} தரங்களில் அறிமுகப்படுத்தப்பட்டுள்ள 'விஞ்ஞானமும் தொழிநுட்பமும்' பாடத்தில் இவை உண்டு. ஆகவே, அவை தொடர்பான வினாக்கள் இங்கு கேட்கப்படலாம். தவிரவும் இரத்தினக்கற்கள் பற்றிய அறிவு சாதாரணமாகத் தேவை. எனவே அதன் வகைகள் பற்றி இலேசாகக் குறிப்பிடப்பட்டுள்ளது.

உப்பளம் பற்றிய சில விடயங்களும் அனுபந்தத்தில் புகுத்தப்பட்டுள்ளன.

சூழல் மாசுறல் ஒரு வினாவிடைத் தொகுப்பாக அமைகின்றது.

இந்நூலில் சில தவறுகள், குறைகள் இருக்கலாம். ஆக்கபூர்வமான உங்கள் விமர்சனங்கள் அவற்றைத் திருத்த உதவும்.

வழமைபோல நண்பர் கிருஷ்ணமூர்த்தியும், பவானி கிருஷ்ணமூர்த்தியும் இந்நூற் குழந்தையையும் கல்வி உலகிற்கு அறிமுகம் செய்கின்றனர்.

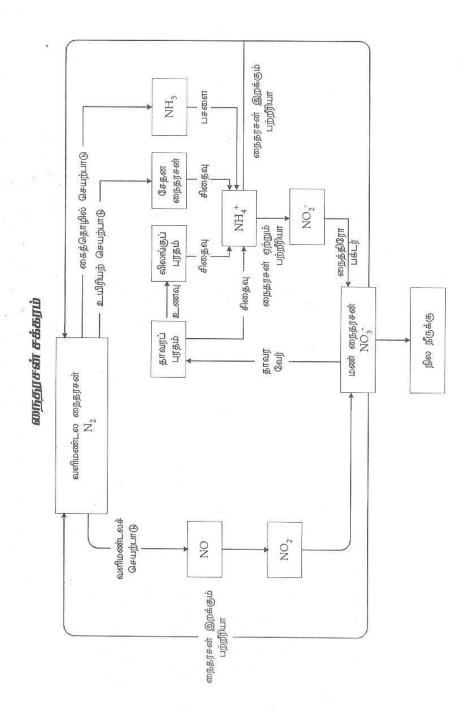
அன்புடன்

6/1, Dr. E. A. Cooray Mawatha, Colombo - 06.

S. Thillainathan

பொருளடக்கம்

நைதரசனைக் கொண்ட சேர்வைகள்	1
சோடியம் குளோரைட்டு	13
சல்பூரிக்கமிலம்	24
கல்சியச் சேர்வைகள்	30
இரும்பு	36
நீர் <u>.</u>	42
சாற்றுத் தைலங்கள்	50
உயிர்ச்சுவட்டு எரிபொருள்	55
பல்பகுதியங்கள்	60
சூழல் மாசடைதல்	73
அனுபந்தம் I	79
அனுபந்தம் II	81
அனுபந்தம் III	84
அனுபந்தம் IV	87


நைத்ரச்னைக் கொண்ட சேர்வைகள்

வளியானது சுமார் 78% கனவளவுப்படி நைதரசன் வாயுவைக் கொண் டுள்ளது.

நைதரசன் சக்கரமானது நைதரசனின் முக்கியத்துவத்தைத் தெளிவு படுத்துகிறது.

அசேதன இரசாயனத்தில் நைதரசன் சுயாதீன நிலையில் மிக உறுதி யான $N\equiv N$ பிணைப்பை உடைய ஈரணு மூலக்கூறு ஆகக் காணப் படுவதால் அதன் சடத்துவத்தன்மை பற்றி கலந்துரையாடப்பட்டது.

எனினும், Haber என்பவரால் $\operatorname{N}_{2(g)}$ வாயுவை கைத்தொழில் ரீதியில் NH_3 ஆக மாற்றக் கையாண்ட முறையானது நைதரசனின் பயன் பாட்டைக் கூட்டியது என்றும் இது மனித குல நாகரிக வளர்ச்சிக்கு உறுதுணை ஆயிற்று என்பதும் வெளிப்படை. இவ்வடிப்படையில் இது தொடர்பாக கைத்தொழில் இரசாயனத்தை நோக்குவோம்.

ஏபர் முறை

மூலப்பொருட்கள் : $N_{2}(g)$, $H_{3}(g)$

- வளியை திரவமாக ஒடுக்கி பகுதிபட காய்ச்சி வடிப்பதன் மூலம் N, வாயு பெருமளவில் பெற்றுக் கொள்ளப்படும்.
- ii. ஐதரசன் வாயு பின்வரும் முறைகளால் பெருமளவு பெறப்படமுடியும்.
 - a. நீர்வாயு

கற்கரியை மென் சூடாக்கி அதன்மீது நீராவியைச் செலுத்துக.

$$C(g) + O_2(g) \rightarrow CO(g) + H_2O(g)$$

water gas

இதனை ஒடுக்கி ${
m CO}$ இனை திரவமாக்கி ${
m H_2}$ ஐச் சேகரிக்கலாம்.

- b. பெற்றோலியம் பகுப்பில் பக்கவிளைவு ${
 m H_2}$
- c. எரிசோடா தயாரிப்பின் பக்கவிளைவு H,

செயன்முறை

தாக்கம் : $N_2(g) + 3H_2(g) \rightleftharpoons CO(g) + H_2O(g)$

1:3 என்ற கனவளவு விகிதத்தில் N_2 , H_2 வாயுக்களைக் கலந்து சுமார் 450° C யில் $2\times 10^7 \, \mathrm{kPa}$ $-2.5\times 10^7 \, \mathrm{kPa}$ அமுக்கத்தில் தொழிற்படவிடல்.

ஊக்கியாக Iron wool (இரும்புப் பஞ்சு) பயன்படும். ஊக்கியுடன் ஏவி Mo உம் தூண்டியாக AI_2O_3/K_2O உம் பயன்படுத்தப்படுகின்றன.

பெறப்படும் $\mathrm{NH_3}$ ஒடுக்கப்பட்டு திரவமாக / நீர் கொண்டு உறிஞ்சி அகற்றப்படும்.

பௌதிக இரசாயனக் கோட்பாடுகள்

 $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g) \qquad \Delta H^{\theta} = -92 \text{ kJ mol}^{-1}$

இத்தாக்கம் உயர் ஏவற்சக்தி உடன் மீள்தாக்கமும் ஆகும். ஆகவே விளைவு வீதம் கூட்டப்பட விசேட செய்முறைகள் அவசியம்.

i. வெப்பநிலை

புறவெப்பத்தாக்கமாதலால் இலிச்சற்றலியரின் தத்துவப்படி உயர் வெப்பநிலை விளைவைக் குறைக்கும். ஆனால், தாழ்வெப்பநிலையில் தாக்கம் மந்தமானது. ஏனெனில், இயக்கவியல் அடிப்படையில் ஏவற்சக்தி அல்லது அதனைவிட கூடிய சக்தியுடைய மூலக்கூறுகள் மட்டுமே தாக்கத்தில் ஈடுபட முடியும். இது ஏவற்சக்தி கூடிய தாக்கம். எனவே, சிறப்பு வெப்பநிலை 450°C பயன்படுத்தப்படும்.

ii. **அமுக்கம்**

இது மூல் எண்ணிக்கை குறைவடையும் வாயுநிலைத் தாக்கம். எனவே, இலிச் சற்றிலியரின் தத்துவப்படி உயர் அமுக்கம் விளைவைக் கூட்டும். ஆனால், மிக உயர் அமுக்கம் பொருளாதாரச் சிக்கனமற்றது. எனவே, $2 \times 10^7 \, \mathrm{kPa}$ அமுக்கம் பயன்படுகிறது. இதன் மூலம் சுமார் 17~% விளைவு பெறப்படும்.

NB ஆயினும் தற்போது சில நாடுகளில் 1 × 10⁸ kPa அமுக்கம் பயன்படுத்துகின்றனர்.

iii. செறிவு

 ${
m NH_3}$ வாயுவானது முனைவுத்தன்மை கூடியது. இதனால், மூலக்கூற்று இடை விசைகள் கூடியது. ஆகவே, இலகுவாகத் திரவமாக்கலாம். அல்லது நீரில் கரைக்கலாம். ஆனால், ${
m N_2/H_2}$ என்பன இவ்வாறு செய்யப்பட முடியாதன.

எனவே, சமநிலைத் தொகுதியிலிருந்து NH_3 ஐ இலகுவாகத் திரவமாக்கி அகற்றுகின்றனர். இதனால் குறையும் NH_3 ஐ ஈடுசெய்ய இலிச்சற்றிலியரின் தத்துவப்படி சமநிலை முன்னோக்கிச் செல்லும். ஆகவே, விளைவு நூற்றுவீதம் கூட்டப்படும்.

iv. **ஊக்கி**

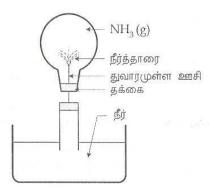
 $N\equiv N,\,H$ - H பிணைப்புகள் உறுதிகூடியன. இவற்றை உடைப்பதற்கு கூடிய சக்தி தேவை. ஆகவே, ஏவற்சக்தி உயர்வான தாக்கம்.

இங்கு Iron wool ஊக்கியாகப் பயன்படுகிறது. (steel wool ஆனது சாதாரணமாக உலோகங்களைத் துலக்கப் பயன்படுகிறது. வீட்டில் சமையல் பாத்திரங்கள் துலக்கப் பயன்படும் இதனை நீங்கள் கண்டிருக்க முடியும்.)

இது மேற்பரப்பு கூடியது. இம்மேற்பரப்பில் சுயாதீன இலத்திரன்களுடன் H_2 , N_2 வாயுக்கள் கவர்ச்சிகளை உருவாக்கும். இதனால், வாயுக்கள் இரும்பில் புறத்துறிஞ்சப்பட்டு அங்கு ஒரு தாக்குபரப்பு ஏற்படுகிறது. இதனால் $N\equiv N$, H-H பிணைப்புகள் படிப்படியாக உடைய N-H பிணைப்புகள் புதிதாக உரு வாகும். ஊக்கியில் செயற்பாட்டை இலகுவாக்க Mo, AI_2O_3/K_2O பயன்படுகிறது.

ஊக்கியானது விளைவைக் கூட்டுமா? கைத்தொழில் தயாரிப்புகளில் இதன் முக்கியத்துவம் யாது?

ஊக்கி விளைவைக் கூட்டாது. ஆனால், ஏவற்சக்தியை குறைத்து தாக்க வீதங்களைக் கூட்டி விரைவாக சமநிலை அடையச் செய்வதால் குறைந்த காலத்தில் விளைவைப் பெற்றுக்கொள்ள முடியும். இது உற்பத்தித் திறனைப் பெருக்கும். எனவே, கைத்தொழில் ரீதியில் லாபகரமானது.


NB இலங்கையில் ஏபர் முறை $\mathrm{NH_3}$ தயாரிப்பு மேற்கொள்ளப்படு வதில்லை என்பது கவனத்திற் கொள்ளப்படல் வேண்டும்.

அமோனியாவின் பௌதிக இயல்புகள்

நிறமற்றது. மூக்கை அரிக்கும் மணமுடையது. வளியிலும் பாரம் குறைந்தது. நீரில் நன்கு கரையும் இயல்புடையது.

Expt: NH₃(g) இன் நீரில் நன்கு கரையும் இயல்பை பின்வரும் பரிசோதனை யால் காட்டலாம்.

4

 ${
m NH_3}$ கொண்ட வாயுச் சாடிக்குள் துவாரமுள்ள ஊசி ஒன்றை (Injection needle) வைத்து அதன் அடியை நீருக்குள் வைத்துவிட்டால் நீர்த்தாரை சீறியடிப்பதனைக் காணலாம். காரணம், ${
m NH_3}$ நீரில் நன்கு கரைய அமுக்கம் குடுவையில் குறைவ தாகும்.

ஏன் NH₃(g) நீரில் நன்கு கரைகிறது?

நீருக்கும் NH₃ மூலக்கூறுக்கும் இடையே வலிமையான இருமுனைவு -இருமுனைவு இடைவிசைகள் அதாவது, ஐதரசன் பிணைப்பு உருவாவது காரணமாகும்.

NH இன் ஆய்வுகூடத் தயாரிப்பு

யாதாயினும் ஒரு அமோனியம் உப்பை அல்லது யூரியாவை காரமொன்றுடன் சேர்த்து வெப்பமாக்க NH, வாயு பெறப்படமுடியும்.

$$(NH_4)_2SO_4 + Ca(OH)_2 \rightarrow 2NH_3 \uparrow + 2H_2O + CaSO_4$$

NH இன் இரசாயன இயல்புகள்

இதனை,

i. மூலமாக

ii. அமிலமாக

iii. ஒட்சியேற்றியாக

என்ற அடிப்படையில் நோக்கலாம்.

மூலமாக NH,

 $\mathrm{NH_3}$ மூலக்கூறில் N அணுவில் வழங்கக்கூடிய தனிச்சோடி இலத்திரன் உண்டு. எனவே, இது மூலத் தொழிற்பாட்டைக் காட்டக்கூடியது. அமில-மூலக் கொள்கைகளை நோக்கின் $_{\mathrm{igitized}}$ by Noolaham Foundation. noolaham.org | aavanaham.org

NH, நீர்க்கரைசலில்

$$H_3N$$
: (aq) + H_2O (t) \Rightarrow NH_4^+ (aq) + OH^- (aq)

இங்கு பகுதியாக, NH_3 இன் அயனாக்கம் நீர்க்கரைசலில் OH ஐ கொடுப்பதால் இது ஆர்கீனியசு கொள்கை அடிப்படையில் ஒரு மென்காரமாகக் கொள்ளப்படும்.

அதேசமயம், Brönsted - Lowry கொள்கைக்கு இது அமையும். இங்கு, NH_3 ஒரு புரோத்தன் ஏற்றுக்கொள்ளியாகும். ஆகவே, புரோன்செட் மூலம் ஆகும்.

இது மட்டுமல்ல. மேலுள்ள தாக்கம் Lewis கொள்கைக்கு அமையும். எனினும், Lewis கொள்கைக்குரிய பின்வரும் உதாரணங்களிலும் $\mathrm{NH_3}$ ஒரு உலூயி மூலமாகும்.

$$H_3N:+BF_3 \rightarrow H_3N:BF_3$$

Lewis கொள்கை ஏனைய அமில-மூல கொள்கைகளிலும் பார்க்கப் பரந்தது என்பதையும் மனதிற் கொள்ளவேண்டும்.

$$Cu^{2+} \left(aq \right) + 4NH_{_3} \left(aq \right) \quad \longrightarrow \quad \left[Cu \left(NH_{_3} \right)_4 \right]^{2+} \left(aq \right)$$

இங்கு NH, மூலமாகத் தொழிற்படுமா?

ஆம். இங்கு $\mathrm{NH_3}$ ஒரு உலூயி மூலமாகும் (Lewie's base). ஆனால், இது ஏனைய கொள்கைகட்கு இணங்கமாட்டாது.

NB NH₃ நீர்க்கரைசலில் ஒரு மென்காரமாகத் தொழிற்படும். இது NH₄OH (Ammonium hydroxide) எனவும் குறிப்பிடப்படுவது உண்டு. ஆனால், NH₄OH நீர்க்கரைசலில் மட்டுமே உண்டு என்பதனை, கருத்திற் கொள்க. திண்ம நிலையில் இல்லை.

மேலும், s-தொகுப்பு மூலகங்களில் $\mathrm{Mg^{2^+}}$, $\mathrm{Be^{2^+}}$ உம் ஏனைய தொகுப்பு உலோகங்களின் அயன்களின் கரைசல்கட்கும் $\mathrm{NH_3}$ (aq) சேர்க்க ஐதரொட்சைட்டுகள் வீழ்படிவாகும்.

$$Mg^{2+} + 2 NH_3 (aq) + 2 H_2 O (t) \rightarrow Mg(OH)_2 \downarrow + 2 NH_4^+$$

 ${\rm Cu}^{2+}$, ${\rm Ni}^{2+}$, ${\rm Co}^{2+}$, ${\rm Zn}^{2+}$, ${\rm Ag}^+$ போன்ற, d-தொகுப்பு உலோகங்களின் கற்றயன்கள் ${\rm NH_3(aq)}$ உடன் ஐதரொட்சைட்டு வீழ்படிவை உரு வாக்கினாலும் மிகை ${\rm NH_3(aq)}$ உடன் சிக்கலயனை உருவாக்கி அவ்வீழ்படிவுகள் கரைந்துவிடும்.

$$Ni^{2+}(aq) + 2NH_3(aq) + 2H_2O(t) \rightarrow Ni(OH)_2 \downarrow + 2NH_4^+$$

$$Ni^{2+}$$
 (aq) + 6 NH_3 (aq) $\longrightarrow [Ni(NH_3)_6]^{2+}$ கருநீலம்

NB
$$\operatorname{Cr}^{3+} + \operatorname{NH}_3 + 3 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cr}(\operatorname{OH})_3 \downarrow + 3 \operatorname{NH}_4^+$$
 Quantifurient

ஆனால், $Cr(OH)_3$ மிகை NH_3 இல் கரைவது கடினம். நன்கு செறிந்த NH_3 (a) உடன் அல்லது NH_3 (t) உடன் நன்கு குலுக்கின் சிறிது கரையும். ஊதா நிறக் கரைசல் தோன்றும்.

NH₃(g) மூல இயல்பைக் கொண்டிருப்பதால் HCl(g) உடன் வெண் தூமத்தைக் கொடுக்கும்.

$$NH_3(g) + HCl(g) \Leftrightarrow NH_4Cl$$

வெண்தூமம்

அமிலமாக NH,

உலோகங்களுடன் ${
m H_2}$ வாயு வெளியேற்றம் ஒரு அமிலத் தொழிற்பாடு என கருதப்படுகிறது.

$$2 \text{ NH}_3(g) + 2 \text{ Na } (g) \rightarrow 2 \text{ NaNH}_2(g) + \text{H}_2(g)$$
 K உம் இதுபோல் தாக்கமுறும். $2 \text{ NH}_3(t) + 3 \text{ Mg } (s) \rightarrow \text{Mg}_3 \text{N}_3(s) + 3 \text{ H}_3(g)$

6 Li (s) + 2 NH₃(t)
$$\rightarrow$$
 2 Li₃N (s) + 3 H₂(g)

NB Caஉடன்
$$N_2$$
வாயு வெளிப்படும்.

$$3 \text{ Ca (s)} + \text{NH}_3 (t) \rightarrow \text{CaH}_2(s) + 3 \text{ H}_2(g)$$

ஒட்சியேற்றியாக NH,

NH₃ இல் 'N' ஆனது அதன் இழிவு ஒட்சியேற்றநிலையில் இருப்பதால் மேலும் தாழ்த்தப்பட முடியாது. எனவே, பொதுவாக ஒட்சியேற்றும் கருவியாக தொழிற் படுவதில்லை. எனினும், உலோகங்களுடன் தொழிற்படும்போது மட்டும் ஐதரசனின் ஒட்சியேற்ற எண் குறைவதால் ஒரு ஒட்சியேற்றியாகத் தொழிற்படும்.

இதற்கு அமிலத் தொழிற்பாட்டில் கொடுத்த அதே உதாரணங்களைக் கருத்தில் கொள்ளலாம்.

தாழ்த்தியாக $\mathrm{NH_3}$

 $\mathrm{NH_3}$ (aq) இல் N இழிவு ஒட்சியேற்ற நிலையில் இருப்பதால் மேலும், ஒட்சியேற்றப் படமுடியும். எனவே, இது தாழ்த்தும் கருவியாக தொழிற்பட முடியும். அலசன் களையும் CuO போன்ற தாக்கத் தொடரில் தாழ்நிலை உலோக ஒட்சைட்டுக் களையும் $\mathrm{NH_3}$ தாழ்த்தும்.

- i. Cl₂ (g) உடன்
 - a. சாதார்ணமாக

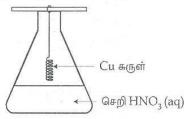
$$2 \text{ NH}_3 \text{ (g)} + 3 \text{ Cl}_2 \text{ (g)} \rightarrow \text{N}_2 \text{ (g)} + 6 \text{ HCl (g)}$$

b. ${
m NH_3}$ (g) மிகையாக இருப்பின் HCl உடன் தாக்கி ${
m NH_4Cl}$ உருவாகும். 8 ${
m NH_3}$ (g) + 3 ${
m Cl_2}$ (g) \longrightarrow ${
m N_2}$ (g) + 6 ${
m NH_4Cl}$ (g)

c. Cl₃ மிகையாக இருப்பின் தோன்றும் கணத்தில் 'N' அணுவுடன் தாக்கி NCl₃ உருவாகும்.

$$NH_3(g) + 3Cl_2(g) \rightarrow NCl_3(g) + 3HCl(g)$$

NB NBr₃, NI₃ உம் இதுபோல் உருவாகும். ஆயினும் இவை பிரித்தறி யப்படவில்லை. தவிர இவை உலர்நிலையில் வெடிக்கும் இயல்பு உடையணுzed by Noolaham Foundation. noolaham.org | aavanaham.org NB $I_2(s)$ இனை $conc.NH_3(aq)$ இல் இட்டு நன்கு கரைந்த பின் சீமெந்து நிலத்தில் விசிறி விடுக. உலர்ந்த பின் இதனை மிதித்தால் வெடிக்கும்.


$$3~{
m CuO}~({
m s})$$
 + $2~{
m NH_3(g)}$ \longrightarrow $3~{
m Cu}$ + ${
m N}_2$ + $3~{
m H}_2{
m O}$ குடாக்கப்பட்ட CuO மீது ${
m NH}_3({
m g})$ செலுத்த செந்நிற Cu உருவாகும்.

ஆய்வுகூடத்தில் NH இன் ஒட்சியேற்றம்

ஊக்கி : Cu

$$4 \text{ NH}_3 + 5 \text{ O}_2 \xrightarrow{\text{cu}} 4 \text{ NO (g)} + 6 \text{ H}_2 \text{O (g)} \Delta H = -\text{ve}$$

$$2 \text{ NO (g)} + \text{O}_2 \text{ (g)} \longrightarrow 2 \text{ NO}_2 \text{ (g)} \text{ Getäselbenic}$$

 $100~{
m cm}^3$ கூம்புக் குடுவையில் சுமார் $10~{
m cm}^3{
m conc.}~{
m NH_3}$ $_{
m (aq)}$ கரைசலை எடுக்குக. நடுத்தரத் தடிப்புடைய ${
m Cu}$ கம்பியில் சுருள் ஒன்றை ஏற்படுத்துக.

இதனை கண்ணாடிக் கோலில் பிணைத்து படத்தில் காட்டிய வண்ணம் NH_3 (aq) அண்மையில் வைக்குக. NH_3 (g) நன்கு வெளிவரத்தக்கதாக கூம்புக் குடுவையை இலேசாக வெப்பமாக்குக.

பின் Cu கம்பிச் சுருளைச் செஞ்சூடாக்கி கரைசல் மீது முன்போல் பிடிக்குக. சுருள் தொடர்ந்து ஒளிர்வதுடன் (புறவெப்பத் தாக்கம்) செங்கபில வாயு வெளிப் படுவதையும் காணலாம்.

NH₃ இற்கான சோதனைகள்

- i. சிவப்புப் பாசிச்சாயத்தாளை நீலமாக்கும்.
- ii. செறி HCl மூடியுடன் வெண்புகார் தரும்.
- iii. Nessler's Reagent உடன் கபிலமாகும். (Alkaline solution of Pottassium tetra iodo mercurate (II)

$$\mathrm{NH_4}^+ + 2[\mathrm{HgI_4}]^2 + 4~\mathrm{OH}^- \longrightarrow \mathrm{HgO.~Hg(NH_2)I} + 7~\mathrm{I}^+ + 3~\mathrm{H_2O}$$
 Basic Mercury (II) amido-iodide கபிலநிற வீழ்படிவு

NB Nessler's reagent இனைத் தயாரித்தல்
10 g KI/10 ml நீர்க்கரைசல்.
பின் HgCl₂ நிரம்பற் கரைசல் (60 g dm³)
இதற்கு சேர்த்தல். நன்கு குலுக்கி சிறிது வீழ்படிவு தோன்றும் வரை கரைக்குக்க by Noolaham Foundation.

பின் 9 mol dm³, 80 cm³ கரைசல் சேர்த்து பின் 200 cm³ வரை ஜதாக்குக. தெளிவான கரைசல் தோன்றும் வரை ஓரிரவு வைக்குக.

K,[HgI,] அகும்.

அமோனியம் உப்புகள் மீது வெப்பத்தின் தாக்கம்

அமோனியம் உப்புகள் யாவும் வெப்பப்பிரிகை அடைவன. இவற்றில் பல பதங்கமாகும் இயல்பும் உடையன. 🕐

i. $\mathrm{NH_4NO_3}$ (s), $\mathrm{NH_4NO_2}$ ($\mathrm{NH_4}$) $\mathrm{Cr_2O_7}$ மூன்றும் வெப்பப்பிரிகையில் $\mathrm{NH_3}$ ஐ வெளிப்படுத்துவதில்லை.

ii. காபொட்சிலிக்கமிலத்தின் அமோனியம் உப்புக்களை வெப்பமாக்கின் அமைட்டு பெறப்படும்.

$$RCOO^*NH_4^+(s) \longrightarrow R-C NH_2^0$$

iii. பொதுவாக ஏனைய அமோனியம் உப்புகள் வெப்பப்பிரிகையில் NH ஐ வெளிப்படுத்துவதுடன் அமில ஆவியை வெளிப்படுத்துவன.

$$NH_{\downarrow}CI$$
 (s) \Rightarrow NH_{3} (g) + HCI (g)

இங்கு பதங்கமாதலை அவதானிக்கலாம்.

$$(NH_4)_2SO_4 (s) \longrightarrow 2 NH_3 (g) + SO_3 (g) + H_2O (g)$$

$$(NH_4)_2CO_3 \xrightarrow{\text{Genluphene}} 2 NH_3 (g) + CO_2 (g) + H_2O$$

$$NH_4CN (s) \xrightarrow{\overline{\Delta}} NH_3 (s) + HCN (g)$$

$$NH_4HS (s) \rightleftharpoons NH_3 (g) + H_2S (g)$$

$$NH_4CO_2.NH_2 (s) \rightleftharpoons 2 NH_3 (g) + CO_2 (g)$$
Amonium carbamide

இவ்வாறே பிறவும்அமையும்.

NB யூரியாவை வெப்பப்படுத்த வெண் திண்ம மீதியுடன் NH உம் வெளிப்படும்.

வெண் தண்மம் - Biurete Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

அமோனியாவின் பயன்கள்

யூரியா தயாரிப்பு

$$2 \text{ NH}_3 \text{ (g)} + \text{CO}_2 \text{ (g)} \quad \frac{190 \text{ °C}}{1 \times 10^7 \text{Nm}^{-2}} \text{CO(NH}_2)_2 + \text{H}_2\text{O}$$

- ii. NH_4Cl , $(NH_4)_2SO_4$, NH_4NO_3 போன்ற பசளை வகைத் தயாரிப்பு
- iii. HNO, தயாரிப்பு (Oswalt method)
- iv. குளிரூட்டிகளில் குளிராக்கும் வாயுவாக
- v. Salvay முறையில் NaHCO, Na,CO, தயாரிப்பில்
- vi. Nylon, Rayon போன்றவற்றின் தயாரிப்பில்

HNO₂ - Oswalts Method

மூலப்பொருட்கள் :

i. N₂(g) Haber Process

ii. O, (g) வளிமூலம்

தாக்கங்கள்

 $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}_2(g)$ Pt-Rb

உளக்கி

வெப்பநிலை: 950°C

ii.

 $2 \text{ NO(g)} + O_2(g) \implies 2 \text{ NO}_2(g)$ $\Delta H < 0$

இங்கு வெப்பநிலை ≤ 150 °C விரும்பத்தக்கது.

இது புறவெப்பத்தாக்கம். எனவே, வெப்பநிலை உயரவிடாது பாதுகாக்க வேண்டும்.

iii.4 NO₂(g) + O₂(g) + 2 H₂O(t) \rightarrow 4 HNO₂(t)

இங்கு வெப்பநிலை ≤ 80 °C விரும்பத்தக்கது.

NB

$$2 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow \text{HNO}_3 + \text{HNO}_2$$

 $2 \text{ HNO}_2 \rightarrow \text{H}_2\text{O} + \text{NO} + \text{NO}_2$
 $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$

iv. பின் இவ் HNO செறிவாக்கப்படும்.

HNO₃ **இன் இயல்புகள்**

- i. அமிலமாக
- ii. மூலமாக
- iii. நைத்திரேற்றம்

அமிலமாக

மிக ஐதான HNO மட்டும் Mg போன்ற சில உலோகங்களுடன் H, ஐ வெளிப் படுத்தும்.

dil. 2 HNO₃ + Mg (g)
$$\rightarrow$$
 Mg(NO₂)₂ (aq) + H₂O (g)

எனினும், காரங்களுடன் உப்பையும் காபனேற்றுகளுடன் CO₂(g) இனையும் வெளிப்படுத்தும்.

HNO, + NaOH → NaNO, + H₂O

ஒட்சியேற்றியாக

Case - I dil.HNO,

$$\text{HNO}_3 + 3 \, \text{H}^+ + 3 \, \text{e} \rightarrow \text{NO} + 2 \text{H}_2 \text{O}$$

பொதுவாக, Au, Pt தவிர்ந்த உலோகங்களை இது ஒட்சியேற்றும்.

3 Cu (s) +dil. 8 HNO $_3$ \longrightarrow 3 Cu(NO $_3$) $_2$ (aq) + 2 NO (g) +4 H $_2$ O (ℓ) Zn, Mg போன்றன NH $_4$ + ஐயும் உருவாக்கும்.

$$4 \text{ Mg (s)} + \text{dil. } 10 \text{ HNO}_3 \rightarrow 4 \text{ Mg(NO}_3)_2 + \text{NH}_4 \text{NO}_3 + 3 \text{ H}_2 \text{O}$$

Case - II conc.HNO,

$$HNO_3 + H^+ + e \rightarrow NO_2 + H_2O$$

Au, Pt தவிர்ந்த உலோகங்களை இது ஒட்சியேற்றும்.

 ${
m conc.}~4~{
m HNO_3} + {
m Cu}~\rightarrow~{
m Cu(NO_3)_2(aq)} + 2~{
m NO_2(g)} + 2~{
m H_2O}~(t)$ கந்தகம், காபன், அயடின், பொசுபரசு போன்ற அலோகங்கள் அவற்றில் ஒட்சியேற்றியாக சூடான செறி ${
m HNO_3}$ ஒட்சியேற்றும்.

 $m H_2S$, m HI போன்ற அலோக ஐதரைட்டுகளையும் செறி $m HNO_3$ ஒட்சியேற்றும்.

நைத்திரேற்றம்

$$\begin{array}{c|c} OH & OH & OH \\ \hline & & \\ & &$$

NB Al ஆனது Conc. HNO_3 உடன் **தொடர்ந்து தாக்கமில்லை**. ஏனெனில், வளியில் Al_2O_3 படையானது உருவாகும். Al ஆனது செறி HNO_3 யுடன் தாக்கமுற ஒட்சைட்டு உருவாகி உடன் தடைப் பட்டு விடும்.

2 AI + conc. 6 HNO₃
$$\rightarrow$$
 Al₂O₃ + 6 NO₂ + 3 H₂O

Sn, Fe போன்றனவும் ஒட்சைட்டை உருவாக்குவன.

$$\mathrm{Sn} + 4 \, \mathrm{HNO_3} \ \, \longrightarrow \ \, \mathrm{SnO_2} \! \downarrow (\mathrm{s}) + 4 \, \mathrm{NO_2} (\mathrm{g}) + 2 \, \mathrm{H_2O} (\mathrm{t})$$

 $2\;Fe \frac{\text{Dig}(G_2 M_N) O \log ham}{\text{noolaham.org}^3 | \text{aavanaham.org}^3 + 6\;NO_2 + 3\;H_2O}$

HNO, இன் பயன்கள்

- i. Super phosphate, NH₄NO₃ பசளை தயாரிப்பு
- ii. வெடிபொருட் தயாரிப்பு (H₂SO₂ பார்க்குக)
- iii. உலோக மேற்பரப்புகளை தூய்தாக்கல்.
- iv. புகைப்படத் துறைக்கு தேவையான AgNO தயாரித்தல்

NB மேலும் சில தாக்கங்கள்

i.
$$3 H_2S + dil. 2 HNO_3 \rightarrow 4 H_2O + 2 NO + 3 S$$

ii.
$$4 \text{ HCl} + \text{conc.} 2 \text{ HNO}_3 \rightarrow \text{Cl}_2 + 2 \text{ NOCl} + 3 \text{ H}_2\text{O}$$

இங்கு 'Cl' உருவாகும்போது அணு நிலையில் உருவாகும். இதுவே பொன்னைத் தாக்கும். இதுவே அரசநீர் ஆகும். இதில் பொன் கரையும்.

iii.
$$3 \text{ Fe}^{2+} + 4 \text{ HNO}_3 \rightarrow 3 \text{ Fe}^{3+} + \text{NO} + 2 \text{ H}_2\text{O} + 3 \text{ NO}_3$$

Ex. "ஏபர் முறை NH₃கண்டுபிடிப்பு மனிதகுல வளர்ச்சிக்கு உபயோக மானது. இதுபற்றி சிறு கட்டுரை வரைக." என்பது கடந்தகால வினாவொன்றின் தொனிப்பொருள்.

சோடியம் குளோரைட்டு

இது Chlor-alkali கைத்தொழிலில் முக்கிய மூலப்பொருள் ஆகும். இங்கு நான்கு பிரதான தயாரிப்புக்கள் அடங்கும்.

- i. சோடியம் ஐதரொட்சைட்டு எரிசோடா Caustic soda
- ii. குளோரின் வாயு
- iii. சோடியம் காபனேற்று Soda ash or washing soda சோடியம் ஐதரசன் காபனேற்று - Baking powder
- iv. சவர்க்காரம்

இம்மூலப்பொருளான சோடியம் குளோரைட்டு (கறியுப்பு / சூரிய உப்பு) கடல்நீரிலிருந்து பெறப்படும். சில நாடுகளில் பாறை உப்பு ஆகவும் காணப்படுகின்றது.

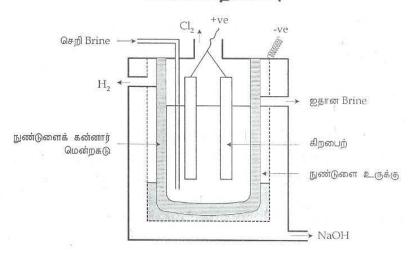
எமது நாட்டில் உப்பள முறையில் (அளம் - பாத்தி) NaCl பெறப்படு கின்றது.

ஒரு உப்பளம் அமைய பொருத்தமான இடம் எது?

i. கடலேரிகளை அண்மித்த நீருட் புகாத களிமண் தரைப் பாங்கான பிரதேசமிoolaham.org | aavanaham.org

- NB கடற்கரைகளில் பெரும்பாலும் மழைப்பாங்கான பகுதியே உண்டு. இங்கு உப்பு நீரை தேக்க முடியாது. எனவேதான் கடலேரிகளை அண்மித்த இடங்கள் தேர்ந்து எடுக்கப்படும்.
- ii. போதுமான சூரிய ஒளி படும் பிரதேசம்
- iii. மழைவீழ்ச்சி குறைந்த காலநிலையுள்ள பிரதேசம் இத்தகைய பகுதியில் உப்பளங்கள் அமைக்கப்படும். பொதுவாக, மூன்று தொகுதி களிமண் பாத்திகள் உண்டு.
- i. முதலாம் தொகுதி களிமண் பாத்திகளில் கடல்நீர் பாய்ச்சப்பட்டு சூரிய ஒளியில் சில நாட்களுக்கு செறிவாக அனுமதிக்கப்படும். (செறிவு சுமார் 16 Be ஆகும்போது காபனேற்றுகள் படிவுறும். (Be..... பியூமே உப்பு செறிவுக்குரிய அலகு)
- ii. இரண்டாம் தொகுதி பாத்திக்குள் பின்னர் இந்நீர் மாற்றப்பட்டு சூரிய ஒளியில் சுமார் 24 Be ஆகும்வரை செறிவாக்க அனுமதிக்க ஜிப்சம் (CaSO₄.2 H₂O) படியும்.
- iii. இறுதியாக மூன்றாம் தொகுதிப் பாத்திக்கு மாற்றப்பட்டு சுமார் 29 Be ஆகும் வரை சூரிய ஒளியில் செறிவாக விட சோடியம் குளோரைட்டு பளிங்காவதுடன் மென் சிவப்புநிற தாய்த் திரவமாக பிற்றேன் (Bittern-கசப்புச் சுவை) அமையும். இதிலிருந்து பளிங்குகள் வேறாக்கப்படும்.
 - NB i. பிற்றேன் ஏன் சிவப்பாகக் காணப்படும்? கடல்நீரில் நீலப்பச்சை அல்காக்கள் பெருமளவு உண்டு. உயரச் செறிவு உயர்வாகும்போது நீலப்பச்சை அல்காக்கள் அழிந்து விடும். இவை அழிந்து கரைந்துள்ள கரைசல் சிவப்பாகும். செங்கடலில் உப்பின் செறிவு உயர்வு என்பதும் கருதக்கூடிய ஒரு விடயமாகும். தவிர, சிவப்பு அல்காக்கள் சிறிது உண்டு என்பதும் அவை உப்பின் செறிவை தாக்குப் பிடிக்கும் என்பதும் ஒரு கருத்து.
 - ii. பிற்றேனின் $\mathrm{Mg^{2*}},\mathrm{Br},\mathrm{SO_4^{\;2}}$ அயன்கள் வளமாகக் காணப்படும். இது Mg உலோகம், $\mathrm{CaSO_4.2H_2O}$ (ஜிப்சம்), Br_2 தயாரிப்புகட்கு பயன்படுத்தக்கூடியது.
 - iii. துரிய ஒளியில் பளிங்காக்கிப் பெறப்படுவதனால் இதனை துரிய உப்பு என்பர்.
 - iv. இலங்கையில் ஓரிரு தொகுதி பாத்திகளே அமையும் முறை கட்கு இங்கு ஜிப்சம் வேறாக்கப்படுவதில்லை.
 - கறியுப்புடன் மாசாக உள்ள MgCl₂, CaCl₂ என்பவற்றின் நீர்மய மாகும் இயல்பு கறியுப்பின் நீர்க்கசிவு இயல்புக்குக் காரணம்.
 - vi. இலங்கையில் அளங்களில் சேகரிக்கப்படும் உப்பைக் குவித்து கிடுகினால் வேய்ந்து சிலகாலம் விடப்படும். மழைநீர் / பனி நீர் படும்போது MgCl₂, CaCl₂ பளிங்குகள் நீர்மயமாகி கசிந்து அடியில் சேரும். மேலே உள்ள NaCl சேகரிக்கப்புடும் by Noolaham Foundation. noolaham.org | aavanaham.org

vii. கறியுப்புடன் அயடின் சேர்த்து KIO, ஆக இலங்கையில் விற்கப்படுகின்றது. அயடின் குறைபாட்டை போக்க முக்கிய மானது. அயடின் சேராத உப்பின் விற்பனை இலங்கையில் சட்ட விரோதமானது. மேலதிக விபரங்களுக்கு அனுபந்தம் IV ஐப் பார்க்குக.


ix. மேசை உப்பு

கறியுப்பின் நிரம்பற் கரைசலிற்குள் HCI ஆவியைச் செலுத்த பொது அயனான CI^- காரணமாக தூய NaCI பளிங்காகும்.

HCI கரைசலை ஏன் பயன்படுத்தக்கூடாது?

HCI கரைசலினைச் சேர்ப்பின் கனவளவு கூடுவதால் NaCl இன் நிரம்பற்தன்மை அற்றுவிடும். அதாவது, NaCl இன் செறிவு குறையும்.

ளிசோடா தயாரிப்பு

கைத்தொழிலில் மூன்று வழிமுறைகள் உண்டு.

- i. மென்றகட்டு கலமுறை (Diaphragm cell)
- ii. இரசக் கதோட்டு முறை (Mecury cathote cell)
- iii. Na₂CO₃ இலிருந்து தயாரிப்பு

இம்மூன்று முறைகளிலும் Brine செறிந்த NaCl நீர்க்கரைசல்) மூலப்பொருளாகும். Le Seur என்பவரால் (1893 இல்) முதலில் மென்றகட்டு முறை அறிமுகப்படுத்தப் பட்டது. தொடர்ந்து Castner; Kellner Solvay என்பவர்களால் இரசக் கதோட்டு முறைக்கு விரிவுபடுத்தப்பட்டது.

மின்பகுப்பு இவ்விரு முறைகளிலும் பயன்படுகிறது.

மென்றகட்டு முறை

மின்பகுபொருள் : Brine

இதில் மாசாக $\mathrm{Mg^{2+}, Ca^{2+}, SO_4^{\ 2}}$ உண்டு. இவை முறையே, NaOH, Na $_2\mathrm{CO}_3$, BaCl $_2$ கரைசல்களை உரியளவு சேர்த்து முறையே, $\mathrm{Mg(OH)}_2$, CaCO $_3$, BaSO $_4$ ஆக வீழ்படிவாக்கப் பட்டு அகற்றப்படும். களிமண் வடிகட்டிகளின் அமுக்கத்

தில் வேறாக்கப்படும்.

மின்னோட்டம் : 3000 A, 3.5 V

அனோட்டு : பென்சிற்கரி

கதோட்டு : நுண்டுளை கொண்ட உருக்கு

கன்னார் மென்றகடு: நுண்டுளை கொண்ட கன்னார் மென்றகடு அனோட்டுப்

பகுதியையும் வேறாக்கி வைக்கப் பயன்படும். இல்லா

விடில்,

i. $H_2 + CI_2 \rightarrow 2 HCI$

ii. $2 \text{ NaOH} + \text{Cl}_2 \rightarrow \text{NaCIO} + \text{NaCI} + \text{H}_2\text{O}$

போன்ற பக்கத் தாக்கங்கள் நடைபெறும்.

மின்பகு கரைசலில், Na+(aq) + CI-(aq)

 $H_2O \Rightarrow H^+ + OH^-$

தூக்கங்கள்

i. அனோட்டில்

Cl⁻, OH⁻ இரு அனயன்களும் அனோட்டிற்கு செல்லும்.

OH இன் மின் இறக்கம் Cl இலும் பார்க்கச் சுலபமானது. ஆனால், செறிவு கூட இருப்பதால் முதலில் Cl இறக்கம் அடையும்.

$$2 \text{ Cl}^{-}(\text{aq}) \rightarrow \text{ Cl}_2 + 2e$$

எனினும் CI செறிவு குறையும்போது OH-இறக்கமடையும்.

$$4 \text{ OH}^- \rightarrow 2 \text{ H}_2 \text{O} + \text{O}_2 \uparrow + 4 \text{e}$$

இதனால் O_2 வாயு வெளிப்படத் தொடங்கும் சந்தர்ப்பங்களில் மின்பகுப்பு நிறுத்தப்பட்டு செறிந்த Brine கலத்தின் கீழ்ப்பகுதியில் சேர்க்கப்படும். ஐதான Brine (spent Brine) மேற்பகுதியால் வேறாக்கி பெறப்படும்.

ii. கதோட்டில்

 $\mathrm{Na}^{\scriptscriptstyle +},\mathrm{H}^{\scriptscriptstyle +}$ இரண்டிலும் $\mathrm{H}^{\scriptscriptstyle +}$ இன் இறக்கம் சுலபம்.

$$2 H^+ + 2e \rightarrow H, \uparrow$$

எனவே, நீரில் சமநிலையில் OH செறிவு கூடும்.

கதோட்டில் NaOH உருவாகும்.

கதோட்டில் செறிவு NaOH ஆனது அனோட்டு பகுதிக்குள் செல்வதனைத் தடுக்கவும் அனோட்டில் வெளிப்படும் Cl_2 ஆனது கதோட்டில் உருவாகும் NaOH உடன் தாக்கமுறவிடாது தடுக்கவும் கதோட்டும் அனோட்டும் கன்னார்

வடன்றகடு கொண்டு பிழிக்கப்படும் (alpha mark) an old ham foundation. noolaham.org | aavanaham.org

அனோட்டுப் பகுதி கரைசல் மட்டம் உயர்வாகப் பேணப்படும். கரைசல் நுண்டுளை கொண்ட கன்னார் மென்றகடூடு சென்று கதோட்டுப் பகுதிக்கு செல்லும்.

அங்கு உருவாக்கும் NaOH (aq) ஆவது நுண்டுளை கொண்டு உருக்கு கதோட்டினூடு கசிந்து வெளிப்படும்.

வெளிப்படும் கரைசல் NaOH இன் செறிவு 10 - 11%(m/m), 15 - 16% NaCl உண்டு. இக்கரைசல் கொதிநீராவியால் செறிவாக்கப்படும். இங்கு கணிசமான அளவு NaCl பளிங்காக்கி அகற்றப்படும். இறுதியில் 50% NaOH உம் 1% NaCl உம் பெறப்படும்.

NB Gibb's cell ஆனது காபன் அனோட்டிற்குப் பதில் Titanium அனோட்டை கொண்டது.

இரசக் கதோட்டு முறை

மின்பகுபொருள் : Brine

முதலில் மாசகற்றப்படும்.

கரைசலில், Na++Cl-

 $H_{2}O \Rightarrow H^{+} + OH^{-}$

அனோட்டில்

 $2 \text{ Cl}^- \rightarrow \text{ Cl}_2 + 2e$

கதோட்டில்

: $H_{\rm g}$ கதோட்டில் ${\rm H}^{\scriptscriptstyle +}$ இன் இறக்கவமுத்தம் உயர்வு. அதாவது, மிகை வோல்ற்றளவு காரணமாகும். இது ${\rm H_2}$ வாயு ${\rm Hg}$ இல் முனைவாக்கம் அடைவதனால் ஏற்படும்.

இந்நிலையில் Na⁺ இறக்கமடையும்.

 $Na^+(aq) + e \rightarrow Na (in Hg)$

Na(Hg) ஆனது Sodium amalgam எனப்படும். இதனை நீருடன் சேர்க்க NaOH உருவாகும்.

 $2 \text{ Na(Hg)} + 2 \text{ H}_2\text{O}(t) \rightarrow 2 \text{ NaOH(aq)} + \text{H}_2(g) + 2 \text{ Hg}$

NB இரசக் கதோட்டு முறை செலவு சற்றுக் கூடியது. மேலும், Hg ஆனது ஒரு குறிப்பிடத்தகு குழல் மாசுறுத்தி.

iii. ${
m Na_2CO_3}$ இலிருந்து ${
m Na_2CO_3}$ உடன் நீறிய சுண்ணாம்பு சேர்த்தல். ${
m Na_2CO_3}+{
m Ca(OH)_2}~~\rightarrow~~2~{
m NaOH(aq)}+{
m CaCO_3(s)}$

குளோரினின் பயன்கள்

i. PVC தயாரிப்பு

$$CI_2 + H_2 \rightarrow 2 HCI$$
 $CH = CH + HCI \rightarrow CH_2 = CHCI$
 $chloro ethene - vinyl chloride$
 $CH_2 = CHCI \rightarrow H - (CH_2 - CHCI)_n - H$

Polyvinyl chloride Digitized by Noolaham Foundation. noolaham.org | aavanaham.org ii. சேதனக் கரைப்பான்கள் தயாரிப்பு

 $CHCI = CCI_3$ $CCI_2 = CCI_2$ Used in Paints Degeesing metels Dry cleaning CHCl, CH, CHCl, CCl, ... நீரற்ற கரைப்பான்கள்.

இது தீப்பற்றாது.

iii. C_2H_5Cl ஆனது TEL அதாவது $(C_2H_5)_4$ Pb தயாரித்தலின் பயன்படும்.

iv. CFC தயாரிக்கப் பயன்படும்.

v. DDT (Dichoro Diphenyl Trichloro ethane) தயாரிக்கப் பயன்படும்.

vi. HCl, வெளிற்றும் தூள், மில்ற்றன் தயாரித்தல்.

vi. நீரைத் தூய்தாக்கல் sterilization

vii. மருந்து தயாரிப்பு

அமோனியா - சோடா முறையில் Na,CO, தயாரிப்பு

(Ammonic Soda or Solvay Process)

மூலப்பொருள்

தூய்தாக்கப்பட்ட Brine, NH₃, சுண்ணக்கல்

முறை

அமோனியா ஏற்றும் அரணில் கீழிருந்து $NH_{s}(g)$ செலுத்தப்பட மேலிருந்து Brine ஆனது துமிக்கப்படும். இம் முரணோட்ட முறை மூலம் Brine ஆனது NH, ஆல் நிரம்பலாக்கப்படும்.

$$NH_3(g) + aq \rightarrow NH_3(aq)$$

இங்கு புறவெப்ப நிகழ்வு ஆதலால் வெப்பநிலை உயரும். இது NH வாயுவின் கரைதிறனைக் குறைக்கும். எனவே, நீர் மூலம் அரண் குளிர்ச்சியாக்கப்பட்டு வெப்பநிலை 25°C யில் பேணப்படும்.

பின் அமோனியா ஏற்றப்பட்ட Brine ஆனது காபனேற்றும் அரண்களில் மேலிருந்து துமிக்கப்பட கீழிருந்து CO, வாயு செலுத்தப்பட்டு நிரம்பலாக்கப்படும். இதுவும் முரணேற்ற முறையாகும். இதன்போது வெப்பநிலை 70 °C வரை உயரும். இதனை நீர் குளிர்ச்சியாக்கல் மூலம் 50°C க்கு குறைத்தல் வேண்டும். இங்கு சுண்ணாம்புக்கல் மூலம் CO, பெறப்படும்.

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

$$2 \text{ NH}_3(g) + \text{H}_2O(t) + \text{CO}_2(g) \xrightarrow{} (\text{NH}_4)_2CO_3(\text{aq}) \qquad \Delta H = -79 \text{ kJ mol}^{-1}$$

இங்கு

$$H_2O + CO_2 \Rightarrow HCO_3^- + H^*$$

 $NH_3 + H^* \rightarrow NH_4^+$

இவ்வாறு தொடர்ந்து பல காபனேற்றும் அரண்களுக்குச் செலுத்தப்பட NaHCO. பெறப்படும்.

 $\begin{array}{ccc} NaCI + NH_{\downarrow}HCO_{3} & \longrightarrow & NaHCO_{3} + NH_{\downarrow}CI \\ & \text{Digitized by Noolaham Foundation.} \\ & \text{noolaham.org} \mid \text{aavanaham.org} \end{array}$

இங்கு ஒப்பீட்டு அளவில் $NaHCO_3$ கரைதிறன் குறைவு. ஆகவே, வீழ்படிவாகிறது. கரைசலில் $(NH_1)_2CO_3$ எஞ்சும்.

$$(NH_{+})_{2}CO_{3} + 2 NaCI + CO_{2} + H_{2}O \rightarrow 2 NaHCO_{3} + 2 NH_{+}CI$$

இந்த NaHCO₃(s) ஆனது நன்கு வெப்பமேற்றப்பட்டு நீரற்ற Na₂CO₃ பெறப்படும்.

2 NaHCO₃ (s)
$$\longrightarrow$$
 Na₂CO₃(s) + CO₂(g) + H₂O(g)

 $\Delta H = +129 \text{ kJ mol}^{-1}$

இங்கு வெளிவிடப்படும் CO, மீளப் பயன்படுத்தப்படலாம்.

நீறாத சுண்ணாம்புடன் நீர் சேர்க்கப்பட்டு நீறிய சுண்ணாம்பு ஆக்கப்படும்.

$$CaO(s) + H_2O(t) \rightarrow Ca(OH)_2(s)$$

இதனை $\mathrm{NaHCO_3}$ வடித்துப் பெறப்பட்ட மீதி வடிதிரவத்திற்கு சேர்த்து மீண்டும் $\mathrm{NH_3}$ ஐப் பெற்றுப் பயன்படுத்தலாம்.

$$2 \text{ NH}_4 \text{Cl (aq)} + \text{Ca(OH)}_2 \text{(s)} \longrightarrow 2 \text{NH}_3 \uparrow + \text{CaCl}_2 \text{(aq)} + \text{H}_2 \text{O}(t)$$
 கரைசலில் CaCl_2 வெளிவிடப்படும்.

எனவே, மொத்த தாக்கம்,

$$CaCO_3(s) + 2 \ NaCI(aq) \rightarrow CaCI_2(aq) + Na_2CO_3(s) \ \Delta H = +12 \ kJ \ mol^{-1}$$
 ஆனால், இத்தாக்கம் நேரடியாகச் சாத்தியமல்ல.
என்பதனை மனதில் கொள்ள வேண்டும்.

 ${
m NH_3}$ ஆனது இங்கு ஒரு இன்றியமையாத இடைத் தொழிற்பாட்டுப் பதார்த்த மாகும்: இது நீரில் ${
m CO_2}$ இல் கரைதிறனை கூட்டி ${
m HCO_3}^-$ செறிவையும் கூட்டும். இதனாலேயே ${
m NaHCO_3}$ படியும்.

Na,CO, இன் பயன்கள்

i. கண்ணாடி தயாரிப்பு

பொதுவாக கண்ணாடி என்பது குறைந்தது இரு உலோக சிலிக்கேற்று களைக் கொண்டது.

$$\begin{array}{c} {\rm Na_2CO_3 + CaCO_3 + 2\,SiO_2} \quad \xrightarrow{\Delta} \quad {\rm Na_2SiO_3, CaSiO_3 + 2\,CO_2} \\ {\rm Soda-lime\,glass} \end{array}$$

எந்த வகைக் கண்ணாடி தயாரிக்க வேண்டுமோ அதில் சிறிது துண்டு களையும் (cullet) இதற்கு சேர்த்து உருக்க வேண்டும்.

ii. நீர்க்கண்ணாடி தயாரிப்பு $\mathrm{Na_2SiO_3}$

$$Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_2$$

இது சூடான நீரில் கரையும். கடதாசி உற்பத்தியில் மெருகூட்டப் பயன்படும். முட்டைப் பாதுகாப்பில் பயன்படும். உலோகங்களைப் பாதுகாக்கப் பயன் படும்.

அழுக்கை தொங்கல் நிலையில் (suspension) வைத்திருக்குமுகமாக அழுக்க கற்றிகளில் (detergents) பயன்படும். iii. வன்னீரை மென்னீராக்கல்

$$Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2 Na^+$$

 $Mg^{2+} + Na_2CO_3 \rightarrow MgCO_3 \downarrow + 2 Na^+$

இம்முயற்சியால் நிலையான / நிலையில் வன்னீரை மென்னீராக்கலாம். இதற்கு வழமையாக 'Sesquicarbonate' அதாவது, $Na_3H(CO_3)_2\cdot 2H_2O$ என்ற வடிவில் பயன்படும்.

- iv. சலவைச் சோடாவாகப் பயன்படும்
- v. NaOH தயாரிப்பில் பயன்படும்
- vi. சவர்க்காரம் தயாரிப்பு

vii. மருந்து வகைத் தயாரிப்பு

சவர்க்காரம் (Soap)

நீரின் கழுவும் இயல்பை அதிகரிக்கும் பதார்த்தங்களில் ஒன்று சவர்க்காரம். பொதுவாக, இது கொழுப்பு அமிலங்களின் சோடியம் / பொட்டாசியம் உப்புக ளாகும்.

இங்கு பயன்படும் கொழுப்பு அமிலங்கள் ஓரளவு நீண்ட காபன் சங்கிலிகளைக் கொண்டன.

i. Stearic acid

CH₂(CH₂)₁₆COOH

விலங்குக் கொழுப்பு

animal fats

ii. Lauric acid

CH₂(CH₂)₁₀COOH

தேங்காய் எண்ணெய்

iii. Palmitic acid

CH₃(CH₂)₁₄COOH

Palm oils

iv. Oleic acid

CH₄(CH₂)₂CH=CH(CH₂)COOH

Olive oil

பொதுவாக, $C_nH_{2n+1}COO\cdot Na^+/C_nH_{2n+1}COO\cdot K^+$ எனக் குறிக்கப்படும்.

பொட்டாசியத்தின் சவர்க்காரம் பொதுவாக 'குளியலறை' சவர்க்காரம் ஆகும். ஆனால், சோடியத்தின் சவர்க்காரம் ஆடைகளுக்குப் பயன்படுகின்றது.

கொழுப்பு அமில எசுத்தர்கள்தான் தாவர எண்ணெய் (oils) களிலும் விலங்குக் கொழுப்புக்களிலும் (fats) உள்ளன.

எசுத்தர்களில் அற்ககோல் பகுதி பொதுவாக கிளிசரோல் ஆக இருப்பதே (Glycerol) கொழுப்பு அமில எசுத்தர்கள் ஆகும்.

பொதுவாக, $CH_2OCOC_nH_{2n+1}$ \mid $CHOCOC_nH_{2n+1}$ \mid $CH_2OCOC_nH_{2n+1}$

என ஒரு கொழுப்பு அமில எசுத்தரை எழுதலாம்.

இன் பெயர் Propan-1,2,3-friyl trioctadecanoate ஆகும்.

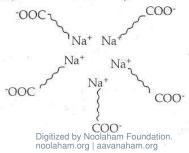
கொழுப்பமில எசுத்தரை காரநீர்ப்பகுப்பு செய்வதன் மூலம் சவர்க்காரம் தயாரிக்கலாம்.

$$\begin{array}{c} {\rm CH_2O\ CO\ C_{17}H_{35}} \\ | \\ {\rm CHO\ CO\ C_{17}H_{35}} \\ | \\ {\rm CH_2O\ CO\ C_{17}H_{35}} \end{array} \\ + 3\ {\rm NaOH\ (aq)} \ \to \ 3\ {\rm C_nH_{2n+1}\ COONa} + \\ | \\ {\rm CH_2O\ CO\ C_{17}H_{35}} \end{array} \\ \begin{array}{c} {\rm CH_2OH\ } \\ | \\ {\rm CH_2OH\ } \\ \\ {\rm Shift} \text{--Guidentiff} \end{array}$$

இங்கு கிளிசரோல் பக்கவிளைவாகின்றது.

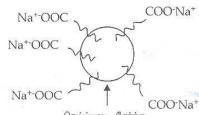
உதாரணமாக, தேங்காய் நெய்யிலிருந்து சவர்க்காரத் தயாரிப்பைக் கருதுவோம்.

தேங்காய்நெய் சுமார் 90 °C யில் வெப்பமாக்கிய வண்ணம் செறிந்த NaOH கரைசலை சிறிது சிறிதாக கலக்கிய வண்ணம் சேர்க்குக. ஊன்பசை போன்ற சவர்க்காரம் உருவாகும். இதற்கு சமகனவளவு கொதிநீரும் பின் NaCl நீர்க் கரைசலும் சேர்க்க சவர்க்காரம் வேறாகும்.


NaCl சேர்ப்பதன் நோக்கம் பொது அயன் விளைவால் சவர்க்காரத்தைப் படிவாக்கி பெறுவதற்கு ஆகும்.

சவர்க்காரத் தொழிற்பாடு

பொதுவாக, அழுக்கு ஒட்டியிருப்பதற்குக் காரணம் நெய்த் தன்மையாகும். சவர்க்கார மூலக்கூறினைப் பின்வருமாறு கருதலாம்.


நீண்ட சேதனப் பகுதி. பருத்த Na⁺ அயன்.

நீருக்குள் சவர்க்காரத்தை கரைக்கும்போது கோளக் கொத்துகளாக (Spherical clusters) அமையும். இதனை Micelles என்பர்.

ஏனெனில், Na⁺ நீருக்குள் சேரும். ஆனால், RCOO⁺ நீண்ட சேதனப் பகுதி நீருடன் கலப்பது கடினம். இதனால், சவர்க்காரம் நீரின்மீது ஒரு தொங்கலாக-முகிலாக-அமைந்து ஒளி செல்வதனைத் தடுக்கும். மேலும், நீரின் மேற்பரப்பு இழுவிசையையும் குறைக்கும்.

சவர்க்கார நீரை ஆடைகட்கு இடும்போது Na⁺ நீருக்குள் சேரும். எண்ணெய்ப் படையில் (அழுக்குடன் உள்ள) ie முனைவற்ற சேதனப்படையில் (non-polor greasy layer) RCOO சேரும். இதனால், அழுக்குத் துணிக்கைகள் எதிரேற்றம் பெறும். இவை நீரிலுள்ள Na⁺ அயனுடன் கூடுதலாகக் கவர்ச்சிக்கு உள்ளாவ துடன் தமக்குள் ஒன்றையொன்று தள்ளுவதால் ஒட்டும் தகவு குறைந்து 'குழம்பாதல்' ஏற்பட்டு ஆடையிலிருந்து இலகுவாகக் கழுவி அகற்றப்படும். மேலும், மறை ஏற்றம் பெற்ற அழுக்குத் துணிக்கைகள் ஒன்றையொன்று தள்ளுதலால் அவை மீள ஆடையுடன் ஒட்டிக்கொள்ள மாட்டாது.

நெய்ப்படை சேர்ந்த அழுக்குத் துணிக்கை

NB கொழுப்பு அமிலங்களின் கல்சியம், மக்னீசியம் உப்புக்கள் நீரில் கரையாது படியும்.

அதாவது, (RCOO)₂Ca, (RCOO)₂Mg என்பன நீரில் கரைவது அரிது. இதனாலேயே வன்நீரில் சவர்க்காரம் நுரைப்பது இல்லை. இதனால், சவர்க்காரத்தின் வினைத்திறன் குறையும். மேலதி கமாகப் பயன்படுத்தவும் நேரிடும்.

இங்கு M ≡ Ca/Mg

மேலும், சவர்க்காரம் நீரின் மேற்பரப்பு இழுவிசைகளைக் குறைத்து நனைக் கும்

கருவியாகவும் தொழிற்படும்.

ஆனால், சவர்க்காரமற்ற துப்பரவாக்கிகள் (Soapless detergents) வன்னீரிலும் நுரைக்கக் கூடியன.

நீண்ட மறை அயன் சங்கிலியும் நேர் அயன் சங்கிலியும் கொண்ட மூலக்கூறுகள் துப்பரவாக்கிகளாகத் தொழிற்படலாம்.

சவர்க்காரமற்ற துப்பரவாக்கிகள் துப்பரவாக்கிகளாக மட்டும் அன்றி

- i. நனைக்கும் கருவிகள் (wetting agents)
- ii. நுரையைக் கொடுப்பன (foam stabilizers)
- iii. கஞ்சி போன்ற தன்மை (emulsifying agents) ஆகவும் தொழிற்படுகின்றன.

மேலும், இவை பெற்றோலிய சுத்திகரிப்பில் உப விளைவுகளிலிருந்து தயாரிக்கப் படக்கூடியன. எனவே, செலவு குறைவு. ஆயினும், நீர்நிலைகளில் இவற்றின் அளவுக்கு மீறிய உபயோகம் அவற்றின்மீது படிவாக மிதக்கக் காரணமாகி சூழலை பாதிக்கும்.

NB
$$C_9H_{19}$$
 ______ O(CH $_2$ CH $_2$ O) $_x$ CH $_2$ CH $_2$ O இரவநிலை தூய்தாக்கி $(x = 5 - 10)$

C₁₅H₃₅CH₂N⁺ (CH₃)₃Br⁻ C₁₂H₂₅COOCH₂CH(OH) CH₂OSO₃-Na⁺

Hair conditioner பற்பசை, Shampoos

சல்பூரிக்கமிலம்

தூய ${
m H_2SO_4}$ இன் அடர்த்தி $1~870~{
m kgm^3}$. பாகுத் தன்மையானது. இதனுடன் உலோகங்கள் தாக்கமுற்று ${
m H_2(g)}$ இனைத் தரமாட்டாதன.

கைத்தொழில் தயாரிப்பு

- I. **தொடுகை முறை** Contact Process மூலப்பொருள்
 - i. கந்தகத்தாது
 - ii. ஒட்சிசன் வளி மூலம்

தாக்கங்கள்

i. Digitized by Noolaham Foundation. \Rightarrow $2 SO_3$ (g) $\Delta H = -176 \text{ kJ}$

iii.
$$SO_3$$
 (g) + conc. H_2SO_4 \longrightarrow $H_2S_2O_7$ (4605)

iv.
$$H_2S_2O_7(t) + H_2O(t) \rightarrow 2H_2SO_4(aq)$$

முறை

- ${f i}$. கந்தகம் அல்லது சல்பைட்டுத் தாதுக்கள் வளியில் எரித்து ${f SO}_2$ வாயு பெறப்படும்.
- ii. தயாரிக்கப்பட்ட SO_2 வாயுவிலுள்ள மாசுக்கள் உலர் முறையிலும் ஈர முறை யிலும் மின் ஏற்றங்கள் மூலம் அகற்றப்படும்.
- iii. தூய்தாக்கப்பட்ட ${
 m SO}_2$ வாயு சுமார் $450\,^{\circ}{
 m C}$ யில் ${
 m V}_2{
 m O}_5$ ஊக்கி முன்னிலை யில் ஒட்சிசனுடன் தாக்கமுறச் செய்ய ${
 m SO}_3$ விளைவாகும்.
- iv. விளைவாகும் ${
 m SO}_3$ ஆனது $98~{
 m M}_2{
 m SO}_4$ கொண்டு உறிஞ்சி புகை ${
 m H}_2{
 m S}_2{
 m O}_7$ ஆக அகற்றப்படும்.

பௌதிக இரசாயன தத்துவங்கள்

இங்கு,

$$2 SO_{2}(g) + O_{2}(g) \Rightarrow 2 SO_{3}(g)$$

 $\Delta H < 0$

என்பது தாக்கவீதத்தை நிர்ணயிக்கும் தாக்கமாகும். இது மீள் தாக்கமாகவும் ஏவற்சக்தி கூடியதாகவும் அமைவதால் தாக்கத்தின் வினைத்திறனைக் கூட்டுவது கைத்தொழில் ரீதியில் இலாபகரமானது.

i. வெப்பநிலை

இது புறவெப்பத்தாக்கமாதலால், இலிச்சற்றிலியரின் தத்துவப்படி உயர் வெப்பநிலை பிற்தாக்கத்தை சாதகமாக்கும். ஆகவே, விளைவு குறையும். ஆனால், தாழ் வெப்பநிலையில் ஏவற்சக்தி / அதனைவிட கூடிய சக்தியுடைய மூலக்கூறுகளின் எண்ணிக்கை குறைவு. ஆகவே, தாக்கவீதம் குறையும். சமநிலை அடைய நீண்ட நேரம் எடுக்கும். எனவே, சிறப்பு வெப்பநிலை 450 °C பயன்படும்.

ii. **செறிவு**

சமநிலையிலிருந்து SO_3 ஐ $98\% H_2SO_4$ கொண்டு உறிஞ்சி அகற்றி புகை சல்பூரிக்கமிலம் தயாரிக்கலாம். SO_3 அகற்றப்பட முற்தாக்கம் சாதகமாக்கப் படும். விளைவு கூடும்.

இங்கு,

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 $\Delta H < 0$

ஆனால், இது உயர் வெப்பத்தை வெளிவிடுவதால் கரைசலின் வெப்பநிலை கூடும். இதனால், வாயுவின் கரைதிறன் குறையும். எனவே, செறி. ${
m H_2SO_4}$ உருவாக்கப்படுவது கடினம்.

இதனாலேயே ஏற்கனவே தயாரித்த செறி. ${
m H_2SO_4}$ கொண்டு உறிஞ்சப்படு கின்றது. Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

NB SO₂ இன் முனைவுத்தன்மை SO₃ இலும் பார்க்கக்கூட.

எனவே.

$$2SO + O, \Rightarrow 2SO_3$$

எனும் சமநிலையில் SO, உம் நீரில் கரையும் என்பதும் கருத்தில் கொள்ளத்தக்கது.

iii. **அமுக்கம்**

இது மூல் எண்ணிக்கை குறையும் தாக்கமாதலால், இலிச்சற்றிலியரின் தத்துவப்படி உயர் அமுக்கம் முற்தாக்கத்தைச் சாதகமாக்கும். ஆயினும், உற்பத்தி செலவு கூடுவதால் சாதாரண அமுக்கமே பயன்படும்.

iv. **ஊக்கி**

ஏவற்சக்தி கூடிய தாக்கமாதலால் ஊக்கி பயன்படுத்தல் உற்பத்திச் செலவைக் குறைக்கும் வினைத்திறனைக் கூட்டும்.

இங்கு V₂O₅ ஊக்கி பயன்படுகிறது. இது பின்வருமாறு தாக்கத்தில் பங்கு பற்றித் தாக்கப் பொறிமுறையை மாற்றுவதால் ஏவற்சக்தியைக் குறைத்து முன்பின் தாக்கவீதங்களை ஒரேயளவால் தூண்டும். இதனால் சமநிலை விரைவாக அடையச் செய்யும்.

$$\begin{array}{cccc} 2 \operatorname{SO}_2(g) + \operatorname{V}_2\operatorname{O}_5 & & \rightleftharpoons & 2 \operatorname{SO}_3(g) + \operatorname{V}_2\operatorname{O}_3 \\ & \operatorname{O}_2 + \operatorname{V}_2\operatorname{O}_3 & \longrightarrow & \operatorname{V}_2\operatorname{O}_5 \end{array}$$

H,SO, இன் இயல்புகள்

- i. அமிலமாக
- ii. ஒட்சியேற்றும் கருவியாக
- iii. நீரகற்றும் கருவியாக
- iv. சல்போனைல் ஏற்றம் (சேதன இரசாயனத்தைப் பார்க்க)

அமிலத் தொழிற்பாடு

ஐதான $\mathrm{H_2SO_4}$ ஆனது ஒரு ஈர்மூல வன்னமிலமாகத் தொழிற்படும்.

$$H_2O(aq) + H_2SO_4(aq) \Rightarrow H_3^+O(aq) + HSO_4^-(aq)$$

$$H_3O + HSO_4^- \Rightarrow H_3O^+ + SO_4^2$$

எனவே, மின்னேர் கூடிய உலோகங்களுடன் ஐதரசன் வெளிப்படுத்தப்படும்.

$$Zn + dil. H_2SO_4 \rightarrow ZnSO_4 + H_2(g)$$

எனினும், செறி. H,SO, ஆனது அமிலங்களுடன் ஐதரசனைத் தரமாட்டாது. இது SO, ஐத்தான் தரும். செறி. H,SO₄ இன் முதலாம் அயனாக்கத்திலும் பார்க்க இரண்டாம் அயனாக்கம் குறைவானது. மேலும், காரங்களுடனும் காபனேற்றுகளுடனும் H.SO தாக்கமுறும். Digitized by Noolaham Foundati noolaham.org | aavanaham.org

$$\begin{array}{lll} \text{2 NaOH} + \text{H}_2\text{SO}_4 & \longrightarrow & \text{Na}_2\text{SO}_4 + 2\,\text{H}_2\text{O} \\ \text{Na}_2\text{CO}_3 + \text{H}_2\text{SO}_4 & \longrightarrow & \text{Na}_2\text{SO}_4 + \text{CO}_2 + \text{H}_2\text{O} \end{array}$$

NB $\mathrm{H_2SO_4}$ இன் இரு 'O-H' கூட்டங்கள் உண்டு. எனவே, $\mathrm{PCl_5}$ உடன் பின்வருமாறு தாக்கமுறும்.

HO
$$\stackrel{O}{\underset{\parallel}{\mathbb{S}}}$$
 $-$ OH + 2 PCl₅ \rightarrow 2 HCl \uparrow + SO₂Cl₂ + 2 POCl₃

ii. ஒட்சியேற்றும் கருவியாக

செறி. $\mathrm{H_{2}SO_{4}}$ இன் ஒட்சியேற்றத்திற்கான அரை அயன் சமன்பாடு பின்வரு மாறு

$$H_2SO_4 + 2H^+ + 2e \rightarrow SO_2 + 2H_2O$$

பொதுவாக, ${
m Au}$, ${
m Pt}$ தவிர்ந்த ஏனைய உலோகங்கள் செறி. ${
m H_2SO_4}$ ஆல் ஒட்சியேற்றப்படும்.

Cu (g) + conc.
$$2 \text{ H}_2\text{SO}_4$$
 \rightarrow CuSO₄ (aq) + SO₂(g) + $2 \text{ H}_2\text{O}(t)$
 $2 \text{ Fe (s) + conc. } 6 \text{ H}_2\text{SO}_4$ \rightarrow Fe₂(SO₄)₃ (aq) + $3 \text{ SO}_3(g)$ + $6 \text{ H}_2\text{O}(t)$

கந்தகம், பொசுபரசு, காபன் போன்ற அலோகங்களையும் சூடான செறி ${
m H_2SO_4}$ ஒட்சியேற்றும்.

$$\begin{split} &S \text{ (s) + conc. 2 H}_2SO_4 & \longrightarrow & 3 SO_2(\text{aq}) + 2 \text{ H}_2O(\text{t}) \\ &P_4(\overline{\text{s})} + \text{conc. 6 H}_2SO_4 & \longrightarrow & 4 \text{ H}_3PO_3(\text{aq}) + 6 SO_2(\text{g}) \\ &C \text{ (s) + conc. 2 H}_2SO_4 & \longrightarrow & CO_2(\text{g}) + 2 SO_2(\text{g}) + 2 \text{ H}_2O(\text{t}) \end{split}$$

 ${
m H_2S, HI, HBr}$ போன்ற உலோக ஐதரைட்டுக்களையும் செறி. ${
m H_2SO_4}$ ஆனது ஒட்சியேற்றும்.

iii. <mark>நீரகற்றியாக</mark>

செறி. $\mathrm{H_2SO_4}$ ஆனது பளிங்கு நீரையும் பல சேதனச் சேர்வைகளிலும் நீரை அகற்றப் பயன்படும்.

உதாரணங்கள்

i. Copper(II) sulphate (VI)-5-water க்கு conc. H_2SO_4 சேர்க்க நீரகற்றப்பட்டு நீலநிறம் நீக்கப்படும்.

conc. CuSO₄ .5 H₂O
$$\stackrel{\text{Conc.}}{\rightarrow}$$
 CuSO₄ (s) + 5 H₂O (t) Rigitized by Noolaham Fayingation avanahamising on the control of the cont

 ${
m ii.}$ கரும்பு வெல்லத்திற்கு (சுக்குரோசு) ${
m conc.\,H_2SO_4}$ சேர்க்கப்பட கபிலமாகி, நுரைத்து, பொங்கி ஈற்றில் கரியாகும்.

$$\begin{array}{c} \text{Conc.} \\ \text{C}_{12}\text{H}_{22}\text{O}_{11} \text{ (s)} & \stackrel{\text{H}_2\text{SO}_4}{\longrightarrow} & 12 \text{ C (s)} + 11 \text{ H}_2\text{O (t)} \end{array}$$

iii. அற்ககோலினை நீரகற்றி அற்கீன், ஈதர் தயாரிக்கலாம்.

$$C_2H_5OH$$
 C_2H_5OH
 $C_2H_4+H_2O$

iv. Methanoic acid, Ethanedioic acid என்பவற்றிலிருந்தும் conc.H,SO, நீரகற்றும்.

$$\begin{array}{cccc}
O & & & & & \\
C & & & & & \\
OH & & & & & \\
O & & & & & \\
C & & & & \\
O & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
C & & & & \\
C & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
C & & & & \\
C & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
C & & & & \\
C & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
C & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
C & & & & \\
\end{array}$$

$$\begin{array}{cccc}
C & & & & \\
C & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
C & & & \\
C & & & \\
\end{array}$$

$$\begin{array}{ccccc}
C & & & \\
C & & & \\
\end{array}$$

$$\begin{array}{ccccc}
C & & \\
\end{array}$$

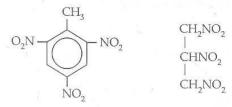
$$\begin{array}{cccccc}
C & & \\
\end{array}$$

$$\begin{array}{ccccc}
C & & \\
\end{array}$$

$$\begin{array}{cccccc}
C & & \\
\end{array}$$

vi. குளுக்கோசிலும் நீரகற்றப் பயன்படும்.

$$\begin{array}{c} \text{Conc.} \\ \text{C}_6\text{H}_{12}\text{O}_6(g) & \xrightarrow{\text{H}_2\text{SO}_4} & \text{6 C (s)} + \text{6 H}_2\text{O (t)} \end{array}$$


vii. எசுத்தராக்கம், Polyesterification, Bakelite தயாரிப்பு என்பவற்றிலும் செறி. H,SO₁ நீரகற்றியாகத் தொழிற்படும்.

iv. **சல்போனைல் ஏற்றம்**

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

சல்பூரிக்கமிலத்தின் பயன்கள்

- i. Polyester, Bakelite போன்ற பல்பகுதியத் தயாரிப்புகள்
- ii. Battery acid
- iii. வெடிப்பொருள் (T.N.T, T.N.G) தயாரிப்பு

Trinitrotoluene

Trinitro glycerene Digitized by Noolaham Foundation. noolaham.org | aavanaham.org iv. சவர்க்காரமற்ற துப்பரவாக்கிகளின் தயாரிப்பு

v. Super phosphate, (NH₂),SO₄ போன்ற வளமாக்கிகளின் தயாரிப்பு

vi. Al₂(SO₄)₃ தயாரிப்பு

vii. வாயுக்களை உலர்த்தல்

viii. உருக்கில் துரு அகற்ற

ix. பூச்சுக்கள் தயாரிப்பு

NB பெற்றோலிய கைத்தொழில் செயற்பாட்டில் கந்தகப்பூ (flower of sulphur) பக்க விளைவாகப் பெறப்படும். இதனைப் பயன்படுத்தி H₂SO₄ தயாரிப்பானது இறானலை

என்னும் இடத்தில் மேற்கொள்ளப்படுகின்றது. ஆயினும், இது இலங்கையின் தேவைக்குப் போதுமானதல்ல.

NB i. $H_2S + 3O_2 -$

 $H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$

ii. $CaSO_4 + 2C \rightarrow CaS + 2CO_2$

 $CaS + 3 CaSO_4 \rightarrow 4 CaO + 4 SO_2$

எனவே, H_2S ; ஜிப்சம் என்பனவும், H_2SO_4 தயாரிக்கப் பயன் படுத்தலாம்.

iii. $MgSO_4(g) \longrightarrow MgO(g) + SO_3(g)$

 ${
m SO_3}$ ஐ. ${
m H_2SO_4}$ இல் உறிஞ்சி ${
m H_2S_2O_7}$ தயாரிக்கலாம். இவை பெரும்படித் தயாரிப்புக்கு இலாபம் குறைவு.

NB i. Lead chamber method

இதில் ஊக்கி : NO (g)

 $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_3$

 $NO_2 + SO_2 \Rightarrow SO_3 + NO$

ii. இதற்கு ஊக்கிகளாக Pt, Pd போன்ற ஊக்கிகளும் பயன்படும்.

 $2 SO_2(g) + SO_2(g)$ $\xrightarrow{Pt \text{ or } Pd}$ $2 SO_3(g)$

கல்சியச் சேர்வவகள

இலங்கையில் கல்சியத்தின் கனியங்களாக குறிப்பிடத்தக்கன மூன்று வகைக் கனியங்களாகும்.

i. CaCO கொண்டன : மயோசின் வகை (படிவு) சுண்ணாம்புக் கற்கள், கல்சைற்று

NB (முருகைக்கல் / பவளப் பாறைகள் (Corels) கனியம் அல்ல எனக் கூறப்படுகிறது. ஏனெனில், கனியங்கள் இயற்கையில் அமைபவையாகும்.

Corels - உயிரினங்களின் மூலம் உருவாவன.

ii. பொசுபேற்றில்

அப்பறைற்று Ca₁₀(PO₄)₆X₂

iii. தொலமைற்று

CaCO, MgCO,

நீறாத சுண்ணாம்பு (Quick Lime) தயாரிப்பு

குளை முறையில் மூலப்பொருட்கள்

(முருகைக்கல்

ii. விறகு

தாக்கம்.

CO,(g) இன் அமுக்கம் வெளி அமுக்கத்திற்கு சமமாகும்போது முற்றான பிரிகை நடைபெறும். $1 \times 10^5 \, \text{Nm}^{-2}$ (பொது வெளி அமுக்கம் = 1 × 105 Nm-2) P Pco 898

முறை

சுண்ணாம்புக் கற்கள், சிறு துண்டாக்கப்பட்ட விறகுகளையும் மாறி சூளையில் அடுக்கி எரித்தல்.

பிரதிகூலங்கள்

- விறகு தரமான எரிபொருள் அன்று. ஆகவே, CaCO, இன் முற்றான பிரிகை வெப்பநிலை 898 °C ஐ அடைவது கடினம்.
- ii. விறகு சீரான எரிதலைக் கொடுக்காது.
- iii. விறகுச் சாம்பல் மாசாகும்.
- iv. CO₂ வாயு சரிவர வெளியகற்றப்படுவதில்லை. எனவே, அகவெப்பத் தொகுதி யான இதில் சூளை குளிரவிடப்படும்போது சமநிலை பின்னோக்கி செல்ல விளைவு வீதம் குறையும்.
- v. முருகைக்கல் அகழ்வு கடற்கரையில் மேற்கொள்ளப்படுவது மூலம் கடல் அரிப்பு ஏற்படும். சூழல் பாதிக்கப்படும்.

மாற்றுவழி முறைகள்

- ஆக்கி வாயுவை எரிபொருளாகப் பயன்படுத்தல்.
- ii. சுழலும் சூளையை பயன்படுத்தல் CO ஐ வெளியகற்றவும் சீரான எரிதலுக் கும் உதவும்.
- iii. முருகைக்கற்களுக்கு பதில் மத்திய மலைநாட்டில் காணப்படும் தொலமைற்று பயன்படுத்தலாம்.

ஆனால், தொலமைற்றில் உள்ள MgCO, இன் பிரிகை வெப்பநிலை குறைவு. இங்கு பயன்படும் உயர் வெப்பநிலையில் MgO ஆனது முற்றாக எரிந்து விடும். முற்றாக எரிந்த MgO (dead burnt) நீர் சேர்க்கப்படும்போது நீறமாட்டாது. இது சுண்ணாம்பின் தரத்தைக் குறைக்கும்.

எனவே, நீராவி முன்னிலையில் பிரிகை மேற்கொள்ளப்படும். நீராவி ஊக்கி யாகத் தொழிற்பட்டு பிரிகை வெப்பநிலையைக் குறிப்பதுடன் மிகை எரிதலை யும் தடுக்கும்.

NB சீமெந்து தயாரிப்பிற்கும் தொலமைற்றை பயன்படுத்த முடியாது. ஏனெனில், MgO மிகை எரிதலுக்கு உட்படல் ஆகும். Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

நீறாத சுண்ணாம்பின் பயன்கள்

1. நீறிய சுண்ணாம்பையும் (Slake lime) சுண்ணாம்புப் பாலையும் (Milk of lime) ஆக்கல்.

நீறாத சுண்ணாம்புக்கு சிறிது சிறிதாக நீர் சேர்க்க நீறிய சுண்ணாம்பு ஆனது பெருமளவு வெப்ப வெளிப்படலுடன் உருவாகும்.

CaO (s) +
$$H_2O(t)$$
 \rightarrow Ca(OH), (s) $\Delta H < 0$

2. கல்சியம் காபைட்டு தயாரித்தல் மின்வில் (Electric arc) முறை

இம்முறையில் பென்சிற்கரி மின்வாய்கள் பயன்படும்.

CaO இனையும் கற்கரியையும் மின்வில் (coke) மூலம் உயர் வெப்பத்திற்கு உள்ளாக்க கல்சியம் காபைட்டு பெறப்படும்.

CaO (s) + 3 C (s)
$$\xrightarrow{\text{SLDTIJ}}$$
 CaC₂ (s) + CO (g)

கல்சியம் காபைட்டுக்கு சிறிதுசிறிதாக நீர் சேர்க்க அசற்றலீன் வாயு பெறப் படும்.

$$CaC_{2}(s) + 2H_{2}O(t) \rightarrow Ca(OH)_{2}(s) + C_{2}H_{2}\uparrow(g)$$

அசற்றலீன் (Ethyne) வாயுவானது,

i. ஒரு வளர்ச்சி தூண்டியாக (Hormone) பயன்படும். இது அன்னாசியைப் பருவ காலத்தின் சிறிது முன்பாக பூக்கச் செய்வதால் காய்கள் விரைவில் அறுவடையினை பெற ஏதுவாகும். இது சந்தையில் அவற்றிற்கு கூடிய விலை பெற உதவும்.

மிகச்சிறிய அளவு கல்சியம் காபைட்டை அன்னாசிச் செடியின் மடல் களிற்கு இடையில் தூவிவிடல். மழைநீர் / பனிநீர் படும்போது அசற்றலீன் உருவாகி வளர்ச்சி தூண்டியாகப் பயன்படும்.

- ii. பழங்களை பழுக்கச் செய்யவும் அசற்றலீன் வாயு / அசற்றலைட்டுகள் பயன்படும்.
- iii. உலோக ஒட்டு வேலைகட்கு அசற்றலீன் ஒட்சிசன் வாயுக் கலவை எரிபொருளாகப் பயன்படும்.

எனினும், எதைன் வாயுவை ஒரு வாயு எரிபொருளாக வீட்டுத் தேவை கட்குப் பயன்படுத்த முடியாது. ஏனெனில், அதனை களஞ்சியப்படுத்தி வைப்பது அபாயகரமானது. வெடித்தல் நிகழக்கூடியது.

- 3. மண்ணின் அமிலத்தன்மை நீக்கப் பயன்படும்.
- 4. Ca(OH)₂ (aq) சுண்ணாம்புப் பால் நிலையில் வன்னீரை மென்னீராக்கப் பயன்படும்.

$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2 CaCO_3 \downarrow + 2 H_2O$$

5. வெளிற்றும் தூள் தயாரிப்பு

$$3~\text{Ca(OH)}_2\text{(g)} + 2~\text{CI}_2\text{(g)} \longrightarrow \text{Ca(OCI)}_2\text{. CaCI}_2\text{. Ca(OH)}_2\text{. 2}~\text{H}_2\text{O}$$

சிறிது சாய்வான சுழலும் உருளைகளில் மேலிருந்து நீறிய சுண்ணாம்பு இடப்படும். கீழிருந்து Cl, வாயு செலுத்தப்பட முரண் தொடுகை முறை மூலம் வெளிற்றும் தூள் பெறப்படும்.

தூய வெளிற்றும் தூளின் சூத்திரம்:Ca(OCI), . CaCl, . 2 H,O

அனுபவசூத்திரம் : CaO,Cl,H,

எனினும், தாக்கமுறாத Ca(OH), உம் இதற்குள் காணப்படும்.

OCI-
$$\frac{hv}{}$$
 'O' + CI-

இங்கு தோன்றுநிலை ஓட்சிசன் உருவாகும். இது சாயங்களை வெளிற்றும். கிருமிகொல்லியாகவும் பயன்படுத்தப்படுகிறது.

- NB i. Ca₃(OCI)₂.(OH)₄ என்பதும் Ca₃CI₃(OH)₄.H₂O என்பனவும் வெளிற்றும் தூளில் அடங்கியிருப்பதாகக் கருதப்படும்.
 - $Ca(OCI)_{2}$, $Ca(OH)_{2}$, $CaCI_{2}$ + dil. 3 H₂SO₄ \rightarrow 3 CaSO₄ + 2 Cl₂† ii.
 - $Ca(OCI)_2.CaCI_2(s).Ca(OH)_2 + 2CO_2(g) \rightarrow 2CaCO_3$ iii. + CaCl, + 2 HClO

அப்பற்றைற்று

- i. புளோரோ அப்பறைற்று Ca₃(PO₄),.CaF₂
- ii. குளோரோ அப்பறைற்று Ca₃(PO₄)₃.CaCl₃
- iii. ഇதரொட்சி அப்பறைற்று Ca₃(PO₂), Ca(OH),

இலங்கையில் எப்பாவல பகுதியிலுள்ள அப்பற்றைற்றின் சூத்திரம் Ca₁₀(PO₁) X₂ எனத் தரப்படும்.

இங்கு, X⁻≡Cl⁻/F⁻/OH⁻ஆகும்.

இதன் அனுபவ சூத்திரம் Ca_s(PO_J),X ஆகும்.

அப்பறைற்று ஒரு பொசுபேற்று வளமாக்கியாகும். தாவரங்கட்கு அவசியமான மூலகங்கள் N, P, K ஆகும். அடிக்கட்டு பசளையில் (Base mixture) பொசுபரசு அடங்கியிருத்தல் வேண்டும்.

எனவே, அப்பறைற்று ஒரு பசளைப் பொருளாகப் பயன்படுத்தலாம். ஆயினும், ஈரவலயப் பிரதேசங்களில் குறிப்பாக, நீண்டகால வாழ்வுடைய பயிர்கட்கு மட்டுமே இதனை அரைத்து நேரடியாக இடலாம். வரண்ட பிரதேசங்களின் குறுகியகாலப் பயிர்களான நெல் போன்றவற்றிற்கு இது உகந்தது அல்ல. ஏனெனில், அப்பறைற்றில் உள்ள ${
m CaF}_2$ ஆனது அதன் கரைதிறனை மிகவும் குறைக்கிறது. ஆகவே, குறுகிய காலத் தாவரங்கட்கு பயனுடையதன்று.

ஈரவலயப் பகுதிகளில் மண்ணில் உக்கல் அதிகம். இதில் உருவாகும் சேதன அமிலங்கள் அப்பறைற்றில் மெதுவாகக் கரையும். இதனால் நீண்டகாலப் பயிர்கள், உதாரணமாக, தேயிலை போன்றவற்றிற்கு பயன்படுத்தலாம். நெல்லுக்கு ஏற்றதல்ல. இது பயன்படுவதற்குள் நெல் விளைந்துவிடும். எனவே, அப்பறைற்றினைப் பின்வரும் ஒரு முறையால் நீரில் கரையத்தகு பயன்படு பொசுபேற்று வளமாக்கி ஆக்கலரும் voolaham Foundation. noolaham.org | aavanaham.org 33

சர்ப்பன்ரைனுடன் சேர்ந்து உருக்கி சடுதியாகக் குளிரவிட்டு நீரில் கரையத் தகு உருகிய மகனீசிய பொசுபேற்றாக மாற்றலாம்.

சர்பன்ரைன் இலங்கையில் காணப்படும் ஒரு மகனீசியம் சிலிக்கேற்று கனி யமாகும். இது தென்பகுதியில் காணப்படுகிறது.

Ca₁₀(PO₂)₆X, + சர்பன்ரைன் 1600 °C யில் உருக்கல்.

இங்கு,

$$Ca_3(PO_4)_2 + 3 MgSiO_3 \rightarrow Mg_3(PO_4)_2 \cdot 3 CaSiO_3$$

இவ்வாறு உருவாகும் Mg,(PO_), கரையும் தகவு சிறிது கூடியதாகும்.

இது இலங்கைக்கு பொருத்தமான இலாபகரமான முறையாகும். ஏனெனில், இலங்கையில் காணப்படும் ஒரு கனியம் சர்ப்பன்ரைன் ஆதலால் செலவு குறைவு.

மேலும், தாவரங்கட்கு தேவையான ஒரு மாமூலகங்களில் ஒன்று Mg ஆகும். ஆகவே, இதுவும் பயன்படு பொருளாகும்.

ii. செறி H,SO,, செறி HCI, செறி HNO, போன்ற அமிலங்களைப் பயன்படுத்தியும் நீரில் கரையத்தகு Ca(H,PO₁), ஆன Super phosphate அதாவது, மேற் பொசுபேற்றைப் பெறலாம்.

$$\begin{array}{cccc} \text{Ca}_{3}(\text{PO}_{4})_{2} + 2 \, \text{H}_{2} \text{SO}_{4} & \rightarrow & \text{Ca}(\text{H}_{2} \text{PO}_{4})_{2} + 2 \, \text{CaSO}_{4} \\ \\ \text{Ca}_{3}(\text{PO}_{4})_{2} + 4 \, \text{HCl} & \rightarrow & \text{Ca}(\text{H}_{2} \text{PO}_{4})_{2} + 2 \, \text{CaCl}_{2} \\ \\ \text{Ca}_{3}(\text{PO}_{4})_{2} + 4 \, \text{HNO}_{3} & \rightarrow & \text{Ca}(\text{H}_{2} \text{PO}_{4})_{2} + 2 \, \text{Ca}(\text{NO}_{3})_{2} \end{array}$$

iii. Orthophosphoric (V) acid பயன்படுத்தி மும்மைப் பொசுபேற்று (Triple phosphate) தயாரிக்கலாம்.

$$Ca_3(PO_4)_2 + 4 H_3PO_4 \rightarrow 3 Ca(H_2PO_4)_2$$

ஆனால், H,PO, HNO, இன் பெரும்படியாக்கம் இலங்கையில் இல்லை. எனவே, இறக்குமதிச் செலவு அதிகம்.

HCl ஐ பயன்படுத்தலாம். ஆனால், இங்கு உருவாகும் Ca(H,PO₁), உடன் காணப்படும் CaCl, ஆனது நீர்மயமாகும் இயல்புடையது. ஆகையால், Super phosphate இன் களஞ்சியப்படுத்தலைப் பாதிக்கும்.

H,SO, ஆனது இலங்கையில் இறானலையில் மேற்கொள்ளப்படுகின்றது. இது பற்றி H,SO தயாரிப்பில் குறிப்பிடப்பட்டுள்ளது.

எனவே, Mg.SiO, அல்லது H₂SO, பயன்படுத்துதல் மிகச் சிறந்தது ஆகும்.

தொலமைற்று (CaCO, MgCO,)

திணிவு அடிப்படையில்

அதி கல்சிய சுண்ணாம்புக்கல் (5 % MgCO.)

ii. மகனீசிய சுண்ணாம்புக்கல்

(5 % MgCO₃)

iii. தொலமைற்று சுண்ணாம்புக்கல் (30 - 40 % MgCO₂)

ஆயினும், பொதுவாக தொலமைற்றில் ${\rm CaCO_3:MgCO_3=1:1}\ \ {\rm two}\ \ \text{ ஆக கொள்ளப்படுவதுண்டு.}$ இது திட்டமான கருத்து அல்ல.

தொலமைற்றின் பயன்கள்

- i. நீறாத சுண்ணாம்பு தயாரிப்பு
- ii. மண்ணின் அமிலத்தன்மை அகற்றல் மண்ணின் அமில இயல்பு கூடின் AI, Fe போன்ற உலோகங்களின் உப்புக் களின் / ஒட்சைட்டுக்களின் கரைதிறன் கூடும். இது தாவரங்களையும் மனி தரையும் பாதிக்கும்.
- iii. நீண்டகால வாழ்வுடைய தாவரங்கட்கு ஒரு Mg பசளையாகும். தென்னை, தேயிலைக்குப் பயன்படுத்தப்படுகிறது. நெல்லுக்கு உகந்தது அல்ல.

கூரம்பு

புவியோட்டில் (Earth's crust) காணப்படும் பிரதான மூலகங்களில் O, Si, Al என்ற வரிசையில் நாலாவது பிரதான மூலகம் இரும்பு ஆகும். திணிவுப்படி சுமார் 6.2 % இரும்புண்டு.

புவி அகட்டு பகுதியில் (உள்ளீடு - core) இரும்பு சுயாதீன நிலையில் இருப்பதாகக் கருதப்படுகிறது.

இயற்கையில் இரும்பின் பிரதான தாதுப்பொருட்கள்

i. Haematite

Fe,O,

ii. Magnetite

Fe₃O₄

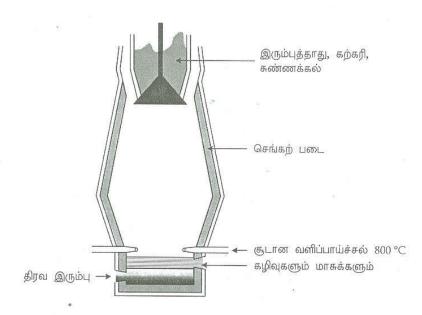
iii. Limonite

FeO(OH) (or Fe₂O₃. H₂O)

iv. Siderite

FeCO₃

v. Pyrites


Fe₃O₄

ஆகக் காணப்படுகின்றது. இவ்வகையிலும் சேருவல பகுதியில் Copper pyrites (CuFeS $_2$ /CuS.FeS) உடன் சேர்ந்து $\mathrm{Fe}_3\mathrm{O}_4$ ஆகக் காணப்படுகிறது.

ஆதிகால இலங்கையில் தென்மேல் பருவப் பெயர்ச்சிக் காற்றுக் காலங்களில் அக்காற்றினைப் பயன்படுத்தி உலைகள் மூலம் இரும்பு பிரித்தெடுப்பு இசுற்றும் முறிமுதில் தூக்கும் பாற்றுக் noolaham.org | aavanaham.org குறிப்புக்கள் கூறுகின்றன. இங்கு இரும்புத் தாதுடன் மரக்கரியைப் பயன்படுத்தி யதாகக் கூறப்படுகின்றது.

உலகில் இரும்பு உற்பத்தியில் முக்கிய பங்களிப்பை தென் ஆபிரிக்கா, ரஷ்யா, கனடா, அமெரிக்கா போன்ற நாடுகள் மேற்கொள்கின்றன.

இயற்கை இருப்பிலிருந்து இரும்பைப் பிரித்தெடுக்கும் முறையானது ஊதுலை முறை (Blast Furance) எனப்படும்.

மூலப்பொருட்கள்

- i. இரும்புத் தாது (Iron Ore)
- ii. சுண்ணாம்புக்கல்
- iii. கற்கரி

இங்கு கற்கரி ஒரு எரிபொருளாகவும், தாழ்த்தும் கருவியாகவும் பயன்படும். கண்ணாம்புக் கல் ஆனது slag உருவாக்கும் பதார்த்தமாகும். கண்ணாம்புக் கல்லின் அளவு, தாதுப் பொருளில் உள்ள சிலிக்காவிற்கு ஏற்ப மாறுபடும். முதலில் இரும்புத் தாது வளியில் வறுக்கப்பட்டு தூய்த்தாக்கப்பட்டு கந்தக மாசுக்கள் குறைக்கப்பட்டு பின் பயன்படுத்தப்படும்.

ஊதுலைக்குள் வெப்பக்காற்று உட்செலுத்தப்பட்டு எரிக்கப்பட கற்கரியானது வெப்பத்தையும் CO ஐயும் உருவாக்கும். இங்கு வெப்பக்காற்று செலுத்தப்பட்டு எரிக்கப்படும்போது சுமார் 2 000 °C வெப்பநிலை அமைத்தாலும் சாதாரணமாக 1 500 °C - 200 °C வர உலையில் வெப்பநிலை வீச்சு அமைகின்றது.

இங்கு நடைபெறும் தாக்கங்குஹைப் பின்வருமாறுப்தொகுக்கலாம். noolaham.org Jaavanaham.org

$$CaO + SiO_{2} \longrightarrow CaSiO_{3}$$

$$FeS + CaO + C \longrightarrow Fe + CaS + CO$$

$$NB \qquad MnO + C \longrightarrow Mn + CO$$

$$SiO_{2} + 2C \longrightarrow Si + 2CO$$

SiO, + 2 C

ii. 1000 - 1200 °C

$$FeO + CO \rightarrow Fe + CO_2$$

$$CO_2 + C \rightarrow 2CO$$

அல்லது

$$FeO + C \rightarrow Fe + CO$$

iii. 800 - 1000 °C

$$2 \text{ FeO} + C \rightarrow 2 \text{ Fe} + CO_2$$

NB 500 - 600 °C

$$2 CO \rightarrow C + CO$$

iv. 400 - 500 °C

$$Fe_2O_3 + CO \rightarrow 2 FeO + CO_2$$

எனவே, தேறிய தாக்கம்

i.
$$CaCO_3 \rightarrow CaO + CO_2$$

ii.
$$CO_2 + C \rightarrow 2CO$$

iii.
$$\text{Fe}_2\text{O}_3 + 3 \text{CO} \rightarrow 2 \text{Fe} + 3 \text{CO}_2$$

iv. Fe₂O₃ + 3 C
$$\rightarrow$$
 2 Fe + 3 CO

v.
$$CaO + SiO_2 \rightarrow CaSiO_3$$

vi.
$$3 C + 2 Fe_2O_3 \rightarrow 4 Fe + 3 CO_2$$

vii.
$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$$

இது மாணவர்கட்கு நினைவிருந்தால் போதுமானது.

எனினும் i. இங்கு சிறிது

$${
m CaO} + {
m Al_2O_3} \longrightarrow {
m Ca(AlO_2)_2}$$
 உருவாவதுண்டு.

ii. Mn, Si போன்ற மாசுக்கள் இரும்பில் சேர்வதனையும் மேற்குறித்த தாக்கங்களில் காணலாம்.

இங்கு பெறப்படும் Slag ஆனது அடர்த்தி குறைந்தது ஆகையால் உருகிய இரும்பின் மீது மிதக்கும். இது, உட்செலுத்தப்படும் வளியானது மீண்டும் இரும்பை ஒட்சியேற்ற விடாது தடுப்பதால் இதன் உருவாதல் ஒரு முக்கிய அம்சமாகும்.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

இங்கு பெறப்படுவது பன்றியிரும்பு (Pig iron) ஆகும். உருகிய இரும்பு வார்ப்பு மணல் மீது வார்க்கப்படும்போது பன்றிகள் படுத்திருப்பது போல அமைந்து இருப்பதால் இதனைப் பன்றியிரும்பு என்பர். இதுவே, வார்ப்பு இரும்பும் (Cast iron) ஆகும்.

இதில்	C	 3 - 4.5 %
	Si	 1.0 - 2.1 %
	P	 0.0 - 2.0 %
	S	 0.05 - 1.0 %
	Mn	 0.5 - 2.0 % வரை அமையும்.

மிகுதி இரும்பு ஆகும். இது கடினம் கூடியது. ஆனால், வாட்டப்படும் தகவு குறைந்தது. நொருங்கும் இயல்பு (Britlle) கூடியது. துருப்பிடிப்பதும் கூட. எனவே, பயன்கள் குறைந்தது.

உருக்கு

பன்றியிரும்பானது காபன் உயர்வாக இருப்பதால் கடினத்தன்மை, நொருங்கும் இயல்பு கூடியது. காபன் வீதத்தையும் ஏனைய மாசுக்களான Si, Mn, P போன்ற வற்றையும் வாயுக்களாக அல்லது Slag வெளிப்படுத்துவதன் மூலம் குறைந்து உருக்கு ஆக்கப்படும்.

Bessemer and Thomas முறை

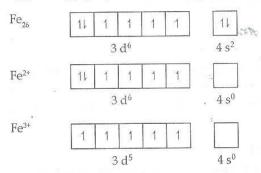
அடியில் துளை கொண்ட உலைக்குள் உருகிய பன்றியிரும்பு ஊற்றப்பட்டு கீழிருந்து வெப்பச் சுவாலை கொண்டு எரிக்கப்படும். இதனில் Si ஆனது SiO₂ ஆகவும் (பின்னர் Iron slag வெளிப்படும்)

Mn ஆனது ${
m MnO}_2$ slag ஆகவும் அகற்றப்படும். பொசுபரசானது $0.05\,\%$ இதற்கு மேற்பட்டால் இரும்பில் இழுவலு (tensile strength) குறையும். மேலும், பொசுபரசு ஊதுலையின் படலங்களைப் பாதிக்கும்.

உருக்கின் வகைகள்

		C	%		
	0.15	-	0.3 %	தேனுருக்கு (Mild steel)	
	0.3	ä	0.6 %	நடுத்தர காபன் உருக்கு	
	0.6	2	0.8 %	உயர் காபன் உருக்கு	
	0.8		1.5 %	ஆயுத உருக்கு	

இரும்பின் கலப்புலோகங்கள்


உருக்கு இரும்புடன் பொருத்தமான தாண்டல் உலோகங்கள் கலந்து ஆக்கப் படும்.

i. கறையில் உருக்கு (Stainless steel)

- ii. Lathes இல் பயன்படும் வெட்டுருக்கு (Cutting steel) 18 % W, 5 % Cr (W தங்குதன்)
- iii. உயர் இழுவலு உடைய (High tensile) உருக்கு 0.4 1.5 % Mn உடையது.
- iv. கல்லுடைக்கும் இயந்திர உருக்குகள் (Hard field steel) Mn 1.3 %, 1.2 C
- v. விற்சுருள் உருக்கு 2.5 % Si உடையது.

இரும்பின் தாக்கங்கள்

சுத்தமான இரும்பு வெண்மையானது. ஓரளவு தாக்குதிறன் உடையது.

 ${
m Fe^{2+}}$ நிலையை விட ${
m Fe^{3+}}$ நிலை உறுதி கூடியது. ஆய்வுகூடத்தில் ${
m Fe^{2+}}$ சேர்வை களை வைத்திருத்தல் கடினம்.

தூய ${
m Iron~(II)}$ சேர்வை எனின் அது ${
m FeSO_4(NH_4)_2~SO_4}$. ${
m 6~H_2O}$ ஆக அமையும். இதனையே பயன்படுத்துவர்.

எனினும் Ammonium iron (II) sulphate (VI) கரைசல் நிலையில் இருப்பின் Iron (III) ஆக ஒட்சியேற்றப்பட்டுவிடும்.

i. வளியுடன் தாக்கம்

$$3 \text{ Fe} + 2 \text{ O}_2 \xrightarrow{500^{\circ}\text{C}} \text{ Fe}_3 \text{ O}_4$$

 $4 \text{ Fe} + 3 \text{ O}_3 \xrightarrow{5500^{\circ}\text{C}} 2 \text{ Fe}_2 \text{ O}_3$

ii. நீருடன் தாக்கம்

குளிர் நீருடன் தாக்கம் இல்லை. ஆனால், நீராவியுடன் வெப்பப்படுத்தும் போது மீள்தாக்கமடையும்.

$$3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(aq)} \Rightarrow \text{Fe}_3\text{O}_4\text{(s)} + 4 \text{ H}_2\text{ (g)}$$

iii. அமிலங்களுடன் தாக்கம்

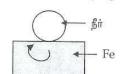
ஐதான அமிலங்களுடன் H, வாயுவைத் தரும்.

Fe (s) + 2 HCl (aq)
$$\rightarrow$$
 FeCl₂(aq) + H₂ \uparrow

செறி H_2SO_4 உடன் SO_2 ஐத் தரும்.

$$2 \text{ Fe} + \text{conc.} 6 \text{ H}_2\text{SO}_4 \longrightarrow \text{Fe}_2(\text{SO}_4)_3(\text{aq}) + 3 \text{ SO}_2(\text{g}) + 6 \text{ H}_2\text{O} (t)$$

Grand and


செறி HNO_3 உடன் ஒட்சைட்டு படலம் உருவாவதால் தாக்கம் மந்தமடையும். அரச நீருடன் (Aquaregia) வன் ஒட்சைட்டு படலம் உருவாவதால் செயற்படா நிலையடையும்.

- iv. காரங்களுடன் தாக்கம் இல்லை. எனினும், நன்கு செறிந்த NaOH ஆனது Fe ஐ மெதுவாகத் தாக்கும். இது மிக அற்பளவு ஈரியல்புத் தன்மைபோல காணப்படும்.
- v. அலசன்களுடன் தாக்கம்

$$2 \text{ Fe} + 3 \text{ F}_{2} \qquad \overrightarrow{\Delta} \qquad \dot{2} \text{ FeF}_{3}$$

$$2 \text{ Fe} + 3 \text{ CI}_{2} \qquad \overrightarrow{\Delta} \qquad 2 \text{ FeCI}_{3}$$

vi. மின்னரிப்பு நீருடனும் வளி முன்னிலையிலும் Fe ஆனது அரிப்படையும்.

துளியின் மத்தியில் (அனோட்டு)

Fe
$$\rightarrow$$
 Fe²⁺ + 2e

துளியின் வெளி ஓரத்தில் (கதோட்டு)

$$O_2(g) + 2 H_2O(t) + 4e \rightarrow 4 OH^-(aq)$$

$$Fe^{2+}(aq) + 2 OH^{-}(aq) \longrightarrow Fe(OH)_2 \downarrow$$
 (அழுக்குப் பச்சை)

$$4 \operatorname{Fe}(OH)_{2}(s) + O_{2}(g) + 2 \operatorname{H}_{2}O(l) \rightarrow 4 \operatorname{Fe}(OH)_{2} \downarrow (Geriselloub)$$

$$Fe(OH)_3$$
 (s) $\xrightarrow{\text{e.o.ir.g.io}}$ $Fe_2O_3 . xH_2O$ gig (Rust)

ஈருலோக அரிப்பு

தாக்கத் தொடரில் மேலே உள்ள உலோகத்துடன் இரும்பு தொடுகையில் இருப்பின் அரிப்புத் தவிர்க்கப்படும். ஏனெனில், மேலே உள்ள உலோகம் அனோட்டாகத் தொழிற்படும். இது கதோட்டுப் பாதுகாப்பு ஆகும்.

தாக்கத் தொடரில் கீழே உள்ள உலோகங்களுடன் இரும்பு தொடுகையில் இருப்பின் அது அனோட்டாகத் தொழிற்பட அரிப்புக் கூடும்.

NB மின்னரிப்பு பற்றிய விபரங்கள் பௌதிக இரசாயன நூலிலும் உண்டு.

Fe²⁺, Fe³⁺ அயன்கட்கான சோதனைகள் அசேதன இரசாயன நூலில் உண்டு.

ßп

H₂O மூலக்கூறானது கோணல் வடிவமுடையது.

இங்கு மைய அணுவான ஒட்சிசனில் இரு பிணைப்புச் சோடி இலத்திரன்களும் இரு தனிச்சோடி இலத்திரன்களும் இடைத் தள்ளுகைக்கு உட்படுவதால் மறை மைய (negative centre's) தள்ளுகை நிலை நான்முகிக்கு உரியது. இரண்டு தனிச்சோடிகளை யும் விட்டு நோக்கின் வடிவம் கோணல் ஆகும்.

பிணைப்புக் கோணம் 104° 40′.

இதனைவிட H_2S இன் பிணைப்புக் கோணம் குறைவாகும். காரணம், ஒட்சிசனைவிட கந்தக அணுவின் ஆரை கூட. மின்னெதிரியல்பு குறைவு. ஆகவே, கந்தகத்தில் தனிச்சோடி இலத்திரனின் சுயாதீனம் கூட. ஆகவே, அவை பிணைப்பு சோடி இலத்திரன்களைத் தள்ளுவது கூடவாகும்.

நீர் மூலக்கூறில் முனைவுத் தன்மை உயர்வாகும். இதனால், அதிக ஐதரசன் பிணைப்பு ஏற்படுகின்றது. இது நீரின் பல சிறப்பியல்புக Digitized by Noolaham Foundation. ளுக்கு காரணம்வு ஆகும் aavanaham.org நீரின் உயர்வான உருகுநிலை, கொதிநிலை என்பவற்றிற்குக் காரணம் ஐதரசன் பிணைப்பாகும். இதனாலேயே நீர் கொதிநிலை கூடிய திரவமாகக் காணப்படு கிறது. இதுவே நாம் அறிந்த வகையிலான உயிரினம் உலகில் நிலவ முக்கிய காரணமாகும்.

நீர் ஒரு முனைவுக் கரைப்பானாக தொழிற்படுவதற்கும் இவ்வைதரசன் பிணைப்பே காரணம்

நீரில் உள்ள மூலக்கூற்றிடைவிசை $\simeq 41 \, \mathrm{kJ}$

இதில் வந்தர்வாலிசு இடைவிசை $\simeq 19\,\mathrm{kJ}$

ஃ ஐதரசன் பிணைப்பு ≃ 22 kJ

எனக் கணித்துள்ளனர். சாதாரணமாக, ஐதரசன் பிணைப்புச்சக்தி 5 kJ - 40 kJ வரை மாறுபடுகின்றது என்பதைக் கருத்திற் கொள்ளப்பட வேண்டும்.

VI ம் கூட்ட மூலக ஐதரைட்டுகளின் சில இயல்புகளைக் கீழே காண்க.

	உருகுநிலை /K	கொதிநிலை / K	உருகலின் மறைவெப்பம் / kJ mol ⁻¹	ஆவியாதல் மறைவெப்பம் /kJ mol ⁻¹
H_2O	273	373	6.0	41
H_2S	188	215 (சுமார்)	2.4	19
H ₂ Se	207	235 (சுமார்)	2.5	19.3
H ₂ Te	225	258 (சுமார்)	4.2	23

இத்தரவுகள் நீரின் அசாதாரண இயல்புகளைக் காட்டி நிற்கின்றன. இதற்கு காரணம் ஏற்கனவே, கூறப்பட்டது போல் ஐதரசன் பிணைப்பாகும்.

நீரின் நேரில் முறை விரிவுக்கும் நீர் பனிக்கட்டியாகும்போது கனவளவு கூடி அடர்த்தி குறைவதற்கும் ஐதரசன் பிணைப்பே காரணமாகின்றது. இது தொடர்பாக பொது இரசாயனத்தில் கலந்துரையாடப்பட்டுள்ளது.

நீர் ஒரு முனைவுத்தன்மை கூடிய பங்கீட்டு சேர்வையாதலால் அதில்,

 $H_2O(t) + H_2O(t) \Rightarrow H_3O^+(aq) + OH^-(aq)$

என்றவாறான ஒரு அயன் சமநிலை உண்டு.

இதில் நீர் ஓர் மூலமாகவும், அமிலமாகவும் தொழிற்படுவதனைக் காணலாம்.

 $298\,\mathrm{K}\,\mathrm{ш}$ ில் தூய நீரில் அயன்பெருக்கம் $1.0 \times 10^{-14}\,\mathrm{mol^2\,dm^3}$ எனக் கணித்துள்ளனர்.

இங்கு $[H_3O^+(aq)] = [OH^-(aq)] = 1 \times 10^{-7} \text{ mol dm}^{-3}$ ஆகும்.

நீர் நடுநிலையான பதார்த்தம் ஆகும். ஆயினும், அது புரோன்செட் அல்லது உலூயியின் கொள்கைகளில் அடிப்படையில் மூலம், அமிலமாக தொழிற்படக் கூடியது.

 $H_2O\left(t\right) + HCI\left(g\right) \rightleftharpoons H_3O^+\left(aq\right) + CI^-\left(aq\right)$ மூலம் Digitized by Noolaham Foundation. மூலம் இணைமூலம்

$$H_2O\left(t\right) + NH_3\left(g\right) \Rightarrow NH_4^+\left(aq\right) + OH^-\left(aq\right)$$
 மூலம் அமிலம் இணைமுலம்

நீரில் புரோத்தன்கள் (H^{+}) நீர் மூலக்கூறுடன் ஈதர் பிணைப்பால் இணக்கம் அடைந்து $H_{2}O^{+}(aq)$ ஆக அமைகின்றன.

$$\mathrm{H_2} \overset{\circ}{\mathrm{O}} : + \mathrm{H}^+ \ \to \ \left[\mathrm{H} \overset{\circ}{\mathrm{H}} \overset{\circ}{\mathrm{H}} \overset{\circ}{\mathrm{H}} \right]^+$$

நீரின் சில தாக்கங்கள்

i. நீர் ஓட்சியேற்றியாக

2 Na (s) + 2 H₂O (t)
$$\rightarrow$$
 2 NaOH (aq) + H, † (g)

இங்கு நீர் ஒரு அமிலமாகவும், ஒட்சியேற்றியாகவும் தொழிற்படுகின்றது. பொதுவாக, தாக்கத் தொடரில் மேலே உள்ள உலோகங்களை நீர் ஒட்சி யேற்றும்.

நீராவியும் ஒட்சியேற்றியாக தொழிற்படக்கூடியது eg ${
m Mg}\,({
m s}) + {
m H,O}\,({
m g}) \ \ \, \to \ \, {
m MgO}\,({
m s}) + {
m H,g}({
m g})$

ii. **நீர் ஒரு தாழ்த்தியாக**

நீரில் ஒட்சிசன் அதன் இழிவு ஒட்சியேற்ற நிலையில் உண்டு. இருப்பினும் ஒட்சிசனின் மின்னெதிரியல்பு மிகக்கூடிய புளோரினிற்கு அடுத்த படியில் அமைகின்றது.

ஆகவே, நீரை ஒட்சியேற்றுவது கடினம். எனினும், F_2 வாயுடன் தொழிற்பட விடும்போது $O_2(g)$ உம் உருவாகும்.

$$2 H_2O + 2 F_2 \rightarrow 4 HF + O_2 \uparrow$$

நீரின் வன்மை (Hardness of water)

நீரில் Ca²⁺, Mg²⁺ அயன்கள் காணப்பட்டால் இந்நீரை சவர்க்காரத்துடன் சேர்க்கும்போது நுரைத்தல் ஏற்படாது. ஏனெனில், Ca, Mg இல் கொழுப்பு அமில உப்புகள் நீரில் கரைவது இல்லை. இது மென்படலமாக நீரில் அமையும்.

$${
m Ca^{2^+}} + 2\ {
m CH_3(CH_2)_{16}COONa} \longrightarrow {
m Ca(OCO(CH_2)_{16}CH_3)_2}$$
 (Sodium stearate or Sodium octadecanoate) Calcium stearate

சவர்க்காரம் நுரைக்காத நீர் வன்னீர் எனப்படும். வன்மை இருவகைப்படும்.

- 1. நிலையில் வன்னீர் (Temporary hardness)
- 2. நிலையான வன்னீர் (Permanent hardness)

நிலையில் வன்மைக்குக் காரணம் Ca, Mg இன் HCO_3 உப்புகள் காணப்படல் ஆகும். ஏனைய Ca, Mg இன் உப்புகள் காணப்படுவது நிலையான வன்னீர்.

வன்னீரின் முக்கிய பாதிப்பு சவர்க்காரத்தை இடும்போது அது வீழ்படிவாகின்றது. இதனால், சவர்க்காரம் <mark>விரயமாகின்றது.</mark> இதுமட்டுமல்ல சவர்க்காரம் ஒரு படையாக மேலே மிதக்குழ்த் d by Noolaham Foundation. 44 தவிர, வன்னீரை கொதிக்க வைக்கும்போது நிலையில் வன்னீர் எனின் ஐதரசன் காபனேற்றுக்கள் பிரிந்து $CaCO_3$, $MgCO_3$ ஆகப் படியும். இது கேத்தல் (Kettle) துவாரம், அடிப்புறத்தில் படிவதால் நீரைக் கொதிக்க வைக்கக்கூடிய வெப்பம் வழங்கப்பட வேண்டும். இதனால் நேரம், எரிபொருள் விரயம் ஏற்படும். தவிர, நீர்ப் பம்பிகள், நீர்க் குழாய்களில் $CaCO_3$, $MgCO_3$ போன்றவை படிந்து அவற்றின் வினையாற்றலைக் குறைக்கும். சில சமயங்களில் நீர் வழங்கல் தடைப்படலாம்.

உடலியல் ரீதியிலும் சில பாதிப்புகள் ஏற்படலாம். சிறுநீரகக் கற்கள், நோய்கள் ஏற்படவும் இவை காரணியாகலாம்.

எனவே, வன்னீரை மென்னீராக்கல் ஒரு முக்கிய அம்சமாகும்.

நிலையில் வன்னீர்

i. கொதிக்க வைத்தல் மூலம்

$$Ca(HCO_3)_2$$
 (aq) $\xrightarrow{\Delta}$ $CaCO_3 \downarrow + H_2O + CO_2$

$$Mg(HCO_3)_2$$
 (aq) \longrightarrow $MgCO_3 \downarrow + H_2O + CO_2$

 ${
m Ca^{2+}}, {
m Mg^{2+}}$ அயன்கள் அவற்றின் காபனேற்றுகளாக நீக்கப்படும். இவ்வாறு இலகுவில் அகற்றப்படல் காரணமாகவே இது நிலையில் வன்னீர் எனப்படும்.

எனினும், முன்னர் குறிப்பிட்டதுபோல் Kettle களில் $CaCO_{_{3'}}$ $MgCO_{_3}$ இன் படிவுகள் குறிப்பிடத்தகு பாதிப்பை ஏற்படுத்தலாம்.

ii. நீறிய சுண்ணாம்பு பயன்படுத்தல்

$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2 CaCO_3 \downarrow + 2 H_2O$$

நிலையான வன்னீர்

இது $\mathrm{HCO_3}^-$ தவிர வேறு அனயன்களையுடைய Ca , Mg உப்புகளாதலால் கொதிக்க வைத்து தூய்தாக்க முடியாது.

i. Na₂CO₃ (Washing Soda)

இதனை சேர்த்து $CaCO_{3^{\prime}} MgCO_3$ ஆக அவற்றை வீழ்படிவாக்கி நீக்கலாம்.

ii. கற்றயன் பரிமாற்ற முறை

இதற்கு Sodium Zeolite போன்ற வடிகட்டிகளைப் பயன்படுத்தலாம்.

 $(Na_2O)_x$. $(Al_2O_3)_y$. $(SiO_2)_z$ போன்று ஒரு சிக்கற் சேர்வைதான் Sodium Zeolite ஆகும்.

Zeolite இன் கட்டமைப்பில் துளைகள் உண்டு. இதற்குள் Na⁺ சேர்த்து Sodium Zeolite உருவாகும்.

Zeolite நுண்டுளைகளினூடு வன்னீரை வடியவிடும்போது Na⁺ அயனானது Ca²⁺, Mg²⁺ ஆல் பரிமாற்றப்படும். வடிநீரில் Na⁺ காணப்படும். Ca²⁺, Mg²⁺ என்பன நுண்டுளைகளில் படிந்துவிடும். ஆனால், Na⁺ முற்றாக பெயர்க்கப் பட்டுவிட்டால் இது படுன்றது Noolatan Foundation திற்குக் காலம் 'கறியுப்பு நீர்'

கரைசலை ஊற்றி இதனூடு வடியவிட்டால் மீண்டும் கற்றயன் பரிமாற்றத் தால் $\mathrm{Ca^{2+}}$, $\mathrm{Mg^{2+}}$ பெயர்க்கப்பட $\mathrm{Zeolite}$ துளைகளில் $\mathrm{Na^{+}}$ படிந்து விடும்.

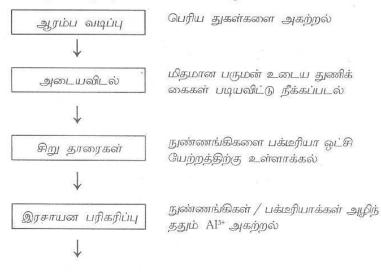
மற்றொரு முறை 'Calgon' முறையாகும். 'Calcium gone' என்பதிலிருந்து இச் சொற்றொடர் உருவாகியது.

இங்கு Sodium Poly Phosphate ($\mathrm{Na_sP_sO_{18}}$) என்பது பயன்படுகிறது. இது $\mathrm{PO_3}^-$ அயனின் பல்பகுதிய நிலையான ($\mathrm{PO_3}^-$) $_{6}$ அதாவது, $\mathrm{P_6O_{18}^{6-}}$ அயனாகும். இதனைப் பயன்படுத்தி $\mathrm{Ca^{2+}}$, $\mathrm{Mg^{2+}}$ ஐ சிக்கலான படிவாக்கி அகற்றலாம்.

இதுதவிர EDTA (Ethylene diamine tetra acetic acid) என்பதும் Ca²+, Mg²+ உடன் சிக்கலை உருவாக்கி அவற்றை அகற்றப் பயன்படும்.

ஆயினும், Calgon முறையும் EDTA முறையும் குடிநீருக்கு உகந்தது அல்ல. ஆனால், துணிகட்கு சாயமிடல் போன்ற கைத்தொழில் முறைகட்கு உகந்தது. மேலும், ஆய்வுகூடத் தேவைகட்கு 'காய்ச்சி வடித்த நீர்' (Distilled water) பயன்படுத்தப்படுகின்றது. நீரைக் கொதிக்கவைத்து ஆவியை ஒடுக்கிப் பயன்படுத்துகின்றார்கள். ஆயினும், இது சிறிதளவிலேயே மேற்கொள்ளப் படுகின்றது. சூரிய ஒளியினைப் பயன்படுத்தி இதனை மேற்கொள்ளல் இலாபகரமானது.

- NB i. 100 % சுத்தமான நீர் எனின் குடிப்பதற்கு உடலிற்குச் சிறந்தது. ஆயினும், சுவையற்றது. 'Minerol water' இல் சில கனிப்பொருட்கள் கலந்துள்ளனர். இது குடிப்பதற்கு சற்று சுவையும் உடலுக்கு ஊட்டமான கனிப்பொருட்களை யும் தரும்.
 - ii. ஆய்வுகூடத்தில் நீரின் பருமட்டான வன்மையை அறிய குறித்த கனவளவு நீருக்கு Na₂CO₃ சேர்த்து வீழ்படிவுறும் CaCO₃, MgCO₃ இன் உலர்திணிவிலிருந்து Ca²⁺, Mg²⁺ செறிவை அறியலாம். ஆயினும், இது திருத்தமான முறையன்று.
 - iii. Erichrome Black T என்பது Ca²+ அல்லது Mg²+ உடன் குறிப் பிடத்தகு நிறமாற்றத்தை (சிவப்பு) உடையது. Ca²+, Mg²+ அகற்றப்பட்டால் நீலமாகும். ஆனால் இது கார தாங்கற் கரைசல் ஊடகத்தில் (NH₄Cl/NH₃(aq)) தான் தொழிற்படும். EDTA உடன் Ca²+/ Mg²+ சிக்கல் நிலையை உருவாக்கும். இந் நிலையில் Erichrome Black T உடன் நிறம் தரமாட்டாதன.


இதனைப் பயன்படுத்தி EDTA மூலம் கரைசலில் உள்ள $\mathrm{Mg^{2^+}, Ca^{2^+}}$ இன் செறிவை நியமித்து அறியலாம்.

காட்டி : Erichorme Black T

முடிவு நிலை : Red to Blue Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

NB **நீரைத் தூய்தாக்கல்**

பின்வரும் படிமுறைகளை உள்ளடக்கியது.

மக்கள் பாவனை

NB பின்வரும் மாசுக்கள் குடிநீரில் குறிப்பிட்ட அளவுக்கு மேல் அதிகரித்தால் அது உடல்நலத்திற்குக் கேடாகும். இது EEC Limits எனப்படும்.

மாசு	EEC/10-6g dm-3	பாதிப்பு
Al	200	Al zheimer's disease (Dementia)
Pb	50	குழந்தைகளின் மூளையைப் பாதிக்கும்
NO ₃	50	குழந்தைகளின் குருதியிலுள்ள O_2 இன் அளவைக் குறைக்கும் (Blue baby syndrome) அத்துடன் வயிற்றில் ஏற்படும் புற்றுநோய்
CHCl ₃ ⁻ (Cl ₂ ஐ அதிகளவு நீரில் பயன்படுத்தில் Peatஉடன் தாக்கி CHCl ₃ உருவாகும்)	100 ள்	Bladder & Gut cancer
பூச்சிநாசினிகள்	0.1(தனித்து) 0.5(கூட்டாக)	ந <i>ச்சுத்த</i> ன்மை

NB நீரைத் தூய்தாக்க Cl_2 வாயு மட்டுமல்ல $\operatorname{O}_3(g)$ உம் பயன்படுத்த லாம். இது புதுமியிருக்குண்ணச் விக்சில்லும். noolaham.org | aavanaham.org

47

Q: 2001 August

- 9. b. iii. நீரில் கரைத்த ஒட்சிசன் அளவு குறைவது நீர் மாசடைதலைக் குறிக்கின்றது. இது குறைவதற்கு காரணம் யாது?
 - iv. குடிநீரினை தொற்றுநீக்கலுக்கு Cl₂ வாயுவைப் பயன்படுத்த லாம். இத் தேவைக்கு மாற்றீடு வாயு ஒன்றைத் தெரிந்திடுக.
- 10. a. iii. குளமொன்றில் நைத்திரிக்கமிலம் தற்செயலாகச் சேர்வதால் ஏற்படும் சுற்றாடலுக்கு மாசுறல் பற்றிய மூன்று முறைகளைச் சுருக்கமாகத் தருக.

Ans.

- b. iii. O₂ குறைவதற்கு பல காரணிகள். அவற்றில் ஒன்று நீர் வாழ் தாவர விலங்குகள் சுவாசத்தால் குறையும்.
 - iv. Cl₂ இற்கு பதில் O₃ பயன்படுத்தலாம்.
- 10.a. ii. HNO₃ இனால் நீர் அமிலமடையும். இது நீர்வாழ் உயிரிகளைப் பாதிக்கும். மண்ணரிப்புக்குக் காலாகும்.

NO₃ நீரில் சேர இதனை அருந்துவோருக்கு PAN விளைவினால் நீலக் குழந்தைகள் பிறத்தல் ஏற்படலாம்.

நீரில் ஒட்சிசனின் நூற்றுவீதம் துணிதல்

தேவையான பொருட்கள்

- i. MnCl_2 கரைசல்
- ii. கார KI கரைசல்
- iii. Gசறி H₂SO₄
- iv. Na₂S₂O₃ இன் நியமக் கரைசல்
- v. மாப்பொருள் காட்டி

i.
$$MnCl_2 + 2 OH^- (aq) \rightarrow Mn(OH)_2 \downarrow + 2 CH^-$$

ii.
$$2 \operatorname{Mn}(OH)_2 + O_2 \text{ (BHo)} \rightarrow 2 \operatorname{MnO}_2 + 2 \operatorname{H}_2O$$

iii.
$$\mathrm{MnO_2} + 2\,\mathrm{H_2SO_4} + 2\,\mathrm{KI} \ \rightarrow \ \mathrm{MnSO_4} + \mathrm{I_2} + \mathrm{K_2SO_4} + 2\,\mathrm{H_2O}$$

iv.
$$I_2 + 2 \text{ Na}_2 S_2 O_3 \rightarrow \text{Na}_2 S_4 O_6 + 2 \text{ NaI}$$

ஃ நீரிலுள்ள
$$O_2$$
 mol = $\frac{1}{2}$ Mn O_2 mol

$$=$$
 $\frac{1}{2}I_2 \text{ mol}$

$$= \frac{1}{4} \text{Na}_2 \text{S}_2 \text{O}_3 \text{ mol}$$

NB அரை அயன் சமன்பாடுகள்

i.
$$Mn^{2+}$$
 (aq) + 2 OH (aq) \rightarrow Mn (OH)₂(s)

ii.
$$O_2(aq) + 2 H_2O(t) + 4 e \rightarrow 4 OH^-(aq)$$

Digitized by Noolaham Foundation noolaham.org | aavanaham.org

$$2 \operatorname{Mn}(OH)_{2} + 4 \operatorname{OH}^{-} \longrightarrow 2 \operatorname{MnO}_{2} + 4 \operatorname{H}_{2}O + 4 \operatorname{e}$$

$$[\operatorname{MnO}_{2} \equiv \operatorname{Mn}(OH)_{4} - 2 \operatorname{H}_{2}O]$$
iii.
$$\operatorname{MnO}_{2} + 4 \operatorname{H}^{+} + 2 \operatorname{e} \longrightarrow \operatorname{Mn}^{2+} + 2 \operatorname{H}_{2}O$$

$$2 \operatorname{I}^{-} \longrightarrow \operatorname{I}_{2} + 2 \operatorname{e}$$
iv.
$$2 \operatorname{S}_{2} \operatorname{O}_{3}^{2-} \longrightarrow \operatorname{S}_{4} \operatorname{O}_{6}^{2-} + 2 \operatorname{e}$$

முறை

- i. O₂ செறிவு துணியப்பட வேண்டிய நீர்நிலையில் தாக்கு பொருள் போத்தல்கள் (Reagent bottles) இரண்டினை முழுமையாக நீரால் நிரப்புதல், வளிக்குமிழ் சிறைப்பிடிக்கப்படக்கூடாது.
- ii. முதலில் 1-2 cm³ போதுமான செறிவுள்ள MnCl₂ கரைசலையும், 2-3 cm³ கார KI கரைசலையும் குழாயி அல்லது கண்ணாடிக் குழாயின் உதவியுடன் தாக்கு போத்தலிலுள்ள நீரில் அடியில் சேர்த்தல். போத்தல்களை மூடுதல். வழியும் நீரைத் துடைத்தல். கபில வீழ்படிவு உருவாக தொடங்கும்.
- ${
 m iii.}$ ஆய்வுகூடத்திற்கு எடுத்துச் செல்லல். சிறிது நேரம் வைத்தபின் $1 ext{-}2~{
 m cm}^3$ செறி ${
 m H_2SO_4}$ இனை முன்பு போல் குழாயின் உதவியுடன் கவனமாகச் சேர்த்தல்.
- iv. சுமார் 15 நிமிடங்கள் வைத்தல். மஞ்சட் கபிலத்தில் I, உருவாகும்.
- v. இக்கரைசலில் சுமார் 50 cm³ இனை தாக்குபொருளுடன் போத்தல் ஒன்றிற் குள் குழாயி இறக்கம் செய்தல்.
 - இதற்குள் அளவியிலிருந்து ஐதான (eg. $0.01~{
 m mol}~{
 m dm}^3)~{
 m Na_2S_2O_3}$ கரைசலை இள மஞ்சள் நிறம் (வைக்கோல் நிறம்) தோன்றும் வரை ஓடவிடல்.
- vi. பின் சிறிது மாப்பொருள் சேர்த்தல். உருவாகிய நீல நிறம் மறையும் வரை தொடர்ந்து அதே $Na_2S_2O_3$ கரைசலை அளவியிலிருந்து ஓடவிடல்.
- vii. இவ்வாறு இரண்டு மூன்று தடவைகள் நியமிப்பை திரும்பத் திரும்பச் செய்க.
- viii. அளவி வாசிப்பிலிருந்து சராசரியை எடுத்து Na₂S₂O₃ இன் மூல் காண்க.
- ix. முன்பு காட்டியதுபோல ${
 m O_2}$ இன் மூல் எண்ணிக்கை கணித்து ${
 m mg~dm^3}$ இல் அல்லது ppm இல் (part per million) கணிக்குக.
 - NB இங்கு முக்கிய விடயங்கள். O₂ இன் நீரில் கலந்துள்ள அளவு. வளிக்குமிழ் சிறைப்பிடிக்கப்படல், சோதனைக்கு எடுத்த நீர் மாதிரிகள் சோதனை முறைகளைத் தொடங்கிய பின் வளித் தொடர்பில் வைத்திருத்தல் என்பவற்றைத் தவிர்க்குக. கரைசலுக்குள் கவனமாக MnCl₂, KI/OH², H₂SO₄ சேர்த்தல் முக்கியம்.

சாற்றுத் வதலங்கள்

தாவர அல்லது விலங்கு பகுதிகளிலிருந்து பெறப்படும். எளிதில் ஆவி யாகும் சிறப்பான மணமுடைய திரவங்களே சாற்றுத் தைலங்களாகும். கஸ்தூரி மான், சுறாமீன், புனுகுப் பூனை போன்ற விலங்குகளிலி ருந்தும் கீழே காட்டப்படும் தாவரப் பகுதிகளிலிருந்தும் சாற்றுத் தைலங்கள் தயாரிக்கப்படும்.

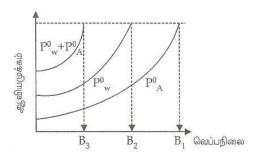
	தாவரப் பகுதி	தாவரம்
1.	வேர்	கறுவா, சுவேந்திரா, லாமிச்சை
2.	மரம்	சந்தன மரம்
3.	பட்டை	கறுவா
4.	<u>മ</u> ്വിതെ	கறுவா, லெமன்டில், சிற்றனெலா புல், கற்பூரப் புல், யூகலிப்டஸ்
5.	மொட்டு	ஏலம், கறுவா
6.	IJ	மல்லிகை, றோசா
7.	பழம்	தோடை, லெமன்
8.	விதை	கராம்பு, சாதிக்காய்

Digitized by Noolaham Foundation.

இலங்கையைப் பொறுத்தவரை கராம்பு, கறுவா, ஏலம், யூகலிப்டஸ், சிற்றெனலா தைலங்கள் தயாரிக்கப்படும். சாற்றுத்தைலம் பிரித்தெடுக்கப் பயன்படும் முறைகளில் குறிப்பிடத்தக்கன மூன்று.

- 1. கொதிநீராவி காய்ச்சி வடிப்பு
- 2. கரைப்பான் பிரித்தெடுப்பு
- 3. சாறு பிழிதல்

கொதிநீராவி காய்ச்சி வடிப்பு


தத்துவம் : நீரும் அதனுடன் கலக்கும் தகவற்ற திரவம் ஒன்றையும் கருதுக. இவை ஒன்றுடன் ஒன்று கலக்க மாட்டாதன. ஆதலால், இதன்பின் இரண்டின் மூலக்கூற்றிடை விசைகளும் மிகக் குறைவு அல்லது புறக்கணிக்கத்தக்கன.

> எனவே, இவற்றைக் கொண்ட தொகுதியை ஆவியாகவிட தொகுதி மீது கூறுகள் இரண்டும் தமது தூய ஆவியமுக்கத்தைக் கொள்ளும். ஆகவே, தாற்றனின் விதிப்படி தொகுதியின் மொத்த அமுக்கமா னது கூறுகளின் நிரம்பலாவி அமுக்கங்களின் கூட்டுத்தொகைக்குச் சமனாகும்.

ஆகவே, கூறுகளின் நிரம்பலாவி அமுக்கங்களின் கூட்டுத்தொகை வெளியமுக்கத்திற்கு சமமாகும்போது தொகுதி கொதிக்கும்.

எனவே, தொகுதியின் கொதிநிலை கூறுகளின் தூய கொதி நிலையை விடக் குறைவாகும்.

நீரும் அத்துடன் கலக்கும் தகவற்ற திரவம் A ஐயும் கருதின் பின்வரும் அவத்தை வரைபால் இதனைக் காட்டலாம்.

 \mathbf{B}_1 தூய \mathbf{A} யின் கொதிநிலை

B₂...... தூய நீரின் கொதிநிலை

 \mathbf{B}_3தொகுதியின் கொதிநிலை

எனவே, நீரும் அதனுடன் கலக்கும் தகவற்ற திரவமும் கொண்ட தொகுதிக்குள் கொதிநீராவியைச் செலுத்த அத்தொகுதி கொதித்து ஆவியாகும்.

எனவே, உதாரணமாக, கறுவா இலையிலிருந்து சாற்றுத் தைலம் தயாரிக்க வேண்டின் கறுவா இலையும் நீரும் கொண்ட தொகுதிக்குள் கொதிநீராவி செலுத்துக. சாற்றுத் தைலமும் நீரும் கொதித்து ஆவியாகி வெளிப்படும். இவற்றை இலிபீக்கின் ஒடுக்கி கொண்டு ஒடுக்குக. பெறப்படும் திரவங்கள் பிரி புனல் கொண்டு வேறாக்கி எடுக்குக.

கரிவு நீர்த்தொட்டிக்கு இலீபீக்கின் ஒடுக்கி தற் இலை நீர்

நீர்க்

குழாயிலிருந்து

- பெற்றோலியம் ஈதர், தொலுயீன் போன்ற கரைப்பான்கள் தாவரப் பகுதியுடன் சேர்த்துக் குலுக்கும்போது சாற்றுத் தைலம் வேறாகி கரைப்பானிற்குள் சேரும்.
 இது கரைப்பான் பிரித்தெடுப்பு ஆகும்.
- 3. மெழுகு பூசப்பட்ட தகடுகளுக்கு இடையில் தாவரப் பகுதியை வைத்து நசுக்குதல். சாற்றுத்தைலம் வேறாகி மெழுகினால் உறிஞ்சப்படும். பின் மெழுகிலிருந்து கரைப்பான்கள் பயன்படுத்தி வேறாக்கலாம்.

கறுவாத் தைலத்தின் பிரதான சேதனக்கூறுகள்

i. Cinnamaldehyde Phenylpropenal

வெப்பம்

- ii. Eugenol
- iii. Camphor கற்பூரம்

H

$$H_2C$$
 $C = O$
 H_2C
 $C = O$
 CH_3
 CH_2
 CH_3

கறுவாத் தைலம்

	இலை	பட்டை	வேர்
Eugenol	70-85 %	8-10 %	5%
Cinnamaldehyde	6-10 %	75 %	4%
Camphor	தடம்	தடம்	65%

கராம்புத் தைலம்

Eugenol ~ 90-98 %

மிளகுத் தைலம் (Pepper oil)

Caryophyllene - 25%

சிற்றனெல்லா புல் தைலம் (Citronella oil) - காவட்டம் புல் தைலம்

Gereniol - 20% - 40 % (பொதுவாக)

Citronellol - 10% - 20 % (பொதுவாக)

Citronellal - 7%

சாதிக்காய் (Nutmeg)

α - Pinene - 30 %

β - Pinene - 20 %

Sabinene - 15 %

Limonene - 10 %

சாற்றுத் தைலத்தை சேமிக்கும்போது அவதானிக்க வேண்டியன.

- i. வளியிறுக்கமான கொள்கலன்கள்
- ii. கொள்கலன் முழுமையாக சாற்றுத் தைலத்தால் நிரப்பப்படவேண்டும். ஏனெனில், வளி இருப்பின் அதன் ஒட்சியேற்றமும் நீராவியின் நீர்ப்பகுப்பும் தைலத்தைப் பாதிக்கும். இதற்காக கொள்கலத்தை மூடுமுன் அதற்குள் N₂ உம் CO, உம் செலுத்தி நிரப்பப்படும்.
- iii. ஈயம் பூசப்பட்ட கொள்கலன்கள் உகந்தன.
- iv. பொலித்தீன் கொள்கலன்கள் ஏற்புடையவை அல்ல.

பயன்கள்

- i. வாசனைத் திரவியம்
- ii. மருத்துவத் தயாரிப்பு

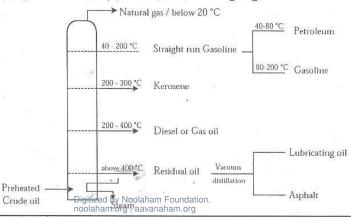
NB aussilla - Vanilla

இதிலுள்ள Vanillium

வனிலா மர வித்துக்கள் எதனோலுடன் சேர்த்துக் குலுக்கப்பட்டு இது வேறாக்கப்படும். நீரில் கரைவது அரிது.

- Q.1. கறுவாத் தைலத்தில் யூஜினோல், சிற்றனல் ஆகியவற்றிற்கு எளிய பரிசோதனைகள் யாவை? தொழிற்படு பகுதிகளை எடுத்துக்காட்டின் போதுமானது.
 - கறுவாத் தைலத்தையும் கராம்புத் தைலத்தையும் எவ்வாறு வேறு பிரித்து இனங் காண்பீர்?
 - 3. சாற்றுத்தைலம் பிரித்தெடுப்பிற்கு கொதிநீராவி காய்ச்சி வடிப்பு முறை ஏனைய இரண்டிலும் பார்க்கச் சிறந்தது ஏன் என விளக்குக.
 - சிற்றனல் i. தொலனின் சோதனைப்பொருளுடன் வெள்ளியாடி
 ii. குளிர் MnO₄⁻ / OH⁻ உடன் நிறநீக்கம்

யூஜினோல் i. நடுநிலை FeCl₃ உடன் ஊதா நிறம் ii. குளிர் MnO₄ / OH⁻ உடன் நிறநீக்கம்


- 2. கறுவாத் தைலம் AgNO₃ / NH₃ உடன் வெள்ளியாடி தரும். கராம்புத் தைலம் தரமாட்டாது.
- குறைந்த வெப்பநிலை பயன்படுவதால் சாற்றுத் தைலம் பாதிக்கப் பட மாட்டாது.
 கொழுப்பு மாசுக்கள் அற்றது. சிக்கனமானது.

១.យ៉ាក់ អៈសាវៈអ្រី តាពីសារាក្រតាំ

பெற்றோலியக் கைத்தொழில்

இயற்கையிலுள்ள ஒரு ஐதரோகாபன் முதல் பெற்றோலியம் ஆகும். மசகு எண்ணெயானது பல அற்கேன்களின் கலவையாகும். இதனைப் பகுதிபடக் காய்ச்சி வடிப்பு மூலம் பெற்றோலிய கூறுகள் பெறப்படும். இது பெற்றோலியம் சுத்திகரிப்பு (Petroleum refine) எனப்படும். இதற்குப் பயன்படும் நிரலின் அளவு பின்வருமாறு:

- i. உயர்ந்த உருக்கு பகுதிபடக் காய்ச்சி வடிப்பு நிரல் பயன்படும்.
- ii. இந்நிரலுக்குள் சூடாக்கப்பட்ட மசகு எண்ணெய் தொடர்ச்சியாகப் பாய்ச் சப்படும். மசகு எண்ணெய் ஆவி நிரலுக்குள் மேலேறும்.
- iii. ஆவி குளிரும்போது வெவ்வேறு உயரங்களில் வெவ்வேறு கூறுகள் ஒடுக்கப்படும் தாழ்நிலையை உயர் கொதிநிலை கூறு அலகும், வாயுநிலை ஐதரோகாபன் மேல் பகுதிக்கும் செல்லும்.

Main Petroleum Fractions

IV	iant i ettor	eum macuo.	115
Name	Boiling Range	Composition	Uses
1. Normal gas	upto room temperature	C ₄ - C ₅	Fuel gas
2. <u>Straight run</u> Gasoline		C ₅ - C ₁₁	
Refractionated to yield			
a. Petroleum Eitherb. Gasoline or Petrol	40 - 200° 80 - 200°	C ₈ - C ₁₁ - C ₁₆	Solvent dry-cleaning Motor fuel
3. Kerosene	200-300°	C ₁₁ -C ₁₆	Illuminant fuel for stoves for molting oil gas
4. Gas oil or Diesel oil	300- 400°	C ₁₆ -C ₁₈	Fuel for diesel engine
5. Residual oil Refractionated under vacuum to give	above 400°		
a. Lubricating oil		C ₁₈ -C ₂₀	Lubricator
b. Paraffin wax (on cooling)	**************************************	C ₂₀ -C ₃₀	Oinments, candles toilets, vaseline, wax paper
c. Non volatile		<u>98</u> . 1	Paints
residue - Asphalt			Road surface

பெற்றோலிய உடைப்பு

நீண்ட சங்கிலி அற்கேன்கள் (200 - 800 °C கொதிநிலை) ஊக்கி / ஊக்கியற்ற நிலையில் சூடாக்கப்பட்டு உடைத்து காபன் குறைந்த சிறிய அற்கேன்கள், அற்கீன்கள், ஐதரசன் பெறப்படும். Digftized by Noolaham Foundation. noolaham.org | aavanaham.org

1. Long chain alkane
$$\frac{400-800^{\circ}C}{cracking}$$
 Smaller Alkane + Alkene + H₂

eg
$$CH_3CH_2CH_3 \xrightarrow{600 \, ^{\circ}C} CH_3CH_2CH = CH_2 + H_2$$

 $CH_3CH = CHCH_3 + H_2$
 $CH_3CH = CH_2 + CH_4$
 $CH_3 = CH_2 + CH_3CH_3$

- 2. CATALYST: Silica or Alumina
- 3. Petrol Production மசகு எண்ணெயில் ஆகக் கூடியது சுமார் 18 % Gasoline உண்டு. ஆனால் இதன் தேவை கூட. இதனால், Kerosene போன்றன Gasoline ஆக மாற்றப் படும்.

$$(C_{11}-C_{16}) \stackrel{Al_2O_3SiO_2}{\longrightarrow} Gasoline (C_8-C_{11})$$

- NB அடிப்பு எண் Knocking number ஒரு 4- அடிப்பு எந்திரத்தில் (4-stroke engine) இயக்கம் பின்வரும் அடிப்படையில் அமையும்.
 - i. அடிப்பு I உறிஞ்சல் (Section) Piston கீழ்நோக்கிச் செல்ல அதற்குள் எரிபொருள் சேரும்.
 - ii. அடிப்பு II பின் Piston மேலெழுந்து செல்லும். இதன்போது எரிபொருள் அமுக்கப்படும். (Compressioin) இவ்வாறு அமுக்கப்பட்டுச் செல்லும்போது plug இல் இருந்து மின் பொறி சிதறும். இதனால் பெற்றோல் தீப்பற்றும். இதன்போது வாயு விளைவுகள் உருவாகி கனவளவு கூட, பின் மீண்டும் Piston கீழ்நோக்கி தள்ளப்படும். இது தகன அடிப்பு.
 - iii. அடிப்பு III பின் மீண்டும் Piston மேலெழும் போது எரித்துப் பெறப்பட்ட வாயுக்கள் வெளிவாயில் திறந்து வெளிப்படுத்தப்படும்.

இவ்வாறு நடைபெறும்போது குறைதகனம் நடந் தால் அல்லது தகனமாகும் நேரத்தில் மாற்றம் ஏற்பட்டால் இயந்திரம் சீராக இயங்காது. இது அடிப்பு எனப்படும். இதனைக் குறைப்பதற்கு Tel [Tetra ethyllead (C₂H₅), Pb] பயன்படுத்தப்படும். இது நச்சுக் கழிவு. இதனைக் குறைப்பதற்கும் பல வழிமுறைகள் உண்டு. உதாரணம், 1,2-dibromo ethene சேர்த்து PbBr₂ ஆக வீழ்படிவாக்கி அகற்ற லாம்.

பெற்றோல் Iso octane ஆனது எரிபற்று நிலை குறைந்தது. இது எரிதலை சீராக்கும் இது எளிய Lugitized by Noolaham Foundation. இதிலு. அடிப்பு எண்ணாதினப்படும். Iso octane இன் கட்டமைப்பு

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3} - \operatorname{CH} - \operatorname{CH_2} - \overset{\mathsf{I}}{\operatorname{C}} - \operatorname{CH_3} \\ \operatorname{CH_3} \\ \end{array}$$

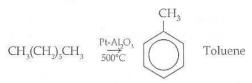
2,2,4 - Trimethyl pentane

ஆயினும், தற்போது அடிப்புகளைக் குறைக்க பல்வேறு வழிமுறைகள் கையாளப்படுகின்றன.

eg 1. TEL----- Tetra ethyl lead என்பது ஒரு அடிப்பெதிரி யாகும்.

இது எரிதலை சீராக்கும்.

ஆனால், இங்கு உலோக மீதியைக் கொடுக்கும். இதனைத் தடுக்க CH₂Br - CH₂Br சேர்க்கப்படும்.


Pb + CH₂Br.CH₂Br → PbBr₂ + CH₂ = CH₂
PbBr₂ ஆவியாகக்கூடியது. எனினும், இதன் ஆவி
யும் துழலைப் பாதிக்கக்கூடியது.
தற்போது Octane-number என்பது அடிப்பு
குறைந்த அற்கேன்களுக்குப் பயன்படுத்தப்படும்
ஒரு குறியீட்டுப் பெயராகப் பயன்படுத்தப்படுகின்

eg 2. n-Pentane Al₂O₃ Isopentane
Octane No. -62 Octane No. 90
இவ்வாறு Octane No. இனை அபிவிருத்தி செய்ய லாம்.

eg 3.
$$CH_3$$
 CH_3 CH_3

2,2,4 - Trimethyl pentane Octane No : 100

NB பெற்றோலியக் கைத்தொழிலின் வேறு பயன்கள் i. அரோமற்றிக்கு சேர்வைகள் தயாரிக்கலாம்.

இது மட்டுமல்ல பென்சீன், சைலீன் என்பனவும் தயாரிக் கலாம். Digitized by Noolaham Foundation. noolaham.org | aavanaham.org பொதுவாக, BTX தயாரிப்பு என்பர்.

B --- Benzene

T --- Tolune

X --- Xyloene

- ii. நைலோன் தயாரிப்பு. இதுபற்றிய சிறுகுறிப்பு பல்பகுதியங் களில் உண்டு.
- iii. சாயங்கள் (Dyes)

மருந்துகள் (Drugs)

துப்பரவாக்கிகள் (Detergents)

பிளாஸ்டிக் (Plastic)

துணிகள் (Fabrics)

புச்சிநாசினிகள் (Insecticides)

பசளைகள் (Fertilizers)

உணவுப் பாதுகாப்புப் பொருட்கள் (Food preservatives) போன்றனவும் தயாரிக்கவும் பயன்படுத்தலாம்.

NB பெற்றோலியப் பொருட்களின் மாசுக்கள்

- i. கந்தகச் சேர்வைகள் RSH (கந்தக அற்ககோல்), RSR (கந்தக ஈகர்)
- ii. நைதரசன் சேர்வைகள்
 - Athylphyridines
 - ▶ Pyroles
- iii. ஒட்சிசன் சேர்வைகள் அற்ககோல், பீனோல், பசைகள் (Resins)

எனவே, பெற்றோலியப் பொருட்களின் தகனத்தில் SO, NO, NO, உருவாகலாம்.

பெற்றோலியம் சுத்திகரிப்பில் H,S உம் விளைவாகும்.

NB ஒரு பெற்றோல் இயந்திரத்தின் (Petrol engine) தகனத்தில் வெளிப் படுத்தப்படும் புகை/வாயு விளைவாகப் பின்வருவன அமைய லாம்.

V/V% i. CO. 9 - 10 % ii. CO 5 - 10 % iii. C.H. < 1.0 % iv. NO < 0.5 % v. SO,

தவிர, ஈயக்கழிவு, காபன் துணிக்கைகளும் வீசப்படும். இவை தழல் மாசுறக் காரணிகளாகும்.

மிகச்சிறிது

்பல்பகுதியங்கள்

தனி மூலக்கூறு ஒரு பகுதியம் (Monomer) இரு மூலக்கூறுகள் இணக்கமடைவது இரு பகுதியம் (Dimer)

இரண்டுக்கு மேற்பட மூலக்கூறுகள் இணக்கமடைவது பல்பகுதியம் (Polymer)

இங்கு mer = part = பகுதி எனப் பொருள்படும். பல்பகுதியங்களை பின்வரும் பாகுபாடுகட்கு உட்படுத்தலாம்.

> பாகுபாடு ∐ தொகுப்பிற்குரிய பல்பகுதியம் இயற்கைப் பல்பகுதியம் Synthetic Polymer Natural Polymer

> > பாகுபாடு

கூட்டல் பல்பகுதியம் Addition Polymer

ஒடுக்கல் பல்பகுதியம் Condensation Polymer

ஒரு பகுதியங்கள் சேரும்போது எதுவித இழப்பும் இன்றி சேர்தல். கூட்டல்.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

 ${
m H_2O,\ NH_3.....}$ போன்ற சிறிய மூலக்கூறுகளை இழந்து சேர்தல் ஒடுக்கல் பல்பகுதியம்.

மூலக்கூறுகள் ஒன்றன்பின் ஒன்றாக இணக்கமடைதல். நீட்டல் சங்கிலிப் பல்பகுதியம்.

எல்லாத் தளங்களிலும் இணைதல் முப்பரிமாணப் பல்பகுதியம்.

சூடாக்கி, இளகி குளிரவிட இறுகி மீண்டும் சூடாக்க இளகக்கூடியன. வெப்ப மிளக்கும் வகைக்குரியன.

ஒரு முறை சூடாக்க இளகி அமைப்பு மாறி இறுகி பின் இளக மாட்டாதன வெப்பமிறுக்கும் பல்பகுதியங்கள்.

இவற்றில் சில பற்றி இனிவரும் பகுதிகளில் பார்க்கலாம்.

இயற்கைப் பல்பகுதியங்கள்

எமது பாடத்திட்டத்தில் இவற்றில் இரண்டு மட்டுமே கருதப்படும்.

- 1. புரதங்கள்
- 2. இறப்பர்

புரதங்கள்

α-காபன் என்பது தொழிற்பாடு கூட்ட காபன் அணுவுடன் பிணையும் காபன் அணுவாகும்.

(சேதன இரசாயனத்தில் 'அல்டோல்' உருவாகுதலை ஞாபகப்படுத்துக.)

lpha-காபனில் 'Amine' கூட்டம் (-NH $_2$) இருக்கும் காபொட்சிலிக்கமிலம் lpha-amino acid (2-amino acid) எனப்படும்.

α-amino acid இன் நீட்டல் சங்கிலி, ஒடுக்கல் பல்பகுதியமே புரதங்கள் ஆகும்.

இயற்கையில் சுமார் 22 α-amino acids அறியப்பட்டுள்ளன. இவற்றில் சுமார் 10 முக்கியமானவை.

$$\begin{array}{cccc} & & & NH_2 \\ \text{eg. i.} & & H-C-COOH & \textbf{2-amino ethanoic acid} & \textbf{-} & \text{Glycine} \\ & & & H \end{array}$$

ii. CH₂- CH- COOH 2-amino propanoic acid - Alanine

ii. CH₃ – CH – COOH 2-amino propanoic acid - Alanine

Aspartic acid

iv.
$$CH_2$$
- CH - $COOH$
 NH_2

Phenylalanine

Serine

- Lysine

Cysteine

என்பன முக்கியமானவற்றில் சிலவாகும்.

இந்த அமைனோ அமில மூலக்கூறுகள் இரண்டு இணக்கமடையும்போது நீரை இழந்து ஒரு எளிய Peptide இனை உருவாக்கும்.

என்பது ஒரு எளிய Peptide ஆகும். இவ்வாறு பல Peptides சேர்ந்து உருவாகும் ஒரு பல்பகுதியம் புரதம் ஆகும். ஒரு புரத மூலக்கூறானது பல்பெப்டைட் (Poly Peptide) ஆகும்.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

புரத மூலக்கூறுகளிடையே உள்ள ஐதரசன் பிணைப்புகள் அவற்றின் மூலம் உயிரிகள் உடற் கட்டமைப்பைப் பெற ஏதுவாகின்றன.

Poly peptide நீர்ப்பகுப்படைந்தால் மீண்டும் Amino acids உருவாகும்.

Amino acid மூலக்கூறுகள் Zweiter ion வடிவில் காணப்படுவன. (Zwea - two) ஜேர்மானிய மொழியில் Zwea இரண்டு என்று பொருள்.

$$H_2N - \overset{1}{C} - COOH \Rightarrow H_3N - \overset{1}{C} - COO$$

இவ்வயன்தன்மையால் amino acid இன் கரையும் தகவும், கொதிநிலையும் கூடுதலாகக் காணப்படுகிறது.

22 வகை அமினோ அமிலங்களும் பல்வேறு வகையாகப் பிணைகின்றன. சுமார் 5000 அமைனோ அமில மூலக்கூறுகள் சேர்ந்து ஒரு புரத மூலக்கூறினை உருவாக்க முடிகிறது. இதனால் சுமார் 22⁵⁰⁰⁰ வகை புரத மூலக்கூறுகள் அமையலாம்.

அமைனோ அமிலங்கள் தாங்கற் தொழிற்பாட்டைக் காட்டக்கூடியன.

$$H_3N - \stackrel{1}{C} - C \stackrel{0}{\nearrow} O + H_3O^+ \implies H_3N - \stackrel{1}{C} - C \stackrel{0}{\nearrow} O + H_2O$$

$$H_3N - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} O + OH \Rightarrow H_2N - \stackrel{\downarrow}{C} - \stackrel{\downarrow}{C} O + H_2O$$

ஆக, H_3O^+ அல்லது OH^- அகற்றப்படும். புரதமும் தாங்கற் தொழிற்பாட்டைக் காட்டக்கூடியது. ஏனெனில், அதன் அந்தங்களில் $H_3N-\stackrel{1}{C}\dots\dots\stackrel{O}{C}$ உண்டு.

புரதங்கள்

- i. நீட்டல் சங்கிலி, ஒடுக்கல் பல்பகுதியங்கள்.
- புரத மூலக்கூறினை அமில / கார நீர்ப்பகுப்புச் செய்து அதன் ஒரு பகுதி யங்களைப் பெறலாம்.
- iii. தசைநார்கள், நகங்கள், நொதிகள் (enzymes), பட்டு, கம்பளி போன்றன புரதங்கள்.
- iv. புரத மூலக்கூறுகளில் ஐதரசன் பிணைப்பை ஏற்படுத்தும் பகுதிகள் NH, C=O போன்றனவாகும்.
- v. புரத மூலக்கூறில் திரும்பத் திரும்ப அமையும் அலகு

இறப்பர்

இறப்பர் மரங்களின் தாயகம் அமேசன் காடுகளாகும். அப்பகுதி மக்கள் இதில் கசியும் பதார்த்தம் மூலம் பந்துகள், போத்தல்கள் செய்வது முதலில் 'சாள்ஸ் டி லாகொண்டமின்' என்பவரால் 18ம் நூற்றாண்டின் ஆரம்பகாலப் பகுதிகளில் அறியப்பட்டது.

இது பின்னர் ஹென்றி விக்டர் எனும் ஆங்கிலேயர் மூலம் ஐக்கிய இராச்சியத் திற்கும் அங்கிருந்து இலங்கை, மலாயா, இந்தோனோசியாவிற்கும் பரவி பெருந் தோட்டப் பயிராக்கப்பட்டது.

இறப்பர் பால்

இதன் உள்ளடக்கம்

இறப்பர் 30.0 %

rßi 52.0 %

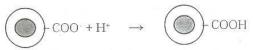
புரதம் 2.0 %

வெல்லம் 1.5 %

பிசின் 0.0 % - 0.5 %

இவை நீர் ஊடகத்தில் கூழ்ப் பொருளாக அமையும். இறப்பர் பாலில் இறப்பர் மூலக்கூறுகளைச் சூழ புரதபொசுபோ இலிப்பிட்டு படை அமையும்.

பாலிலுள்ள வெல்லம் நொதித்து பின் புளிக்கும். இதனால், இறப்பர் பாலில் திரளுகை ஏற்படும்.


எனவே, இறப்பர் பால் சேகரிக்கும்போது திரளுகையைத் தடுக்க திரளல் எதிரி யாக அமோனியா நீர்க்கரைசல் சேர்க்கப்படும். $\mathrm{NH}_3(\mathrm{aq})$ இனைச் சேர்க்கும்போது புரதப்படை நீர்ப்பகுப்படையும்.

$$\begin{array}{c|cccc}
O & H & O & O & O \\
C & N - & NH_{3}(aq) & O & C - O \cdot NH_{4}^{+}
\end{array}$$

இதனால் இறப்பர் மூலக்கூறுகள் எதிரேற்றம் அடையும். எனவே, திரளுகை தடுக்கப்படும்.

மேலும், கார ஊடகம் நுண்ணங்கித் தொழிற்பாட்டை குறைப்பதால் புரதப்படை பழுதுற்று துர்நாற்றம் அடைவதும் தடுக்கப்படும்.

 $\mathrm{NH}_{3}(\mathrm{aq})$ ஆல் அலசப்பட்ட சிரட்டைகளில் வடியும் இறப்பர் பால் சேகரிக்கப்பட்டு தொழிற்சாலைகட்கு எடுத்துச் செல்லப்பட்டு அங்கு திரளச் செய்து கட்டியாக்கப்படும். இதற்கு அமிலம் சேர்ப்பர்.

ஆயினும் இதற்கு வன்னமிலங்கள் சிறந்தன அல்ல. ஏனெனில், அவற்றின் புரோத்திரன் செறிவு உயர்வாதலால்

$$\bigcirc$$
 COOH+ H^+ \rightarrow \bigcirc COOH $_2^+$ ஆக உருவாகும்.

இதனால் மூலக்கூறுகள் நேர் ஏற்றமடைய திரளுகை தடுக்கப்படும். எனவே, Methanoic acid பயன்படும். இதில் சிறிது Formalin உம் இருப்பதால் அது புரதப்படை படுதலைத் தவிர்க்கிறது. எனினும், Ethanoic acid உம் பயன் படுத்தலாம்.

இறப்பர் மூலக்கூறு

இது ஒரு நீட்டல் சங்கிலி, கூட்டல் மூலக்கூறாகும். இதன் எளிய அலகு Isoprene அல்லது 2 - methyl-1, 3-butadiene ஆகும்.

$$H_2C = C - CH = CH_2$$

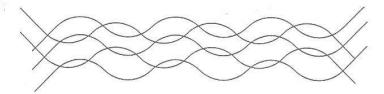
 CH_3

இது பின்வருமாறு இணக்கமடையும்.

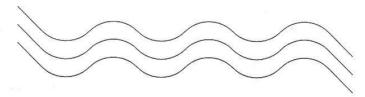
$$-H_{2}C$$
 $C = CH_{2} - CH_{2}$ $C = CH_{2} - CH_{2}$

இதுவே ஒரு இறப்பர் மூலக்கூறாகும்.

இது,


- i. Cis வடிவமுடையது.
- ii. சுமார் 11 000 20 000 வரையிலான Isoprene மூலக்கூறுகள் பல்பகுதியாக்க மானது ஒரு இறப்பர் மூலக்கூறினை உருவாக்கும்.
- iii. இறப்பர் மூலக்கூறின் தொடர்பு மூலக்கூற்றுத் திணிவு 75 000 க்கு மேலாகும்.

இயற்கை இறப்பரின் நீட்டல் சங்கிலி மூலக்கூறுகளிடையே நலிந்த வந்தர் வாலிசு இடைவிசைகள் மட்டும் உண்டு.

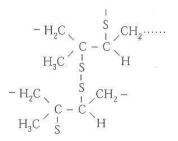

இதனால், இயற்கை இறப்பர் ஆனது,

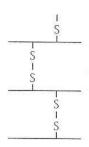
- i. இழுவலு குறைந்தது.
- ii. மீள்தன்மை குறைந்தது.
- iii. சேதனக் கரைப்பான்களில் கரையும் தகவு கூடியது.
- iv. கடினத் தன்மை குறைவு.
- v. வெப்பமிளகுதன்மை கூடியது.

எனவே, கைத்தொழில் ரீதியில் பயன் குறைந்தது. மேலும், அசையும் சுயாதீன இலத்திரன் முகில் இன்மையால் மின்கடத்தலி. இறப்பர் மூலக்கூறில் மீள்தன்மைக்குக் காரணம் மூலக்கூறுகள் முறுகலடைந்து காணப்படுவதாகும்.

ஒரு விசையைப் பயன்படுத்தும்போது மூலக்கூறுகள் நீட்சியடையும். முறுகல்கள் குறையும்.

எனினும், விசையை அகற்ற மீண்டும் முறுகல் அடையும். ஆனால், வலிமை யான இடைவிசைகள் இன்மையால் மீண்டும் ஆரம்ப நிலையை பூரணமாக அடைய வேண்டியது இல்லை. அதாவது, இழுவிசை விகாரம் ஏற்படலாம்.


இது Trans வடிவமாகும்.


Cis வடிவத்தை விட Trans வடிவில் இடைக் கவர்ச்சி விசை வலிமை குறைவு. காரணம் சமச்சீர் கூடத் தள்ளுகை இடை விசைகள் குறைவு. இதனால் முறுகல்கள் குறைவு. ஆகவே, மீள்தன்மை குறைவு. இந்த Trans வடிவம் Gutta-Percha எனப்படும். இது Golf balls செய்யப் பயன்படும்.

Valcanised Rubber

இயற்கை இறப்பர் மூலக்கூறு கைத்தொழில் ரீதியில் பயன் குறைந்தது. எனவே, இதனைக் கந்தகத்துடன் சேர்த்து வெப்பமாக்குவதன் மூலம் கந்தக அணுக் களால் ஆன குறுக்குச் சங்கிலிகளை உருவாக்கலாம். இதனால் வலைப் பின்னல் பல்பகுதியத் தன்மை ஏற்படும். இது இறப்பர் மூலக்கூறில் கடினம், மீள்தன்மை, இழுவிசையைக் கூட்டும். சேதனக் கரைப்பான்களின் கரையும் தகவைக் குறைக்கும். எனவே, பயன் கூடவாகும்.

இறப்பருக்கு வல்கனைசுப்படுத்தலைக் கண்டுபிடித்தவர் Good year என்பவர் ஆவர். இது 1839 இல் ஆகும்.

பொதுவாக, இரு கந்தக அணுக்கள் ஒரு குறுக்குச் சங்கிலியில் அமையலாம். ஆயினும், இந்த எண்ணிக்கை வேறுபடல் கூடும்.

சுமார் $5-10\,\%$ கந்தகம் பயன்படும்போது சுமார் $^1_{100}$ பங்கு இரட்டைப் பிணைப்பு கள் உடைந்து கந்தகத்தில் குறுக்குச் சங்கிலிகள் உருவாகும். இது மென் வல்வனைசுப் படுத்தலாகும்.

சுமார் 25 - 30 % கந்தகம் பயன்படுத்தின் குறுக்குச் சங்கிலிகள் கூடும். எபனைற்று போன்றன உருவாகும். இது வன் வல்வனைசுப்படுத்தலாகும்.

- NB I. வல்கனைசுப்படுத்தலில்,
 - i. 140 °C 160 °C வெப்பநிலை
 - ii. Zincdiethyldithionic carbonate ஒரு ஆர்முடுக்கி
 - iii. ZnO, Steric acid, Lowric acid போன்றன ஏவிகள்
 - iv. நிரப்பிகளும் சேர்க்கப்படும். நிரப்பி இல்லாவிடின் மென்மையான இறப்பர். நுண்ணிய காபன் பொடி நிரப்பிகளைச் சேர்ப்பின் இறப்

நுண்ணிய காபன் பொடி நிரப்பிகளைச் சேர்ப்பின் இறப் பரின் வன்மை, வலு கூடும்.

- II. இறப்பரின் மாற்றீடுகள் செயற்கை இறப்பர்
 - i. S.B.R Styrene butadiene rubber

$$\begin{bmatrix} CH_2 = CH_2 \\ CH_2 = CH - CH = CH_2 \end{bmatrix}_{n}$$

NB I. Neoprene

எளிய அலகு chloroprene

$$\begin{array}{ccc} \mathrm{CH_2} = \mathrm{C} - \mathrm{CH} = \mathrm{CH_2} & \Longrightarrow & \begin{bmatrix} \mathrm{CH_2} - \mathrm{C} = \mathrm{CH} - \mathrm{CH_2} \end{bmatrix}_{\mathrm{n}} \\ \mathrm{Cl} & & \end{bmatrix}_{\mathrm{n}}$$

Silicon Rubber

காபனிற்குப் பதில் Si அமையும். இது உயர் வெப்பத்தைத் தாங்கும்.

*NB வேறு சில இயற்கை பல்பகுதியங்கள்

- i. மாப்பொருள் (Starch) இதன் எளிய அலகு - ஒருபகுதியம் - Glucose
- ii. செலுலோசு (Cellulose) இதன் எளிய அலகு Glucose
- iii. DNA ഒണിധ அலகு nucleotides

தொகுப்பிற்குரிய பல்பகுதியங்கள்

Synthetic Polymers

Case - I

Linear Polymers நீட்டற் சங்கிலி பல்பகுதியங்கள்

I Poly alkenes

இவை நீட்டற் சங்கிலி, கூட்டல், வெப்பமிளக்கும் பல்பகுதியங்களாகும்.

இங்கு

- i. G ஆனது 'H' எனின், அதாவது, ethene எனின் Polyethene உருவாகும். இது பைகள் (Bags) வேறு கழுவக்கூடிய பொருட்கள் செய்யப் பயன்படும்.
- ii. G ஆனது 'CH₃' எனின், அதாவது, Propene எனின் Polypropene உருவாகும். இது பிளாஸ்டிக் நார்கள், பைகள் செய்ய உதவும்.
- iii. G ஆனது ' $C_c H_{_S}$ ' எனின், அதாவது, Phenyl ethene எனின் (styrene) Poly phenyl ethene அல்லது Poly styrene உருவாகும்.

iv. G ஆனது 'Cl' எனின்,

அதாவது, Vinyl chloride அல்லது chlro ethene எனின் Poly vinyl chloride (P.V.C) அல்லது (Poly chloro ethene) உருவாகும். இது நீர்க்குழாய்கள், மின்காவலிக் குழாய்கள் போன்றன செய்யப் பயன் படும்.

இவை பொதுவாக, Plastic பொருட்கள் எனப்படும். இவை உக்கமாட்டாதன. எனவே, இடத்தை அடைத்து, சூழலைப் பாதிக்கக்கூடியன.

II Nylon - Poly amide

இதன் ஒருபகுதியங்கள்

i. HOOC (CH,) COOH

Dicarboxylic acid

ii. H_2N (CH_2)_n NH_2

Diamines

பொதுவாக, Nylon-6-6 முக்கியமானது.

இங்கு,

i. H,N (CH,),NH,

1, 6 - diaminohexane (hexamethyl diamine) என்பனவே எளிய அலகுகளாகும்.

இதன் கட்டமைப்பு

இது நீட்டல் சங்கிலி, ஒடுக்கல், வெப்பமிளக்கும் பல்பகுதியமாகும். இங்கு மூலக்கூறுகள் இணக்கமடையும்போது ${
m H_2O}$ மூலக்கூறுகள் இழக்கப் படும்.

III பொலி எசுத்தர் Polyester

ஓர் ஈர்காபொட்சிலிக்கமிலமும் எதேன்டைஓல் ஆகியவற்றின் நீட்டல் சங்கிலி, ஒடுக்கல் பல்பகுதியங்கள் Polyester ஆகும்.

உதாரணம் : Terylene or Dacron இதன் ஒரு பகுதியங்கள்

ii. CH₂OH ethanediol

Digitized by Noolaham Foundation.
CH₂OHoolaham.org | aavanaham.org

இம்மூலக்கூறுகள் தொடர்ச்சியான எசுத்தராக்கலுக்கு உட்பட நீர் மூலக் கூறுகள் இழந்து Polyester உருவாகும். இதற்கு செறி. H_.SO₄ பயன்படும்.

$$\cdots = \overset{O}{\overset{\parallel}{C}} - \overset{O}{\overset{\parallel}{C}} - \overset{O}{\overset{\parallel}{C}} - \overset{O}{\overset{\leftarrow}{C}} - \overset{O}{\overset{\leftarrow$$

இது ஆடைகள் தயாரிக்கப் பயன்படும்.

- NB 1. Butane dioic acid, Hexanedioic acid போன்றன Ethanediol உடன் உருவாக்கும் Polyesterகள் பிசின்கள் தயாரிக்கப் பயன்படுத்தப் படும்.
 - 2. நைலோன் தயாரிப்பு பெற்றோலிய பொருட்கள் மூலம் தயாரிக்கலாம்.

Case - II

Cross-chain Polymers வலைப்பின்னல் பல்பகுகியங்கள்

eg. Phenol - methanal polymer - Bakelite

OH OH
$$CH_2OH$$
 + CH_2OH + CH_2OH

பின் இதற்கு சிறிது சிறிதாக செறி ${
m H_2SO_4}$ சேர்க்க நீரை இழந்து முப்பரிமாண வலைப்பின்னல் அமைப்புடைய ஒடுக்கல் பல்பகுதியான Bakelite உருவாகும். இது வெப்பம் இளக்கும் பல்பகுதியமாகும். Digitized by Noolaham Foundat noolaham.org | aavanaham.org

இது மின் கடத்திலி. எனவே, மின்சார உபகரணங்கள் செய்யப் பயன்படும். Telephones, buttons செய்யலாம்.

Urea - Methanal யூரியா - போமல்டிகைட்டு பல்பகுதியம்

யூரியாவை Methanal இல் கரைந்து சிறிது சிறிதாக செறி ${
m H_2SO_4}$ சேர்க்க உருவாகும் முப்பரிமாண, குறுக்குச் சங்கிலி, ஒடுக்கல், வெப்பமிறுக்கும் பல் பகுதியம் இதுவாகும்.

சாயமுறிஞ்சும் இயல்புடையது. Tableware, trays, household stensils தயாரிப்புகள் கடதாசியைக் கடினப்படுத்தப் பயன்படும். Chipboard தயாரிக்கப் பயன்படும்.

NB உங்கள் அறிவுக்கும் இரசனைக்கும் வேறு சில பல்பகுதியங்கள் பற்றிய விபரங்கள் Digitized by Noolaham Foundation. noolaham.org | aavanaham.org i. Tefflon

$$CF_2 = CF_2$$
 Tetrafluoro ethylene

$$\begin{bmatrix} F & F \\ - & - & - \\ C & - & C \\ - & F & F \end{bmatrix}_n$$

இது உறுதியானது. குறைந்த உராய்வுத் தன்மை. துருப் பிடிக்காது. சமையல் உபகரணங்களில் மேற்படைப் பூச்சு (non-stick coating on pans) மின்கடத்திலி.

ii. Perspen

methyl 1,2 - metylpropenoate (Methylmethacrylate)

$$-\mathrm{H_2C} - \overset{\mathrm{CH_3}}{\overset{}}{\overset{}{\overset{}{\overset{}}}\overset{}{\overset{}}\overset{}{\overset{}}\overset{}{\overset{}}\overset{}{\overset{}}\overset{}{\overset{}}\overset{}{\overset{}}\overset{}{\overset{}}\overset{}{\overset{}}}\overset{}{\overset{}}\overset{}{\overset{}}\overset{}{\overset{}}}\overset{}{\overset{}}\overset{}{\overset{}}}\overset{}{\overset{}}\overset{}{\overset{}}}}\overset{}{\overset{}}\overset{}{\overset{}}}\overset{}{\overset{}}\overset{}{\overset{}}}\overset{}{\overset{}}\overset{}}\overset{}{\overset{}}\overset{}}\overset{}}\overset{}{\overset{}}\overset{}}\overset{}{\overset{}}\overset{}}\overset{}}\overset{}}\overset{}{\overset{}}\overset{}}\overset{}}\overset{}}\overset{}}\overset{}\overset{}}}\overset{\phantom{\uparrow$$

இது ஒளிபுகவிடக்கூடியது. கண்ணாடிக்கு மாற்றீடாகப் பயன் படுத்தக்கூடியது.

iii. Acrilan

எளிய அலகு

CH, = CHCN

Propenonitrite (acrylonilrile)

இது ஆடைகள் செய்யப் பயன்படும். கம்பளிக்கு ஒரு பிரதி யீட்டுப் பொருளாகும்.

iv. Nylon 6, 10 -

இதன் எளிய அலகுகள்

இது விளையாட்டு உபகரணங்கள், தூரிகைகள் செய்யப் பயன்படும்.

v. Lenan

vi. Polyurethane

நுரை மெத்தைகள் (Foam rubber), செயற்கைத் தோல் (Synthetic leather) தயாரிக்கலாம். Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

சூழல் மாசபைதல்

 ஓசோன் மூலக்கூறு எவ்வாறு உருவாகிறது? இதன் பங்களிப்பு என்ன?

O2 வாயு மூலக்கூறு ஆனது v.u கதிர்களால் (அலைநீளம் 200 nm க்கு குறைவு) அணுநிலை 'O' ஆக்கப்படும்.

$$O_2 \xrightarrow{u.v} O'+ O'$$

அல்லது உருவாகும் O' ஆனது O_2 வாயுவுடன் தாக்கி O_3 மூலக் கூறினை உருவாக்கும். இங்கு மேலதிக சக்தியை N_2 வாயு போன்ற சடத்துவ மூலக்கூறுகள் உறிஞ்சி O_3 இனை மீள பிரிவதனை தடுக்கின்றன.

$$O^{\bullet} + O_2 \stackrel{N_{2 \text{ (g)}}}{\longrightarrow} O_3$$

பின் இவ் O3 மூலக்கூறானது v.u கதிர்களை உறிஞ்சி பூமியைப் பாதுகாக்கும்.

$$O_1 \xrightarrow{u.v.} O^{\bullet} + O_2(g)$$

இவ் அணுநிலை () ஆனது மீண்டும் முன்போல (), மூலக் கூறினை உருவாக்கி சமநிலை பேணுகின்றது.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

- 2. CFC இன் உபயோகங்களை இனங்காண்க.
 - i. Auto Air Conditioning.....
 - ii. வீட்டு, வர்த்தக குளிரூட்டிகள் (household and commercial refrigeration)
 - iii. தூயதாக்கப் பயன்படும் திரவங்கள் (electronic boards ஐத் தூயதாக்க
 - iv. Disposable foams தயாரிக்கப் பயன்படும்.
- 3. CFC க்கு சில உதாரணங்கள் தருக.
 - i. CFCI,
 - ii. CF₂Cl₂
 - iii. C,F,Cl,
 - iv. C,F,Cl,
- 4. CFC வாயுக்கள் (Freon gases) எவ்வாறு ஓசோன் படையினைப் பாதிக் கின்றன?

$$CFCl_3$$
 $\stackrel{\text{u.v.}}{\smile}$ $\stackrel{\cdot}{C}FCl_2 + Cl^{\bullet}$
 CF_2Cl_2 $\stackrel{\text{u.v.}}{\smile}$ $\stackrel{\cdot}{C}F_2Cl + Cl^{\bullet}$

இல் குளோரின் $\operatorname{Cl}^{ullet}$ அணு பிரியாது O_3 மூலக்கூறினை பிரிக்கின்றன.

$$Cl^{\bullet} + O_{3} \rightarrow ClO^{\bullet} + O_{2}$$

 $ClO^{\bullet} + O^{\bullet} \rightarrow Cl^{\bullet} + O_{3}$

 CFC தவிர ஓசோன் படையினை பாதிக்கும் வாயுக்களை இனங் காண்க. எவ்வாறு பாதிக்கும்?

பொதுவாக NO_x

NO,
$$\operatorname{NO}_{2'}\operatorname{N}_2\operatorname{O}$$
 $\operatorname{O}_3 \longrightarrow \operatorname{O}_2+'\operatorname{O}'$ $\operatorname{NO}+\operatorname{O}_3 \longrightarrow \operatorname{NO}_2+\operatorname{O}_2$ $\operatorname{NO}_2+\operatorname{O} \longrightarrow \operatorname{NO}+\operatorname{O}_2$ தேறிய தாக்கம் $\operatorname{2O}_3 \longrightarrow \operatorname{3O}_2$

5. CIO ் ஆனது ஒரு இடைநிலையாக CFC யின் தாக்கத்தில் காணலாம். இந்த CIO ் வேறு பாதிப்புகளை ஏற்படுத்துமா?

ஆம். CIO ் ஆனது NO 2 உடன் தாக்கி CIONO 2 ஐ உருவாக்கும்.

$$\text{CIO}^{\bullet} + \overset{\bullet}{\text{N}} \text{O}_2 \longrightarrow \text{CIONO}_2$$

chlorine nitrate

இது ஓசோன் படையின் அழிவுக்கு காரணமாகிறது.

6. CFC க்கு மாற்றும் பொருளாக எவற்றைப் பயன்படுத்தலாம்?

Hydrofluoro carbon

i. HCFC Hydrochlorofluoro carbon

ii. CF₂CI₂ இவற்றின் நிலை

a. CF, CFH,

b. CF,CF,H

c. CF,CH,

NB C,H, C,H, வாயு போன்றவற்றை ஓசோன் ஓட்டை ஏற்படும் ஈடுபடும் இடங்களில் தூவுவதன் மூலம் Cl^{*}இனை அகற்றலாம்.

$$C_2H_6 + CI$$
 \rightarrow $C_2H_5 + HCI$
 $C_3H_7 + CI$ \rightarrow $C_3H_7 + HCI$

7. எரிமலை வெடிப்புகள் சூழலை பாதிக்கும் எனக் கருதுகிறீரா? உமது விடைக்கு காரணங்கள் தருக.

ஆம். எரிமலைக் குழம்பு புவியிலும் இருக்கும்போது Magma எனப் படும். இது புவியின் வளிப்பரப்பை அடையும்போது Lava ஆகும். Lava இல் N., CO., HCI, HF, H,S போன்ற வாயுக்களும் நீராவியும் வெளிப் படும். தவிர, திண்ம, திரவ பெறுதிக்கும் தரப்படும். இவற்றில் CO, பச்சைவீட்டு விளைவு வாயு HCl, HF அமில வாயுக்கள்.

HF இன் ஒரு பகுதி SO, ஆகும்.

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 SO_2(g) + 2 H_2O(g)$$

SO, இல் ஒரு பகுதி அமிலக் கரைசலை ஏற்படுத்தும். மறுபகுதி $2 H_2S(g) + SO_2(g) \rightarrow 3 S(g) + 2 H_2O(g)$ ஆக மாறியிருக்கும்.

தவிர, வெப்ப மாசுறலும் தூசிப்படலதத்தின் பாதிப்பும் ஏற்படும். தூசிப் படலம் சூரிய வெப்பத்தை உறிஞ்ச பூமியில் வெப்பநிலை வீழ்ச்சி

ஏற்படலாம்.

8. பச்சை வீட்டு விளைவு என்றால் என்ன? இதற்குக் காரணமான வாயுக்கள் யாவை? அவற்றின் இத்தொழிற்பாட்டுக்கு காரணம் யாது?

புவியானது சூரியஒளியினால் வெப்பத்தைப் பேணுகின்றது. இவ்வாறு உறிஞ்சிய வெப்பத்தை பின் IR கதிர்ப்புகளாக காலுகின்றது. சில வாயுக்கள் IR கதிர்களை உறிஞ்சி வெப்பத்தைப் பெற்று புவியினில் உயிரிகள் வாழ உகந்த வெப்பநிலை யில் பேண உதவுகின் றன. இது பச்சைவீட்டு விளைவு ஆகும்.

இதற்கு காரணமான வாயுக்கள் CO., நீராவி, CH., CFC, NO போன் றவை ஆகும்.

ஏகவின ஈரணு மூலக்கூறுகள் ஆன $\mathrm{O_2(g)},\,\mathrm{N_2(g)}$ போன்ற வளிமண்டல வாயுக்கள் முனைவற்றன. ஆதலால் அவ்வணுக்களின் இடைத் தூரத் தில் அதிர்வினால் ஏற்படும் மாற்றம் சீரானது. அவை IR கதிர்களை உறிஞ்ச மாட்டாதன.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

ஆனால் நீர் மூலக்கூறு முனைவுடையது. IR கதிர்களை உறிஞ்சி சமச்சீரற்ற அதிர்வுகளைத் தரமுடியும் / முனைவுத்தன்மை மாற்றத்தை ஏற்படுத்தும்.

இதேபோல CO₂ முனைவற்றதாயினும் மூன்று அணுக்கள் இருப்பதால் IR கதிர்களை உறிஞ்சி நடுவிலுள்ள காபன் அணு மற்றைய இரு அணுக் களான ஒட்சிசன்கள் எதிர்த்திசையில் முரண் அதிர்வைக் காட்ட முனைவுத் தன்மையை ஏற்படுத்தும். இதேபோல CFC, CH₄, CO, NO₅ உம் IR கதிர்ப்புக்கட்கு உணர்திறன் உரையன.

இவற்றின் அளவுகூடி பூமி வெளிப்படுத்தும் IR கதிர்கள் உறிஞ்சி புவி யின் வெப்பநிலை உயர்வுக்கு காரணமாகும்.

9. i. சாதாரண மழைநீரின் pH 5.1 - 5.6 வரை இருப்பது ஏன்? வளியிலுள்ள CO₂ வாயு மழைநீரில் கரைந்து அமிலத்தன்மையை ஏற்படுத்தும்.

 $H_2O(\iota) + CO_2(g) \Rightarrow H_2CO_3(aq)$ ஆனால் H_2CO_3 மிக மென்னமிலமாகும். \bullet

 அமில மழை என்றால் என்ன? இதனை ஏற்படுத்தும் வாயுக்கள் யாவை?

மழைநீரின் pH 4 - 5 க்கும் இடையில் அமைந்தால் அது பாதிப்பு ஏற்படுத்தக்கூடிய அளவாகும். இத்தகைய மழைநீர் அமில மழை எனப்படும்.

இதற்கு காரணமான வாயுக்கள் SO₂, NO₂ ஆகியன ஆகும்.

வளியில் சல்பைட்டு கனியங்களை வறுத்தல் (Roasting)

eg. \bullet \Rightarrow 2 ZnS+3 O $_2$ \rightarrow 2 ZnO+2 SO $_2$ (g) இது H_2 SO $_4$ தயாரிப்பில் நடைபெறும்.

eg. $\mbox{0} \Rightarrow \mbox{4 FeS} + 7 \mbox{O}_2 \mbox{} \rightarrow \mbox{2 Fe}_2 \mbox{O}_3 + 4 \mbox{SO}_2 \mbox{(g)}$ இது இரும்பு பிரித்தெடுப்பில் தாதினைத் தூய்தாக்க லில் நடைபெறும்.

இவை தவிர உயிர்ச்சுவட்டு எரிபொருட்களாக பெற்றோலியப் பொருட்கள், நிலக்கரி போன்றவையும் கந்தகத்தைக் கொண்டுள்ளன. இவற்றின் தகனமும் SO₂வாயுவைத் தரும். இவை அனல் மின்னுற்பத்தி நிலையம், வாகனங்களின் 'பயன்பாடு, வேறு இயந்திரங்களில் பயன் படுத்தல் மூலம் SO₂ உருவாகும், தவிர, எரிமலை வெடிப்பும் SO₂ ஐத் தரும்.

NO 2 வாயு உருவாவதற்கு உயர் தகனம் நடைபெறும். அவை மின் உற்பத்தி நிலையங்கள், அகத்தகனம் நடைபெறுகின்ற

உம்: மோட்டார் கார் என்பவற்றில் வளிமண்டல N_2 ஆனது NO ஆகி NO_2 ஆகும்.

iii. அமில மழையின் பாதிப்புகள் யாவை?

சுண்ணக்கற்பாறைகள் அரிக்கப்படல், (stone leprosy) இதனால் நீரில் வன்மை கூடும்.

சிலைகள், கட்டடங்கள் பாதிக்கப்படல், உலோகப் பொருட்கள் அரிப்புறல், விவசாய விளைவுகள் பாதிக்கப்படல், காட்டுநிலம் அழிதல், நீர் வாழ் உயிரினங்கள் அழிதல்

10. Photochemical smog என்பது என்ன? இது எவ்வாறு ஏற்படும்? பாதிப்புகள் யாவை?

புகை மூட்டமும் மூடுபனியும் (smoke and fog) உருவாதலே இதுவாகும். இதற்கு முதற்காரணியான மாசுக்கள் NO, CO இரண்டாம் நிலை காரணியான மாசுக்கள் NO₂, O₃

$$N_2 + O_2 \rightarrow 2 NO (g)$$

இது பின்

உயர் தகனங்களில்

$$2 \text{ NO (g)} + O_2 \text{ (g)} \rightarrow 2 \text{ NO}_2 \text{ (g)}$$

பின் NO, ஆனது ஒளி முன்னிலையில் பிரியும்

$$NO_2 \xrightarrow{hv} NO'(g) + O'(g)$$

$$O(g) + O_2(g) = \frac{N_2}{2g(g,k)} O_3(g)$$

இவ் O_3 ஆனது வளியின் கீழ்ப்படையில் உருவாகும்.

இங்கு உருவாகும் O3 ஆனது

i. இறப்பரைப் பாதிக்கும்.

இத்தாக்கம் ரயர்களைப் பாதிக்கும். இறப்பர் பொருட்களையும் பாதிக்கும். நுரையீரல் பாதிப்பை ஏற்படுத்தும். வேறு உயிரியல் விளைவுகளை உருவாக்கும்.

ii. எரியாத ஐதரோகாபன்கள், அல்கைட்டுகள், $\mathrm{NO}_{\mathbf{x}}$, $\mathrm{O}_{\mathbf{2}}$ இன் தாக்கங் களின் விளைவுகளாகும்.

உதாரணமாக, இங்கு PAN உருவாகும்.

இதன் சூத்திரம்
$$CH_3-C-O-O-NO_2$$
 Peroxyacyl nitrates

இது கண்ணீரை உருவாக்கும். கண் எரிவு ஏற்படும். சுவாசத் தடையை ஏற்படும். நீலக்குழந்தை பிறக்க ஏதுவாகும். குருதியில் ஒட்சிசன் பற்றாக்குறையால்தான் நீலக்குழந்தை பிறக்கின்றது. 11.விவசாய இரசாயனங்களின் பிரயோகமும் சூழல் மாசடைதலை ஏற்படுத்துமா? சுருக்கமாக விமர்சிக்குக.

விவசாயப் பசளைகளின் பிரயோகம் மண், நீரில் 'N' நூற்றுவீதம் கூடும். நீரில் 'N' உயர்ந்தால் நீர்த்தாவர வளர்ச்சி கூடும். ஒட்சிசன் பற்றாக் குறை ஏற்பட நீர்வாழ் உயிரினங்கள் பாதிக்கப்படும்.

பூச்சிநாசினிகள், பீடைநாசினிகள் நச்சுத்தன்மையை உணவிலும், குடிநீரிலும் ஏற்படுத்தும். பிரயோசனமான உயிரிகள், இரைகௌவிகள் அழியும்.

வளர்ச்சி தூண்டிகளின் பயன்பாடு பாதகமான உடலியல் விளைவு களை ஏற்படுத்தும்.

12. அணுக்கருத்தொழிற்பாடுகள் சூழலில் ஏற்படுத்தும் பாதிப்புக்களை ஆராய்க.

அணு உலைக் கழிவுகள் கடலில் ஈயக் கொள்கலன்களில் வைத்து புதைக் கப்படுகின்றன. காலப்போக்கில் கொள்கலன் சேதமடைய கதிர்வீச்சில் பாதிப்பு ஏற்படலாம்.

மண்ணில் கதிரியக்கக் கழிவுகள் புதைப்பதும் இவ்வாறு ஏற்படுத்தும் கருச்சக்தியைப் பயன்படுத்தும் கப்பல்கள், செய்மதிகள், மின்சக்தி உருவாக்கிகளில் ஏற்படும் விபத்துகள் சூழலில் கதிரியக்க பாதிப்புகளை ஏற்படுத்தலாம்.

கதிரியக்கத்தால் புற்றுநோய், விகாரமான பரம்பரைகள் உருவாதல், வேறு உடலியல் பாதிப்புகள் ஏற்படலாம்.

உதாரணமாக, 'Radon' எனும் கூட்டம் VIII A மூலகம் கதிரியக்கம் உடையது. இது Ur இன் பொசுபேற்றுக் கனியத்தில் உண்டு. 222 Rn இன் அரைவாழ்வுக்காலம் 3.8 நாட்கள். இது 238 Ur இன் கதிரியக்க செயற் பாட்டில் ஒரு இடைநிலை மூலகம். யூரேனிய கனியமுள்ள பாறையில் காணப்படும். 222 Rn α - கதிர்வீசலால் 214 Po, 218 Po சமதானிகளைத் தரக் கூடியது. இவை புகை, தூசுடன் சேர்ந்து மனித உடலில் புகுந்து நுரையீரல் புற்றுநோயைத் தரும். 222 Rn சிகரெட் புகையில் சேர்ந்து பரவும் சந்தர்ப்பம் கூட.

13. மெதனல் (HCHO) சூழலில் எத்தனை பாதிப்புகளை ஏற்படுத்தும்?

HCHO ஆனது விரும்பத்தகாத மணமுடையது. இது ஆய்வுகூடத்தில் உயிரிகளின் இந்த உடல் / உடற்பகுதிகளைப் பாதுகாக்கப் பயன்படுத் தப்படும்.

HCHO இன் பசைகள் கட்டிடப் பொருட்கள், தளபாடங்கள் போன்ற வற்றை ஒட்டி வைக்க உதாரணமாக, ஒட்டுப்பலகைக் கைத்தொழில் (Plywood) பயன்படுத்தப்படுகிறது. யூரியா - மெதனல் பல்பகுதியம் மின்காவலிப் பொருட்களின் மூலப்பொருளாகும்.

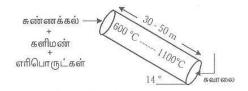
இப்பொருட்களின் சிதைவால் வெளிப்படும் சுயாதீன போமல்டி கைட்டு சோர்வுத்தன்மை, மயக்கநிலை, தலைவலி போன்ற உபாதை களை ஏற்படுத்தும்.

அனுபந்தம் - I

சீமெந்து தயாரிப்பு

முறைகள்

- i. உலர் முறை
- іі. ஈர முறை


இயற்கையில் உலர்முறையில் Portland ரக சீமெந்து தயாரிக்கப்படு கிறது. 'Port Land' இங்கிலாந்து நாட்டைச் சேர்ந்த ஒரு கிராமம். இப்பகுதி கற்கள் மிக உறுதியானவை. இதனை ஒத்த உறுதியுடைய தரமான சீமெந்து இதுவாகும்.

மூலப்பொருள்

- i. சுண்ணாம்புக்கல்
- ii. சீமெந்துக் களிமண்
- iii. ஜிப்சம்
- iv. எரிசோடா எண்ணெய்

முறை

சிறு ஏற்றக் கோணத்தில் சுழலும் உருளையில் (cylinder) தூளாக்கப் பட்ட சுண்ணாக்குலும்\'களிறன் கூறும் கலந்த கலவை மேலிருந்து இடப்பட கீழிருந்து தீச்சுவாலை செலுத்தி எரிக்கப்படும். வெப்பநிலை $600\,^{\circ}\mathrm{C}$ - $1100\,^{\circ}\mathrm{C}$ வரை மாறுபடும்.

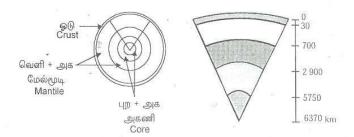
சூளையில் முதல் $\frac{1}{3}$ பங்கில் நீரை இழத்தல். நடுப்பகுதியில் காபனிறக்கம். $(CaCO_3 \longrightarrow CaO + CO_2)$ இறுதிப்பகுதியில் திண்ம நிலைத் தாக்கங்கள் - Sintering உருவாவது கரும்பசிய நிறமுடைய கிளிங்கர்.

கிளிங்கரில் இருப்பவை

இதற்கு 2 - 4 % ஜிப்சம் சேர்த்து அரைத்து சீமெந்து ஆக்கப்படும். தரமான சீமெந்தில்

$$\frac{\text{CaO}}{\text{SiO}_2 + \text{Fe}_2 \text{O}_3 + \text{Al}_2 \text{O}_3}$$
 = 1.9 - 2.2 $\frac{\text{SiO}_2}{\text{Al}_2 \text{O}_3}$ திணிவு = 2.5 - 4.0

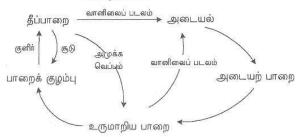
பீங்கான் கைத்தொழில்


மூலப்பொருள்

- i. வெண்களி
 - + 50 % பந்துக்களி
- ii. படிகம் 25 % நிரப்பியாகப் பயன்படும். அமைப்பு, வலு, வெப்பவதிர்ச்சி தடை கொடுக்கும்.
- iii. பெல்சுபார் 25 % இளகு தன்மையைத் தரும். நுண்டுளையைக் குறைக்கும்.

அனுபந்தம் - II

புவியிரசாயனம்



பாறைகள்

- i. தீப்பாறை (Igneous rocks)
- ii. அடையற் பாறை (Sedimentary rocks)
- iii. உருமாறிய பாறை (Metamorphic rocks)

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

பாறை வட்டம்

புவியின் ஓட்டின் மூலகங்களின் அமைப்ப

demission Oversho	or Gradon Zoreniour Graduzi	
Oxygen	O	46.71 %
Silicon	Si	27.60 %
Aluminium	Al	8.07 %
Iron	Fe	5.05 %
Calcium	Ca	3.65 %
Sodium	Na	2.75 %
Potassium	K	2.58 %
Magnesium	Mg	2.08 %
Other elements	(பிற மூலகங்கள்)	1.14%

புவி முழுவதிலும் மூலகங்களின் அமைப்பு

Iron	Fe	36.9 %
Oxygen	O	29.3 %
Silicon	Si	14.9 %
Magnesium	Mg	7.4 %
Nickel	Ni	3.0 %
Calcium	Ca	3.0 %
Aluminium	A1	2.4 %
Sulphur	S	0.9 %
Titanium	Ti	0.6 %
Sodium	Na	0.6 %
Other elements		1.0 %

புவியோட்டின் கனியங்களின் அமைப்பு

Feldspar	59.5 %
Horn Blende Pyroxene	16.8 %
(Complex Silicate)	
Quartz	12.0 %
Mica	3.8 %
Other elements	7.9 %

வளியின் அமைப்பு

உலர் வாயு	கனவளப்படி	திணிவுப்படி
He	1/200 000	
Ne	1/65 000	*
N_2	78.03 %	75.53 %
Ar	0.94 %	1.27 %
O_2	20.99 %	23.16 %
Kr	1/1 000 000	ă
Xe	1/11 000 000	=
CO ₂	0.03 %	0.033 %

பின்வரும் வாயுக்களும் சிறிதளவு காணப்படும் ${\rm O_{y}}$ ${\rm N_2O}$, ${\rm CH_{y}}$ ${\rm CO}$ தொழிற்சாலை கழிவு வாயுக்கள் ${\rm H_2S}$, ${\rm SO_2}$ உம் சிறிது உண்டு.

கடல் நீரின் அமைப்பு

கடல் நீரின் மொத்த உப்பு	=	$3.5 \left(w/w \right)$
கடல் நீரின் அடர்த்தி	/ =	1.008 g ml ⁻¹

	மொத்த உப்பில் $ m m/m\%$	கடல்நீரில் $ m m/m\%$
NaCl	78.04	2.731×10^{-2}
MgCl ₂	9.21	3.225×10^{-3}
$MgSO_4$	6.53	2.286×10^{-3}
CaSO ₄	3.48	1.218×10^{-3}
KCl	2.11	7.385×10^{-4}
CaCO ₃	0.33	1.155×10^{4}
MgBr ₂	0.25	8.750×10^{-5}

கடல் நீரில் அயன்செறிவு / mol dm⁻³

Na ⁺	4.705×10^{-3}
Mg ⁺	10.134×10^{-4}
Ca ⁺	10.192×10^{-5}
K ⁺	9.99×10^{-5}
CI-	5.49×10^{-3}
SO ₄ ²⁻	2.82×10^{-4}
CO ₃ ²⁻	1.164×10^{-5}
Br-	9.586×10^{-6}

அனுபந்தம் - III

முக்கிய கனியங்கள் (இலங்கையில் உள்ளன)

இரும்புக் கனியங்கள்

இலிமோனைற்று Fe,O,. 2H,O இரத்தினபுரி, காலி

Fe,O, . H,O மாத்தறை ii. கோதைற்று iii. மக்னறைற்று Fe₃O₄ சேருவல

காபனேற்றுகள்

சுண்ணாம்புக்கல் யாழ்ப்பாணம், புத்தளம் CaCO, MgCO, CaCO, ii. தொலமைற்று மாத்தறை, பதுளை

iii. மக்னைற்று MgCO₃ வெள்ளவாய, ரந்தெனிய

கனிய மணல்

இல்மனைற்று FeO.TiO, புல்மோட்டை

ii. உருத்தைல் TiO, iii. சேர்க்கோன்

ZrSiO, தெற்கு கடற்கரை iv. சிலிமனைற்று Al,O, .SiO,

v. காணற்று Fe,Al, (SiO), தெற்கு கடற்கரை

vi. மொன்சைற்று ThO (Ce, La, Yt)PO புல்மோட்டை

காபன் கனியம்

i. காரியம் C போகலை

ii. முற்றாத நிலக்கரி C, H முத்துரஜவெல

கதிரியக்க கனியம்

i. தோரியானைற்று ${
m ThO}_2.{
m U}_3{
m O}_8$ கைக்காபெல

ii. மொனசைற்று ${
m ThO_2}\left({
m Ce, La, Yt}\right){
m PO_4}$ புல்மோட்டை

பொசுபரசு கனியம்

அப்பறைற்று $\operatorname{Ca}_{10}(\operatorname{PO}_{1})_{6}X_{2}$ எப்பாவல

செம்புக் கனியம்

கொப்பர் பைரைற்றஸ் CuFeS₂ சேருவல

களிக் கனியம்

கெயோலின் Al₂O₃,2 SiO₃,2H₂O பொரலஸ்கமுவ

சீமெந்துக்களி Al₂O₃,2 SiO₃,2H₂O முருங்கன்

சிலிக்கா கனியம்

சர்ப்பன்ரைன் ${
m Mg}_{
m s}{
m Si}_{
m u}{
m (OH)}_{
m s}$ உடவளவ

இரத்தினக் கற்கள்

கனியம்	இரசாயன சூத்திரம்	ഖതക
Corundum	Al_2O_3	Sapphire, Ruby Star
குருத்தம் (9.8)		(நீலம்) (உடுமாணிக்கம்)
		Sapphire, Star Ruby
		(உடுநீலமாணிக்கம்)
		Yellow, White & Orange
		Shapphire. (மஞ்சள்,
		வெள்ளை மாணிக்கம்)
Chrysoberyl	BeOAl,O,	Alexandrite, Cat's Eye
கிரிசோபெரில்	2 3	(பசுந்தி, வைடூரியம்)
Beryl	3 BeOALO, 6SiO,	Emerald, Aquamarine
பெரில்		(மரகதம், சமுத்திர
		வாகனக்கல்)
Topaz	Al,(FOH),SiO,	White & Yellow Topaz
புட்பராகம்	160 160 160	Blue, Green, Violet and
		Red Topaz
Tourmaline	Complex Boro Silicate	Black, Pink, Blue tourmaline
துவரமல்லி		

Garnet காணற்று Deep red to black MgAl,(SiO,), Pyrope Deep crimson to violet Fe, Al, (SiO,) Alamandine Yellow to brown Ca,Al,(SiO,) Grossularite Deep red, green, violet MgOAl,O, Spinel spinel Hyacinth, red, orange, ZiSiO, Zircon brown and yellow zircon Rock crystal, amethyst, rose SiO, Quatz quartz, smokey quartz, படிகம் citrine, cat's eye quartz. KAISiO,O, Moonstone, amazon stone Felspar களிக்கல்

அனுபந்தம் - IV

Advanced Method of Salt Manufacture

தற்போது ஆனையிறவு உப்பளம் செயற்படாத நிலையிலுள்ளது. அம்பாந்தோட்டைக்கு அடுத்து புத்தளம் உப்பளம் உண்டு.

அங்கு தற்போது திருத்திய முறைகள் பயன்படுத்தப்படுகின்றன. அதன் உற்பத்தி முகாமையாளர் (Production Manager) திரு. ஏகாம்பரம் அவர்கள் தந்த உதவிக் குறிப்புகள் சில உங்கட்குத் தரப்படுகின்றன.

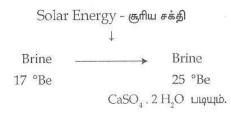
I. °Be என்பது கடல்நீரின் செறிவின் அலகு. இது Beaume என்பதன் சுருக்கமாகும்.

தன்னீர்ப்பை ஒரு குறிப்பிட்ட சமன்பாட்டுக்கு அமைய மாதிரி °Be என்ற செறிவு குறிப்பிடப்படும்.

அம் மாற்றத் தொடர்பு

Specific gravity =
$$\frac{144.3}{144.3 - ^{\circ} Be}$$

 $1.02 \text{ s.g} = 2.8 \text{ }^{\circ}\text{Be}$ eg.


என்பது நகுல் நீரின்பாவூரம்பச் செறிவு ஆகும்.

noolaham.org | aavanaham.org

II. இங்கு கையாளப்படும் படிமுறைகளில்,

Stage - I

Stage - II

Stage - III

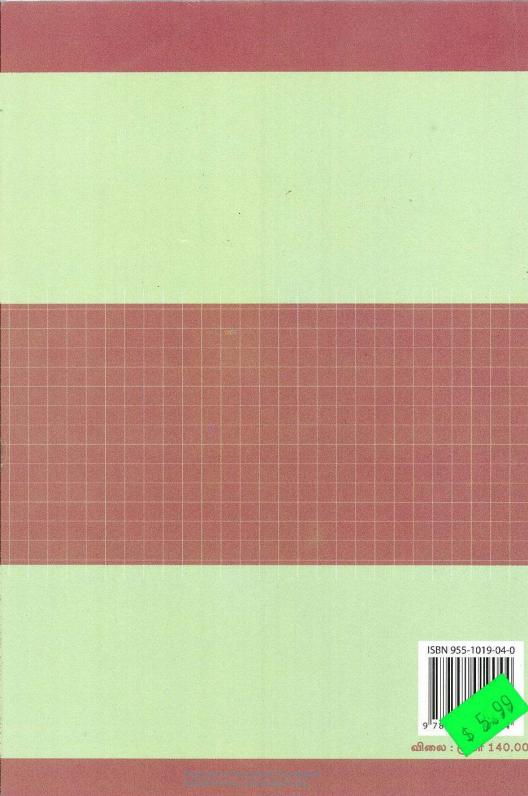
>29 °Be ஆனது Bittern எனப்படும் தாய்த்திரவம். இது ${
m MgSO_4}$, ${
m MgBr_2}$ / ${
m NaBr}$ கொண்டது. மென்சிவப்பு நிறம்.

Stage - IV

உப்பினைக் கழுவி பின் பளிங்காக்கி அதற்குள் ${
m KIO_3}$ கரைசல் விசிறப்படும். இது அயடைட்டு உப்பாகும். இது பின்னர் பொதியாக்கப்படும். ஒரு தரமான உப்பின் ஈரப்பதன் <6.0% ஆகவேண்டும்.

NaCl > 98 %

ஆக அமைவது ஆகந்தது noolaham.org | aavanaham.org இது அயடின் சேர்க்கப்பட முன்னாகும். உப்பில் அயடின் செறிவு 30 ppm ஆகும். அதாவது, ppm = part per million அதாவது, 30 ppm என்பது 30 mg in 10^6 mg 30 mg in 10^3 g 30 mg in 1 kg ஆகும்.


NB பரந்தன் இரசாயனத் தொழிற்சாலை முன்பு இயங்கியது. இது 1985ஆம் ஆண்டு பாதுகாப்பு காரணங்களால் நிறுத்தப்பட்டது. இங்கு,

- 1. பிரதான உற்பத்திகள்
 - a. எரிசோடா

- Caustic Soda
- b. திரவ குளோரின்
- Liquid Chlorine
- c. ஐதரோகுளோரிக்கமிலம் Hydrochloric acid
- 2. உப உற்பத்திகள்
 - a. FeCl,
 - b. ZnCl,
 - c. மேசை உப்பு (table salt)

பிழை திருத்தம்

பக்கம்	பிழை	திருத்தம்
03	1. $N_2 + 3H_2 \rightleftharpoons CO(g) + H_2O(g)$	$N_2 + 3H_2 \rightleftharpoons 2 NH_3$
	2. $C(g) + O_2 \longrightarrow CO(g) + H_2O(g)$	$C(g) + H_2O(g) \rightarrow CO(g) + H_2(g)$
	3. $2 \times 10^7 \text{ kPa} - 2.5 \times 10^7 \text{ kPa}$	$2 \times 10^7 \text{ Pa} - 2.5 \times 10^7 \text{ Pa}$
	இவ்வாறு ஏனைய பகுதிகளிலும் kPa	என்பதை Pa என வாசிக்குக
07	$3Ca(s) + NH_3(t) \rightarrow CaH_2(s) + 3H_2(s)$	$3\text{Ca}(s) + 2\text{NH}_3(g/t) \rightarrow 3\text{CaH}_2(s) + \text{N}_2(g)$
08	1. படத்தில்	
	செறி $\mathrm{HNO}_3(\mathrm{aq})$ செறி $\mathrm{NH}_3(\mathrm{aq})$	
	2. HgO.Hg(NH ₂)I இன் பெயர் Basic வாசிக்குக.	Mecury (II) amino-iodide எனச் சேர்த்து
10	HNO ₃ இன் மூலப்பொருள்	
	N ₃ (g) - Haber Process என்பதனை	$N_3(g)$ - Haber Process $\rightarrow NH_3$ என வாசிக்குக.
15 	என்பது நுண்டுளை உருக்கு	
38	வரி 8 - இவ்வகையிலும்	இலங்கையிலும்
43	கடைசிவரி - இணையயிலம்	இணையமிலம்
65	வரி 5 - புரதப்படை படுதலை	புரதப்படை பழுதடைதலை
73	VU கதிர்	UV கதிர்
75	7. HF இன் ஒரு பகுதி SO ₂	$\mathrm{H_{2}S}$ இன் ஒரு பகுதி SO_{2}

