வெப்பப் பௌதிகவியல் ஓட்ட மின்னியல் இலத்திரனியல்

M.P.THAVASITHAN,BSc.

க.பொ.த. (உ/த) மாணவர்களுக்கான

- * வெப்பபௌதிகவியல்
- * ஓட்டமின்னியல்
- * இலத்திரனியல்

செய்முறையுடன் மாதிரி வினாக்கள்

மலையகசமூகத்தின் கல்வி வளர்ச்சிக்கு வித்திட்டு இலங்கை தமிழ் பேசும் மக்களின் மனதை வென்ற

> கணிதப் பேராசான் அமரர் திரு. K.ஜீவராஜன்

(பிரதி அதிபா்: க/ஹய்லன் கல்லூரி)

அவர்களுக்கு சமர்ப்பணமாக இந்நூலை வெளியிடுகின்றோம்.

தொகுப்பு: பொன்னுத்துரை தவசிதன் மாணவர் ஒளி கல்வி அபிவிருத்தி மையம் திருக்கோணமலை

າລມ່ານບ່າງເພດ	நிகவிய ல்	பிழை	Sais

	-	வெப்ப ப்பெளதிகவி மல் பிழை <i>ഉ</i>	நிருக்க ும்
யக்கம்	வினா	ເມືອກເຊ	திருத்தம்
53	02	TO BE STORE OF STREET	ஆரம்ப விட்டம்:- 0.99967 cm
			இறுதி விட்டம்:- 1cm
54	11		வெப்பதிலை t - At யிலிருந்து :
37.1	168		ஆக அதிகரிக்கப்படும் போது
56	18	ஏகபரிமான விரிதிறன்	கனவளவு விரிதிறன் 3x10-5°c-1
57	23	operation of the state of the s	(5) 4.28°c
58	27	வெப்ப உயர்ச்சி யாது?	வெப்பநிலை உயர்ச்சி யாது?
58	28	நிமிடத்திற்கு 31	3 / நீரை 27°c யிலிருந்து 77° c
F0	20	திரவலாயு தேவைப்படுகிறது.	யிற்கு வேப்பமேற்ற வேண்டியுள்ளது.
58	29	திண்மத்தை 500° c யிற்கு	திண்மத் தி ன் ஆரம்ப வெப்பநிலை
			500°c
		வெப்பப்படுத்தும் போது	
58	30		$C_p = 7R/2$
59	35		கோல்கள் முனைக்கு முனை
			பொருத்தப்பட்டுள்ளன.
62	43	******************************	வாயுக்கள் மாறு வெப்பநிலையில்
			உள்ளன.
67	69	வினா (70) இல்	வினா (67) இல்
69	79	காலல் திறன்	வெப்பக் கதிர்ப்பு
73	04	***************************************	A யின் நீட்டல் விரிவுக்குணகம்
			$= 1.7 \times 10^{-5} ^{\circ} c^{-1}$
			அரும்ப வெப்புதிலை:- 25℃
77	28	5	T = 27°c
79	37	7m உயரத்தில்	தரையில் மோதி எழுந்து 7m
13	37	பா உபர்ற்றும்	[[[[[[[[[[[[[[[[[[[
79	41	1.406-	உபரத்தில்
17	-41	140°c வரை மாறா	140% வரை உயரத்தப்படுகிறது.
		அழுக்கத்தில்	
- 4		அகச்சக்தி அதிகரிப்பு	மாறாக் கனவளவில் அகச்சக்தி
Sec.		X	அதிகரிப்பு
24.70		வாயுவால் செய்யப்பட்ட	<u>மாறா அமுக்கத்தில்</u> வாயுவால்
			செய்யப்பட்ட
80	43	***************************************	$\gamma = 1.6$
81	49	தடர்த்தி:- 1kg-³	1kgm ⁻³
			திரவத்தின் கொதிநிலை:- 100°c
82	51	20cm ² , 15cm, 8cm	20m², 15m, 8m
88	76	00k	300k
		செய்முறையில் திருத்தம்	
95	28	Vp = 3000cm ³ x 19cm ⁻³	$Vp = 3000 \text{cm}^3 \times 1 \text{g cm}^{-3}$
95	30	1 및 1 및 1 및 1 및 1 및 1 및 1 및 1 및 1 및 1 및	
		(14/25) x (7R/2) x 40	(14/28) x (7R/ 2) x 40
96	35	தங்கியிருக்கும்	தங்கியிருக்காது இதுக்கியிருக்காது
95	23	$\theta = 23.3^{\circ}c$	$\theta = 4.28$ °c
99	75	$T^4 = 1400 \times (1.5 \times 1011)2$	$T^4 = 1400 \times (1.5 \times 10^{11})^2$
		$5.67 \times 10^{-8} \times (7 \times 108)^2$	$5.67 \times 10^{-8} \times (7 \times 10^{8})^{2}$
		$= 1.338 \times 1015$	= 1.338x10 ¹⁵
99	77	$t^1 = 827^{\circ}c$	$t^{\dagger} = 854^{\circ}c$
		$t^1 = 1100K$	t' = 1127K
105	29	$= (15/300-11/290)x32x10^{-3}x30/8.3$	$= (15/300-11/290)x10^5x32x10^3x30/8.3$
MARKS.	@25V	= 0.14g	= 140g
107	38	$= 5 \times 0.5 \{0 - (-10)\} + 5 \times 80$	
107	30		$= 5 \times 0.5\{0 - (-10)\} + 5 \times 80 + 5 \times 1 \times (0 - 0)$
: OP	44	= 7.8°c	= 7°c
108	44	$V_2 = 0.25 \text{m}^3$	$V_2 = 0.025 \text{m}^3$
110	**	$P_2 = 0.5 (0.5 / 0.25)^{14}$	$P_2 = 0.5 (0.5 / 0.025)^{1.8}$
110	52	$0_1 = 87.7^{\circ}c$	$\theta_1 = 85.7^6 c$
		விடையில் திருத்தம்	
127	38	I -	3
127	45	4	3
127	61	3 Digitized by Noolaham Foundation	
127	39	1 noolaham.org aavanaham.org	All
	510000	3 111	

Current Electricity - I

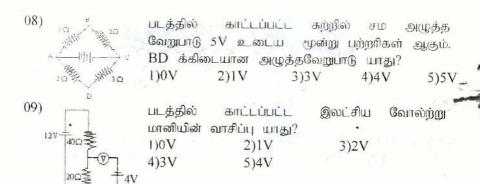
01) மின்தடையின் பரிமாணம்? (மின்னோட்டத்தின் பரிமாணம் I எனக்கொள்க) 2)ML2T-3I-2 3)ML2T21-2 1)MLT-21-1 4)ML-2T3I-2 5)MLT-II-I மாநாவெப்ப நிலையில் பேணப்படுகின்நது.அகில் 02) ஒரு உலோகக்கம்பி விரபம் மின்னோட்டத்துடன் மாறுவதற்கான வரைபு? பிருப்பிக்கப்படும் வல 4)PA 3)P 1) PA 2) PA 03) வைனொன்றும் R கடையையடைய ஐந்து தடைகள் இணைக்கப்பட்டுள்ளது. XY படத்தில் காட்டியவாறு இர்கிடையிலான சமவலுத்தடை? 2)3R/4 3)5R/8 1)3R/2 4)R/35)2R/7 04)ஒரு தடைபி R இனூடு ஒரு உறுதிமின்னோட்டம் பாபும் போது அகில் பிறப்பிக்கப்படும் வனு P ஆகும். எனின் மின்னோட்டம் இருமடங்காகவும் தடை அரைமடங்காகவும் ஆக்கப்படின் அதில் பிறப்பிக்கப்படும் வலு? 3)1/2P 4)4P 5)8P 1)P 2)2P 05)1.2x10⁻⁸ Ωm தடைத்திறனுடைய பதார்த்தத்திலான கோல் ஒன்று நீளமும் 7mm விட்டமும் உடையது எனின் கோலினது கடை? $1)I\Omega$ $2)7x10^{-1}\Omega$ $3)7.792 \times 10^{-7} \Omega$ 4)8x10-7 Ω 5)யாவும் பிழை படத்தில் காட்டப்பட்டசுந்நில் புள்ளி X இல் 06) வே அழுத்தம் யாது? 16V 2Ω 5)-6V 1)2V 2)4V 3)6V 4)8V தடையையும் 100°C யில் 07) ஒரு Pt கடை வெப்பமானி 0°C யில் 15Ω 30Ω தடையையும் உடையது.எனின் Pt இன் தடை வெப்பநிலைக் குணகம்

Thysics Current Electricity

2)0.10Ĉ

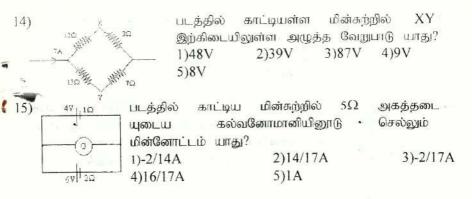
யாது?

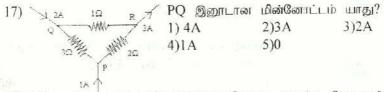
1)10C


4)0.0010°C'

M.T.Thava

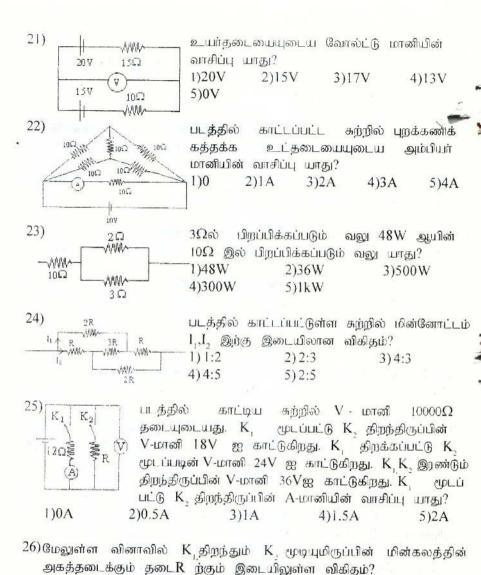
01


5)0.00010°C


3)0.010Ĉ

- 10) Alsoi தடைத் திருன் Cu இன் தடைத் திறனைப் போல் 3 மடங்கு பெறுமதியுடையது. Alஇன் குறுக்கு வெட்டுப்பரப்ப Cuவின் குறுக்கு வெட்டுப்பரப்பிலும் இரு மடங்கு குறைந்தது.சமநீளமுடைய AT MICH தடைகளினதும் விகிதம்? 1)1:2 2)2:3 3)3:2 4)3:4 5)6:1
- 11) 10V மின்னியக்க விசையும் 1Ω உட்தடையையும் உடைய கலமொன்றின் முனைகளுக்கு இடையில் 4Ω தடை இணைக்கப்பட்டுள்ளது. உட்தடையில் பிறப்பிக்கப்பட்ட வலு?
 1)2W
 2) 4W
 3)6W
 4)8W
 5)10W
- 12) 10mA முழுவளவிடை திரும்பலுடைய 20Ω தடையுடைய mA மானியொன்றை6V முழுவளவிடை திரும்பலுடைய V-மானியாக மாற்ற இணைக்கவேண்டிய தடையின் பெறுமதி?
 1)590Ω 2)380 Ω 3)580Ω
 4)400Ω 5) யாவும்பிழை

 $R=30\Omega$ ஆகவுடைய அழுத்தப்பகுதி ஒன்றை படம் காட்டுகின்றது. 90V இலிருந்து 10V இற்கு செல்லும் மின்னோட்டம் யாது? 1)1A 2)2A 3)3A 4)4A $5)5\mathring{A}$


18)மேலேயுள்ள ¹ சுற்றில் PR இற்கிடையிலான அழுத்த வேறுபாடு? 1)0V 2)1V 3)2V 4)3V

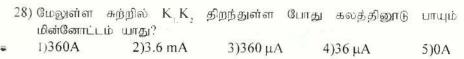
19)1.6A மின்னோட்டம் பாயும் கடத்தியொன்றின் eⁿ ஆனது 200ms⁻¹ என்னும் வெகத்துடன் பயணம் செய்கிறதாயின் கடத்தியில் eⁿ னின் அடர்த்தி யாது?(கடத்தியின் கு.வெ.ப0.5m², eⁿனின் ஏற்றம்1.6x10⁻¹⁹C) 1)10¹⁷m⁻³ 2)10¹⁷kgm⁻³ 3)10¹⁶msc⁻¹ 4)10¹⁵Asc⁻¹ 5)10¹⁵Am⁻³c⁻¹s

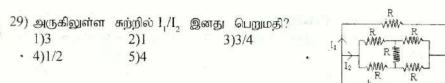
20) p தடைத் திறனுடைய பதார் த்தத் தாலான l நீளமுடையதும் a குறுக்குவெட்டுப்பரப்புடையதுமான சீரான கம்பியொன்றுக்கு குறுக்கே V அழுத்தவேறுபாடு பிரயோகிக்கப்பட்டுள்ளது. அலகு கனவளவிலுள்ள ஏற்றக்காவிகளின் எண்ணிக்கை nஆகவும் இவ்ஏற்றக்காவிகளின் சராசரி நகர்வுக்கதி U ஆகவும் இருப்பின்V/l ஐ தருவது?
1)nUep 2)p/nUe 3)ep/nU 4)nU/pe 5)nUe/p

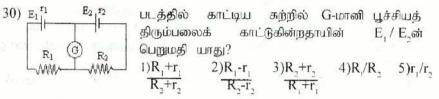
5)4V

Current Electricity

27)மேல் தரப்பட்ட சுற்றில் கலத்தின் மின்னியக்கவிசை யாது? 1)18V 2)24V 3)36V 4)12V 5)யாவும் பிமை

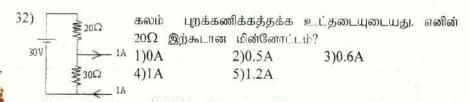

3)1:3

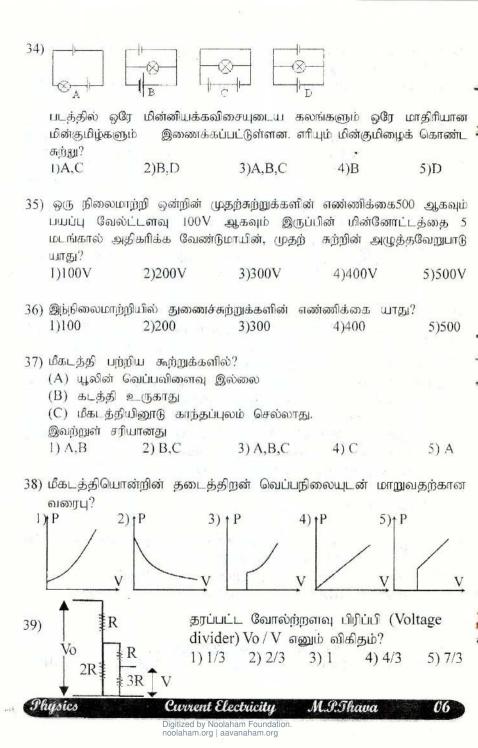

2)2:1

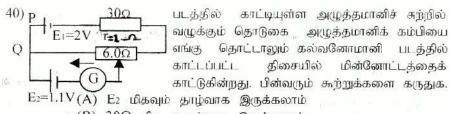

1)1:2

4)3:1

5)1:1

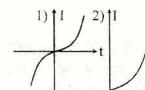





படத்தில் காட்டியுள்ள உவீத்தன் வலை வேலை அமைப்பில் கல்வனோ மானி பூச்சியத் திரும்பலைக் காட்டுகிறது. பின்வரும் கூற்றுக்களைக் கருதுக. (A)P/R=Q/S ஆகும்.

(B)P,Q,R,S ஆகிய எல்லாத் தடைகளையும் இரு மடங்காக்கினாலும் கல்வனோமானி பூச்சியத்திரும்பலைக் காட்டுகிறது.

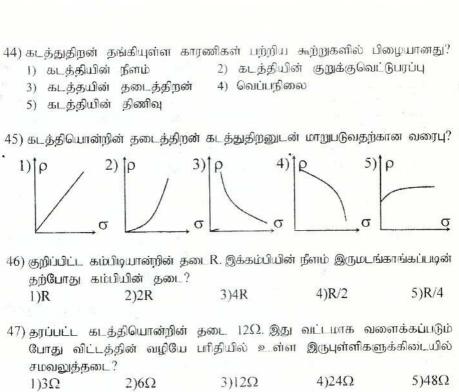
- (C) முன்னயதை ஒத்த இன்னுமோர் மின்கலத்தை முன்னையதுடன் தொடராக இணைத்தால் சம நிலைப்புள்ளியைப் பெற எல்லாத் தடைகளையும் இருமடங்காக்குதல் வேண்டும். இக்கூற்றுக்களுள் சரியானது/சரியானவை?
- 1)A மட்டும் 2)A,B மட்டும் 3)B,C மட்டும் 4)A,C மட்டும்
- 5)A.B.C எல்லாம்

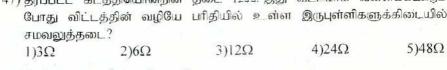

- · (B) 30Ω மிக உயர்வாக இருக்கலாம்
 - (C) PQவில் ஒரு துண்டிப்பு இருக்கலாம் இக்கூற்றுகளில் சரியானது.
 - 1) A 2) B
- 41) X

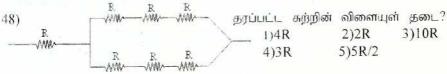
3) C

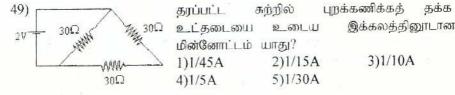
- 4) A.B
- 5) A.C
- படத்தில் காட்டப்பட்ட அழுத்தமானிச் γ சுற்றில் சமநிலைப்புள்ளி பெறப்படாமைக்கு காரணமாக இருக்கக்கூடியது? (A) $E_2 > E_1$ (B) $Vxy \leq E_2$

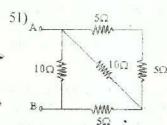
(C) E₁, E₂ இன் (+) முனைகள் ஒரே திசையிலிருத்தல் 1) A.B 2) B.C 3) A.B.C 4) A.C 5) யாவம்பிமை


- 42) மீற்றர் பாலத்தைக் கொண்டு பரிசோதனை செய்யும்போது கவனிக்கப்பட வேண்டியவை?
 - (A)மீற்றர் பால கம்பியின் நடுப்பள்ளியில் சமநிலைப்பள்ளி பொத்தக்கதாக மாறும் கடையை மாற்றவேண்டும்.
 - (B)சுற்றில் தடித்த Cu தகடுகள் பயன்படுத்தவேண்டும்.
 - (C) வழுக்கியை கம்பியில் தொடுகையில் வைத்துக்கொண்டு அசைத்தல் கூடாது.
- 1) A.B. 2) B.C 3) A.B.C
- 4) A.C
- 5)யாவும்பிழை -
- 43) தங்குதன் இழை மின்குமிழ் ஒன்று எரிகையில் மன்னோட்டமானது நேரத்துடன் மாறுபடுவதற்கான வரைபு?



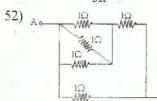






50) $10 \mathrm{m}$ நீளமான கம்பி ஒன்றின் தடை 20Ω ஆகும். இது $3 \mathrm{V}$ கலத்தினூடும் தொடராகப் பொருத்தப்பட்டுள்ளது.ஆயின் கம்பிக்கு 10Ω இனுடும் இடையில் உண்டாக்கப்பட்ட அழுத்தப்படித்திறன் யாது? 5)0.2 2)0.13)1.2 4)0.31)0.02

சுற்றில் A,B பிற்கு இடையில் காப்பட்ட உள்ள சமானத்தடை யாது?


1)35Ω

 $2)25\Omega$

3)10Ω

5Ω 4)5Ω

 $5)10\Omega$

ஒவ்வொன்றும் சமகடை 1Ω யைஉடைய 5படத்தில் காட்டியவாறு கொடுக்கப் கடைகள் A.Bயிற்கு பட்டுள்ளகாயின் இடையிலான சமவலுத்தடை யாது?

 $1)1/4\Omega$ $4)8/7\Omega$

 $2)4/7\Omega$ $5)7/8\Omega$

 $3)7/4\Omega$

53) மின்புலச் செறிவுE, மின்னோட்ட அடர்த்தி J, கடத்துதிறன் φ் ஆயுமிருப்பின் இவற்றுக்கிடையிலான தொடர்பு யாது?


1)J=0E

 $2)J=E/\omega$

3)JE=φ

 $4)J=\omega^2E$

 $5)E=\omega/J$

 $1)44/15\Omega$

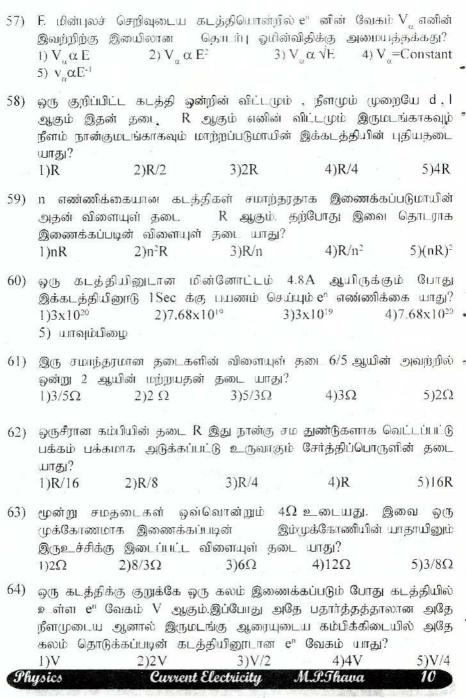
 $2)3\Omega$ $3)104/15\Omega$

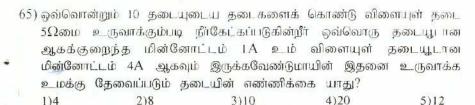
 $4)12\Omega$

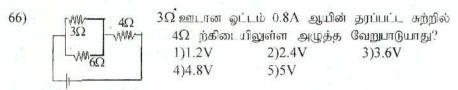
 $5)15/104\Omega$

55) ஒரே திரவியத்தினால் செய்யப்பட்ட 3cm,5cm நீளங்கள் உடைய இரு கடத்திகள் முறையே 1mm,3mm அரைகள் உடையது அவை தொடராகத் தொடுக்கப்பட்டு 16V மின்னியக்க விசையடைய கலத்தினால் மின்னோட்டம் வழங்கப்படுகின்றதாயின் குறுகியகடத்திக்கு இடையிலான அழுத்த வேறுபாடு யாகு!?

1)2.5V


2)6.5V

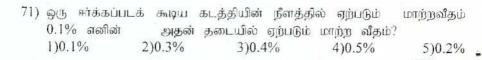

3)10.5V


4)13.5V

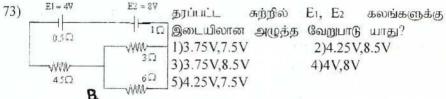
5)16V

- 56) குறிப்பிட்ட கம்பி ஒன்றின் தடையானது.
 - 1) நீளத்துடன் மாறுபடும்.
 - 2) குறுக்கு வெட்டுப்பரப்புடன் மாறுபடும்.
 - 3) திணிவுடன் மாறுபடும்.
 - 4) நீளம், திணிவு, குறுக்கு வெட்டுப்பரப்புடன் மாறாது.
 - 5) வெப்ப நிலையுடன்மாறுபடும்.

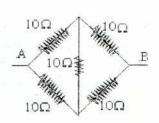
67) 1.5V மின் னியக்க விசையடைய கலத்துடன் 5Ω இணைக்கப்படுகின்றது. அப்போகு மின்னோட்டம் அகனாடான 0.2A ஆகவும் இருக்கும் எனின் அதன் உட்தடை யாது? $3)2.5\Omega$ $1)0.5\Omega$ $2)0.2\Omega$ $4)3\Omega$ 5)1.25Ω

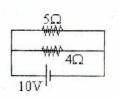

- 69) E மின்னியக்கவிசையுடைய 5 மின்கலங்கள் ஒவ்வொன்றினதும் அகத்தடை முறையே ரஆகும். இவை தொடராகத் தொடுக்கப்படுகின்றது. இதில் ஒரு கலம் பிழையாக தொடுக்கப்பட்டு இருக்குமாயின் இத்தொகுதியின் விளையுள் மின்னியக்கவிசை? உட்கடை என்ன? 1)5E.5r 2)3E.5r 3)5E.3r 4)3E.3r 5)3/5E.3/5r
- 70) 1.5V மின்னியக்கவிசையடைய இரு கலங்களிற்கும் தொடராக தடையொன்றை தொடுத்த போது தடையூடான மின்னோட்டம் 1A ஆகும். பின்னர் இரண்டிற்கும் குறுக்கே சமாந்தரமாக தொடுத்த போது தடைக்கு குறுக்கேயான மின்னோட்டம் 0.6Aஆகும்.எனின் பற்றரியின் அகத்தடை யாது? $2)1/4\Omega$

 $1)1/5\Omega$


 $311/3\Omega$

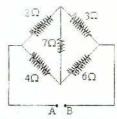
 $4)1/2\Omega$


 $5)1/6\Omega$

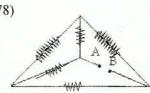

- 72) 24 ஒரே சமனான மின்கலங்கள் ஒவ்வொன்றினதும் அகத்தடைகள் 0.5Ω ஆகும். இவற்றின் m எண்ணிக்கையான கலங்கள் தொடராக இணைக்கப்பட்டுள்ள அமைப்பில் n எண்ணிக்கையானவை சமாந்தரமாகத் தொடுக்கப்பட்டுள்ள ஒரு அமைப்பின் விளையுள் தடை 3Ω எனின் கலத்தினூடாக உயர்மின்னோட்டம் பயணம் செய்யத்தக்க m.nற்கு உரிய பெறுமதி முறையே?
 - 1)12,2 2)8,3
 - 3)2,12
- 4)3,8
- 5)24,24

- 74) 2Ω படத்தில் காட்டப்பட்ட சுற்றில் B,D பிற்கு இடையலான அழுத்தவேறுபாடு யாது? 1)+1V 2)-1V 3)+2V 4)-2V 5)3
- 75) தரப்பட்ட வலை வேலைப்பாட்டில் A,Bயிற்கு இடையிலான சமவலுத்தடை யாது?
 1)5Ω 2)10Ω 3)20Ω 4)40Ω 5)50Ω

76) தரப்பட்ட சுற்றில் 10V கலத்தின் உட்தடை 1Ω எனின் 5Ω னூடான ஓட்டம் யாது?
 1)20/29A 2)30/39A 3)40/29A 4)50/29A 5)80/29A



77) மின் வலைப்பாட்டில் A,B யிற்கு இடையிலான ഖിബെധ്വണ് ക്കവ്, ധ്വന്ത്വ? $1)10/3\Omega$ $2)20/3\Omega$


 $4)6\Omega$

 $5)5\Omega$

 $3)15\Omega$

78)

தரப்பட்ட சுற்றில் ஒவ்வொன்றும் சம தடை R உடையது. A,B இடையிலான விளையள் கடை யாகு!?

1)R 4)6R 2)5R 5)4R 3)3R

79) படத்தில் காட்டப்பட்டவாறு அமைக்கப்பட்ட ஒவ்வொன்றும் 4Ω தடையடைய 6 கம்பிகளின் சேர்க்கியில் ஏகாவது இரு முனைகளுக்கு இடையிலான விளையுள் தடையாது? $1)10\Omega$ $2)2/3\Omega$ $3)4\Omega$ $4)2\Omega$ 5)1Q

தடையூடான

80) அருகே தரப்பட்ட சுற்றில் கல்வனோமானியின் 500Ω வாசிப்பு பூச்சியமாயின் தடை R ன் MAN பெறுமதி? 3)500Ω12V 1150Ω $2)200\Omega$ $4)150\Omega$ $5)100\Omega$

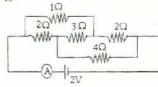
1)1.2A

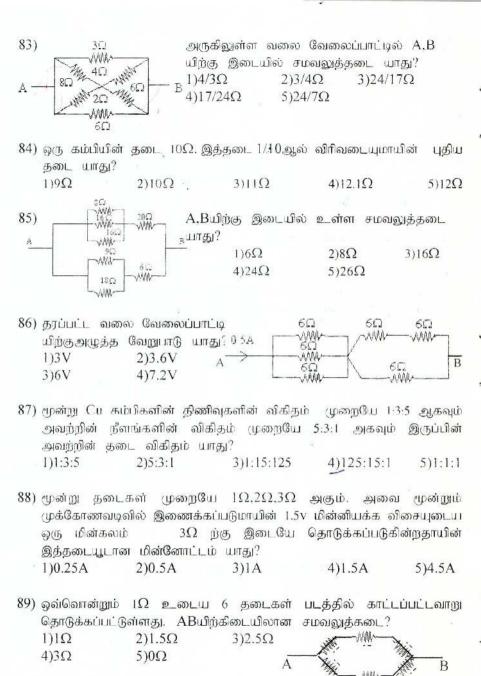
4)0.4A

81)

கூரப்பட்ட சுற்றில் மின்னோட்டம் என்ன?

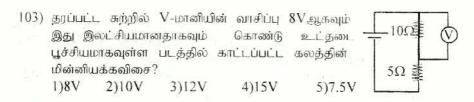
2)1A

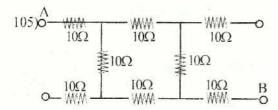

3)0.8A 5)1.4A


சிறிய

82) தரப்பட்ட சுற்றில் A-மானியின் வாசிப்பு யாது?

- 1) 1A
- 2) 2A
- 3)3A


- 4) 4A
- 5) 5A



- 90) 6Ω . 4Ω தடைகள் தாடரில் தொடுக்கப்பட்டு அவை 20V பற்றரிக்கிடையில் தொடுக்கப்பட்டுள்ளது. 6Ω தடைக்கிடையான அழுத்தவேறுபாடு? 1)3V 2)6V 3)9V 4)12V 5)20V
- 91) 2Ω, 3Ω, 5Ω தடைகள் சமாந்தரமாக இணைக்கப்பட்டு அவற்றுடன் 10V பற்றரி சமாந்தரமாக இணைக்கப்பட்டுள்ளது. இவ் பற்றரியின் உட்தடை புறக்கணிக்கத்தக்கதாயின் 3Ω தடைக்கிடையான அழுத்தவேறுபாடு? 1)2V 2)3V 3)5V 4)10/3V 5)10V
- 92) 3 கடத்திகள் பற்றரி ஒன்றுக்கு தனித்தனியே தொடுக்கும்போது அவற்றிற்கடையான மின்னோட்டம் 1A, 2A, 4A ஆகும். இப்போது தடைகள் தொடராக தொடுக்கப்பட்டு அதே பற்றரியால் மின்னோட்டம் வழங்கப்படுமாயின் கடத்திகளுக்குடாக செல்லும் புதிய மின்னோட்டம்.? 1)2/7A 2)3/7A 3)4/7A 4)5/7A 5)3A
- 93) ஒழுங்கற்ற குறுக்குவெட்டுப்பரப்புடைய கடத்தியொன்றினூடு உறுதியான மின்னோட்டம் பாயும்போது அதன் குறுக்குவெட்டு பரப்பினூடு ஓரலகு நேரத்தில் செல்லும் ஏற்றம்
 - குறுக்குவெட்டுப்பரப்புக்கு நேர்விகிதசமன்
 - 2) குறுக்குவெட்டுபரப்பிற்கு நேர்மாறுவிகிதசமன்
 - 3) குறுக்குவெட்டுப்பரப்பின் வர்க்கத்திற்கு நேர்விகிதசமன்
 - 4) குறுக்குவெட்டுப்பரப்பில் தங்கயில்லை
 - 5) ஒன்றும் கூறமுடியாது
- 94) 5A மின்னோட்டத்தைக் காவும் ஒரு கடத்தியொன்றின் குறுக்குவெட்டுப்பரப்பு $4x10^{-6}$ m⁻². இக்கடத்தியின் ஏற்ற அடர்த்தி $5x10^{26}$ m⁻³ ஆயின் கடத்தியில் உத்தியில் உத்தியில் உத்தியில் உத்தியில் கடத்தியில் உத்தியில் கடத்தியில் உத்தியில் கடத்தியில் உத்தியில் கடத்தியில் உத்தியில் கடத்தியில் உத்தியில் கடத்தியில் கடியில் கடத்தியில் கடியில் க
 - 1)1/16ms⁻¹ 2)1/32ms⁻¹ 3)1/64ms⁻¹ 4)1/128ms⁻¹ 5)1/256ms⁻¹
- 95) ஒரு கடத்தியினூடு I மின்னோட்டம் பாயும்போது அக்கடத்தியலுள்ள உஇன் வேகம் V. அதே பதார்த்தத்தால் ஆக்கப்பட்ட இருமடங்கு நீளமும் இருமடங்கு குறுக்குவெட்டப்பரப்பால் ஆக்கப்பட்ட கடத்தியிலுள்ள உஇன் வேகம் யாது?
 - 1)V/4
- 2)V/2
- 3)V
- 4)2V
- 5)3V

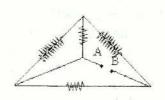
- 96) செப்பு உலோகத்தின் அடர்த்தி 9x10 kgm ஆகவும் சாரணுத்திணிவு 63 gmol ஆகவும் உள்ள இக்கடத்தியினூடு 1.1A மின்னோட்டம் பாய்கிறது. அக்கடத்தியின் விட்டம் 1mm ஆகவும் இருப்பின் இக்கடத்தியிலுள்ள eⁿ இன்வேகம் யாது? 1)0.1mms-1 2)0.2mms-1 3)0.1ms-1 4)0.3mms-1 5)0.2cms-1
- 97) 2m நீளமான செப்புக்கடத்தியொன்றின் குறுக்குவெட்டுப்பரப்பு1.7x10-6m² ஆகவும் அதன் தடை 2x10-²Ω ஆகவும் இருப்பின் அக்கம்பியின் தடைத்திறன்?
 1)2.3x10-7Ωm
 2)2.1x10-7Ωm
 3)1.9x10-8Ωm
 4)1.7x10-7Ωm
 5)1.7x10-8Ωm
- 98) மேலே வினா 97இல் தரப்பட்ட கடத்தியின் நீளம் இருமடங்காகவும் குறுக்குவெட்டுப்பரப்பு இருமடங்காகவும் இருப்பின் அதன் தடையானது? 1) 4மடங்காகும் 2)1/4 மடங்காகும் 3)2 மடங்காகும் 4)மாநாமல் இருக்கும் 5)1/2 மடங்காகும்
- 99) ஒவ்வொன்றும் 1/5Ω தடையுடைய 5 தடைகள் தரப்பட்டிருப்பின் இத்தடைகளை பயன்படுத்தி உருவாக்கக்கூடிய ஆகக்குறைந்த விளையுள் தடை?
 1)1/50Ω 2)1/25Ω 3)1/10Ω 4)3/5Ω 5)யாவும்பிழை **
- 100) மேலே வினாவில் தரப்பட்ட விடைகளைப் பயன்படுத்தி உருவாக்கக்கூடிய ஆகக்கூடிய விளையுள் தடை? $1)1\Omega$ $2)1/2\Omega$ $3)2/5\Omega$ $4)5\Omega$ 5)மேற்கூறிய யாவும் பிழை
- 102) மேற்கூறிய வினாவில் 7.2Ω இற்கடையிலான அழுத்தவேறுபாடு? 1)3V 2)4.2V 3)4.8V 4)3.6V 5)5.2V

104) - குறிப்பிட்ட கம்பியொன்றின் தடை R/2. இக்கம்பியின் நீளம் இருமடங்காக்கப்படின் தற்போது கம்பியின் தடை? 1)R 2)2R 3)4R 4)R/2 5)R/4

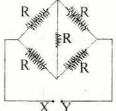
படத்தில் காட்டப்பட்ட வலை வேலைப்பாட்டில் A,Bக்கிடை யிலான விளையுட் தடையாது? 1)10Ω 2)20Ω 3)30Ω 4)40Ω 5)50Ω

106) தடையாக தொழிற்படக்கூடிய ஏற்றப்படாக்குழாப் (Dischree Tube) ஆனது

ஓமின் விதிக்கமையும்

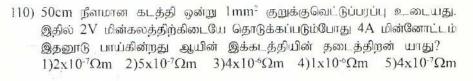

2) ஓமின் விதிக்கமையாது

3) ஓமின் விதிக்கமையலாம் அமையாமல் விடலாம்

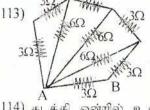

4) சிலநேரம் ஓமின் விதிக்மைமையும் சிலநேரம் ஓமின் விதிக்கமையாது

5) எதுவும் கூறமுடியாது

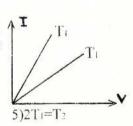
107) படத்தில் காட்டப்பட்டுள்ள கற்றில் ஒவ்வொன்றும் சமதடை 2Ω உடையது. ஆயின் A,B க்கடையிலான சமவலு தடையாது? 1)1Ω 2)1.2Ω 3)3Ω 4)4Ω 5)5Ω

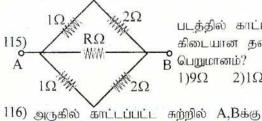


108)


படத்தில் காட்டப்பட்ட சுற்றில் X,Y க்கடையிலான விளையுட்தடை யாது? 1)R 2)4R 3)5R 4)6R 5)2R

109) தரப்பட்டவற்றுள் சிறந்த மின்கடத்தியாக தொழிற்படக்கூடியது? 1)Cu, Ag, Au 2)Cu, Si, இரத்தினம் 3)Cu, Hg, NaCl 4)Cu, Ge, Hg 5) யாவும் சரி


- 111) கடத்தி ஒன்றுக்கு குறுக்கே அழுத்தவேறுபாடு பிரயோகிக்கப்படுகின்றது. வெப்பநிலை T K ஆகும். ஆயின் அப்போது அக்கடத்தியின் அக்கடத்தியின் இலத்திரனின் சராசரி வேகமானது
 - 1) Tந்க நேர்விகிக்சமன் 3) புச்சியம்
- 2) √Tக்கு நேர்விகிதசமன் 3) Tயில் தங்கியில்லை
- 5) வேகம் முடிவற்றது


- 112) படத்தில் காட்டப்பட்டுள்ள சந்தியில் இருந்து செல்லும் மின்னோட்டம் 1யின் பெறுமானம் 5)2.7A
 - 2)3.7A 3)1.3A 4)1A 1)1.7A

படத்தில் காட்டப்பட்ட வலை வேலைப்பாட்டின் A.Bக்கடையிலான சமவலுக்கடை யாது? $4)16\Omega$ $1)3\Omega$ $2)9\Omega$ $3)2\Omega$

114) கடத்தி ஒன்றில் உள்ள மின்னோட்டம் ஆனது அழுத்தவேறுபாட்டுடன் வெவ்வேறு வெப்பநிலை மாளபடுவகள்கான வரைப அருகில் காட்டப்பட்டுள்ளது. ஆகவே Ti, Tzக்கடையான கொடர்ப? 3) $T_1=T_2$ 4) $T_1=2T_2$ $1)T_1>T_2$ $2)T_1 < T_2$

படத்தில் காட்டப்பட்டுள்ள அவற்றில் A,Bக் கிடையான தடை ΙΩ ஆயின் தடையின் B பெறுமானம்?

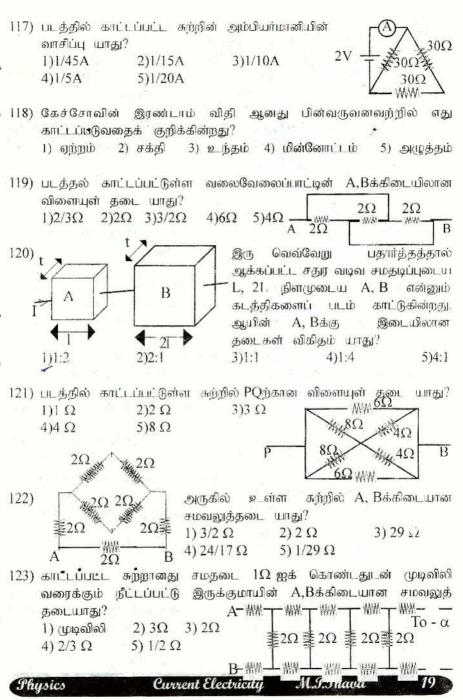
 $1)9\Omega$ $2)1\Omega$

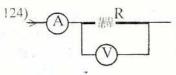
 $3)6\Omega$

 $4)3\Omega$

இடையான அழுத்தவேறுபாடு யாது? 2)1V 3)-1V 4)-2V 5)-3V

2030


husics


1)2V

Current Electricitu

M.T.Thava

 $5)4\Omega$

காட்டப்பட்ட சுற்றின் அம்பியர்மானியின் வாசிப்பு வோல்ந்மானியின் வாசிப்ப 20V கடை Rஇன் பொமானம் யாகு!?

1)0

2)4

3)4ஐவிடக்குளைவ

4) 4ஜவிடக்கூட 5) கூறமுடியாது

 $125) \ 1.5 \mathrm{V}$ மின்னியக்கவிசையுடைய ஒரு கலத்துடீன் 0.05Ω தடையுடைய ரை அம்பியர்மானி இணைக்கப்பட்டது. அப்போது அதன் வாசிப்பு 2A எனின் கலத்தின் அகத்தடை யாது?

 $1) 0.7\Omega$

 $2) 0.8\Omega$

 $3)0.9\Omega$

 $4)1\Omega$

 $5)2\Omega$

126) ஒரு கடத்தியின் தடை தங்கியுள்ள காரணி ?

1) நீளம்

2) விட்டம் 3) பதார்த்தத்தின் தன்மை

4) வெப்பநிலை

5) மேற்கூறிய யாவும்

127) 3Ω தடையுடைய ஒரு கம்பி ஆரம்ப நீளத்தின் இருமடங்காக நீட்டப்படுகின்றது. ஆயின் புதிய கம்பியின் கடை யாது? $1)3\Omega$ 2) 1.5Ω $3)6\Omega$ 4) 19Ω 5) 12Ω°

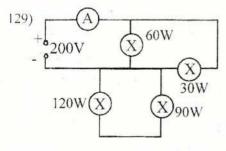
128) ஒரு கம்பியின் தடைத்திறன் தங்கியுள்ள காரணிகள்?

A) நீளம்

B) விட்டம்

C) பதார்த்தத்தின் தன்மை

D) வெப்பநிலை


1) A,B

2) C.D

3) B.D

4) A.D

5) A

படத்தில் காட்டபட்டுள்ள சுற்றில் 200V நேரோட்ட வலு வழங்கி கொடுக்கப் பட்டுள்ளது. ஒவ்வொரு மின்குமிழினூடும் நடைபெறும் வலு இழப்பு வீதம் படத்தில் தரப்பட்டுள்ளது. எனின் A-மானியின் வாசிப்ப யாகு!?

1) 1.5A

2) 1.8A

3)2A

4) 2.4A

5) 1A

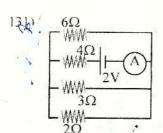
130) 10Ω கல்வனோமீற்றர் 1mA முழுத்திரும்பலை தடையுடைய ஒரு உடையது. இதன் 2.5Vஇற்கு கூடிய அழுத்தவேறுபாட்டை அளக்க கூடியதான வோல்ட்மானியின் மாற்ற தேவையான தடையின் பெறுமானத்தை குருவது?

1) 24.9Ω

 $2)249\Omega$

3) 2490Ω

4) 24900Ω

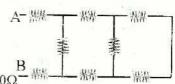

5) 2.49 Ω

Physics

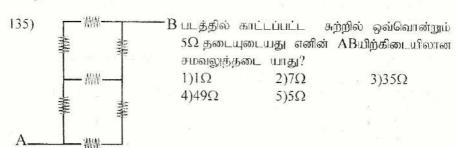
Current Electricity

M.P.Thava

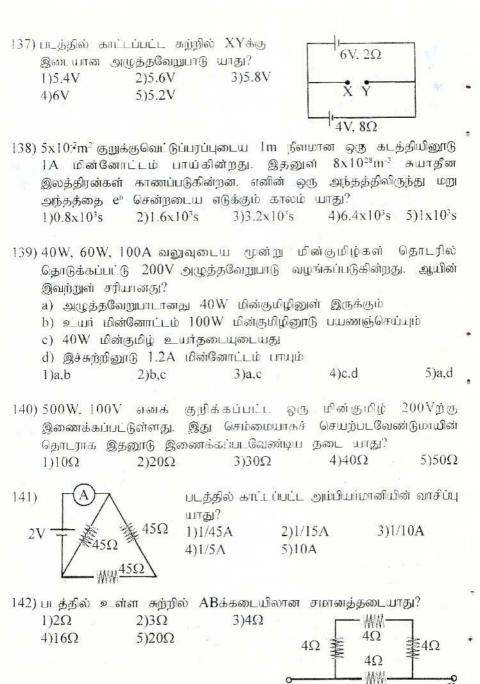
20


படத்தில் காட்டப்பட்ட சுற்றில் அம்பியர்மானியின் வாசிப்பு யாது?

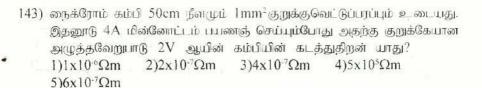
- 1) 0.2A
- 2) 0.4A
- 3) 6A


- 4) 0.6A
- 5) 0.8A

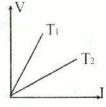
132) சம ஓரலகுத் திணிவுடைய Cu, Al கம்பிகளின் தடைத்திறன்கள் முறையே 2.7x10-8mூ. 8x10-8mூ. இவற்றின் அடர்த்திகள் முறையே 8100kgm⁻³, 2700kgm⁻³ ஆகும் எனின் ஓரலகு நீளத்தடை விகிதத்தை Al : Cu க்கு காண்க?
1)2:9 2)9:2 3)3:2 4)2:3 5)2:1


133) அருகில் உள்ள வலைவேலைப்பாட்டில் ஒவ்வொரு தடையும் 11Ω உடையது. எனின் ABயிற்கு இடையிலான சமு; னத்தடை யாது? 1)10Ω 2)20Ω 3)30Ω 4)40Ω 5)50

134) ஒரு கலத்துடன் 2Ω தொடுக்கப்பட்டுள்ளபோது அதனூடான மின்னோட்டம் 0.9A ஆகும். 7Ω தொடுக்கப்பட்டபோது மின்னோட்டம் 0.3A ஆயின் கலத்தின் அகத்தடை யாது?
1)0.5Ω 2)1Ω 3)1.2Ω 4)2Ω 5)2.1Ω


136) ஒரு கல்வனோமீற்றருடன் 12Ω தடையைப் பக்கவழிப்படுத்தும்போது 50வது பிரிவில் இருந்து 10வது பிரிவிற்கு திரும்பல் காட்டியது. எனின் கல்வனோமானியின் அகத்தடை யாது? $1)24\Omega$ $2)36\Omega$ $3)48\Omega$ $4)60\Omega$ $5)70\Omega$

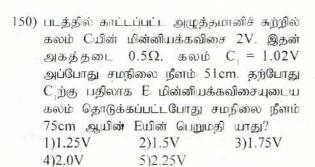
Current Electricity

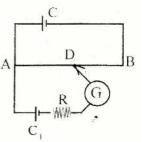

hysics

M.T.Thava

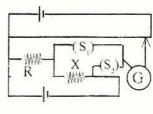
- 144) கடத்தியின் கடை பின்வருவனவுற்றில் எதில் தங்கியிருக்கமாட்டாது?
 - 1) வெப்பநிலை
- 2) பதார்த்தத்தின் தன்மை 3) நீளம்
- 4) குறுக்குவெட்டுப்பாப்ப
- 5) வடிவம்
- 145) கடத்தி ஒன்றின் வெவ்வேறு வெப்பநிலைகளில் எதிர் I வரைபு படத்தில் காட்டப்படுகின்றது. அயின் பின்வருவனவற்றில் சரியானது. 1) T > T, 2) T < T,

- 4) $T \ge T$, 5) $T \le T$.




- 146) Cu கம்பி ஒன்றிரைடான மின்னோட்டம் IA எனின் கம்பியினூடு 1.6sஇல் ஒரு குறித்த புள்ளியை செல்லும் இலத்திரன் எண்ணிக்கை யாது? (இலத்திரன் எந்நம் :- 1.6x10⁻¹⁹ C)
 - 1) 1019
- 2) 1020
- $3) 10^{21}$
- 4) 1022
- $5) 10^{23}$
- 147) படத்தில் காட்டப்பட்டுள்ள வலை ᢄ8Ω வேலைப்பாட்டில் புடிபிற்கு இடையிலான £6Ω சமவலுத்தடை யாது? 1)4 Ω 2)6 Ω 3)8 Ω 4)9 Ω 5)10 Ω
- 148) ஒரு கம்பியின் தடை 50°Cயில் 2Ωஆகவும் 100°Cயில் 2.04Ω ஆகவும் இருப்பின் கம்பியின் தடை வெப்பநிலை குணகம் யாது?

 - 1)10/49 x10⁻³K⁻¹ 2)20/49 x10⁻³K⁻¹
- 5) யாவம்பிமை


- $3)30/49x10^{-3}K^{-1}$ 4)40/49x10⁻³K⁻¹
- 149) ஒரு இலட்சிய வோல்ட்மானியின் தடையானது
 - 1) மிக உயர்வானது

- 2) மிகத் தாழ்வானது
- 3) பயன்படுத்தும் அளவை பொருத்தது 4) பூச்சியமானது
- 5) முடிவிலியானது.

151) தரப்பட்ட அழுத்தமானிச் சுற்றில் R=10Ω ஆக இருக்கும்போது ஆழி S₁ மூடியும், S₂ திறந்தும் உள்ளது. அப்போது சமநிலை நீளம் 50cm.பின்னர் S₂மூடியும் S₁திறந்தும் உள்ளபோது சமநிலை நீளம் 60cm ஆயின் தடை X இன் பெறுமதி யாது ?

 $1) 1\Omega$

 $2) 2\Omega$

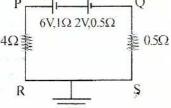
 $3)3\Omega$

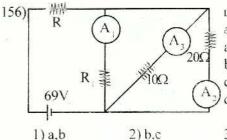
 $5)5\Omega$

- 152) ஒரு கலத்திற்கு குறுக்கேயான அழுத்தமானது.
 - a) கலத்தின் மின்னியக்கவிசைக்குச் சமனாகும்
 - b) கலத்தின் மின்னியக்கவிசையிலும் குறைவு
 - c) கலத்தின் மின்னியக்கவிசையிலும் கூடவாகும்
 - d) குறையவோ கூடவோ என்பது
 மின்னோட்டத்தின் திசையைப் பொறுத்தது.
 - e) கலத்தின் அகத்தடையை பொறுத்தது இவற்றுள் சரியானது
 - 1) a,b
- 2) b,c
- 3) c,d
- 4) d.e

4) 40

- 5) a,b,c
- 153) ஒரு கல்வனோமானியை அம்பியர்மானியாக மாற்றவேண்டுமாயின்
 - 1) தாழ்தடையை தொடராக தொடுக்கவேண்டும்
 - 2) உயர்தடையை தொடராக தொடுக்கவேண்டும்
 - 3) தாழ் தடையை சமாந்தரமாக தொடக்கவேண்டும்
 - 4) உயர்தடையை சமாந்தரமாக இணைக்கவேண்டும்
 - 5) மேற்கூறிய யாவும் பிழை
- 100W, 200W வலு உடைய இரு மின்குமிழ்கள் முறையே 110V, 220V அழுத்தவேறுபாடுகளிலேயே தொழிற்படும் எனின் இவற்றின் தடைவிகிதம் முறையே யாது?
 - 1)1:1
- 2) 1:2
- 3) 1:3
- 4) 1:4
- 5)2:1




b) Qஇல் அழுத்தம் - 0.5V

c) 6Vகலத்திற்கு குறுக்கே இணைக்கப் 4Ω 袁 படும் வோல்ட்மானியின் வாசிப்பு 7V

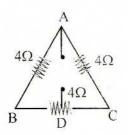
d) விடைCயில் வாசிப்பு 5V

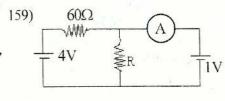
1) a,b 2) b,c .-3) c,d 4) a,d 5) b,d

படத்தில் காட்டப்பட்ட சுற்று பற்றிய கூற்றுகளில் சரியானது? a) A யின் வாசிப்பு = 0.5A

b) $R_1 = 40\Omega$

c) $R = 14\Omega$


d) Rற்கு குறுக்கேயான அழுத்த

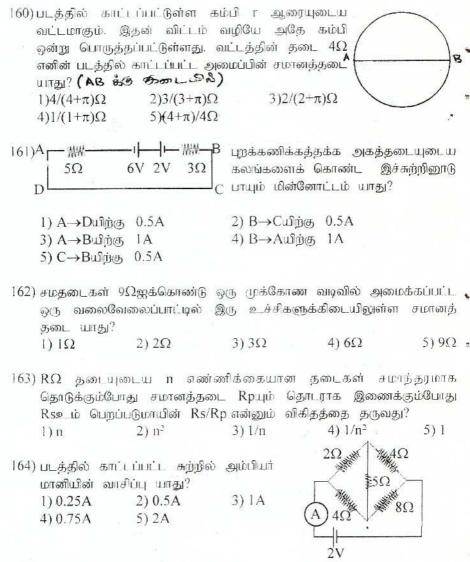

வேறுபாடு 49V 3) c.d 4) a.d

5) b.d

- , 157) ஒரு குறித்த நீளமும் குறுக்குவெட்டுப் பரப்பும் உடைய ஒரு செப்புக்கம்பி ஒரு அழுத்தவேறுபாட்டால் வெப்பமேற்றப்படும்போதும் அதே செப்பால் ஆனால் இரு மடங்கு நீளமுள்ள செப்புக் கம்பியை **الله على** வெப்பமேற்றும்போதும் ஒரே வெப்பம் வெளியேறியது. எனின் இரண்டாவதன் குறுக்குவெட்டுப்பரப்பு
 - 1) முன்னயதன் இருமடங்கு
 - 2) முன்னயதன் அரைமடங்கு
 - 3) இரண்டும் சமன்
 - 4) முன்னயகன் நான்கு மடங்கு
 - 5) முன்னயதன் கால் மடங்கு

158) படத்தில் காட்டப்பட்ட சுற்றில் Dஎன்பது தடை நடுப்புள்ளியாகும். எனின் A,Dயிற்கு இடையில் உள்ள சமவலுத்தடை யாது? 1)12Ω 2)6Ω 3)3Ω 4)1/3Ω 5)1/6Ω

Phusics


படத்தில் உள்ள சுற்றில் 1V கலத்தில் வெப்பவிளைவு இல்லை எனின் கடை Rஇன் பெறுமதி?

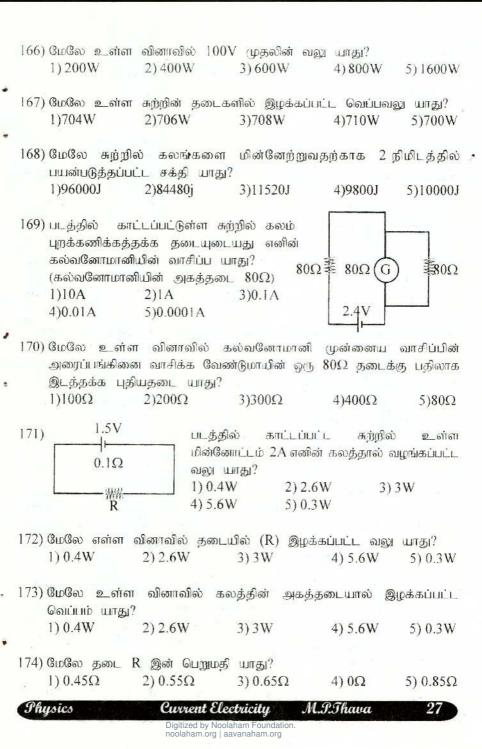
 $1V = 1)10\Omega$ $4)40\Omega$

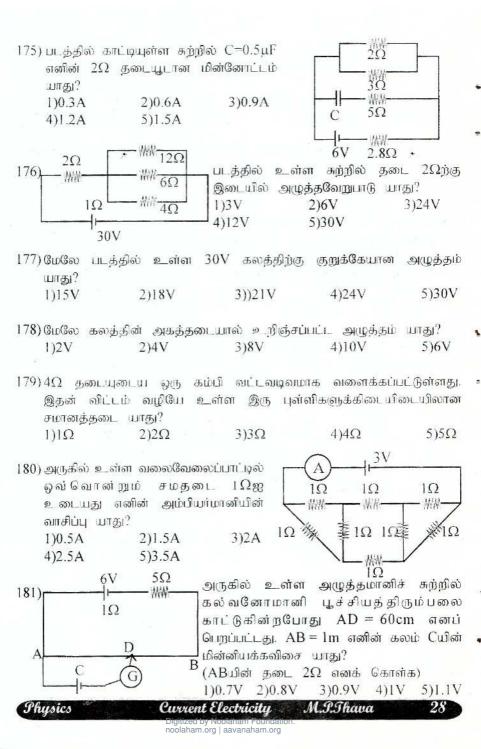
 $2)20\Omega$ $5)50\Omega$

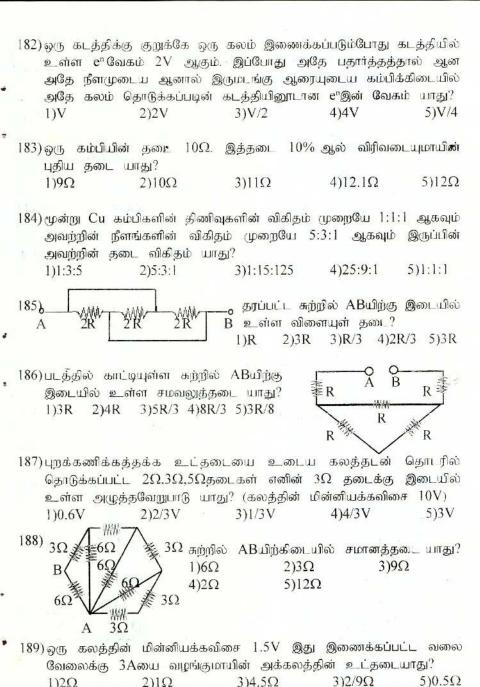
M.T.Thava

 $3)30\Omega$

165) ஒவ்வொன்றும் 2V, 0.5 உடைய ஆறு மின்கலங்கள் 100V முதல் மூலம் மின்னேற்றப்படுகின்றது. மின்னேற்றும் பயன்படும் எல்லை மின்னோட்டம் 8A ஆயின் கலங்களுடன் தொடராக இணைக்கவேண்டிய தடையின் பெறுமானம் யாது?


 $1)4\Omega$

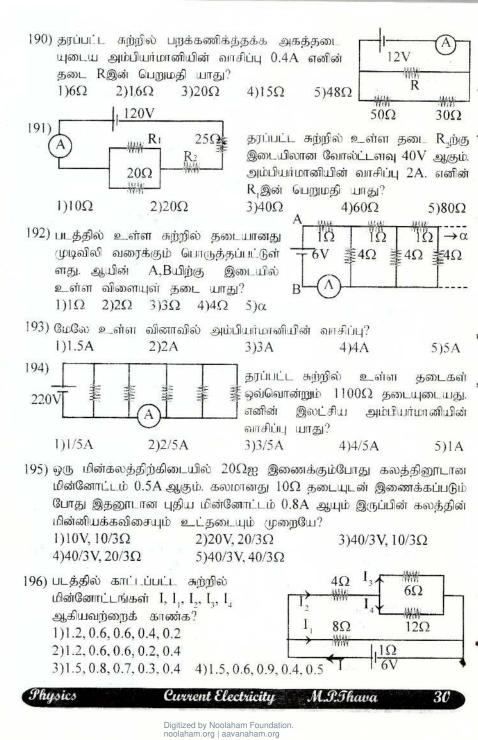

 $2) 6\Omega$


 $3)8\Omega$

 $4)10\Omega$

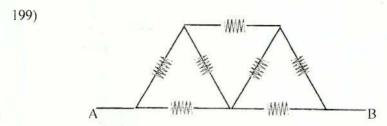
 $5)12\Omega$

Current Electricity

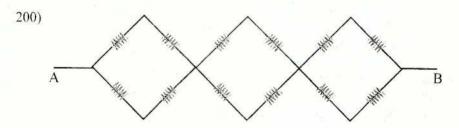

29

M.P.Thava

 $2)1\Omega$


 $1)2\Omega$

Physics



197) குறிப்பிட்ட வெப்பநிலையில் ஒரு குறித்த தடை 0°Cயில் உள்ள தடையின் இரு மடங்காக இருப்பின் இவ்வெப்பநிலையைக் காண்க? (கடத்தியின் தடை வெப்பநிலைக் குணகம் 3.9 x 10⁻³ °C⁻¹) 1) 128°C 3) 740°C 2) 520°C 4) 140°C 5) 256°C

- 198) 0.00125°C-1 வெப்பநிலைக் குணகம் உடைய ஒரு வெப்பநிலை 300
 m K ஆக இருக்கும்போது அதன் தடை $1
 m \Omega$ எனின் ΙΩஆல் அதிகரிக்க வேண்டுமாயின் எவ்வளவால் தடையை வெப்பநிலையை அதிகரிக்க வேண்டும்?
 - 1) 1.54K 2) 1127K 30 1100K 4) 1400K 5) 827K

படத்தில் காட்டப்பட்டுள்ள 7 சர்வசமனான தடைகள் ஒவ்வொன்றும் 1Ω உடையன ஆயின் A,Bயிற்கு இடையிலான சமவலுத்தடை யாது? $1)4/3\Omega$ 2) $3/2\Omega$ $3)7\Omega$ 4) $8/7\Omega$ 4) $7/8\Omega$

படத்தில் காட்டப்பட்டுள்ள சுற்றில் ஒவ்வொன்றும் 3Ω தடை கொண்ட தடை வலை எனின் A,Bயிற்கு இடையிலான சமவலுத்தடை யாது? $-1)3\Omega$ $2)9\Omega$ $3)18\Omega$ $4)30\Omega$ 5) 54Ω

Current Electricity - II

01) தரப்பட்ட சுற்றில் 15Ω இதற்கு ஊடான i) மின்னோட்டம் யாது?

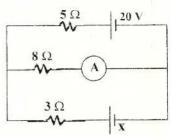
a,b இந்கு இடையிலான அழுத்த ii) வித்தியாசம் யாது?*

iii) ஒவ்வொரு தடையூடான மின்னோட்டம் < காண்க 9

10 Q 5Ω 12. 5 Q 1505

02)

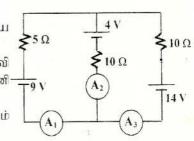
கீழே தரப்பட்ட சுற்றில் அம்பியர்மானிகளின் வாசிப்பு யாது?(அம்பியர்மானிகளின் தடை புறக்கணிக்கத்தக்கது)


x,y இந்கு இடையில் உள்ள அழுத்த ii)

வித்தியாசம் யாது?

 2Ω (ii) 8.54V)

03)


- a) கேச்சோவின் விதிகளைக் கூறுக.
- b) அருகில் காட்டப்பட்ட சுற்றில் அம்பியர்மானி 1A வாசிப்பைக் காட்டுகிறது எனின்
- 5Ω, 3Ω ஆகியவந்றினூடு செல்லும். மின்னோட்டம் யாது?
- ii) கலம் Xஇன் மின்னியக்கவிசை யாது?
- iii) 8Ω தடையில் 2secகளில் ஏற்பட்ட சக்தி ஒட்டம் யாது?
- iv) கலம் Xந்கு யாது நடைபெறுகின்றது?

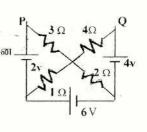
04)

- தரப்பட்ட சுற்றில் உள்ள இலட்சிய i) அம்பியர்மானிகளின் வாசிப்பு யாது?
- ii) 4V கலத்திற்கு பதிலாக 4µF கொள்ளளவி சுற்றில் பொருத்தப்படுமாயின் அம்பியர்மானி-A., A. இன் வாசிப்பு யாது?

iii) கொள்ளளவியில் உள்ள மின்னேற்றம் யாகு?

Thusics

Current Electricity


M.P.Thava

05)

a) கேச்சோவின் விதியை கூறுக?

b)i) தரப்பட்ட சுற்றில் ₹ €V மின்கலத்தினூடான. மின்னோட்டம் யாது? •

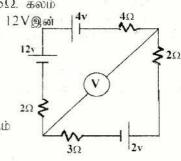
ii) PQஇந்கு இடையே அழுத்தம் யாது?

06) அருகில் காட்டப்பட்ட சுற்றில் E மின்னியக்க விசையும் E₂ மின்னியக்கவிசையும் உடைய மின்கலங்கள் சமாந்தரமாக இவ்வாறு இணைக்கப்பட்டுள்ளது. அவற்றின் அகத்தடைகள் முறையே r₁, r₂ ஆகும். இவற்றுடன் சமாந்தரமாக தடை Rஆனது இணைக்கப்படகிறது.

 $\begin{array}{c|c}
E_1 & | f_1 \\
\hline
E_2 & | f_2 \\
\hline
R \\
\hline
\end{array}$

i) E_1 =6V, r_1 =0.3, E_2 =4V, r_2 =0.1, R=10 Ω ஆக உள்ளபோது தடை Rஇனுடான மின்னோட்டம் யாது?

97) தரப்பட்ட சுற்றில் 4Vஇன் அகத்தடை 0.5Ω . கலம் 2Vயின் அகத்தடை 0.25Ω . கலம் 12Vஇன்

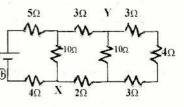

அகத்தடை 0.25Ω ஆகவும் இருப்பின்

a) 4Ωஇனூடான மின்னோட்டம் யாது?

b) வோல்ற்மானியின் வாசிப்பு யாது?
 c) 4Ω தடைக்கு இடையேயான அழுத்த

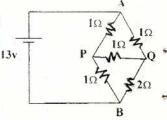
தேரிபாடு யாது?

d) 3Ω தடையில் 10 நிமிடத்தில் விரயமாகும் சக்தி யாது?


08)

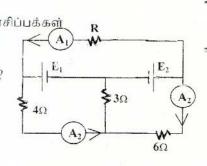
i) சுற்றில் 5Ω தடையூடான மின்னோட்டம்

யாது?


ii) சுந்நில் ஏற்பட்ட வலு இழப்பு யாது?

iii) X,Yஇற்கு அடையேயான அழுத்தவேறுபாடு யாது?

- வ்வொரு தடையூடான மின்னோட்டம் பாது?
- இச்சுற்றின் விளையுள் தடை?
- iii) P,Qந்கு இடையேயான அழுத்தவேறுபாடு யாது?


10) மின்கலம் E, E,இன் அகத்தடைகள் முறையே 1Ω.2Ω உம் அம்பியர்மானிகள் இலட்சிய மானவையுமாகும். அவற்றின் வாசிப்ப க்கள் முறையே 1A, 2A எனின் i) E, E, இன் பெறுமானங்கள் யாது? ii) XYஇந்கு இடையேயான அழுத்த

20v 6Ω $r_i = 1\Omega$ E_2 $r_2=1\Omega$

11) அம்பியர்மானிகள் A,A,A,இன் வாசிப்பக்கள் முறையே 2A, 3A, 5A ஆகும். அவை இலட்சியமானவையும் எனின் 3Ω தடையூடான மின்னோட்டம் யாது?

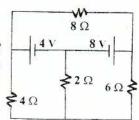
- ii) E.E.இன் பெறுமானம் யாசூ?
- iii) Rஇன் பெறுமானம் யாது?

வித்தியாசம் யாது?

12)

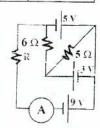
- PQஇற்கு இடையேயான அழுத்தவேறுபாடு யாது 212v. 1Ω i)
- ii) PQஇற்கு இடையில் புறக்கணிக்கத்தக்க 205 தடை உடைய அம்பியர்மானி இணைக்கப்படின் 12V மின்கலத்தினூடான வட்டம் யாகு!? 2Ω ≥
- iii) அம்பியர்மானியின் வாசிப்பு யாது?

husics


Current Electricity

M.P.Thava

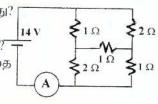
- 13) உயர் தடையை உடைய இலட்சிய வோல்ட்மானியுடன் கொண்ட சுற்று படத்தில் காட்டப்பட்டுள்ளது. இச்சுற்றில் கேச்சோவின் விதியை பயன்படுத்தி
- i) 2Ω தடையூடான மின்னோட்டம் யாது?
- ii) வோல்ட்மானியின் வாசிப்பு யாது?
- iii) V-மானிக்குப் பதிலாக A-மானி தொடுக்கப்படின் A-மானியின் வாசிப்பைக் காண்க?


14)

- i) கேச்சோவின் விதியை தருக?
- ii) தடைத்திறன் தங்கியுள்ள காரணிகளைத் தருக?
- iii) ஒவ்வொரு தடையூடான மின்னோட்டத்தை கேச்சோவின் விதியைப் பயன்படுத்தி காண்க?

40

- , 15)காட்டப்பட்ட சுற்றில் அம்பியர்மானியானது புறக்கணிக்கத்தக்க தடையை உடையது. அம்பியர்மானியின் வாசிப்பு 2A எனின்
 - i) தடை Rஇன் பெறுமானம் யாது?
 - ii) 6Ω, 8Ω ஊடான மின்னோட்டம் யாது?

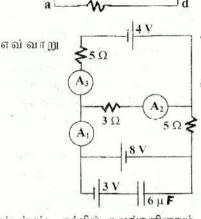


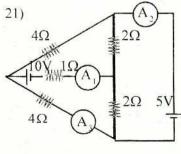
- 16)புறக்கணிக்கத்தக்க அகத்தடையை உடைய அம்பியர்மானியும் உயர்தடையை உடைய வோல்றமானியும் படத்தில் காட்டப்பட்டவாறு இணைக்கப்பட்டுள்ளது.
- i) அம்பியர்மானியின் வாசிப்பு யாது?
- ii) வோல்ற்மானியின் வாசிப்பு யாது?

17)

- i) தரப்பட்ட சுற்றில் அம்பியர்மானியின் வாசிப்பு யாது?
- ii) ஒவ்வொரு தடையூடான மின்னோட்டம் யாது?
- iii) கலத்தில் 2s இல் ஏற்பட்ட சக்திநட்டம் யாது?
- iv) தடையில் 22s இல் ஏற்பட்ட சக்தி நட்டத்தை உய்தறிக?

- i) ஆழி திறந்துள்ளபோது a,b இற்கு இ அழுத்தவேறுபாடு யாது?
- அழி மூடப்பட்டுள்ளபோது அதனூடான மின்னோட்டம் யாது?
 அழி Sற்கு பதிலாக V-மானி இணைக்கப்படின்
- இடையிலான $\begin{cases} 6\Omega & 3\Omega \end{cases}$ இடையிலான $\begin{cases} 10\Omega & \\ 10\Omega & \\ \\ 3\Omega & \end{cases}$ மின்னோட்டம் $\begin{cases} 3\Omega & \\ \\ 3\Omega & \end{cases}$


19)


- i) கல்வனோமானி ஒன்றை எவ்வாறு அம்பியர்மானியாக மாற்றுவீர் ? $^{\mathbf{e}}\mathbf{\Gamma}$
- அம்பியர்மானிகளின் வாசிப்பு யாது?
- iii) c,b இற்கு இடையிலான அழுத்தவேறுபாடு யாகு:?

e A_{Ω} A_{Ω}

20)

- கல்வனோமானி ஒன்றினை வோல்ற்மானியாக மாற்றுவீர்?
- ii) A₁,A₂,A₃இன் வாசிப்பு யாது?
- iii) கொள்ளளவியின் அழுத்தம் யாது?

படத்தில் காட்டப்பட்ட சுற்றில் கலங்களினதும் அம்பியர்மானியினதும் அகத்தடைகள் புறக்கணிக்கத்தக்கது எனின்

- i) அம்பியர்மானிகள் A_1, A_2, A_3 என்பவற்றின் வாசிப்புக்கள் யாது?
- ii) அம்பியர்மானி A₁ந்கு பதிலாக ஒரு இலட்சிய வோலட்மானி இணைக்கப்பட்டு இருப்பின் வோல்ட்மானியினதும் அம்பியர்மானியினதும்

வாசிப்பக்கள் யாது?

Basic Electronics - I

- 01) உள்ளீட்டுக்குறைகடத்தி பற்றிய கூற்றுக்களில் சரியானது
 - (A) சுயா**தீன** டூகளின் எ-கையும் துளைகளின் எ-கையும் சமானகும்.
 - (B) குறைகடத்தியில் மின்னோட்டத்திற்கு துளைகளே காரணமாகும்.
 - (C) வெப்பநிலை அதிகரிக்கும்போது சுயாதீன டூகளும் துளைகளும் அதிகரிக்கும்
 - (i) A மட்டும்
- (ii) B மட்டும்
- (iii) Cucibio

- (iv) A ,C ωL Gιό
- (v) A,B,C eupoimuio
- 02) வெளியீட்டு குறைகடத்தி பற்றிய கூற்றுக்களில் தவறான கூற்று ?
 - சுயாதீன டீ"களும் துளைகளும்சமனாகஇருக்கும்.
 - (ii) மின்கடத்துதிறனானது உள்ளீட்டுகுறைகடத்தியைவிட அதிகமானது.
 - (iii) 5[®]கூட்டம் அல்லது 3[®]கூட்டம் மூலகமொன்றினை சேர்ப்பதன் மூலம் உருவாக்கப்படும்.
 - (iii) 3^{ம்}கூட்ட மூலகமொன்றினை சேர்ப்பதன் மூலம் p வகை குறைகடத்தி உருவாக்கப்படும்.
 - (iv) துாயகடத்திகளுக்கு மிக குறைந்தளவில் மாசு சேர்ப்பதன் மூலம் உருவாக்கப்படும்
- P வகை குறைகடத்தி பற்றிய கூற்றுக்களில் சரியானது.
 - (A) இது ஒரு நேரேற்றமாகும்.
 - (B) இதில் பெரும்பான்மை காவிகளாக துளைகள் இருக்கும்.
 - உள்ளீட்டு அரைக் கடத்தியை 3 மகட்ட மூலகங்களால் மாக படுத்துவதன் முலம் இது ஆக்கப்படும்.
 - (i) A மட்டும்
- (ii) B மட்டும்
- (iii) Cuchi
- (iv) A,B,C முன்றும் (v) B,C மட்டும்

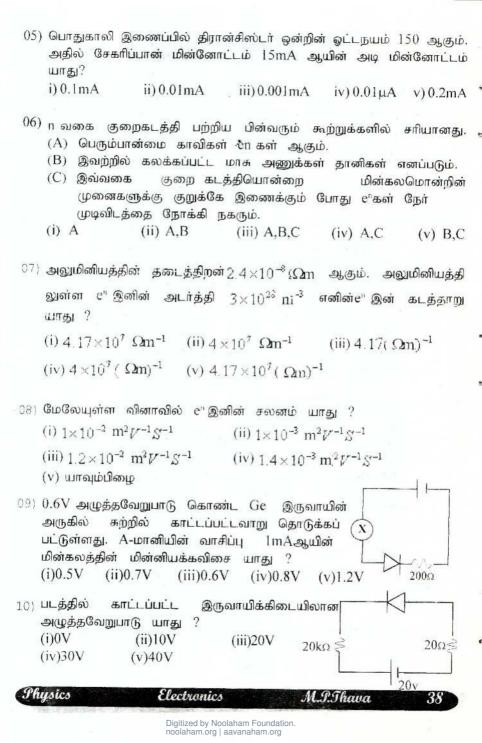
04) 400Ω $3k\Omega$ (i) 1.5mA ii) 4.5 µA

படக்கில் காட்டப்பட்ட சேனர் இருவாயிக்கு குறுக்கேயான அழுக்க வேறுபாடு 9V ஆயின் சேனர் இருவாயினாடு செல் லும்

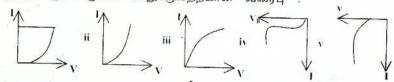
iii) 2.5mA

மின்னோட்டம்.

v) 2.5 µA

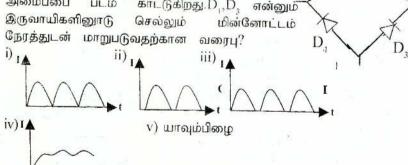

hysics

iv) 4.5mA

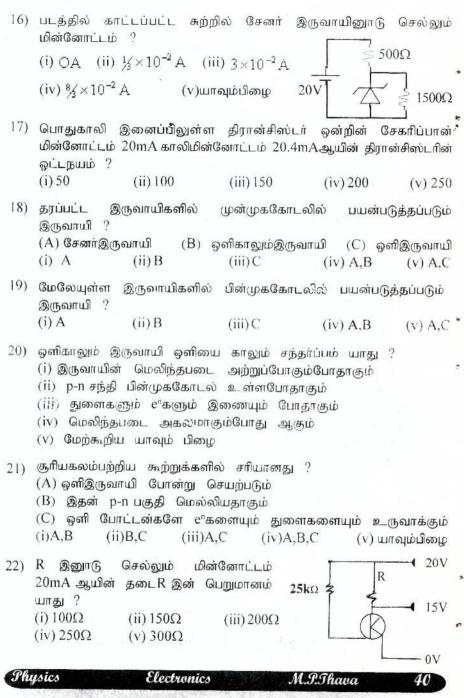

Electronics

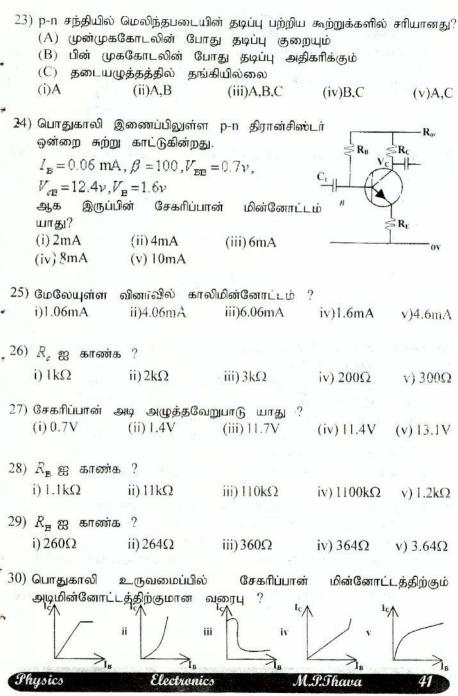
M.P.Thava

37



11) பின்முககோடலுறும் இருவாயி ஒன்றின் மின்னோட்டம் அழுத்தவேறுபாட்டுடன் மாறுபடுவதற்கான வரைபு ?


- 12) p-n சந்தி உடைவு ஏற்படுவது ?
 - (i) தாழ்வெப்பநிலையிலாகும்
 - (ii) உயர்அமுக்கத்திலாகும்
 - (iii) முன்முககோடல் அழுத்தவேறுபாடுஅதிகரிக்கும்போதாகும்
 - (iv) உயர்வெப்பநிலையிலாகும்
 - (v) பின்முககோடல் அழுத்தவேறுபாடு அதிகரிக்கும்போதாகும்
- 13) ஒளிகாலும் இருவாயியை ஆக்குவதில் பின்வரும் எச்சேர்வை பயன்படுத்தப்படுகிறது ?
 - (i) கலியம் ஆசனேற்று பொசுபைட்டு
 - (ii) சிலிக்கன் ஆசனேற்று பொசுபைட்டு
 - (iii) கலியம் ஆசனேற்று
 - (iv) ஆசனேற்று
 - (v) யாவும்பிழை


14) D₁,D₂,D₃,D₄ என்னும் நான்கு இருவாயிகளை பயன்படுத்தி முழுவலைச் சீராக்கத்தை காட்டும் அமைப்பை படம் காட்டுகிறது.D₁,D₃ என்னும் இருவாயிகளினூடு செல்லும் மின்னோட்டம் நேரத்துடன் மாறுபடுவதற்கான வரைபு?

(15) மேலேயுள்ள முழுவலைச்சீராக்கத்தில் D_2 , D_4 1. இதற்கூடான மின்னோட்டம் நேரத்துடன் மாறுபடுவதற்கான வரைபு ? (i)A (ii)B (iii)C (iv)D (v)E

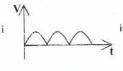
Physics

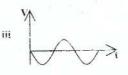
Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

பொதுசேகரிப்பான் இணைப்பில் பெய்ப்பு 31) பயப்புவோல்ற்றளவிற்கும் வோல்ற்றளவிற்கு இடையேயுள்ள அவத்தை வித்தியாசம்

i) 00

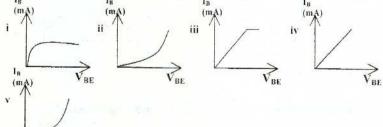
ii) 90°


iii) 180°


iv) 220

 $v) 270^{\circ}$

32) காட்டப்பட்டுள்ள வோற்றளவு விரியலாக்க சுற்றில் பயப்புவோற்றளவு மாறுபடுவதை சரியாக குறிப்பது ?

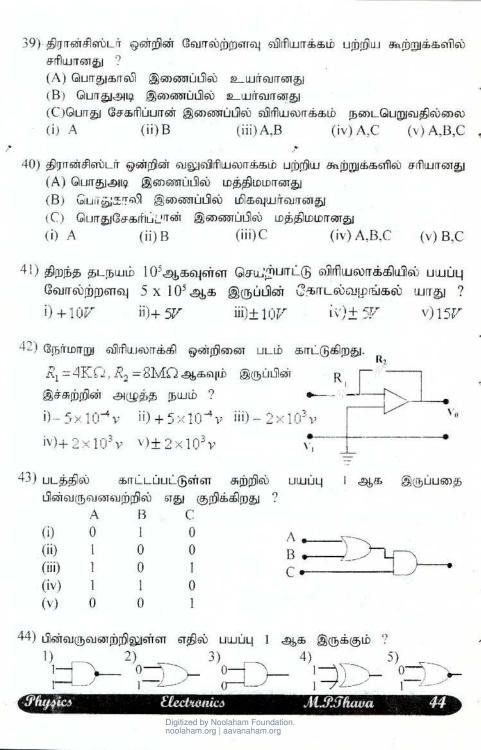


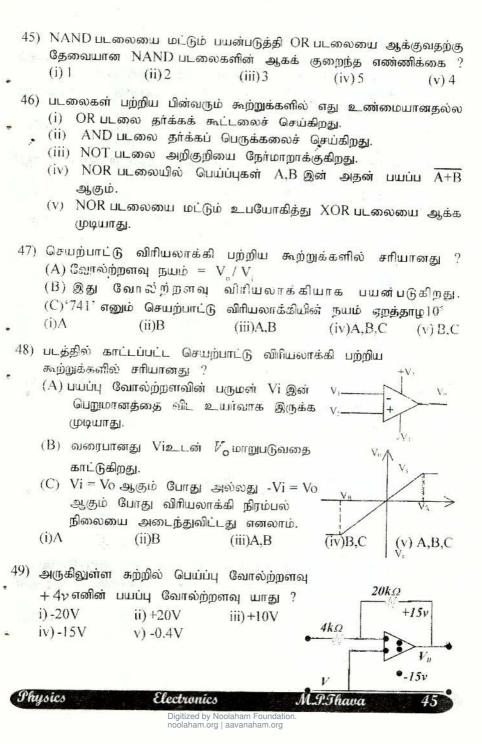
- (v) யாவும் பிமை
- npn திரான்சிஸ்டர் ஒன்று சரியாக கோடலிடப்பட்டுள்ளபோது காலியில் 33) இருந்து செல்லும் e"களில்
 - பெருமளவு அடியினூடான சேகரிப்பானுக்கு பாயும் (i)
 - பெருமளவு அடியில் துளைகளுடன் இணையும் (ii)
 - (iii) பெருமள்வு அடியில் நிறுத்தப்பட்டுவிடும்
 - (iv) பெருமளவு அடியை அடைந்து அவற்றில் மிகச்சிறியளவு சேகரிப்பானைஅடையும்
 - (v) பெருமளவு காலியிலுள்ள துளைகளுடன் இணையும்
- pnp திரான்சிஸ்டர் பற்றியதில் எது உண்மையானதல்ல ? 34)
 - (i) இதில் பெரும்பான்மை காவிகள் துளைகளாகும்
 - (ii) nவகை பிரதேசம் அடியாக இருக்கும்
 - (iii) இதில் nவகை பிரதேசமே கூடியளவு மாசுபடுத்தப்பட்டிருக்கும்
 - (iv) இது இருp-n சந்திகளை கொண்டது
 - (v) pவகை பிரதேசமொன்று காலியாகவும் மற்றையது சேகரிப்பானாகவும் இருக்கும்

35) pnp திரான்சிஸ்டர் ஒன்று நிரம்பல் நிலையிலுள்ளபோது சரியானது?

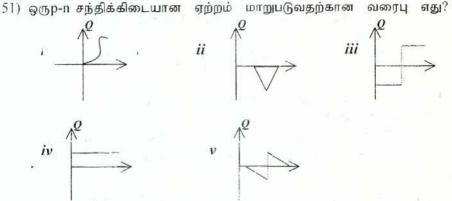
i)
$$V_{\rm CF}=0$$
 , $I_{\rm C}=0$ ii) $V_{\rm CF}=V_{\rm CC}$, $I_{\rm C}=0$

- iii) $V_{C\!\!R} = V_{C\!\!C}$ ஆகவும் $I_{C\!\!C}$ கூடவாகும் இருக்கும்
- $\mathrm{iv})V_{\mathrm{CF}}$ கூடவாகவும் I_{C} குறைவாகவும் இருக்கும்
- ${
 m v})V_{
 m CF}$ குறைவாகவும் $I_{
 m C}$ கூடவாக்வும் இருக்கும்
- 36) npn திரான்சிஸ்டர் ஒன்று உயிர்ப்பித்த நிலையில் உள்ளபோது பிழையானது ?
 - i) $V_{C\!\!\!_{f C}\!\!_{f C}}$ உடன் I_{C} ஆனது மெதுவாக அதிகரிக்கும்
 - ii) V_{CF} , I_{C} உடன் மாறும் வீதம் சுற்றின் பயப்புதடையை தரும்
 - (iii) இப்பயப்புத்தடை உயர்வாக இருக்கும்
 - (iv) இவ்வரைபுகள் அண்ணளவாக சமாந்தரகோடுகளாக இருக்கும்
 - (v) இவ்வரைபின் படித்திறன் பயப்புதடையை தரும்
- 37) прп திரான்சிஸ்டர் ஒன்று துண்டித்த நிலையிலுள்ளபோது
 - i) $V_{\mathrm{CF}} = V_{\mathrm{CC}}$ ஆகவும் $I_{\mathrm{C}} = 0$ ஆகவும் இருக்கும்
 - ii) $V_{\rm CP}$ = $V_{\rm CC}$ ஆகவும் $I_{\rm C}$ = 0 மிக கூடவாகவும் இருக்கும்
 - iii) V_{CF} மிக குறைவாகவும் $I_{\mathcal{C}}$ மிசு கூடவாகவம் இருக்கும்
 - iv) V_{CP} மிக குறைவாகவும் I_{C} மிக குறைவாகவும் இருக்கும்
 - v) V_{CF} மிக குறைவாகவும் I_{C} பூச்சியமாகவும் இருக்கும்
- I_{B} திரான்சிஸ்டர் ஒன்றின் I_{B} எதிர் V_{BB} வரைபை தருவது ? I_{B} I_{B I_{B} I_{B} I_{B} I_{B} I_{B} I_{B} I_{B}

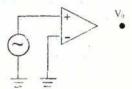


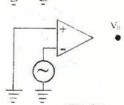

Physics

Electronics


M.I.Thava

43




- 50) செயற்பாட்டு விரியலாக்கி பற்றிய கூற்றுக்களை கருதுக ? (A) செயற்பாட்டு விரியலாக்கியின் பயப்புதடை மிகவும் குறைவானதாகும்.
 - (B) இதன் பெய்ப்பு தடை உயர்வானதாக காணப்படும்.
 - (C) செயற்பாட்டு விரியலாக்கியின் அழுத்த நயமானது R₂/R₂இனால் தரப்படும்.
 - (i)A,B,C (ii)A (iii)B (iv)A,C (v)B,C

52) (A) படத்தில் காட்டப்பட்டது நேர்மாறல்லா விரியலாக்கி சுற்று ஆகும்.

(B) படத்தில் காட்டப்பட்டது நேர்மாறு விரியலாக்கி சுற்று ஆகும்.

- (C) (A)யில் பயப்பானது அவத்தை மாற்றம் அடையாது.(B)யில் பயப்பானது π அவத்தை மாற்றத்திற்கு உள்ளாகும். இவற்றினுள் சரியானவை ?
- (i)A
- (ii)B
- (iii)C
- (iv)A,B,C
- (v)B,C

53)படத்தில் காட்டப்பட்ட விரியலாக்கி பற்றிய கூற்றுக்களை கருதுக?

- (A) இது ஒரு நேர்மாறல்லா விரியலாக்கி ஆகும்.
- (B) Cயிலுள்ள அழுத்தம் $V_C = V_0 R_2$

ஆல் தரப்படும்.

 $R_1 + R_2$ O.

(C) இதன் அழுத்தநயம் $R_1 + R_2$ ஆகும். R2

(ii)B,C

(iii)A,B,C

(iv)C (v)B

Ri

V.

R

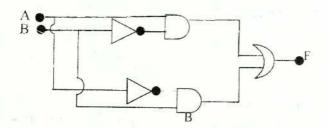
Ov

54) A В F 0 0 0 0 0

மேலே தரப்பட்டுள்ள உண்மை அட்டவனைக்குரிய தர்க்கக் கோவை? (iii)AB (iv)AB (v)A+B

(i)AB

(i)A.C

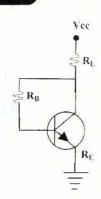

(ii)AB

55) தரப்பட்ட சுற்றுக்குச் சமவலுவான குனிப்படலை

(i) NOR படலை (ii) AND படலை

(iii) NAND ul soo)

(iv) XOR படலை (v) XNOR படலை

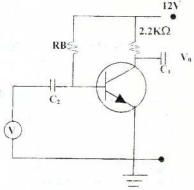

Basic Electronics -

01) (i) திரான்சிஸ்டரின் உருவமைப்புக்களை வரிப்படங்களுடன் விளக்குக

(ii)
$$V_{cc}=15\nu$$
 , $R_L=10{
m K}\Omega$, $R_B=500{
m K}\Omega$, $R_B=10{
m K}\Omega$, $\beta=100$ ஆகவுள்ளபோது

 $(a)\,I_{s}\,\,(b)\,V_{cy}\,\,$ என்பவற்றை காண்க ?

(iii)
$$\beta$$
 = 200 ஆகும்போது I_{C} , V_{CB} ஆகியவற்றை காண்க ? (விடை : (ii) 0.6mA, 3V (iii) 0.67mA, 1.7V)

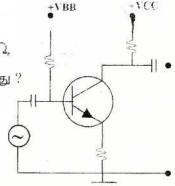

02) (i) கொள்ளளவிகள் C₁, C₂ இன் தொழில் யாது ?

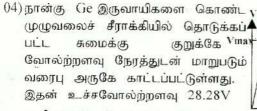
> (ii) $V_{CC} = 12\nu$, $V_{EF} = 0.72\nu$, $V_{CF} = 6\nu$ ு ஆகவும் இருப்பின்

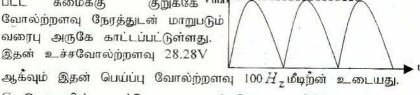
(a) மின்னோட்டநயம் 80ஆயின் $I_{\rm C}$ ஐ காண்க ?

(b) $R_{\rm A}$ ஐ காண்க?

(விடை : (a) 2.72mA (b) 331.5 kΩ)

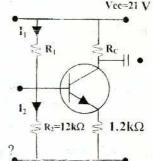

03) (i) தரப்பட்டசுற்றில்


$$V_{BB} = 15v$$
, $V_{CC} = 15v$, $V_{BB} = 0.3v$, $R_{C} = 4 \text{K}\Omega$,


 $R_p = 600\Omega, \beta = 60, V_{Cp} = 8v$ எனின் I_c யாது ?

(ii) R ஐ காண்க ?

(ബിലെ : (i) 1.52mA (ii) 543.6kΩ)

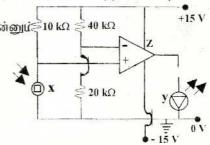

Ge இருவாயின் குறுக்கேயான அழுத்தவேறுபாடு 0.7V.

(i) இடைவர்க்க மூலவோல்ற்றளவு யாது ?

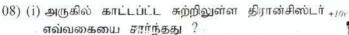
(ii) ்ட்டிச்சியபயப்பு வோல்ற்றளவில் வரைபில் ஏன் இடைவெளிகள் உள்ளன்?

(iii) V_{max} ஐ கொ*ு*ன்க ? (விடை : (ii) 20V (iii) 26.88V)

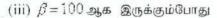
- 05) திரான்சிஸ்டரை கொண்டு அமைக்கப்பட்ட சுற்றொன்றை படம் காட்டுகிறது. $I_R = 20 \mu \text{A}$, $I_C = 1.68 \mu \text{A}$, $V_{RR} = 0.6 \nu$ ஆகவும் இருக்கிறது.
 - $(a)(i) R_1, R_2$ என்னும் தடைகள் தொடரா அல்லது சமாந்தரமா ?
 - (ii) R_1 , R_2 இன் விளையுள் தடை யாது ?
 - (iii) 🖁 இற்கு குறுக்கேயான அழுத்த வேறுபாட்டை தரப்பட்ட குறியீடுகளின் அடிப்படையில் எழுதுக ?


 $(b)(i) R_C(ii) I_{\pi}, V_{\pi}, V_{C}$ என்பவற்றை காண்க ?

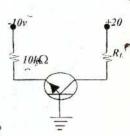
(c) R என்பவற்றை காண்க ? (விடை: (b) 2.1388 $M\Omega$ (ii) 21.68 μA , 0.026V, 0.61V (c) 9.68 $M\Omega$)


 $^{(6)}$ $_{(i)}$ படத்தில் குறிக்கப்பட்ட X,Y,Z என்னு $_{i}$ $\stackrel{>}{st}$ 10 $_{\mathbf{k}\Omega}$ $\stackrel{>}{st}$ 40 $_{\mathbf{k}\Omega}$ உபகரணங்களின் பெயர்களை குறிப்பிடுக ?

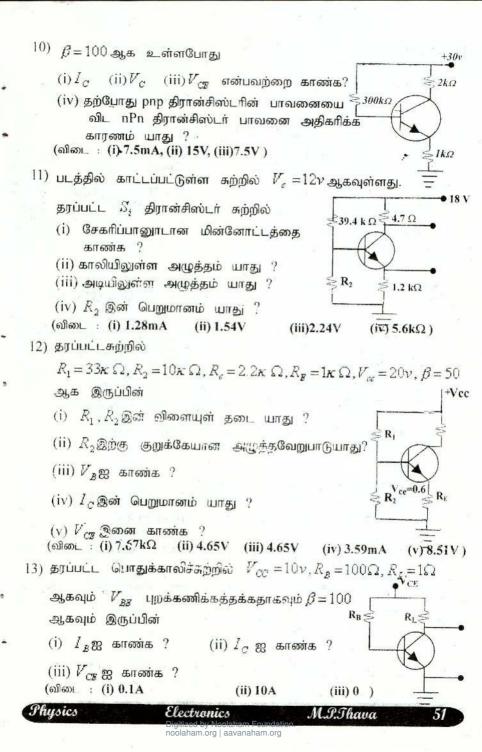
(ii) Z என குறிப்பிடப்பட்டுள்ள பொருளின் இயல்புகள் யாது?


(iii) இச்சுற்றின் நேர்மாறு பெயர்ப்பு வோல்ற்றளவு யாது?

- (iv) இருளின்போது நேர்மாறா பெயர்ப்புவோல்ற்றளவு யாது?
- (v) சாதாரண ஒளியில் நேர்மாறா பெயர்ப்புவோல்ற்றளவு யாது? (விடை : (iii) 5V (iv) 5V (v) 1.4V)
- 07) (i) தரப்பட்டசுற்றில் உள்ள திரான்சிஸ்டர் எவ்வகையை சேர்ந்தது?
 - (ii) இங்குள்ள திரான்சிஸ்டர் எவ்வகை உருவமைப்பில் உள்ளது?
 - $(iii)V_{C8}=5$ v ஆக இருக்கும் எனின்
 - $(a)\,I_{\it E}$ $(b)\,I_{\it C}$ $(c)\,R_{\it L}$ என்பவற்றை காண்க ? (விடை : (iii) 1mA, 1mA, 15k Ω)

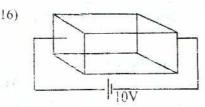


(ii) இதில் திரான்சிஸ்டர் எவ்வகை உருவமைப்பில் உள்ளது ?



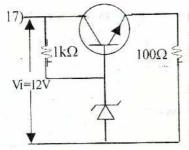
- (a) $I_{\rm C}$ (b) $I_{\rm F}$ (c) ${
 m Ve}$ ஆகியவற்றை காண்க ? (விடை : (iii) ${
 m ImA}, {
 m 1.01mA}, {
 m 5V}$)
- 09) (i) திரான்சிஸ்டர் ஒன்றின் CB,CE.CC அமைப்புக்களின் இயல்புகளை ஒப்பிடுக[்]?
 - eta தரப்பட்ட சுற்றில் eta = $100~V_{BS}$ புறக்கணிக்கத்தக்க அழுத்தவேறுபாடு உடையதாக இருப்பின்
 - (a) $I_{\mathcal{B}}$ (b) $I_{\mathcal{B}}$ (c) $I_{\mathcal{C}}$ (d) $V_{\mathcal{CS}}$ என்பவற்றை காண்க ?

্রাজন : (ii) 1mA, 0.01mA, 0.99mA, 20V)


+30v

- 14) $6 \times 10^{-7} \ \mathrm{sm}^{-1}$ கடத்தாறும் $1 \mathrm{mm}$ விட்டமும் உடைய ஒரு செப்புக் கம்பி $1 \mathrm{k} \Omega$ தடை உடையது எனின்
 - a) கம்பியின் நீளம் யாது?
 - b) $10^{20}~{
 m m}^{-3}$ இலத்திரன்களைக் கொண்ட சிலிக்கன் துண்டு ஒன்றின் சலனம் $0.1 {
 m m}^2 {
 m V}^{-1} {
 m s}^{-1}$ எனின்
 - i) இதன் கடத்தாறு யாது?
 - ii) இதன் நீளம் யாது?

(விடை : (a) 47.1km (b) (i) 1.6sm⁻¹ (ii) 1.26mm)


- 15) ஒரு தூய சிலிக்கன் கடத்தி ஒன்றில் $1.41 \times 10^{16} \ \mathrm{m}^{-1}$ இலத்திரன்கள் உள்ளது. இதில் இலத்திரனின் சலனம் $0.145 \ \mathrm{m}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$. துளைகளின் சலனம் $0.05 \ \mathrm{m}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$ எனின்
 - a) இலத்திரனின் கடத்தாறு யாது?
 - b) துளைகளின் கடத்தாறு யாது?
 - c) கடத்தியின் கடத்தாறு யாது?
 - (விடை: (i) 0.325 x 10⁻³sm⁻¹ (ii) 0.112 x 10⁻³sm⁻¹ (iii) 0.437 x 10⁻³sm⁻¹)

படத்தில் காட்டப்பட்ட 2.5cm நீளமும் 0.4cm அகலமும் 0.15mm தடிப்பும் உடைய Ge துண்டு ஒன்று உள்ளது. இதற்கு குறுக்கே 10V அழுத்த வேறுபாடு வழங்கப்படுகின்றது.

- a) இலத்திரனினதும் துளைகளினதும் வேகங்கள் யாவை?
- 5) இலத்திரனின் அடர்த்தி 2.5x10¹⁹m³ எனின் Geயின் கடத்தாறு யாகு!?
- c) இதனூடு செல்லும் மொத்த மின்னோட்டம் யாது? ($\mu e = 0.38 \text{m}^2 \text{V}^{-1} \text{s}^{-1}$ $\mu n = 0.18 \text{m}^2 \text{V}^{-1} \text{s}^{-1}$ $K = 1.38 \times 10^{-23}$)

(விடை: (i) 152ms⁻¹, 72ms⁻¹ (ii) 2.245m⁻¹ (iii) 5.38mA)

படத்தில் காட்டப்பட்ட திரான்சிஸ்டரின் VBE = 0.7V ஆயின் (Vz = 9V)

- 100Ω (i) 100Ωற்கு குறுக்கேயான அழுத்தவேறுபாடு யாது?
 - (ii) VcEшты?
 - (iv) பயப்பு வலு யாது ?
 - (விடை: (i) 8.3V (ii) 8.7V (iii) 83mA (iv) 310 MW)

Thermo Physics - I

01)	இரும்பால் செய்யப்பட்ட ஒரு சட்டம் ஒன்றின் நீளம் 10cm இது 20°C யில் செய்யப்பட்டுள்ளது எனின் வெப்பநிலை 19 °C ஆகும்போது
	இச்சட்டத்திற்கு யாது நிகழும் ? (இரும்பின் ஏகபரிமான விரிகை
	திறன் 11x10-6 °C-1) 1) 11X10-6 cm, விரியும் 2) 11x10-6 cm சுருங்கும்
	1) 11X10-6 cm. விரியும் 2) 11x10-6 cm சுருங்கும் 3) 11X10-5 cm சுருங்கும் 4) 10cm மாறாது
	5) யாவும் பிழை
02)	ஒரு உருக்கு குழாய் lcm விட்டம் உள்ளது. அது 30°c
-	வெப்பநிலையில் உருவாக்கப்பட்டது. இதனை வெப்பமேற்றும்போது
	அதன் விட்டம் 0.99967cm ஆகியது எனின் எவ்வளவுக்கு
	வெப்பமேற்றப்பட்டு இருக்கும்? (ஏகபரிமான விரிதிறன் $1.1 x 10^{-5}$)
	1) 30°C 2) 60°C 3) 40°C 4) 50°C 5) 70°C
03)	ஒரு உருளையை சுற்றி மெல்லிய உருக்கு வளையங்கள் 100
	இடப்பட்டுள்ளது. வெப்பநிலை 40°C ஆகும்போது ஒவ்வொன்றும்
•	10.02cm விட்டத்தை கொண்டு உள்ளது இத்தொகுதியை -60°C
	யிலுள்ள பனிக்கட்டியில் இடும்போது அவ்வுருளையை இறுக்கிக்
	கொள்கின்றது. உருக்கின் நீட்டல் விரிவு திறன் 2x10-5 °C-1 எனின்
	பனிக்கட்டியிலுள்ளபோது அதன் விட்டம் யாது?
	1) 9.94cm 2) 9.96cm 3) 9.98cm 4) 10cm 5) 10.02cm
04)	1 To
	அதிகரிக்கும் வீதம் கூடும்.? 1) விட்டம்
	1) விட்டம் 2) பரப்பு 3) கனவளவு 4) அடர்த்தி 5) திணிவு
05)	
05)	எதில் தங்கி ் உ ு ஆ ?
	1) உண்மை நீளம்
	2) வெப்பநிலை மாற்றம்
	 3) வெப்பம் வழங்கும் பதார்த்தத்தில்
	4) பதார்த்தத்தின் வகையில் தங்கியிருக்கும்
	5) மேற்கூறிய யாவும் பிழை
	The second secon
06)	ஒரு திரவ பதார்த்தத்தின் அடர்த்தி தங்கி இருப்பது 1) கிணிவ 2) கனவளவ 3) வெப்பநிலை
	1) திணிவு 2) கனவளவு 3) வெப்பநிலை

Thermo Phisics

4) பதார்த்தத்தின் தன்மை

Physics

5) பதார்த்தம் உள்ள

ஊடகம்.

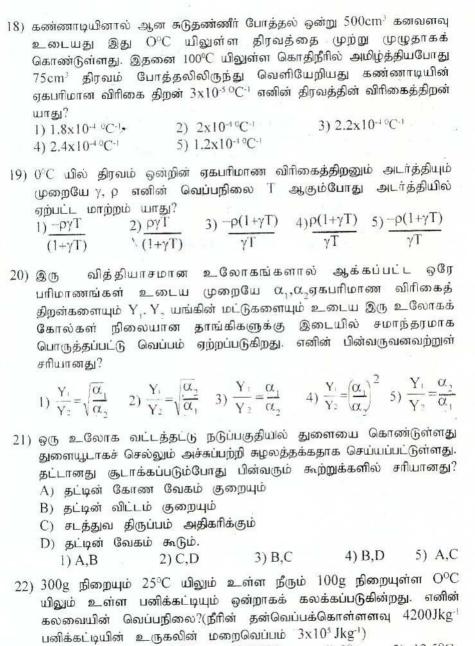
M.T.Thava

53

07)	L cm நீளமுடைய ஒரு செப்புக்கோலை உருக்கால் ஆக்கப்பட்ட
07)	அளக்கும் கோலால் அளக்கப்பயன்படுத்தப்பட்டது. 20°C யில
	உருவாக்கப்பட்ட இக்கோல்கள் ஒவ்வொன்றினதும் நீட்டல் விரிவு
	சூணகம் முறையே αc. αs ஆகும் இரு கோல்களும் 21°C
	வெப்பமேற்றப்படும்போது மீற்றர் கோலின் வாசிப்பு 1cm இற்கு யாது?
	1) $L(1+\alpha c)$ 2) $L\alpha c$ 3) $L\alpha s$ 4) L 5) $L(1+\alpha s)$

ac

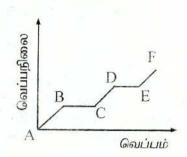
09) 40°C யிலுள்ள 50cm நீளமான ஒரு குழாயும் அதே பரிமானம் கொண்ட உருக்கு குழாயும் நீளம்வழியே பொருத்தப்பட்டு தொகுதியின் வெப்பநிலை 240°C ஆக்கப்படும்போது சேர்த்தி பொருளின் மொத்த விரிவு யாது? (நீட்டல் விரிவு குணகம் முறையே 2x10⁻⁵°C⁻¹, 1.2x10⁻⁵°C⁻¹) 1) 0.28cm 2) 0.30cm 3) 0.32cm 4) 0.39cm 5) 0.36cm


10) 11 கடுதண்ணீர் போத்தலினுள் சிறிதளவு இரசம் காணப்படுகிறது. வெப்பநிலை வித்தியாசப்படும்போது போத்தலில் உள்ள வளியின் கனவளவு மாறவில்லை. எனின் இரசத்தின் கனவளவு யாது? (கண்ணாடி α=2.7x10⁻⁵ °C⁻¹, αHg=1.8x10⁻⁴ °C⁻¹) 1) 50cm³ 2) 100cm³ 3) 150cm³ 4) 200cm³ 5) 1000cm³

11) A குறுக்கு வெட்டுப்பரப்புடைய ஒரு கம்பி இரு தாங்கிகளுக்கிடையில் பொருத்தப் பட்டுள்ளது. தாங் கிகளுக் கிடையிலான விசை புறக்கணிக்கத்தக்கது. அப்போது வெப்பநிலை t-△t தற்போது வெப்பநிலை △ - t ஆகக் குறைக்கப்படும்போது தாங்கிகளுக்கிடையில் ஆன விசை யாது?

1)
$$YA\alpha\triangle t$$
 2) $\frac{Y\alpha\triangle t}{A}$ 3) $\frac{A\alpha\triangle}{Y}$

4) <u>YA</u> 5) யாவும் பிழை


12)	இரு ஈயகம்பிகள் A,B யின் நீளம் முறையே <i>l,2!</i> ஆகும் இவற்றின் ஆரைகள் 2r, r எனின் இரண்டும் ஒரே வெப்பநிலை வித்தியாசத்தினூடு உயர்த்தப்படும்போது Aயின் நீட்சிக்கும் Bயின் நீட்சிக்கும் இடையிலான விகிதழ் யாது?
1	1) 1:1 2) 1:2 3) 1:4 4) 2:1 5) 4:1
13)	ஓர் திரவ தாங்கியில் முற்றுமுழுதாக திரவம் நிரம்பியுள்ளது தாங்கி ஆக்கப்பட்ட பதார்த்தத்தின் ஏகபரிமான விரிகைத்திறன் $2x10^{-6}$ ீc ⁻¹ திரவத்தின் கனவளவு விரிகைத்திறன் $6x10^{-6}$ °c ⁻¹ எனின் தாங்கி வெப்பம் ஏற்றப்படும்போது 1) திரவம் தாங்கியிலிருந்து வெளியேறும் 2) தாங்கியில் திரவமட்டம் இறங்கும் 3) தொடர்ந்து திரவமட்டம் மாறாது 4) திரவமட்டம் ஏறுவதும் or இறங்குவதும் திரவ தாங்கியின் தன்மையில் தங்கி இருக்கும் 5) திரவமட்டம் ஏறி பின் இறங்கும்
14)	ஒரு உலோக கம்பியானது $\mathrm{O^{\circ}C}$ இல் இருந்து $\mathrm{100^{\circ}C}$ யிற்கு உயர்த்தப்படுகின்றது. அப்போது அதன் நீளம் 0.05% அதிகரித்து இருக்கின்றதாயின் கம்பியின் நீள விரிகைத்திறன் யாது? 1) $5\mathrm{x}10^{-3^{\circ}C^{-1}}$
15)	வினா (14) இல் கம்பியின் கனவளவு அதிகரிப்பு வீதம் யாது? 1) 0.1% 2) 0.25% 3) 0.2% 4) 0.35% 5) 0.15%
16)	D விட்டம் உடைய ஒரு திண்மகோளத்தின் மத்தியிலுள்ள குழியின் அகவிட்டம் d எனின் கோளம் சூடாக்கப்படும்போது குழியின் விட்டம் 1) அதிகரிக்கும் 2) குறையும் 3) மாறாது 4) d< ^D / ₂ எனின் குறையும் d> ^D / ₂ எனின் அதிகரிக்கும் 5) அதிகரித்து பின் குறையும்
17)	உலோக சதுரதட்டு ஒன்றின் நீளம் l இது O°Cயில் இருந்து 100°C வெப்பமேற்றப்படும்போது நீளமானது 1% அதிகரிக்கின்றது ஆயின் அதன் பரப்பு அதிகரிக்கும் வீதம் யாது? 1) 2% 2) 2.01% 3) 2.02% 4) 2.03% 5) 2.04%
${\mathscr F}$	hysics Thermo Phisics M.S.Thava 55
	Digitized by Noolaham Foundation. noolaham.org aavanaham.org

1) -5/₃°C 2) -5/₃°C 3) 0.9°C 4) 0°c 5) 12.5°C

- 23) 100g பனிக்கட்டியானது O°C யிலுள்ளது. இதன் 8O°C யிலுள்ள 100g நீருடன் கலக்கப்பட்டபோது அதன் பொதுவெப்பநிலை என்ன? 1) O°C 2) 20°C 3) 40°C 4) 60°C 5) 23.3°C
- 24) திண்மகோளம் ஒன்றிற்கு வெப்பத்தை வழங்கக்கூடிய முதல் ஒன்றின் மூலம் வெப்பம் வழங்கப்படுகின்றபோது அதன் வெப்பநிலையுடனான மாறலை வரைபு காட்டுகின்றது.

கீழே படத்தில் காட்டப்பட்ட பகுதி DE எவ் வெப்பநிலையை குறிக்கும்?

- திண்மத்தினுள் திரவமாகக் காணப்படும்.
- 2) திரவத்தினுள் வாயுவாகக் காணப்படும்
- திண்மத்தினுள் வாயுவாகக்\/ காணப்படும்
- வாயுவினுள் திரவமாகக் காணப்படும்
- வாயுவினுள் திண்மமாகுக் காணப்படும்
- 25) EF ஆல் காட்டப்பட்ட சாய்வின் தலைகீழ் வரைபு எதனை குறிக்கும்?
 - 1) திண்மத்தின் அகச்சக்தி
 - 2) திண்மத்திற்கு வழங்கப்பட்ட சக்தி
 - 3) திரவத்தின் வெப்பகொள்ளளவு
 - 4) வாயுவின் வெப்பக்கொள்ளளவு
 - 5) வாயுவின் தன்வெப்பக்கொள்ளளவு
- 26) ஒரு பலூன் ஒரு மூல் ஒட்சிசனை O°C யில் மாறா அமுக்கத்தை கொண்டு உள்ளது. கனவளவானது 10% அதிகரிக்கப்படுகின்றது. ஒட்சிசனின் தன்வெப்பக் கொள்ளளவு 0.22 calg -1 K-1 எனின் ஏற்பட்ட வெப்ப அதிகரிப்பு யாது?
 - 1) 32x0.22x27.3x4.2
 - 3) <u>32x0.22x27.3</u>
 - 4.2
 - 5) 64x0.22x27.3

4.2

- 2) 16x0.22x27.3x4.2
- 4) 16x0.22x27.3

4.2

27)	S தன்வெப்	பபக்கொள்ளள	வு உடைய	M திணிவு	உடைய ஒரு
	கிண்மகட்டி	ன்று Pw வ	பலுவழங்கி	ஒன்று மூலம்	வெப்பமேற்றப்
		40% ஆன ெ	ഖப்பம் வீன	ளாகின்ற தா யின்	T செக்கனில்
	கிண்மக்கில்	ஏற்பட்ட வெப்ப	ப உயர்ச்சி	யாது?	

1)
$$\frac{0.6 \text{ TP}}{\text{MS}}$$
 2) $\frac{0.6 \text{ P}}{\text{MST}}$ 3) $\frac{0.4 \text{ PT}}{\text{MS}}$ 4) $\frac{0.4 \text{ P}}{\text{MST}}$ 5) $\frac{\text{P}}{\text{MST}}$

28) நீரை 27°C யில் இருந்து 77°C யிற்கு வெப்பமேற்ற நிமிடத்திற்கு 3 ℓ திரவ வாயு தேவைப்படுகின்றது. திரவ வாயுவை எரிக்கும்போது $4\mathrm{x}10^4\,\mathrm{Jg}^{-1}$ சக்தி பெறப்படுகின்றது. ஒரு நிமிடத்திற்கு நீரை வெப்பமேற்ற தேவைப்படும் வாயுவின் அளவு? 2) 15.5g 3) 15.75g 4) 16g 5) 16.5g

1) 15.25g

29) $2 {
m kg}$ திணிவுடைய ஒரு செப்பு திண்மத்தின் மேல் ${
m O}^{\circ}{
m C}$ யில் உள்ள பனிக்கட்டி வைக்கப்பட்டுள்ளது. செப்பு திண்மத்தை 500[°]C யிற்கு வெப்பப்படுத்தும்போது எவ்வளவு பனிக்கட்டி உருகும். (Cu இன் தன்வெப்பக்கொள்ளளவு 400Jkg ⁻¹⁰C-1 பனிக்கட்டியின் தன்மறைவெப்பம் 3.5x105Jkg)1

1) $\frac{4}{3}$ kg 2) $\frac{6}{5}$ kg 3) $\frac{8}{7}$ kg 4) $\frac{10}{5}$ kg 5) $\frac{7}{8}$ kg

30) மாறா அமுக்கமுள்ள ஒரு அறையினுள் 14g நைதரசன் வாயு உள்ளது இதன் வெப்பநிலை $40^{\circ}\mathrm{C}$ ஆல் அதிகரிக்க மாறா அமுக்கத்தில் வழங்கப்படவேண்டிய சக்தி யாது? 3) 80R 4) 70R 1) 50R 2) 60R

5) R

31) ஒரு திண்மக்கோலின் இரு முனைகளிலும் வெப்பநிலைகள் முறையே $\theta_1, \theta_2, (\theta_1 < \theta_2)$ எனின் கோலினூடான வெப்பப்பாய்ச்சல் வீதமானது நேர் விகிதசமனாக இருப்பது. ?

- i) கோலின் நீளம்
- ii) கோலின் திணிவு
- iii) கோலின் குறுக்கு வெட்டுப்பரப்பு
- iv) வெப்பநிலை வித்தியாசம் $(\theta, -\theta_1)$
- v) கோலின் அடர்த்தி

32) K., K. வெப்பக்கடத்தாறு உடைய சமநீளம் உடைய A., A. குறுக்கு வெட்டுடைய இரு கோல்களின் அந்தங்கள் சமவெப்பநிலைகள் θ , θ , என்பவற்றில் நிலைநிறுத்தப்பட்டுள்ளது. இவற்றின் வெப்பப்பாய்ச்சல் வீதம் சமன் ஆயின்?

1)
$$\frac{A_1}{A_2} = \frac{K_1}{K_2}$$
 2) $\frac{A_1}{A_2} = \frac{K_2}{K_1}$ 3) $\frac{A_1}{A_2} = \frac{K_1Q_1}{K_2Q_2}$

4)
$$\frac{A_1}{A_2} = \frac{K_2 \Theta_2}{K_1 \Theta_1}$$
 5) $\frac{A_1}{A_2} = \frac{2K_2}{K_1}$

33) 2R ஆரையுடைய ஒரு உருளையின் வெளிகடத்தாறு உட்பகுதியில் அமைந்த R ஆரையுடைய உருளையின் கடத்தாறு k, எனின் இவ்வுருளைக்கு சமவலுவான உருளையின் கடத்தாறு யாது?

1)
$$k_1 + k_2$$

2)
$$\frac{k_1 + k_2}{2}$$

3)
$$\frac{k_1 + 3 k_2}{4}$$

4)
$$\frac{3k_1 + k_2}{4}$$

5)
$$\frac{k+k-2}{k+k-2}$$

படத்தில் காட்டப்பட்ட சேர்த்திப்பொருளின் விளையுள் கடத்தாறு யாது?

1)
$$2(k_1+k_2)$$
 2) $\frac{3}{2}(k_1+k_2)$ 3) k_1+k_2

4) $(k_1 + k_2)$

35) சமகுறுக்கு வெட்டுப்பரப்பும் சமநீளமும் முறையே K., K. வெப்பக்கடத்தாறு உடைய கோல்கள் ஒரே வெப்பநிலை வித்தியாசம் உள்ளபோது அவற்றின் அடர்த்தி, தன்வெப்பக்கொள்ளளவுகள் முறையே ρ, ρ, S, S, எனின் பின்வருவனவற்றில் சரியானது?

$$\frac{1}{K_1} = \frac{S_1 \rho_1}{S_2 \rho_2}$$

$$\frac{2) K_1}{V_2} = \frac{S_2 \rho_1}{S_2 \rho_2}$$

$$\frac{2)}{K_{1}} \frac{K_{1}}{K_{2}} = \frac{S_{2}\rho_{1}}{S_{1}\rho_{2}} \quad \frac{3)}{K_{2}} \frac{K_{1}}{K_{2}} = \frac{O^{1}}{O_{2}}$$

$$\frac{(4)}{K_1} \frac{K_1}{K_2} = \frac{S_2 \rho_2}{S_1 \rho_1}$$

5)
$$K_{.} = K_{.}$$

- 36) 2:3 என்னும் விகிதம் கொண்ட ஏகபரிமான விரிகைத்திறன் கொண்ட இரு சமநீளம், குறுக்குவெட்டுப்பரப்பு உள்ள கோல்கள் Y₁.Y₂ என்னும் யங்கின் மட்டுக்களைக் கொண்டது. இவற்றை தனித்தனியே ஒரே வெப்பநிலைக்கு வெப்பம் ஏற்றப்படுகின்றது. அப்போது இவை ஒரே தகைப்பிற்கு உட்படுத்தப்படுகின்றது. எனின் Y₁, Y₂ என்னும் விகிதம்? 1)2:3 2)1:1 3)3:2 4)4:9 5)9:4
- 37) பின்வரும் கூற்றுக்களில் சரியானது?
 - A) வெப்பநிலையை மாற்றும்போது ஒரு உருக்கின் நீளமானது 0.1% அதிகரித்தது அவ்வாறே கனவளவும் 0.3% அதிகரித்தது.
 - B) ஒரு திண்மத்தின் தன்வெப்ப கொள்ளளவானது வித்தியாசப்படும் எப்போது எனில் மாறா அமுக்கம், மாறாக்கனவளவில்
 - இரு புள்ளிகளுக்கு இடையேயான தூரம் ஒரு உலோக நாடாவால் அளக்கும்போது குளிரான நாட்களை விட சூடான நாட்களில் குறைவாக வாசிக்கும்.
 - 1) A 2) B
- 3) C
- 4) A.B.
- 5) A,B,C

- 38) தரப்பட்ட கூற்றுக்களில் பிழையானது?
 - A) செல்சியஸ் அளவீட்டில் வெப்பநிலை வித்தியாசம் 1°C எனின் கெல்வின் அளவீட்டில் 274K ஆகும்.
 - B) கோளம், கனமுகி, வட்டத்தட்டு என்பவை சம திணிவையும் ஒரே பதார்த்தத்தால் ஆனவையும் ஆகும். இவற்றை ஒரே வெப்பநிலை வித்தியாசத்தினூடு வெப்பமேற்றி குளிரவிடும் போது வட்டத்தட்டின் குளிரல் வீதம் உயர்வாகவும் கோளத்தின் குளிரல்வீதம் குறைவாகவும் இருக்கும்.
 - C) ஒரே பதார்த்தத்தினால் ஆன இரு சமகோளங்கள் 1m, 4m ஆரைகளை உடையன. இவற்றின் வெப்பநிலைகள் முறையே 4000k, 2000k ஆகும். முதலாவது கோளத்திலும் இரண்டாவது கோளம் கூடிய வெப்பக்கதிர்ப்பு உடையது.
 - 1) A,B
- 2) B,C
- 3) A,C
- 4) A,B, C

5) யாவும் சரி

39) இரசத்தின் மேல் ஒரு திண்மத்துண்டு மிதக்கின்றது இரசத்தினதும் திண்மத்தினதும் கனவளவு விரிவு குணகம் முறையே இப்போது வெப்பநிலையானது θ வினூடு அதிகரிக்கும்போது மட்டுமட்டாக அமிழ்கின்றதாயின் இரச திண்ம இறுதி கனவளவு விகிதம்?

$$1) \frac{1 + \gamma_2 \theta}{1 + \gamma_1 \theta}$$

2)
$$\frac{1+\gamma_2\theta}{1+\gamma_1\theta}$$

3)
$$\frac{1-\gamma_2\theta}{1+\gamma_1\theta}$$

4)
$$\frac{\gamma_2}{\gamma_1}$$

5)
$$=\frac{\gamma_1}{\gamma_2}$$

ூ) ஒரு இழைமின்விளக்கு ஒன்றின் பரப்பு A அதன் வலுவீதம் P அதன் நாலல் திறன் 🛭 எனின் மின்குமிழில் வெப்பநிலை யாது? (6 - ஸ்ரெபானின் மாறிலி)

1)
$$T = \left(\frac{\beta}{A \epsilon 6}\right)^2$$
 2) $T = \frac{p}{A \epsilon 6}$

2)
$$T = \frac{p}{A \epsilon 6}$$

3)
$$T = \left(\frac{p}{A \varepsilon 6}\right)$$
 4) $T = \left(\frac{p}{A \varepsilon 6}\right)^{1/4}$ 5) $T = \frac{p^4}{A \varepsilon 6}$

4]) சூரியனின் ஒவ்வொரு மீற்றர் பரப்பில் இருந்தும் Isec இல் காலப்படும் சக்தி $6.27 \mathrm{x} 10^7 \mathrm{wm}^{-2}$ ஆகும் $6 = 5.7 \mathrm{x} 10^{-8} \mathrm{~wm}^{-2} \mathrm{k}^{-1}$ எனின் சூரியனின் மேற்பரப்பின் வெப்பநிலை யாது?

2)
$$(1.1 \times 10^{15})^{\frac{1}{2}}$$

3)
$$(1.1x10^{15})^{1.3}$$

4)
$$(1.1 \times 10^{14})^{1/4}$$

5)
$$(1.1 \times 10^{15})^{1/4}$$

42) Cu கம்பி ஒன்று T வெப்பநிலையில் இருந்து T வெப்பநிலைக்கு வெப்பம் ஏற்றும்போது நீளம் 1% ஆல் அதிகரிக்கின்றது. அதே Cu ஆல் ஆக்கப்பட்ட 2L x L பரிமாணம் உடைய தகடு T, இல் இருந்து T, ற்கு உயர்த்தும் போது அதன்பரப்பு அதிகரிக்கும். வீதம்.

43) AB என்னும் உருளைகளினுள் வாயு அடைக்கப்பட்டுள்ளது. இவற்றினுள் இருக்கும் அமுக்கம், கனவளவு முறையே P_{a} , P_{B} , V_{A} , V_{B} எனின் பின்வரும் கூற்றுக்களில் சரியானது?

1)
$$P_A = P_B, V_A \neq V_B$$

2)
$$P_A \neq P_B, V_A, V_B$$

$$3) \frac{P_A}{V_A} = \frac{P_B}{V_B}$$

4)
$$P_A V_A = P_B V_{B,*}$$

44) பின்வரும் கூற்றுக்களில் சேறலில்லா மாற்றத்துடன் தொடர்புடையது?

- வெப்பநிலை மாற்றம் இல்லை
- 2. அமுக்க மாற்றம் இல்லை
- 3. கனவளவ மாற்றம் இல்லை
- 4. அமுக்கம், கனவளவு மாற்றம் இல்லை
- 5. அமுக்கம், கனவளவு, வெப்பநிலை மாற்றம் இருக்கலாம்

45) பின்வரும் கூற்றுக்களில் சரியானது ?

(A) இரு உடல்கள் T,T, என்னும் உறுதி வெப்பநிலைகளில் உள்ளது. இவற்றை தொடுகையில் வைக்கும் போது ஒவ்வொன்றினதும் வெப்பநிலை (T_1+T_2) ஆகும்.

(B) B இரு சர்வசமனான கலோரி மீற்றர் இரு சமகனவளவுள்ள A,B என்னும் திரவத்துடன் தொடுகையில் உள்ளது. இரண்டு தொகுதியும் குளிரவிடப்ப டுகின்றது. அப்போது பெறப்பட்ட வெப்பநிலை எதிர் நேர வரைபில் இருந்து A யின் தன்வெப்பகொள்ளளவு Bயை விடப்பெரிது என உய்தறியலாம்.

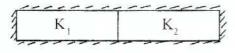
(C) மேலுள்ள வணுரிலிருந்து Aயின் தன்வெப்பக் கொள்ளளவு Bஜ விடச் சிறியது என உயத்தறியலாம்.

1)A

2) B

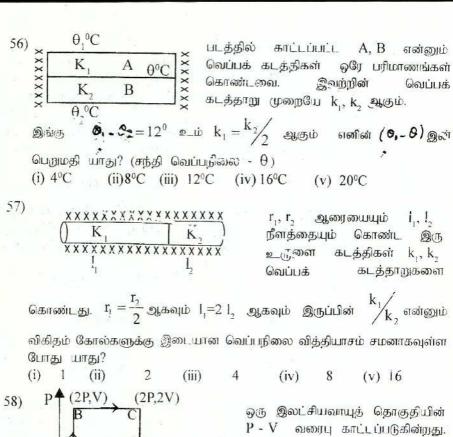
3) C

4) A.C 5) A.B


46) பின்வரும் கூற்றுக்களில் சமவெப்பமாற்றத்துடன் தொடர்புடையது?

- 1) வெப்பநிலை மாற்றம் இல்லை
- 2) அமுக்க மாற்றம் இல்லை
- 3) கனவளவு மாற்றம் இல்லை
- 4) அமுக்க, கனவளவு மாற்றம் இல்லை
- 5) அமுக்கம், கனவளவு, வெப்பநிலை மாற்றம் உண்டு.

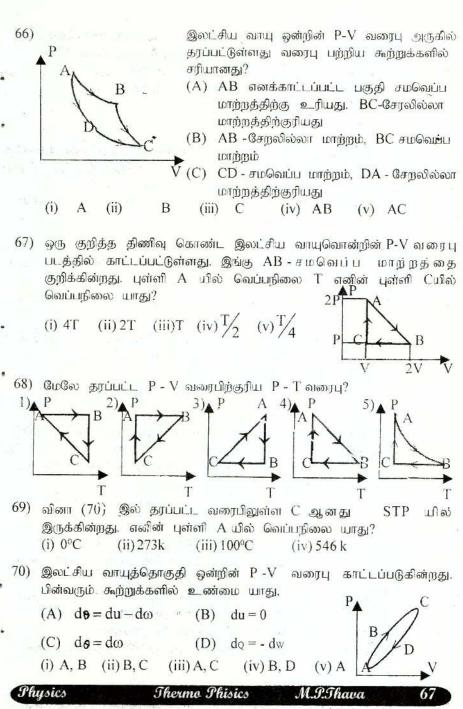
- 47) பின்வரும் சமன்பாடுகளில் P- அமுக்கம், V கனவளவு, γ தலைமை தன்வெப்பக்கொள்ளவுகளின் விகிதம் எனின் இவற்றை தொடர்பு படுத்தும் இலட்சியவாயுவின் சேறலில்லா மாற்றத்திற்கிடையிலான தொடர்பு?
- 1) $PV^{\gamma-1} = \text{ மாறிலி}$ 2) $PV^{\gamma} = \text{ மாறிலி}$ 3) $PV^{\gamma-1} = \text{ மாறிலி}$
- 4) PV^γ மாறிலி
- 5) PV = மாறிலி
- 48) 1mol இலட்சியவாயு ஒரு உருளையில் T, வெப்பநிலையிலும் P, அமுக்கத்திலும் இருக்கின்றது. இதனை சேறலில்லா மாற்றத்திற்க உட்டுத்தும்போது இறுதி அமுக்கம் P. ஆகின்றது எனின் அதன் இறுதி வெப்பநிலையை தருவது?
 - 1) $T_2 = \left(\frac{p_2}{P_1}\right)^{\frac{\gamma}{\gamma-1}} T_1$
- 2) $T_2 = \left(\frac{p_2}{P}\right)^{\frac{f^2}{\gamma}} T_1$
- 3) $T_2 = \left(\frac{p_2}{p}\right)^r T_1$
- 4) $T_2 : \left(\frac{p_2}{p}\right)^{\gamma-1} T_1$
- 5) $T_2 = \left(\frac{p_1}{p}\right)^{\frac{1-\gamma}{\gamma}} T_1$
- 49) 1 mol இலட்சிய வாயு ஒரு உருளையில் Tī வெப்ப நிலையிலும் Pī அமுக்கத்திலும் இருக்கின்றது. இதனை சேறலில்லா மாற்றத் திற்கு உட்படுத்தும் போது இறுதி அமுக்கம் Pa ஆகின்றது. எனின் அதன் இறுதி வெப்ப நிலையை தருவது?
 - 1) T,(P,/P,) 11(14)
- 2) T, (P,/P,)(*1)/8
- 3)T₁(P₂/P₁)*


- 4) T₁(P₂/P₁) *-1
- 5)T.1(P/P2) 2((2-1)
- 50) ஒரு மூல் இலட்சிய வாயு ஒ**ன்**று Vi கனவளவள்ள Pi அமுக்கத்தை கொண்ட் ஒரு பலூனில் அடைக்கப்பட்டுள்ளது. அதன் கணுவளவு V2 ஆக மாற்றப்பட வேண்டுமாயின் அதனுள் உள்ள வாயுவின் அமுக்கமாக இருக்க வேண்டியது?
- 3) P₁(V₁/V₂)^{G=1)/γ}
- 1) $P_1(V_1/V_2)^{\gamma}$ 2) $P_1(V_1/V_2)^{1/\gamma}$ 4) $P_1(V_1/V_2)^{\gamma/(\gamma-1)}$ 5) $P_1(V_1/V_1)^{\gamma}$

- 51) மேலேயுள்ள விணாவில் வாயுவின் ஆரம்ப வெப்பநிலை T_1 ஆக இருக்கும் எனின் இறுதி வெப்பநிலையைத் தருவது? 1) $T_1(V_1/V_2)^{\gamma}$ 2) $T_1(V_1/V_3)^{1/\gamma}$ 3) $T_1(V_1/V_3)^{\gamma-1}$
 - 4) $T_1(V_1/V_2)^{1/(\gamma-1)}$
- 52) ஒரு வெப்பக்கதிர்ப்பு பொருள் ஒன்றின் காலும் சக்தி தங்கியுள்ள , காரணி
 - 1) பொருளின் மேற்பரப்பின் தன்ணு
 - 2) பொருளின் மேற்பரப்பின் பருமன்
 - 3) பொருளின் மேற்பரப்பின் வெப்பநிலை
 - 4) (1), (2) 部
 - 5) (1), (2), (3) aff
- 53) ஒரு வெப்பக்கதிர்ப்பு பொருள் ஒன்றின் கதிர்ப்பு அலைநீளம் தங்கியிருப்பது?
 - 1) பொருளின் மேற்பரப்பின் தன்மை
 - 2) பொருளின் மேற்பரப்பின் பருமன்
 - 3) பொருளின் மேற்பரப்பின் வெப்பநிலை
 - 4) (1), (2) #f
 - 5) (1), (2), (3) of
- 54) போட்ஸ்மான் மாறிலியின் சர்வதேச அலகு?
 - (i) Jk⁻¹
- (ii) Wk⁻¹
- (iii) Js-1k-1
- (iv) J
- (v) Js-1
- 55) இரு சமநீளம் உள்ள ஆனால் K₁, K₂ வெப்பக்கடத்தாறு கொண்ட கடத்திகள் படத்தில் காட்டப்பட்டவாறு பொருத்தப்பட்டுள்ளது. இதன் சமவலு வெப்பக்கடத்தாறு யாது?

- 1) $K_1 + K_2$
- 2) $(K_1 + K_2)$
 - (K_2) 3) $\sqrt{K_1K_2}$

- 4) $\frac{2K_1K_2}{K_1 + K_2}$
- 5) $\frac{K_1 K_2}{K_1 + K_2}$



(i) $\frac{1}{2}$ PV (ii) PV (iii) 2PV (iv) 4PV (v) 8PV

இவ் வாயு தொகுதியில் செய்யப் பட்ட வேலை யாது?

- 59) ஒட்சிசன் வாயுவினதும் ஐதரசன் வாயுவினதும் இடை வர்க்கமூலக்கதி சமனாகக் காணப்படுகின்றது. எனின் ஐதரசனின் வெப்பநிலை 200 K எனக் காணப்படின் ஒட்சிசனின் வெப்பநிலை யாது? (i) 527°C (ii) 1327°C (iii) 2127°C (iv) 2927°C (v) 2927K
- 60) ஒரு வாயுத் தொகுதி ஒன்றின் வெப்பநிலை 27°C இருந்து 927°Cற்கு
 - அதிகரிக்கும் போது அதன் இடைவர்க்க மூலக்கதியானது அரைவாசியாகும் (ii) இரு மடங்காகும் (i)
 - (iii) நான்கு மடங்காகும் (iv) நான்கில் ஒரு மடங்காகும்
 - மாநாது

61)	பின்வரும் கூற்றுக்களில் சரியானது
	(A) ஒரு வாயு தொகுதி ஒன்றின் அமுக்கமானது ஓர் கனவளவு வாயு மூலக்கூறுகளின் இயக்க சக்தியை தரும்
	(B) மூலக்கூறுகளின் சராசரி இயக்க சக்தியானது தனி வெப்பநிலைக்கு நேர்விகித சமன்
	(C) மூலக்கூறுகளின் சராசரி இயக்க சக்தியானது தனி வெப்ப நிலையின் வர்க்க மூலத்திற்கு நேர்விகித சமனாகும்.
	(i) A (ii) B (iii) C (iv) A, B (v) B, C
62)	இரு A, B என்னும் ஒரே உலோகத்தாலான திண்மக் கோளங்கள் ஒரே வெப்பநிலைக்கு வெப்பம் ஏற்றப்படுகின்றது. அப்போது A யினது விட்டமானது B யின் இருமடங்காகியது எனின் திண்மங்களின் குளிரல் வீத விகிதம் யாது? (i) 1:1 (ii) 2:1 (iii) 4:1 (iv) 1:4 (v) 1:2
	32.00
63)	ஐதசரசன் வாயுவின் $C_P = \frac{3R}{2}$ எனின் C_v ஐ காண்க?
	(i) $\frac{3R}{2}$ (ii) $\frac{5R}{2}$ (iii) $\frac{7R}{2}$ (iv) $\frac{R}{2}$ (v) யாவும் பிழை
64)	ஒரு வாயுத்தொகுதி 5mol வாயுவை கொண்டது. இதன் வெப்பநிமைலயை 2k இனூடு உயர்த்த 743Jசக் தி மாறா அமுக்கத் தில் வழங்க வேண்டியுள்ளது. இதே வாயுத் தொகுதியை இதே வெப்பநிலை வீச்சினுள் மாறூக் கனவளவில் உயர்த்த தேவையான வெப்பம் மாது? (R=8.3J-1mol-1) (i) 826J(ii) 743J (iii) 660J (iv) 83J (v) யாவும்பிழை
(5)	
65)	ஒரு இலட்சிய வாயு ஒன்றின் அமுக்கம்-P,வெப்பநிலை-T, கனவளவு -V. இவ்வாயுத் தொகுதியானது சமவெப்ப மாற்றத்திற்கு உட்படுத்தப்படும்போது
	கனவளவு $\sqrt[n]{n}$ ஆகின்றது அப்போது அமுக்கம் P_i ஆகும். ஆனால்
	வாயு சேறலில்லா மாற்றத்திற்கு உட்படுத்தப்படும் போது கனவளவு
	$\stackrel{V}{/}_{n}$ ஆகவும் அமுக்கம் P_{a} ஆகவும் மாறுகின்றது. எனின் $\stackrel{P_{a}}{/}_{P_{a}}$ என்னும்
	விகிதத்தை தருவது
N.	usics Thermo Phisics M.S.Thava 66
	Digitized by Noolaham Foundation.
	noolaham.org aavanaham.org

- 71) 2mol ஓட்சிசன் வாயு 0°Cயில் இருந்து 10°C யிற்கு மாறாக்கனவளவில் வெப்பமேற்றப்படுகிறது. அப்போது அகச்சக்கி _மாற்றம் 420J ஆகும் ஒட்சிசனின் மாறாக்கனவளவில் மூலர் தன்வெப்பக் கொள்ளளவு யாது:
 - iii) 21Jk-1mol-1 ii) 10.5Jk-1mol-1 i) 5.75Jk⁻¹mol⁻¹

iv) 42Jk-1mol-1 v) 2.1Jk-1mol-1

i) 50 J

i) 50 J ii) -150 J

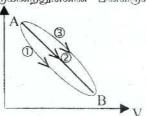
72) வாயுத்தொகுதி ஒன்றில் செய்யப்பட்ட வேலை20J அப்போது 40J சக்கி ெதுகுதியிலிருந்து விடுவிக்கப்பட்டது. இவ்வாயுத்தொகுதியின் ஆரம்ப _{வகச்,} ுக்தி 70J எனின் இறுதி அகச்சக்தி யாது? ii) 60 J iii) 90 J v) 45 J

iv) 110 J

iv) -250 J

v) -1255 J

சேநலில்லா செயன்முறை மூலம் அதன் 5mol 73) ஒரு வாயுக் தொகுதி வாயுவால் 250J வேலை செய்யட்படுகின்றது எனின் அகச்சக்கியில் ஏர்பட்ட மாற்றம் யாது?


iii) 250 J

- 74) ஒரு இலட்சியவாயு ஒன்றின் அமுக்கம் P இத்தொகுதி சேறலில்லாச் செய்முறைக்கு உட்படுத்தும் போது அதன் அடர்த்தி n மடங்காகின்றது எனின் அதன் இறுதி அமுக்கம் யாது? iv) $n^{(1-\gamma)} P$ v) P iii) $n^{(\gamma-1)}P$ i) n⁷ P ii) n⁻⁷P
- 75) புவியின் கதிர்ப்பு உறிஞ்சல் வீதம் 1400wm⁻² ஆகும் புவியின் மேற்பரப்பின் இருந்து சந்திரனின் ஈர்ப்பு மையத்தூரம் 1.5 x 10 m ஆகும் சந்திரனின் ஆரை $7 \times 10^8 \,\mathrm{m}$ உம் எனின் சந்திரன் ஒரு நல்ல கதிர்த்தியாகக் கருதி அகன் மேற்பரப்பின் வெப்பநிலையை காண்க? i) 5803K ii) 5900K iii) 6000K iv) 6100K v) 6200K
- 76) நை வெப்பச் சுருள்மூலம் ஒரு திரவத்திற்கு வெப்பம் வழங்கப்படுகிறது. அப்போது அதன் திரவத்தின் வெப்பநிலையில் மாற்றம் ஏற்படவில்லை எனின் வழங்கப்பட்ட வெப்பத்திற்கு யாது நடந்தது?
 - i) திரவ மூலக்கூறுகளின் இயக்கசக்தி அதிகரிப்பிற்கு உதவியமை ii) திரவ மூலக்கூறுகளின் அழுத்தசக்தி அதிகரிப்பிற்கு உதவியமை
 - iii) மேற்கூறிய இரு காரணத்திற்காகவும் உதவியமை
 - iv) வழங்கப்பட்ட வெப்பம் முழுவதும் சூழலுக்கு இழக்கப்பட்டமை v) ധ്നഖ്ഥ വിഥെ

- 77) 300K இல் ஒரு உலோகத்தின் தடை 1Ω ஆகும். எவ் வெப்பநிலையில் அதன் தடை 2Ω ஆகும். இவ்வுலோகத்தின் நீட்டல் விரிவுகுணகம் 1.25 x 10⁻³ °C⁻¹ ஆகும். ii) 1.54K ii) 1100K iii) 1400K iv) 1127K v) 6200K
- 78) ஐதரசன் வாயுவிற்கு C_p C_v = a ஆகவும் ஒட்சிசன் வாயுவிற்கு C_p C_v = b ஆகவும் இருப்பின் a, b யிற்கு இடையிலுள்ள தொடர்பு யாது? i) a = 16b ii) b = 16a iii) a = 4b iv) a = b v) v) v0 = 32b
- 79) ஒரு உலோகம் ஒன்றின் வெப்பநிலை 27°C ஆக இருக்கும்போது அதன் காலல்திறன் QKwm⁻² எனின் இதன் வெப்பநிலை 151°C ஆக வரும்போது அதன் <mark>காலல்திறன் ப</mark>ாது? i) 2Q ii) 6Q iii) 4Q iv) 8Q v) 5Q
- 80) ஒரு இலட்சிய வாயு Aயும் ஒரு உண்மை வாயு Bயும் கொண்ட தொகுதியின் கனவளவு சமவெப்ப மாற்றத்தினூடு இருமடங்காக்கப்படின் அதன் அகச்சக்தி மாற்றமானது
 - i) A யிற்கும் B யிற்கும் சமனர்க் இருக்கும்
 - ii) A யிற்கும் B யிற்கும் பூச்சியமாக இருக்கும்
 - iii)A ஜ விட B யிற்கு அதிகம்
 - iv)B ஜ விட A யிற்கு அதிகம்
 - v) கூறமுடியாது
- 81) ஒரு இலட்சிய வாயுவொன்றின் P-V வரைபு காட்டப்படுகின்றது இவ்வாயுவில் செய்யப்பட்ட வேலை யாது? i) 6PV ii) 3PV iii) 9PV iv) PV v) V
- | (P,V) (P,3V) V | 82) இலட்சியவாயுவாக நடந்து கொள்ளத்தக்க 8g ஒட்சிசனுக்கு பொருத்தமான சமன்பாடு எது!?

 i) PV=8RT ii) PV= \frac{RT}{4} iii) PV=RT
 - iv) PV=RT v) 2PV=RT

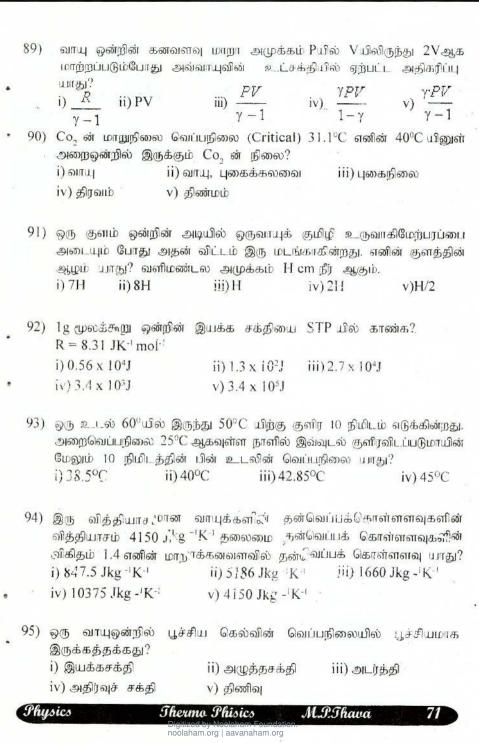
84) ஒரு இலட்சிய வாயுஒன்றின் அமுக்கம் எதிர் கனவளவு வரைபு படத்தில் தரப்பட்டுள்ளது. Aயிலிருந்து Bஎன்னும் நிலையை மூன்று வெவ்வேறு பாகைகளில் செல்லும் போது முறையே W₁, W₂, W₃ ஆகிய சக்திகள் வேலைசெய்யப்படுகின்றது.எனின் பின்வருவனவற்றுள் சரியானது?

i)
$$W_1 > W_2 > W_3$$

ii)
$$W_1 \le W_2 \le W_3$$

iii)
$$W_1 = W_2 = W_3$$

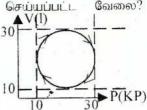
iv)
$$W_1 \le W_2$$
; $W_1 \le W_3$ v) $W_1 \ge W_3 = W_2$


$$V) W_1 > W_3 = W$$

- 85) மூன்று கனவளவுள்ள உருளையினுள் வெவ்வேறு வாயுக்கள் அடைக்கப்பட்டுள்ளது. இவற்றின் திணிவு. மூலக்கூறுகளின் எண்ணிக்கை முறையே $M_{_1},\,M_{_2},\,M_{_3}$, $N_{_1},\,N_{_2},\,N_{_3}$ ஆகவும் அவற்றின் அமுக்கங்கள் முறையே P, P, P, ஆகவும் இருப்பின் இம் மூன்று வாயுக்களையும் ஒரு உருளையினுள் சேர்க்கும்போது அதனுள் உள்ள அமுக்கம் P ஆனது?
 - i) $P < (P_1 + P_2 + P_3)$ ii) $P = 1/3(P_1 + P_2 + P_3)$ iii) $P = P_1 + P_2 + P_3$ iv) $P > (P_1 + P_2 + P_3)$ v) $P \ge P_1 + P_2 + P_3$
- 86) 80°Cயிலிருந்து 75°Cயிற்கு குளிர t, நேரமும் 75°Cயிலிருந்து 70°€இற்கு குளிர t, நேரமும் 70°Cபிலிருந்து 65°C யிற்கு குளிர t, நிமிடமும் செல்கின்றதாயின் பினவருவனவற்றுள் சரியானது?
 - i) $t_1 > t_2 > t_3$
- ii) $t_1 \le t_2 \le t_3$
- iii) t₁ = t₂ = ts₃

- iv) $t_1 < t_2$; $t_3 < t_2$, v) $t_1 > t_2 = t_3$
- 87) 27 °C பில் சேறலில்லா செய்முறை மூலம் அதன் அமுக்கமானது 1/8 பங்கால் குறைக்கப்படுகிறது. γ = 5/3 எனின் தொகுதியின் இறுதி வெப்பநிலை யாது?

 - i) 400K ii) 300K


- iii) 142°C iv) 327°C v) -142°C
- 88) 🔾 இன் இடைவர்க்க மூலத்திற்கும் H, இன் இடைவர்க்க மூலத்திற்கும் உள்ள விகிதம் யாது?
 - i) 1:4
- ii) 4:1
 - iii) 2: I
- iv) 1:2
- $\mathbf{v})\sqrt{2}\cdot\mathbf{1}$

- 96) வாயு ஒன்றில் கனவளவு எதிர் அமுக்க வரைபை படம் காட்டுகிறது இந்த வரைபை பயன்படுத்தி இத்தொகுதியில் செய்யப்பட்ட வேலை?
 - i) $\pi \times 10^{7} J$ iii) $\pi \times 10^2 J$

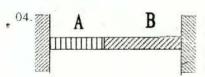
 $v) \pi/2 \times 10 J$

- ii) $\pi \times 10^4 J$
- iv) $\pi \times 10^{-3}$ J

- 97) ஒரு இரும்பு கோல் வெப்பமேற்றப்படும் போது அதன் நீட்டல், பரப்பு, கனவளவு விரிவு குணகங்கள் மாறும் விகிதம்?
 - i) 1:2:3 ii) 3:2:1

iii) 2:3:1

- (v) 3:1:2v) 1:1:1
- 98) இலட்சிய வாயு மூலக்கூறு ஒன்றின் இடைவர்க்க மூலக்கதியை தரும் சமன்பாடு எவை?


i) A

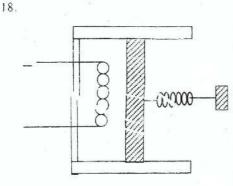
- ii)B
- iii)C iv)A,B v)A,C
- 99) ஒருஉருக்கு உருளையினுள் Рஅமுக்கத்தில் ஒருஇலட்சிய வாயு அடைக்கப்பட்டுள்ளது . அதன் அமுக்கம் இருமடங்காகத்தக்கதாக வெப்பநிலை வித்தியாசம் 10°C யினூடு அதிகரிக்கப்படுகின்றது. எனின் அவ்வாயுவின் அமுக்க விரிகைத் திறன் யாது?

 - i) 0.01 ii) 0.001
 - iii) 1.01
- iv) 1.001 v) 0.1
- 100) வந்தர்வாலின் சமன்பாடு $(P + a/v^2)$ (V b) = RT என்பதில் a/v^2 என்பதுடன் கொடர்படையது யாது?
 - i) முலக்கூறுகளின் பரப்பு.
 - ii) மூலக்கூறுகளின கனவளவு
 - iii) மூலக்கூறுகளின சராசரி வேகம்.
 - iv) மூலக்கூறுகளின மோதுகை.
 - V) மூலக்கூறுகளுக்கிடையிலான கவர்ச்சி விசை.

Thermo Physics - II

- 01. ஒரு இரும்பு பாலத்தின் நீளம் 25Cm. அது ன் குறுக்குவெட்டு 0.8Cm². இது இரு தாங்கிகளுக்கு இடையில் பொருத்து, பட்டுள்ளது, தாங்கிகள் விறைப்பானவையாகவும் இரும்பு பாலத்தின் நீட்டல் விரிவு குணகம் 1 x 10⁻⁵ °C⁻¹ ஆகவும் இருக்கின்றது. எனின் டாலத்தின் வெப்ப நிலையை 10°C யினூடு உயர்த்தும் போது 2 x 10 ¹⁰ Nm⁻² யங்கின் மட்டு உடைய இப்பாலத்தில் தொழிற்படும் விசை யாது '?
 - 02. நீட்டல் விரிவு குணகம் $1 \times 10^{-5} \mathrm{C}^{-1}$ ஆகவுள்ள ஒரு பொட்கோளம் $10^{\circ}\mathrm{C}$ யில் $100\mathrm{Cm}^{3}$ கனவளவு குழியைக் கொண்டுள்ளது. வெப்பநிலை $110^{\circ}\mathrm{C}$ ஆக மாற்றும்போது குழியின் கனவளவு யாது.?
 - 03. இரு சமபரப்புடைய A,B என்னும் உலோகங்கள் முறையே $10^{\circ}C$, $20^{\circ}C$ வெப்பநிலையில் உள்ளன. எவ் வெப்பநிலையில் மீண்டும் இவற்றின் பரப்புக்கள் சமனாக இருக்கும்.? $(\alpha_{_{A}}=1.9 \times 10^{-5} \, {}^{\circ}C^{-1} \, , \, \alpha_{_{B}}=1.1 \times 10^{-6} \, {}^{\circ}C^{-1})$

A.B என்னும் வெவ்வேறு உலோக பாலங்கள் சம குறுக்கு வெட்டுப் பரப்படையது. படத்தில் காட்டப்பட்டவாறு முனைக்கு முனை பொருத்தப்பட்டுள்ளது. இச் சேர்த்தி பாலத்தின் நீளம் Im ஆகம். A யின் நீளம் 30Cm உம் எனின் இத் தொகுதியின்வெப்பநிலை 125°C ஆக அதிகரிக்கும் போது அதன் நீட்சி 1.91mm ஆகக் காணப்பட்டது எனின் நீட்டல் விரிவு குணகம் யாது.? மேலும் கோல்கள் தற்போது விரைப்பான தாங்கிகளுக்கு இடையில் பொருத்தப்பட்டு வெப்பமேற்றிய போது அது எவ்வித நீட்சியும் அடையவில் லை ഖതിൽ Builor பங்கின்மட்டை காண்க.?


05. A என்னும் உலோகக்கம்பி 25Cm நீளம் உள்ளது. இதன் வெப்பநிலை 0°C யிலிருந்து 100°C யிற்கு உயர்த்தப்படும் போது 0.05Cm நீட்சி அடைந்தது. இதே வெப்பநிலை வித்தியாசத்தினூடு 40Cm நீளமுள்ள B என்னும் கோலை வெப்பமேற்ற 0.04Cm நீட்சியடைந்தது. பின்னர் A யின் ஒரு பகுதி நீளத்தையும் Bயில் ஒரு பகுதி நீளத்தையும் வெட்டி முனைக்கு முனை பொருத்தப்பட்டு 50Cm நீள சேர்த்தி கோல் பெறப்பட்டது. இதன் வெப்பநிலையை 0°C யிலிருந்து 50°C யிற்கு உயர்த்தப்படின் சேர்த்தி கோலின் விரிவு 0.03Cm ஆகும். எனின்

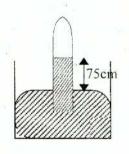
- A.B யின் நீட்டல் விரிவு குணகம் யாது.? (i)
- சேர்த்தி கோலில் ஒவ்வொரு துண்டின் உண்மை நீளம் (ii) என்ன.?
- ஒரு கனவுருவின் வெப்பநிலை 20°C யினூடாக உயர்த்தும் போது 06. 0.12% கனவளவு மாற்றம் ஏற்பட்டது எனின் இக்கனவுரு ஆக்கப்பட்ட உலோகத்தின் நீட்டல் விரிவு குணகம் யாது.?
- ஒரு உலோகம் 0° 500°C ந்கு வெப்பமேற்றப்பட அதன் அடர்த்தி 07. ந்கு குறைந்தது எனின் இப்பதார்த்தத்தின் நீட்டல் விரிவு குணகம் யாது.?
- ஒரு திண்மக்கோளத்தின் திணிவு 1Kg இதன் சாரடர்த்தி 0°C யில் 08. 8.93 இதன் வெப்பநிலை 15° – 500°C ந்கு உயர்த்தும் போது அதன் மேற்பரப்பு அதிகரிக்கும் வீதம் யாது.? $\alpha = 16.07 \times 10^{-6.0} \text{C}^{-1}$
- இரு L_, நீளங்கள் உள்ள கோல்களின் ஏகபரிமாண விரிகைத்திறன் 09. α., முன்றாவது கோலொன்றின் ஏகபரிமாண விரிகைத்திறன் α, இவற்றை கொண்டு ஆக்கப்பட்ட முக்கோணி ABC யில் CD யின் நீளத்தில் வெப்பநிலை மாற்றம் ஏற்படும் போது மாற்றம் ஏற்படவில்லை எனின் $4l_1^2\alpha=l_2^2\alpha_2$ எனக் காட்டுக. (இங்கு AB இன் நடுப்புள்ளி D)
- ஒரு கண்ணாடி அளவியின் 50Cm³ அளவிடை புள்ளியிற்கு இரசம் 10. $28^{\circ}\mathrm{C}$ யில் நிரப்பப்பட்டுள்ளது. இதன் வெப்பநிலையை $48^{\circ}\mathrm{C}$ ற்கு உயர்த்தும் போது அளவிடைப்புள்ளி எவ்வளவால் உயரும்.? (கண்ணாடியின் ஏகபரிமாண விரிகைத்திறன் 9 x 10-6 °C-1 இரசத்தின் உண்மை விரிகைத்திறன் 180 x 10-6 °C-1)
- மூடிய பாத்திரத்தினுள் இரசம் இடப்பட்டு வெப்ப 1000Cm³ 11. மேற்றப்பட்டது. அப்போது பாத்திரத்திலிருந்த வளியின்கனவளவில்

மாற்றம் ஏற்படவில்லை. ஆயின் பாத்திரத்தில் இருந்த இரசத்தின் கனவளவுயாது?(பாத்திரத்தின் ஏகபரிமாணவிரிகைத்திறன்9x l 0 ° ° C · l , இரசத்தின் கனவளவு விரிகைத்திறன் 1.8 x 10 ⁴ ° C · l)

- 12. வளியின் ஒரு பந்தின் நிறை 10g ஆகும். 15°C நீரில் இதன் நிறை 6g, 65°C யில் உள்ள நீரில் இதன் நிறை 6.05g, நீரின் கனவளவு விரிகைத்திறனை காண்க. (பந்தின் ஏகபரிமான விரிகைத்திறன் 9 x 10.5°C-1, 15°C யில் நீரின் அடர்த்தி 1gCm⁻³)
- 13. 1m நீளமான இரு முனையும் மூடிய குழாயின் நடுவில் 0.1m நீளமான இரச இழை ஒன்று இருக்கத்தக்கதாக கிடையாக அது பிடிக்கப்பட்டுள்ளது. பின்னர் அது நிலைக்குத்தாக பிடிக்கப்படும் போது இரச நிரல் இறங்கும் தூரம் யாது.? (ஆரம்பத்தில் குழாயினுள் இருந்த அமுக்கம் 0.76mHg ஆகும்)
- 14. சீரான குறுக்குவெட்டுமுகமுள்ள ஒரு இரு முனையும் மூடிய கண்ணாடிக்குழாயின் மத்தியில் 5Cm நீளமான இரச நிரலொன்று உள்ளது. குழாய் கிடையாக இருக்கும் போது இரச நிரல் மத்தியில் இருக்க காணப்பட்டது. இக்குழாய் தற்போது நிலைக்குத்துடன் 60° சாய்வாக வைக்கும்போது வளிநிரலின் நீளங்கள் முறையே 46Cm, 44.5Cm ஆகக் காணப்பட்டது எனின் ஆரம்ப நிலையில் குழாயினுள் அமுக்கம் யாது.? (அறை வெப்பநிலை 30°C)
- 15. 100Cm நீளமான குழாயின் மத்தியில் 10Cm இரசநிரல் இருக்குமாறு இருமுணையும் மூடிய குழாய் கிடையாக வைக்கப்பட்டுள்ளது. அப்போது குழாயினுள் வளிமண்டல அமுக்கம் நிலவுகின்றது. அப்போது வெப்பநிலை 27°C ஆகும். பின்னர் குழாயின் ஒரு பக்கம் 0°C யிலும் மறுபக்கம் 127°C யிலும் நிலை நிறுத்தப்படுகின்றது எனின் இரசநிரல் அசைந்த துரரம்.? 0°C யில் அமுக்கம் என்பவற்றை காண்க.? (இரசவிரிவு கண்ணாடி விரிவு புறக்கணிக்கத்தக்கது)
 - 16. மின்குமிழ் ஒன்றின் கனவளவு 250Cm³. அது 1 x 10⁻³ mmHg அமுக்கத்திலும் 27°C யிலும் உருவாக்கப்பட்டுள்ளது எனின் குமிழிலுள் உள்ள மூலக்கூறுகளின் எண்ணிக்கை யாது.? (போல்ட்ஸ்மானின் மாறிலி K = 1.38 x 10⁻²³JK⁻¹, இரசத்தின் அடர்த்தி 13600Kgm⁻³)
- 17. மூடிய ஒரு உருளையின் கனவளவு $0.02 \mathrm{m}^3$, இதனுள் Ne, Ar வாயுக்கள் அடைக்கப்பட்டுள்ளது. இதனுள் $1 \times 10^5 \,\mathrm{Nm}^{-2}$ அமுக்கமும்

 $27^{\circ}\mathrm{C}$ வெப்பநிலையும் நிலவுகின்றது. உருளையில் உள்ள வாயுக்கலவையின் திணிவு $28\mathrm{g}$ எனின் ஒவ்வொன்றினதும் தனித்தனி. திணிவை காண்க.? $\mathrm{M_{N_c}}=20,\,\mathrm{M_{Ar}}=40$

இலட்சிய வாப்வை கொண்ட ஒரு முசலத்தை அமைப்பு காட்டுகின்றது. 300K வாயு இகனுள் 200 அடைக்கப்பட்டுள்ளது. விற்சுருளுடன் ஆன ஆடு தண்டின் குறுக்குவெட்டு பரப்பு $8 \times 10^3 \text{m}^2$ உம் இதன் ஆரம்ப கனவளவு 2.4 x 10 ° m³ உம் ஆகும். தற்போது ஆடுதண்டானது வெளி நோக்கி 0.1m இழுக்கப்படுகின்றது. முசலத்தினுள் ஆரம்பத்தில் அமுக்கம் வளம்ண்டல அமுக்கக் <u> தந்</u>போது திற்கு சமன் எனின் முசலத்தினுள் வெப்பநிலை யாது.? (விற்சுருள் மாறிலி 8000Nm⁻¹)

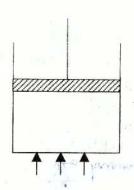

- 19. 5ℓ குடுவையினுள் 1.4g நைதரசன் நீர் ஆவி கலவை 1800K இல் உள்ளது. இதில் 30% நீராவியாகக் காணப்படுகின்றது. நீராவியும் இலட்சிய நடத்தையை காட்டின் குடுவையினுள் மொத்த அமுக்கம் யாது.?
- 20. ஒரு திரவம் கொண்ட பாத்திரத்தினுள் 30€ இலட்சியவாயு அடைக்கப்பட்டு உள்ளது. அப்போது அதன் வெப்பநிலை 0°C, அமுக்கம் 1 atm. இப்பாத்திரத்தில் உள்ள கசிவு காரணமாக சிறிதளவு வாயு வெளியேறுகின்றது. இதனால் அமுக்கம் 0.22atm ஆக மாறுகின்றது. அப்போது வெப்பநிலையில் மாற்றம் ஏற்படவில்லை எனின் வெளியேறிய வாயுவின் திணிவு யாது.? (வாயுவின் அடர்த்தி STP யில் 1.3g/l)
- 21. ஒரு குறிப்பிட்ட பிரதேசத்தில் 1Cm³ கனவளவில் 5 வாயு மூலக்கூறுகள் சராசரியாக காணப்பட்டன. அப்போது வெப்பநிலை 3K ஆகும். எனின் அந்நிலையில் வாயு மூலக்கூறுகளின் சராசரி அமுக்கம் யாது.? (போட்ஸ்மானின் மாறிலி = 1.38 x 10⁻²³JKg⁻¹)
- 22. 0°C யில் Co₂ வாயுவின் அமுக்கம், அடர்த்தி முறையே1 x 10⁵Nm⁻², 1.98Kgm⁻³ ஆகும். எனின் 30°C யில் மூலக்கூறுகளின் இடைவர்க்க மூலக்கதியை காண்க.? (அமுக்க மாற்றம் இல்லை எனக் கொள்க)

Physics

76

- 23. 27°C யில் 1mmHg அமுக்கத்தை கொண்ட இலட்சிய வாயுவின் 1cm³ இல் உள்ள மூலக்கூறுகளின் எண்ணிக்கை யாது?(27°Cயில் மூலக்கூறு ஒன்றின் இயக்கசக்தி 4 x 10⁻¹⁴ gcm²s⁻² ஆகும். இரசத்தினடர்த்தி 13.6gcm⁻³)
- •24. ஒட்சிசன் மூலக்கூறுகளின் சராசரி வர்க்க மூலவேகம் 819° C யில் 920ms⁻¹ எனின்.• 40°C யில் Ar மூலக்கூறுகளின் சராசரி வர்க்க மூலக்கதி யாது.? (ஒட்சிசன் சார் மூலக்கூற்றுத்திணிவு 32, Ar இன் சார்மூலக்கூற்று திணிவு 40)
- 25. 32 சார்மூலக்கூற்று திணிவுள்ள ஒருவாயு 47°Cயிலும் 64 மூலக்கூற்றுதிணிவுள்ள ஒரு வாயு அதே வேகத்தை கொண்டுள்ளது எனின் மற்றைய வாயுவின் வெப்பநிலை யாது.?
- 26. புவி மேற்பரப்பில் ஐதரசனின் இடைவர்க்க முலக்கதியும். தப்பு வேகமும் சமனாக இருக்கும் வெப்பநிலை யாது.? (புவியின் ஆரை 6.4 x 106m)
- 27. இரு இலட்சிய வாயுக்களின் உறுதி வெப்பநிலைகள் முறையே T₁. T₂ இவற்றை கலக்கும் போது சக்தியிழப்பு எதுவும் ஏற்படவில்லை. இவற்றின் மூலக்கூற்று திணிவுகள் முறையே M₁, M₂ இவற்றின் மூலக்கூற்று திணிவுகள் முறையே n₁, n₂ எனின் கலவையின் பொது வெப்பநிலை யாது.?

28.


படத்தில் காட்டப்பட்ட குழாயினுள் வளி சிறை பிடிக்கப்பட்டுள்ளது. அப்போது இரச நிரலின் உயரம் 75CmHg ஆகும். மேலேயுள்ள வளி சிறைக்குள் சிறிதளவு வளி செலுத்தும் போது இரசநிரல் 5Cm இறங்குகின்றது எனின் உட்செலுத்தப்பட்ட வளியின் திணிவு யாது.? (வளியின் மூலக்கூற்று திணிவு 32, குழாயின் நீளம் 1m குறுக்கு வெட்டுபரப்பு 2Cm²)

29. 30ℓ கனவளவுள்ள உருளை 27°C யிலும் 15 atm அமுக்கத்திலும் ஒட்சிசன் வாயுவை கொண்டுள்ளது. உருளையில் வாயுக்கசிவு காரணமாக அமுக்கம் 4 atm ஆல் குறைந்தது. அப்போது வெப்பநிலை 17°C எனின் வெளியேறிய வாயுவின் திணிவு யாது.?

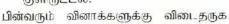
- 30. ஒரு மூடிய குடுவைக்குள் 7Kg நைதரசனும் 11Kgகாபனீர்ரோட்சைட்டும் 290K இல் அடைக்கப்பட்டுள்ளது. அப்போது தொகுதியின் அமுக்கம் 1 atm ஆயின் வாயுக்கலவையின் அடர்த்தி யாது.?
- 31. ஒரு குடுவையினுள் 10g வாயு 20°C யில் இருக்கின்றது. வெப்பநிலை 70°C ஆக உயரும் போது சிறிதளவு வாயு வெளியேறியது. நேடுவையினுள் அமுக்க மாற்றம் நிகழவில்லை எனின் வெளியேறிய சுவாயவின் திணிவு யாது.?
- 32. கெல்வின் வெப்பநிலையும், பரணைட் வெப்பநிலையும் சமனாகவுள்ள வெப்பநிலை யாது.?
- 33. ஒரு வெப்பமானியின் அளவிடையில் பனிக்கட்டியில் 10.3CmHg யும் கொதிநீராவியில் வைக்கும்போது 26.8CmHg உம் குளிர்சாதனப் பெட்டியில் வைத்தபோது 6.5CmHg வாசித்தது எனின் குளிர்சாதனப்பெட்டியில் வெப்பநிலை யாது.?
 - 34. 0.5m நீளமும் 4 x 10⁻⁶m² குறுக்கு வெட்டு பரப்புமுள்ள கோல் 100⁰C யில் பேணப்பட்டு நிலைக்குத்தாக தொங்குகின்றது. இதில் கீழ் முனையில் ஒரு திணிவு கட்டித் தொங்கவிடப்பட்டுள்ளது. கோலின் யங்கின் மட்டு Y = [x 10⁻¹Nm⁻² , α = 1 x 10⁻⁵ K⁻¹ எனின் கட்டிவிடப்பட்ட திணிவு, கோலிலுள்ள மீளியல்சக்தி என்பவற்றை காண்க.?
 - 35. A, B என்னும் இலட்சிய வாயுக்களைக் கொண்ட குடுவைகள் முறையே 21, 41 கனவளவும் 300K, 30K வேப்பநிலையையும் 2 x 10⁵Nm⁻², 4 x 10⁻⁵ Nm⁻² அமுக்கத்தையும் கொண்டவை. இவை தற்போது ஒரு புறக்கணிக்கத்தக்க குழாயால் இணைக்கப்படும் போது தொகுதியின் புதிய அமுக்கம், வெப்பநிலை என்பவற்றை காண்க.?
 - 36. 100g திணிவுடைய கலோரிமானிக்குள் 200g நீர் கொண்ட பனிக்கட்டி இடப்பட்டுள்ளது. இதற்குள் 100°C யில் கொதிநீராவியை செலுத்த தொகுதியின் வெப்பநிலை 50°C ஆக குறைந்தது. அப்போது தொகுதியின் திணிவு 330g எனின் ஆரம்பத்தில் இருந்த நீரின் திணிவு யாது.? (கலோரி மானியின் தன்வெப்ப கொள்ளளவு = 0.42 x 10³JKg⁻¹K⁻¹, பனிக்கட்டியின் உருகலின் தன்மறை வெப்பம் = 3.36 x 10⁵JKg⁻¹, ஆவியாதலின் தன்மறை வெப்பம் = 22.5 x 10⁵JKg⁻¹, நீரின் தன்வெப்பக் கொள்ளளவு = 4200JKg⁻¹K⁻¹)

- 37. 0.1 Kg திணிவுடைய ஒரு உருக்கு கோளம் 10m உயரத்திலிருந்து போடப்படுகின்றது. 7m உயரத்தில் உள்ள போது அக்கோளத்தில் ஏற்பட்ட வெப்பநிலை மாற்றம் யாது.? (உருக்கின் தன்வெப்பக் கொள்ளளவு = 462 J Kg⁻¹⁰C⁻¹)
- 38. 20g நீர் 30°C இல் உள்ளது. இது 5g திணிவுடைய -10°C இல் உள்ள பனிக்கட்டியுடன் கலக்கப்படும் போது கலவையின் வெப்பநிலை யாது.? (பனிக்கட்டியின் உருகலின் தன்மறை வெப்பம் = 80Cal/g, பனிக்கட்டியின் தன்வெப்ப கொள்ளளவு = 0.5Cal/g°C, நீரின் தன்வெப்பக் கொள்ளளவு = 1 Cal/g°C)
 - 39. 20Kg திணிவுடைய ஒரு பெட்டி மாறா வேகம் 10Kmh⁻¹ உடன் இயங்குகின்றது. பெட்டிக்கும் தரைக்கும் இடையிலான உராய்வுக் குணகம் 0.6 ஆகும். உராய்வால் 60% சக்தி வெப்பமாகின்றது எனின் பெட்டியில் ஏற்பட்ட வெப்பநிலை அதிகரிப்பு மணித்தியாலத்திற்கு யாது.? (பெட்டியின் தன் வெப்ப கொள்ளளவு = 420JKg⁻¹)
- 40. 4200JKg¹ தன்வெப்பகொள்ளளவுடைய நீரின் 5Kg இன் வெப்பநிலை 20°C இலிருந்து 50°C இந்கு உயர்த்தும் போது அதன் அகச்சக்தியில் ஏற்படும் மாற்றம் யாது.?
- 41. 10Kg வாயுவின் வெப்பநிலை 20°C இல் இருந்து 140°C வரை மாறா அமுக்கத்தில் உயர்த்தப்படுகின்றது. Cp = 1042JKg¹K⁻¹, C_v= 743 JKg¹K⁻¹ எனின் அகச்சக்தி அதிகரிப்பு, வாயுவால் செய்யப்பட்ட வெளிவேலை என்பவந்தை காண்க.

42.

2.49 x 10⁴J சக்தி மூலம் ஒரு கொள்கலன் வெப்பமேற்றப்படுகின்றது. அக்கொள்கலனின் கனவளவு 0.0083m³, வெப்பநிலை 300K, அமுக்கம்

1.6 x 10⁶Nm⁻² எனின் வெப்பமேற்றியபின் இறுதியமுக்கம், வெப்பநிலை என்பவற்றை காண்க.? (Cp = 5R/2)

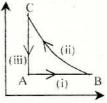

and had been been

- 43. 20m³ இலட்சிய வாயுவொன்று 12°C யில் உள்ளது அமுக்கம் 100KP ஆகும். திடீர் என சேறலில்லா முறை மூலம் கனவளவு 0.5m³ ஆக மாற்றப்படுகின்றதாயின் புதிய வெப்பநிலை, அமுக்கம் என்பவற்றை காண்க.
- 44. இலட்சிய வாயுத்தொகுதியின் கனவளவு $V_1=0.5 \, \mathrm{m}^3$, அமுக்கம் $0.5 \, \mathrm{atm}$ இத்தொகுதி கேறலில்லாச் செய்முறை மூலம் நெருக்கப்பட்டு கனவளவு V_2 அமுக்கம் P_2 ஆக மாற்றப்படுகின்றது. பின்னர் கனவளவு V_2 ஆக இருக்கத்தக்கதாக ஆரம்ப வெப்பநிலைக்கு குளிர வைக்கப்படுகின்றது. அப்போது அமுக்கம் $P_1=10 \, \mathrm{atm}$ எனின் V_2 , P_2 ஐ காண்க? $(\gamma=1.4)$
- 45. 0°C யிலுள்ள ஒரு வாயுத் தொகுதியின் கனவளவானது சேறலில்லாச் செய்முறையின் மூலம் நெருக்கப்பட்டு கனவளவு 1/5 பங்காகக் குறைகின்றது. ஆயின் மூலக்கூறின் சராசரி இயக்கசக்தி யாது? (போட்ஸ்மான் மாறிலி 1.38 x 10⁻²³Jk ⁻¹)
- 46. 8g ஓட்சிசன் வாயு 27°C யிலும் 1 atm அமுக்கத்திலும் ஒரு உருளையினுள் அடைக்கப்பட்டுள்ளது. அதன் அமுக்கம் வெவ்வேறு செயன் முறையின்போது மாறுபடுவதை அருகிலுள்ள P-V வரைபு காட்டுகின்றது. பின்வரும் செய்முறையின்போது.

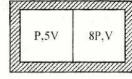
 a) வாயுமாநா அமுக்கத்தில் 127°C இற்கு வெப்பமேற்றப்படல்

b) சமவெப்பமாற்றத்திற்கு உட்பட்டு ஆரம்பக் கனவளவை அடைதல்

c) மாறாக்கனவளவில் ஆரம்ப வெப்பநிலைக்கு குளிருட்டல்.

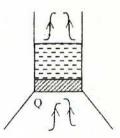


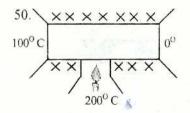
- i) A →B ந்கு செல்ல வழங்கப்பட்ட வெப்பசக்தி யாது?
- ii) A →B ற்கு செல்லும்போது வாயுவால் செய்யப்பட்ட வேலையாது?
- iii) B →C ற்கு செய்யப்பட்ட வேலை யாது?
- iv) C → A ந்கு வெளியேறிய வெப்பசக்தி யாது?


(ஓட்சிசனின் தன்வெப்பக்கொள்ளளவு 670 Jk 1K-1)

உதவி:- சம வெப்பமாற்றத்தின்போது ($\Delta\omega=nRTIn(V/V_{o})$

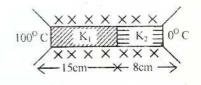
longer Hubserthan for Observation Sectionmany TR




- 47. 3mol வாயுத்தொகுதியானது 300K இல் சமவெப்பமாற்றத்திற்கு உட்படுத்தப்படும்போது அதன் கனவளவு ஐந்து மடங்காகின்றது. பின்னர் மாறாக்கனவளவில் வெப்பம் வழங்கப்படுகின்றது. அப்போது அமுக்கம் ஆரம்ப அமுக்கத்திற்கு சமனாகின்றது. வழங்கப்பட்ட வெப்பம் 83.14 kJ எனின் C_p/C_v என்னும் விகிதத்தைக் காண்க?
- 48. ஒரு மூடிய பெட்டியினுள் வாயுத்தொகுதி ஒன்று இரண்டாகப் பிரிக்கப்பட்டு அசையத் தக்க ஒரு அமைப்பில்

அசையத் தக் க ஒரு அமைப்பில் பிரிக்கப்பட்டுள்ளது. முதலாவது பகுதியினுள் அமுக்கம், கனவளவு முறையே P, 5V யும் இரண்டாவது பகுதியினுள் 8P, V யும் ஆகும். நடுத்தட்டு ஆனது சிறிய மாற்றத்திற்கு ஊடாக அணுகும்போது,

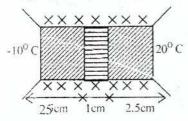
- i) சமவெப்பமாற்றம்
- ii) சேநலில்லாமாற்றம் என்பவற்றுக்கு உட்படுத்தும்போது புதிய அமுக்கம்.கனவளவு என்பவற்றை காண்க? (r = 1.5)
- 49. 50cm தடிப்புடைய அடியைக் கொண்ட ஒரு உருளை வடிவப் பாத்திரத்தில் திரவம் ஊற்றப்பட்டு வெப்பமேற்றும்போது 5 நிமிடத்திற்கு 1m திரவ இறக்கம் ஏற்படுகின்றது. பாத்திரத்தின் அடியின் கடத்துதிறன் 0.12wm-1K-1 திரவ ஆவியின் தன்மறை வெப்பம் 540Jk-1 எனின் வெப்பம் வழங்கும் முதலின் வெப்பநிலை யாது? (திரவத்தின் அடர்த்தி 1kg-3)


Physics

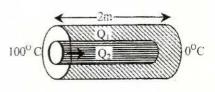
150cm நீளமான ஒரு கோல் ஒரு முனை 100°C உள்ள ஆவியாலும் மறுமுனை 0°C யில் உட்பட திரவம் ஒன்றின் பனிக்கட்டியாலும் நிலை நிறுத்தப்பட்டுள்ளது. கோலின் ஒரு குறிப்பிட்ட இடத்தில் 200°C வெப்பம் வழங்கப்படுகின்றது.

இரு முனையிலும் உள்ள திரவம் நிலைமாற்றம் உள்ள திரவம் நிலைமாற்றம் உள்ள திரவம் நிலைமாற்றம் அடைகின்றதாயின் கோலின் எவ்வளவு தூரத்தில் 200°C வெப்பம் வழங்கப்பட்டு இருக்கும். (திரவத்தின் ஆவியாதல் மறைவெப்பம் 100°C யில் 5.4 x 10°3 Jkg¹ திரவப் பனிக்கட்டியின் உருகலின் தன்மறை வெப்பம் 80 x 10°3 Jkg¹) 2660 திறவத்தின் தண்ணம் இதியாத்கு

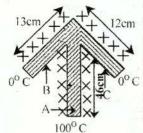
Thermo Phisics M.T.Thava


51. 20cm² குறுக்கு வெட்டுப் பரப்புடைய இரு கோல்கள் முனைக்கு முனை பொருத்தப்பட்டுள்ளது. இவற்றின் முனைகள் 100°C, 0°C இல் நிலைநிறுத்தப்பட்டுள்ளது.

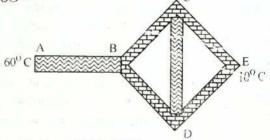
இதன் மூலம் $80 \times 10^3 \mathrm{J \ kg^{-1}}$ உருகலின் தன்மறை வெப்பம் உள்ள ஒரு திரவப்பனிக்கட்டியின் $684\mathrm{g}$ ஐ நிலைமாற்றம் அடையச் செய்ய ஒரு மணித்தியாலம் தேவைப்படுகின்றது. $100^{\circ}\mathrm{C}$ இல் உள்ள கோலின் கடத்தாறு $0.25\mathrm{wm^{-2}K^{-1}}$ எனின் மற்றைய கோலின் கடத்தாறு யாது? சந்தியின் வெப்பநிலையாது?


52. A,B,C என்னும் 3 சமநீளக்கடத்திகள் முனைக்கு முனை பொருத்தப்பட்டு சேர்த்திக்கோலின் முனைகள் 100°C, 0°C இல் நிலை நிறுத்தப்பட்டுள்ளது. இவற்றின் கடத்தாறுகள் முறையே2K,K, 0.5K ஆக இருக்கின்றன. ஆயின் சந்திகள் ஒவ்வொன்றிலும் வெப்பநிலை. சேர்த்திக் கோலின் வெப்பக்கடத்தாறு என்பவற்றைக் காண்க.

53. முறையே $0.125, 1.5, 1~\mathrm{wm^{-1}}^{-1}\mathrm{C}^{-1}$ வெப்பக் கடத்தாறு உடைய கடத்திகளால்

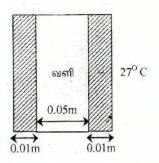

ஆக்கப்பட்ட சேர்த்திக் கடத்தியின் ஒரு முனை -10°C மறு முனை 20°C யில் உறுதி நிலையில் வைக்கப்பட்டுள்ளது. இவை 137m² சமகுறுக்கு வெட்டுப்பரப்புடையது. எனின் இதன் சந்தியில் உள்ள வெப்பநிலைகள் முறையே யாது? இதனுடன் வலுப்பாய்ச்சல் யாகு!?

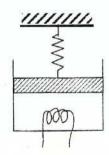
54. 2m நீளமான 1cm வெளி ஆரையும் 0.5cm உள் ஆரையும் உள்ள பொள்ளான உருளையினுள் 0.5cm ஆரையுள்ள பிறிதொரு திண்ம உருளை உட்புகுத்தப்பட்டுள்ளது.


இதன் ஒருமுனை 100°C யிலும் மறு முனை 0♣°C யிலும் நிலை நிறுத்தப்பட்டுள்ளது. உள் உருளையின் கடத்தாறு 0.9 x 10²wm²K⁻¹ பெரிய உருளையின் கடத்தாறு 0.12 x 10²wm²K⁻¹ எனின் இச் சோத்தி உருளையினூடு செல்லும் வெப்பப்பாய்ச்சல் வீதம் யாது? ஒவ்வொரு உருளையிலும் செல்லும் வெப்பப் பாய்ச்சல் வீதத்தின் வீதம் யாது?

55. படத்தில் காட்டப்பட்ட அமைப்பில் A,B,C என்பன வெவ்வேறு பதார்த்தத்தால் ஆக்கப்பட்ட அமைப்பாகும். இவற்றின் 13cm 12cm நீளங்கள் முறையே 46cm, 13cm, 12cm உம் ஒரு முனையின் வெப்பநிலை 100°C,-0°C, 0°C உம்

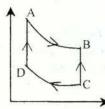
பதார்த்தத்தால் ஆக்கப்பட்ட அமைப்பாகும். இவற்றின் நீளங்கள் முறையே 46cm, 13cm, 12cm உம் ஒரு முனையின் வெப்பநிலை 100°C,-0°C, 0°C உம் ஆகும். இவற்றின் கடத்தாறுகள் 92wm-¹K-¹,26wm-¹K-¹, 12wm-¹K-¹ உம் குறுக்கு வெட்டுப்பரப்புகள் சமனாகவும் 4cm² உம் ஆகும். எனின் சந்தியில் வெப்பநிலை, வெப்பப் பாய்ச்சல் (A) வீதம் என்பவற்றை காண்க?


56. சமநீளம் உள்ள AB, BD, DE என்பன ஒரே நீளமும், ஒரே குறுக்கு வெட்டுப்பரப்பும் 46wm 'K ' கடத்தாறும் உடையது. BC,CE,CD என்பவை அதே குறுக்குவெட்டு நீளம் கொண்டவை. இவற்றின் கடத்தாறு 92 wm 'K ' ஆகும்.


A,E சந்தியின் வெட்பநிலை $60^{\rm o}C,\,10^{\rm o}C$ ஆகும். எனின் $B,\,C,D$ என்னும் சந்திகளில் வெப்பநிலை யாது?

57. 2mm தடிப்புடைய இரு கண்ணாடித்தட்டுகள் 0.63 wm k வெப்பக்கடத்தாறு உடையது இவற்றின் நடுவே 0.049 wm k வெப்பக்கடத்தாறுடைய கண்ணாடி வைக்கப்பட்டு வெப்பம் ஏற்றப்பட்டது பின்னர் தனி ஒரு 2mm தடிப்புடைய 0.63 wm k வெப்பக்கடத்தாறுடைய கண்ணாடித்தட்டு வெப்பம் ஏற்றப்பட்டது அப்போது இரு நிலைகளிலும் அந்தங்களின் வெப்பம் ஏற்றப்பட்டது அப்போது இரு நிலைகளிலும் அந்தங்களின் வெப்பநிலைகள் சமமாக இருந்தது. எனின் முதலாம் நிலையில் வெப்பப் பாய்ச்சல் வீதத்திற்கும் 2 நிலையில் நிலையில் வெப்பப்பாய்ச்சல் வீதத்திற்கும் இடையிலுள்ள விகிதம் யாது?

58. வீட்டினுள் குளிர்ச்சியைப் பேணுவதற்கு தற்போது பெரும்பாலும் பாவிக்கப்படும் சீமேந்து கல் ஒன்றின் அமைப்பை படம் காட்டுகின்றது. இதன் பரப்பளவு 1m² இதன் கடத்தாறு 0. 8wm 1 k 1 இவற்றின் 0c வளியின் வெப்பக்கடத்தாறு 0.05m உம் எனின் கல்லின் உட்பகுதியின் வெப்பநிலையை காண்க? வெப்பப் பாய்ச்சல் வீதம் யாது?


59. $4x10^3$ m²குறுக்கு வெட்டுப்பரப்புடைய ஒரு உருளைக்கு மின் வெப்பமாக்கி

மூலம் வெப்பம் வழங்கப்படுகின்றது. அதன்வாயில் பொருத்தப்பட்ட ஆடுதண்டுடன் ஒரு விற்சுருள் இணைக்கப்பட்டுள்ளது. வெப்பமாக்கி மூலம் அதன் வெப்பநிலை 50K ஆல் உயர்த்தும் போது வாயுவில் 50J வேலை செய்யப்படுகின்றது.அப்போது ஆடுதண்டு 0.1m உயர் கின்றது வளிமண்டல அமுக்கம் $1x10^5$ Pa எனின் விற்சுருளியிள் விற்சுருளி மாநிலி யாது? தொகுதியில் 2mol வாயு இருந்திருப்பின் மின் வெப்பமாக்கியின் வலு யாது?

60. 31.4kg நிறையை $1x10^{-3}$ m ஆரையும், $9x10^{3}$ kgm⁻³ அடர்த்தியும் உடைய ஒரு இழையில் கட்டித் தொங்கவிடப்பட்டு உள்ளது. இழையின் யங்கின் மட்டு 9.8×10^{10} Nm⁻², தன் வெப்பக் கொள்ளளவு 490Jkg⁻¹k⁻¹ இழையின் வெப்பநிலை அதிகரிக்கப்படும்போது 75% சக்தி இழைக்கு வழங்கப்படுகின்றது. எனின் இழையில் ஏற்படும் சக்தி அதிகரிப்பு யாது?

- 61. அலுமீனிய உருளை ஒன்றின் திணிவு 100g இதனுள் 20g பனிக்கட்டி20°C யில் உள்ளது. இதற்கு செக்கனுக்கு 100J சக்தி என்ற வீதத்தில் வழங்கப்படுகின்றது. எனின் அடுத்து வரும் 4 நிமிடத்தில் அதன் வெப்பநிலை யாது? இங்கு நடைபெறும் நிலைமாற்றத்திற்கான வரைபை வரைக? பனிக்கட்டியின் தன்வெப்பக்கொள்ளளவு 0.5 x 10³Jkg -¹ °C -¹, அலுமீனியத்தின் தன்வெப்பக்கொள்ளளவு 0.2 x 10³Jkg -¹ °C -¹, பனிக்கட்டியின் தன்மைநெவெப்பம் 80 x 10 -³Jkg -¹
- 62. 1 mol இலட்சிய வாயு ஒன்றின் P-V வரைபு படம் காட்டுகின்றது. இங்கு

A→B:- சேறலில்லாமாற்றம்.
B→C:- மாறாக் கனவளவில் குளிரவிடப்படுகின்றது.
C→D:- சேறலில்லாமாற்றம்.

D→A:- மாறாக்கனவளவில் வெப்பம் ஏந்படுகின்றது. Aயில் 1000K வெப்பநிலையில் உள்ளது. B யில் அமுக்கம் 2/3P_A, C யில் அமுக்கம் 1/3P_A எனின் பின்வருவனவர்மிற்கு. விடையனிக்க?

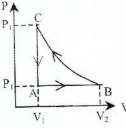
பின்வருவனவற்றிற்கு விடையளிக்க? $r = \frac{R}{r-1} \left(T_1 - T_2\right)$ (உதவி:- சேறலில்லா மாற்றத்தின்போது $\gamma = 5/3$ வேலை

- i) A→B யிற்குச் செல்லும்போது வாயுவால் செய்யப்பட்ட வேலை யாது?
- ii) B→C யிற்கு செல்லும்போது வெப்ப இழப்பு யாது?
- iii) D ധിல் வெப்பநிலை யாது?
- 63. 0.014kg நைதரசன் வாயு ஒரு முடிய தொகுதியின் வெப்பநிலை 27°C இத் தொகுதியில் உள்ள வாயுவின் இடைவர்க்க மூலக்கதி இருமடங்காக வோண்டும். ஆயின் தொகுதித்கு வழங்க வேண்டிய சக்தி யாது? சராசரி முலக்கூறுகளின் எண்ணிக்கை $N=6x10^{23}$, $C_v=5/2R$ போட்ஸ்மான்மாறிலி = $1.38x10^{-23}$ Jk · ·
- 64. 2mol கீலியம் வாயு 27°C யில் வாயு 20ℓ கனவளவைக் கொண்டுள்ளது. மாற அமுக்கத்தில் கனவளவு இருமடங்காக அதிகரிக்கப்படுகின்றது. பின்னர் வாயுத் தொகுதியினது சேலில்லா மாற்றத்தின் மூலம் மீண்டும் வெப்பநிலை ஆரம்ப நிலைக்கு மீழுகின்றது.
 - i) P-V வரைபை வரைக?
 - ii) வாயுத் தொகுதியின் இறுதி அமுக்கம் யாது?
 - iii) வாயுத் தொகுதியில் செய்யப்பட்ட வேலை யாது?

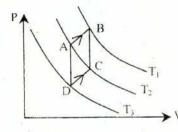
- 65. 10cmவிட்டமுடைய ஒர திண்மக் கோளம் 15°C வெப்பநிலையில் இருந்து 65°C யிற்கு உயர்த்தப்படுகிறது. அப்போது கோளத்தின் மையம் பற்றிய சடத்துவத்திருப்பம் அதிகரிக்கும் அளவு யாது? கோளத்தின் அடர்த்தி 7700kgm² இதன் ஏகபரிமான விரிகை திறன் 1.2 x 105°C ¹ சடத்துவத் திருப்பம் 2/5 ma²
- 66. ஒரு உருளை ஒன்றினுள் 0°C யில் 100g திணிவும் 20°C யில் 99.79 திணிவ இரசத்தை கொண்டு இருக்கின்றது. எனின் உருளை ஆக்கப்பட்ட கண்ணாடிப் பதார்த்தத்தின் ஏகபரிமான விரிகை திறன் யாது? (இரசத்தின் கனவளவு விரிகை திறன் γ=18x10⁻⁵°C-¹)
- 67. 50 l கொள்ளளவு உள்ள உருக்கு உருளையினுள் 273k யில் மண்ணெண்ணை முற்றுமுழுதாக கொள்ளப்பட்டுள்ளது. வெப்பநிலை 293k யிற்கு உயரப்படும் போது வெளியேறும் மண்ணெண்ணையின் திணிவு யாது? (0°C யில் மண்ணெண்ணையின் அடர்த்தி 8 x10² kg m² இதன் கனவளவு விரிகைதிறன் 1 x 10·3°C·1 உருக்கின் நீட்டல் விரிவுக்குணகம் =1.2 x 10°C·1)
- 68. நீர் நிலை ஒன்றின் அடியில் உள்ள ஒரு வளிக்குமிழ் மேற்பரப்பை அடைகின்றது மேற்பரப்பில் உள்ள அமுக்கத்தைப் போல் மூன்று மடங்கு அமுக்கத்தை அடியில் உள்ள போது கொண்டு இருக்குமாயின் நீர் நிலையின் உயரம் என்ன? வளிமண்டல அமுக்கம் 1.01 x 105 Nm-2 நீரின் அடர்த்தி 1000kg m-2.g = 9.8ms-2
- 69. 100m³ கனவளவுள்ள ஒரு அறை 10°C யில் உள்ளது அறைவெப்பநிலை 25°Cஆக உயரத்தொடங்கும்போது வெளியேறும் வாயுவின் திணிவு யாது? (வளிமண்டல அமுக்கம் 10≸kpa) 0°C யில் வளியின்அடர்த்தி 1.29kg m⁻³
- 70. ஒருகடத்தியினூடான வெப்பப் பாய்ச்சல் வீதமானது $\frac{d\theta}{dt}$ ஆல் தரப்படும் இங்கு தரப்பட்ட குறியீடுகளை அடையாளம் காட்டுக K,A,L என்பவற்றை அடிப்படையாகக் கொண்டு வெப்பத்தடைR இற்கான கோவையைத் தருக $600^{\circ}C$ யில் உள்ள ஒரு அறை $K_{+}K_{-}$ என்னும் வெப்பக் கடத்தாறு உடைய இரு காவலிகளால் ஆக்கப்பட்டது வெளிமேற்பரப்பின் வெப்பநிலை $460^{\circ}C,K_{+}=0.8$ wm $^{-1}K^{-1},K_{-}=1.6$ wm $^{-1}K^{-1}$

எனின் சந்தியின் வெப்பநிலை யாது?

- 71. சமுத்திரத்தில் மிதக்கும் ஒரு பனிக்கட்டி 4.6m தடிப்பு உடையது இதன் வளியின் உள்ள மேற்பரப்பின் வெப்பநிலை 260K உம் மிதக்கும் நீரின் வெப்பநிலை 273K உம் ஆகும் பனிக்கட்டியின் உறைதலின் தன்மறை வெப்பம் 3.25 x 10⁵ Jkg⁻¹ உம் இதன் கடத்தாறு 2.3wm⁻¹ k⁻¹ உம் ஆகும் எனின்.
 - i) பனிக்கட்டியினூடான ஒரலகு குறுக்குவெட்டு பரப்பினூடு வெப்பபாய்ச்சல் வீதம் யாது?
 - ii) பனிக்கட்டியின் தடிப்பு அதிகரிக்கும் வீதம் யாது?
- 72. a) வெப்பவியலில் சிறந்த கடத்தியாக இருப்பவை ஏன் மின்னியலிலும் சிறந்த கடத்தியாக இருக்கின்றது.
 - b) சிறந்த வெப்பக்கடத்தி, அரிதில் வெப்பக்கடத்தி என்னும் பதங்களை விளக்குக.
 - c) ஏற்றம்பாயும் வீதம் (மின்னோட்டம்)வெப்பபாய்ச்சல் வீதம் ஆகியவற் றிற்கான சூத்திரங்களை தருக?
 - d) மின்தடையானது வெப்பத்தடைக்கு சமனாகுமா என விளக்குக.
 - e) 1m² குறுக்கு வெட்டுப் பரப்பு உடைய 2mm தடிப்பு கொண்ட ஒரு கோலின் அந்தங்கள் 20° C, 5°C வெப்பநிலையில் நிலை நிறுத்தப்பட்டு இருக்கும் போது 1s இல் அதனூடு பாயும் வெப்பம் யாது? (கோலின் வெப்பக் கடத்தாறு 1.2wm²¹k²¹
- 73. இலட்சிய வாயுக்களின் இயக்கவியல் சமன்பாடு $P=1/3 \rho c^2$ எனக் காட்டுக. இதிலிருந்து போயிலின் விதியை உய்த்தறிக அறை ஒன்றில் $80\%~N_2$ உம் $20\%~O_3$ உம் காணப்படுகின்றது இவற்றின் மூலக்கூற்றுத்திணிவு முறையே 28,32 உம் ஆகும்.
 - i) N, இனதும் O, வினதும் இடைவர்க்கமூலக்கூற்றிற்கான விகிதம் யாது?
 - ii) மூலக்கூறுகளின் N_2 இனதும் O_2 இனதும் அமுக்கங்களின் விகிதம் யாது?
 - iii) வினா (i) வெப்பநிலை10°C யில் இருந்து 100° Cயிற்கு செல்லும்போது இடைவர்க்க மூலக்கூற்றிற்கான விகிதம் காண்க?
- 74. அறை ஒன்றிலுள்ள O_2 இன் வெப்பநிலை அதன் மூலக்கூறுகளின் எண்ணிக்கையுடன் மாறுபடுவதற்கான வரைபு படத்தில் காட்டப்பட்டுள்ளது.
 - a) அறை வெப்பநிலை அதிகரிப்பின் பெறப்படும்வரையை அதேவரைபில் வரைக.

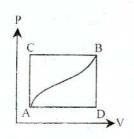

- b) ஒட்சிசன் கொண்ட ஒரு உருளையின் கனவளவு $1.5 \times 10^{-3} \mathrm{m}^3$ அதன் அமுக்கம் 1×10^4 Pa வெப்பநிலை $300 \mathrm{K}$ ஆகும். அவ் வாயு மாநிலி $\mathrm{R} = 8.3 \mathrm{Jmol}^{-1} \mathrm{K}^{-1}$ இவகாதரோவின் மாநிலி $\mathrm{N}_{_{\Lambda}} = 6 \times 10^{23} \mathrm{mol}^{-1}, \, \mathrm{O}_{_{2}}$ அன் மூலக்கூற்றுத் திணிவு $32 \times 10^{-3} \mathrm{kg} \cdot \mathrm{mol}^{-1}$
 - i) O, இன் மூல் எண்ணிக்கையைக் காண்க.
 - ii) O, இன் மூலக்கூறுகளின் எண்ணிக்கையைக் காண்க.
 - ii) மூலக்கூறுகளின் இடைவர்க்க மூலுக்கதியைக் காண்க.
- 75. இடைவர்க்க மூலுக்கதி என்னும் பதத்தை விளக்குக மூலக்கூறுகளின் இயக்க சமன் கபட்டை, அமுக்கம், அடர்த்தி, இடைவர்க்க மூலக்கதி சார்பாக பெறுக. வளியில் ஒளியின் வேகம் 300ms⁻¹ எனின் வாயு மூலக்கூறுகளின் கதியைக் காண்க. γ = 1.5
- 76. ஈலியம் வாயுவானது ஒரு உருளையில் அடைக்கப்பட்டுள்ளது இவ்வுளையில் பொருத்தப்பட்டுள்ள ஆடுதண்டின் மூலம் வாயுவின் கனவளவு 1x10-3m³ ஆக குறைக்கப்படுகின்றது. அப்போது வெப்பநிலை 300K உம் அமுக்கம் 1x105 Pa உம் ஆகும்.
 - a) i. உருளையில் உள்ள மூலக்கூறுகளின் எண்ணிக்கை யாது?
 - He வாயுவின் மொத்த இயக்க சக்தி யாது?
 - b) வெப்பநிலை 300K ஆக இருக்கத்தக்கவாறு தொகுதிக்கு வெப்பம் வழங்கப்படுகின்றது எனின் வாயுவின்
 - i. அகச்சக்தி மாற்றம்
 - ii. இடைவர்க்க மூலக்கதி
 - iii.அடர்த்தி என்பவற்றில் ஏற்படும் மாற்றம் என்பவற்றைக் காண்க? (போட்ஸ்மான் மாறிலி = $1.4 \times 10^{-23} J k^{-1}$)
- 77. ஒரு கனவுருவின் கனவளவு 0.1m³ இதனுள் யுரேனியம் ஹெக்சாபுளோரைட் வாயு அடைக்கப்பட்டுள்ளது இது இலட்சிய நடத்தையைக் காட்ட வல்லது. இதனுள் அமுக்கம் 1x106 Paவெப்பநிலை 300K உம் ஆகும்.
 - i) $R = 8.3 \text{Jmol}^{-1} K^{-1}$ எனின் வாயுவின் மொத்த மூல் யாது?
 - ii) இதன் சார் மூலக்கூற்றுத் திணிவு 352 எனின் இதன் நிறை யாது? iii)வாயுவின் அடர்த்தி யாது?
 - iv) வாயுவின் இடைவர்க்க மூலக்கதி யாது?

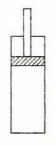
- 78. ஒரு மூல் வாயு 300K வெப்பநிலையிலும் 1x10³ அமுக்கதிதிலும் 0.025m³ கனவளவை கொள்கின்றது. அவகாதரோ எண் 6x10²³ mol⁻¹ எனின்
 - i) அகில வாயு மாறிலியைக் காண்க?
 - ii) போட்ஸ்மன் மாநிலி K ஐ காண்க?
 - iii)மூலக்கூறுகளின் சராசரி இயக்கசக்தி யாது?
- . 79. 1x10⁻³m⁻³ உருளையினுள் He வாயு 300K எனின் 2x 10⁵Pa அமுக்கத்தைக் கொண்டுள்ளது.
 - i) உருளையில் உள்ள He இன் திணிவு யாது?
 - ii) He மூலக்கூறுகளின் எண்ணிணக்கை யாது?
 - iii)He மூலக்கூறுகளின் மூலக்கூற்றுக் கதியைக் காண்க.
 - (He சார்மூலக்கூற்றுத்திணிவு = 4 அவகாதரோமாறிலி $6x10^{23}$ mol $^{-1}$, R=8.3Jmol $^{-1}$ k $^{-1}$)
- 80. a) இலட்சியவாயுச் சமன்பாடு PV = nRT ஆல் தரப்படும். இங்கு P-அமுக்கம் V - கனவளவு T - வெப்பநிலை எனின் n,R ஐ இனம் காட்டுக.
 - b) ஒரு உருளையினுள் அடைக்கப்பட்ட N₂ இன் அமுக்கம் 5x10 °Pa, வெப்பநிலை15°C ஆகும். உருளையின் கனவளவு 0.04m³ பின்னர் சிறிது நேரத்தின் பின்னர் அமுக்கம் மாறாவெப்பநிலையில் 2x10 °Pa, ஆக குறைகின்றது எனின், (3 வருடத்தின் பின்)
 - i) ஆரம்ப நிலையில் வாயுவின் திணிவு யாது?
 - ii) மூன்று வருடத்தில் வெளிபேறிய வாயுவின் திணிவு பாது?
 - iii) ஒரு செக்கனில் வெளியேறும் N₂ இன்மூலக்கூறுகளின் எண்ணிக்கை யாது? (ஒரு வருடம் = 3.2x10⁷ S ஆகும்.)
- 81. a) இலட்சியவாயு எனும் பதத்தை விளக்குக?
 - b) $0.23 \,\mathrm{m}^3$ கனவளவிற்குள் $0.5 \mathrm{x} 10^5 \mathrm{pa}$, அமுக்கத்திலும் $300 \mathrm{K}$ இலும் N_2 வாயு அடைக்கப்பட்டுள்ளதுஇதனுள் 2_ள்ள மூல் எண்ணிக்கை யாது?
 - c) மூலக்கூறுகளின் இடைவர்க்க மூலக்கதியைக் காண்க?
 - 82. A,B என்னும் சம கனவளவுள்ள பொட்கோளங்கள் புறக்கணிக்கத்தக்க கனவளவு உள்ள குழாய்களால் இணைக்கப்படட்டு 3g வாயுவை 300K இலும் 10 5pa, அமுக்கதிதிலும் கொண்டுள்ளது. தற்போது Bயின் வெப்பநிலை 600K ஆக உயர்த்தப்படுகின்றது. Aயின் வெப்பநிலை 300K ஆக இருக்கத்தக்கதாக எனின்...


i) புதிய அழுக்கம் யாது?

husics

- 83. a) உண்டை வாயுவிற்குரிய வந்தர் வாலின் சமன்பாடு (P+<u>a</u>) (v-b)**சழ⊤** தரப்படும். இங்குஅமுக்கம்P, கனவளவு V, வெப்பநிலை ஆகும். எனின் a, b, c, என்பவற்றை இனம் காட்டுக.
 - b) உண்மை வாயுவிற்கு இத்தொடர்பை பெறக் காரணம் யாது?
 - c) CO₂ வாயுவின் அடர்த்தி 344kgm⁻³ வெப்பநிலை 7.5x10⁶ pa, வெப்பநிலை 304K எனின்,
 - i) 1mol CO, வாயு கொள்ளும் கனவளவு யாது?
 - ii) ஒரு மூல் வாயு கொள்ளும் கனவளவு 36 எனின் **a,b**, யின் பெறுமதி யாது?
- 84. a) ஒரு மூல் இலட்சிய வாயுவின் PV = RT ஆல் தரப்படும். இதனை உண்மை வாயுவிற்கு மாந்றுக.
 - b) இவ்வாறு மாற்ற நீர் மேற்கொண்ட எடுகோள்கள் யாது?
 - c) N_2 வாயுவின் அமுக்கம் $=3.4 \times 10^6$ pa, N_2 வாயுவின கனவளவு $=9 \times 10^{-5} \text{m}^3$ வந்தர் வாலின் மாநிலி $a=1.4 \times 10^{-1} \text{Pam}^{-6} \text{mol}^{-1}$ $b=3.9 \times 10^{-5} \text{Pam}^{-3} \text{mol}^{-1}$
 - i) இவற்றைப் பயன்படுத்தி N₂ இன் வெப்பநிலையைக் காண்க?
 - ii) இவ் வெப்பநிலையை இலட்சியவாயுஒன்றின் அதே அமுக்கம் கனவளவில் காண்க?
 - 85. ஒரு இலட்சிய வாயுத் தொகுதி ஒன்றில் PV வரைபு காட்டப்பட்டுள்ளது இங்கு $V_1 = 1000 \, \mathrm{cm}^3$, $P_1 = 1.1 \, \mathrm{x} 10^5 \, \mathrm{Pa}$, $T = 300 \, \mathrm{K}$ ஆகும்..
 - i) AB பாதை வழியே செல்ல வெப்பமேற்றி 375K ஆக மாற்றப்படுகின்றது. எனின் புதிய கனவளவு V, யாது? P▲
 - ii) BC பாதை வழியே சம வெப்ப மாந்நத்தின் மூலம் கனவளவு ஆரம்ப நிலையை அடைகின்றது. எனின் புதிய அமுக்கம் P, யாது?
 - iii) CA பாதைவழியே செல்வதற்கு தொகுதி குளிர விடப்படுகின்றது. எனின் செய்யப்பட்ட வேலை யாது?


- 86. a) சம வெப்பமாற்றம், சேறலில்லா மாற்றம் என்னும் பதங்களை விளக்குக.
 இவை இரண்டிற்குமான வேற்றுமை, ஒற்றுமையை ஆராய்க. இவற்றுடன் தொடர்புடைய சமன் பாட்டை எழுதுக.
 - b) ஒரு வாயுத் தொகுதியானது நிலை Aயில் P_1,V_1,T_1 ஆகிய பரிமாணங்கள் உடையது. இது சேறலில்லா மாற்றத்தின் மூலம் B என்னும் நிலையை அடைகின்றது. அப்போது P_2,V_2,T_2 ஆக மாறுகின்றது. எனின் தொகுதி மாறாக் கனவளவில் வெப்பமேற்றப்பட்டு P_3,V_2,T_1 ஆக மாற்றப்படுகின்றது.
 - i) PV வரைபை தரப்பட்ட தரவைப் பயன்படுத்தி வரைக?
 - ii) T = 300K, V = 4v ஆக இருப்பின் T, ஐக் காண்க. (γ = 1.5)
 - iii) (P₁/P₃)^r = P₁/P₁ என நிறுவுக.
- 87. படத்தில் காட்டப்பட்ட


வரைபானது ஒரு வாயு ஒன்றின் சம வெப்ப மாற்றத்தின்போது $T_1 = 4000k$, $T_2 = 2000k$, $T_3 = 1000k$, என்னும் வெப்பநிலைகளில் மாற்றம் அடைவதை காட்டுகின்றது. 1mol இலட்சிய வாயு ஒன்றின் பாதையளானது. ∴ $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$, ஆகும். எனின் ஒவ்வொரு பாதையிலும் அகச்சக்தியில் ஏற்பட்டமாற்றம் வாயுவால் செய்யப்பட்ட வேலை, ஒவ்வொரு பாதையின் வழியே வழங்கப்பட்டசக்தி யாது?

- 88. 7தநைதரசனையும் 20g ஆர்கனையும் கொண்ட கலவையில் №.இன் **№**1.4, Ar இன் **४**= 1.67 எனின்
 - i) மாறாக்கனவளவில் ii) மாறா அமுக்கத்தில் தொகுதியின் வாயுவினதும், தன் வெப்பக் கொள்ளளவினதும் விகிதத்தைக் காண்க? $(N_2, Ar$ இன் சார்மூலக்கூற்றுதிணிவு 28,40)
- 89. இரண்டு மூல் He வாயுவின் அமுக்க-வெப்பநிலை வரைபு காட்டுகின்றது.
 - i) தொகுதியில் செய்யப்பட்ட வேலை
 - ii) தொகுதியில் அகச்சக்தி மாற்றம்
 - iii) தொகுதியில் ஏற்றபட்ட வெப்பசக்தி மாற்றம் (சம வெப்பமாற்றத்தில் வேலை $W=nRT\ l_n\ (\ v_2/v_1)$ ஆல் தரப்படும். $R=8.32\ Jmol^{-1}\ K^{*1}$

- 90. 3mol இலட்சியவாயு (C = 7/2 R)P அமுக்கத்தையும் 100K வெப்பநிலையையும் கொண்டுள்ளது. இது சம வெப்பமாற்றத்திற்கு உட்படுத்தப்படுவதன் மூலம் கனவளவு இருமடங்காக்கப்படுகின்றது. பின்னர் மாறா அமுக்கத்தில் ஆரம்ப கனவளவுக்கு கொண்டுவரப்பட்டு இறுதியில் மாறாக்கனவளவில் ஆரம்ப அமுக்கத்திற்கு மாற்றப்படுகின்றது. எனின் சமவெப்பத்தின் வேலை W = nRT log (V / V).
 - $i)\ P-V$ аютц, $\ P-T$ аютц ають. \star
 - ii) தொகுதியில் மொத்த வேலையாது
 - iii) மொத்த வழங்கப்பட்ட சக்தி யாது?
- 91. வாயுத்தொகுதி ஒன்றின் PV வரைபு படத்தில் காட்டப்பட்டுள்ளது. தொகுதியில் ACB வழி செல்வதற்கு 200J சக்தி வழங்கப்பட்டுள்ளது. அப் போது 80J வேலை வாயுவால் செய்யப்படுகின்றது. பாதை ADB வழியே செல்வதற்கு 144J சக்தி வழங்கப்பட்டுள்ளது. A,Dயில் உள்ள அகச்சக்திகள் 40J, 88J எனின் பின்வரும் வினாக்களுக்கு லிடையளிக்க?

- i) Bயில் அகச்சக்தியைக் காண்க?
- ii) ADB வழியான வேலை யாது?
- iii) DB,ADவழியேயான பாதையில் வழங்கப்பட்டor வெளியேறிய சக்தி யாது?
- iv) BA வழியான பாதையில் தொகுதியில் செய்யப்பட்ட வேலை 52J எனின் இத்தொகுதியில் வழங்கப்பட்ட/ வெளியேறிய வெப்பம் யாது?
- 92. a) V கனவளவு வாயு உருளையினுள் அடைக்கப்பட்டுள்ளது. உருளையுடன் மூலம் வளி உட்செலுத்தப்படகின்றது. ஆரம்பத்தில் வளியின் கனவளவு Vயும் அமுக்கம் P₉ உம் ஆகும். ஒவ்வெரு முறையும் ஆடுதண்ட செலுத்தப்படும்போது V₉ கனவளவு உட்செலுத்தப்படும் எனின் ஒருதடவை தண்டு பம்பும்போது உருளையினுள் உள்ள இறுதி அமுக்கம் யாது? 2 தடவை பம்பும்போது உருளையிலுள்ள அமுக்கம் யாது? n தடவை பம்பும்போது உருளையிலுள்ள அமுக்கம் யாது?

b) $V = 1\ell$ அகவும், $V_o = 200 \text{cm}^3$ ஆகவும் இருக்கும்போது இறுதி அழுக்கம் $1\frac{1}{2}$ ஆக இருக்கும் எனின் எத்தனை தடவை பம்பப்பட்டு இருக்கும்?

செய்முறை Part - I

02.
$$e = k\alpha\theta$$

 $1 - 0.99967 = 1 \times 1.1 \times 10^{-5} \times \theta$
 $\theta = 30^{\circ}C$
Generalisation = $30 + 30 = 60^{\circ}C$

03.
$$I_{20} = lo(1 + 40 \alpha)$$

 $I_{50} = lo(1 - 60\alpha)$
 $I_{10} A_{60} = (1 + 40 \alpha) / (1 - 60\alpha)$
 $I_{40} = \frac{10.02 (1 - 40 \alpha \times 2 \times 10^{-3})}{(1 - 60 \times 2 \times 10^{-3})}$
= 10Cm

04. வெப்பமேற்றம் போது விட்டம், பரபடி கனவளவு என்பன அநிகிக்கும். ஆனால் திணிவு மாறாது, ஆகவே அடர்த்தி குறையும், எனவே கனவளவு அதிகரிக்கும் வீதம் அதிகரிக்கும். [v > β > c,]

06. வெப்பநினை

07. உருக்கு
$$1 \text{Cm}$$
 - புரியிடைக்கு $1 \times [1 + \alpha_s (21 - 20)]$ = $(1 + \alpha_s) \text{Cm}$ Cu கோலிற்கு $\mathbb{L} \times [1 + \alpha_s (21 - 20)]$ = $(1 + \alpha_s) \mathbb{L}$

மீற்றர் கோலின வாசிப்பு 21° C இல் = $L\left(1+\alpha_{c}\right)/\left(1+\alpha_{c}\right)$

08.
$$\alpha_{s} = \alpha_{c}$$

$$\begin{array}{l}
09, \ e_1 = 100 \\
= 0.5 \times 2 \times 10^{-5} \times 200 \\
= 2 \times 10^{-3} \text{ m} \\
= 2 \times 10^{-5} \text{ m} \\
= 0.5 \times 1.2 \times 10^{-5} \times 200 \\
= 1.2 \times 10^{-5} \text{ m} \\
e - e_1 + e_2 \\
= 0.32 \text{ Cm}
\end{array}$$

10. இரசத்தின் கலைவை x என்க. உள்ளே உள்ள வாயுவின் கன்னவை மாநாகுதால்கண்ணார பின் வரிவும் ஆரசத்தின் விரிவும் சமன்.

$$\begin{array}{c} \forall \gamma_{\rm e} \, \theta = x \gamma_{\rm m} \theta \\ X = V \gamma_{\rm e} / \gamma_{\rm m} = \frac{1000 \times 2.7 \times 10^5}{1.8 \times 10^4} \end{array}$$

ஆகவே
$$F = YA\Delta 1/1 = YA\alpha \Delta t$$

12.
$$e_A = 1 \alpha \theta$$
 ----- 1
 $e_B = 2\alpha \theta$ ----- 2
1, 2 $e_A / e_B = 1 / 2$

Physics -

Thermo Phisics

M.T.Thava

9

திரவத்தின் கனவளவு விரிகைத் திறன் = 6 x 10^{-6 o}C⁻¹

= 3 x 2 x 10⁻⁶ = 3α ஏகபரிமாண விரிகைத்திறனின்

மூன்று மடங்கு. கனவளவு விரிகைத்திறன் என்பதால் திரவமட்டம் மாறாது.

14.
$$e = 1 \alpha \theta$$

 $e / 1 = \alpha \theta$
 $(e / 1) x 100 = 100 \alpha \theta$
 $0.05 = 100 x 100$
 $\alpha = 5 x 10^{-6} {}^{\circ}C^{-1}$

15.
$$\gamma = 3 \alpha$$

= 3 x 5 x 10⁻⁶
= 15 x 10⁻⁶
 \therefore e = V $\gamma\theta$
(e / V) x 100 = 100 $\gamma\theta$
= 100 x 15 x 10⁻⁶ x 100
= 0.15%

17.
$$e = 1 \alpha \theta$$

$$(e/1) \times 100 = 100 \times \theta$$

$$\theta = 1/100 \times 100$$

$$1 = lo [1 + \alpha \theta]$$

$$1 = lo [1 + 1/100]$$

$$1 = 101 lo / 100$$

$$1^2 = lo^2 [101/100]^2$$

$$A = Ao [101/100]^3$$

பரப்பு அதிகரிப்பு
$$\Delta A = A - Ao$$
 = $Ao(101/100)^2 - Ao$ = $201/(100)^2 Ao$

- 19. $\rho_o = \rho_T (1 + \gamma T) \cdots 1$ $\rho_o = \rho_T + \rho_T \gamma T$ $\rho_o \rho_T = \rho_T \gamma T \cdots 2$ $2/1 = > \rho_o \rho_T / \rho_o = \gamma T / (1 + \gamma T)$ $P_o \rho_T = \rho_o \gamma T / (1 + \gamma T)$ $\therefore \rho_T \rho_o = -\rho \gamma T / (1 + \gamma T)$
- 20. $e = I\alpha\theta$ $e / I = \alpha\theta$ யங்கின்மட்டு = தகைப்பு / விகாரம் $Y_2\alpha_2\theta = Y_1\alpha_1\theta$ $\therefore Y_1/Y_2 = \alpha_2/\alpha_1$
- வெப்பமேற்றும் போது துளை யினாரை அதிகரிக்கும். எனவே சடத்துவத்திருப்பம் அதிகரிக்கும். எனவே கோணவேகம் குறையும்.
- 22) இறுதி வெப்பங்களை θ என்க. நீர் இழந்த வெப்பம் = MSθ பனிக்கட்டிபெற்றவேப்பம் = MSθ + ML

$$MS\theta = MS\theta + ML$$

$$0.3 \times 4200 \times (25 - \theta)$$

$$= 0.1 \times 4200 \times (\theta - \theta) + 0.1 \times 3 \times 10^{5}$$

$$1260 \times 25 - 1260 \cdot \theta = 420 \cdot \theta + 3 \times 10^{4}$$

$$31500 - 30000 = 1680\theta$$

$$1500 / 1680 = \theta$$

$$\theta = 0.9 \, ^{\circ}C$$

- 23) $ML + MS\theta = MS\theta$ $0.1 \times 3 \times 10^{5} + 0.1 \times 4200 \times (\theta - \theta)$ $= 0.1 \times 4200 \times (80 - \theta)$ $3 \times 10^{4} + 420 \theta = 420 \times 80 - 420 \theta$ $\theta = 23.3 ^{\circ} C$
- 24) திரவத்தினுள் வாயுவாகக் காணப்படும்.
- 25) வாயுவின் வெப்பக்கொள்ளளவு
- 27) $(60/100) \text{ PT} = \text{MS}\theta$ $\theta = 0.6 \text{ PT} / \text{MS}$
- 28) நீர் பெற்ற வெப்பம் = MSθ = 3 x 4200 x (77 – 27) = 63 x 10⁴Jmin⁻¹ M = Vρ = 3000Cm³ x 19Cm⁻³ = 3000g = 3Kgmin⁻¹

தேவைப்படும் வாயுவின் அளவு = 63 x 10⁴ / 4 x 10⁷ = 15.75gmin⁻¹

- 29) $MS\theta = ML$ 2 x 400 x 500 = M x 3.5 x 10⁵ M = 8/7 Kg
- 30) $\theta = nCp\Delta T$ = (14/25) x (7R/2) x 40 = 70R
- 31) கோலின் குறுக்குவெட்டுப்பரப்பு
- 32) $Q/t = K_1 A_1 (\theta_2 \theta_1) / 1$ = $K_2 A_2 ((\theta_2 - \theta_1) / 1$ $A_1 / A_2 = K_2 / K_1$
- 33) $\begin{aligned} Q_1/t &= K_1 \left[\pi(2R)^2 \right. \\ &= \pi R^2 \right] \left((\theta_2 \theta_1)/I \right. \\ Q_2/t &= K_2 \left[\pi R^2 \right] \left(\theta_2 \theta_1 \right)/I \\ Q/t &= K \pi \left(2R \right)^2 \left(\theta_2 \theta_1 \right)/I \\ &= \lim Q \left(\theta_2 \theta_1 \right)/I \\ &= K_1 \pi \left[(2R)^2 R^2 \right] \left(\theta_2 \theta_1 \right)/I \\ &= K_2 \pi R^2 \left(\theta_2 \theta_1 \right)/I \\ 4K &= 3K_1 + K_2 \\ K &= \left(3K_1 + K_2 \right)/4 \end{aligned}$
- 34) $Q/t = KA (\theta_2 \theta_1)/d 1$ $Q_1/t = K_1 (A/2) (\theta_2 - \theta_1)/d - 2$ $Q_2/t = K_2 (A/2) (\theta_2 - \theta_1)/d - 3$ 1 = 2 + 3 = 1 1 = 2 + 3 = 11 = 2 + 3 = 1

- அடர்த்தி. 3,601 35) あしああれば வெப்பக கொள்ளனவு என்பவ ற்றில் தங்கியிருக்கும். $K/K_1 = A_1/A_2$ $K = K \mid A = A,$
- 36) தகைப்பு = Y x விகரும் $e_1 = 1\alpha_1\theta$ $e_x = 10x_x\theta$ BOODLILY TYXICE, U----greating = $Y_x \times 1 \alpha_y \theta$ ----2 $1.2 \Rightarrow Y. \alpha.\theta = Y. \omega. \theta$ \therefore Y₁/Y₂ = α_1/α_1 = 3 : 2
- 37) a) $\gamma = 3\alpha$ b) Cn≥Cv
 - c) குடான <u>நாட்</u>களில் விரியும். FRANCIA SIMBLE SAN PLA குறைத்து காட்டும்.
- 38) (A)அளவிடும் கருவிகள் வெல் வேறாக இருந்தாலும் அளவி முன் விக்கி யாளர் JIDONIO இளுக்கும். $1^{\circ}C = 1K = 1F$ (B) சமதிணிவு, ஒரோதார்த்தம்
 - என்பதால் கவவளவுகள்சமன். பரப்பதிகம். 61601 BL 12601 கோளக்கின் (60][60] UJUL எனவே களிரல்வீதம் தட்டிற்கு உபர்வ.
 - (C) $E_i = \sigma A T^i$ $\sigma \times \pi \times 1^2 \times (4000)^4$ $E_3 = \sigma \times \pi \times 4^2 \times (2000)^4$ ыю $E_1 = E_2$

வெப்பக்கதிர்ப்பு சமன் ஆகவே Thermo Phisics

- [39] இராத்தின் இறுதி கனவளவு V. $= \mathbf{V}_{\alpha} (1 + \gamma_{\alpha} \theta)$ திண்மத்தின் இறுதிகனவளவு V. $=V_{c}(1+\gamma_{i}\theta)$ $\therefore V_{2}/V_{1} = (1 + \gamma \cdot \theta)/(1 + \gamma_{1}\theta)$
 - $40) P = \epsilon \sigma A T^4$ $T = (P / A \epsilon \sigma)^{1/\epsilon}$
- 41) $P = cT^4$ $T = (P/\sigma)^{\frac{1}{4}}$ $= (6.27 \times 10^7 / 5.7 \times 10^8)^{1/4}$
- 42) $1 = 1. (1 + \alpha \theta)$ $21^2 - 21.2(1 + \alpha 0)^2$ $A = A (1 + \alpha \theta)^2$ $A = A_o (1 + 2 \alpha \theta)$ $(A - A_o) / A_o = 2\alpha \theta$ $(A - A)/A_x \times 100 = 2 \times 9 \times 100$ $= 2 \times (1/100) \times 0 \times 100$
 - (() ஓடில்கு என கொண்டாள் பரப்பு அதிகரிக்கும் விகம் 2%)
 - 43) வெப்பநிலை மாறாததால் போயி லின் விதிக்கமையும். $\triangle P_{x}V_{y}=P_{\mu}V_{\mu}$
 - 44) அழுக்கம், கன்னவு, நிலை மாற்றம் இருக்கலாம்.
 - 2_L60&61ML 45) (i) (ii) கன்வெப்பக் கொள்ளனவும் கிணிவும் உடைபதாக இருப்பின் (A) சரி.

96

- 46) வேப்பநிலை மாற்றம் இல்லை.
- 47) PV = மாறிலி

சரியானது.

- PV = மாறிலி 49) PV = RTP x (RT/P) ⁷ = மாறிலி V = RT/P $P^{1-\gamma}T^{-\gamma} = \omega$ rrgါ လါ $P_1^{1-\gamma} T_1^{\gamma} = P_2^{1-\gamma} T_2^{\gamma}$ $T_2^{\gamma} = (P_1/P_2)^{1-\gamma}$ $T_2 = T_1 (P_1/P_2)^{1-\gamma/\gamma}$ $= T_1 (P_2/P_1^1)^{\gamma-1/\gamma}$
- $PV^{\gamma} = K$ 50) $P_1V_1 = P_2V_2$ $P_2 = P_1 (V_1/V_2)^{-7}$
- 51) $PV = \omega m$ $RT/V \times V^7 = Long(1)$ P = Rt/V $TV^{\gamma-1} = \omega m \Omega$ $T_{i}V_{i}^{\gamma-1} = T_{\gamma}V_{\gamma}^{\gamma-1}$ $T_{i} = T_{i} (V_{i}/V_{i})^{-1}$
- E = 3/2 KT54) K = 2E/3T $= JK^{-1}$
- 55) R = I/KA $R_1 = 1/2 / K_1 A$ $R_{2} = 1/2/K_{2}A$ விளையுள் தடை $R = R_1 + R_2$

 $L/KA = 1/2/K_A + 1/2/K_A$ $K = 2K_1K_2 / K_1 + K_2$

 $K_1A(\theta_1, \theta)/I = K_2A(\theta_1, \theta_2)/I$ 56) $K_1(\theta_1, \theta) = K_2(\theta - \theta_2)$

 $K_1(\theta, \theta) = 2K_1(\theta - \theta_2)$ Mdhy; $\theta_1 - \theta_2 = 12^{\circ}$ C

 θ , $-\theta = 2 [\theta - (\theta, -12)]$

 $\theta_1 - \theta = 2\theta - 2\theta_1 + 24$ $3\theta - 3\theta = 24$

 $3(\theta, -\theta) = 24$ θ , $-\theta = 8^{\circ}C$

 $K_1(\pi r_1^2)\Delta\theta/I_1=K_2(\pi r_2^2)\Delta\theta/I_2$ 57) $K_1 r_1^2 / l_1 = K_2 r_2^2 / l_2$ $K_1/K_2 = I_1/I_1 \times (r_2/r_1)^2$ $= 2 \times 2^{2}$

பரப்பு = வேலை 58)

 $W = (2P - P) \times (2V - V)$

W = PV

 $Vrms = \sqrt{3KT/m}$ 59) Vrms α √ T/m Vrms α √200/2

Vrms $\alpha\sqrt{T/32}$

Vrms / Vrms $\sqrt{200 / T \times 32/2}$ $T = 200 \times 16 = 3200 K$ $= 2927^{\circ}C$

Vrms α√T Vrms $\alpha \sqrt{300}$

> V¹rms α √1200 V^{\dagger} rms = 2Vrms

Vrms α√ T 61)

 $\therefore E \alpha \sqrt{T}$

 $d\theta$ / dt α A (μηύμ) 62)

். விட்டம் இரு மடங்கினால் பரப்பு நான்கு மடங்காகும்.

எனவே குளிரல் வீதம் 4 :

$$C_{p} - C_{v} = R$$

64)
$$Q_{p} = nC_{p}\Delta T = 743J$$
$$Q_{y} = nC_{y}\Delta T$$

$$Q_v = nC_v\Delta I$$

$$Q_v = n(C_p - R) \Delta T$$

$$C_p - C_v = R$$

$$= nC_{p}\Delta T - nR\Delta T = 743 - 5 \times 8.3 \times 2 = 660 J$$

$$^{65)}$$
 சம வெப்பமேற்றத்திற்கு $PV=P_{_{i}}\ x\ V/n$

P = nP - - - 1

$$P / Pa = n^{1\gamma}$$

 $T^{\dagger} = T/2$

யில் வெப்பநிலை C யிலும் ⁷⁴⁾ இரு மடங்காகும்.

71)
$$\Delta U = nC_{v} \Delta T$$

$$420 = 2 \times C_{v} \times 10$$

$$C_{v} = 21 \text{JK}^{-1} \text{mol}^{-1}$$

72)
$$d\theta = d_U + \Delta w$$
$$40 = d_U + 20$$
$$d_U = 20J$$

சுக்தி குறைவு ஏற்பட்டதால்
$$d_{\rm tif} = 70 - 20$$
 = $50 {
m J}$

$$d\theta = d_{t} + dw$$
 $d\theta = 0$ (சேறலில்லா
செய்முறை)
 $\therefore d_{t} = -dw$

$$d_{c} = -dw$$
 $d_{c} = -(-250)$
 $d_{c} = 250J$

$$PV^{\gamma} = K$$

$$P \times (m/\rho)^{\gamma} = K$$

$$P\rho^{-\gamma} = K$$

$$P\rho^{-\gamma} = P^{1} (n\rho)^{-\gamma}$$

$$P^{1} = n^{\gamma} P$$

Thermo Phisics

Physics

M.T.Thava

Part - II

01)
$$F = YA\alpha\theta$$

= 2 x 10¹⁰x 0.8x 10⁻⁴x 1 x10⁻⁵x 10
= 1.6 x 10² N

02)
$$V = V_0 \gamma \theta_*$$

= 100 x 6 x 10⁻⁵ x 100
= 0.6Cm³
 $V_{110 C}^{0} = V + \triangle V$
= 100.6Cm³

03) A யிற்கு

$$\triangle A = A\beta\theta$$
 $= A \times 2 \times 1.9 \times 10^{-5} \text{x}(t-10)---1$
B யிற்க
 $\triangle A = A\beta\theta$
 $= A \times 2 \times 1.1 \times 10^{-6} \text{x}(t-20)--2$
 $1 = 2 \Longrightarrow t = -3.75^{\circ}\text{C}$

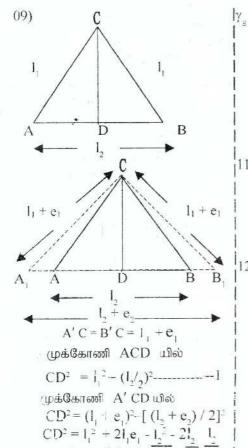
04) e =
$$L_1\alpha_1\theta + L_2\alpha_2\theta$$

0.191 = (30 x 1.7 x 10-5 x 100)
+ (70 x α_2 x 100)
 α_2 = 2 x 10-5 °C-1
Aயில்நெருக்கல்விசை F_1 = $Y_1A\alpha_1\theta$
Bயில்நெருக்கல்விசை F_2 = $Y_2A\alpha_2\dot{c}$
 F_1 = F_2
 \therefore Y_2 = $Y_1\alpha_1/\alpha_2$
= 1.3 x 10¹¹ x 1.7 x 10-5 / 2 x 10-5
= 1.1 x 10¹¹ Nm-2

05)
$$\alpha_{A} = e / \ell \theta$$

 $\alpha_{B} = 0.04/40 \times 100$
 $= 1 \times 10^{-5} \, {}^{0}c^{-1}$
 $\alpha_{A} = 0.05/25 \times 100$
 $= 2 \times 10^{-5} \, {}^{0}c^{-1}$

சேர்த்தி கோலிற்கு /_A + /_B = 50----1 வெப்பமேற்றிய பின் /_A[1 + 2 x 10°x 50]⁻/_B[1 + 1 x 10°x 50]---2 1 , 2 =====> /_A = 10Cm /_B = 40Cm


06)
$$\gamma = \triangle V / V\theta$$

 $\alpha = \gamma/3 = 2 \times 10^{-5} \,^{\circ}\text{c}^{-1}$
 $= 0.12/100 \times 20$
 $= 6 \times 10^{-5} \,^{\circ}\text{c}^{-1}$

07)
$$\rho_{o} = \rho_{E} [1 + \gamma t]$$

 $1 + \gamma t = \rho_{O} / \rho_{E}$
 $1 + 500\gamma = 1 / 1.027$
 $\gamma = 0.027 / 500$
 $\alpha = \gamma/3 = 1.8 \times 10^{-50} \text{ c}^{-1}$

08) கோளத்தின்கனவளவு=
$$1000/8.23$$
 $=111.98$ Cm 3
 0° c யில் கனவளவு = $4/3~\pi r_o^3$
 $=111.98$
 $r_o=2.99$ Cm
 15° cயில் ஆரை $r_{15}=r_o[1+\alpha t]$
 $=2.99~[1+16.07~x~10^{-6}~x~15~]$
 $=2.991$ Cm
 15° c யில் மேற்பரப்பு $A_{15}=4\pi r_{15}^2$
 $=112.4$ Cm 2
 500° c யில் ஆரை r_{500}
 $=2.99~[1+16.07~x~10^{-6}~x~500~]$
 $=3.014$ Cm
 $\therefore 500^\circ$ c யில் மேற் பரப்பளவு
 $=4~\pi r_{15}^2=114.2$ Cm 2

அதிகரித்த பரப்பு = 114.2 – 112.4

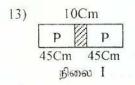
 $= 1.8 \mathrm{cm}$

e_i²,e₂² என்பவற்றை புறக்கணிக்க முடியும் ஏனெனின் மிகச் சிறியவை என்பதால்

என்பதால்
$$I_1^2 - \underline{I_2^2} = I_1^2 + 2I_1e_1 - \underline{I_2^2} - \underline{I_2e_2}$$
 $4I_1e_1 = I_2e_2$ $4I_1(I_1\alpha_1\theta_1) = I_2(I_2\alpha_2\theta_1)$ $4I_1^2\alpha_1 = I_2^2\alpha_2$ $10)$ கண்ணாடியின் கனவளவு

வில்கத்திறன் = 3α

 $= 3 \times 9 \times 10^{-6}$ $= 27 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}$

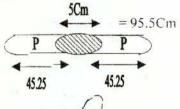

 $= 0.15 \text{Cm}^3$

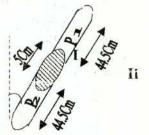
இரசத்தின்தோற்றவிரிகைத்திறன் $= (180-27) \times 10^{-6}$ $\gamma_a = 153 \times 10^{-6} \, {^{\circ}}\, {^{\circ}}\, C^{-1}$ இரசத்தின் தோற்றவிரிவு $= V \gamma_a \theta$ $= 50 \times 153 \times 10^{-6} \, {^{\circ}}\, (48-28)$

- 11) வளியின் கனவளவு மாறாததால் பாத்திரத்தின் விரிவு= இரசத்தின் விரிவு 1000 x 3 x 9 x 10⁻⁶θ=Vx1.8 x10⁻⁴θ V = 150Cm³
- $12)\ 15^{\circ}$ Cயில் நிறை குறைவு =10-6 =4g 15° C யில் பந்தால் வெளியேற்றப் பட்ட நீரின் கனவளவு $={}^4/_{_1}$ $V_{_{15}}=4$ Cm 3 65° C யில் பந்தின் கனவளவு $V_{_{65}}=V_{_{15}}(1+\gamma\theta)$ $=4(1+3\times9\times10^{-6}\times50)$ $V_{_{65}}=4.0054$ Cm 3

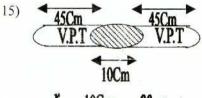
 65° C யில் வெளியேற்றப்பட்டநீரின் திலரிவு = $4.0054 \text{ x } \rho_{65}$ = $4.0054 \text{ x } \rho_{15}/\left(1+\gamma_{_{W}}\theta\right)$ = $4.0054 \text{ x } 1/(1+\gamma_{_{W}}\text{ x } 50)$

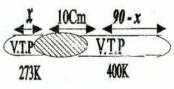
65°Cullo $\beta \beta \beta \beta \beta \beta Cullo = 10 - 6.05$ = $3.95 g^{10Cm}$ $\therefore 3.95 = 4.0054 / (1 + 50\%)$ $\gamma_{w} = 2.8 \times 10^{-4} ^{\circ} C^{-1}$


P₁ 45 + x 45 - x 45 - x


நிலை 11

நிலை II இல் $P_2 + 10 = P_1$ $P_2 - P_1 = 10$


I, II இ的 போயிலின் விதிப்படி P x 45 x A = P₁ x (45 + x) A = P₂ (45 - x) A P₁ = [45 / (45 + x)] P P₂ = [45 / (45 - x)] P P=P₁=[45/(45 + x)-45/(45-x)]P 10=[45/(45 + x)-45/(45-x)]x76 x = 2.95 Cm.


14) குழாயின் நீளம் = 44.5 + 5 + 46

ஆரம்ப நிலையில் வளிநிரலின் நிளம் = 95.5 - 5 / 2 = 45.25Cm நிலை **II** P₂ = P₁ + 5Cos60 P₂ - P₁ = 2.5 I, II இல் போயிலின் விழி
P x 45.25A = P₂ x 44.5 x A
= P₁ x 46A
P₁ = (45.25 / 46) P, P₂
= (45.25 / 44.5) P
P₂ - P₁ = $\begin{bmatrix} 45.25 & -45.25 \\ 44.5 & *46 \end{bmatrix}$ x P
5/2 = $\begin{bmatrix} 45.25 & -45.25 \\ 44.5 & *46 \end{bmatrix}$ x P
P = 75.4 CmHg

போயிலின் விதி
PV / T = P₁V₁ / T₁ = P₂V₂/₂T₂
ஆனால் P₁ = P₂
∴ V₁ / T₁ = V₂/ T₂
A x / 273 = (90 - x)_A / 400
x = 36.5Cm
P₁ = PV / T T₁ / V₁
= 76 x 45 x A x 273 / 300 x 36.5A
= 85.27Cm²Hg

16)
$$PV = NKT$$

 $N = PV / KT$
 $= 10^{-6}x 13.6 \times 10^{3}x 9.8 \times 250 \times 10^{-25}$
 $= 1.38 \times 10^{-23} \times 300$
 $= 8.05 \times 10^{15}$

 $= 2.4 \times 10^{-3} + 8 \times 10^{-3} \times 0.1$

$$1 \times 10^{5} \times 2.4 \times 10^{3} / 300$$

$$= 2 \times 10^{5} \times 3.2 \times 10^{3} / T_{2}$$

$$T_{2} = 300K$$

$$19) MN_{2} = 1.4 \times \frac{70}{100}$$

$$= 0.98g$$

$$\therefore MH_{2}O = 1.4 - 0.98$$

$$= 0.42g$$

$$PN_{2} = n_{1}RT / V = m_{1} / M_{1}(RT / V)$$

 $= 3.2 \times 10^{-3} \text{ m}^3$

 $P_1V_1/T_1 = P_2V_2/T_2$

 $T_1 = 300K$

$$= (0.98 / 28) \times 8.3 \times 1800 / 5 \times 10^{-3}$$

$$= 1.046 \text{ Nm}^{-2}$$

$$PH_{2}O = n_{2}RT/V_{1} = m_{2}/M_{2}(RT/V)$$

$$= (0.42/18) \times 8.3 \times 1800 / 5 \times 10^{3}$$

$$= 0.894 \times 10^{5} \text{ Nm}^{-2}$$

$$P = PN_{2} + PH_{2}O$$

$$= 1.94 \times 10^{5} \text{Nm}^{2}$$

21. PV = nRT
PV = NKT
P = NKT / V
= 5 x 1.38 x
$$10^{23}$$
 x 3 /($\frac{1}{10}^{6}$)
= 2.07 x 10^{-16} Nm⁻²

22) Vrms
$$= \sqrt{3P/\rho} = \sqrt{3} \times 1 \times 10^{5} / 1.98$$
$$= 389 \text{ms}^{-1}$$
$$\text{Vrms} = \sqrt{3RT/M}$$
$$\frac{\text{Vrms} (20^{\circ}\text{C})}{\text{Vrms} (0^{\circ}\text{C})} = \boxed{273 + 30}$$
$$= \boxed{303}$$
$$273$$

Vrms (20°C) = Vrms (0°C) x
$$\sqrt{\frac{303}{273}}$$

= 389 x $\sqrt{\frac{303}{273}}$
= 410ms⁻¹

Thermo Phisics

104

23)
$$PV = 2/3 E'$$

 $P = 2/3 (E/V)$
 $= \frac{2}{3} [K.E / V]$
 $K.E = (3/2) PV$
 $= (3/2) \times 0.1 \times 13.6 \times 980 \times 1$
 $K.E = 1.99 \times 10^{4} \text{ gcm}^2\text{s}^{-2}$

ஓர் மூலக்கூற்றிலுள்ள இயக்கசக்தி

 $= 1.99 \times 10^4 / 4 \times 10^{-14}$

 $= 4.9 \times 10^{17}$

24) Vrms =
$$\sqrt{3}$$
 RT / M
Vrms (Ar) = $\sqrt{\frac{T_{Ar}}{T_{O2}}} \times \frac{M_{O2}}{M_{Ar}}$

Vrms (Ar) =
$$920 \frac{313}{40} \times \frac{32}{1092}$$

= 440.5 ms^{-1}

25) Vrms =
$$\sqrt{\frac{3RT}{M}}$$

இரு வாயுவினதும் வேகங்கள் சமனானதால் $T_1/T_2 = M_1/M_2$ $T_1 = (M_1/M_2) \times T_2$

 $T_2 = (M_2 / M_1) \times T_1$ = (64 / 32) x 320 = 640 K / 367°C

26) இடைவர்க்க மூலக்கதி Vrms = 3RT/M------1 தப்புவேகம் Vo = 2g Re----2

> 1,2==> T = 2g ReM / 3R = $2 \times 9.8 \times 6.4 \times 10^{6} \times 2 \times 10^{-3}$ 3×8.31

> > $= 1 \times 10^4 \text{ K}$

usics

Therma Phisics

28)
$$V = 2 \times 30 = 6 \times 10^{-5} \text{ m}^3$$

 $P = 5 \times 10^{-2} \times 13.6 \times 10^3 \times 10$
 $= 6800 \text{Nm}^{-2}$
 $T = 300 \text{K}$
 $PV = (\text{m} / \text{M}) \text{RT}$

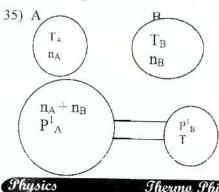
$$PV = (m / M) RT$$

 $m = PVM/RT$
 $= 6800 \times 6 \times 10^{-5} \times 32/8.3 \times 300$
 $= 5.24 \times 10^{-3} g$

29) PV = nRT n = PV / RT n_1 - n_2 = (P_1 V / RT_1 - P_2 V / RT_2) = (P_1 / T_1 - P_2 / T_2) V/R (m_1 - m_2)= (P_1 / T_1 - P_2 / T_2) MV/ R = (15/300-11/290)x32x10⁻³ x30 / 8.3 = 0.14g

$$n = n_1 + n_2$$
 $n_1 = m_1 / M_1$, $n_2 = m_2 / M_2$ கலவையின்அடர்த்தி $\rho = (m_1 + m_2)$

ωπώ V = nRT / P $ρ = (m_1 + m_2) P/nRT$ $ρ = (P/RT) [(m_1 + m_2) / (n_1 + n_2)]$ $ρ = (P/RT) \underline{(m_1 + m_2)}$ $\underline{(m_1/M_1 + m_2/M_2)}$ $= \underline{(P/RT) (m_1 + m_2)}$ $\underline{(m_1M_1 + m_2M_2)} M_1M_2$


105

$$= \frac{(1.01 \times 10^{5}/8.3 \times 290)[(7+11)]}{(7 \times 44 + 11 \times 28)] \times 44 \times 28}$$
$$= 1.5 \times 10^{-3} \text{ Kgm}^{-3}$$

= 8.54g

32)
$$(\theta - 273)/(373 - 273)$$

= $(\theta - 32)/(212 - 32)$
 $\theta = 574.25 \text{ K/}^{\circ}\text{F}$

34)
$$e = I\alpha\theta = FI / AY$$

 $I\alpha\theta = mgI / AY$
 $m = AY\alpha\theta / G$
 $= 4x10^{-6}x1x10^{11}x1x10^{5}x100/10$
 $= 40Kg$

சக்திக்காப்பு விதிப்படி $E = E_1 + E_2$ $(n_{\alpha} \pm n_{\alpha})^{3}/_{2}RT$ $= n_A^{-3}/_{2} RT_A + n_B^{-3}/_{2} RT_B$ $(n_A + n_B) T = n_A T_A + n_B T_B - - - 1$ ஆனால் $n_A = P_A V_A / RT_A$ $= 2 \times 10^{5} \times 2 \times 10^{-3} / 8.3 \times 300$ $= 4 / 8.3 \times 3$ $n_B = P_B V_B / RT_B$ $= 4 \times 10^{5} \times 4 \times 10^{-3} / 8.3 \times 350$ $= 16 / 8.3 \times 3.5$ 1, இல் 2,3 ஐ பிரதியிட $\frac{4}{3}$ x 300 x $\frac{16}{35}$ x 350 = (4/3 + 16/3.5) TT = 338.7 Kஇணைந்த வாயுவிதிப்படி $P_{A}V_{A} / T_{A} = P_{A}^{-1} \times (V_{A} + V_{B}) / T_{A}$ $P_A^{-1} = \underbrace{P_A V_A X}_{T_A} \underbrace{X}_{(V_A + V_B)}$ $= (2 \times 10^5 \times 2 \times 10^{-3} / 300)$ $x (338.7 / 6 \times 10^{-3})$ $= \frac{2}{6} \times 338.7 \times 10^{3} \text{ Nm}^{-2}$ இவ்வாறே

= m x 10^{-3} x 4.2 x 10^{3} x (50 - 0)= 210 m

$$= 73800$$

 $m = 111.6g$

37)
$$mS\theta = mg (H - h^2)$$

 $\theta = mg (H - h^2) / mS$
 $= 9.8 \times 10^3 / 4.62$
 $= 0.064$ °C

38) =
$$20 \times 1 \times (30 - \theta)$$

= $5 \times 0.5 [\theta - (-10)] + 5 \times 80$
 $\theta = 7.8^{\circ}C$

$$= 60/100 \times 1.18 \times 10^6$$

= 84°C

$$\Delta Q = mS \theta$$
 $= 5 x 4200 x (50 - 30)$
 $= 6.30 x 10^5 J$
 $\Delta \theta = \Delta U + \Delta W$
ஆனால் $\Delta w = 0$
திரவ விரிவு புறக்கணிக்கத்தக்கது.

ஆகவே
$$\Delta U = \Delta Q = 6.3 \text{ x } 10^5 \text{ J}$$

41)
$$\Delta U = mC_V \theta$$

= 10 x 743 x 120
= 791600 J
 $\Delta w = m [C_P - C_V] \theta$
= 10 [1042 - 743] x 120
= 358800 J

42) n = PV / RT
=
$$1.6 \times 10^{6} \times 0.0083 / 8.3 \times 300$$

= $16/3$
 $C_{V} = C_{P} - R$
= ${}^{3R}/{}_{2} - R$
= ${}^{3}/{}_{2} \times 8.3$
= 12.45 Jmol-1 K-1

மாறா கனவளவில் வழங்கப்பட்ட வேப்பம் $Q = nC_v \Delta T$ $\Delta T = Q / nC_v$ $= 2.49 \times 10^4 / (^{16}/__ x 12.45)$

$$P_{1}V_{1}^{r} = P_{2}V_{2}^{r}$$

$$P_{2} = P_{1}(V_{1}/V_{2})^{r}$$

$$= 474x10^{2}KPa$$

$$TV_{1}^{r-1} = TV_{2}^{r-1}$$

$$T_{2} = T_{1}(V_{1}/V_{2})^{r-1}$$

$$T_2 = 285(20/0.5)^{0.67-4}$$

=3374K

44) நிலை 1, 3 இந்கு
$$P_1V_1 = P_3V_3$$
 $V_3 = V_2$... $P_1V_1 = P_3V_2$ $V_2 = P_1V_1/P_3$ $= \frac{0.5 \times 0.5}{10} = 0.25 \text{m}^3$ நிலை 1, 2 ந்கு $P_1V_1^T = P_2V_2^T$ $P_2 = P_1(V_1/V_2)^T$ $= 0.5 \left(\frac{0.5}{0.25}\right)^{1.4} = 1.32 \text{atm}$

45)
$$T_1 V_1^{r-1} = T_2 V_2^{r-1}$$

 $T_2 = T_1 (V_1 / V_2)^{r-1}$
 $T_2 = 273 \left(\frac{5}{1}\right)^{0.4}$

= 519.8K சராசரி இயக்கசக்தி E = 3/2 KT₂ = 3/2 x 1.83 x 10⁻²³ x 519.8 = 1.075986 x 10⁻²⁰J

46)
$$V_A = \frac{8}{32} \times 22.4 \times \frac{300}{273} \times 10^{-3}$$

$$= \frac{560}{91} \times 10^{-3} m^3$$

$$= 3 \times 8.3 \times 300 \, 1.5$$

$$|V_{B} = V_{A} \times \frac{400}{300}$$

$$= 4/3 V_{A} : V_{B} - V_{A} = 1/3 V_{A}$$

$$| i) \Delta Q = \Delta U + \Delta W$$

$$= MSQ + P (V_{B} - V_{A})$$

$$| = 8 \times 10^{-3} \times 670 \times 100 + 1 \times 10^{5} \times \frac{560 \times 10^{-3}}{3 \times 91}$$

$$| A = 743.8 J$$

ii)
$$\Delta W = P (V_B - V_A)$$

= $1 \times 10^5 \times \frac{560 \times 10^{-3}}{3 \times 91}$
= 207.8 J

iii)
$$\Delta W = nRT \cdot \log \left(\frac{V_B}{V_A} \right)$$

= $\frac{8}{32} \times 8.31 \times 400 \times \log \frac{4}{3}$
= 239.1J

$$F_1 = P_2 V_2$$
 $P_1 = P_2 V_2$
 $P_2 = P_2 5V$
 $P_2 = P_2 5V$
 $P_3 = P_3 5V$
 $P_4 = P_2 5V$

சம வெப்பமாற்றத்தின்போது

വേതെ
$$\Delta W = nRT \mathbf{A}_{\mathbf{n}} \left(\frac{V}{V_o} \right)$$

= 12026.7J

மாநாக்கனவளவில் அகச்சக்தியில் ஏற்பட்ட மாற்றம் $\Delta U = nC_{\nu} \Delta T$

$$=3 \times C_{V}(1500-300)$$

$$\frac{C_P}{C_V} = R \underline{\hspace{1cm}}_2$$

$$\therefore 1, 2 \Rightarrow C_{V} = \frac{R}{Y-1}$$

$$\Delta U = 3600 \times \frac{R}{27 - 1}$$

$$= 3600 \times \frac{8.3}{27 - 1} = \frac{37350}{27 - 1}$$

$$1^{16}$$
 விதிப்படி $\Delta Q = \Delta U + \Delta W$

$$83.14 \times 10^{3} = \frac{37350}{r - 1} + 12026.7$$

$$\Upsilon = 1.42$$

48) i)
$$P_1(5V-X)=P \times 5V$$
——1
 $P_1(V+X)=8P \times V$ ——2

$$1, 2 \Rightarrow P_1 = \frac{13}{6}P$$
$$x = \frac{35}{13}V$$

$$V_1 = 5V - \frac{35}{13}V = \frac{30}{13}V$$

$$V_2 = V + \frac{35}{13}V = \frac{48}{13}V$$

ii)
$$P_1(5V-X)^r = Px(5V)^r - 1$$

 $P_1(V+X)^r = 8P \times V^r - 2$

$$1/2 = > \left(\frac{5V - x}{V + x}\right)^{r} = \frac{5^{r}}{8}, x = \frac{5}{3}V$$

$$V_1 = 5V - \frac{5}{3}V = \frac{10}{3}V$$

$$V_2 = V + \frac{5}{3}V = \frac{8}{3}V$$

$$P_{1} = P \left\{ \frac{5V}{10/3}V \right\}^{3/2} = \left\{ \frac{27}{8} \right\}^{1/2} P$$

$$P_{2} = 1.84P$$

49)
$$Q = \frac{ML}{t} = KA \frac{(\theta_2 - \theta_1)}{k}$$
$$A\rho \times L = KA \frac{(\theta - 100)}{0.5} \times 5 \times 60$$

$$1 \times 540 = 0.12 \frac{(\theta - 100)}{0.5} \times 5 \times 60$$

$$\theta = 107.5$$
°C

$$50) \quad mL_1 = KA \frac{(\theta - \theta_1)}{x}.$$

$$mL_2 = KA \frac{(\theta - \theta_2)}{1.5 - x} - 2$$

$$\frac{L_1}{L_2} = \frac{\theta - \theta_1}{\theta - \theta_2}$$

$$\frac{54}{8} = \frac{200 - 100}{200 - 0} \times \frac{1.5 - x}{x}$$

$$x = 10.3$$
cm

51)
$$\frac{Q}{t} = \frac{ML}{t} = K_1 A \frac{(\theta_1 - \theta)}{\mathbf{1}_1}$$
$$= K_2 A \frac{(\theta - \theta_2)}{\mathbf{1}_1}$$

$$\frac{684 \times 10^{-3} \times 80 \times 10^{3}}{360}$$

$$= \frac{0.25 \times 20 \times (100 - \theta)}{15}$$

$$20(\theta - 0)$$

$$= K_2 \frac{20(\theta - 0)}{8}$$

$$K_2 = 0.12 \text{wm}^2 \text{K}^{-2} \ \theta = 54.4^{\circ} \text{C}$$

52)
$$R = 2KA \frac{(100 - \theta_1)}{\cancel{k}}$$
$$KA = \frac{(\theta_1 - \theta_2)}{\cancel{k}}$$

$$= 0.5KA \frac{(\theta_1 - \theta_2)}{\mathbf{f}}$$

$$R = 2(100 - \theta_1) = \theta_1 - \theta_2$$

$$= 0.5 \theta_2$$

$$3\theta_1 - \theta_2 = 200$$

$$\theta_1 = 1.5 \ \theta_2$$
1, 2 => $\theta_1 = 85.7^{\circ}C$
 $\theta_2 = 57.1^{\circ}C$

$$100 - \theta_1 = \frac{\mathbf{L}R}{2KA} \quad \dots$$

$$\theta_1 - \theta_2 = \frac{\mathbf{I}_R}{KA}$$
 ----2

$$\theta_2 - 0 = \frac{\mathbf{A}R}{0.5KA} \quad ----3$$

ஆனால் $\frac{Q}{t} = \frac{K^1 A(100 - 0)}{31}$

$$\frac{\mathcal{E}}{t} = \frac{111(100 - 2)}{31}$$

$$R = \frac{K^{1}A(100 - 0)}{31}$$

 $100 - 0 = \frac{3\ell^2}{\nu^{1}_A}$

$$A + B \Rightarrow \frac{3\ell R}{K^{1}A} = \frac{\ell R}{2KA} + \frac{\ell R}{KA} + \frac{\ell R}{0.5KA}$$

$$K^{1} = \frac{3K}{\frac{1}{2} + \frac{1}{2} + \frac{1}{2}_{0.5}}$$

$$K^1 = \frac{3K}{3.5}$$

$$K^1 = \frac{6}{7}K$$

53)
$$0.15A\frac{(20-\theta)}{0.025}$$

$$= 1.5A \frac{(\theta_1 - \theta_2)}{0.01}$$

$$=1A\frac{(\theta_2+10)}{0.25}$$

$$4\theta_{B} - 2\theta_{C} - \theta_{D} = 60 \frac{s}{100} - 10$$

$$\theta_{B} - 3\theta_{C} - \theta_{D} = -10 - 20$$

$$\theta_{B} - 2\theta_{C} - 4\theta_{D} = -10 - 3$$

$$\theta_{B} = 30^{\circ}\text{C}, \ \theta_{C} = 20^{\circ}\text{C}, \ \theta_{D} = 20^{\circ}\text{C}$$

$$\frac{24}{t} = \frac{92 \times 4 \times 10^{-4} \times (100 - \theta)}{0.46}$$

$$\frac{Q_{B}}{t} = \frac{26 \times 4 \times 10^{-4} \times (\theta - 0)}{0.13}$$
Thusics

Figure This

$$\frac{Q_C}{t} = \frac{12 \times 4 \times 10^{-4} \times (\theta - 0)}{0.12}$$
Substitution
$$\frac{Q_A}{t} = \frac{Q_B}{t} + \frac{Q_C}{t}$$

$$= 2 + 3 \Rightarrow V$$

$$\frac{Q_A}{t} = \frac{92 \times 4 \times 10^{-4} \times 60}{0.46}$$

$$= 4.8 \text{ W}$$

56)
$$5(20 - \theta_1) = 150 (\theta_1 - \theta_2)$$

= $4(\theta_2 + 10)$
 $\theta_1 = 6.86^{\circ}C$
 $\theta_2 = 6.42^{\circ}C$
 $P = 5 \times 137 (20 - 6.86)$
= $5 \times 137 (13.14)$
= 9000.9 W

$$\begin{aligned} \mathbf{57}) & \text{ bdd} - \mathbf{I} \\ \mathcal{Q}_1 &= \frac{0.63 A(\theta_1 - \theta_2)}{2 \times 10^{-3}} \\ &= \frac{0.049 \times A(\theta_2 - \theta_3)}{3 \times 10^{-3}} \\ &= \frac{0.63 A(\theta_3 - \theta_4)}{2 \times 10^{-3}} \\ \theta_1 - \theta_2 &= \frac{2 \times 10^{-3}}{0.63 A} \mathcal{Q}_1 - \dots - 1 \\ \theta_2 - \theta_3 &= \frac{3 \times 10^{-3}}{0.049 A} \mathcal{Q} - \dots - 2 \end{aligned}$$

M.P.Thava

= 1296.5 J

இழையில் ஏற்பட்ட விரிவு $Y = \frac{mg/A}{e_f} \qquad e = \frac{mgA}{-2v}$ வேலை $W = \frac{1}{2} x$ தகைப்பு xவிகாரம் $= \frac{1}{2} \times \frac{mg}{mr^2} \times \frac{mg R}{mr^{2\nu}}$ $W = \frac{(mg)^2 \mathbf{X}}{2m^2 V}$ இழைக்கு வழங்கப்பட்ட சக்கி $= ms\theta$ $ms\theta = 0.75 \text{ x W}$ $\theta = \frac{6.75}{200} \times \frac{(mg)^2 \ell}{2m^2 v}$ $= \frac{0.75 \times (mg)^2 \cancel{L}}{\pi r^2 \cancel{L} DS \times 2\pi r^2 Y}$ $=\frac{0.75(mg)^2}{2\pi^2r^4\cos Y}$ $0.75 \times (31.4 \times 9.8)^2$ $2 \times (3.14)^2 \times (10^{-3})^4 \times (9 \times 10^3) \times 490 \times (9.8 \times 10^{10})$ $=\frac{1}{120} \quad C.$ 61) (நிலை-I}-20 °C யில் பனிக்கட்டி 0 °C யில் பனிக்கட்டி ஆக மாற பெற்ற வெப்பம் $= ms\theta + ms\theta$ $= 100 \times 10^{-3} \times 0.2 \times 10^{3} \times [0-(-20)]$ $+200 \times 10^{-3} \times 0.5 \times 10^{3} [0-(-20)]$

Thermo Phisic

M.T.Thava

= 2400 J

119

நிலை-II 0 °C யில் பனிக்கட்டி 0 °C யில் நீராக மாற பெற்ற வெப்பம் = ML

=
$$200x10^{-3}x80x10^{3} = 16000J$$

 \therefore @Box to $t_{x}=1600/100^{\frac{1}{2}}$ 160sec

நிலை-III

©EGDID =
$$4 \times 60 - (t_2 + t_2)$$

= $240 - 160 - 24$
= $240 - 184 = 56$ sec

∴ 0 °C யிலுள்ள நீர் 0 °C யிலுள்ள நீராகமாறல்

$$= ms\theta + ms\theta$$

$$100x56 = (100x0.2 + 200 \times 0.5)$$

$$(0 - 0)$$

$$600 = (20 + 100) \theta$$

 $\theta = 24.45 \, {}^{\circ}\text{C}$

οιεούτι 0 24.45 0 24 184 240 (S)

62)
i)A-Bயிற்கு
$$W_{AB} = \frac{R}{\gamma - 1} (T_A - T_B)$$

$$= \frac{R}{\frac{N}{2} - 1} (T_A - T_B)$$

$$= \frac{3/R(T_A - T_B)}{2}$$

$$= \frac{3}{2}R(T_A - T_B)$$

சேறலில்லா மாற்றத்திற்கு $P_1^{1-r}T_1^r = P_2^{1-r}T_2^r$

$$\frac{T_B}{T_A} = \left(\frac{2}{3}\right)^{2/5}$$

 $T_B = 0.85 T_A = 850K$ $W_{AB} = 3/2 \times 8.31 \times (1000 - 810)$ = 1869. 8 J

ii) B

iii) A→B (சேறலில்லாமற்றம்)

$$P_A^{1-r}T_A^r=P_B^{1-r}T_B^r$$

$$\left(\frac{P_A}{P_B}\right)^{r-1} = \left(\frac{T_A}{T_B}\right)^r - \dots - 1$$

 $\mathrm{B} o \mathrm{C}$ சமவெப்பமாற்றம்

$$\frac{P_B}{T_B} = \frac{P_C}{T_C} or \frac{P_B}{P_C} = \frac{T_B}{T_C} - -2$$

C→D (சேறலில்லாமற்றம்)

$$\left(\frac{P_D}{P_C}\right)^{r-1} = \left(\frac{T_D}{T_C}\right)^r - \dots - 3$$

 $\mathrm{D} o \mathrm{A}$ சமவெப்பமாற்றம்

$$\frac{P_A}{P_D} = \frac{T_A}{T_D} - 4$$

$$4/2 \Rightarrow \frac{P_{A}}{P_{B}} \times \frac{P_{C}}{P_{D}} = \frac{T_{A}}{T_{B}} \times \frac{T_{C}}{T_{D}}$$

$$\operatorname{or}\!\left(\frac{P_{\boldsymbol{A}}}{P_{\boldsymbol{B}}} \times \frac{P_{\boldsymbol{C}}}{P_{\boldsymbol{D}}}\right)^{r-1} = \left(\frac{T_{\boldsymbol{A}}}{T_{\boldsymbol{B}}} \times \frac{T_{\boldsymbol{C}}}{T_{\boldsymbol{D}}}\right)^{r-1} - 5$$

$$\frac{1/3 = \left(\frac{P_A}{P_B} \times \frac{P_C}{P_D}\right)^{r-1} = \left(\frac{T_A}{T_B} \times \frac{T_C}{T_D}\right)^r}{6}$$

$$5.6 \Rightarrow \left(\frac{T_A}{T_B} \times \frac{T_C}{T_D}\right)^r = \left(\frac{T_A}{T_B} \times \frac{T_C}{T_D}\right)^{r-1}$$

$$T_A.T_C = T_D.T_B$$

$$T_D = \frac{T_AT_C}{T_B} = \frac{1000 \times 425}{850} = 500 \text{kg}$$

 $= 0.5 \times \% \times 6 \times 10^{23} \times 1.38$

 $\times 10^{-23} \times (1200 - 300)$

 $\Delta Q = \Delta U + \Delta W$ $= n C_v \Delta T + 0$

= 93131

Pv = nRTP = nRT/v $= \frac{2 \times 8.3 \times 300}{20 \times 10^{-3}}$ $= 2.5 \times 10^{5} Nm^{-2}$

$$T_{D} = \frac{T_{A}T_{C}}{T_{B}} = \frac{1000 \times 425}{850} = 500 \text{k}$$
ii)
$$\frac{V_{A}}{T_{A}} = \frac{V_{B}}{T_{B}} \implies \frac{V}{300} = \frac{2V}{T_{B}}$$

$$= T_{B} = 600 K$$

சேறலில்லா மாற்றத்திற்கு $TV_{_{R}}^{_{_{r}-1}}=T_{_{G}}V_{_{G}}^{_{_{r}-1}}$

$$\frac{V_{C}}{V_{B}} = \left(\frac{T_{B}}{T_{C}}\right)^{\frac{1}{N}-1}$$

$$= \left(\frac{600}{300}\right) \frac{1}{\left(5/3 - 1\right)}$$

$$= 2\sqrt{2} \qquad V_C = 2\sqrt{2} \times 2V$$
$$= 4\sqrt{2}V$$

$$= 4\sqrt{2} \times 20 \times 10^{-3}$$

$$= 4\sqrt{2} \times 20 \times 10^{-3}$$
$$= 80\sqrt{2} \times 10^{-3} \times 10^{-3} \times 10^{-3}$$

வெப்பநிலை சமன் என்பதால்

$$(A,C) P_A V_A = P_C V_C$$

$$P_C = \frac{P_A V_A}{V_C} = \frac{2.5}{4\sqrt{2}} \times 10^5$$

$$= 0.44 \times 10^5 \text{ Nm}^{-2}$$

iii)
$$W_1 = P (V_B - V_A)$$

= 2.5 x 10⁵ (40 - 20) x 10⁻³
= 5 x 10³ I

சோலில்லா மாந்கம்

$$W = \frac{nR(T_1 - T_2)}{r - 1}$$

$$= \frac{2 \times 8.3 \times (600 - 300)}{(5/3 - 1)}$$

$$= 7.5 \times 10^3 J$$

65)
$$a = \text{Mos}y$$

 $at = a_0 [1 + \alpha t]$
 $2/5 \text{ mat}^2 = 2/5 \text{ ma}_0^2 [1 + \alpha t]^2$
 $It = I_0 [1 + \alpha t]^2$
 $It = I_0 [1 + 2\alpha t]$
 $\therefore I_{65} = I_{15} [1 + 2\alpha x (65-15)]$
 $I_{65} = I_{15} [1 + 100\alpha]$

ஆனால்
$$I_{15}=2/5\,ma^2$$

$$= \frac{2}{5} \times (\frac{4}{3}\pi a^{3} \rho) a^{2}$$

$$= \frac{2}{5} \times \frac{4}{5} \times \frac{22}{5} \times 7700 \times \left(\frac{10}{2} \times 10^{-2}\right)^{2}$$

$$I_{15} = \frac{8 \times 7.7 \times 625 \pi \times 10^{-7}}{3} kgm^2$$

$$I_{65} = I_{15} [1 + 100 \times 1.2 \times 10^{-5}]$$

$$I_{65} - I_{15} = I_{15} \times 00 \times 1.2 \times 10^{-5}$$

$$=\frac{8\times7.7\times625\pi\times10^{-7}\times1.2\times10^{-5}}{3}$$

$$=\frac{8\times7.7\times625\pi\times1.2\times10^{-12}}{2}$$

$$I_{65} - I_{15} = 48.4 \times 10^{-7} \text{ kgm}^2$$

|66) இரசத்திற்கு $\rho_0 = \rho t (1 + \gamma_u \theta)$

$$\rho_{\theta} = \frac{\rho_{0}}{1 + \gamma_{B}\theta}$$

ஆனால்

$$m_s = V_o \rho_o - 0^{\circ} C$$
 யில் திணிவு $m_t = V_t \rho_t - t^{\circ} C$ யில் திணிவு ஆனால் கண்ணாடிக்கு $Vt = V_o (1 + \gamma \theta)$

$$\gamma = \frac{V_t - V_o}{V_o \theta}$$

$$=\frac{\frac{mt}{\rho t} - \frac{m_o}{\rho_o}}{m_o / \rho_o \theta}$$

$$=\frac{mt(1+\gamma_H\theta)-m_o}{m_o\theta}$$

$$= \frac{49.7 \times (1 + 18 \times 10^{-5} \times 20) - 100}{100}$$

$$\gamma = 3 \times 10^{-5} \, ^{\circ}\text{C}$$

எனின்
$$\alpha = \gamma/3 = 1 \times 10^{-5} \, ^{\circ}\text{C}^{-1}$$

வெளியேறிய எண்ணெய்யின் திணிவு $\Delta m = m_a - mt$ p V - pt Vt

ஆனால் உருக்கிற்கு Vt

 $= Vo(1 + \gamma_{Fe} \theta)$

மண்ணெண்ணைக்கு

$$Pi = \frac{P_o}{(1 + \gamma_k \theta)}$$

$$\Delta m = \rho_o V_o - \frac{\rho_o}{(1 + \gamma_k \theta)} \times V_o (1 + \gamma_{Fe} \theta)$$

$$= \frac{\rho_o V_o (\gamma_K + \gamma_{Fe}) \theta}{(1 + \gamma_k \theta)}$$

$$= \rho_o V_o (\gamma_t - \gamma_{Fe}) \theta$$

68)
$$\Delta_{p} = P_{2} - P_{3}$$

= 3P - P
= 2P
$$2P = h\rho g$$

$$h = \frac{2p}{\rho g} = \frac{2 \times 1.01 \times 10^{5}}{1000 \times 9.8}$$

69)
$$10^{\circ}\text{C}$$
, 0°C யில் $(P_{_{\parallel}}, V_{_{\parallel}}, T_{_{\parallel}})$, $(P_{_{o}}, V_{_{o}}^{_{-}}, T_{_{o}})$ என்க
$$\frac{P_{_{\parallel}}V_{_{1}}}{T_{_{1}}} = \frac{P_{_{o}}V_{_{o}}^{1}}{T_{_{o}}}$$

ஆனால்
$$V_o^1=rac{m_1}{
ho_o}$$

$$\frac{P_1V_1}{T_1} = \frac{P_{\sigma}V_{\sigma}^1}{T_{\sigma}} = \frac{P_{\sigma}m_1}{T_{\sigma}\rho_{\sigma}}$$

$$m_1 = P_1 V_1 \frac{T_o \rho_1}{T_1 \rho_o}$$

அவ்வாறே

$$\begin{split} m_{2} &= P_{1}V_{1}\frac{T_{o}\rho_{1}}{T_{2}\rho_{o}} \\ \Delta_{m} &= m_{1}\text{-}m_{2} \\ &= \frac{P_{1}V_{1}T_{o}\rho_{o}}{T_{1}\rho_{o}} - \frac{P_{1}V_{1}T_{o}\rho_{o}}{T_{2}\rho_{o}} \\ &= \frac{P_{1}V_{1}T_{o}\rho_{o}}{\rho_{o}} \frac{(T_{2}T_{1})}{T_{1}T_{2}} \end{split}$$

$$=1.02 \times 10^{2} \times 100 \times 273 \times 1.29 \frac{(298 - 283)}{298 \times 283}$$
$$= 6.33 \text{kg}$$

$$70$$
) $R=rac{I}{KA}$ வெப்பப்பாய்ச்சல் வீதம் சமனாகும் $K_1Arac{(heta_1- heta)}{I_1}=K_2Arac{(heta- heta_2)}{I_2}$

$$\frac{0.8(600 - \theta)}{10} = \frac{1.6(\theta - 460)}{10}$$

$$0.8 \times 600 - 0.8\theta = 1.6\theta - 460 \times 1.6$$

 $480 + 736 = 2.4\theta$

$$\theta = \frac{1216}{2.4} = 507^{\circ}\text{C}$$

71)
$$Q_t = KA \frac{(\theta_2 - \theta_1)}{t}$$

 $Q_t = 2.3 \times 1 \times \frac{(273 - 260)}{4.6 \times 10^{-2}}$

$$= \frac{2.3 \times 13}{4.6 \times 10^{-2}} = 65 \times 10^2 \,\mathrm{Js}^{-1}$$

$$KA\frac{(\theta_2 - \theta)}{A} = ml$$

 $m \times 3.25 \times 10^5 = 6.5 \times 10^2$

$$m = \frac{6.5 \times 10^{-3}}{3.25}$$

$$V\rho = \frac{6.5}{3.25}$$
 $V = \frac{6.5}{3.25} \times \frac{10^{-3}}{1000}$
= $\frac{6.5}{3.25} \times 10^{-6}$

$$V = 2\mu ms^{-1}$$

72)
$$Q_t = KA \frac{(\theta_2 - \theta_1)}{4}$$

$$= 1.2 \times 1 \times \frac{(20 - 5)}{2 \times 10^{-3}}$$

$$=\frac{1.2\times15\times0.03}{2}$$

$$= 9 \times 10^3 \text{ w}$$

73)
$$P_V = \frac{1}{3} mnc^{-2}$$

$$P = \frac{1}{2} \left(\frac{mn}{v} \right) c^{-2}$$

$$P = \frac{1}{2} \rho c^{-2} \left[\frac{mn}{v} = \rho \right]$$

$$\frac{P_1}{P_2} = \frac{C^{-2}}{C^{-2}}$$
 ஆனால் $C^{-2} \alpha T$

$$\frac{P_1}{P_2} = \frac{T_1}{T_2} = \frac{P_1}{T_1} = \frac{P_2}{T_1} = \frac{P_2}{T_2} = \frac{P_2}{P_2} = \frac{P_2}{P_2}$$

Pv = மாறிலி

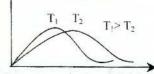
$$C^{-2}\alpha \frac{1}{m}$$

$$C_{N_2}^{-2} \alpha \frac{1}{28}$$

$$C_{o_2}^{-2} \alpha_{32}^{1/2} = \frac{C_{N_2}^{-2}}{C_{o_2}^{-2}} = \frac{32}{28}$$

$$\frac{C_{N_2}}{C_{O_2}} = \sqrt{\frac{8}{7}}$$

b)
$$\frac{P_{N_2}}{P_{O_2}} = \frac{80}{20} P_{N_2} : P_{O_2} = 4:1$$


$$C$$
 $C^{-2} \alpha \sqrt{T}$

$$C_{M_2}^- \alpha \sqrt{283} \quad \bar{C} \alpha \sqrt{373}$$

$$\frac{C_{N_2}^-}{C} \alpha \sqrt{\frac{283}{373}}$$

(4) i)
$$Pv = nRT$$

 $1x10^4x1.5x10^{-3} = n \times 8.3 \times 300$
 $n = 6 \times 10^{-3} \text{ mol}$

ii)
$$N = m \times N_A$$

= $6 \times 10^{-3} \times 6 \times 10^{23}$
 $= 3.6 \times 10^{21}$

iii) PV = 1/3 mnc² | 77) i) Pv = nRT | 1 x 10⁴ x 1.5 x 10⁻³ | 1 x 10⁶ x 0.1 = n x | 1 x 10⁶ x 0.1 = n x |
$$n = \frac{10^3}{6 \times 10^{23}} \times 3.6 \times 10^{21} \times C^{-2}$$
 | $n = \frac{10^3}{24.9} = 40.2 \text{ mol}$

$$C^{-} = \frac{\sqrt{150}}{8} \times 10^{3} \, ms^{-1}$$

75)
$$C^{-2} = \frac{3P}{\rho}$$
 $C^{-} = \sqrt{\frac{3P}{\rho}}$ | $= 14.1 \text{kg}$
 $V = \sqrt{\frac{\gamma P}{\rho}}$ $\therefore V = \sqrt{\frac{\gamma}{3}}C^{-}$ | $V = \sqrt{\frac{3P}{\rho}}$ | $V = \sqrt{\frac{3P}{\rho}}$ | $V = \sqrt{\frac{3P}{\rho}}$ $V = \sqrt$

$$300 = \sqrt{1.5} \times C^{-1}$$

$$C^{-1} = 424.2 \text{ m/s}^{-1}$$

76) i)
$$Pv = nRT$$

 $1 \times 10^{5} x + x + 10^{-3} = n \times 8.3 \times 300$

$$n = \frac{1}{24.9} = 0.04 \text{ m}$$

$$N = 0.04 \text{ x } 6 \text{ x } 10^{23}$$

$$= 2.4 \text{ x } 10^{22}$$

ii)
$$E = 3/2KT$$

= $3/2 \times 1.4 \times 10^{-23} \times 300$
= $4.5 \times 1.4 \times 10^{-21}$
= $6.3 \times 10^{-21} \text{ J}$

177) i)
$$Pv = nRT$$

1 x 10° x 0.1 = n x 8.3 x 300

$$n = \frac{10^3}{24.9} = 40.2 \text{ mo}$$

$$C^{-} = \frac{\sqrt{150}}{8} \times 10^{3} \, ms^{-1} \qquad \text{ii) } n = \frac{\omega}{M} = ---> \omega = nM$$

$$= 40.2 \times 352 \times 10^{3}$$

iii)
$$p = \frac{\omega}{V} = \frac{14.1}{0.1} = 141 \text{ kgm}^{-1}$$

$$|iv) C^{-} = \sqrt{\frac{3\overline{P}}{\rho}}$$

$$C^{-} = \sqrt{\frac{3 \times 1 \times 10^{6}}{141}}$$

$$C = 146 \text{ ms}^{-1}$$

78)
$$Pv = nRT$$

! $x \cdot 10^5 \times 0.025 = 1 \times R \times 300$
 $R = 8.33 \text{ Jmol}^{-1}\text{K}^{-1}$

$$K = \frac{R}{N_A} = \frac{8.33}{6 \times 10^{23}}$$

= 1.4 x 10⁻²³ Jmol⁻¹K⁻¹

iii)
$$E = \frac{3}{2}KT$$

= $\frac{3}{2} \times 1.4 \times 10^{-23} \times 300$
= $\frac{6.3 \times 10^{-21} \text{ J}}{2}$

79) i)
$$Pv = nRT$$

$$PV = \frac{w}{m}RT$$

$$2 \times 10^{5} \times 1 \times 10^{-3}$$

$$=\frac{w}{4\times10^{-3}}\times8.3\times300$$

$$w = 0.32g$$

ii)
$$n = \frac{w}{m} = \frac{0.32}{4} = 0.98 \text{ mol}$$

$$N = n \times N_A = 0.08 \times 6 \times 10^{23}$$

$$= 4.8 \times 10^{22}$$

iii) Py = 1/3 mnc²

$$2 \times 10^{5} \times 1 \times 10^{-3} = 1/3 \times 4 \times 10^{-3} \times C^{2}$$

$$C^2 = \frac{3}{1.6} \times 10^6$$

$$\bar{C} = 1.4 \times 10^3 \, ms^{-1}$$

$$80) Pv = \frac{w}{m} RT$$

$$5 \times 10^6 \times 0.04$$

$$=\frac{w}{28\times10^{-3}}\times8.3\times288$$

$$w = 2.3kg$$

தற்போதுஉள்ளதிணிவு
$$P_{\mathcal{V}} = rac{\mathcal{W}}{m} RT$$

$$=\frac{w_1}{28\times10^{-3}}\times8.3\times288$$

$$w_1 = 0.9 \text{kg}$$

= 1.4 kg

$$= \frac{w}{4 \times 10^{-3}} \times 8.3 \times 300$$
$$w = 0.32g$$

$$6 \times 10^{23}$$

$$8 \times 6 \times 10^{23}$$

× 10^{22}

$$/3 \times 4 \times 10^{-3} \times C^2$$

81) b)
$$Pv = nRT$$

$$0.5 \times 10^{5} \times 0.23 = n \times 8.3 \times 300$$

 $n = 4.6 \text{mol}$

வெளியேறிய மூல்= $\frac{1.4}{28 \times 10^{-3}}$

 $N = 50 \times 6 \times 10^{23}$

∴ 1Sec இல் வெளியேறும்

மூலக்கூறுகளின் எண்ணிக்கை

 $= 3 \times 10^{25}$

= 50 mol

 $=\frac{3\times10^{25}}{3\times3.2\times10^7}$

 $=\frac{1}{3.2}\times10^{10}$

 $= 3.1 \times 10^{16} \text{ s}^{-1}$

c)
$$P_{V} = \frac{1}{2} mnc^{2}$$

$$0.5 \times 10^5 \times 0.23$$

$$= \frac{1}{3} \times \frac{28 \times 10^{-3}}{6 \times 10^{23}} \times 4.6 \times 6 \times 10^{23} \times C^{2}$$

$$\tilde{C} = 517 ms^{-1}$$

தற்போதுஉள்ளதிணிவு
$$Pv = \frac{w}{m}RT$$
 $\frac{\mathbf{82}}{1}$ $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ $\implies \frac{1 \times 10^5}{300} = \frac{P_2}{600}$

$$P_{s} = 2 \times 10^{5} \text{ pa}$$

$$\lim_{n \to \infty} Pv = nRT$$

$$1 \times 10^5 \times V - \frac{x}{M} \times R \times 300$$

$$2 \times 10^{3} \times V = \frac{3x}{M} \times R \times 600$$

$$n = \frac{3 - x}{x} \times 2$$

$$2 \times 3 = 3 \quad \Longrightarrow \quad x = 1.5 \text{ g}$$

83)

$$\rho = \frac{w}{v} \qquad n = \frac{w}{M}$$

$$v = \frac{44 \times 10^{-3}}{344} \qquad 1 = \frac{w}{44 \times 10^{-3}}$$

$$= 1.28 \times 10^{-3} \text{m}^{3}$$

$$= 44 \times 10^{-3}$$

ii) V = 3b
1.28 x 10⁻² = 3b
b = 4.3 x 10⁻⁵m³

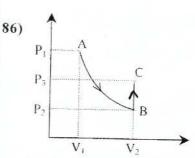
$$\left(P + \frac{a}{V^2}\right) \times (V - b) = RT$$

$$\left(7.5 \times 10^6 + \frac{a}{\left(1.28 \times 10^{-4}\right)^2}\right) \times \left(1.28 \times 10^{-4} - 4.3 \times 10^{-5}\right)$$
= 8.3 x 304
a = 0.362 Nm⁴ mol⁻²

84)
$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

$$\left[3.4 \times 10^6 + \frac{1.4 \times 10^{-1}}{(9 \times 10^{-5})^2}\right] \times$$

$$\left[9 \times 10^{-5} - 3.9 \times 10^{-5}\right] = 8.3 \times T$$


$$T = 127K$$

- ii) Pv = RT $3.4 \times 10^6 \times 9 \times 10^6 - 8.3 \times T$ T = 36.9 K
- **85)** i) A, B யில்

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \qquad \frac{1000}{300} = \frac{V_2}{375}$$

$$V_2 = 1250 \text{cm}^3$$

- ii) B_{x}^{2} C who $P_{y}V_{y} = P_{y}V_{y}$ $1.1 \times 10^{5} \times 100 = P_{y} \times 1250$ $P_{y} = 1.38 \times 10^{5} P_{a}$
- iii) கன்வளவு மாற்றம் 0 எனவே w = 0 ஆகம்

i) $A \to B$ $P_{1} V_{1}^{b} = P_{2} V_{2}^{b}$ $T_{1} V_{1}^{b} = T_{2} V_{2}^{b}$ $300 \times V_{1}^{b} = T_{2} \times (4V_{1})^{b}$ $T_{2} = (1/4)^{1.5-1} \times 300$ $= (1/4)^{1.5-1} \times 300$ = 150 K

M.J.Thava

சேறலில்லா மாற்றத்தின் போது $P_1 \ V_1 \gamma = P_2 \ V_2 \ \gamma$ $\frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^t$ ______1

சமவெப்ப மாற்றத்தின்போது $\mathbf{P}_1 \ \mathbf{V}_1 = \mathbf{P}_3 \ \mathbf{V}_2$ $\frac{P_1}{P_3} = \frac{V_2}{V_1}$ -----2

$$l_1, 2 \Rightarrow \frac{P_1}{P_2} = \left(\frac{P_1}{P_3}\right)^r$$

87) அகச்சக்தி மாற்றம் $A \rightarrow B$ $\Delta U = nC_{V}\Delta T$ $= 1 \times 3/2R \times \Delta T$ $\Delta U = 3/2R \times \Delta T$

 $= 3/2 \times 3.3 \times (T_1 - T_2)$ $= 3/2 \times 8.3 \times (4000 - 2000)$ = 24.93 kJ

B \rightarrow C Δ U=3/2x8.3 x(2000 – 4000) = -24 93kJ

C→D Δ U=3/2 8.3x(1000 – 2000) = -12.47kJ

D \rightarrow A Δ U=3/2x8.3x(2000 – 1000) = 12.47kJ

 \therefore மொத்தவேலை $\Delta U=0$

 $A \rightarrow B w = nR (T_B - T_A)$ = 1 x R (T_B - T_A)

 $w = 3/2 \times 8.3 \times (4000 - 2000)$ = 16.62 kJ

= 16.62 kJ

; D→A பாதையில் ாவு மாற்றம் பூச்சியம் ல் w = 0 w = 8.3 x (1000 − 2000) = 8.31kJ ∴ தொகுதியில் செய்யப்பட்ட மொத்தவேலை= (16.62 − 8.31) = 8.31J

வழங்கப்பட்ட/வெளியேறிய சக்தி $Q = nC_p \Delta T$ $Q = 1 \times C_p \Delta T$ $= C_p \Delta T$ $O = (R + C_s) \Delta T$

 $= (R + 3/2R) \Delta T$ Q = 5/2RT $Q = 5/2 \times 8.31 \times 2000$

A \rightarrow B, Q = 5/2 x 8.31 x 2000 = 41.55 kJ B \rightarrow C, Q=3/2x8.31x(2000 - 4000)

= -24.9 kJ $C \rightarrow D, Q = 5/2x8.31x(1000 - 2000)$ = -20.78 kJ

 $D \rightarrow A$, $Q = 3/2 \times 8.31 \times 1000$ = 12.47 kJ

். மொத்தசக்தி =(41.5–24.93 – 20.78 + 12.47) = 8.31kg

 $\frac{C_{p}}{C_{V}} = \gamma$ $\begin{vmatrix}
C_{p} = \gamma C_{V} \\
Q_{p} = \gamma C_{V}
\end{vmatrix}$ $\frac{Q_{p} - Q_{V}}{Q_{p} - Q_{V}} = R$ $\begin{vmatrix}
C_{V} = \frac{R}{V - 1}
\end{vmatrix}$

எனவே $C_P = \frac{\gamma R}{\gamma - 1}$

$$N_2$$
 இன்முல் $n_1 = \frac{7}{28} = \frac{1}{4} mol$

Ar இன்முல்
$$n_2 = \frac{20}{40} = \frac{1}{2} mol$$

$$CV_1 = \frac{R}{\gamma_1 - 1} = \frac{8.3}{1.4 - 1} = \frac{8.3}{0.4}$$

$$CV_2 = \frac{R}{\gamma_2 - 1} = \frac{8.3}{0.67}$$

$$C_{P_1} = \frac{\gamma_1 R}{\gamma_1 - 1} = \frac{1.4 \times 8.3}{0.4}$$

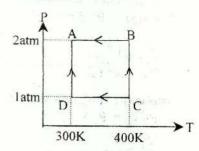
$$C_{P_2} = \frac{\gamma_2 R}{\gamma_2 - 1} = \frac{1.67 \times 8.3}{0.67}$$

ஆனால் தொகுதிக்கு

$$C_{v} = \frac{n_{1} - C_{1} + V_{1} + n_{2}CV_{2}}{n_{1} + n_{2}}$$

= $15.2 \text{ Jmof}^{-1}\text{K}^{-1}$ $n_1CP_1 + n_2CP_2$

 $C_P = \frac{n_1 C P_1 + n_2 C P_2}{n_1 + n_2}$


 $= 23.47 \text{ Jmol}^{-1}\text{K}^{-1}$

89)
$$W_{BC} = nRT \log \left(\frac{V_{C}}{B_{B}} \right)$$

$$= 2 \times 8.32 \times 400 \times \log \left(\frac{P_c}{P_B}\right)$$

$$= 2 \times 8.32 \times 400 \times \log_{10} \left(\frac{2}{1} \right)$$

= 4608 J

$$W_{AB} = P_{B} (V_{B} - V_{A})$$

$$= P_{B} V_{B} - P_{A} V_{A} (::P_{A} - P_{B})$$

$$= nR (T_{B} - T_{A})$$

$$= 2 \times 8.32 \times (400 - 300)$$

$$= 1664 \text{ J}$$

$$W_{CD} = nR (T_D - T_C)$$

= 2 x 8.32 x (300 - 400)
= -1664 J

$$W_{DA} = nRT_D \log \left(\frac{V_A}{B_D}\right)$$

$$= nRT_{D} \log \left(\frac{P_{A}}{P_{D}}\right)$$

=
$$2 \times 8.32 \times 300 \log (V_2)$$

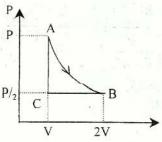
= $-3456J$

மொத்தவேலை

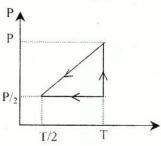
$$= W_{AB} + W_{BC} + W_{CD} + W_{DA}$$
= 1152 J

ii) வாயுவினது ஆரம்ப நிலையை அடைவதால்

$$\Delta U = 0$$


iii)
$$\therefore \Delta \theta = \Delta U + \Delta W$$

 $\Delta \theta = \Delta W = 1152 J$


Physics

Thermo Phisics

M.J.Thava

199

ii)
$$W_{AB} = nRT_i \log \left(\frac{V_f}{B_i} \right)$$

$$= 3x8.3x100x^{\log}\left(\frac{2V}{V}\right) = 1720 \text{ J}$$

$$W_{BC} = \frac{P_2(V - 2V)}{2}$$
$$= \frac{-PV}{2} = \frac{-3 \times 8.3 \times 100}{2}$$

$$(\therefore PV = nRT) = -1245 J$$

 $W_{CA} = 0$ ($\therefore \Delta V = 0$)

். மொத்த வேலை = 48 J iii) இறுதி, ஆரம்ப நிலைகள் ஒரே

இடம் என்பதால் ΔU = 0

$$\Delta\theta = 481 \text{ J}$$

91) ACB பாகையில்

i)
$$Q = 200J$$
, $W = 80 J$

$$\therefore \Delta U = U_B - U_A$$

$$Q = \Delta U + W$$

$$U_{B} - U_{A} = Q - W$$

 $U_{B} - U_{A} = 200 - 80$
 $= 120 \text{ J}$

$$U_{B} = 120 + U_{A}$$

= 120 + 40
= 160 J

$$Q = 144$$

$$W = Q - \Delta U$$

$$= 144 - 120$$

= 24 J

(எல்லாப்பாகையிலும் ΔUசமனாக இருக்கும்) W @ 60i

என்பதால் வாயுவால் வேலைசெய்யப்பட்டு உள்ளது.

$$iii)$$
 BD யில் கனவளவு
மாறாததால் $W=0$
 $Q=\Delta U+W$

$$= U_{B} - U_{D}$$

= $160 - 88$
= $72 I$

பாதை
$$AD \Rightarrow Q = Q_{ADB} - Q_{DB}$$

= 144 - 72
= 72 J

$$\Delta U = U_A - U_B$$
= 40 - 160
- 120 J
$$Q = -120 - 52$$
= -172J

92) 1 தடவை ஆடுதண்டு உட்செலுத்தும்போது
$$P_1 (V + V_0) = P_0 V$$
 $P_1 = P_0 \left(\frac{V}{V + V_0} \right)$

 2^{Maj} தடவை செலுத்தும்போது $P_2(V+V_0)=P_1V$

$$P_{2} = P_{1} \left(\frac{V}{V + V_{0}} \right)$$

$$= \left(\frac{V}{V + V_{0}} \right) \times \left(\frac{V}{V + V_{0}} \right)$$

$$P_2 = \left(\frac{V}{V + V_Q}\right)^2$$

இவ்வாறே n தடவை எனின்

$$P_n = \left(\frac{V}{V + V_O}\right)^n \frac{P_n}{P_O} = \left(\frac{V}{V + V_O}\right)^n$$
. இரு புறம் \log எடுக்க

 $\log\left(\frac{V}{V+V_{-}}\right) = \log\frac{P_{n}}{P_{n}}$

$$\frac{n = \log\left(\frac{P_n}{P_o}\right)}{\log\left(\frac{V}{V + V_o}\right)} = \frac{\log\left(\frac{1}{100}\right)}{\log\left(\frac{1000}{1200}\right)}.$$

$$n = 25.25$$

$$n = 26$$

ஓட்டமின்னியல் 05. 3 01. 2 02. 03. 3 04. 2 1 5 06. 3 07. 3 08. 3 09 1 10 3 13. 2 15. 2 11. 2 14. 12. 4 16. 2 5 18. 3 19. 1 20. 1 17. 22. 2 23. 5 24 4 25. 4 21. 3 3 2 26. 1 27. 28. 29. 2 30. 1 5 5 3 31. 2 32. 33. 34. 5 35. 3 2 36. 1 37. 38. 3 39. 5 40 3 41. 42 43. 4 44. 4 45. 3 5 5 46. 3 47 1 48. 49. 3 50. 51 4 52 2 53. 1 54. 3 55. 4 56. 5 57. 1 58. 1 59. 2 60. 3 65. 2 61. 4 62. 1 63. 2 64 4 3 66. 4 67. 3 68. 4 69. 2 70. 2 71. 5 5 72 1 73. 74. 1 75. 77. 78 79 4 5 76. 3 1 80. 81. 2 82. 1 83. 1 84. 4 85. 2 2 86. 1 87. 4 88. 89. 90. 4 91. 5 93. 3 92. 3 4 94 95. 3 96. 1 97. 5 98. 4 99. 2 100. 1 101.1 102.4 103.3 104.2 105.3 109.1 110.4 106.2 107.2 108.1 112.1 115.4 111.2 113.3 114.2 117.3 118.2 116.2 119.1 120.2 122.1 125.1 123.3 124.2 121.2 126.5 128.2 130.3 127.5 129.1 131.2 135.2 132.1 133.3 134.1 136.3 137.2 138.4 139.1 140.2 145.1 141.2 142.2 143.4 144.5 146.1 147.5 148.2 149.5 150.2 155.2 151.2 152.4 153.3 154.2 157.1 159.2 156.2 158.3 160.1

> 183.4 188.2 Digitized by Noolaham Pandation. noolaham.org | aavanaham.org

163.2

168.3

173.1

178.5

165.3

170.2

175.3

180.3

185.4

190.5

164.2

169.4

174.3 179.1

184.4

189.5

161.2

166.4

171.3

176.4

181.3

186.4

162.4

167.1


172.2

177.4

182.1

187.5

191.4	192.4	193.1	194.3	195.4
196.1	197.5	198.5	199.4	200.2
	4			200.2
01 /			ிடைகள்	1
01. 4	02. 5	03. 4	04.4	05.1
06.3	07. 5	08. 1	09.4	10.1
11.4	12.5	13.1	14.3	15.2
16.4	17. 1	18.2	19.5	20.3
21.4	22.4	23.2	24. 3	25.3
26. 1	27.3	28.3	29. 2	30. 1
31.3	32. 3	33. 1	34.3	35.5
36. 5	37. 1	38.5	39, 5	40.4
41.4	42.3	43.3	44. 2	45.3
46. 5	47.4	48. 5	49. 5	50. 1
51.3	52.4	53.3	54. 2	55.5
	வெப்பப்	1பௌதிகவியல்	விடைகள்	
01.3	02.2	03.4	04. 3	05.4
06.3	07. 1	08.1	09.3	10.3
11.1	12.2	13.3	14.4	15.5
16.1	17. 2	18. 1	19. 1	20.5
21.5	22. 3	23.5	24.2	25. 4
26. 1	27. 1	28.3	29. 3	30. 4
31.3	32. 2	33.4	34. 4	35.5
36. 3	37.5	38. 1	39. 1	40. 4
41.5	42. 2	43.4	44. 5	45.4
46. 1	47. 2	48. 5	49. 2	50.1
51.3	52. 5	53.3	54. 1	55. 4
56. 2	57.4	58.2	59. 4	60. 2
61.3	62. 3	63.4	64.3	65. 4
66. 5	67. 4	68.3	69. 4	70. 4
71.3	72. 1	73.4	74, 1	
76. 4	77.2	78. 4	79.3	75. 1
31.2	82. 2	83. 2	84. 2	80.2
36. 2	87. 5	88. 1	89. 3	85.3
1.1	92. 4	93. 3	94. 4	90. 1
6.3	97. 1	98. 5		95. 1
		70. 3	99.5	100.5
	3.00	126		

