
க.பொ.த. (உ/த) மாணவர்களுக்கான

பௌத்கவியல்

சுருக்கக்குறிப்பு

அலைகளும் அதிர்வுகளும்

கதாடர் - iii

தொகுப்பு:

பொன்னுத்துரை தவசிதன் புனீத குசையப்பர் கல்லூரி (தேசிய பாடசாலை) திருக்கோணமலை

எளிமை இசை இயக்கம்

ஒரு நிலைத்த புள்ளி பற்றி அதிரும் பொருள் ஒன்றில் உள்ள விசையானது நீட்சிக்கு (இடப்பெயர்ச்சிக்கு) நேர்விகித சமனாக இருக்குமாயின் அது எளிமை இசை இயக்கம் எனப்படும்.

அல்லது

ஒரு நிலைத்த புள்ளி பற்றி அதிரும் பொருள் ஒன்றின் ஆர்மூடுகலானது நீட்சிக்கு (இடப்பெயர்ச்சிக்கு) நேர்விகித சமனாக இருக்குமாயின் அது எளிமை இசை இயக்கம் எனப்படும்.

Fα x (ஊக்கின் விதி)

aa x

(மீளியல் எல்லைக்குள் F α x உண்மையாகும்.)

அல்லது

ஒரு நிலைத்த புள்ளி பற்றி விலத்தியும் நோக்கியும் அதிரும் பொருள் ஒன்றில் உள்ள விசை அல்லது ஆர்மூடுகல் நீட்சிக்கு நேர்விகித சமனாக இருக்குமாயின் அது எளிமை இசை இயக்கம் எனப்படும்.

F	αy
F	= ky

ஆனால்

F = mama =-ky a = -(k/m)y a = - $\omega^2 y$

a = -ய²y என்னும் வடிவமானது எளிமை இசை இயக்கத்தைக் குறிக்கும்.

இங்கு	k - என்பது விற்சுருள் மாறிலி.
	III • என்பது திணிவு.
	ω - என்பது கோண வேகம்.
	y - நிலைக்குத்து இடப்பெயர்ச்சி

Waves & Vibration Short Notes

M.P.Thava

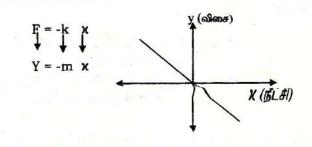
01

Note:

- a = -w²y என்பது y அச்சின் திசையில் எளிமை இசை இயக்கத்தை ஆற்றுகின்றது.
- a = -@²x என்பது x அச்சின் திசையில் எளிமை இசை இயக்கத்தை ஆற்றுகின்றது.

எளிமை இனச இயக்கத்திற்கான சில உதாரணம்

- 1. கடிகார முள்ளின் இயக்கம்
- 2. எளிய ஊசலின் இயக்கம்
- 3. விற்சுருளின் இயக்கம்
- 4. சந்திரனின் இயக்கம்
- 5. வட்ட இயக்கத்தை ஆற்றும் துணிக்கை


எளிமை இவச இயக்கத்தின் இயல்புகள்

- 1. ஒரு நிலைத்த புள்ளி பற்றி அதிரும்
- 2. ஆவர்த்தனமானது
- 3. ஏகபரிமானமானது
- 4. எப்போதும் அலைவு மையத்தானத்தை நோக்கி இருக்கும்

விற்கருள் மாறிலி

ஓர் உடலில் ஒரு அலகு நீட்சியை ஏற்படுத்தவல்ல விசை விற்சுருள் மாறிலி ஆகும்.(மீள்தன்மை எல்லைக்குள் நீட்சி ஏற்படல் வேண்டும்.) x = 1m எனின் F = k

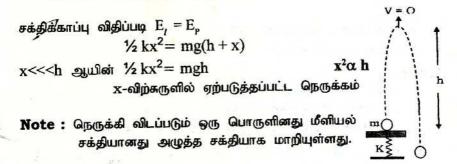
எளியை இசை இயக்கத்தில் விசை எதிர் நீட்சி வரைபு

Waves & Vibration Short Notes

M.P.Thava

Note :

இவ்வரைபின் படித்திறனானது விற்சுருள் மாறிலியைத் தரும். m=k வரைபின் பரப்பானது இவ்விற்சுருளில் சேமிக்கப்பட்ட சக்தியை தரும்.

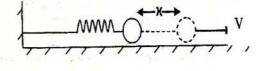

$$\mathbf{E}_{l} = \frac{1}{2} \cdot \mathbf{E}_{l} \cdot \mathbf{F}$$

$$\mathbf{E}_{l} = \frac{1}{2} \mathbf{F} \mathbf{x}$$

$$\mathbf{E}_{l} = \frac{1}{2} \cdot \mathbf{k} \mathbf{x} \cdot \mathbf{x}$$

$$\mathbf{E}_{l} = \frac{1}{2} \cdot \mathbf{k} \mathbf{x} \cdot \mathbf{x}$$

விற்கருளினால் இரு பொருள் நெருக்கி விடப்படும் 8பாது அப்பொருளவடயும் அதியுயர் உயரத்திற்கான தொடர்பு.


விற்கருளினால் இரு பொருள் நெருக்கி விடப்படும் போது அப்பொருளபையும் 8வகத்திற்கான தொடர்பு.

சக்திக்காப்பு விதிப்படி

$$E_{l} = E_{k}$$

$$\frac{1}{2} kx^{2} = \frac{1}{2} mv^{2}$$

$$x \alpha v$$

நெருக்கி விடப்படும் இத்திணிவானது ஒய்வடையும் தூரம் S எனின் ½ kx² = ½ mv² = F.S இங்கு F என்பது உராய்வு விசை

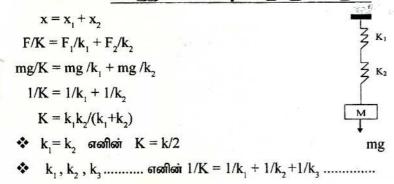
Waves & Vibration Short Notes M.P. Thava

விற்கருளில் இணைக்கப்பட்ட திணிவின் அவைவு காலம், அதிர்வெண்ணுக்கான தொடர்பு.

$$T = 2\pi/ω$$

ஆனால் $T = 1/f \Rightarrow f = \omega/2\pi$
 $\omega = 2\pi f$
ஆனால் $\omega = (k/m)^{1/2}$
 $T = 2\pi/(k/m)^{1/2}$

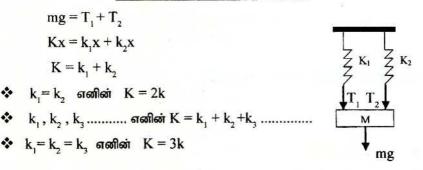
- 🛠 எளிய ஊசலாயின் அலைவு காலம் $T = 2\pi / (l/g)^{1/2}$
- 🛠 எளிய ஊசலின் அலைவு காலம் திணிவில் தங்கியில்லை.
- வப்பநிலை கூடும் போது எளிய ஊசலின் அலைவு காலம் கூடும்.
- ஊசல் இழையின் நீளம் கூடும் போது எளிய ஊசலின் அலைவு காலம் கூடும்.


Note :-

- 🛠 எளிய ஊசலொன்றின் அலைவு காலமானது
 - ஊசல் இழையின் நீளத்தில்
 - ஈர்ப்பு ஆர்முடுகல் ஆகியவற்றில் தங்கியுள்ளது.
- எளிய ஊசலொன்றின் அலைவு காலமானது இழை நிலைக்குத்துடன் அலைய விடப்படும் மிகச்சிறிய கோணத்தில் (10° இலும் சிறிதாயின்) தங்கியில்லை. இதைவிட அதிகரிப்பின் கோணத்தில் அலைவுகாலம் தங்கியிருக்கும் (அதாவது 10° ஐ விட கூடுதலாக இருப்பின்)
- 🍫 விற்சுருள் ஒன்றின் அலைவுகாலமானது
 - 1. விற்சுருளாக்கப்பட்ட பொருளின் தன்மை (k)
 - விற்சுருளில் கட்டித் தொங்கவிடப்பட்ட திணிவு ஆகியவற்றில் தங்கியுள்ளது.
 - இடப்பெயர்ச்சியுடன்(x) அலைவுகாலத்திற்கான தொடர்பு T = 2π /(x/g)^{1/2}
 - 🛠 பொருளின் அலைவு காலம் வெப்பநிலையில் தங்கியுள்ளது.

Waves & Vibration Short Notes

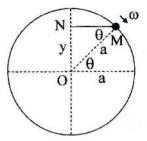
M.P.Thava


இரு விற்கருள்கள் தொடராக இணைக்கப்படும் 8பாது அவற்றின் வினையுள் விற்கருள் மாறிலி:

Note :-

n எண்ணிக்கையான சம விற்சுருள் மாறிலியுடைய விற்சுருள்கள் தொடராக இணைக்கப்பட்டிருக்குமாயின் விளையுள் விற்சுருள் மாறிலி K = k / n

விற்கருள்களை சமாந்தரமாக இணைக்கப்படும் 8பாது விளையுள் விற்கருள் மாறிலி.


Note :-

n எண்ணிக்கையான சம விற்சுருள் மாறிலியுடைய விற்சுருள்கள் சமாந்தரமாக இணைக்கப்பட்டிருக்குமாயின் விளையுள் விற்சுருள் மாறிலி K = nk

Waves & Vibration Short Notes M.P.Thava

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

வட்ட இயக்கத்தை நிகழ்த்தும் துணிக்கையைப்பயன்படுத்தி எளிமை இசை இயக்கம் தொடர்பான சமன்பாடுகள் பெறல்.

இடப்பெயர்ச்சி தொடர்பான சமன்பாடு : $\sin\theta = ON/OM = y/a$ ஆனால் $\theta = \omega t$ $\sin\omega t = y/a$ $y = a \sin\omega t$ ஆரம்ப அவத்தை வித்தியாசம் ϕ எனின் $y = a sin(\omega t + \phi)$

வேகம் தொடர்பான சமன்பாடு : y = asinot dy/dt = accosot v = accosot

ஆர்முடுகல் தொடர்பான சமன்பாடு : v = awcoswt dv/dt = -aw²sinwt f = -aw²sinwt

• $\omega = 2\pi f$

• $y = asin(2\pi f t)$

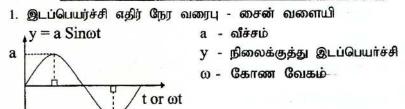
• $v = a\omega cos(2\pi f t)$

 $f = -a\omega^2 \sin(2\pi f t)$

Waves & Vibration Short Notes

M.P.Thava

அவைவு காலம் (T)


ஓர் அலைவை நிகழ்த்த எடுக்கும் காலம் அலைவுகாலம் எனப்படும்.

ອາສານ ຫຼັສາໝ່ (λ)


-a

அவத்தை வித்தியாசம் 2π (360°) ஆக இருக்குமாயின் அப்புள்ளிகளுக்கு இடைப்பட்ட தூரம் அலை நீளம் எனப்படும்.

எளியை இசை இயக்கம் தொடர்பான வரைபுகள்.

	A	B	C	D	E
அலை நீளம்	0	λ/4	λ/2	3λ/4	λ
அவத்தை வித்தியாசம்	0	$\pi/2$	π	$3\pi/2$	2π
வீச்சம் / இடப்பெயர்ச்சி	0	a	0	-a	0
வேகம்	aω	0	-aω	0	aω
ஆர்முடுகல்	0	$-a\omega^2$	0	aw ²	0

Waves & Vibration Short Notes

M.P.Thava

Note :-

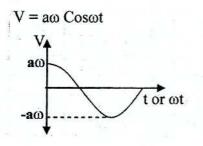
- A, C, E இல் வேகமானது உயர்வாகவும் ஆர்முடுகல் இழிவாகவும் இருக்கும். (பூச்சியம்)
- B, D இல் வேகம் இழிவாகவும், (பூச்சியம்) ஆர்முடுகல் உயர்வாகவும் இருக்கும்.
- A, C, E இல் இயக்கசக்தி உயர்வாகவும், B, D இல் அழுத்தசக்தி உயர்வாகவும் இருக்கும்.

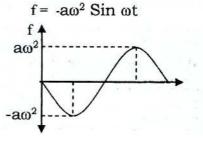
Note :-

- இடப்பெயர்ச்சிக்கான தொடர்பு : x = aSin wt
- வேகத்திற்கான தொடர்பு : V = a cos wt

ஆர்முடுகலிற்கான தொடர்பு : f = -aw² Sin wt

🛠 எளிமை இசை இயக்கத்தின் போது. a=- $\omega^2 x$


- எனவே ஆர்முடுகல் எதிர் இடப்பெயர்ச்சி வரைபு நேர்கோடாகும்
- இவ்வரைபின் படித்திறன் கோணவேகத்தின் வர்க்கத்தைத் தரும்.

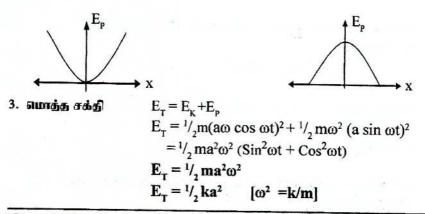

8வகம் எதிர் 8நர வரைபு

a(ஆர்முடுகள்)

X (fild)

Waves & Vibration Short Notes

M.P.Thava

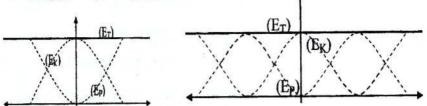

08

8வகம் எதிர் இடப்பெயர்ச்சி வரைபிற்கான தொடர்பைப் பெரல்

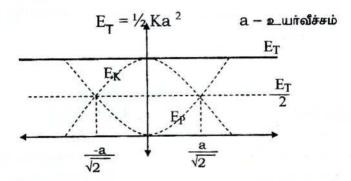
$$(1)^{2} + (2)^{2} \Longrightarrow \quad \sin^{2} \omega t + \cos^{2} \omega t = (x/a)^{2} + (v/a\omega)^{2}$$
$$\Box = (x/a)^{2} + (v/a\omega)^{2}$$

 $(x/a)^2 + (v/a\omega)^2 = 1$ இவ் வடிவமானது நீள்வளையத்தைத் தரும். $(x/a)^2 + (v/a\omega)^2 = 1$ $x^{2/a^2} + v^{2/a\omega} = 1$ $v^2 = a\omega (1 - x^{2/a^2})$ $v^2 = \omega^2(a^2 - x^2)$

anilanu Bane Buušasjaji1. augās etās2. augās etās $E_p = \frac{1}{2}kx^2$ $E_K = \frac{1}{2}mv^2$ $= \frac{1}{2}k (x = a \sin \omega t)^2$ $= \frac{1}{2}m(v = a\omega \cos \omega t)^2$ $E_p = \frac{1}{2}k (a \sin \omega t)^2$ $E_K = \frac{1}{2}m(a\omega \cos \omega t)^2$ $E_p = \frac{1}{2}m\omega^2 (a \sin \omega t)^2$ $[\omega^2 = k/m]$



Waves & Vibration Short Notes


M.P.Thava

எமாத்த சக்தி எதிர் இடப்பெயர்ச்சி வரைபு

வனரபு தொடர்பான சில முழவுகள்

A,B என்னும் புள்ளிகளில் அவத்தை வித்தியாசம் 45° ஆகும்.

A,B என்னும் புள்ளிகளில் சக்தியானது மொத்தசக்தியின் ½ பங்காகும்.

$$E_{K} = \frac{1}{2}E_{T} = \frac{1}{4}Ka^{2}$$

- ் மொத்த சக்தி E_T = ½ Ka²
- A,B என்னும் புள்ளிகளில் வீச்சம் a /(2)^{1/2}
- A,B என்னும் புள்ளிகளில் அழுத்தசக்தியும், இயக்கசக்தியும் சமனாக இருக்கும்.

Waves & Vibration Short Notes

M.P.Thava

x அச்சு திவசயில் அலையின் இடப்பையர்ச்சிக்கான சில சமன்பாட்டு வ<u>டிவங்கள்</u>

* y = asin($\omega t - kx + \phi$)இங்கு $k = 2\pi/\lambda$, $V = \omega/k$
வ-அலையின் உயர் வேகம், V-அலையின் வேகம்

* y = asin2π[(t/T) -(x/λ)] இங்கு T - அலைவு காலம்

இரு அவைகள் 8மற்பொருந்தும் 8பாது விளையுள் அவையின் இடப்பெயர்ச்சி

வகை -1 ❖ x அச்சு திசையில் y = asin(ωt -kx)

x அச்சுக்கு எதிர் திசையில் y = asin(wt +kx)

 இரு அலைகளும் மேற்பொருந்தும் போது
 y = y₁+ y₂
 y = asin(ωt -kx) + asin(ωt +kx)
 y = 2asinωt .coskx
 y = Asinωt இங்கு A= 2acoskx

வகை -11 x அச்சு திசையில் $y_1 = asin 2\pi/\lambda(vt - x)$ x அச்சுக்கு எதிர் திசையில் $y_2 = asin 2\pi/\lambda(vt + x)$

* இரு அலைகளும் மேற்பொருந்தும் போது $y = y_1 + y_2$ $y = asin2\pi/\lambda(vt - x) + asin2\pi/\lambda(vt + x)$ $y = 2acos(2\pi/\lambda)x \cdot sin(2\pi/\lambda)vt$ $y = Asin(2\pi/\lambda)vt$ இங்கு $A = 2acos(2\pi/\lambda)x$

Waves & Vibration Short Notes

M.P.Thava

அனலகள்

🏟 றன் (f):

ஒரு செக்கனில் நிகழ்த்தும் அலைவுகளின் எண்ணிக்கை மீடிறன் ஆகும். f = 1/T அலகு – Hz , s⁻¹

அவல இயக்கம் இரண்டு வகைப்படும்

குறுக்கலை இயக்கம்
 நீள்பக்க அலை இயக்கம்

குறு க்கலை இயக்கம்

அலை செல்லும் திசைக்கு செங்குத்தாக அல்லது குழப்பம் ஒன்று செல்லும் திசைக்கு செங்குத்தாக துணிக்கைகள் அதிருமாயின் அது குறுக்கலை இயக்கம் எனப்படும்.

உ-ம் : நீரலை, X கதிர், γ கதிர், UV கதிர், IR கதிர், இழையில் செல்லும் அலை, நுணுக்கலைகள், மின் காந்த அலைகள் (UHF, VHF, FM, MW, SW)

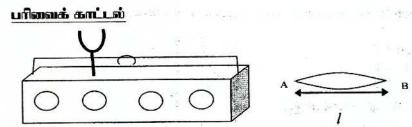
நீள்பக்க அவை இயக்கம்

குழப்பம் செல்லும் திசையில் அல்லது அலை செல்லும் திசையில் துணிக்கைகள் அதிருமாயின் அது நீள்பக்க அலை இயக்கம் எனப்படும். உ-ம் : ஒலி அலை, சிலிங்கியின் அலை இயக்கம்

🛠 இங்கு நெருக்கல் ஐதாக்கல் என்பன மாறிமாறி இடம்பெறும்.

ប្បាំត្ប

அதிரும் பொருளினதும், பிரயோகிக்கும் விசையினதும் அதிர்வெண்கள் சர்வசமனாக இருப்பின் பிரயோகிக்கும் விசை பொருளை அதிரச்செய்யும் போது அது உயர்வீச்சத்துடன் உடனடியாக அதிரும். அதாவது உச்சசக்தி அதிரும் தொகுதிக்கு இடமாற்றம் செய்யப்படும். இந்நிகழ்வு பரிவு ஆகும்.


NOTE : 🍫 ஒலி அலைகளின் வேகத்தின் இறங்கு வரிசை திண்மம் > திரவம் > வாயு

÷

ஒளியானது ஒலிக்கு எதிர்மாறானது. திண்மம் < திரவம் < வாயு

Waves & Vibration Short Notes

M.P.Thava

AB என்ற இழையின் மீது கடதாசித்துண்டு ஒன்று மடித்துப் போடப்பட்டு இசைக்கவரானது அதிரச் செய்யப்பட்டு அப்பெட்டியின் மீது (சுரமானிப் பெட்டி) வைக்கப்படும். அப்போது AB யின் மீது மடித்துப்போடப்பட்ட கடதாசித் துண்டானது தூக்கி எறியப்படும். அப்போது இசைக்கவரின் அதிர்வெண்ணும் இழையினது அதிர்வெண்ணும் சமனாக இருக்கும். இந்நிகழ்வு பரிவு எனப்படும்.

NOTE : பெட்டியின் மீது இசைக்கவர் பிடிக்கப்படுவதன் காரணம் : வளியைவிட திண்மத்தின் ஊடாக விரைவாக சக்தி ஊடுகடத்தப்படும்.

🔅 அழப்பு

ஏறத்தாழ சர்வசமனான இரண்டு அலைகள் ஒரே நேர்கோட்டில் ஒரே திசையில் செல்லும்போது அவற்றின் விளையுள் அலையில் ஒரு ஆவர்த்தன ஏற்ற இறக்கத்தைக் காணலாம். இத்தோற்றப்பாடு அடிப்பு எனப்படும்.

உ- ம் : இரண்டு பொருட்கள் f_1, f_2 எனும் அதிர்வெண்ணுடன் அதிரும்போது அடிப்பு மீடிறன் $f_1 - f_2$ அல்லது $f_2 - f_1$

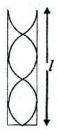
குழாய்களில் பரிவு

1. இருமுனை முடிய சூழாய்

🛠 அடிப்படை சுரம்

 $\lambda/4 = l$ $\lambda = 4l$ $V = f_0 4l$ $f_0 = V/4l$

Waves & Vibration Short Notes


M.P.Thava

18

🛠 இரண்டாம் அடிப்படை சுரம் (முதலாம் மேற்றொனி)

மூன்றாம் அடிப்படை சுரம் (இரண்டாம் மேற்றொனி)

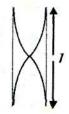
$$5\lambda/4 = l$$

 $\lambda = 4l/5$
V= $f\lambda$ ஐப் பயன்படுத்த
V= $f_2 4l/5$
 $f_2 = 5V$
 $4l$
 $f_2 = 5f_0$

எனவே *f* = <u>n</u>

 $f = \frac{\mathrm{nV}}{4l}$

இங்கு $n = 1, 3, 5, 7, \dots, n$ $(f_0, 3f_0, 5f_0, \dots, nf_0)$


2. இரு முனையும் திறந்த குழாய்

🛠 அடிப்படைச் சுரம்

$$l = \lambda / 2$$
$$\lambda = 2l$$

$$V = f\lambda$$
 ஐப் பயன்படுத்த
 $f_o = V/2I$

Waves & Vibration Short Notes

M.P.Thava

🛠 இரண்டாம் அடிப்படைச் சுரம்(முதலாம் மேற்றொனி)

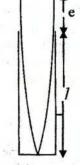
 $\lambda = l$ V = fλ ஐப் பயன்படுத்த

$$f_1 = V / l$$

$$f_1 = 2V / 2l$$

$$\therefore f_1 = 2f_0$$

• மூன்றாம் அடிப்படைச் சுரம் (இரண்டாம் மேற்றொனி))


 $3\lambda/2 = l$ $\lambda = 2l/3$ $V = f\lambda$ ஐப் பயன்படுத்த $f_2 = 3V/2l$ $\therefore f_2 = 3f_0$

எனவே n ஆவது அடிப்படைச் சுரம் $f=\underline{nV}$

🔄 முனைவுத் திருத்தம் கருதப்படின்

ுரு முனை திறந்த குழாய்

$$\lambda/4 = l + e$$

 $\lambda = 4(l + e)$
 $V = f\lambda$ ஐப் பயன்படுத்த
 $f = V$
 λ
 $= V$
 $4(l + e)$

n = 1.2.3.4..

NOTE:

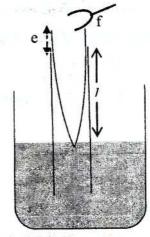
9

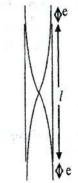
அலை ஒன்றில் x தூரத்திலுள்ள இரு புள்ளிகளுக்கு இடையிலான அவத்தை வித்தியாசம் $\phi = 2\pi x/\lambda$

இருமுனையும் திறந்த குழாய்

 $\lambda/2 = l + 2e$ $\lambda = 2(l+2e)$ $V = f \lambda$ ஐப் பயன்படுத்த $f = \underbrace{V}_{2(l+2e)}$

NOTE : பரிவுக் குழாயின் ஆரைக்கும் முனைவுத் திருத்தத்திற்குமான விகிதம் ஒரு மாறிலி ஆகும்.

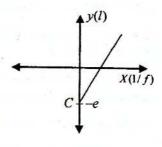

ஒருமுனை திறந்த குழாய். இருமுனை திறந்த குழாய்


e/r = 0.6 e/r = 1.2e = 0.6r e = 1.2r

பரி8சாதவன ரீதியாக வளியில் இலியின் 8வகத்தைத் துணிதல் – பரிவுக் குழாய் முறை

திரவம் கொண்ட தாழியினுள் இருமுனையும் திறந்த பரிவுக் குழாய் ஆனது முற்றாக அமிழ்த்தப்படும். பின்னர் பரிவுக் குழாய் ஆனது படிப்படியாக உயர்த்திய வண்ணம் இசைக்கவர் மீட்டப்பட்டு பரிவுக் குழாயின் மேல் பிடிக்கப்படும்.

- ஒரு சந்தர்ப்பத்தில் ஒரு உரத்த ஒலி கேட்கப்படும் அச்சந்தர்ப்பத்தில் குழாய் ஆனது உயர்த்துவது நிறுத்தப்பட்டு திரவத்திற்கு மேலுள்ள குழாயின் நீளம் (1) அளக்கப்படும்.
- இவ்வாறு வெவ்வேறு இசைக்கவர்களுக்கு ஒத்த குழாயின் நீளம் அளக்கப்படும்.
- 🛠 பெறப்பட்ட அளவீடுகள் அட்டவணைப்படுத்தப்படும்.



കൊണ്ണക

λ

$$\lambda/4 = l + e$$

$$\lambda = 4(l + e)$$

Substituting V = $f\lambda$
V = f. 4 (l + e)
V/4f = (l + e)
l = (V/4) . 1/f - e
l = (V/4) . 1/f - e
 $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$
Y m x - c

••• அட்டவணையில் இருந்து 1/f இற்கு ஒத்த / இற்கான வரைபு வரையப்படும்.

e 1

வரைபின் படித்திறனிலிருந்து வளியில் ஒலியின் • வேகம் துணியப்படும்.

$$m = V/4 => V = 4m$$

ጳ வரைபின் துணர் டிலிருந்து வெட்டுத் முனைவுத்திருத்தம் துணியப்படும்.

f	1	1/f
-	-	-
-	-	-
-	-	-
1	327 -	

NOTE :

- 💠 பரிவுக் குழாயானது முற்றாக திரவத்தினுள் அமிழ்த்தப்பட்டு படிப்படியாக உயர்த்த வேண்டும். ஏனெனில் முதலாம் அடிப்படைச் சுரத்தில் அதிருகின்றது என்பதை உறுதிப்படுத்தவே இவ்வாறு செய்யப்படுகிறது.
- 💠 இப் பரிசோதனையில் அறை வெப்பநிலை மாறாதிருக்க வேண்டும்.
- 🔹 திரவத்தின் மேற்பரப்பு இழுவிசை புறக்கணிக்கத்தக்கதாக இருத்தல் வேண்டும்.

மின்காந்த அலைகளின் இயல்புகள்

- மின்காந்த அலைகளை சாதாரண மனித காதினால் உணர முடியாது. ••• ஏனெனில் மனிதனது கேள்தகு மீடிறன் எல்லை 20Hz - 20000Hz ஆனால் மின்காந்த அலைகள் 20,000Hz இற்கு அப்பாற்பட்டவை.
- 💠 மின்காந்த அலைகள் செல்வதற்கு ஊடகம் அவசியமில்லை.

Waves & Vibration Short Notes

M.P.Thava

- மின்காந்த அலைகள் எல்லாம் குறுக்கலைகள் ஆகும். ஆனால் குறுக்கலைகள் எல்லாம் மின்காந்த அலைகள் இல்லை.
- மின்காந்த அலைகள் ஒளியலையின் வேகத்தில் செல்லும். (வேகம் 3x10⁸ms⁻¹)
- மின்காந்த அலைகள் தெறிப்பு, முறிவு, தலையீடு, கோணல், முனைவாக்கம், மேற்பொருந்துகை என்பவற்றிற்கு உட்படும்.
- 🛠 மின்காந்தத்தினால் மின்காந்த அலைகள் பாதிப்பிற்கு உட்படும்.
- அணு அல்லது இலத்திரன்கள் சக்தியை இழக்கும் போது மின்காந்த அலைகள் உருவாகும்.
- வெப்பக் கதிர்ப்பு (IR, UV, VIBGYOR ...) 'X' கதிர், 'α' கதிர், 'β' கதிர், றேடியோ அலை. (SW, FM, MW, AM) தொலைக்காட்சி அலை (UHF, VHF), லேசர் கதிர்கள், ஒளி அலைகள் கட்புல ஒளி (VIBGYOR)...... என்பன மின்காந்த அலைகளுக்கு உதாரணம் ஆகும்.
- 🛠 ஊடகத்திற்கு ஊடகம் கதி மாறுபடும்.
- 🛠 டொப்ளர் விளைவை மின்காந்த அலைகளுக்கு பிரயோகிக்கலாம்.
- 💠 ஊடகம் ஒன்றில் மின்காந்த அலைகளின் வேகத்திற்கான சமன்பாடு.

 $V = \sqrt{rac{1}{\mu\epsilon}}$ இங்கு: μ - ஊடகத்தின் காந்த உட்புகவிடு திறன் ϵ - ஊடகத்தின் மின் உட்புகவிடு திறன்

- ் வெற்றிடத்தில் மின்காந்த அலைகளின் =1/√µ₆ε₀ வேகத்திற்கான சமன்பாடு.
- வற்றிடத்தில் வேகத்தின் பருமன் 3x10⁸ms⁻¹ ஆக இருக்கும்.

பொறிமுன்ற அன்லகள்

- 🛠 ஊடகம் அவசியம்.
- நீள்பக்க அலைகளாகவும் (ஒலி அலை, சிலிங்கு அலை) குறுக்கலைகளாகவும் (நீரலை, சிலிங்கு அலை) அமையும்.
- 💠 இவை மின், காந்தப்புலத்தினால் பாதிப்படையாது.
- 🄄 உயர்வேகத்துடன் செல்ல முடியாது. (3x10^sms⁻¹ இலும் குறைவு)

Waves & Vibration Short Notes

M.P. Thava

பொறிமுறை அலைகளின் 8வகத்திற்கான சமன்பாடு

1. வளிபில் நீள்பக்க அனலபின் வேகம்
இங்கு : P - வளியின் அமுக்கம்

$$\rho$$
 - வளியின் அமுக்கம்
 $\gamma = \frac{Cp}{Cv}$ C_p - மாறா அமுக்கத்தில் தன்வெப்பக் கொள்ளளவு
C_V - மாறாக்கனவளவில் தன்வெப்பக் கொள்ளளவு
2. **இவழயில் குறுக்கனையின் பேகம்**
இங்கு: T - இழையில் உள்ள இழுவை
m - இழையில் ஒறுக்கலையின் வேகம்
3. தினர்மத்தில் நீள்பக்க அவையின் வேகம்
3. தினர்மத்தில் நீள்பக்க அவையின் பேகம்
3. தினர்மத்தில் நீள்பக்க அவையின் வேகம்
3. தினர்மத்தில் நீள்பக்க அவையின் வேகம்
3. திரவத்தில் குறுக்கலையின் வேகம்
3. திரவத்தில் குறுக்கலையின் வேகம்
இங்கு: V - திரவத்தில் குறுக்கலையின் வேகம்
த - ஈர்ப்பு ஆர்முடுகல்
h - திரவத்தின் ஆழம் $V = \sqrt{gh}$
NOTE: சிறிய ஆழங்களிற்கே இது உண்மையானது. மிகவும் சிறிய
ஆழமாயின் மேற்பரப்பு இழுவிசை பாதிப்பை ஏற்படுத்தும்.
அப்போது திரவத்தில் - குறுக்கலையின் வேகம்
இங்கு
T - திரவத்தின் மேற்பரப்பு இழுவிசை
A - குற்றலையின் அலை நீளம்
p - திரவத்தின் மேற்பரப்பு இழுவிசை
p - திரவத்தின் அடாந்தி
5. திரவத்தின் நீள்பக்க அலையின் வேகம்
இங்கு:
V - ஒர்ரவத்தில் நீள்பக்க அலையின் வேகம்
இங்கு:
V - திரவத்தின் அடாந்தி
5. திரவத்தின் அடாந்தி
K - திரவத்தின் பளைப்பு மட்டு

Waves & Vibration Short Notes

M.P.Thava

"X" கதிரின் இயல்புகள்

- * இது ஒரு குறுக்கலை.
- நேர்கோட்டில் செல்லும்
- சடத்தினூடு ஊடுருவும்
- * ஏற்றம் அற்றது.
- தெறிப்பு, முறிவு, முனைவாக்கம், கோணல், மேற்பொருந்துகை, தலையீடு என்பவற்றிற்கு உள்ளாகும்.
- * நாகசல்பைற்றுத் திரையில் புளோர் ஒளிர்வை ஏற்படுத்தும்
- ஒளிப்படத்தாளை பாதிக்கும். * ஒளி மின்விளைவை ஏற்படுத்தும்.

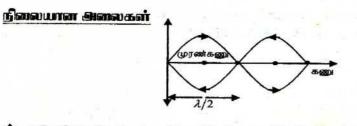
"X" கதிரின் இயல்புகள்

01. மருத்துவத் துறையில் பயன்படுகின்றது

- "X" கதிர் படம்
- * புற்றுநோய்க் கலங்களை கண்டறிதல்
- * புற்றுநோய்க் கலங்களை அழித்தல்.
- 02. சுரங்கப் பரிசோதனையில் பயன்படுத்தப்படுகின்றது.
- 03. சுரங்கக் கைத்தொழிலில் பயன்படுகின்றது (புதைபொருள் ஆய்வு)
- 04. குழாய்களில் ஏற்படும் வடிப்புக்களை கண்டறிதல்.
- 05. அணு வெண்ணைத் துணிதல்

விருத்தியலைகள்

- 🛠 ஒரே திசையில் செல்லும் அலைகளால்ஏற்படும்
- ஒவ்வொரு துணிக்கையும் ஒரே வீச்சமும் அதிர்வெண்ணும் உடையது.
- 🛠 அதிர் வெண் மாறாது (ஊடகத்திற்கு ஊடகம்)
- அலை முன்னேறும் போது ஒவ்வொரு புள்ளியும் ஒரே அமுக்க, அடர்த்தி வேறுபாட்டை உணரும்.

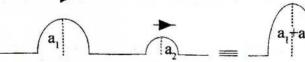

🍫 சக்தி முன்னேறும்.

🍫 நிலையான அலையின் கணுவில் அமுக்கமாறல் உயர்வாகும்.

Waves & Vibration Short Notes

M.P.Thava

- * இது ஒரு மின்காந்த அலை
- * ஒளியின் வேகத்துடன் செல்லும்
- * வாயுக்களை அயனாக்கும்



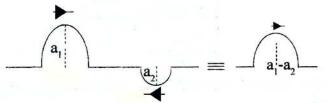
- ஒரே நேர் கோட்டில் எதிர் எதிர் திசைகளில் செல்லும் அலைகளால் ஏற்படும்.
- துணிக்கையின் வீச்சம் கணுக்களில் பூச்சியமாகவும் முரண்கணுக்களில் வீச்சம் அல்லது இடப்பெயர்ச்சி உயர்வாகக் காணப்படும்.
- 🛠 அதிர்வெண் மாறாது
- அமுக்க அடர்த்தி மாற்றங்கள் கணுக்களில் உயர்வாகவும், முரண்கணுக்களில் இழிவாகவும் இருக்கும்.
- 🛠 சக்தி முன்னேறிச் செல்லாது.

8மற்பொருந்துகைத் தத்துவம்

இரு அலைகள் மேற்பொருந்தும் போது உருவாகும் விளையுள் அலையின் வீச்சமானது அவ் அலைகளின் வீச்சங்களின் அட்சரகணித கூட்டுத்தொகைக்குச் சமனாகும்.

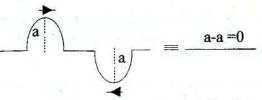
 ஒரே திசையில் செல்லும் அலைகள் - இரு அலைகளுக்கு இடையில் அவத்தை வித்தியாசம் பூச்சியம்

இரு அலைகளுக்கிடையிலான அவத்தை வித்தியாசம் 0 ஆகவும் வீச்சம் a₁,a₂ ஆகவும் இருந்தால் விளையுள் வீச்சம்


$$\begin{aligned} a^2 &= a_1^2 + a_2^2 + 2a_1 a_2 \cos\theta \\ \theta &= 0 \text{ subsidin} \quad a^2 &= a_1^2 + a_2^2 + 2a_1 a_2 \cos\theta \\ a^2 &= a_1^2 + a_2^2 + 2a_1 a_2 \cdot 1 \\ a^2 &= (a_1 + a_2)^2 \\ a &= a_1 + a_2 \end{aligned}$$

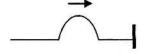
Waves & Vibration Short Notes

M.P.Thava


Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

 எதிர் திசையில் செல்லும் அலைகள் - இரு அலைகளுக்கு இடையில் அவத்தை வித்தியாசம் 180°

 $θ = 180^{\circ}$ ஆயின் $a^2 = a_1^2 + a_2^2 + 2a_1 a_2 \cos\theta$ $a^2 = a_1^2 + a_2^2 + 2a_1 a_2 \cos180$ $a^2 = a_1^2 + a_2^2 + 2a_1 a_2 .(-1)$ $a^2 = (a_1 - a_2)^2$ $a = a_1 - a_2$


 எதிர் திசையில் செல்லும் அலைகள் - இரு அலைகளுக்கு இடையில் அவத்தை வித்தியாசம் 180° (சம வீச்சமுடையவை)

படு அலை தெறியலை 1.விறைப்பான முனையில் இழையின் நுனி பொருத்தப்பட்டுள்ளது

2.சுயாதின முனையில் இழையின் நுனி பொருத்தப்பட்டுள்ளது

Waves & Vibration Short Notes

M.P.Thava

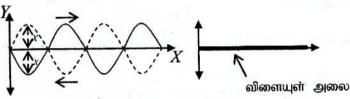
மேற்பொருந்துகைத் தத்துவத்தின் 8தாற்றப்பாடுகள்.

- 01. தலையீடு
- 02. அடிப்புக்கள்
- 03. நிலையான அலைகள் அல்லது நின்ற அலைகள்.

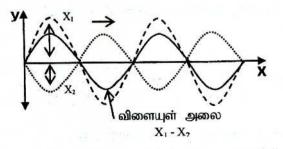
தனலயீடு

தலையீடு இரு வகைப்படும். 01. ஆக்கும் தலையீடு

02. அழிக்கும் தலையீடு


y

விளையுள் அலை

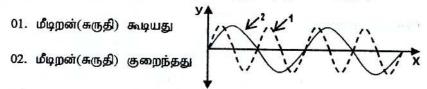

அழிக்கும் தலையீடு

ூக்கும் தலையீடு

1. சம வீச்சமுடையது

2. சமமற்ற வீச்சமுடையது

Waves & Vibration Short Notes

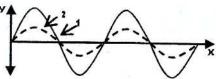

M.P.Thava

வினச ஒலி

ஒழுங்கான அதிர்வினால் உண்டாக்கப்படும் ஒலி இசை ஒலி எனப்படும்.

இலி தங்கியுள்ள காரணிகள் 01. சுருதி 02. உரப்பு

கூளுதி: இது மீடிறனில் தங்கியிருக்கும். அதிர்வெண் கூடிய ஒலி சுருதி கூடிய ஒலியாகும். (ஒளி - நிறம் , ஒலி - சுருதி)

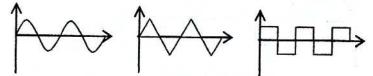


உரப்பு :

இது வீச்சம், ஒலிமுதலில் இருந்தான தூரம், ஊடகத்தின் அடர்த்தி , ஒலிமுதலின் பருமன் என்பவற்றில் தங்கியிருக்கும். அலகு: Phon (போன்) (ஒளி - பிரகாசம் , ஒலி - உரப்பு)

01. உரப்பு கூட

02. உரப்பு குறைய


03. uணiu

Note: உரப்பு ∝ (வீச்சம்)²

வீச்சம் ∝ 1/ஒலிமுதலில் இருந்தான தூரம்

பண்பு

அலைவடிவம் அல்லது மேற்றொனிகளின் பிரசன்னத்தில் தங்கியிருக்கும்.

பெண் குரல் சுருதி கூடியது. உரப்பு குறைந்தது. ஆண் குரல் சுருதி குறைந்தது. உரப்பு கூடியது.

Waves & Vibration Short Notes

M.P.Thava

NOTE: உரப்பானது வீச்சம், ஒலிமுதலிலிருந்தான தூரம், ஊடகத்தின் அடர்த்தி, ஒலிமுதலின் பருமன் ஆகியவற்றில் தங்கியிருக்கும்.

ຸຍສາໃພໃໝ່ ອຸໝີເພີສຳ Bausub ຄຸລແບ່ບເງໂໝຄຸນພີຄຳ ສຸໝ່ສໂພງຄຳຄາສຸມ என்பதைக் காட்டல்

அகிலவாயுச் சமன்பாடு

PV = nRT

P – வாயுவின் அமக்கம். இங்கு

V – வாயுவின் கனவளவு.

n – ഖாயுவின் மூல் எண்ணிக்கை.

R – அகிலவாயு மாறிலி.

T - வாயுவின் தனிவெப்பநிலை $T = (273 + \theta)K$

PV = nRTPV = (W/M) RT(n = W/M)PV = WRT/M $P = (W/V) \times RT/M$ $(\rho = W/M)$ $P = \rho RT/M$ $P/\rho = RT/\rho$ (2) $V = \sqrt{\frac{\gamma RT}{\gamma RT}}$

(1) இல் (2) ஐப் பிரதியிட

γ, R,M – என்பன ஒரு குறித்த வாயுவிற்கு மாறிலி ஆகும். . வளியில் ஒலியின் வேகமானது வெப்பநிலையில் தங்கியிருக்கும்.

> VaVT $\frac{V_1}{V_2} = \sqrt{\frac{T_1}{T_2}} \implies \frac{V_1}{V} = \sqrt{\frac{273 + \theta_1}{273 + \theta_2}}$

*T,,T,K யில் அளவிடப்பட்டுள்ளது. 0, 0, 0C யில் அளவிடப்பட்டுள்ளது

🍄 வளியில் ஒலியின் வேகம் குறித்த வெப்பநிலையில் அமுக்கத்தில் கங்கியில்லை.

Waves & Vibration Short Notes

M.P.Thava

வளியில் ஒலியின் 8வகத்திற்கும் வளி மூலக்கூறு களின் இடைவர்க்க மூல 8வகத்திற்கும் இடையில் உள்ள விகிதத்திற்கான தொடர்ணபப் பெறல்

இலட்சிய வாயுச் சமன்பாடு

- $PV = \frac{1}{2}mNC^2$ இங்குP – வாயுவின் அமுக்கம். V – வாயுவின் கனவளவு. $PV = \frac{1}{2}mNC^{2}$ N – வாயு மூலக்கூறுகளின் எண்ணிக்கை. m – வாயு மூலக்கூறு ஒன்றின் திணிவு. – வாயு மூலக்கூறுகளின் இடைவர்க்க $PV = \frac{1}{2}WC^2$ ் ² மூலக்கதி ρ – வாயுவின் அடர்த்தி. $P = \frac{1}{3} \left(\frac{W}{V} \right) C^2$ W = mN – வாயுவின் மொத்தத்திணிவு. $\frac{P}{\rho} = \frac{C^{\frac{2}{2}}}{3}$(2) $V = \sqrt{\frac{\gamma P}{\rho}}$(1) $P=\frac{1}{3}\rho C^2$ (1) இல் (2) ஐப் பிரதியிட $V = \sqrt{\frac{\gamma}{2}} \sqrt{C^2}$ $\frac{V}{\sqrt{2}} = \sqrt{\frac{\gamma}{3}}$
- 🛠 வளியில் ஒலியின் வேகத்திற்கும் வளி மூலக்கூறுகளின் இடைவர்க்க மூல வேகத்திற்கும் இடையில் உள்ள விகிதமானது γ வில்மாத்திரம் தங்கியுள்ளது.

$$\sqrt[4]{\sqrt{c^2}} \neq \overline{c}$$

ஓர் அணுவாயுக்களுக்கு γ =1.4 , ஈரணு வாயுக்களுக்கு γ =1.67 Waves & Vibration Short Notes

> Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

M.P.Thava

வளியில் ஓலியின் 8வகம் தங்கியுள்ள கறுணிகள்

01	. வெப்பநில	லை : ஒலியின் வேகம் தனி வெப்பநிலையின் வர்க்கமூலத்திற்கு நேர்விகித சமனாகும்.(V α√ T)
02.	ஈரப்பதன்	: ஈரப்பதன் அதிகரிக்கும் போது ஒலியின் வேகம் அதிகரிக்கும். ஏனெனில் ஈரப்பதன் அதிகரிக்கையில் வளியின் அடர்த்தி குறையும். γ அதிகரிக்கும் (நீராவி வளியிலும் அடர்த்தி குறைந்தது)
03.	காற்று	: காற்று வீசும் திசையில் ஒலியின் வேகம் அதிகரிக்கும். (= V+W), எதிர் திசையில் குறையும்.(= V-W) காற்றின் வேகம் -W, நிலையான வளியில் ஒலியின்
04.	ഖന്ധ്യഖിൽ	வேகம் -∨ அடர்த்தி : வாயுவின் அடர்த்தி குறையும் போது ஒலியின் வேகம் அதிகரிக்கும்.(V α√1/ρ)
05.	வாயுவின்	மூலக்கூற்று திணிவு : மூலக்கூற்று திணிவு குறைந்த வாயுக்களில் ஒலியின் வேகம்

Note:

M₁,M₂ மூலக்கூற்று திணிவுள்ள முறையே V₁,V₂ கனவளவுள்ள வாயுக்கள் கலக்கப்படும் போது கலவையின் மூலக்கூற்று திணிவு M = (M₁V₁+M₂V₂)/(V₁+V₂)

அதிகரிக்கும்.(V α√1/M)

• ρ₁, ρ₂ அடர்த்தியுள்ள முறையே V₁, V₂ கனவளவுள்ள வாயுக்கள் கலக்கப்படும் போது கலவையின் அடர்த்தி ρ= (ρ₁V₁+ρ₂V₂)/(V₁+V₂)

🛠 எளிய ஊசல் ஒன்றின் அலைவு காலம் $T=2\pi\sqrt{rac{l}{g}}$

எளிய ஊசல் ஒன்றின் குண்டு புறக்கனிக்க முடியாத ஆரையுடையதாயின் (r) அலைவு காலம் $T = 2\pi \sqrt{\frac{(l+r)}{g}}$

Waves & Vibration Short Notes

இழையில் குறு க்கலையின் 8வகம் தங்கியுள்ள காரணிகள்

ஓரலகு நீளத்திணிவு $m = M/L = [(Al) \rho]/L = A \rho$

:
$$V = \sqrt{\frac{T}{m}} = \sqrt{\frac{T}{A\rho}} = \sqrt{\frac{T}{\pi r^2 \rho}}$$

தகைப்பு = விசை / குறுக்குவெட்டுப்பரப்பு = F/A

விகாரம் = நீட்சி / ஆரம்ப நீளம் = e / L

யங்கின் மட்டு = தகைப்பு / விகாரம் = (F/A)/(e/L)Y = FL/Ae இங்கு $e = L\alpha\theta$

ஆகவே Y = FL/AL
$$\alpha\theta$$

F = YA $\alpha\theta$
 $V = \sqrt{\frac{T}{A\rho}}$ இல் (1) ஐப் பிரதியிட (F = T)
 $\therefore V = \sqrt{\frac{Y\alpha\theta}{\rho}}$

இங்கு ρ, Υ மாறவில்லை எனக் கொள்க.

இழையில் குறு க்கலையின் Bவகம் தங்கியுள்ள காரணிகள்

- 01. இழையில் உள்ள இழுவை (T)
- 02. இழையின் ஒரலகு நீளத்திணிவு (m)
- 03. இழையின் குறுக்குவெட்டுப் பரப்பு (A), ஆரை(r), விட்டம்(d)
- 04. இழையின் அடர்த்தி (ρ)
- 05. இழையின் யங்கின்மட்டு (Y)
- 06. இழையின் வெப்பநிலைக் குணகம் (α)
- 07. இழையின் வெப்பநிலை (θ)

Waves & Vibration Short-Notes

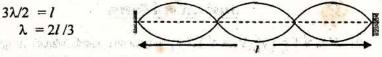
M.P.Thava

இனழயில் குறு க்கலையின் Bவகம் தங்கியுள்ள காரணிகள் சமன்பாட்டு ரீதியாக

01. V α $\sqrt{T} \Rightarrow V_1/V_2 = \sqrt{T_1/T_2}$ ஏனைய கணியங்கள் மாறிலி 02. V α $1/\sqrt{m} \Rightarrow V_1/V_2 = \sqrt{m_2/m_1}$ ஏனைய கணியங்கள் மாறிலி 03. V α $1/\sqrt{A} \Rightarrow V_1/V_2 = \sqrt{A_2/A_1}$ ஏனைய கணியங்கள் மாறிலி 04. V α $1/\sqrt{p} \Rightarrow V_1/V_2 = \sqrt{p_2/p_1}$ ஏனைய கணியங்கள் மாறிலி 05. V α $1/\sqrt{r^2} \Rightarrow V α 1/r \Rightarrow V_1/V_2 = r_2/r_1 = d_2/d_1$ ஏ.க மாறிலி

அதிரும் இழைவொன்றின் அதிர்வண்ணிற்கான

தொடர்பைப் பெறல்


lú snyúusou š snyú.

$$\lambda/2 = l$$

 $\lambda = 2l$
 $V = f\lambda$ gyú umoliása
 $f = V/2l$
sysemoù $v = \sqrt{\frac{T}{m}}$ $\therefore f_0 = \frac{1}{2l}\sqrt{\frac{T}{m}}$
2ú snyúusou š snyú (lú GuýGpred)
 $\lambda = l$
 $V = f\lambda$ gyú umoliása
 $f = V/\lambda$
 $= V/l$
 $= 2V/2l$
 $\therefore f_1 = \frac{2}{2l}\sqrt{\frac{T}{m}}$ $\therefore f_1 = 2f_0$

Waves & Vibration Short Notes

M.P.Thava

3ம் அடிப்படைச் சுரம் (2ம் மேற்றொனி)

「行いたい」に見ていたので、最近

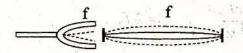
 $V = f \lambda$ ஐப் பாவிக்க $f_2 = V/\lambda$

$$\therefore f_2 = \frac{3}{2l} \sqrt{\frac{T}{m}} \qquad \therefore f_2 = 3f_0$$

எனவே n ஆவது அடிப்படைச் சுரத்திற்<mark>கான தொடர்</mark>பு

:.
$$f = \frac{n}{2l} \sqrt{\frac{T}{m}}$$
 @rises n = 1, 2, 3, 4, 5.....

NOTE:


... இழையில் அதிர்வெண் ஆனது fo, 2fo, 3fo... என மாறும். இரு முனை திறந்த குழாயிலும் அதிர்வெண் இவ்வாறே மாறும். ஒரு முனை திறந்த குழாய்க்கு fo, 3fo, 5fo..... என மாறும்.

இழையின் அதிர்வெண் தங்கியுள்ள காரணிகள்

- * இழையில் உள் இழுவை * இழையின் ஓரலகு நீளத் திணிவு * இழையின் குறுக்கு வெட்டுப்பரப்பு * இழையின் அடர்த்தி
- இலிகான அறுக்கு வரட்டுப்புட்
- * இழையின் யங்கின்மட்டு
- * இழையின் வெப்பநிலைக் குணகம்

NOTE:

இசைக்கவரின் அதிர்வுத்தளம் இழை அதிரும் தளத்திற்கு சமாந்தரமாக இருப்பின் இசைக்கவரின் அதிர்வு மீடிறனும் இழையின் அதிர்வு மீடிறனும் சமனாகும்.

Waves & Vibration Short Notes

M.P.Thava

இழையின் வெப்பநிலை

*அதிர்வெண்ணில் தங்கியிருக்கும்

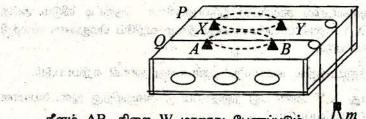
30

addition i dee dat as N

இசைக்கவரின் அதிர்வுத்தளம் இழை அதிரும் தளத்திற்கு செங்குத்தாக இருப்பின் இசைக்கவரின் அதிர்வு மீடிறனின் அரைவாசியாக இழையின் அதிர்வு மீடிறன் இருக்கும்.

Anthening of a second source of the second of the second of the idatitionul degen (

**


சுரமானியைப் பயன்படுத்தி ஈர்க்கப்பட்ட இழையொன்றின் வழி8ய செல்லும் குறு க்கலையின் அதிர்வைன் இழுவிசையின் வர்க்க முலத்திற்கு 8நர் விகித சமன் எனக் காட்டல்

Left der Linde.

151-

81

bana hi ka Er anta

நீளம் AB, நிறை W மாறாது பேணப்படும் நீளம் XY, m மாற்றப்படும். OW สธาตัฒธะ 一分子 好 at the fight the state of the 1/l α√T எனக்காட்டல் William Bridge

1. The Thomas francis, references will be fa 1/1 ஆனால் $f\alpha \sqrt{T}$ 1/1 **VT** 1 SECTOR. $1/l \alpha \sqrt{T}$ $1/l = k \sqrt{T}$. 1 Y m х

தடித்த (சிறிய) இசைக்கவர்கள் அதிர்வெண் கூடியதாகவும் தடிப்பு குறைந்த(பெரிய) இசைக்கவர்கள் அதிர்வெண் குறைந்ததாகவும் 奧**啧** 遗 ($f_1 \ge f_2 \ge f_3 \ge f_4 \ge f_5$)

Waves & Vibration Short Notes

ENGERMA SUBRICK

M.P.Thava

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

t,

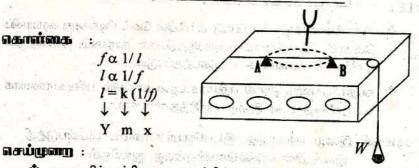
- ஒரே மாதிரியான இரண்டு சுரமானிக் கம்பிகளில் படத்தில் காட்டப்பட்டவாறு சுமை ஏற்றப்படும்.
- கம்பி P யானது ஒரு மாறா இழுவிசைக்கு உட்படுத்தப்படுவதற்கு அதன் நுணியில் W எனும் திணிவு தொங்கவிடப்பட்டுள்ளது.
- அக்கம்பியின் கீழ் படத்தில் காட்டப்பட்டவாறு AB எனும் பாலங்கள் மாறா இடைத்தூரத்தில் வைக்கப்படும்.
- கரமானிக் கம்பி Q இற்குக் கீழ் X,Y எனும் இரண்டு பாலங்கள் ஒன்றையொன்று தொட்டவாறு வைக்கப்பட்டு, அதன் மீது ஒரு கடதாசித் துண்டு மடித்து வைக்கப்படும்.
- AB இற்கிடையில் கம்பியின் நடுப்புள்ளியை நெருட்டி விடும் அதே நேரம் X,Y எனும் பாலங்களானது இழை வழியே மெதுவாக விலத்தி அசைக்கப்படும்.
- 🛠 ஒரு சந்தர்ப்பத்தில் கடதாசித் துண்டானது தூக்கி எறியப்படும்.
- அப்போது X,Y அசைவது நிறுத்தப்பட்டு அவற்றிற்கு இடையேயான நீளம் / துணியப்படும்.
- இவ்வாறு இரண்டாவது கம்பியில் நிறை ஓர் ஒழுங்கு முறையில் மாற்றப்பட்டு (அதாவது கூட்டப்பட்டு பின் குறைக்கப்பட்டு) அதற்கொத்த X,Y இடையேயான நீளம் துணியப்படும்.
- 🛠 பரிசோதனை வாசிப்புகள் அட்டவணைப்படுத்தப் படும்.

ூல் அட்டவணையிலிருந்து 1/l எதிர் √T இற்கான வரைபு வரையப்படும்.

- ் வரைபு நேர்கோடாக அமைவதால் 1// ஆனது √T இற்கு ஏகபரிமாணமுடையது என அறியலாம்.
 - ஆனால் f ஆனது 1/1 இற்கு நேர்விகிதசமன்.
 - ∴ ƒ ஆனது √T இற்கு நேர்விகித சமனாகும்.

NOTE:

X, Y கட்டைகளை மெதுவாக அசைக்க வேண்டும். ஏனெனில் உராய்வு காரணமாக சுரமானி இழையின் குறுக்கு வெட்டுப் பரப்பு குறைந்து பாதிப்பை ஏற்படுத்தும் என்பதால், பரிவு நிளத்தை திருத்தமாக பெறுவதற்கு.


hand have she hand had he had he

Waves & Vibration Short Notes

M.P.Thava

நிறையைக் கூட்டும்போதும், நிறையை அதே அளவினால் குறைக்கும் போதும் வாசிப்பு பெறவேண்டும். ஏனெனில் இழையின் மீள்தன்மை இழக்கப்படவில்லை என்பதை உறுதிப்படுத்துவதற்கும், சிறிதளவு இழந்தால் அதனை திருத்துவதற்கும் ஆகும்.

கரமானியைப் பயன்படுத்தி ஈர்க்கப்பட்ட இழைவொன்றின் வழி8ய செல்லும் குறு க்கலையின் **நீறன் இழையின் நீளத்திற்கு** <u>6நேர்யாறு</u> விகித சமன் எனக் காட்டல்

- கரமானிக் கம்பியானது படத்தில் காட்டப்பட்டவாறு சுமையேற்றுவதன் மூலம் மாறாவிசைக்கு உட்படுத்தப்படும்.
- ஆரம்பத்தில் A,B என்னும் பாளங்கள் அருகருகே வைக்கப்பட்டு அக்கம்பியின் மீது மடிக்கப்பட்ட கடதாசி ஒன்று வைக்கப்படும்.
- தற்போது தெரிந்த மீடிறன் உடைய இசைக்கவரானது மீட்டப்பட்டு சுரமானிப் பெட்டியில் வைக்கப்படும் அதேநேரம் மிக அண்மையாக இருந்த பாளங்கள் A,B ஆனது ஒன்றை ஒன்று விலத்தி அசைக்கப்படும்.
- ஒரு சந்தர்ப்பத்தில் மடித்து போடப்பட்ட கடதாதித் துண்டு தூக்கி எறியப்படும்.
- அச்சந்தர்ப்பத்தில் AB அசைப்பது நிறுத்தப் பட்டு AB க்குரிய நீளம் அளக்கப்படும்.
- இவ்வாறு மீடிறன் தெரித்து வெவ்வேறு இசைக்கவர்களுக்கு ஒத்த பரிவுநீளம் / பெறப்பட்டு அட்டவணைப்படுத்தப்படும்.

Waves & Vibration Short Notes M.P.Thava

அட்டவணையில் இருந்து / எதிர் 1/f இற்கான வரைபு வரையப்படும்.
 வரைபு நேர்கோடாகப் பெறப்படுவதால் / நேர்விகிதசமன் 1/f ஆகும்.

T	1	f	1/f	ta (Maluria) - Mala La constanta da se
ſ	-	41.980 AU	Renora (C	
	20-10-2	e dansa	in Bright	e i Taries
ſ	August.	No the Co	ie neis	$+g^{\frac{1}{2}}\zeta(t,t), \tilde{\zeta}(t,t)$
Ī	102.9/8	and the second	1. States	ALE BECTE

NOTE :

- இசைக்கவரானது மீட்டப்பட்டு கம்பியின் மேல் பிடிக்காது சுரமானிப் பெட்டியில் தொடுகையை ஏற்படுத்தியதன் காரணம்: திண்மத்தில் ஒலிச்சக்தி விரைவாக ஊடுகடத்தப்படும்.
- கடதாகித்துண்டு தூக்கி எறியப்பட்டதன் காரணம்: பரிவுகாரணமாக உயர்வீச்சத்துடன் இழை அதிர்ந்தமையால்.

சுரமானி இழை அடைந்த இடப்பெயர்ச்சியைப் பயன்படுத்தி இழையின் அதிர்வெண்ணைத் துணிதல்

கடதாசித் துண்டு தூக்கி எறியப்படும் சந்தர்ப்பத்தில் கடதாசித் துண்டைக் கருதுக.

f = m a

 $R - mg = ma \dots (1)$ எறியப்படும் சந்தர்ப்பத்தில் R = 0 $(1) \Rightarrow 0 - mg = ma$ a = -g

இழை மேல் கீழாக அதிரும் போது (எளிமை இசை இயக்கத்தை ஆற்றும் போது)

a =
$$-\omega^2 y$$
 y - $\omega^2 s$
-g = $-\omega^2 y$
g = $\omega^2 y$
 $\omega^2 = g/y$
 $\omega = \sqrt{g}/y$ Alge Cal $T = 2\pi/\omega = 2\pi\sqrt{y/g}$

Waves & Vibration Short Notes

M.P.Thava

mg

A RUTHARD

34

ନୁଇଧିச்எசறிவு (I)

TIME WE THE

ஒலிசெல்லும் திசைக்குச் செங்குத்தாக கருதப்படும் ஓரலகு பரப்பிற்கு ஊடாக ஓரலகு நேரத்தில் செல்லும் ஒலிச்சக்தி ஒலிச்செறிவு எனப்படும்.

$$I = E/At$$
$$= P/A$$
$$I = P/4\pi$$

இங்கு I – ஒலிமுதலால் காலப்படும் ஓலிச்செறிவு

22 m

r – ஒலி உணரி உள்ளதூரம்

P – ஒலி முதலின் வலு

ஒலிச்செறிவின் (I) அலகு – Wm⁻²

வீச்சம் சார்பாக ஒலிச்செறிவிற்கான சமன்பாடு

இங்கு : a- ஒலியலையின் உயர் வீச்சம்

 $I = 2\pi^2 \rho V a^2 f^2$ ho – ஊடகத்தின் அடர்த்திf - ஒலி முதலின் அதிர்வெண்

V- ஒலியலையின் வேகம்

ஒலிச்செறிவு நோவிகிதசமன் (வீச்சம்)² ஆகும்.

🔹 ஒலிச்செறிவு நேர்விகிதசமன் ஊடகத்தின் அடர்த்தி

ஒலிச்செறிவு நேர்விகிதசமன் ஒலி முதலின் (அதிர்வெண்)²

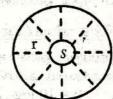
ஒலிச்செறிவு நோவிகிதசமன் ஒலியலையின் வேகம் (ஏனைய கனியங்கள் மாறாத போது மாத்திரம் இவை உண்மையாகும்)

அழுக்கம் சார்பாக ஒலிச்செறிவிற்கான சமன்பாடு

இங்கு : P_o – வளிமண்டல அமுக்கம்

 $I = P_0^2/2\rho f$ ρ – ஊடகத்தின் அடர்த்தி

f - ஒலியலையின் அதிவெண்


NOTE: இரு அலைகளுக்கிடையிலான அவத்தை வித்தியாசம் θ ஆகவும் வீச்சம் a₁,a₂ ஆகவும் இருந்தால்

விளையுள் வீச்சம் $a^2 = a_1^2 + a_2^2 + 2a_1 a_2 \cos\theta$

ஆனால் $I \propto a^2$ ஆகவே விளையுள் ஒலிச்செறிவு. $I = I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos \theta$

Waves & Vibration Short Notes

M.P.Thava

8நா நுழைவாய்

ஒலி அதிர்வுகளால் சாதாரண மனிதக் காதில் நோவை ஏற்படுத்த தொடங்கும் ஒலிச்செறிவு நோ நுழைவாய் எனப்படும்.

ஒலிச் எசறிவுயட்டம்

கருதப்படும் ஒலிச்செறிவு (I) ஆகவும் சாதாரண மனிதக் காதினால் உணரக்கூடிய ஒளிச்செறிவு (I_o) ஆகவும் இருப்பின் ஒலிச்செறிவு மட்டம் β = 10 log₁₀ [I/I_n] _____இதன் அலகு – dB

ஆனால் I \propto P $\beta = 10 \log_{10} [P/P_0]$ ஆனால் I $\propto 1/r^2$ β = 10 log₁₀ [r₀/r]²

THE EXTERN CLASSES

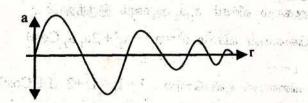
and a sala hours of the former of

TO TRACTOR SAL

and the fires

8கள்தகமை நுழைவாய

சாதாரண மனிதக் காதினால் உணரக்கூடிய மிக இழிவு ஒலிச்செறிவு கேள்தகமை நுழைவாய் எனப்படும். Io = 10⁻¹² Wm⁻²

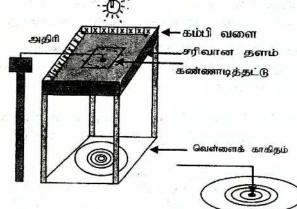

NOTE:

மனிதக் காதினால் உணரக்கூடிய ஒலிச்செறிவு வீச்சு = (10⁻¹² – 1) Wm⁻² மனிதக் காதினால் உணரக்கூடிய ஒலிச்செறிவு மட்ட வீச்சு = (0 – 120) dB

ஒலிச்செறிவு தங்கியுள்ள காரணி

- 01. ஒலியலையின் வீச்சம் $(I \propto a^2)$ ு
- 02. ஒலிமுதலில் இருந்தான தூரம் (I ∝ 1/r²)
- 03. ஊடகத்தின் அடர்த்தி
- 04. ஒலிமுதலின் பருமன்

வீச்சம் எதிர் து ரத்திற்கான வரைபு


Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

Waves & Vibration Short Notes

M.P.Thava

<u>குற்றலைத் தாங்கி</u>

குற்றலைத் தாங்கியானது அலை செலுத்துகையை விளக்கிக் காட்டவும் தலையீடு, கோணல், தெறிப்பு, முறிவு என்பவற்றைப் பற்றி ஆராயவும் உதவும்.

- குற்றலைத் தாங்கி ஒன்றில் வட்ட அலைமுகங்களை உருவாக்குவதற்கு அதிரியின் நுணியில் கோளவடிவான அமைப்பைப் பொருத்துவதன் மூலம் வட்ட அலைமுகத்தை உருவாக்க முடியும்.
- சமாந்தர அலைமுகம் அல்லது நீள்பக்க அலைமுகம் அல்லது நேர் அலைகளை உருவாக்குவதற்கு அதிரியின் நுணியில் கோல் போன்ற அமைப்பைப் பொருத்தி அதிரச் செய்வதன் மூலம்.

நீரில் குறு க்கலையின் 8வகம் தங்கியுள்ள காரணிகள்

- 01. திரவத்தின் அல்லது நீரின் ஆழம் (h)
- 02. ஈர்வையினாலான ஆர்முடுகல் (g)
- ☆ நீரலையின் 8வகத்திற்கான சமன்பாடு V = √gh என்ற <u>கொடர்பு</u> செல்லுபடியாவதற்கான நிபந்தனைகள்
 - 01. அலை நீளமானது நீரின் ஆழத்தை விடப் பெரிதாக இருக்க வேண்டும். {λ>h}
 - அலையின் வீச்சமானது ஆழத்துடன் ஒப்பிடும் போது சிறிதாக இருக்க வேண்டும். {h>a} எனவே λ > h > a ஆகும்.

இப்பரிசோதனையில் கண்ணாடித் தட்டு வைக்கப்பட்தன் காரணம்: ஒலியின் வேகத்தை மாற்றுவதற்கு அல்லது தாங்கியின் ஒரு பகுதியின் ஆழத்தைக் குறைப்பதற்கு அல்லது அலை ஊடுகடத்தும் இரண்டு ஊடகங்களை உருவாக்குவதற்கு.

The States

- குற்றலைத்தாங்கியைச் சுற்றி கம்பிவலை வைக்கக் காரணம்: அலையின் தெறிப்பால் ஏற்படும் விளைவைக் கட்டுப்படுத்துவதற்கு
- திரவத்தின் ஆழம் குறைந்ததாக இருக்க வேண்டும். அதேவேளை மிகவும் குறைவாக இருக்கக்கூடாது. ஏனெனில் மேற்பரப்பு இழுவிசை பாதிப்பை ஏற்படுத்தும்.

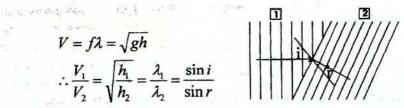
திரவத்தின் ஆழம் மிகக்குனறந்ததாக உள்ள போதட குற்றனலயின் கதிக்குரிய சமன்பாடு

- இங்கு T திரவத்தின் மேற்பரப்பு இழுவிசை
 - λ குற்றலையின் அலை நீளம்

- நகர்ந்து கொண்டிருக்கும் அலைமுகங்களை நிலைநிறுத்திப் பார்ப்பதற்கு பொறிமுறை சுழல் நிலை காட்டியினூடாக அவதானிக்கலாம். இதன் சுழற்சிக் கதியை சரிசெய்து அலைகளின் தோற்ற வேகத்தை வசதிக்கேற்றவாறு குறைக்கலாம். அல்லது அலைகளை ஓய்வு நிலைக்கு கொண்டுவரலாம்.
- வசதிக்கேற்றவாறு குறைக்கலாம். அல்லது அலைகளை ஓய்வு நிலைக்கு கொண்டுவரலாம். ❖ பொறிமுறை சுழல் நிலைகாட்டிக்குப் பதிலாக பளிச்சீட்டு

V =

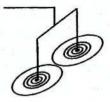
மானியையும் பயன்படுத்தலாம்.


முறினவ அவதாணித்தல்

- தாங்கியின் அடியில் அரைவாசிப் பாகத்திற்கு கண்ணாடித்தட்டு ஒன்று வைக்கப்பட்டு நீரின் ஆழம் குறைக்கப்படும்.
- அலையின் வேகமானது நீரின் ஆழத்தில் தங்கியிருப்பதால் மேற்பரப்பின் அரைவாசி அலையின் வேகம் வேறுவேறாக இருக்கும். அப்போது அலைமுகம் செலுத்தப்படும் போது படத்தில் காட்டப்பட்டவாறு அலைமுகங்கள் உண்டாகும்.

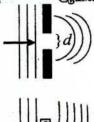
Waves & Vibration Short Notes

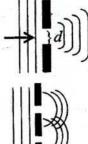
M.P.Thava



1.75-16-14

அலைகளின் தலையீடை அவதானித்தல்


32:


ஒரு அதிரியில் ஒரே மாதிரியான இரண்டு கோள முனைகளை பொருத்துவதன் மூலம் பிறப்பிக்கப்படும் அலைகள் சர்வ சமனானதாகவும், மாறா அவத்தை வித்தியாசம் கொண்டதாகவும் இருக்கும் போது படத்தில் காட்டியவாறு தலையீடு நிகழும்.

அவைகளின் 8காணவை அவதானித்தல்

தள அலைகள் அகன்ற பிளவிற்கூடாக நகர்தல் ஆயின் $\lambda > d$ ஆயின் $\lambda < d$

குற்றலைத் தாங்கியில் டொப்ளரின் விணாவு

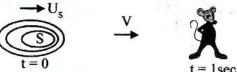
குற்றலைத் தாங்கியில் அதிரியானது முன்நோக்கி நகரும் போது வட்ட அலைவடிவம் நகரும் திசையில் அலைநீளம் குறைவதையும் எதிர்த்திசையில் அலைநீளம் கூடுவதையும் அவதானிக்கலாம். இது டொப்ளரின் விளைவு ஆகும்.

NOTE : ஊடகத்திற்கு ஊடகம் மீடிறன் மாற்றமடையாது ஏனேனில் மீடிறன் ஒலிமுதலிலேயே தங்கியிருக்கும்.

Waves & Vibration Short Notes

M.P.Thava

டொப்ளர் விளைவு


ஒலிமுதலின் இயக்கத்தால் அல்லது அவதானியின் இயக்கத்தால் அல்லது இரண்டினது இயக்கத்தால் ஒலிமுதலிற்கும் அவதானிக்கும் இடையே ஏற்படும் தொடர்பியக்கம் காரணமாக அவதானி உணரும் அதிர்வெண்ணில் ஏற்படும் தோற்றமாற்றம் டொப்ளரின் விளைவு எனப்படும்.

பொப்ளர் விளைவின் பிர8யாகங்கள்

- 01. அசையும் வாகனத்தின் கதியைத் துணிதல்.
- 02. குருதிக்கலங்களின் வேகத்தைத் துணிதல்.
- 03. விமானங்கள், கப்பல் போன்றவற்றின் கதியைத் துணிதல்.
- 04. வானியல் பொருட்களின் கதியைத் துணியலாம்.
- 05. கருப்பையில் உள்ள சிசுக்களின் இதயத் துடிப்பைத் துணியலாம்.
- 06. நட்சத்திரம் காழுகின்ற ஒளியைப்பற்றி ஆராயலாம்.
- 07. சூரியனின் சுழற்சிக்கதி, கோள்களின் சுழற்சிக் கதிகளை ஆராயலாம்.
- 08. சுரங்கக் கைத்தொழிலில் பயன்படுத்தப்படும்.

01.அவதானி நிலையாக இருக்க ஒலிமுதல் அவதானியை

Bநாக்கி அசைதல் (அசையாவளியில்)

t = 0 இல் பிறப்பிக்கப்பட்ட 1வது அலைக்கும் இல் பிறப்பிக்கப்பட்ட f வது அலைக்கும் இடைப்பட்ட வேறாக்கம் = V - U

∴ புதிய அலை நீளம் λ¹ = (V - U_c)/f

புதிய மீடிறன்(அவதானி உணரும் மீடிறன்)f¹= V/λ¹

$$f^{T} = Vf/(V - U_{c})$$

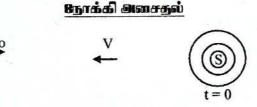
... அவதானி நிலையாக இருக்க ஒலிமுதல் அவதானியை நோக்கி அசைந்தால் அவதானி உணரும் மீடிறன்

		i – ஒலிமுதலின் மீடிறன்
f¹	$= Vf/(V - U_s)$	Us – ஒலிமுதலின் வேகம்
		V — வளியில் ஒலியின் வேகம்
2	a the second of the	f' – அவதானி உணரும் மீடிறன்

Waves & Vibration Short Notes

M.P.Thava

ant . a marva


வெதானி நிலையாக இருக்க ஒலிமுதல் விலத்தி அவசந்தால் அவதானி உணரும் அதிவண்

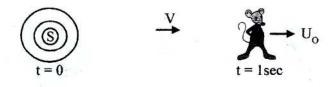
t=0 இல் பிறப்பிக்கப்பட்ட 1வது அலைக்கும் t=1sec இல் பிறப்பிக்கப்பட்ட f வது அலைக்கும் இடைப்பட்ட வேறாக்கம் =V+U₀

 ∴ புதிய அலை நீளம் λ¹ = (V + U_S)/f புதிய மீடிறன்(அவதானி உணரும் மீடிறன்)f¹ = V/λ¹ f¹ = Vf / (V + U_S)
 ∴ அவதானி நிலையாக இருக்க ஒலிமுதல் அவதானியை நோக்கி அசைந்தால் அவதானி உணரும் மீடிறன் f¹ = Vf/(V + U_S)
 ∫ - ஒலிமுதலின் மீடிறன் f¹ = Vf/(V + U_S)
 U_S - ஒலிமுதலின் வேகம் V - வளியில் ஒலியின் வேகம் f¹ - அவதானி உணரும் மீடிறன்

03. ஒலிமுதல் நிலையாக இருக்க அவதானி ஓலிமுதலை

ஒலியலையின் அலை நீளம் = V/f

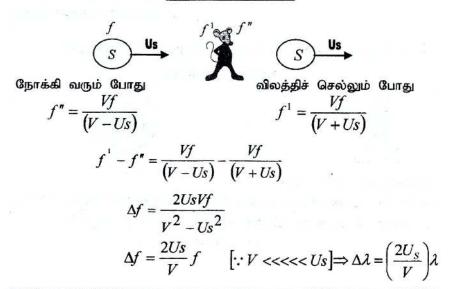
t = 1 sec


t = 1s இல் அவதானியை கடந்து சென்ற அலைகளின் நீளம் = V+U_O ∴ அவதானி உணரும் மீடிறன் = (V+U_O)/(V/f) =(V+U_O)f/V f¹ = (V+U_C)f/V

Waves & Vibration Short Notes

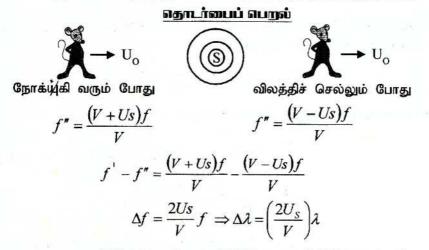
M.P.Thava

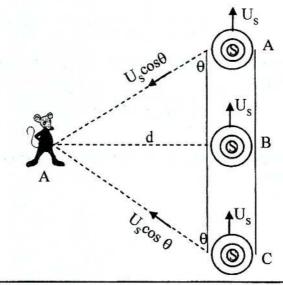
Digitized by Noolaham Foundation. noolaham.org | aavanaham.org


04. நலிமுதல் நிலையாக இருக்க ஓலிமுதலை விலத்தி அவதானி அசைந்தால்

ஒலியலையின் அலை நீளம் = V/f t = 1s இல் அவதானியை கடந்து சென்ற அலைகளின் நீளம் = V-U_o ∴ அவதானி உணரும் மீடிறன் = (V-U_o)/(V/f) =(V-U_o)f/V

 $\mathbf{f}^1 = (\mathbf{V} - \mathbf{U}_s)\mathbf{f}/\mathbf{V}$ $\mathbf{U}_o -$ அவதானியின் கதி


நிலையான அவதானியை 8நாக்கி பின் விலத்திச் செல்லும் ஒர் ஒலி முதலினால் மனிதன் 8கட்கும் அடிப்புக்களின் எனர்ணிக்கை அல்லது அதிவெண்களுக்கு இடை8யயான வித்தியாசத்திற்கான தொடர்பைப் பெறல்


Waves & Vibration Short Notes

M.P.Thava

நிலையான ஒலிமுதலை 8நாக்கி பின் விலத்திச் எசல்லும் இ அவதானி 8கட்கும் அடிப்புக்களின் எண்ணிக்கை அல்லது அதிர்வைஸ்களுக்கு இடை8யயான வித்தியாசத்திற்கான

அவதானியில் இருந்து குறிப்பிட்ட தாரத்தில் இயங்கும் ஒலிமுதலினால் அவதானி உணரும் அதிர்வெண் மாற்றம்

Waves & Vibration Short Notes

M.P.Thava

ஒலிமுதல் C இலிருந்து B யை நோக்கி வரும் போது அவதானி உணரும் மீடிறன்

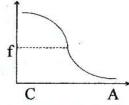
$$f^{1} = \frac{Vf}{\left(V - U_{s} \cos \theta\right)}$$

ஒலிமுதல் B இலிருந்து A யை நோக்கி செல்லும் போது அவதானி உணரும் மீடிறன்

$$f^{11} = \frac{Vf}{\left(V + U_s \cos \theta\right)}$$

🛠 அவதானி உணரும் மீடிறன் மாற்றம்

$$f' - f'' = \frac{Vf}{\left(V - U_s \cos\theta\right)} - \frac{Vf}{\left(V + U_s \cos\theta\right)}$$
$$\Delta f = \frac{2VfU_s \cos\theta}{\left(V^2 - U_s^2 \cos^2\theta\right)}$$
$$\Delta f = \frac{2fU_s \cos\theta}{V} \qquad [V >>>> U_s]$$

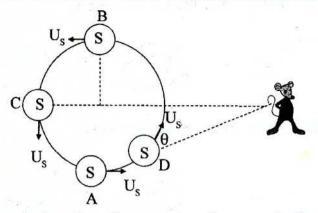

🍫 ஒலிமுதல் B உள்ள போது அவதானி உணரும் மீடிறன்

$$f^{1} = \frac{Vf}{\left(V \pm U_{s} \cos 90\right)} = f \qquad \left[\theta = 90^{\circ}\right]$$

ஒலிமுதல் முடிவிலி தூரத்தில் உள்ள போது அவதானி உணரும் மீடிறன் 1 Vf Vf

$$f^{1} = \frac{Vf}{\left(V \pm U_{s} \cos 0\right)} = \frac{Vf}{\left(V \pm U_{s}\right)} \quad [\theta = 0]$$

ஂ முழு இயக்கத்தின் போது (C-A) அவதானி உணரும் மீடிறன் மாறுபடும் வரைபு ↑



Waves & Vibration Short Notes

M.P.Thava

44

ஒரு வட்டம் வழிக்ப ஒலிமுதல் இயங்கும் 8பாது – வட்டத்திற்கு _வவரிக்ப உள்ள அவதானி உணரும் அதிர்வெண்கள்

♣ ஒலிமுதல் A உள்ள போது அவதானி உணரும் மீடிறன் $f^{1} = \frac{Vf}{\left(V - U_{p}\right)}$

🍫 ஒலிமுதல் B உள்ள போது அவதானி உணரும் மீடிறன்

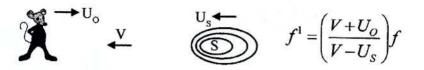
$$f^{1} = \frac{Vf}{\left(V + U_{s}\right)}$$

🍫 ஒலிமுதல் D உள்ள போது அவதானி உணரும் மீடிறன்

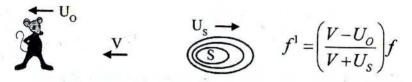
$$f^{1} = \frac{Vf}{\left(V - U_{S} \cos\theta\right)}$$

ஒரு வட்டம் வழியே ஒலிமுதல் இயங்கும் போது வட்டத்தின் மையத்தில் உள்ள அவதானி உணரும் மீடிறன்

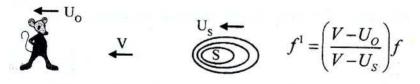
$$f' = \frac{Vf}{\left(V - U_s \cos 90\right)} = f$$

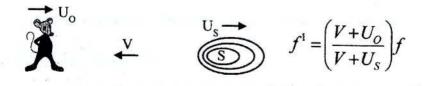

M.P.Thava

Waves & Vibration Short Notes


இலிமுதலும் அவதானியும் இயங்கும் 8பாது – அவதானி உணரும்

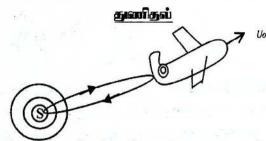
அதீர்வெனர்கள்


இரண்டும் ஒன்றை ஒன்று நோக்கி இயங்குதல்


2. இரண்டும் ஒன்றை ஒன்று விலத்தி இயங்குதல்

 ஒலிமுதல் அவதாணியை நோக்கியும் அவதாணி ஒலிமுதலை விலத்தி இயங்குதல்

 ஒலிமுதல் அவதாணியை விலத்தியும் அவதாணி ஒலிமுதலை நோக்கியும் இயங்குதல்



Waves & Vibration Short Notes

M.P.Thava

46

டொப்ளர் விளைவைப் பயன்படுத்தி விமானத்தின் கதியைத்

ஒலி முதல் நிலையாக இருக்க விமானத்தை அவதானியாகக் கருதின் விமானம் உணரும் மீடிறன் $f^1 = \frac{(V - Uo)f}{1}$(1)

$$f^{1} = \frac{(V - CO)f}{V}$$
.....(1)

விமானத்தை ஒலி முதலாகக் கருதின் ஒலிமுதல் S இன் அருகில் நிற்பவர் உணரும் மீடிறன். (தெறித்து வரும் ஒலியைக் கருதுக)

$$f^{11} = \left(\frac{V}{V+U_0}\right) f^1$$
.....(2)

(2) இல் (1) ஐப் பிரதியிட

$$f^{11} = \left(\frac{V - Uo}{V + Uo}\right) f$$

இதிலிருந்து U₂ துணியப்படும்.

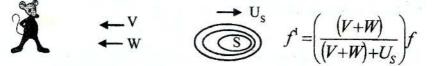
f¹¹ என்பது விமானத்தில் பட்டுத் தெறித்து வரும் ஒலியின் மீடிறன்.

காற்றின் பாதிப்பு 🔅

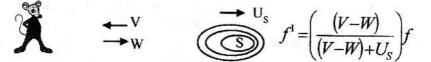
அவதானி நிலையாக இருக்க ஓலிமுதல் அவதானியை நோக்கி அசைதல்

ஒலிமுதலில் இருந்து அவதானியை நோக்கி காற்று வீசுதல் -W

Waves & Vibration Short Notes


M.P.Thava

2. அவதானியில் இருந்து ஒலிமுதலை நோக்கி காற்று வீசுதல் -W



அவதானி நிலையாக இருக்க ஒலிமுதல் விலத்தி அவசந்தால் அவதானி உணரும் அதர்வைன்

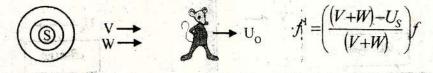
ஒலிமுதலில் இருந்து அவதானியை நோக்கி காற்று வீசுதல் -W

2. அவதானியில் இருந்து ஒலிமுதலை நோக்கி காற்று வீசுதல் -W

ஒலிமுதல் நிலையாக இருக்க அவதானி ஒலிமுதலை Bநாக்கி அனசதல்

ஒலிமுதலில் இருந்து அவதானியை நோக்கி காற்று வீசுதல் -W

2. அவதானியில் இருந்து ஒலிமுதலை நோக்கி காற்று வீசுதல் -W

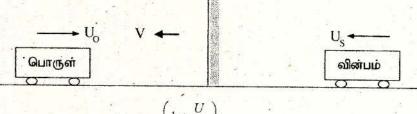

Waves & Vibration Short Notes

M.P.Thava

48

் இலிமுதல் நிலையாக இருக்க ஒலிமுதலை விலத்தி அவதானி அன்சந்தால்

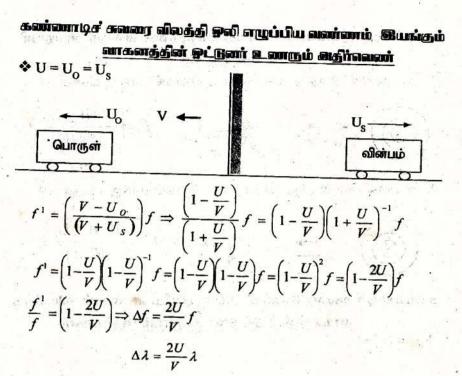
1. ஒலிமுதலில் இருந்து அவதானியை நோக்கி காற்று வீசுதல் -W

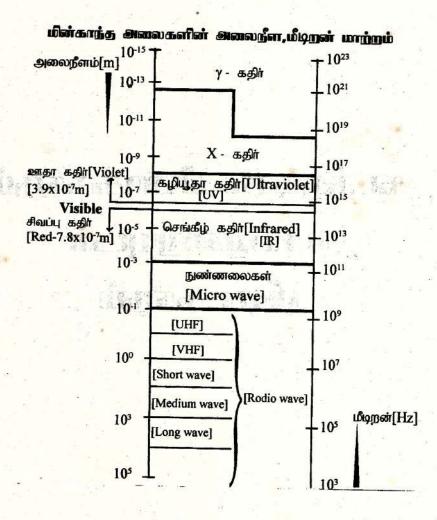


அவதானியில் இருந்து ஒலிமுதலை நோக்கி காற்று வீசுதல் -W

கண்ணாடிச் சுவரை 8நாக்கி ஒலி எழுப்பிய வண்ணம் இயங்கும் <mark>வாகனத்தின் ஒட்டுனர் உணரும் அதிர்வைண்</mark>

 $U = U_0 = U_s$




$$f^{-1} = \left(\frac{V+U_{O}}{(V-U_{S})}\right)f \Rightarrow \frac{\left(1+\frac{U}{V}\right)}{\left(1-\frac{U}{V}\right)}f = \left(1+\frac{U}{V}\right)\left(1-\frac{U}{V}\right)^{-1}f$$
$$f^{-1} = \left(1+\frac{U}{V}\right)\left(1-\frac{U}{V}\right)^{-1}f = \left(1+\frac{U}{V}\right)\left(1+\frac{U}{V}\right)f = \left(1+\frac{U}{V}\right)^{2}f = \left(1+\frac{2U}{V}\right)f$$
$$\frac{f^{-1}}{f} = \left(1+\frac{2U}{V}\right) \Rightarrow \Delta f = \frac{2U}{V}f$$
$$\Delta \lambda = \frac{2U}{V}\lambda$$

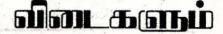
Waves & Vibration Short Notes

M.P.Thava

49

Waves & Vibration Short Notes

M.P.Thava


Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

கடந்தகால வினாக்களும்

12.1

the GRID LANE

செய்முறையுடன்

¥) (

TVE AVE

கடங்க கால வினாக்கள்

01. 1979 Aug - 04. (a)

வளியிலே ஒலியலையொன்றின் மீடிறனானது அதன் அலை நீளத்திற்கு நேர்மாறு விகிகசமமாகும் என்பதை வாய்ப்புப் பார்ப்பதற்கு ஒரு முனை முடப்பட்ட பரிவுக்குழாய் ஒன்றினைக் கொண்டு செய்யக்கூடிய பரிசோதனை ஒன்றை விபரிக்குக. வளியின் வெப்பநிலை அடர்த்தி என்பன இவ்விகிதசம இயல்பினை மாற்றுமா?

ார்க்கப்பட்ட இழையொன்றின் வழியே செல்லும் குறுக்கலை பொன்றிற்கும் மேற்கூறிய விகிதசமவியல்பை வாப்ப்புப் பார்ப்பதற்கான பரிசோதனையொன்றைச் சுருக்கமாகக் Same.

02. 1979 Aug - 04. (b)

சர்க்கப்பட்ட வளைதகு நாண் ஒன்றின் ஒருமுனையை நிலையான மீடிறனுடன் அதிர்வுறச் செய்யும் பொழுது அதில் தடங்கள் உண்டாதலை விளக்குக.

5.0 x 10⁻³ kgm⁻¹ திணிவும் 1.50 m நீளமுள்ள சீரான ஒரு நாண் 1.125N சுமையொன்றினால் ஈர்க்கப்படுகின்றது. நாணின் ஒரு முனையை 50 Hz இல் அதிர்வுறச் செய்தால், நாண் வழியே உருவாகும் அலைகளின் வேகத்தையும், உண்டாகும் தடங்களின் எண்ணிக்கையையும் கணிக்க.

03. 1980 Aug - 04. (a)

வளியினூடாக ஒலி செல்லும்போது அவ்வளியில் உண்டாகும் இயக்கத்தைப் பொருத்தமான பரும்படிப் படத்துடன் விளக்குக.

ஓர் இசைக் கவையிலிருந்து (இசைக் கவரிலிருந்து) வெளிவரும் சுரமொன்றின் வளியிலான அலைநீளத்தைக் காணும் முறையொன்றை விவரிக்க.

(i) வளியின் வெப்பநிலை மாறும் போது

(ii) வளியின் அமுக்கம் மாறும்போது இந்த அலை நீளம் எங்ஙனம் பாதிக்கப்படும்?

04. 1980 Aug - 04. (b)

ஒரு சுரமானியின் தந்தியை அல்லது ஒலிக்குழலை உதாரணமாகக் கொண்டு "அடிப்படை மீடிறன்" என்பதற்கு வரை விலக்கணம் கூறி, "மேற்றொனி" எனம் சொல்லை விளக்குக.

30 Cm குழலொன்றின்

- (i) இரு முனைகளும் திறந்திருக்கும் போது
- ஒரு முனை மூடப்பட்டிருக்கும் போது, வளியிலே அடிப்படை மீடிறனையும் (ii) முதல் இரு மேற்றொனிகளையும் காண்க. முனை விளைவு வழுக்கள் இல்லை எனவும் வளியிலே ஒலியின் வேகம் 300 ms⁻¹ எனவும் கொள்க.

05. 1981 - April (Spel) - 04 (a)

குறுக்கு அலையிலிருந்து நெட்டாங்கு அலை எங்ஙனம் வேறுபடும்? ஓர் உலோகக் கோலினது திரவியத்தின் யங்கின் மட்டு E ஆகவும் அடர்த்தி p ஆகவம் இருப்பின் அக்கோலின் நெட்டாங்கு அலைகளின் கதியானது V = √E/p இனாலே காப்படும்.

Problems & solutions

M.P. Thava.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

1.0 m நீளமுள்ள உருக்குக் கோலொன்று அதன் நடுவிற் பிடியினால் விறைப்பாக இறுக்கப்பட்டு, நெட்டாங்காக அருட்டப்படுகிறது. கோலின் அடிப்படை மீடிறனையும் முதலாவது மேற்றொனியின் மீடிறனையும் காண்க. (உருக்கினது யங்கின் மட்டும், அடர்த்தியும் முறையே 2 x 10¹¹ N m⁻² உம் 8 x 10³kg m⁻³ உம் ஆகும்)

06. 1981 - April (Spel) - 04 (b)

நிலையான அலைக்கும் விருத்தி அலைக்கும் இடையேயுள்ள வேறுபாட்டை விளக்குக? ஓர் அதிரியைப் பயன்படுத்தி இழையொன்றிலே நிலையான ஓர் அலை எங்ஙனம் உண்டாக்கப்படுகின்றதென விவரிக்குக?

கணுக்களினதும் முரண் கணுக்களினதும் எண்ணிக்கையானது இழையின் இழுவையுடன் எங்ஙனம் வேறுபடும்? அதிரியின் மீடிறன் தெரிந்திருப்பின் அதனைப்பயன்படுத்தி இழை வழியே உள்ள குறுக்கு அலைகளின் வேகத்தை எங்ஙனம் துணிவீர் என்று விளக்குக?

07. 1981 Aug - 04

வாயுவின் இயல்புகளினடிப்படையில் வாயுவொன்றின் ஒலியின் வேகத்திற்கான சூத்திரத்தைக் கூறுக? வாயுவின் அமுக்கம், அடர்த்தி, வெப்பநிலை ஆகியவற்றில், அதன் வேகம் எவ்வாறு தங்கியுள்ளது என்பதைக் காட்டுக.

4000 ஹேற்ஸ் மீடிறனையுடைய ஒலி முதலை உபயோகித்து 0°C இல் நிலையான அலைகள் வளியில் எழுப்பப்படுகின்றன. இவற்றின் பின்னடும் கணுக்களுக்கிடையான தூரம் 4.15 cm என்று அவதானிக்கப்பட்டுள்ளது. இதே முதலை உபயோகித்து வேறொரு வெப்பநிலையில் பின்னடும் கணுக்களுக்கிடையிலான தூரம் 4.22 cm என்று அவதானிக்கப்பட்டுள்ளது. இவற்றிலிருந்து பின்வருவனவற்றிற்கான பெறுமானங்களைப் பெறுக.

(i) 0°C இல் ஒலியின் வேகம்,

(ii) இரண்டாவது அவதானிப்புச் செய்யப்பட்ட போதிருந்த வெப்பநிலை.

08. 1982 Aug - 04

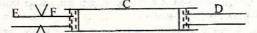
விருத்தியலைகளையும் நிலையான அலைகளையும் வேறுபடுத்துக? மாறா இழுவையின் கீழுள்ள வளைதகு இழையொன்றின் வழியேயான குறுக்கலைகளின் செலுத்துகை வேகத்துக்குக் கோவையொன்றைத் தருக? பாவித்த எல்லாக் குறியீடுகளையும் வரைவிலக்கணப்படுத்துக?

2m நீளமுள்ள சீரான இழையொன்று 1.25 N நிறையொன்றினால் ஈர்க்கப் பட்டுள்ளது. இவ் விழையின் ஒரு முனை 50H_z மீடிறனையுடைய அதிரும் இசைக் கவையொன்றினது கவரொன்றுக்கு, கவர்களின் தளத்துக்கு இழை செவ்வனாக இருக்கும் வகையில் கொடுக்கப்பட்டுள்ளது. இழையின் முழு நீளம் வழியே 10 முழுத்தடங்கள் உருவாகுவதாக அவதானிக்கப்படுகின்றது. இழை வழியேயான அலைகளின் வேகத்தையும் இழையின் திணிவையும் காண்க.?

Problems & solutions

09. 1983 Aug - 04 (a)

வளியில் ஒலியின் வேகத்தைக் காண்பதற்கு பரிசோதனை யொன்றை விபரிக்குக? ஒரு முனை மூடியுள்ள குழலொன்றிலுள்ள வளிநிரலில் ஏற்படக்கூடிய அதிர்வின் முதன் மூன்று வகைகளையும் வரைக?


இவ் வகைக் குழலொன்றின் திறந்தமுனைக்கு நேரே ஒலி பெருக்கியொன்று பொருத்தப்பட்டு மாறும் மீடிறன் முதலொன்றிலிருந்து ஊட்டப்படுகின்றது. பரிவு பெறக்கூடிய ஆகக்குறைந்த மீடிறன் 170 Hz ஆகும். இக்குழலின் திறந்தமுனைக்கு ஒத்த குழலின் இன்னுமொரு 18 Cm நீளப் பகுதி மூடப்பட்டு இப்பரிசோதனை திரும்பவும் செய்யப்படுகின்றது. பரிவு பெறக் கூடிய ஆகக் குறைந்த மீடிறன் இப்போது 125 Hz ஆகும். முனைத்திருத்தங்களைப் புறக்கணித்து வளியில் ஒலியின் வேகத்தையும் குழலின் ஆரம்ப நீளத்தையும் கணிக்குக?

10.1984 Aug - 04

ஒரு வாயுவினுள் ஒலியின் வேகமான V என்பது V = $\sqrt{\frac{p^2}{\rho}}$. எனும் சமன்பாட்டினால் தரப்படுகிறது.

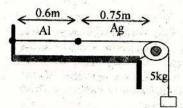
γ, ρ, Р ஆகிய குறியீடுகள் எந்த கணியங்களைக் குறிக்கின்றன என்று தருக. இதிலிருந்து இலட்சிய வாயுச் சமன்பாட்டை உபயோகித்து V என்பது $_{V} = \sqrt{\frac{\pi T}{M}}$ என்றும்

தரப்படலாம் என்று காட்டுக. இங்கே R என்பது அகில வாயு மாறிலி T என்பது வாயுவின் தனி வெப்பநிலை M என்பது வாயுவின் மூலக்கூற்று நிறை.

கிடையான கண்ணாடிக் குழாய் C ஆனது வெப்பநிலை 27°C ஆகவுள்ள ஒட்சிசனினால் நிரப்பப்பட்டு உருவில் காட்டப்பட்டுள்ளவாறு இரு முளைகளிலும் இறப்பர் அடைப்புகளால் ஒட்சிசனை உள்ளடக்கியுள்ளது. குழாயினுள் மிக நுண்ணிய தாள் தெளிக்கப்பட்டது. அடைப்புகள் குழாயின் பயன்படு நீளத்தை மாற்றுவதற்கு உபயோகிக்கப்படும் முசலம் D ஆகும். E என்பது 1m நீளமுள்ள பித்தளைக் கோல் C இலும் சற்றுக் குறைந்த விட்டமுள்ள பாரங்குறைந்த தட்டோடு இக்கோல் இணைக்கப்பட்டுள்ளது. நடுப்புள்ளி F இல் நிலைப்படுத்தப்பட்ட E என்னும் கோலில் அடிப்படை மீடிறனுடைய நீள்பக்க அதிர்வுகள் ஏற்படுத்தப்படும் போது அவை நிலையான அலையை குழாயினுள் ஏற்படுத்துகின்றன. சம தாரத்திலுள்ள ஐந்து குவியல்கள் 0.40 Cm ஆன முழு நீளத்தில் அமையுமாறு இந்த அலைகள் தாளைக் கலைக்கின்றன.

பித்தளையின் அடர்த்தி 8.4 x 10³ kg m⁻³ எனின் பித்தளைக் கோலின் யங்கின் குணகத்தைக்காண்க.

(R = 8.3 Jmol⁻¹k⁻¹, ஒக்சிசனுக்கு γ =1.4, M =32)


Problems & solutions

M.P. Thava.

55

11. 1985 Aug - 04

நின்ற அலையொன்றினது கணு, முரண்கணு என்பவற்றால் நீடவிளங்கிக் கொள்வது யாகு?

0.6 m நீளமுள்ள அலுமினியக் கம்பியொன்று அதே குறுக்கு வெட்டுப் பரப்புடைய வெள்ளிக் கம்பியொன்றுடன் படத்தில் காட்டப்பட்டவாங முட்டிலிருந்து தாங்கும் கப்பிக்குரிய தூரம் 0.75 m ஆக இருக்கும் வகையில் இணைக்கப்பட்டுள்ளது. இக்கூட்டுக்கம்பி 5 kg **நிறையினா**ல் சுமையேற்றப்பட்டுள்ளது. மாறும் மீடிறனுடைய வெளி முதலொன்றைப் பாவித்து இக்கம்பியில் நின்ற அலைகள் உருவாக்கப்படுகின்றன.

- (a) மூட்டு ஒரு கணுவாகவிருக்கும் வகையில் இரு கம்பிகளிலும் உருவாகும் அலைகளின் சாத்தியமான அதியுயர் அலைநீளங்களைக் காண்க
- (b) இதற்கு இணைவான மீமான் என்ன?

அலுமினியக் கம்பியின் ஓரலகு நீளத்தின் கிணிவ = $2.6 \times 10^{-3} \text{ kgm}^{-1}$ வெள்ளிக் கம்பியினது ஓரலகு நீளத்தின் திணிவு = 10.4 x 10⁻³ kgm⁻¹

12. 1986 Aug - 02 (அமைப்புக்கட்டுரை)

சுராமானியொன்றில் தகுந்த நிபந்தனைகளின் கீழ், ஈர்த்த கம்பியைப் பிடுங்கிலிடுவதன் மூலம் நின்ற அலைகளை உருவாக்கலாம்.

ஈர்த்த கம்பியல் நின்றவலைகள் எவ்விதம் உருவாகின்றன எனச்சுருக்கமாக 8 விளக்குக......(3 வரி)

- b. சர்த்த கம்பியொன்றில் குறுக்கு அலைகள் நகரும் வேகம் v க்குரிய கோவையொன்றை இழுவை T, கம்பியின் ஒரலகு நீளத்திணிவு m ஆகியவற்றின் அடிப்படையில் எழுதுக?.....
- . ஈர்த்த சுரமானிக் கம்பியைத் தெரிந்த மீடிறனுடைய இசைக்கவர் ஒன்றுக்கு C. ில் வின்வரும் மூன்று முறைகளைப் பாவித்து இசைவாக்க முடியும். இம்முறைகளில் ஏதாவது ஒன்றை சுருக்கமாக விபரிக்க?
 - i. காதைப் பாவித்து இசைவாக்குதல்......(3 ഖറ്റി)

 - சுரமானிபொன்று, 1/2 kg நிறைகளின் தொடைபொன்று, மீற்றர் வரை கோல் d. லன்று, இசைக்கவரொன்று என்பன உமக்குத் தரப்பட்டுள்ளன. இரசாயனத்தராக ஒன்றும் உமக்கு பாவிக்கக் கூடியதாக அருகில் உள்ளது. இவ்விசைக்கவரின் மீடிறனைத் துணியும்படி நீர் பணிக்கப்படுகின்றீர். எக்கணியங்களை நீர் வரைப ஒன்றிற்கு உபயோகிப்பீர்?.

.....(3് ഖറ്റി) BROCKLOB & STRE

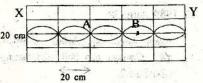
56

Problems & solutions

17 125

M.P. Thava.

13. 1987 Aug - 04


e.

ஒலியியலில் "அடிப்புக்கள்" என்பதனால் கருதப்படுவது யாதென விளக்குக? ஈர்த்த கம்பியொன்றின் வழியேயான குறுக்கு அலைகளின் கதிக்குக் கோவையொன்றைக் கம்பியின் இழுவை T, ஒரலகு நீளத்திணிவு m ஆகியவற்றின் அடிப்படையில் எழுதுக. இக்கம்பியின் பரிவுறும் நீளம் / ஆயின், n ஆவது மேற்றொனியினது மீடிறனுக்குக் கோவையொன்றைப் பெறுக?

60 cm நீள ஈர்த்த அதிர்வுறும் சீரான கம்பியொன்றுக்கு அருகில் இசைக்கவையொன்றை ஒலிக்கச் செய்யும்போது, செக்கனொன்றில் 5 அடிப்புக்கள் கேட்கின்றன. இக்கும்பியிலுள்ள இழுவையை மாற்றாமல் கம்பியின் நீளத்தை 58 cm ஆக மாற்றும்போது அதே இசைக்கவை செக்கனொன்றில் 2 அடிப்புக்களைக் கொடுக்கிறது. இவ்விசைக்கவையின் மீடிறனைக் காண்க?

14. 1988 Aug - 03 (அமைப்புக்கட்டுரை)

நிலையான அலைகளின் இயல்புகளை ஆராய்வதற்கான பரிசோதனையொன்றில் X றப்பர் இழையொன்றின் ஒரு முனை ஒரு 20 cm அதிரி (X) இற்கும் அதன் அடுத்த முனை ஒரு விறைத்த தாங்கி (Y) இற்கும் இணைக்கப்பட்டுள்ளன. இவ்வதிரிக்கும், தாங்கிக்குமிடைப்பட்ட தூரம் / ஆனது மாற்றக் கூடியது.

1. 金融口!!

அளவிடைக்குக் கீறப்பட்ட வரிப்படம், தனது அனுகரமொன்றில் அதிரும் இவ்விழையை வகை குறிக்கிறது.

- b) இவ்விழையின் மீதான கணு A யிலுள்ள துணிக்கைகளினாலும் முரண் கணு B யிலுள்ள துணிக்கைகளினாலும் உணரப்படும் இயக்கங்களின் இயல்புகள் யாவை?. (2 வரி)
- (d) இறப்பர் இழையொன்றினது இயற்கை நீளம் 1.0 m ஆகும். ஊக்கின் விதிக்குக் கட்டுப்படும் இவ்விழையானது 1.4 m என்ற நீளத்துக்கு விரியச் செய்யப்பட்டு, அதனது அடிப்படை வகையில் அதிரச் செய்த போது அலைக்கதி 18.0 ms⁻¹ ஆகும்.. இவ்வழையினது இழுவை T ஆயும், விரிவு e ஆயுமிருப்பின்,
 - 1. T, e ஆகியவற்றிற்கிடையிலுள்ள தொடர்பு யாது?(1 வரி)

 Problems & solutions
 M.P. Thava.
 57

2. இவ்விழை 1.2 m இற்கு மாத்திரம் விரியச் செய்யப்பட்டு இருப்பின், இழுவையின்

15. 1988 Aug - 04

திறந்த. குழலொன்றிலுள்ள ஒலி அலைகளின் முக்கிய சிறப்பியல்புகளைக் கூறுக? / நீளமுடைய, திறந்த குழலொன்றின் அடிப்படைச் சுரத்தினது மீடிறன் நீ இற்குரிய கோவையொன்றை வளியில் ஒலியின் வேகமானது V யினடிப்படையில் பெறுக. இவ்வகைக் குழலொன்றிலிருந்து எல்லா அனுசுரங்களையும் பெறலாமெனக் காட்டுக? இக்குழலின் ஒரு முனை மூடப்பட்டிருப்பின் நீ இற்குரிய இக்கோவை எவ்விதம் திரிவுறுமெனவும் காட்டுக?

60 Cm நீளத் திறந்த குழல் A யானது 27° C வெப்ப்நிலையிலுள்ள வளியைக் கொண்டிருக்கையில் ஒரு முனையில் மூடப்பட்டதான இன்னுமொரு குழல் B யானது 47° C இலுள்ள வளியைக் கொண்டுள்ளது. இவ்விரு குழல்களும் ஒன்றாக அவற்றின் அடிப்படை மீடிறன்களில் ஒலிக்கச் செய்யப்படும்போது 5 Hz உடைய அடிப்பு மீடிறன் பெறப்படுகிறது. 0° C இல் வளியில் ஒலியின் வேகம் 331 ms⁻¹ ஆயின் குழல் B யினது நீளத்தைக் கணிக்குக?

16. 1989 Aug - 06

நீண்ட மென் சுருளிவில் - சிலிங்கி ஒன்றைப் பயன்படுத்திப் பின்வருவனவற்றை நீர் செய்து காட்டும் விதத்தைத் தெளிவான வரிப்படங்களின் துணையுடன் விவரிக்க?

Contract Second

left size and an enter of the carden

- விறைத்த வரைப்பாடு ஒன்றிலே நேர்மாற்றல் ஒன்றைக் கொண்ட குறுக்குத் துடிப்பு ஒன்றின் தெறிப்பு.
- b. குறுக்குத் துடிப்பு ஒன்றின் மென் தெறிப்பு.

சிலிங்கி ஒன்றிலே செல்லும் குறுக்குத் துடிப்புகளின் வேகமானது V = √T/m இனாலே தரப்படுகின்றது. இங்கு T, m ஆகியன முறையே இழுவை, அலகு நீளத்துக்கான திணிவு ஆகியனவாகும்.

- 500 g திணிவுள்ள சிலங்கி ஒன்றிலே 600 சுருளித் தடங்கள் உள்ளன. சிலிங்கியைக் கிடையாக வைத்து 3 m நீளத்துக்கு ார்க்கும் போது ஆதிற் செல்லுகின்ற குறுக்குத் துடிப்பு ஒன்றின் வேகம் 10 ms⁻¹ எனின் சிலிக்கியில் உள்ள இழுவையைக் காண்க?
- 2. 150 சுருளித் தடங்கள் மட்டும் தற்பொழுது பயன்படுத்தப்பட்டு 3 m இற்கு ஈர்க்கப்பட்டால் அதன் இழுவை தொடக்கப் பெறுமானத்தின் ஆறு மடங்காக இருக்கக் காணப்படுமெனின், குறுக்குத் துடிப்பின் வேகம் யாது?

Problems & solutions

M.P. Thava.

and the States

and Thir It

17, 1990 Aug - 06 V manale tall and the real function of the market of

விருத்தியலைகளின் மீபொருத்தலானது (മ) அடிப்புகள், (b) நிலையான அலைகள் ஆகியவற்றைக் கொடுக்கக்கூடிய நிபந்தனைகளைக் கூறுக? இசைக் கவையொன்றினது மீடிறனைத் துணிவதில், சுரமானியொன்றுடன் இவை ஒவ்வொன்றையும் எவ்விதம் பாவிக்கலாமென்பதைச் சுருக்கமாக விளக்குக?

- A. இசைக் கவையொன்று 440 Hz (மீடிறனில்) அதிர்கிறது. இரண்டாவது இசைக்கவையொன்றை முதலாவதற்கு அருகில் ஒலிக்கச் செய்யும் போது, 2 Hz அடிப்பு மீடிறனொன்று உண்டாக்கப்படுகிறது.
 - 1. இவ்விரண்டாவது இசைக்கவையினது சாத்தியமான மீடிறன்கள் யாவை?
 - 2. இரண்டாவது இசைக்கவையின் கவர்களிலொன்றுக்குச் சிறிய மெழுகுத்துண்டொன்று பொருத்தப்பட்டு, இவ்விரண்டு கவை்களும் ஒலிக்கச் செய்யப்படும்போது அடிப்பு மீடிறன் குறைகின்றது. (1) லுள்ள மிடிறன்களில் எது இரண்டாவது இசைக்கவையின் உண்மையான அதிர்வு மீடிறனாகும்? இவ் விடையை நீர் அடைந்த விதத்தைக் கூறுக?

电口标通道 医脑液清神经 小背子网络海豚的海豚的海豚羊羊

จากแก่สอกเวลียาเหมืองแก

.(3ഖரி)

59

B. 550 Hz அடிப்படை மீடிறனுக்குரிய திறந்த குழாயினதும், மூடிய குழாயினதும் நீளங்களை முறையே கணிக்குக. (வளியில் ஒலியின் கதி = 340 ms⁻¹)

18. (1990 - 1991 Special) Aug - 06

பரிவு என்பதனால் கருதப்படுவது யாதென விளக்குக?

அதிரும் இசைக்கவையொன்று, மாறும் அளவு நீரைக் கொண்டுள்ள ஒடுங்கிய குழாயொன்றுக்கு மேல் பிடிக்கப்படும் போது, வளி நிரலின் அடுத்துறும் நீளங்கள் 0.359 m உம் 1.079 m உம் ஆகும் போது பரிவுகளைக் கொடுப்பதாகக் காணப்டுகிறது வேறுபட்ட பரிசோதனையொன்றில், இவ்விசைக்கவை 234 Hz மீடிறனுடைய இரண்டாவது இசைக்கவையொன்றுடன் ஒன்றாக ஒலிக்கச் செய்யப்படும் போது 4 Hz அடிப்புகளைக் கொடுக்கிறது. இந்த இரண்டாவது இசைக்கவையும் மேற்கூறப்பட்ட வளி நிரல்களுடன் அவற்றின் நீளங்கள் சிறிது அதிகரிக்கப்படும்போது, பரிவைக் கொடுக்கிறது. இக்குழாயினது முனைத் திருத்தத்தையும், வளியில் ஒலியின் கதியையும் காண்க?

19. 1991 Aug - 03 (அமைப்புக்கட்டுரை)

பரிவுறும் வளிநிரல்களைப் பயன்படுத்தி வளியில் ஒலியின் கதியைத் துணிவதற்கு ஆய் வுகூடமொன்றில் பயன்படுத்தப்படும் பரிசோதனை ஒழுங்கொன்று, படத்தில் காட்டப்பட்டுள்ளது.

a) இவ்வொழுங்கைப் பயன்படுத்தி, வளி நிரலின் அதிர்வின் அடிப்படைச்சுரத்தை பெற நீர் மேற்கொள்ளக்கூடிய செயன்முறையைச்சுருக்கமாக விவரிக்க?

Problems & solutions

- d) குறிப்பிட்ட இசைக்கவை ஒன்றுக்குரிய / இனது பெறுமானம் 35 cm என நோக்கப்பட்டது. குழாயினது நீளம் 75 cm ஆயின், அதே கவையுடன் பரிவை உண்டாக்கும் நீரிலுள் குழாயிருக்கும் இன்னுமொரு நிலையைக் காண்பது சாத்தியமாகுமா? இல்லையா? என விளக்குக?

e) அறை வெப்பநிலை அதிகரிக்கப்படுமாயின், / ஆனது 35cm இற்குப்பெரிதாகவோ அல்லது சமனாகவோ அல்லது சிறிதாகவோ இருக்குமென நீர் எதிர்பார்ப்பீர்? உமது விடைக்குக் காரணங்கள் தருக?

.....(2໑ຩຐ)

f) இப்பரிசோதனையில் நீருக்குப் பதிலாக அற்ககோல் பயன்படுத்தப்படுமாயின் c (ii) இல் அளக்கப்பட்டது போன்ற அதே பெறுமானத்தை V இற்கு நீர் எதிர்பார்ப்பீரா? விடையை விளக்குக?

g) செம்மையான கணித்தல்களுக்கு, குழாயின் திறந்த முனைக்கு மாத்திரமே முனைவுத்திருத்தம் புகுத்தப்பட வேண்டும். மூடிய முனைக்கல்ல. ஏன் என விளக்குக?

some an delivery they will be the many of the second

HOLDER STOLEN STOLEN CORRECT THE

20. 1991 Aug - 06

ஈர்க்கப்பட்ட கம்பியொன்றின் வழியேயான குறுக்கலைக் கதிக்கும், நெட்டாங்கு அலைக்கதிக்குமுரிய கோவைகளை எழுதுக.

நெட்டாங்கு அலைக்கதிக்குரிய கோவையானது பரிமாணத்தில் சரியானதெனக் காட்டுக.

பாரமான கம்பியொன்று, நிலையான தாங்கியொன்றிலிருந்து நிலைக்குத்தாகவும் சுயாதீனமாகவும் தொங்க விடப்பட்டுள்ளது. இக்கம்பியின் கீழ்முனையிலிருந்து குறுக்கலையும், நெட்டாங்கு அலையும் தனித்தனியாக மேல் நோக்கிக் கம்பி வழியே அனுப்பப்படுகின்றன. இவ்வலைகள் இக்கம்பி வழியே மாறாக்கதிகளைக் கொண்டிருக்குமா? உமது விடையை விளக்குக?

1.2 x 10⁻⁶ m² குறுக்கு வெட்டுப் பரப்பளவையுடைய சீரான உருக்கக் கம்பிபொன்று கிடையாக ஈர்க்கப்பட்டுள்ளது. இக்கம்பி வழிபேயான குறுக்கலையின் கதியானது நெட்டாங்கு அலையினது கதிக்குச் சமமாயிருப்பதற்கு, கம்பியின் இழுவை

Problems & solutions 🚽 M

M.P. Thava.

என்னவாயிருக்க வேண்டும்? நடைமுறையில் இந்த நிபந்தனையை ஏன் பெற முடியாதென விளக்குக?

உருக்கின் யங்கின் மட்டு உருக்கின் அடர்த்தி $= 2 \times 10^{11} \text{ Nm}^{-2}$ = 7.8 x 10³ kg m⁻³

21. (1991 - 1992 Special) Aug - 06

உருக்குக் கம்பி ஒன்றிலே குறுக்கலைகளின் வேகத்தைக் காண்பதற்கான பரிசோதனை ஒன்றை விவரிக்க.

மாறும் மீடிறன் முதல் (source) ஒன்றினால் இயக்கப்படும் மின் இசைக்கவை ஒன்று, நீளம் 0.5 m ஐ உடைய உருக்குக் கம்பி ஒன்றின் நுனி ஒன்றுடன் தொடுக்கப்பட்டுள்ளது.

- i. இசைக்கவையின் அதிர்வுத் தளம் கம்பியின் நீளத்துக்குச் செங்குத்தாகவும் இழுவை 0.15 N. இன் கீழ்க் கம்பியில் உள்ள குறுக்கலைகளின் வேகம் 350 ms⁻¹ ஆகவும் இருப்பின், முதலின் மீடிறனானது 300 Hz இலிருந்து 1000 Hz இற்கு மாற்றாப்படும்போது பரிவு நிகழும் மீடிறன்கள் யாவை?
- ii. நீளம் 0.2 m ஐ உடைய வேறொரு இயல்பொத்த கம்பி மேலே குறிப்பிட்ட கம்பியின் நுனி ஒன்றுடன் தொடுக்கப்பட்டுப் பரிசோதனை மறுபடியும் செய்யப்படின் நோரொத்த பரிவு மீடிறன்களைக் கணிக்க.
- iii. தரப்பட்ட மீடிறன் வீச்சினுள்ளே அடுத்த மேற்றொனியை அவதானிப்பதற்கு மேலே (I) இல் உள்ள கம்பியின் இழுவையைக் குறைந்த பட்சம் எவ்வளவினால் மாற்ற வேண்டும்?

22. 1992 Aug - 06

குறுக்கு அலைகளுக்கும் நெட்டாங்கு அலைகளுக்குமிடையே உள்ள வேறுபாட்டைத் தெளிவாக விளக்குக.

ஒரு துடிப்புப் பிறப்பாக்கி G ஒரே வேளையில் வளியினூடாகவும் ஏரி ஒன்றில் உள்ள நீரினூடாகவும் ஒடுக்கமான ஒலித் துடிபட்புக்களைச் செக்கனுக்கு 1 துடிப்பு என்னும் மாறா வீதத்திற் காலுகின்றது. நீர்ப் பரப்புக்கு மட்டுமட்டாக மேலேயும் கீழேயும் கிடையாகச் செலுத்தப்படும் இவ்வொலித் துடிப்புக்களை உணருவதற்கு ஓர் உணரி D உருவிற் காட்டப்பட்டுள்ளவாறு வைக்கப்பட்டுள்ளது.

- நீரிலே துடிப்புக்களின் மீடிறன் யாது?
- ii. (a) வளியில், (b) நீரில் அடுத்துவரும் இரு துடிப்புக்களின் வேறாக்கத்தைக் கணிக்க.

iii. துடிப்புப் பிறப்பாக்கியை ஆளியிட்டத் தொடங்கியதும் வளியினூடான முதல் துடிப்பையும் நீரினூடான நாலாம் துடிப்பையும் ஒரே நேரத்திற் பெறுவதற்கு உணரியைப் பிறப்பாக்கியிலிருந்து என்ன தூரத்தில் வைக்க வேண்டும்.

61

1102

Problems & solutions

M.P. Thava.

iv. துடிப்புப் பிறப்பாக்கியினாற் பிறப்பிக்கப்படும் முதல் துடிப்பு இத்தூரத்தை வளியினூடாகவும் நீினூடாகவும் செல்வதற்கு எடுக்கும் நேரங்களைக் காண்க. வளியில் ஒலியின் கதி = 350 ms⁻¹ நீரில் ஒலியின் கதி = 1400 ms⁻¹

23. 1993 Aug - 01 (அமைப்புக்கட்டுரை)

ஒரு சீரான மெல்லிய உருக்குக் கம்பி, A யில் நிலையாகப்பிடிக்கப்பட்டு, உருவிலுள்ளளவாறு ஒப்பக் கப்பி ஒன்றுக்கு மேலாகச் செல்லுகிறது. இக்கம்பியின் பிரிவு AB யானது கிடையாயிருப்பதுடன், ஏறக்குறைய 1m நீளத்தையும் கொண்டுள்ளது. இக்கம்பியிலுள்ள இழுவையை, தறாசுத்தட்டின் மீது நிறைகளை வைப்பதன் மூலம், செப்பஞ் செய்யப்படுகிறது,

(a) இப்பரிசோதனையில் தராசுத் தட்டின் மீது வைக்கப்படும் நிறை W விளைவாக கம்பியன் பிரிவு AB யில் ஏற்படும் விரிவு Δ/ ஐ அளவிடத் தேவைப்படுகிறது. இதற்காக இக்கம்பியின் மீது B யில் ஒரு நுண் குறி செய்யப்படுகிறது.

(b) (i) இக்கம்பித் திரவியத்தினது யங்கின் மட்டு Y ஐத் துணிவதற்கு நீர் எடுக்க வேண்டிய ஏனைய மேலதிக அளவீடுகள் யாவை? இவற்றுக்குப் பொருத்தமான அளவிடும் கருவிகளையும் தருக.

அளவீடு

கருவி

1.64	······································	α (என்க)	·
2.		β (என்க)	1247-9 J. C. C.

- (ii) Y இற்குரிய கோவையொன்றை Δl,α,β,W ஆகியவற்றின் அடிப்படையில் எழுதுக.....
- (c) மாணவனொருவன் அதிகரிக்கும் சுமை W களுக்குரிய விரிவு Δ/ களை அளவிட்டு Δ/ எதிர் W வரைபாக வரைந்தான். இம்மாணவனின் அளவீடுகளுக்குரிய புள்ளிகள் மேலே வரிப்படத்தில் காட்டப்பட்டுள்ளன.
- (ii) இக்கம்பித் திரவியத்தினது Y இற்குரிய சாத்தியமான சிறந்த பெறுமானம் ஒன்றைப் பெறுவதற்கு உமக்குத் துணைபுரியக் கூடிய, புள்ளிகளுக்கூடான, சிறந்த வரைபை c யிலுள்ள வரிப்படத்தில் வரைக.
- (d) இவ்வருக்குக் கம்பியிலுள்ள ஒலியினது வேகத்தைக் கணிப்பதற்கு நீர் விரும்புவதாகக் கொள்க.

Problems & solutions

M.P. Thava.

- இதனைக் காண்பதற்கு நீர் ஏற்கனவே கண்டுபிடித்த இயல்புக்கு மேலதிகமாக உமக்குத் தேவைப்படும் கம்பித் திரவியத்தினது இயல்பு யாதெனக் கூறுக.
- (ii) அதே கம்பியின் மேலதிகத் துண்டொன்று உமக்குத் தரப்பட்டிருப்பின், மேற்குறிப்பிட்ட இயல்பைத் துணிவதற்கு நீர் எடுக்க வேண்டிய அளவீடுகள் ധ്നത്തി?
- (e) இக்கப்பியிலுள்ள குறுக்கு அலைகளின் வேகத்துக்குரிய கோவையொன்றை, Y அடர்த்தி p கம்பியிலுள்ள விகாரம் E ஆகியவற்றினடிப்படையில் பெறுக

24. 1993 Aug - 06

TYP வாயு ஒன்றிலுள்ள ஒலியின் வேகம் (V) ஆனது, $V = \sqrt{\frac{r^2}{\rho}}$ என்பதாற் தரப்படும். இங்குள்ள குறியீடுகளை அடையாளம் காட்டி, இச்சமன்பாடு பரிமாணத்தில் சரியானதெனக் காட்டுக. T வெப்பநிலையிலுள்ள M மூலக்கூற்று நிறையுடைய இலட்சிய வாயு ஒன்றில் ஒலியின் வேகத்துக்குரிய கோவையொன்றைத் தருவிக்க மேலுள்ள சமன்பாட்டைப் பாவிக்குக.

209 m தூரத்தில் வேறுபட்டு நிற்கும் A, B என்ற இரு நபர்கள் அவர்களைத் தொடுக்கும் கோட்டின் நீட்சி வழியே மின்னல் பளிச்சிடல் ஒன்றைக் காண்கிறார்கள். இப்பளிச்சிடலின் 2 s இன் பின் A இடியைக் கேட்கையில், B அதனைப் பளிச்சிடலின் 2.6 s இன் பின் கேட்கின்றார்.

i. வளியில் ஒலியின் வேகத்தைக் காண்க.

- வளியின் வெப்பநிலையைக் காண்க. (வளியின் வெப்பநிலை மாறிலி ii. எனக்களுதுக)
- ііі. வளிக்கு γ வின் பெறுமதி 1.403 ஆயின் வளியின் சராசரி மூலக்கூற்று நிறையைக் கணிக்குக. வளியானது இலட்சிய வாயு ஒன்றென நீர் கருதலாம்.
- வளிமண்டலமானது குறிப்பட்ட அளவு நீர் ஆவியைக் கொண்டிருக்ககுமாயின் iv. ஒலியின் வேகத்துக்கு இதே பெறுமானத்தை நீர் எதிர்பார்ப்பீரா? உமது விடையை விளக்குக. (அகில வாயு ஒருமை R = 8.3 JK⁻¹ mol⁻¹, 0°C இல் ഖണിധിல ഒരിധിன் வேகம் = 330 ms-1)

25. 1994 Aug - 06

பின்வருவனவற்றை கவனத்திற்கொண்டு இழை ஒன்றின் வழியே உருவாக்கப்படும் விருத்தி அலையொன்றையும் நிலையான அலையொன்றையும் தெளிவாக வேறுபடுத்துக?

LOTE OF HEADERSHIPS OF

- (A) இவ்விழை வழியே ஊடு கடத்தப்படும் சக்தி.
- (B) இவ் இழையின் மீதான புள்ளிகளின் வீச்சம்
- (C) இவ் இழையின் மீதான புள்ளிகளின் மீடிறன்

Problems & solutions

M.P. Thava.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

வளியில் ஒலியின் கதியை துணியும் பரிசோதனைச்சாலை முறை ஒன்றினது முக்கிய படிகளைத் தருக?

0.5 m நீளச் சீரான நிலைக்குத்துக் குழாய் ஒன்றினது திறந்த முனைக்கு சற்று மேலே தூய சுரம் ஒன்றைக்காலும் மாறும் மீடிறன் முதல் ஒன்று வைக்கப்பட்டுள்ளது. இக்குழாயின் கீழ் முனை மூடப்பட்டுள்ளது. இம்முதலினால் காலப்படும் சுரத்தின் மீடிறனானது 150 Hz இலிருந்து 900 Hz இற்கு படிப்படியாக உயர்த்தப்படுமாயின் எம் மீடிறன்களில் பரிவு நடைபெறும்? அறை வெப்பநிலை 27°C இல் வளியில் ஒலியின் வேகம் 330 ms⁻¹ (குழாயினது முனைத்திருத்தத்தை நீர் புறக்கணிக்கலாம்)

வளி வெப்பநிலை இப்போது மாற்றப்பட்டது. இம்முதலினால் காலப்படும் சுரத்தினது மீடிறன் உயர்த்தப்படுகையில் 168 Hz மீடிறனுக்கு பரிவு முதலாவதாக ஏற்படக் காணப்படுகிறது. குழாயினது கீழ் முனை திறந்திருக்கும் போது இப்பரிசோதனை மீளச்செய்யப்பட்டபோது ஒத்தநிலமை 335 Hz மீடிறனில் ஏற்படுகின்றது. பின்வருவனவற்றைக் கணிக்க.

i. இக்குழாயினது முனைத்திருத்தம்

ii. புதிய வெப்பநிலையில் வளியில் ஒலியின் வேகம்

iii. புதிய வெப்பநிலையின் பெறுமானம்

26. 1995 Aug - 06

முனைவுத் திருத்தங்களை புறக்கணிக்கும் போது ஒரு முனையில் முடிய ⊥ நீளச் சீரான குழலொன்றினது பரிவு மீடிறன்கள் *f* □□¹ ஜ்*f*' <u>= ^µ/_{4L}</u> என் எழுதலாம். இங்கு V ஆனது வளியில் ஒலியின் வேகமாகும். n ஆனது 1,3,5,7 ம் இவை போன்றவையுமான பெறுமானங்களை எடுக்கக் கூடியதாகும்.

PALE I I I HAT PROBAD WEATHER AND

and the in the mount of the second

64

30099300

இதேபோல இக்குழலானது இரு முனைகளிலும் திறந்ததாயின் ஒத்த பரிவு மீடிறன்கள் f ஆனது $f' = \frac{nV}{2L}$ என்பதால் தரப்படும். இங்கு **n**' ஆனது i, 2, 3, 4 ம் இவை போன்றவையுமான பெறுமானங்களை எடுக்கக்கூடியதாகும்.

- இவ்விரு சந்தர்ப்பங்களிலும், மேலுள்ள சூத்திரங்களானவை முறையே அடிப்படைச் சூத்திரத்திற்கும், முதல் மேற்றொணிக்கும் உணிமையாகுமெனக் காட்டுக?
- ஒரு முனையில் மூடியுள்ள சுரான சூழல் ஒன்று 210 Hz மீடிறனில் பரிவுகிறது. இக்குழலானது இரு முனைகளிலும் திறந்துள்ள போது அது 840 Hz இல் பரிவுகிறது.
 - a) முனைவுத் திருத்தங்களைப் புறக்கணித்து, மேலுள்ள நிபந்தனைகளைத் திருப்திப்படுத்தும் இழிவுக் குழல் நீளத்தைக் கணிக்குக? (வளியில் ஒலியின் வேகம் 340 ms⁻¹ ஆகும்)
 - b) இச்சந்தர்ப்பத்தில் 210 Hz ம் 840 Hz ம் எத்தொனிகளுக்கு ஒத்ததாயிருக்கும்?

Problems & solutions M.P. Thava.

27. 1996 Aug - 06

திரவியம் ஒன்றிலுள்ள ஒலியின் வேகத்துக்குரிய கோவை ஒன்றை அத்திரவியத்தினது யங்கின்மட்டு E, அடர்த்தி D ஆகியவற்றின் அடிப்படையில் எழுதுக?

சுரமானிக் கம்பி ஒன்றானது 1m இனால் வேறாக்கப்பட்டுள்ள இரண்டு பாலங்களின் மேலாக, ஒரு நிறை W வைத் தொங்கவிடுவதன்மூலம், ஈர்க்கப்பட்டுள்ளது. இதனால் இக்கம்பியில் ஏற்படும் விகாரம் 0.25% எனக் காணப்படுகிறது. 2 தடங்களை உண்டாக்கும் வகையில் இவ்விரு பாலங்களுக்குமிடையிலுள்ள இடம் ஒன்றிலே இக்கம்பியானது அடிக்கப்படும்போது, 256 Hz மீடிறனுடன் அதிரும் இசைக் கவை ஒன்றுடன் இக்கும்பியானது செக்கன் ஒன்றிலே 4 அடிப்புகளை ஏற்படுத்துகின்றது. நிறை W ஆனது மெதுவாக தீரிலே அமிழ்த்தப்படும் போது அடிப்பு மீடிறன் குறைவடையவும் காணப்படுகிறது.

இக்கம்பியில் உண்டாக்கப்படும் குறுக்கலையின் மீடிறன் யாது?

ii. இக்கம்பித் திரவியத்திலுள்ள ஒலியினது கதியைக் கணிக்குக?

28. 1997 Aug - 03 (அமைப்புக்கட்டுரை)

கூறானிக்கம்பியொன்று, வரிப்படத்திலே காட்டப்பட்டவாறு 1.0 m இனால் வேறாக்கப்பட்ட A, B ஆகிய இரு புள்ளிகளுக்கு இடையிலே ஈர்க்கப்பட்டுள்ளது. இக்கம்பியின் நடுப்புள்ளி O விலே தெருட்டுவதன்மூலம் இக்கம்பியானது ஒற்றைத்தடத்துடன் குறுக்காக அதிரச்செய்யப்படுகின்றது.

இக்கம்பியானது நிலைக்குத்துத் தளத்திலே எளிய இசையியக்கத்திலே அதிர்வடைகிறது. இவ்வியக்கம் a = 16 π² x 10⁴ y என்பதாற் தரப்படுகிறது. இங்கு a (ms⁻²) ஆனது ஆர்முடுகலாகும்.. y ஆனது நிலைக்குத்துப் பெயர்ச்சி ஆகும்.

a) (i) நேரம் t யுடன் y இன் மாறலைக்காட்ட அண்ணளவான வரைபொன்றை வரைக?

34	(ii)	இக்கம்பியினது அதிர்வின் ஆவர்த்தன காலத்தைக் கணிக்குக	?
1	12 0.041	(2	வரி) ,
	(iii)	இவ்வதிர்வின் மீடிநனைக் காண்க(1	வரி)
b)	(i)	பிறப்பிக்கப்படும் அலையினது அலைநீளம் யாது?	
			வரி)

Problems & solutions

M.P. Thava.

65

- c) (i) குறுக்கலை வேகம் (V), கம்பியின்இழுவை (T), கம்பியின் ஓரலகு நீளத்திணிவு (m) ஆகியவற்றைத் தொடர்புபடுத்தும் கோவையொன்றை எழுதுக.
 - (ii) m = 1.0 x 10⁻⁴ kgm⁻¹ ஆயின் கம்பியிலுள்ள இழுவை யாது?
- d) (i) அதிரும் இசைக்கவையொன்றைப் பாவித்து, இச்சுரமானிக்கம்பியைப்
 - அதரும் இசைக்கவையொள்ளைப் பாவத்து, இச்சுரமானக்கம்பன்பட பரிவுறச் செய்யும் படி மாணவர்கள் கேட்டபோது, அவர்கள் பின்வரும் முறைகளைப் பாவித்தார்கள்.
- கம்பியின் நடுப்புள்ளிக்குச் சற்று மேலே இசைக்கவையைப் பிடித்தல்.
 - 2. கம்பியின் நடுப்புள்ளியின்மீது இசைக்கவையை வைத்தல்.
 - இசைக்கவையை சுரமானிப் பெட்டியின்மீது வைத்தல்.
 மேலுள்ள முறைகளில் எந்த ஒன்று சரியானது? உமது விடையை விளக்குக?

29. 1997 Aug - 02 (b)

டொப்லர் விளைவு என்பதனால் கருதப்படுவது யாதென விளக்குக. குற்றலைத்தாங்கியை பாவித்து இவ்விளைவை எவ்விதம் நீர் விளக்கிக்காட்டுவீர்? டொப்லர் விளைவின் ஒரு பிரயோகத்தை தருக. 335 Hz இல் சீழ்க்கையை ஒலித்த வண்ணம் சிறிய மலைப்பாறை ஒன்றை நோக்கி ஒரு படகு மணிக்கு 18 km என்ற கதியில் நகருகின்றது. வளியில் ஒலியின் வேகம் 340 ms⁻¹ ஆகும்.

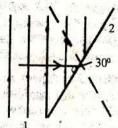
- (i) இம்மலைப்பாறையின் மீது நிற்கும் பையநொருவனால் கேட்கப்படும் சீழ்க்கையினது மீடிறனைக் காண்க.
- (ii) இம்மலைப்பாறையினால் சீழ்க்கை எதிரொலிக்கப்படுகின்றது. இப்படகிலுள்ள மனிதநொருவனால் கேட்கப்படும் எதிரொலியினது மீடிறனைக் காண்க.
- (iii) இம்மனிதன் நேரடி ஒலியையும் எதிரொலியையும் ஒருமிக்கக் கேட்பானாயின் செக்கனுக்கு எத்தனை அடிப்புக்களை அவன் கேட்பான்.
- (iv) இப்படகானது இப்போது பின்நோக்கித் திரும்பி மலைப்பாறையில் இருந்து விலகி அதே வேகத்துடன் அசையுமாயின் இம்மனிதனால் கேட்கப்படும் எதிரொலியினது மீடிறன் யாது?

Problems & solutions M.P. Thava.

Cartesian .

b. பின்வரும் குறிப்பைக் கவனமாக வாசித்து, கீழே தரபட்டுள்ள வினாக்களுக்கு விடை தருக.

குற்றலைத் தாங்கியானது, அலைச்செலுத்துகையை விளக்கிக் காட்டுவதற்கும், தலையீடு, கோணல் போன்ற அலையியல்புகளை படிப்பதற்கும் பாவிக்கக் கூடிய ஒரு ஆய்கருவியாகும். குற்றலைத் தாங்கி ஒன்றிலே, லட்ட அலைமுகத்தையுடைய அலைகளை, அதிரும் சுட்டி ஒன்றை நீரில் அமீழ்த்துவதன் மூலம் உண்டாக்கலாம். மேலும், இட்டிள்ளி அதிரியை, அதிரும் மெல்லிய நேர்தகடு ஒன்றினால் ஈடுசெய்வதன் மூலம், நேர் அலைமுகத்தையுடைய அலைகளை உற்பத்தியாக்கவும் முடியும். இச்சந்தர்ப்பத்திலே தகடுக்குச் சமாந்தரமாக அலைமுகம் இருக்கும் வகையில் அலையியுக்கம் நடைபெறும்.


நீர்பரப்பின் மீதுள்ள அலைகளின் கதியானது நீரின் ஆழத்திலே தங்கியிருக்கும். கதியின் மீது ஆழத்தின் விளைவைப் படிப்பதற்கு, தாங்கியை இரு பிரதேசங்களாகப் பிரிக்கும் வகையில் குற்றலைத் தாங்கியின் அடியிலே 'தடித்த. கண்ணாடித் தட்டமொன்றை வைத்து தாங்கியின் ஒரு பகுதியை ஆழம் குறைந்ததாகச் செப்பலாம். இவ்விரு பிரதேசங்களையும் அலைச் செலுத்துகையைப் பொறுத்தவரை இரு வெவ்வேறு ஊடகங்களாகக் கருதலாம். நீரின் ஆழம் h ஆயின் நீர் அலையின் கதியானது $V = \sqrt{gh}$ என்பதனால் தரப்படும். இங்கு g என்பது ஈர்வையினாலான ஆர்முடுகலாகும். அலையின் அலைநீளமானது நீரின் ஆழத்தை விடப் பெரியதாக இருக்கும் போது அலையன் வீச்சமனது, குற்றலைத் தாங்கியிலுள்ளபோல, ஆழத்துடன் ஒப்பிடும் வோது சிறியதாக இருக்கும் போதும் மாத்திரமே இத்தொடர்பு பிரயோகிக்கப்படலாம். ஆழம் கெச்சிறிதாக இருக்கும் பரப்பு இழுவை விளைவுகள் குறிப்பிடத்தக்கவையாயிருக்கும்.

ஒளி அலை போன்று நீர் அலைகளும் முறிவு, தெறிப்பு விதிகளுக்குக் கட்டுப்படும் இத்தோற்றப்பாடுகளையும் குற்றலைத்தாங்கியைப் பாவித்துப் படிக்கலாம் ஆழம் கூடிய பிரதேசத்தில் (பிரதேசம் - 1) செலுத்தப்படும் நேர் அலைமுகம் ஒன்றானது, இவ்விரு பிரதேசங்களுக்குமிடையிலுள்ள வரைப்பாட்டுக்குத் சமாந்தரமாக அலைமுடிகள் இருக்கக்கூடியதாக வரையப்பாட்டுக்குச் சந்திப்பதாகக் கருதுக. இவ்வலையானது, திசையிலே மாற்றமெதனையும் அடையாது, ஆனால் அலைநீளத்தில் குறைவடைந்ததாக ஆழம் குறைந்த பிரதேசத்தினுள் (பிரதேசம் 2) பிவேசிக்கும். ஆனால் நேர் அலைமுகங்கள் வரையப்பாட்டை செங்கோணமல்லாத கோணம் ஒன்றை ஏற்படுத்தும் வகையில் சந்திக்குமாயின், ஆழம் குறைந்த பிரதேசத்திலுள் நுழையும் போது அலைமுகமானது செலுத்துகைத் சரிசெய்யப்பட்ட மீடிருனுக்குச் திசையில் மாற்றமடையும். பொருத்தமான பிரதேசங்களிலுமுள்ள சுழனிலைகாட்டி ஒன்றைப் பாவித்து இவ்விரு அலைக்கோலத்தை, ஒருங்கமைய, நிலையாகத் தோன்றச் செய்யலாம். இதிலிருந்து இவ்விரு பிரதேசங்களிலும் அலைகளின் மிடிறன் ஒரேயளவு என உய்த்தறியலாம்.

Problems & solutions

M.P. Thava.

- அலையியல்பை கருதுவதன் மூலம் மாத்திரம் விளக்கக்கூடிய இரு தோற்றப்பாடுகளைத் தருக.
- ii. $V=\sqrt{gh}$ தொடர்பு செல்லுபடியாவதற்குரிய நிபந்தனைகளைத் தருக.
- iii. முறிவைப் படிப்பதற்காக குற்றலைத்தாங்கியில் கண்ணாடித் தட்டமொன்றை வைத்து இரு பிரதேசங்களை உண்டாக்குவதன் நோக்கம் யாது?
- iv. a. குற்றலைத் தாங்கியின் இரு பிரதேசங்களிலுள்ள ஆழங்கள் முறையே 4cm உம் 1 cm உமாயின் பிரதேசங்கள் I இலும் 2 இலுமுள்ள அலைநீளங்களின் விகிதம் (λ ,/ λ₂) யாது?
 - b. காட்டப்பட்டுள்ள உருவிலே பிரதேசம் I இல் வயைப்பட்ட சமாந்தரக் கோடுகள், இப்பிரதேசத்திலுள்ள நேர்அலைமுகங்களை வகை குறிக்கின்றன. இவ்வரிப்படத்தைப் பிரதிசெய்து பிரதேசம் 2 இலே பின் தொடரும் அலை முகங்களை வரைக. இவ்வரிப்படத்திலே λ₁, λ₂ ஆகியவற்றைச் சுட்டிக் காட்டுக. படுகோணம் 30° ஆயிருப்பின் முறிவுக்கோணத்தைக் காண்க.

- v. இரண்டு பிரதேசங்களிலும் உள்ள அலைகளின் மீடிறன் ஏன் ஒரேயளவு என விளக்குக.
- vi. அதிரும் புள்ளி முதல் ஒன்றினால் உண்டாக்கப்பட்ட ஆவர்த்தன அலைகளின் முதலாவதும், ஆறாவதுமான வட்ட முடிகளினது ஆரைகளுக்கிடையிலுள்ள வேறுபாடு அளக்கப்பட்ட போது, அது 20 cm எனக் காணப்பட்டது. இவலைகளின் அலைநீளம் யாது?
- vii. குற்றலைத் தாங்கி ஒன்றிலே உண்டாக்கப்படும் நீரலைகளுக்கும் ஒலியலைகளுக்கும் இடையிலுள்ள அடிப்படை வேறுபாடு யாது?
- viii. நீரலைகளின்முழு அகத் தெறிப்பைப் படிக்க நீர் விரும்பினால் குற்றலைத்தாங்கியின் எப்பிரதேசத்தில் (1 அல்லது 2) நீர் அதிரும் முதலை வைப்பீர்? உமது விடையை விளக்குக.
- நூலைத் தாங்கி ஒன்றிலே நீரலைகளின் கோணலைக் காட்டும் பொருத்தமான பெயரிடப்பட்ட வரிப்படத்தைத் தருக.

up was a analysia angen

31. 1998 Aug - 03

ஈர்க்கப்பட்ட இழை ஒன்றிலுள்ள குறுக்கு அலை ஒன்றினது வேகம் V யை இழுவை T, இழையின் ஒரலகு நீளத்திணிவு m ஆகியவற்றுடன் இணைக்கும் தொடர்பை எழுதுக. d தூரத்தினால் வேறாக்கப்பட்டுள்ள இரண்டு கிடைத்தாங்கிகளுக்கிடையிலே இவ்விழையானது ஈர்க்கப்பட்டிருக்குமாயின், அதிர்வினது அடிப்படைச் சுரத்தினது மீடிறன் யாது?

Problems & solutions

M.P. Thava.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

இவ்விழையிலுள்ள ஒத்த நின்ற அலைக்கோலத்தை வரைக? L நீளத்தையும் m ஒரலகு நீளத்திணிவையுமுடைய பாரிய கயிறு ஒன்று கூரை ஒன்றிலிருந்து தொங்கவிடப்பட்டுள்ளது.

கீழ் முனையிலிருந்து x உயரத்தில் இக்கயிற்றிலுள்ள இழுவை யாது?

- (ii) இக்கயிற்றின் கீழ்முனையிலே குறுக்கு அலையொன்று ஆரம்பிக்கப்படுமாயின், கீழ்முனையிலிருந்து x உயரத்தில் இவ்வலையின் வேகம் யாதாயிருக்கும்?
- (iii) L = 10 m ஆயின் கயிரின் கீழ்முனையிலும் மேல்முனையிலும் உள்ள அலை வேகங்களைக் காண்க?
- (iv) இக்கயிற்றிலுள்ள அலையின் சராசரி வேகமானது (iii) இலே கணிக்கப்பட்ட இரு வேகங்களினதும் சராசரியெனவும், அலையானது இச்சராசரி வேகத்துடன் நகர்கிறது எனவும் கருதி, கீழ்முனையிலிருந்து மேல்முனைவரையும் குறுக்கு அலையொன்று நகர்வதற்கு எடுக்கும் நேரத்தைக் காண்க?
- (v) இக்கயிறினது கீழ்முனையும் நிலையாக பொருத்தப்பட்டிருப்பின் அதிர்வின் அடிப்படை சுரத்திற்கு ஒத்த நின்ற அலைக்கோலத்தை வரைக?

32. 1999 Aug - 02

ஒரு முனையில் மூடியுள்ளதும், மாற்றக்கூடிய நீளமுள்ளதுமான பரிவுக் குழாயொன்று 512 Hz மீடிறனை உடைய இசைக் கவை ஒன்றுடன் பரிவுறச் செய்யப்படுகிறது. பரிவு ஏற்படும் இக்குழாயினது ஆகக்குறைந்த நீளம் 16.6 cm ஆகக் காணப்பட்டது. இக்குழாயினது நீளம் அதிகரிக்கப்படுகையில் 50.7 cm லே இரண்டாவது தரம் பரிவு ஏற்பட்டது. ஆய்வுகூடத்திலே உள்ள வெப்பநிலை 27℃ ஆகக் காணப்பட்டது.

- (i) மேற்குறிப்பிட்ட இருநிலைகளிலும் பரிவுக்குழாயினுள்ள நின்ற அலைக்கோளங்களை வரைக?
- (ii) இக்குழாயினது முனைத்திருத்தத்தையும் பரிசோதனை நிபந்தனையின்கீழ் ஒவியின் வேகத்தையும் காண்க?
- (iii) நியம வெப்பநிலை அமுக்கத்திலே (STP) வளியினது அடர்த்தி 1.2 kgm⁻³ ஆயிருப்பின், வளியினது தலைமை தன்வெப்பகொள்ளளவுகளினது விகிதம் γ பெறுமானத்தைக் கணிக்க? வளியானது இலட்சிய வாயு போல் செயற்படுமெனக் கருதுக. (நியமவளிமண்டல அமுக்கம் = 1 x 10⁵ Nm⁻²)
- (iv) வாயுவொன்றுக்கு மாறாஅமுக்க தன்வெப்பக்கொள்ளளவு C_p ஆனது மாறாக்கனவளவு தன்வெப்பக்கொள்ளளவு C_v ஐ விட ஏன் பெரியதென விளக்குக?

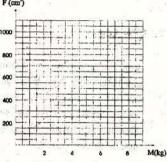
Problems & solutions

M.P. Thava.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

33. 2000 Aug - 03 (அமைப்புக் கட்டுரை)

மாணவன் ஒருவன் சுரமானியைப் பயன்படுத்தி இசைக்கவை ஒன்றின் மீடிறன் (f) ஐக் காண்பதற்கு பரிசோதனை ஒன்றைச் செய்ய திட்டமிடுகின்றான்.


- c) மாணவன் வெவ்வேறு சுமைகள் (Mg) ஐப் பயன்படுத்திச் சுரமானிக் கம்பியின் வெவ்வேறு இழுவைகளுக்கு ஒத்த அடிப்படைப் பரிவு நீளங்கள் (/) ஐ அளந்தான். M, l, f சுரமானிக் கம்பியின் அலகு நீளத்திற்கான திணிவு m ஆகியவற்றைத் தொடர்புபடுத்தும் கோவையை எமுதுக?

......(2வரி)

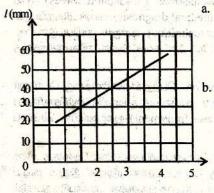
- d) (i) அவன் பெற்ற பரிசோதனைமுறை '/ ' பெறுமானங்களிடையே மிகவும் கூடிய செம்மையை உடையதாகக் கருதத்தக்க பெறுமானம் யாது?

இப்பிசோதனையில் மாணவன் வரைந்த வரைபு உருவிலே காட்டப்பட்டுள்ளது.

(i) வரைபின் படித்திறனைக் காண்பதற்கு நீங்கள் பயன்படுத்தும்பொருத்தமான இரு புள்ளிகளை வரைபின் மீது அம்புக்குறிகளினால் குறிக்க.

- (ii) வரைபின் படித்திறனைக் காண்க......(2வரி)
- (f) m இன் பெறுமானம் 8 x 10⁻⁴ kg m⁻¹ எனின், இசைக் கவையின் மீடிறனைக் காண்க......(3வரி)

34. 2001 Aug - 01 (அமைப்புக்கட்டுரை)


இரு மேற்பரப்புகளுக்கிடையே உள்ள நிலையியல் உராய்வுக் குணகத்தை (μ) துணிவதற்கு முகத்துடன் ஒரு கொளுக்கி பொருத்தப்பட்ட ஒரு சீர்ச் செவ்வக மரக்குற்றி, ஓர் இலேசான வில், ஒரு மீற்றர் கோல், திணிவு (M) 0.1 kg, 0.2 kg, 0.3 kg, 0.4 kg, 0.5 kg ஐ உடைய ஐந்து நிறைகள் ஆகியன உம்மிடம் வழங்கப்பட்டுள்ளன. விசைகளை அளவிடுவதற்காக வில்லைத் தரங்கணிப்பதற்கு வில்லின் ஒரு முனை நிலைத்த புள்ளி ஒன்றுடன் தொடுக்கப்பட்டு, உருவில் காணப்படுகின்றவாறு மற்றைய முனையிலிருந்து தரப்பட்டுள்ள நிறைகள் தொங்கவிடப்படுகின்றன.

Problems & solutions

M.P. Thava.

70

வில்லின் மீது பிரயோகிக்கப்படும் விசை (mg) பும் வில்லின் நேரொத்த நீளம் (*I*) உம் கீழே காணப்படுகின்றவாறு வரைபுபடுத்தப்படுகின்றன.

3.2

வல்லிருந்து மரக்குற்றி தொங்கவிடப்படும் போது வில்லின் நீளம் 30 mm எனக் காணப்பட்டது. மேற்குறித்த தரங்கணித்தல் வரைபைப் பயன்படுத்தி மரக்குற்றியின் திணிவைத் துணிக.

இப்போது குற்றி கிடை மேசை ஒன்றின் மீது வைக்கப்பட்டு உருவில் காணப்படுகின்றவாறு, வில்கொளுக்கியுடன் தொடுக்கப்படுகின்றது. பின்னர் குற்றி மட்டுமட்டாக வழுக்கத் தொடங்கும் வரைக்கும் வில் கிடையாக ார்க்கப்படுகின்றது. இது நடைபெறும் போது வில்லின் நீளம் (1) அளக்கப்படுகின்றது.

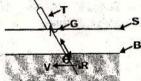
ஸ்லை உராய்வு விசை F மேற்பரப்புகளுக்கிடையே உள்ள செவ்வன் மறுதாக்க விசை R, μ ஆகியவற்றுக்கிடையே உள்ள தொடர்புடைமையை எழுதுக.

c. ஒவ்வொரு நிறையும் மரக்குற்றி மீது வைக்கப்பட்டு மேலே (b) இல் குறிப்பிட்ட பரிசோதனை முறைச் செயன்முறை மீண்டும் செய்யப்படுகின்றது. இவ்வாறு பெற்றுக் கொண்ட (l) இன் பெறுமானங்கள் பின்வரும் அட்டவணையில் தரப்பட்டுள்ளன.

	200	8.4 W. A	R(N)	1(mm)	F(N)
நிறை	எதுவுமின்றி குற்றி	1.1.169663	5 4 ⁰ 2 3	25	14.60
	+ 0.1 kg நிறை			30	1.
	+ 0.2 kg நிறை	March Property		35 🗟	14
குற்றி	+ 0.3 kg நிறை	a bit on the	a partita	41	
குற்றி	+ 0.4 kg நிறை	Mar Sugar		48	de la
	+ 0.5 kg நிறை	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C. Stan	55	e., 181

- R பெறுமானங்களைக் கணித்து நேரொத்த F பெறுமானங்களைப் பெற்றுக் கொண்டு மேற்குறித்த அட்டவணையைப் பூரணப்படுத்துக.
- கீழே தரப்பட்டுள்ள நெய்யரியிலே (grid) மேற்குறித்த F, R சோடிகளை புள்ளடிகளினால் (X) குறிக்க.
- iii. மேற்குறித்த புள்ளிகளினூடாகச் செல்லும் மிகச் சிறந்த நோகோட்டினை வரைக.
- iv. வரைபின் படித்திறனைக் கண்டு, இதிலிருந்து μ விற்கான பெறுமானம் ஒன்றை துணிக்க.
- d. மீற்றர் கோலைப் பயன்படுத்தி / ஐ அளப்பதற்கு மேலே b இல் பயன்படுத்தத்தக்க மிகச் சிறந்த செயன்முறை யாது?

noolaham.org | aavanaham.org


35. 2001 Aug - 02

பின்வரும் பந்திகளில் கழியொலி அலைகளின் (ultrasound waves) சில இயல்புகளும் மருத்துவ நிதானிப்பில் (medical diagnosis) பயன்படுத்தப்படும் டொப்ளர் தொழினுட்ப முறை (Doppler technique) ஒன்றும் தரப்பட்டுள்ளன. இப்பந்திகளை கவனமாக வாசித்து, கீழே கேட்கப்பட்டுள்ள விணாக்களுக்கு விடை எழுதுக.

இயங்கும் பொருள்கள் பற்றிய தகவல்களைப் பெற்றுக்கொள்வதற்கு டொப்ளர் முறை முக்கியமாக பயன்படுத்தப்படுகின்றது. மருத்துவத் துறையில் இத்தொழிநுட்ப முறை செங்குருதிக் கலங்களின் அசைவை (movment) நுண்ணாய்வு செய்யப் (investigate) பயன்படுத்தப்படுகின்றது.

வரைவிலக்கணத்திற்கு ஏற்ப கழியொலி என்பது மனிதனுக்கான கேள்தகு வீச்சு. (audible range) 20 Hz – 20 kHz இற்கு மேற்பட்டதான மீடிறன் இலும் கூடிய மீடிறனை உடைய ஒலியாகும். மருத்துவ பிரயோகங்களுக்கு பயன்படுத்தப்படும் மீடிறன் வீச்சு வழக்கமாக 1 MHz – 15 MHz ஆகும். மருத்துவத் துறைகளில் கழியொலி அலைகளைப் பயன்படுத்துவதில் பல விசேட அனுகூலங்கள் உள்ளன. பயன்படுத்தப்படும் தாழ் செறிவு (< 0.1 Wm²) கற்றைகள் மனிதர்களில் எவ்வித சேதத்தையோ, பாதகமான பக்க விளைவுகளையோ, ஏற்படுத்துவதாக கண்டுபிடிக்கப்படவில்லை. X - கதிர்களைப் போலன்றிக் கலியொலி அலைகள்

மனிதக் கலங்களில் உள்ள அணுக்களையோ, மூலக்கூறுகளையோ அயனாக்குவதில்லை. மேலும் சிறிய அளவிலான பொருள்கள் கூடக் கழியொலியைத் தெறிப்படையச் செய்கின்றன.

Т	கழியொலி	ച്ചുത്രல	ஊடு	கடத்தல்	(Transmitting),	கண்டுபிடித்தல்
	(Detecting)) o unu	ub (de	evice)	the first the state of the	t an affective

G - இணைக்கும் செல் (Coupling gel)

S - தோல் B - குருதிக் கலன்

R - கதி v யில் இயங்கும் செங்குருதிக்கலம்.

மீடிறன் f_t ஐ உடைய கழியொழி அலைகளை T ஊடுகடத்துகின்றது. அது, குருதிக் கலத்திலிருந்து தெறிப்படைந்த பின்னர் அந்த அலைகளை மீடிறன் f_t உடன் பெற்றுக்கொள்கின்றது. θ என்பது கழியொழிக் கற்றைக்கும் குருதிக்கலம் செல்லும் பாதையிக்குமிடையே உள்ள கோணமாகும். மருத்துவத்தில் $(f_t - f_t)$ என்பது டொப்ளர் மீடிறன் f_d எனப்படும். அதனை $f_d = 2f_t \frac{v \cos \theta}{u}$ என எழுதலாம். இங்கு u ஆனது மெல்லிழையத்தில்

(Soft tissue) கழியொழி அலைகளின் கதியாகும். மனித மெல்லியழையத்துக்கு u பெரும்பாலும் மாறிலியாக இருக்கும் அதே வேளை அதன் பெறுமானம் 1500 ms⁻¹ ஆகும். வளியிலே கழியொழி அலைகளின் கதி ஏறத்தாழ 300 ms⁻¹ ஆக

Problems & solutions

M.P. Thava.

இருக்கும் அதே வேளை, மெல்லிழையம் ஆகியவற்றின் அடர்த்திகளும் போதிய அளவில் வேறுபட்டவை. எனவே படும் கழியொலிச் சக்தியில் ஏறத்தாழ 99% ஆனது வளி தோல் / தோல் இடைமுகத்தினால் தெறிக்கச் செய்யப்படுகின்றது. சோதனையை நிறைவேற்றும்போது இதனை நீக்க வேண்டும்.

- (i) மனிதனின் சாதாரண கேள்தகவு வீச்சு யாது?
- மருத்துவ நிதானிப்பின் போது கழியொலி அலைகளைப் பயன்படுத்துவதன் இரு பிரதான அனுகூலங்களை குறிப்பிடுக.
- (iii) குழியொலி நெட்டாங்கு அலையா? குறுக்கு அலையா?
- (iv) ஒலிக்கும் கழியொலிக்குமிடையே உள்ள பிரதான வேறுபாடு யாது?
- (v) கழியொலி மின் காந்த அலையா? உமது விடைக்கு காரணங்கள் தருக.
- (vi) (a) மனித மெல்லிழையத்தில் மீடிறன் 15 MHz ஐ உடைய கழியொல அலைகளின் அலை நீளத்தைக் கணிக்க.
 - (b) சிறிய பொருள்களிலிருந்தும் கலியொலி ஏன் தெறிப்படைகின்றது என்பதந்கு ஒரு காரணத்தை தருக.
- (vii) பந்தியில் தரப்பட்டுள்ள ரீ, யிற்கான சூத்திரத்தைப் பெறுவதற்குப் பின்வரும் படிமுறைகளைப் பயன்படுத்துக.
 - (a) உபாயம் (device) T யின் திசை வழியே உள்ள செங்குருதிக் கலம் R இன் வேகத்தின் கூறு யாது?
 - (b) உபாயத்தை ஒரு நிலையான முதலாகவும் (source) செங்குருதிக்கலத்தை இயங்கும் நோக்கு நராகவும் கொண்டு கலத்தினால் கணர்டு பிடிக்கப்படும் மீடிறன் (f') இற்கான கோவையை f_i, v, u, θ ஆகியற்றின் சார்பில் எழுதுக
 - (c) இப்போது மீடிறன் f' ஐ உடைய சைகைகளை காலுகின்ற இயக்கும் முதலாகக் கலத்தைக் கருதுக. இதிலிருந்து f இற்கான கோவையை f', v, u, θ ஆகியவற்றின் சார்பில் எழுதுக.
 - (d) மேற்குறித்த இரண்டு கோவைகளையும் ஒன்று சேர்த்து, $f_d = f_r - f_r = 2f_r \frac{v \cos \theta}{u - v \cos \theta}$ எனும் கோவையைப் பெறுக.
- (viii) $f_t = 15 \text{ MHz}$ இற்கு f_d ஆனது 8 kHz எனக் காணப்பட்டது. செங்குருதிக் கலத்தின் கதி v ஐக் கணிக்க θ ஆனது 10° எனக் கொள்க.
- (ix) θ வை இயன்றவனுக்கும் சிறிய பெறுமானம் ஒன்றில் பேணுதல் ஏன் உகந்தது?
- (x) இணைக்கும் செல் G யைப் பயன்படுத்துவதன் நோக்கம் யாது?

Problems & solutions M.P. Thava.

36. 2002 Aug - 03 (அமைப்புக்கட்டுரை)

இரு முனைகளிலும் திறந்துள்ள ஒரு சீர்க்கண்ணாடிக் குழாய், மீழறன் (f) 512 Hz ஐ உடைய ஓர் இசைக் கவை, நீரைக் கொண்ட ஓர் உயரமான பாத்திரம் ஆகியன உம்மிடம் தரப்பட்டுள்ளன. பரிவு முறையின் மூலம் வளியில் ஒலியின் கதி (V) பைத் துணிவதற்கான ஒரு பரிசோதனை முறை ஒழுங்கமைப்பை அமைக்க வேண்டியுள்ளது.

- (a) பரிசோதனை முறை ஒழுங்கமைப்பை எடுத்துக் காட்டுவதற்கான ஒரு வரிப்படத்தை வரைக.
- (b) வளிநிரலின் பரிவு நிலைகளைத் தக்கவாறு பெறுவதற்கு இப்பரிசோதனையில் நீர் பின்பற்றும் திருத்தமான நடைமுறையைக் குறிப்பிடுக.
- (c) வளி நிரலின் பரிவு நீளத்தைக் காண்பதற்கு நீர் எடுக்கும் இரு வாசிப்புகளும் யாவை?
- (d) பரிவு நீளம் (*l*) இற்கான பொதுக் கோவையை ஒலி அலையின் அலை நீளம் (λ), ஒரு நிறைவெண் n (n = 1, 3, 5,) ஆகியவற்றின் சார்பில் எழுதுக.
- (e) வரைபு முறையைப் பயன்படுத்தி வளியில் ஒளியின் கதியை (V) காண்பதற்கு உகந்த ஒரு கோவையை *l*, V, *f*, n ஆகியவற்றின் சார்பில் எழுதுக.
- (f) இத்தகைய ஒரு பரிசோதனையில் முதல் இரு பரிவு நீளங்களும் முறையே 15 cm, 48 cm ஆக இருக்கக் காணப்படுகின்றன. மேற்குறித்த இரு அதிர்வு வகைகளுக்குமான அலைக் கோலங்களைக் கீழே தரப்பட்டுள்ள உருக்களில் வரைக.

 $\leftarrow 15 \text{ cm} \longrightarrow \leftarrow 48 \text{ cm} \longrightarrow$

- (g) பரிவு நிலையில் குழாயினுள்ளே இருக்கும் அலையின் வகை யாது? நகரும் அலையா, நின்ற அலையா?
- (h) முனைத் திருத்தத்தை (ε) உட்படுத்திப் பகுதி (e) இல் உள்ள கோவையை மீண்டும் எழுதுக.
- (i) பகுதி (f) இல் தரப்பட்டுள்ள பெறுமானங்களைப் பயன்படுத்தி வளியில் ஒலியின் கதியைக் காண்க.

Problems & solutions

M.P. Thava.

37. 2003 Aug - 03 (அமைப்புக்கட்டுரை)

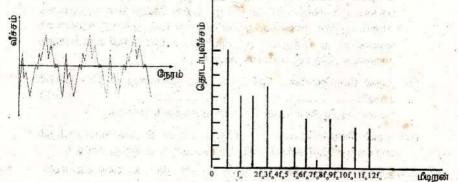
ஒலியிலே பரிவுத் தோற்றப்பாட்டினைக் கற்பதற்குக் கண்ணாடிக் குழாயுடன் முசலம் (P), உமது ஆய்கூடத்திலே உள்ள ஒரு தொகுதி இசைக் கவைகள் (A, B, C, D, E) ஆகியவற்றைப் பயன்படுத்தும் கேட்கப்பட்டுள்ளீர் (உருவைப் பார்க்க) முசலம் கண்ணாடிக் குழாயினுள்ளே ஒப்பமாக அசைக்கப்படத் தக்கது.

- (a) எல்லா இசைக் கவைகளும் ஒரே திரவியத்தினால் ஆக்கப்பட்டும் கவர்கள் ஒரே குறுக்குவெட்டுப் பரப்பளவைக் கொண்டும் இருக்கின்றன. இசைக் கலைவத் தொகுதியின் மீடிறன்கள் 256 Hz, 384 Hz, 512 Hz, 420 Hz, 320 Hz என அறியப்பட்டிருப்பின், இசைக் கவை B யின் மீடிறன் யாது?......
- (b) (i) தரப்பட்டுள்ள ஓர் இசைக் கவைக்கு அடிப்படைத் தொனியை நேரொத்த பரிவு நீளம் / ஐ எங்ஙணம் பெறுவீரேனச் சுருக்கமாக விவரிக்க.......(2வரி)
 - (ii) மேலே (b) (i) இல் l₀ ஐப் பெற்றுக் கொள்வதற்காக மேற்குறித்த உருவில் காட்டப்பட்டுள்ள l ஐ மாற்றும் ஒரு சந்தர்ப்பத்திலே செவிக்குப் பதிலாக ஒலிச்செறிவு மட்டம் (S) ஐப் பதிவு செய்து கொள்வதற்காகக் குழாயின் திறந்த முனைக்கு அண்மையில் ஓர் ஒலி அளவீட்டு உபகரணம் வைக்கப்பட்டது. l₀ இலும் l₀ ஐச் சுற்றியும் l உடன் S இன் எதிர்பார்க்கும் மாறலைக் கீழே பரும்படியாக வரைக.
 - (iii) முதல் மேற்றொனியை நேரொத்த பரிவு நீளமானது I₀ இன் சார்பில் யாது?......(2வரி) (முனைவுத்திருத்தம் புறக்கணிக்கத்தக்கதெனக் கொள்க.)
 - (iv) முதல் மேற்றொனியை நேரொத்த / உடன் S இன் எதிர்பார்க்கும் மாறலையும் மேற்குறித்த அதே வரிப்படத்தில் வரைந்து காட்டுக.
- (c) மேற்குறித்த தொகுதியில் இருக்கும் எல்லா இசைக் கவைகளையும் பயன்படுத்தி நீர் இப்போது வளியில் ஒலியின் வேகத்தைக் காண வேண்டியுள்ளதெனக் கொள்க.
- (d)மேலே (b) (ii) இலே யாதாயினும் ஒரு சந்தர்ப்பத்தில் S இன் பெழுமானம் 60dB ஆக இருக்கின்றமை நோக்கப்பட்டது கேள்தகைமை நுழைவாய் 10⁻¹² Wm⁻² எனத் தரப்பட்டிருப்பின், மேற்குறித்த சந்தர்ப்பத்தை நேரொத்த

Problems & solutions

லிச் செறிவைக் காண்க.....

M.P. Thava.


......

38. 2004 Aug- 02

பின்வரும் பந்தி**பை**க் கவனமாக வாசித்து, கீழே கேட்கப்பட்டுள்ள விளாக்களுக்கு விடை எழுதுக.

இசைச் சுரங்கள் உட்பட யாதாயினும் ஒர் ஒலியின் முதலானது (source) அதிரும் பொருளாகும். ஒலியானது அதன் உரப்பு, அதன் சுருதி ஆகியவற்றினாலும் பண்பு என்னும் மூன்றாவது இயல்பினாலும் தீர்மானிக்கப்படுகின்றது. ஒலியின் பண்பானது எமக்குத் தரப்பட்ட ஒரு வகை இசைக் கருவியை ஏனைய இசைக் கருவிகளிலிருந்து வேறுபடுத்தி இனங்காண்பதைச் சாத்தியமாக்குகின்றது.

உதாரணமாக, ஒரு வயலினிலும் ஒரு புல்லாங்குழலிலும் ஒரு சுரத்தை ஒரே உரப்புடனும் சுருதியுடனும் தனித்தனியாக இசைக்கும்போது கேட்கும் இரு ஒலிகளுக்குமிடையே தெளிவான வேறுபாடு இருக்கும். இவ்விரு கருவிகளிலும் ஒலியின் பண்பு வேறுபடுகின்றமையே இதற்குக் காரணமாகும். உரப்பும் சுருதியும் ஒலி அலையின் அளக்கத்தக்க பௌதிகக் கணியங்களுடன் தொடர்புபடுத்தலாம். பொதுவாக ஓர் இசைக் கருவியில் ஒரு சுரத்தை இசைக்கும்போது அவ்வொலியில் அடிப்படை மீடிறனுக்கு மேலதிகமாக மேற்றொனிகளும் இருக்கும். ஒலியின் பண்பு இல்மேற்றொனிகளின் எண்ணிக்கையையும் அவற்றின் தொடர்பு வீச்சங்களையும் சார்ந்திருக்கும்.

ஒரு வயலினால் உண்டாக்கப்படும் சுரத்தின் ஒலிக்கோலம் உரு 1 இல் காணப்படுகின்றது. இக்கருவியினால் உண்டாக்கப்படும் ஒலியின் மொத்த வீச்சம் நேரத்துடன் மாறும் விதத்தை அது காட்டுகின்றது. இவ்வொலிக் கோலத்தில் உள்ள அடிப்படையையும் மேற்றொனிகளையும் அவற்றின் தொடபு வீச்சங்களையும் தரும் பூரியே திருசியம் உரு 2 இல் காணப்படுகின்றது. பூரியே பகுப்பு என்னும் கணிதத் தொழிநுட்பத்தைப் பயன்படுத்திப் பூரியே திருசியம் ஒலிக்கோலத்திலிருந்து பிறப்பிக்கப்படுகின்றது. இசைச் சுரங்களைப் போலன்றி, பொதுவாகச் சத்தங்கள் எனப்படும் ஒலிகளுக்கு ஒன்றிலிருந்தொன்று வேறுபடும் பூரியே திருசியங்களுக்குப் பதிலாகக் கிட்டத்தட்டத் தொடர்ச்சியான திருசியங்கள் இருக்கும்.

10.00

ஸக்குக் கிடைக்கத்தக்க எவ்விசைக் கருவியினாலும் உண்டாக்கப்படும் இசையை மீளவமைக்கத்தக்க இலத்திரனியல் ஒகன்கள் தற்போது உள்ளன. அத்தகைய மீளவமைப்புக்களுக்கு முதலில் இசைச் சுரங்களின் பூரியே திருசியத்தில் உள்ள மீடிறன்களையும் அவற்றின் ஒத்த தொடர்பு வீச்சங்களையும் கொண்ட மின் சைகைகளைக் கலந்து ஒவ்வொரு சுத்துக்குமான மின் அலைக் கோலத்தை இலத்திரனியல் முறையாகப் பிறப்பிக்கலாம். பின்னர் இம்மின் அலைக் கோலங்களை ஒலி அலைக் கோலங்களாக மாற்றலாம். இவை அனைத்தையும் இலக்கத் தொழிநட்டங்களைப் பயன்படுத்திக் கிட்டத்தட்டப் பூரணமாகச் செய்யலாம்.

and the star in the branch and a consider a second to the

நியம இசைக் கருவிகளில் அடித்தோ, ஊத்போ, நெருட்டியோ, மீட்டியோ முதலுக்கு அதிரவுகள் அளிக்கப்படும் மிகப் பொதுவாகக் காணப்படும் இசைக் கருவிகளிடையே மேளம் அடிக்கப்படும்போது அதிரும் தேலைக் கொண்டுள்ளது. புல்லாங்குழலிலும் எக்காலத்திலும் இசைச் சுரங்களை உண்டாக்குவதற்கு வளியின் அதிரும் நிரல்கள் பயன்படுத்தப்படுகின்றன. இரு அந்தங்களிலும் திறந்துள்ள குழாயாகப் புல்லாங்குழலைக் கருதலாம் புல்லாங்குழல் ஊதப்படும்போது அதனுள்ளே இருக்கும் வளிநிரல் பரிவறுகின்றது.

வயலின், கிதார், பியானோ ஆகிய எல்லாவற்றிலும் அதிரும் ஈர்த்த தந்திகள் உண்டு. கிதாரில் தந்தியின் அதிரும் நீளத்தை விரல்களைக் கொண்டு மாற்றுவதன் மூலம் வெவ்வேறு இசைச் சுரங்கள் பெறுப்படும். கிதாரில் தேவையான எல்லாச் சுரங்களையும் உண்டாக்குவதற்கு அத்தகைய பல தந்திகள் இருக்கும். பியானோவில் ஒவ்வொரு சுரத்துக்கும் தனித்தனித் தந்தி உண்டு. பொதுவாக மெல்லிய தந்திகளின் பொறிமுறை அதிர்வுகளின் மூலம் நேரடியாகக் கேட்கத்தக்க அளவுக்கு உரத்த ஒல்களை உண்டாக்க முடியாது. ஆகவே, தந்திக் க**குவிகளில்** ஒனலியை விரியலாக்குவதற்கு ஒலிப் பெட்டி பேடிற்குப்படும் (உரு 3). தந்திகள் அதிரச் செய்யப்படும்போது ஒலிப் பெட்டி மேலும் வலிமையான ஒல்யை உண்டாக்கிக்கொண்டு அதே ஒலிக் கோலத்துடன் பரிவுறுகின்றது. எனினும், மின் கிதார்களில் தந்தியின் பொறிமுறை அதிர்வு மின் சைகையாக மாற்றப்பட்டு, பின்னர் அது இலத்திரனியல் முறையாக விரியலாக்கப்படும்.

(i) ஒலியின் உரப்பைத் துணியும் ஒலி அலையின் பௌதிக இயல்பு யாது?

(ii) ஒலி அலையின் எப்பௌதிக இயல்பு அதன் சுருதியுடன் தொர்புபட்டிருக்கும்?

- (iii) உரு 2 இல் காணப்படுமு வயலினின் பூரியே திருசியத்தின் அடிப்படை மீடிறன் ரீ இன் பெறுமானம் 400 Hz ஆகும்.
- (a) வயலினால் உண்டாக்கப்படும் 3 ஆம் மேற்றொனியின் மீடிறன் யாது?
- (b) (ஆம் மேற்றொனியின் வீச்சம்) / (அடிப்படை மீடிறனின் வீச்சம்) என்பதன் பெறும ானம் யாது?

Problems & solutions

M.P. Thava.

Strandler Strand 77

- (iv) ஓர் இசைக் கருவியினால் உண்டாக்கப்படும் சுரம் ஒன்று 420Hz இல் உள்ள அடிப்படை மீடிறனையும் ஒவ்வொன்றினதும் வீச்சம் அடிப்படையின் வீச்சத்தின் அரைவாசிக்குச் சமமான முதலாம் மேற்றொனியையும் இரண்டாம் மேற்றொனியையும் கொண்டுள்ளது. வேறு மேற்றொனிகள் இல்லையெனக் கொண்டு சுரத்தின் பூரியே திருசியத்த வரைக.
- (v) இல்லை (iv) இல் விவரிக்கப்பட்ட ஒலியை இலத்திரனியல் முறையாகப் பிறப்பிப்பதற்ற மேற்கொள்ள வேண்டிய படிமுறைகளைக் குறிப்பிடுக.
- (vi) இலத்திரியைற் திதார்களில் ஒலிப் பெட்டிகள் இல்லை. இதற்குரிய காரணத்தைத் தருக.
- (vii) அதிரும் ஈர்த்த தந்தி ஒன்றின் நீளம் I, இழுவை T, அலகு நீளத்துக்கான திணிவு m, அடிப்படை மீடிறன் f₀ ஆகியவற்றைத் தொடர்புபடுத்தும் கோவையை எழுதுக.
- (viii) 0.68 m நீளமுள்ள கிதார்த் தந்தி ஒன்று விரல்கள் பிரயோகிக்கப்படாதபோது அடிப்படை மீடிறன் 330 Hz ஐ உடைய ஒரு சுரத்தை இசைப்பதற்கு இசைவாக்கப்பட்டுள்ளது. அடிப்படை மீடிறன் 440 Hz ஆன ஒரு சுரத்தை இசைப்பதற்கு இத்தந்தியின் நுனியிலிருந்து எத்தூரத்தில் விரல் வைக்கப்பட வேண்டும்?
- (ix) புல்லாங்குழல் ஒன்று 27°C வெப்பநிலையில் எல்லாத் துறைகளையும் அடைத்து அசைக்கப்படும்போது அடிப்படை மீடிறன் 262 Hz ஐ உடைய ஒரு சுரத்தை உண்டாக்குமாறு வடிவமைக்கப்பட்டுள்ளது.
- (a) 27°C இலே வளியில் ஒலியின் கதி 340 ms⁻¹ எனின், புல்லாங்குழலின் அணினைவான நீளத்தைக் கணிக்க.

A Coll B. & Rouge & Bury

(b) சுற்றாடல் வெப்பறிலை -30°C ஆக இருக்கும் இடம் ஒன்றில் இப்புல்லாங்குழலை எல்லாத் துளைகளையும் அடைத்து இசைத்தால், ஒலியின் அடிப்படை மீடிறன் யாது?

Names control is an all collections from transition and a set

the state where the state is a state of the state of the state

and a tage has the the first of the other and the state of the second

Complete part of the part of the part of the second second of the

Frankett milligen er engen milligeler i S

ALL CALLAR STRATE

1010

78

MA BURN

M.P. Thava.

செய்முறைகள் 01. 1979 Aug - 04 diversit of BELKEN THE ALL BOOK LETTER, C. PREVICE & PRAISE BURNER IN THE SECOND OF A (a) Ganet man in the state of the second state of the state of the second state of the அலை நீளம் λ ம், அதிர்வெண் f உம் உடைய ஒலி ஆலையின் - வேகம்- $V = f\lambda F\alpha -$ ஒரு பக்கம் மூடிய பரிவுக்குழாயில் 🍐 அடிப்பசைட் சுரத்திற்கு 🖓 📊 + c = 🚣 V = 4 f(1 + c) $1 = \frac{V}{4} \cdot \frac{1}{r} - c$ $d = \frac{1}{2} \left(1 + c \right)$ பரிசோதனை : தரப்பட்ட இசைக்கவரை அதிர்வறச் செய்து அதனுடன் பரீவு நிலையில் உள்ள வளி நிரலின் நீளம் கானப்படும். வளி நிரலின் நீளம் மிகக்குறைந்த நிலையிலிருந்து படிப்படியாக அதிகரிக்கப்படும். உரத்த ஒலி ஏற்படும் நிலையில் வளி நிரல் இசைக்கவருடன் பரிவுநிலையில் இருப்பதை அறியலாம். இது அடிப்படைச் சுரம்மாகும். வுளிநிரலின் நீளம்

பாவுதுகலையல் இருப்பதை அறுயலாம். இது அடிப்படைச் சுரம்மாகும். வுள்ஞர்லன் நளம் அளவிடப்படும். வெவ்வேறு அதிர்வெண்ணுடைய இசைக்கவருடன் பரிசோதனை மீளச்செய்யப்படும்

அதிர்வெண்s ⁻¹	நீளம் lcm	HOLE III III
P.3+ 0+ 3	Constraint and second a	$(-1)_{D_{\mathrm{sup}}(D_{\mathrm{sup}})} = 1 \in [-2]_{\mathrm{sup}}(D_{\mathrm{sup}}(D_{\mathrm{sup}}))$
S TABLES	the state of the state	

வரைபு : 1,1/f க்கு எதிராக வரையப்படும் வரைபு நேர் கோட்டைத் தரும்

இது ^{λα} <mark>1</mark> எனக்காட்டும்.

when the relations ... V

ஈாக்கப்பட்ட துழை : (சுரமாஸ்) கொள்கை : ஈர்க்கப்பட்ட இழையில் குறுக்கலையின் வேகம் $V = \sqrt{\frac{T}{m}}$ இங்கு T இழையின் இழுவிசையும், m ஒரு அலகு நீள இழையின் திணிவும் ஆகும்.

$$V = f\lambda = \sqrt{rac{T}{m}}$$
அப்படை அதிர்வுக்கு, $f = V/\lambda = rac{1}{2l}\sqrt{rac{T}{m}}$

AN GROW

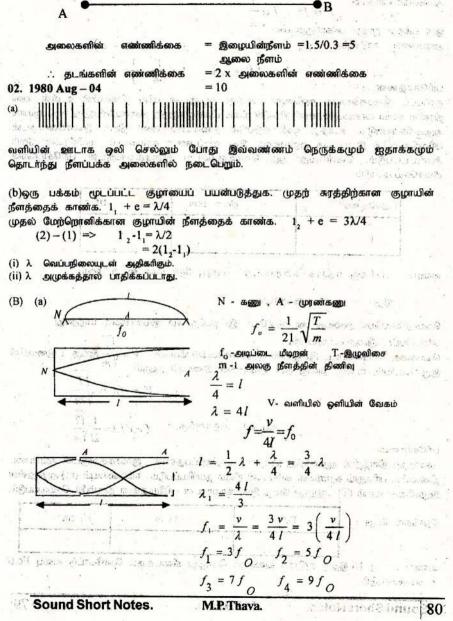
பரிசோதனை

thail 1457

குறைந்த நீளத்தில் ஆரம்பித்து நீளத்தை அதிகரிப்பதனால் இசைக்கவருடன் அடிப்படை நிலையில் பரிஷறும் சுரமானிக் கம்பியின் நீளம் துணியப்படும். கம்பியையும் (m) அதிலுள்ள இழுவிசையையும் (f) மாற்றாது வேறு இசைக்கவருடன் பரிசோதனை திரும்பிச் செய்யப்படும்.

நோக்கல் பேறு :	FS ⁴	lcm	1/1 cm-
and the second second	A LAND	Second Second	

வரைபு : f ஐ 1/1 இற்கு எதிராக வரையும் பொழுது கிடைக்கும் நேர்கோட்டு வபை Fα1/ λ எனக்காட்டும்.


Sound Short Notes.

M.P. Thava.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

.could bond out

(b) ஒர் ஈர்க்கப்பட்ட இழை A யிலிருந்து செல்லும் இழையானது B யில் தெறிப்படைந்து A ஐ நோக்கிச் செல்லும் இதை இரண்டு அலைகளும் (ஆரம்ப அலையும் தெறிப்படைந்த அலையும்) சேர்ந்து நிலைத்த அலைகளை உண்டாக்கும். நிலைத்த அலைகள் காரணமாக இழையில் தடங்கள் உண்டாகின்றள.

- மழய குழாயின் வளியை ஊகி
 - மூடிய குழாயான வளவை ஊத f_{0.}, 3f₀, 5f₀ என்னும் மீடிறன்களைப் பெறலாம். n'n dat de la les des des pa
 - 3f., 5f. என்பன மேற்றோனி எனப்படும்.
 - அதே போன்று திறந்த குழாயில் 2f, 3f, 4f, என்னும் மேற்றொனி

4. (c) திறந்த குழாய் lateau art desident di paabine disean Sarbin and mus ferena ചര്വവത്വ 1 $\lambda_{c} = 21 = 60 \text{ cm} = 0.6 \text{ m}$ n_=330/0.6 = 550Hz

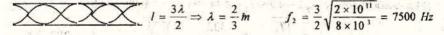
1 வது மேற்றொளி
$$l = \lambda_1 = 0.3 m$$

1-16 13-2 37501-31

 $n_1 = v/\lambda_1 = 330/0.3 = 1100 Hz$

Save 4

2 வது மேற்றொளி $I = 3\lambda_2/2$ $\lambda_{2} = 21/3 = 20$ cm = 0.2 m n, = 330/0.2 =1650 Hz (d) which is a subset of the second the case with provide the . . . which $f_0 = 330/1.2 = 275 \text{ Hz}$ 1 வது மேற்றொளி I = 3λ,/4, λ, =4/3 =0.4m n, = 330/0.4 = 825 Hz


2 வது மேற்றொளி 1= 5λ,/4 , λ₂ = 41/5 =0.24 m n,=330/0.24=1375 Hz

05. 1981 - Apr - 04 இடைக்காலத்திட்டம்

குறுக்கலை: துணிக்கை இயங்கும் திசைக்கு செங்குத்தாக அலைசெல்லும் நெட்டாங்கலை: துணிக்கை இயங்கும் திசையில் அலையும் செல்லும் சோலின் அடிப்படை மீடிறன் f, எனில்

$$1 = \frac{\lambda}{2} \implies \lambda = 21 \implies \lambda = 2m,$$

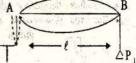
$$f_1 = \frac{\nu}{\lambda} = \frac{1}{2} \sqrt{\frac{2 \times 10^{11}}{8 \times 10^3}} = 2500 \, Hz$$

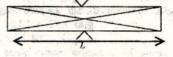
ஆடிப்படை மீடிறன் f, = 2500Hz முதலாம் மேற்றொனியில்

6)

நிலையான அலை : எதிர் எதிராக செல்லும் இரு சர்வ சுமனாக அலைகள் ஒன்றின் மீது ஒன்று பொருந்துவதால் ஏற்படும்

தளவிருத்தி அலை ஓர் தளம் வழியே முடிவற்று செல்லும் அலை தளவிருத்தி அலை எனப்படும்.


ஒரு துண்டில் (தடத்தில்) அதிரத்தக்கதாக இழையில் இழுவை சரி செய்யப்படின் இழுவைின் அதிர்வெண் இசைக்கவரின் அதிர்வெண்ணின் ½ மடங்கு ஆகும். இசைக்கவரின் அதிர்வுத்தளமும் இழையின் அதிர்வுத்தனமும் செங்குத்து என்பதால்


Sound Short Notes.

M.P. Thava.

noolaham.org | aavanaham.org

ound Short Moles Digitized by Noolaham Foundation.

இழை ஒரு துண்டி அதிரும் படிஇழுவை செப்பம் செய்யப்படின் A இசைக்கவரின் அதிர்வெண் = இழையின் அதிர்வெண் இசைக் கவரின் அதிர் வுத்தளமும் இழையின் அதிர்வுத்தளமும் சமாந்திரம் என்பதால்

கணுக்களதும் முரண்கணுக்களினதும் எண்ணிக்கை ஆனது இழுவை குறையை அதிகரிக்கும். T- இழுவை, n — கணு முரண்கணு எண ____1____

குறுக்கலை ஆதிரியின் அதிர்வேண் f எனின் = இழுவையின் அதிர்வெண் $\lambda/2 = 1 \Rightarrow \lambda = 21$ V = f λ => V = f 21

07. 1981 Aug - 04

 $O^{0}C$, ஒளின் வேகம், இரண்டாவது அவதானிப்புச்செய்யப்பட்டபோதிருந்த வெப்பநிலை வாயுயொன்றில் ஒளியின் வேகம் V_{s} என்க. $V_{p}=\sqrt{\frac{\gamma p}{2}}$

இங்கு P- வாயுவின் மாறா அமுக்கம், ρ- வாயுவின் அடர்த்தி γ -வாயுவின் மாறா அமுக்க தன்வெப்பத்திற்கும்,மாறா கனவளவு தன் வெப்பத்திற்கும் உள்ள விகிதம்.

m கிராம் திணிவுடைய வாயுவிற;கு PV = mRTஇங்கு R வாயுமாறிலி $P = (m/v) \times RT$ $P = \rho RT$ $\therefore P/\rho = RT$ மாறிலி T மாறாவிட்டால் $\therefore V_{S} = \sqrt{\gamma RT}$ $\therefore V_{S} = \alpha \sqrt{T}$

. வாயுவல் ஒலியின் வேகம் தனிவெப்பநிலையின் வர்க்கமூலத்திற்கு நேர் விகித சமன். குறித்த வெப்பநிலையில் R₁γ ஒரு மாறிலியாகும்..

. வாயுவில் ஒலியின் வேகம் அமுக்கத்திலும் அடர்த்தியிலும் தங்கியிருக்கவில்லை.

O°C இல் λ₁/2 = 4.15 λ₁ = 4.15 x 2 = 8.3 cm இங்கு λ₁- வாயுவின் அலை நீளம் V = fλ V₀ = 4000 x 8.3 = 33200 cm s⁻¹ = 332 ms⁻¹

O^oC இல் ஒலியின் வேகம் = 332 ms⁴ வெப்பநிலை = TK என்க

இந்த வெப்பநிலையில் $\lambda_2/2 = 4.2 => \lambda_2 = 8.44 => V = f\lambda = 4000 \ge 0.0844 == 337.6 ms^{-1}$

$$\frac{V_1}{V_2} = \sqrt{\frac{T_1}{T_2}} \implies \frac{332}{337.6} = \sqrt{\frac{273}{T}} \qquad T = 282.3 K$$

82

விருத்தியலை, அலை இயக்கத்தின் திசையில் அசைகிறது. இங்கு சக்தி அல்லது குழப்பம் இலையின் திசையில் முன்னேறிச் செல்லும்

நிலைாபன அலை, ஒரு ஊடகத்தில் எதிர்த்திசையில் செல்லும் இரு சர்வசமனான அலைகளின் மேற்ப்பொருந்துகையால் உண்டாகிறது. இதில் சக்தி அல்லது குழப்பம் முன்னேறாது நிலையான அலையில் கணுக்களும் முரண்கணுக்களும் காணப்படும்.

1	இங்கு 1 -	இழையிலள்ள இழுவிசை
$V = \sqrt{\frac{T}{T}}$	m	ஒரலகு நீளத்தின் திணிவு $\cdot \cdot \begin{bmatrix} n\lambda \end{bmatrix}$
V m	v -	குறுக்கலையின் வேகம். $\therefore l = $
summer the later and a second state	And the state of t	

Sound Short Notes.

08. 1982 Aug - 04

M.P. Thava.

ஒரு தடத்தின் நீளம் λ/2 ஆகும். λ அலைநீளம் ்.இழையின் நீளம் $2 = \lambda/2 \ge 10$, = 2/5 m இழையின் அதிவெண் = 25 Hz $=f\lambda = 25 \times 2/5 = 10 \text{ ms}^{-1}$ வேகம் இழையின் திணிவு M எனின், ஒரலகு நீளத்தின் திணிவு = M/2 $V = \sqrt{\frac{T}{m}} \Rightarrow \therefore 10 \sqrt{\frac{1.25}{M/2}} = \sqrt{\frac{2.5}{M/2}} \Rightarrow \therefore M = \frac{2.5 kg}{100} = \frac{2.5}{100} \times 1000 g = 25g$ 09. 1983 Aug - 04 (a) திறந்த அல்லது ஒரு முனை மூடிய பரிவுக்குழாய்ப் பரிசோதனை விபரிக்கப்படலாம். புரிவுகுழாயின் நீளம் l என்க. அதிர்வெண்ணின் இழிவுப்பெறுமதியில் அலைநீளம் உயர்வாகும். (சுரம் அடிப்படைச்சுரம்)λ = 41 வளியில் ஒளியின் வேகம். V cms⁻¹ எனின் $V = n\lambda = 170 \times 41....(1)$ 18cm குழாய்பொறுத்தப்பட்ட பின், $V = 125 \times 4 (1 + 18)....(2)$ (1) , (2) இலிருந்து ,170x4l = 125x4(l+18) 170I = 125(1+18)1 = 50 cm(ii) · (iii) (i) $V = 170 \times 4 \times 50$ (1) இலிருந்து = 34x 10³ cms⁻¹ The fact has a 10. 1984 Aug - 04 - தலைமைத்தன்வெப்பக் கொள்ளளவுகளின் விகிதம். P – அழக்கம். $V = \sqrt{\frac{p}{\rho}}$ $\rho - \mathfrak{gl}_{L}$ $\dot{r}ss$ PV = nRT = m/M RT1 மூல் வாயுக்கு $P = (m/V) \times RT/M = \rho RT/M$ $V_{0_2} = \sqrt{\frac{1.4 \times 8.3 \times 300}{0.032}} = 330.06 m s^{-1} \qquad \lambda_{0_2} = \frac{0.40}{4} \times 2 \times 10^{-2} = 0.002 m s^{-1}$ $\therefore f_{0_2} = \frac{v_{0_2}}{\lambda_{0_2}} = \frac{330.06}{2 \times 10^{-2}} = 16503 \times 10^2 \, Hz$ ் f பித்தனை = f_{o2} = 1650.3 x 10²Hz ் λ பித்தனை $= 1.0 \times 2 = 2m$... V பித்தளை = 1650.3 x 10²x2 =3300.6x10²ms⁻¹ ... V பித்தளை $Y_{LI} = V^2$ $LI = (3300.6)^2 \times 8.44 \times 10^3 \times 10^4$ $Y_{LI} = 9.15 \times 10^{14} \text{ Nm}^{-2}$ 11. 1985 Aug - 04 முரண்கணு - உயர் இடப்பெயர்ச்சி உடையபுள்ளி கணு இழிவு இடப்பெயர்ச்சி உடைய புள்ளி

Sound Short Notes.

M.P. Thava.

ond brood 83

$$\begin{aligned} Al \ \omega \beta \phi \otimes \lambda_1 &= \frac{2 \times 0.6}{n_1} & Ag \ \omega \beta \phi \otimes \lambda_2 &= \frac{2 \times 0.75}{n_2} \\ Al \ \omega \beta \phi \otimes V_1 &= \sqrt{\frac{50}{2.6 \times 10^{-3}}} & Ag \ \omega \beta \phi \otimes V_2 &= \sqrt{\frac{50}{10.4 \times 10^{-3}}} & V &= \sqrt{\frac{T}{m}} \\ Al \ \omega \beta \phi \otimes f_1 &= \frac{n_1}{2 \times 0.6} \sqrt{\frac{50}{2.6 \times 10^{-3}}} & Ag \ \omega \beta \phi \otimes f_2 &= \frac{n_2}{2 \times 0.75} \sqrt{\frac{50}{10.4 \times 10^{-3}}} \\ f_1 &= f_2 \Rightarrow \therefore \frac{n_1}{n_2} &= \frac{2}{5} \Rightarrow n_1 = 2, n_2 = 5 \\ \lambda_1 &= 0.60m, \lambda_2 = 0.30m & f_1 &= \frac{2}{2 \times 0.6} \sqrt{\frac{5 \times 10}{2.6 \times 10^{-3}}} = 231 \, Hz \end{aligned}$$

12. 1986 Aug(Structure) - 02

a) ஈர்க்கப்பட்ட இழைடியான்று பிடுங்கப்படுகையில் மேலும் கீழும் அசையும் கம்பியின் வழியே ஓர் குறுக்கலை சென்று முனையில்ப்பட்டு தெறிப்படையும்.. படும், இக்கு றுக்கலைகளின் மேற்பொருந்துகை நிலையான அலையை உண்டுபண்ணுகின்றது.

b)
$$V = \sqrt{\frac{T}{M}}$$

c)

 சுரமானிக் கம்பியையும் இசைக்கவரையும் மாறி மாறி மீட்டி, ஒரே சுருதியை அல்லது அதிர்வெண்ணைக் காது அனுபவிக்கும் போதுள்ள சுமைானிக் கம்பியின் நீளம் பெறப்படலாம்.

- சரமானிக் கம்பியையும் இசைக்கவரையும் ஒரே சமயத்தில் மீட்டிய ஆடிப்புக்கள் மிக அரிதாக உள்ள அல்லது கேட்காத போதுள்ள சுரமானிக் கம்பியின் நீளத்தைத் தெரிவு செய்யலாம்.
- iii. இசைக்கவர் மீட்டப்பட்டு, சுரமானி மீது நிறுத்தப்படும். பரிவின் போது அதி கூடிய வீச்சத்துடனான அதிர்வுக்கு கம்பி உட்படுமாயையாலும், இதை அனுசரித்து கம்பியின் இழுவை அதுவரை சரி செய்யப்படலாம்
- d) i. (பரிவுக்கு இசையும் கம்பியன் நீளம்)² ii. (சுமையின் திணிவு)[.]'
- e) வளியில் சுமை இருக்கும் போதுள்ள பரிவுக்கு இசைந்த கம்பியின் நீளம். நீரில் சுமை இருக்கும் போதுள்ள பரிவுக்கு இசைந்த கம்பியின் நீளம்

13. 1987 Aug - 04

ஏறக்குறையச் சமாமன அதிர்வெண்களையுடைய இரு ஒலி முதல்கள் ஒரே சமயத்தில் அதிரவைக்கப்படும் போது பிறப்பிக்கப்படும் விளையுள் ஒலியானது ஓர் உரப்பையும் அதன் பின் தொடர்ந்து வரும் தாழ்வையும் கொண்டிருக்கும். இவ்வாநன ஒலிச்செறிவின் ஆவர்த்தன ஏற்ற இறக்கம் அடிப்புக்கள் எனப்படும். அல்லது அடிப்புக்கள் என்பவை, ஏறக்குறைய சமமான அதிர்வெண்களுடன் கூடிய ஈர் அலைகளின் தலையீட்டி காரணமாக விளையும் ஒலியின் உரப்பின் மாறுபாடல்களாகும்.

1 செக்கனில் ஏற்படும் அடிப்புக்களின் எண்ணிக்கை அதிர்வெண்களின் வித்தியாசத்திற்குச் சமமாகும். $V = f\lambda$ $f = \frac{n+i}{2L}\sqrt{\frac{T}{M}}$

Marke St.

Sound Short Notes.

M.P. Thava.

$$V = \sqrt{\frac{T}{m}} \Rightarrow f = V / \lambda \Rightarrow f = \frac{n+1}{2L} \sqrt{\frac{T}{M}}$$

இசைக்கவையினட மீடிறன் f என்க, l = 60cm நீளக் கம்பியின் மீடிறன் f, என்க. $f - f_1 = 5 \implies f_2 = f_$

1 = 58cm கம்பியின் மீழுறன் f, என்க. $f - f_{2} = 2 = 2$, $f_{2} = f_{2} = 2$ ஆனால் f,/ f, = 58/60 = 29/30

$$\frac{f-5}{f+2} = \frac{29}{30} \Rightarrow f = 92Hz$$

$$f - f_1 = 5 \Rightarrow f_1 = f - 5$$

$$f_2 - f = 2 \Rightarrow f_2 = f + 2$$

$$\frac{f - 5}{f+2} = \frac{29}{30} \Rightarrow f = 208Hz$$

14. 1988 Aug - 03 (அமைப்புக்கட்டுரை)

அலை நீளம் = 40 cm வீச்சம் = 5 cm a b. A இல் துணிக்கைகளின் குழம்பல் இழிவானது. (அதாவது A இல் துணிக்ககைகள் ஓய்வில் உள்ளது) B இல் துணிக்கைகளின் குழம்பல் அகி உயர்வானது.

$$\frac{TL}{M}$$
 இன் பரிமாணம் = $\left(\frac{MLT^{-2} \cdot L}{M}\right)^2 = LT^{-1}$ = வேகத்தின் பரிமாணம்.

i.
$$T \alpha e$$
 (galeways) $T = Ke$
ii. $T = K \times 0.4$, $T' = K \times 0.2 =>T' = T/2$

TL - ஐப் பிரயோகிக்க. iii.

இறப்பர் இழையின் நீளம் 1.4 m ஆக இருக்கும் போது $18 = \sqrt{T imes 1.4}/M$

நீளம் 1.2 m ஆகும் பேசது வேகம் $V' = \sqrt{T' \times 1.2 / M} = \sqrt{T \times 1.2 / 2M}$ Sobb 1. 1. 1. 2 this was an $\Rightarrow V' = 18\sqrt{\frac{1.2}{2 \times 1.4}} = 11.78 m s^{-1}$

15. 1988 Aug - 04

d.

- 1. ஓர் நின்ற அலை உருவாகின்றது.
- இரு முனைகளும் திறந்த முனைஎன்பதால் இம்முனைகளில் முரண் கணுக்க்சு உண்டாகும்.

noolaham.org | aavanaham.org

திறந்த குழாய் : அடிப்படைச்சுரம் / அதிர்வெண்

ஆடிப்படை அதிர்வெண் = f $l = \lambda/2$; $\lambda = 21$; fo = v / $\lambda = v/21$ முதலாம் மேற்றொனி $1 = \lambda$; $f_1 = v/\lambda = v/1 = 2f_2$

இரண்டாம் மேற்றொனி : 1=31/2; f, =31/2 = 3f

Concentration of the following the second

White Batabar -

எல்லா அனுசுரங்களையும் பெறலாம்.

Problems & Solutions M.P. Thava. Digitized by Noolaham Foundation.

ஒரு முனை மூடிய குழாயி $\lambda = 4L$ fo = v/4L

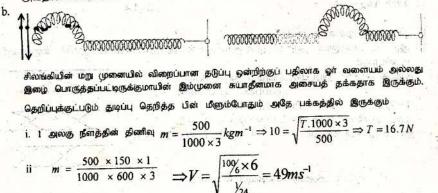
 27° c இல் திறந்த குழாய்க்கு $f_1 = v / 2L = v_{27} / 120 \times 10^{-2}$ 47°cஇல் மூடிய குழாய்க்கு (குழலின் நீளம் L ஆயின்) $f_2 = v/4L = v_{47} / 4L$ அடிப்படை அதிர்வெண் $f_1 - f_2 = 5$ அல்லது,

 $V_{17}/4L - V_{27}/120 \times 10^{-2} = 5$

ஆனால் $V \alpha \sqrt{T}$

$$V_{27} = 331 \times \sqrt{\frac{300}{273}} m s^{-1}$$
$$V_{47} = 331 \times \sqrt{\frac{320}{273}} m s^{-1}$$

பிரதியிடுவதால் = $331 \times \sqrt{\frac{320}{273}} \times \frac{1}{4L} - 331 \sqrt{\frac{300}{273}} \times \frac{1}{120} \times 10^{-2} = 5$ (பாரதியிடுவதால் = 30.45 / 31.5 cm


16. 1939 Aug - 06

a

1 000	000	1.0000000000000000000000000000000000000	
8	S0000000000000000000000000000000000000	ę	Conner
IV			E

சிலிங்**கியினு**டைய ஒரு முனையைப் பிடித்துக் கொண்டு அதற்கு செங்குத்தாகக் கையை ஒரு சில cm இற்கு விரைவாக அசைத்து மீண்டும் பழைய தானத்திற்குக் கொண்டு வருவதனால் ஒர் குறுக்:குத் துடிப்பினை ஏற்பாடு செய்யமுடியும்

இத்துடிப்பு சிலிங்கி வழியே அசைந்து செல்வதையும் பின்னர் தடுப்பில் வைத்து அது தெறிப்படைந்து எதிர்த் திசையாக மீளுவதையும் (எதிர்ப் பக்கமாக) அவதானிக்கலாம்.

Problems & Solutions M.P. Thava. Digitized by Noolaham Foundation.

noolaham.org | aavanaham.org

estometric above the 86

17. 1990 Aug - 06

- என்றுக்கொன்று மிகவும் வித்தியாசமில்லாத மீடிநனுடன் உள்ள விருத்தியலைகள் a. மீப்பொருந்தும் போது அடிப்புகள் உண்டாகும்.
- ஒன்றையொன்று எல்லாவகையிலும் ஒத்த அலைகள் மீப்பொருந்தும் போது நிலையான b. அலைகள் உருவாகும். ஆல்லது சமமிடிறன் அலைநீளம், கதி வீச்சு உள்ள ஒலி அலைகள் ஒன்றுக்கொன்று எதிர் திசையில் செல்லும் போது நிலையான அலைகள் உருவாகும். 1991 Aug. DX Complete program.

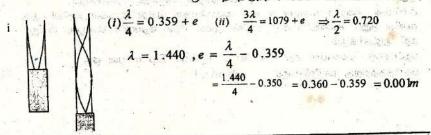
பரிசோதனை:

சுரமானிக் கம்பியி குறுகிய நீளம் ஒன்றை அதிரச்செய்து அதற்கு அண்மையில் அதிரும் இசைக்கவரைக் கொண்டு வருகஇ படிப்படியாக சுரமானிக் கம்பியின் அதிரும் நீளத்தைக் கூட்டும் போது மீடிறன்கய் அண்ணளவாகச் சமமாகும் போது அடிப்புகள் கேட்கும், மேலும் அதிரும் கம்பியின் நீளத்தை மாற்றும் போது அடிப்புகள் அற்றுப்போதும் அச்சந்தர்ப்பத்தில் கம்பியில் இழுவை T, நீளம் 1, ஒர் அலது நீளத்தின் திணிவு m ஆகியவற்றை அளந்து $n = \frac{1}{21} \sqrt{T/m}$

என்னும் சமன்பாட்டிற் பிரதியிட்டு மீடிறனைக் கணிக்கலாம். சுரமானிக் கம்பியின் சிறிய நீளத்தை ஒழுங்கு செய்து அதற்கு அண்மையில் அதிரும் இசைக்கவரை வைத்துப்பிரிவு நிகழும் போது சுரமானிக் கம்பியில் வைக்கப்பட்டுள்ள கடதாசி ஏறி எறியப்படும். (இசைக்கவையின் மீடிறனும் கம்பியின் சுயாதீன மீடிறனும் $n = \frac{1}{21} \sqrt{\frac{T}{m}}$ என்னும் சமன்பாட்டிற் பிரதியிட்டு மீடிறன் கணிக்கப்படும சமமாதும் போது சுரமானிக்கம்பி தானே அதிரும்) முன்பு போல் T,1,m அளவிடப்பட்டு

B.

A. i இரண்டாவது இசைக்கவரின் சாத்தியமான மீடிறன்கள் 440 + 2 = 442 Hz or 438 Hz மெழுகுத்துண்டு பொத்தும் போது மீடிறன் குறையும், அடிப்பு மீடிறன் குறைகின்றமையால் உண்மையான மீடிறன் 442 Hz


	n 1994 - Entre and Alex			
$v = n\lambda$	தழாயின் நீளம்	արգա	பகுழாயின் நீளம்	Nggi
340 - 330	$=\frac{61.8}{-1.8}$ = 30.9cm	1)*	$=\frac{618}{}=1545cm$	
$\lambda = 61.8cm$			4	

18. (1990 - 1991 Special) Aug - 06

பரிவு: அதிரும் பொருளினதும் பிரயோகிக்கும் விசையினதும் அதிர்வெண்கள் சர்வசமனாக இருப்பின் பிரயோகிக்கும் விசை பொருளை அதரச்செய்யும் அதாவது உச்ச சக்தி அதிரும் தொகுதிக்கு இடமாற்றம் செய்யப்படும்.

முனைத் திருத்தம் e எனக் கொள்வோம்.

i panali.

Problems & Solutions

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

M.P. Thava.

முதலாம் இசைக்கவரின் மீடிறன் =234(+/-)4 = 238 அல்லது 230

இரண்டாம் இசைக்கவரின் அலைநீளம் > முதலாம் இசைக்கவர்

எனவே, இரண்டாம் இசைக்கவரின் மிடிறன் > முதலாம் இசைக்கவர் மீடிறன் இரண்டாம் இசைக்கவரின் மீடிறன் 238 Hz

ഖിണിധിல ஒலியின் வேகம் = nλ = 238 x 1.440 = 342.7 ms⁻¹

19. 1991 Aug - 03 (அமைப்புக்கட்டுரை)

- a. வளிநிரலின் மிகக் குறைந்த நீளத்தில் ஆரம்பித்து முதன் முறையாகப் பரிவு ஏற்படும்வரை (உரத்த ஒலி) நீளம் படிப்படியாக அதிகரிக்கப்படல்
- b. $l = \lambda/4$ c. i. $V = \lambda = 4vl$ ii. n = V/4l emproprime nemises with 1/l
- d. λ/4 = 35 cm மறுபடியும் பரிவு ஏற்படுவதற்கு வளிநிரலின் நீளம் 3/4 λ ஆக இருக்க வேண்டும். அதாவது 3 x 35 cm குழாயின் நீளம் < 105 cm எனவே பரிவை உண்டாக்கும் இன்னுமொர் நிலையைக் காணமுடியாது. Va \sqrt{T}
- 1 பெரிதாக இருக்கும். வெப்பநிலை அதிகரிக்கும் போது வேகம் அதிகரிக்கும். e. f. இல்லை. அற்ககோல் எளிதில் ஆவியாகும். எனவே வளியில் அற்ககோல் ஆவி கலந்திருப்பதால் அதன் அடர்த்தி மாறுபடும். t data in 1988
- த திறந்த முனையில் குழாயின் வாய்க்கு மேலேயுள்ள வளியும் சுயாதீனமாக இயங்கக் கூடியதாக உள்ளது. இதனால் முரண்கணு குழாயின் நுனியிந்குச் சற்று மேலே ் இருக்கும். மூடிய முனையில் அது கணுவாக இருப்பதனால் அப்புள்ளியில் இடப்பெயர்ச்சி பூச்சியம், எனவே அப்புள்ளியில் மாற்றுமில்லை.

Concerns and an and a second second

ang 121-

T கம்பியின் இழுவை -N

நெட்டாங்கு அலையின் கதி = $\sqrt{\frac{E}{\rho}}$

m ஒரு அலகு நீளத்தின் திணிவ -kgm⁻¹

E பதார்த்தத்தின் பங்கின் குணகம் ρ பதார்த்தத்தின் திணிவு

88

E இன் பரிமானம் = $MLT^{-2}/L^2 = ML^{-1}T^{-2}$, ρ இன் பரிமானம் = ML^3 $\sqrt{\frac{E}{\rho}}$ goin unitoriatio = $\sqrt{ML^{-1}T^{-2}/ML^{-3}} = LT$ NUMBER OF STREET

இது கதியின் பரிமானம் ஆகும். குறுக்லையின் கதி கம்பியின் இழுவையிற் தங்கியுள்ளது. தொங்கவிட்ட கம்பியின் நிறை காரணமாக உயரம் அதிகரிக்கும் போது இழுவை அதிகரிக்கும். எனவே குறுக் கலையின் கதி மாநிலி அல்ல. மேல் நோக்கிச் செல்லும் போது கதி அதிகரிக்கும்.

நெட்டாங்கு அலையின் கதி மாறிலியாக இருக்கும் E,p என்பன ஒரு பதார்த்தத்திற்கு மாறிலியாகும். $m = pA \times 1$

Problems & Solutions

M.P. Thava.

Problems & Solutions M.P. Thava. Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

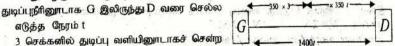
22. 1992 Aug - 06

குறுகலை அலை. அதிர்வு அலை செல்லும் திசைக்குச் செங்குத்தாக இருக்கும். நெட்டாங்கு அலை. அதிர்வு அலை செல்லும் திசையில் இருக்கும்.

ீ நீரின் துடிப்புகளின் மீடிறன் 1 Hz.

ii. (a) வளியில் அடுத்து வரும் இரு துடிப்புகளின் வேறாக்கம் = λ

(V=fλ பிரயோகிக்கும் போது) λ வளி = வேகம் /மீடிறன் = 350/1 = 350 m


(b) நீரில் துடிப்பின் வேறாக்கம் λ நீர் = 1400/1 = 1400m

உணரிக்கும் பிறப்பாக்கிக்குமிடையே உள்ள துரம் 1 எனின் வளியினூடு துடிப்பு lm துரும் செல்ல எடுக்கும் நேரம் t, = 1 /350s.

Marial to

நாள்காவது துடிப்பு நீரிலூடு சென்று உணரியை அடைய எடுக்கும் நேரம் t_2 எனின், $t_1 = \frac{1}{1400 + 3}$ \therefore $t_2 = \frac{1}{350} = \frac{1}{1400 + 3} = 1 = 1400 \text{ m}.$

வேறு ஒரு செய்முறை

 $a_{\rm mu} = 3 \times 350 = 1050 \,\mathrm{m}$

1050 +350t =1400t

$$t = 1$$

G இலிருந்து D க்கு உள்ள தூரம் = 1400 x 1 = 1400m

iv. துடிப்பு வளியினூடு செல்ல எடுத்த நேரம் = 1400/350 = 4s துடிப்பு நீரினூ. செல்ல எடுத்த நேரம் = 1400/1400 = 1s

20. 1993 Aug - 01 (அமைப்புக்கட்டுரை)

நகருநிணுக்குகாட்டி 8 கருவி i. அளவீடு b. மீற்றர் கோல் AB ali Lib (α) திருகாணி நுண்மானி 2. விட்டம் (B) ii. y = ____தகைப்பு 4Wa விகாரம் 2 1 πß Ala i. A யிலிருந்து கம்பி நழுவுதல் அல்லது கம்பியில் C. உள்ள ஒடுங்கிய பகுதி நீட்சியுறல் ii. வரைபு d. i. அடர்த்தி ii. கம்பியின் நீளமும் அதன் திணிவும் T - இழுவை,m - 1 அலகு நிளத்தின் திணிவு 0

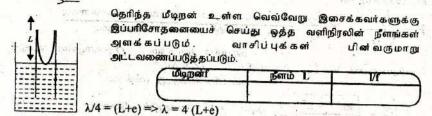
e.
$$V = \sqrt{\frac{T}{m}} = \sqrt{\frac{T}{AP}} = \sqrt{\frac{4W}{\pi\beta^2} \frac{1}{P}} = \sqrt{\frac{Y\varepsilon}{P}}$$

$$y = \frac{4W}{\pi\beta^2} \frac{\alpha}{\Delta l} \Rightarrow \frac{4\pi}{\pi\beta^2} = y \frac{\Delta l}{\alpha} = y\varepsilon$$

Problems & Solutions M.P. Thava. Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

24. 1993 Aug. - 08

$$V = \sqrt{\frac{\gamma P}{\rho}} \qquad \gamma = \frac{C_{p}}{C_{v}} = \frac{\text{uniff}}{\text{uniffek association}} \underbrace{P - \text{ourifuliation}}_{\text{operation}} \underbrace{P - \text{ouriful}}_{\text{ourifuliation}} \underbrace{P - \text{ouriful}}_{\text{ouriful}} \underbrace{P - \text{ouriful}}_{\text{operation}} \underbrace{P - \text{ouriful}}_{\text{ouriful}} \underbrace{P - \frac{\gamma P}{p} = \frac{330}{\sqrt{273}}}_{\text{ouriful}} \underbrace{P - \frac{\gamma P}{M} - \frac{330}{\sqrt{273}}_{\text{ouriful}} \underbrace{P - \frac{$$


(iii)
$$330 = \sqrt{\frac{1.403 \times 8.3 \times 273}{M}} \Rightarrow M = 0.029 \, kg$$

(iv) இல்லை. உலர் வளியின் அடர்த்தி ஈரலிப்பான வளியின் அடர்த்தியிலும் கடுதலானது.

25. 1994 Aug - 06

விருத்தி அலை	நிலையான அலை
சக்தி இழையின் வழியே கடத்தப்படுகின்றது.	சக்தி கடத்தப்படுவதில்லை.
எல்லாப்புள்ளிகளினதும் வீச்சம் சமமானதாக	ஒவ்வொரு புள்ளியும் வெவ்வேறு வீச்சம்
இருக்கும்.	உடையதாக இருக்கும்.
எல்லாப் புள்ளிகளினதும் மீடிறன் சமமானதாக	எல்லாப் புள்ளிகளினதும் மீடிறன் சமமானதாக
இருக்கும்.	இருக்கும்.

தெரிந்த மீடிறன் உள்ள இசைக்கவர் ஒன்றை ஒலிக்கச் செய்து அதனை நீர்த் தொட்டியில் வைக்கப்பட்டுள்ள (குறுகிய நீளமுள்ள வளி நிரலின் மேல்) குழாயின் திறந்க முனைக்கு மேல் பிடித்துக் கொண்டு குழாயை மெதுவாக மேலே உயர்த்தும் போது (வளி நிரலின் நீளத்தைப் படிப்பயாகக் கூட்டும் போது) ஒரு நிலையில் முதன்முதலாகப் பரீவு (உரத்த ஒலி ஏற்படும). அச்சந்தர்ப்பத்தில் வளி நிரலின் நீளம் அளக்கப்படும்.

$$V = 4f(L+e)$$
 அல்லது $L = (V/4) 1/f_{-4}$

இங்கு உமுனைவுத்திருத்தம் ஆகும். L இற்கும் 1/f இற்கும் வரைபு வரைந்து வரைபின் சாய்வை (படித்திறனை)க் கணித்து வளியில் ஒலியின் வேகம் V துணியப்படும். சாய்வு m=V/4 => வேகம் =4 x m ஆதி கூடிய அலைநீளம் = 4 x0.5 = 2m குழாயின் நீளம் மாற்றப்படாது மீடிறன் மாற்றப்படுகின்றது. பரிவு ஏற்படும் சந்தர்ப்பங்களில் அலை நீளங்கள் $(3/4\lambda_1 = 0.5)\lambda_1 = 2/3 \text{ m}, (5/4 \lambda_2 = 0.5)\lambda_2 = 2/5 \text{ m},$ $<math>\lambda_3 = 2/7 \text{ m}$ என அமையும்.

எனவே f=v/f ஐப் பயன்படுத்தும் போது, f= 330/2 = 165Hz பரிவு ஏற்படும் ஏனைய மீடிறன்கள் முறையே 495 Hz, 825 Hz ஆகும்.

புதிய வெப்பநிலையில் ஒலியின் வேகம் V_1 எனக் கொள்வோம். $V_1 = 168 \times 4(0.5+e)$ (மூடிய குழாய்) $V_1 = 335 \times 2(0.5+2e)$ (திறந்த குழாய்) $168 \times 4(0.5+e) = 335 \times 2(0.5+2e) => e = 1.5 \text{mm} => V_1 = 336 \text{ms}^{-1}$

ஒளியின் வேகம் தனி வெப்பநிலையின் வா்க்க மூலத்திந்கு நோ் விகித சமமாகுமனது.

 $\frac{V\alpha\sqrt{T}}{330\alpha\sqrt{300}} \qquad T = \frac{330\times336}{\sqrt{300}}$ $\frac{336\alpha\sqrt{T}}{\sqrt{T}} \qquad T = 311.1K = 38^{\circ}C$

26. 1995 Aug - 06

ஒரு முனை மூடிய குழாய் அடிப்படை வகை

அதிர்வுமுதலாம் மேற்றொணி

 $f = \frac{3V}{4L}$

92

ENDINE FLATER CONTRACTOR AND

$$L = \frac{\lambda}{4} \Longrightarrow \lambda = 4L$$
$$V = f\lambda \Longrightarrow V = f.4L$$
$$f = \frac{V}{4L}$$

Problems & Solutions.

NS. M.P. Thava. Digitized by Noolaham Foundation. noolaham.org | aavanaham.org .: தரப்பட்ட சூத்திரம் n = 1 எனில் அடிப்படையில் வகை அதிர்விற்கும் n = 3 எனில் முதலாம் மேற்றொணிக்கும் உண்மையாகும்.

இரு முனையும் திறந்த குழாய்

அடிப்படை வகை அதிர்வு முதலாம் மேற்றொணி வகை அதிர்வு

... தரப்பட்ட சூத்திரம் n = 1 எனின் அடிப்படை வகை அதிர்விற்கும் n=2 எனின் முதலாம் வகை மோற்றொணிக்கும் உண்மையாகும்.

95 (роват (ран. вружав. f = nV/4L 95 (роватци) збрърз вуржав. f = nV/4L $f^{1} = n^{1}V/2L$ $210 = \frac{n.340}{4L} - ---(1)$ $840 = \frac{n^{1}.340}{4L} - ---(2)$ (1), (2) $\Rightarrow \frac{n}{n^{1}} = \frac{1}{2}$

இழிவு குழல் நீளத்திற்கு $n = 1, n^1 = 2$ ஆதல் வேண்டும் $(1) \Longrightarrow 210 = \frac{1 \times 340}{4L}$ $L = \frac{340}{840} = \frac{17}{42} = 0.405 \, m$

b. 210Hz என்பது அடிப்படை சுரமாகும்.

840Hz என்பது 1 ம் மேற்றொணியாகும்.

93

27. 1996 Aug - 06

ஓளியின் வேகம் $= \sqrt{E/D}$

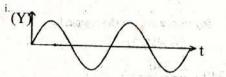
i. 256 Hz அதிர்வெண் உள்ள இசைக் கவருடன் குறுக்கலை அதிர்வெண் ஆனது ஒரு செக்கனில் 4 அடிப்புக்களை ஏற்படுத்துவதால் குறுக்கலையின் அதிர்வெண் = 256 +4 அல்லது 256 - 4Hz ஆகும்.

நிறை W மெதுவாக நீரில் அமிழ்த்தப்படுவதால் இழைணில் உள்ள இழுவை குறையும் எனவே அதிர்வெண் குறையும் இதன் விளைவாக அடிப்பதிர்வெண் குறைகிறது. ஆகவே குறுக்கலையின் அதிர்வெண் = 260 Hz

ii. 2 தடங்கள் உருவாகின்றன.

and the set of the

அவை நீளம் 1 = கம்பியின் நீளம் = 2mஆகவே குறுக்கலையின் அதிர்வெண் $= \frac{1}{\lambda} \sqrt{T/m}$ இழுவை T = W


Problems & Solutions . M.P. Thava.

கம்பியின் குகறுக்கு வெட்டு முகப்பரப்பு A என்க. இழுவைத் தகைப்பு =W/A இழுவை விவகாரம் = 0.25 /100 யங்கின் மட்டு E = இழுவைத் தகைப்பு / இழுவை விவகாரம் E = (W/A) / (0.25/100) = 400 W/A

கம்பியில் ஒலியின் வேகம் = $V = \sqrt{E/D} = 20\sqrt{\frac{W}{A\rho}}$ ஆனால் குறுக்கலை அதிரிவெண் $f = V / \lambda = \sqrt{\frac{W}{A\rho}}$

(ஒர் அலகு நீளத்தின் திணிவு =A x 1xp) எனவே கம்பித் திரவியத்திலுள்ள ஒலியின் கதி = V = 20 x 260 = 5200ms⁻¹

28. 1997 Aug - 03 (அமைப்புக்கட்டுரை)

ii. $\omega^2 = 16 \pi^2 \times 10^4$ $\omega = 4\pi \times 10^2$ $T = 2 \pi / \omega = 2\pi \times 10^2$ = 1/200siii. $f = 1/T = 2 \times 10^2 = 200 \text{ Hz}$

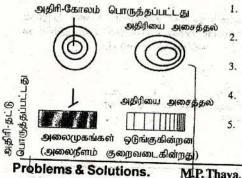
b. i. 2 m ii. $V = f \lambda = 200 \text{ x } 2 = 400 \text{ ms}^{-1}$

i.
$$V = \sqrt{\frac{T}{m}}$$
 ii. $400 = \sqrt{\frac{T}{1 \times 10^{-4}}} \Rightarrow T = 16N$

d. i. 3ம் விடை இசைக்கவரிலிருந்து உயர்சக்தியை இடமாற்றுவதற்கு ii. 200 Hz e. i. R - mg = ma எறியப்படும் போது மறுதாக்கம் R = O

a = -g

ஆனால் $a = -\omega^2 Y_{max} = -g$


 $Y_{max} = g/a\omega^2 = 10/16\pi^2 x \ 10^4 = \frac{10}{160 \times 10^4} = 6.25 \times 10^{-3} mm$

29. 1997 Aug - 02 (b)

C.

தொப்பிளர் விளைவு

முதல் ஒன்றுக்கும் அவதானிக்கும் இடையே சார்பியக்கம் உள்ள போது அலை ஒன்றி**னது** அவதானிக்கப்படும் மீடிறனில் ஏற்படும் மாற்றம் தொப்ளர் விளைவு எனப்படும். *பிரயோகங்கள்* :

. அசையும் வாகனத்தின் கதியைத் துணியப் பயன்படும்(police rader)

- குருதிக்கலன்களின் வேகத்கை துணியப் பயன்படும்

. விமானத்தின் அல்லது கப்பல்களின் கதி துணிய பயன்படும்

வானியல் பொருட்களின் கதி துணிய பயன்படும்

கருப் பையிலுள்ள சிசுக்களின் இதயத்துடிப் பைத் துணிவதில் பயன்படும்

BUIL ROOM STOR

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

i. படகின் கதி V =18 x 1000/3600 = 5ms⁻¹

பையனால் கேட்கப்படும் மீடிறன் $f = \frac{Vf}{V - U_s} = \frac{340}{(340 - 5)} \times 335 = 340 Hz$

மனிதனால் கேட்கப்படும் எதிரொலியின் மீடிறன்

 $f^{11} = \left(\frac{V+U_s}{V}\right) f^1 = \frac{340+5}{340} \times 340 = 345 \ Hz$

24 Add - 42 380

iii. மனிதனால் கேட்கப்படும் அடிப்புக்களின் எண்ணிக்கை = 345 - 335 = 10Hzகுன்றினால் தெறிக்கப்படும் ஒலியின் மீடிறன் $f''' = \frac{V}{V + Vs} f = \frac{340 \times 335}{345} = 330.15Hz$

- மனிதனால் கேட்கப்படும் எதிரொலியின் மீடிறன் $f^{\prime\prime\prime\prime} = rac{V-U_s}{V} imes f^{\prime\prime\prime\prime}$
 - $=\frac{340-5}{340}\times\frac{340\times335}{345}=325.3Hz.$

30. 1998 Aug -02 (b)

a.

- i. தலையீடு, கோணல்
- ii. அலையின் அலைநீளமானது நீரின் ஆழத்தை விடப் பெரிதாக இருக்கும் போதும், அலையின் வீச்சமானது. ஆழத்துடன் ஒப்பிடும் போது சிறிதாக இருக்கும் போதும்
- அலையின் கதியை மாற்றுவதற்கு அல்லது அலை ஊடு கடத்தலுக்கு இரு ஊடகங்களை உருவாக்கல்.

iv.

 $V = \sqrt{gh} = f\lambda$

 $\lambda_1 \alpha \sqrt{h_1}, \lambda_2 \alpha \sqrt{h_2} \Longrightarrow \lambda_1 / \lambda_2 = \sqrt{h_1 / h_2} = \sqrt{4/1} = 2$ え=1/22 முறிகோணம் r என்க $\frac{\sin 30^{\circ}}{\sin r} = \frac{V_1}{V_2} = \frac{\sqrt{h_1}}{\sqrt{h_2}} = \frac{\sqrt{4}}{\sqrt{1}} = 2$ $\sin r = \frac{\sin 30^\circ}{2} \Rightarrow r = 14^\circ 25'$

- இரு பிரதேசங்களிலும் உள்ள குழப்பங்களும் ஒரே ஒலி முதலால் உருவாக்கப்படுவதால்.
- vi. அலையின் அலைநீளம் = 20/5
- vii. நீர் அலைகள் குறுக்கலைகளாகும்., ஒலி அலைகள் நீள்பக்க அலைகளாகும்.
 viii. ஒலிமுதலை பிரதேசம் 2 இல் வைக்க வேண்டும்
- ix. கோணல்

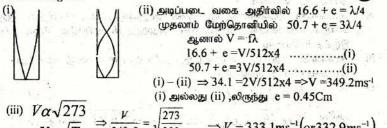
Problems & Solutions. M.P. Thava.

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

31. 1998 Aug - 03

Санью =
$$\sqrt{T/m} \Rightarrow V = f\lambda \Rightarrow \lambda = 2d \Rightarrow f = \frac{1}{2d\sqrt{T/m}}$$

x நீளமான கயிற்றின் நிறை = mgx
 x உயரத்தில் இக்கயிற்றிலுள்ள இழுவை T = mgx


ii. ் x உயரதில் வேகம்
$$V=\sqrt{mgx\ /\ m}$$

iii. கீழ் முனையில் வேகம் V,=0

மேல் முனையின் நிளம்
$$V_2 = \sqrt{g \times 1} = \sqrt{10 \times 10} = 10 m s^{-1}$$

iv. syntem Gaussib
$$= \frac{V_1 + V_2}{2} = \frac{0 + 10}{2} = 5 ms^{-1}$$

32. 1999 Aug - 02

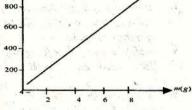
$$V = \sqrt{\frac{\gamma P}{\rho}} \implies 333.1 = \sqrt{\frac{\gamma \times 1.0 \times 10^5}{1.2}} \implies \gamma = \frac{(333.1)^2 \times 1.2}{1 \times 10^5} = 1.33$$

மாறா அமுக்கத்தில் வாயுவின் வெப்பநிலை 1°C ஆல் அதிகரிக்க வாயுவால் வேலை செய்யப்படுகின்றது. ஆனால் மாறாக்கனவளவில் வாயுவின் வெப்பநிலை 1°C ஆல் அதிகரிக்கும் போது வேலை செய்யப்படுவதில்லை.

ஆல்லது மாறாக்கனவளவில் வழங்கப்படும் வெப்பம் முழுவதும் அகச்சக்தி அதிகரிப்பாகிறது. எனவே மாறா அமுக்கத்தில் மேலதிக வெப்பம் வாயுவால் செய்யப்படும் வேலைக்காக வழங்க வேண்டியுள்ளது. எனவே C_p பானது C_v இலும் உயர்வாகும்.

33. 2000 Aug - 03(அமைப்புக்கட்டுரை)

- a. சுரமானிப்பெட்டி மீது (பாலங்களிடையே நடுப்புள்ளிக்கு அண்மையில்)
- b. முதலில் இரு பாலங்களையும் கிட்டக் கொண்டு வரவும். பின்னர் முதற்தடைவை பரிவு ஏற்படும் வரை அவற்றுக்கிடையே உள்ள தூரத்தை அதிகரிக்கவும்..


$$f = \frac{1}{2\ell} \sqrt{\frac{Mg}{m}}$$

d. (i) ஆளக்கப்பட்ட 1 பெறுமானத்தின் மிகப் பெரியது.
 (வரைபில் 1 ற்கு கிடைத்த மிகக் கூடிய பொழுமானம்)

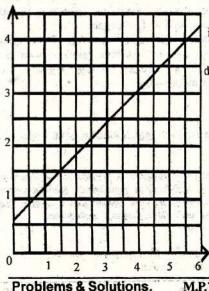
Problems & Solutions. M.P. Thava.

- ii) இந்கு அளக்கப்பட்ட மிகக் கூடிய பெறுமானம் மிகக் குறைந்த வழுவைக் கொண்டது.
- e. i. (1, 100) (3, 350) (5, 600), (7, 850) ஏதாவது இரு புள்ளிகள் (ii)படித்தின = (350-100)/(3-1)=125cm²kg⁻¹ _{e²(cm²)}

f.
$$uq = g / 4f^2 m$$

 $f = \sqrt{\frac{10}{4 \times 125 \times 10^{-4} \times 8 \times 10^{-4}}} = 500 Hz$

நாற்றுவீத


34. 2001 Aug - 01 (அமைப்புக்கட்டுரை)

	15 kg	b. F =	=μ R
நி	றை எதுவுமின்	றி குற்றி	
கு	ற்றி + 0.1 kg ந	நிறை	
கு	ற்றி + 0.2 kg ந	திறை	
க	ற்றி + 0.3 kg բ	திறை	
கு	յիցի + 0.4 kg բ	நிறை	
க	ற்றி + 0.5 kg ந	நிறை	

R(N)	1(mm)	F(N)
1.5	25	1.0
2.5	30	1.5
3.5	35	2.0
4.5	41	2.6
5.5	. 48	3.3
6.5	55	4.0

iv. படித்திறன் $=\frac{(3.3-1.5)}{(5.5-2.5)}=\frac{1.8}{3}=0.6$

d. சுருளி வில்லின் அருகில் அளவுச் சட்டத்தை நிலை நிறுத்தி அதன் இரு முனைகளிலும் வாசிப்புக்களை எடுக்கவும், (குற்றி வழுக்கத் தொடங்கும் போது) அல்லது கொழுக்கியுடன் தொடுக்கப்படும் சுருளி வில்லின் முளையில் வசதியான அளவீட்டு குறியை இட்டு அதன் மறுமுனையில் வாசிப்பை எடுக்கவும். (குற்றி வழுக்கத் தொடங்கும் போது)

M.P. Thava. Digitized by Noolaham Foundation. noolaham.org aavanaham.org 97

1:01/ .

35. 2001 Aug - 02

- i. 20Hz 20KHz
- ii. நன்மைகள் : கழியொலி ஏதாவது சேதத்தையோ அல்லது விரும்பத்தகாத பக்க விளைவுகளையோ மனிதனுக்கு ஏற்படுத்தாது. கழியொலி மனிதரின் கலங்களில் அணுக்களை அல்லது மூலக்கூறுகளை அயனாக்கமாக்கப்பட்டது.
- iii. கழியொலி ஒரு நீள்பக்க அவையாகும்.
- iv. கழியொலி ஒலியலைகளாகும். ஆவற்றின் அதிர்வெண்கள் 20KHz ந்கு மேற்பட்டவை அல்லது கேட்டல் அதிர் வெண்ணுக்கு மேற்பட்டவை அல்லது மனிதருக்கு கேட்க முடியாது இருக்கும்
- v. கழியொலி ஒரு பொறி முறை அலை அல்ல. இதன் வேகம் ஒளியின் வேகம் அல்ல. அல்லது அதனைச் செலுத்துவதற்கு ஒரு ஊடகம் அவசியம்
- vi. λ என்பது அலை நீளம் $\lambda = \frac{1500}{15 \times 10^6} = 10^{-4} m$ கருதப்படும் பொருளின் பருமனுடன் அலை நீளம் ஒப்பிடக் கூடியது
- vii. a. Vcos0

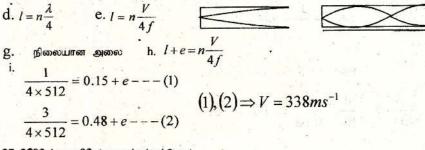
b.
$$f^{1} = f_{t} \frac{(U + V \cos \theta)}{U}$$

C. $f_{r} = f^{1} \frac{U}{U - V \cos \theta} \Rightarrow f_{d} = f_{r} - f_{t} = f_{t} \left(\frac{U + V \cos \theta}{U - V \cos \theta} - 1\right)$
 $f_{d} = f_{t} \left(\frac{U + V \cos \theta - U + V \cos \theta}{U - V \cos \theta}\right) = \frac{f_{t} \times 2V \cos \theta}{U - V \cos \theta}$
viii. $8 \times 10^{3} = \frac{2 \times 15 \times 10^{6} V}{1500} \Rightarrow V = 0.4 m s^{-1}$

- ix. f_a ந்கு உயர் பெறுமானத்தை அல்லது செயன் முறையாக அளவிடக் கூடிய பெறுமானத்தை அடைய அல்லது θ உயர்வெனில் f_a சிதாகும்.
- x. தோலினால் கழியொலித் தெறிப்பைக் குறைப்பதற்கு அல்லது தோலினூடு கழியொலியின் ஊடு கடத்தலை அதிகரிப்பதற்காக அல்லது மூடிய இணைப்பை தோலிற்கும் உபாயத்திற்கு இடையே ஏற்படுத்த அல்லது தோலிற்கும் உபாயத்திற்குமிடையிலுள்ள வளியை விலத்துவதற்கு

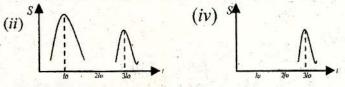
36. 2002 Aug - 03 (அமைப்புக்கட்டுரை)

8


h.

இசைக் கவையின் புயங்கள், குழாய் வாய்க்கு நடுவில் இருத்தல் 'வேண்டும்.

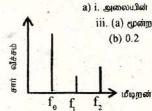
குழாய் நீரினுள் முற்றாக அமிழ்தப்பட்டு நீர்த்தொட்டி தாழ்த்தப்படும் (இழிவு வளி நிரல் நீளத்தில் ருந்து ஆரம்பித்தல்) இசைக்கவையை படத்தில் காட்டிய வண்ணம் குழாயின் நடுவிலிருக்க வைத்து உரத்த ஒலி கேட்கும் வரை வளி நிரல் நீளத்தை அதிகரித்தல் (பரிவு பெறப்படும் வரை)


c. ஆளவிடையில் குழாயின் திறந்த முனை வாசிப்பு அளவிடையில் நீர் மட்ட வாசிப்பு.

Problems & Solutions. M.P. Thava.

37. 2003 Aug - 03 (அமைப்புக்கட்டுரை)

- a) 420Hz
- b) (i) இசைக்கவையை அதிரச் செய்து திறந்த முனைக்கருகில் பிடித்து உரத்த ஒலி கேட்கும் வரை இசைக் கவையை அசைத்தல்.



(iii) 3 lo (2lo இல் வரைபு வரையப்படக் கூடாது)

c) (i) Aஅல்லது 512Hz இசைக்கவை அல்லது அதியுபர் மீடிறன் இசைக்கவை (i) அன்ற வெப்பநிலை அல்லது வளி வெப்பநிலை அல்லது சூழல் வெப்பநிலை.

d)
$$60 = 10 \log \left(\frac{I}{10^{-12}} \right) \implies I = 10^{-6} W m^{-2}$$

38. 2004 Aug - 02

a) i. அலையின் வீச்சம் ii. அலையின் மீழ்நன் iii. (a) மூன்றாம் மேற்கொனி மீழ்நன் 4fo = 4 x 4000 = 1600Hz (b) 0.2 அல்லது f¹ = 840Hz உம் f² = 1260Hz உம் f¹ = 1260Hz உம் f² = 2100Hz உம் (வரைபில் உயரங்களும், வேளாக்கங்களும்

கவனிக்கப்படல் வேண்டும்) சம வேறாக்கம்

v. மூன்று மின்னியல் சைகைகள் அல்லது அறிகுறிகளின் (signals) மீடிறன்கள் f₀, f₁, f₂ உடம் அவற்றின வீச்சங்கள் 1, 1/2, 1/2 உம் உடையவற்றகை கலந்து இலத்திரனியல் முறையாக பிறப்பித்தல் (பூரியே திருசியத்தில் உள்ள மீடிறன்களையும் அவற்றின் ஒத்து தொடர்பு வீச்சங்களையும் கொண்ட மின் சைகைகளைக் கலந்து ஒவ்வொரு சுரத்துக்குமான மின் அலைக் கோலத்தை இலத்திரனியல் முறையில் பிறப்பித்தல்)

vi. ஒலி, இலத்தீரனியல் முறையில் வரியலாக்கப்படுவதால்

vii. $f_0 = \frac{1}{1} \sqrt{\frac{T}{T}}$

viii.

$$330 = \frac{1}{2 \times 0.68} \sqrt{\frac{T}{m}} = ---(a)$$

$$440 = \frac{1}{2l'} \sqrt{\frac{T}{m}} = ----(b)$$

$$\frac{(a)}{(b)} \Rightarrow \frac{330}{440} = \frac{l'}{0.68} \Rightarrow l' = 0.501 m$$
xi. a. $2L = \lambda = \frac{V}{f_O} = \frac{340}{262}$

$$L = \frac{340}{2 \times 262} = 0.65 m$$
b. $V \alpha \sqrt{T}$

$$\frac{V_{300}}{V_{243}} = \sqrt{\frac{27 + 273}{-30 + 273}} = \sqrt{\frac{300}{243}} = \frac{340}{V^1}$$

$$V^{1} = \sqrt{\frac{243}{300}} \times 340 = 306 \text{ ms}^{-1}$$
$$f = \frac{V^{1}}{\lambda} = \frac{V^{1}}{2l} = \frac{306}{2 \times 0.65} = 235 .4 \text{ Hz}$$

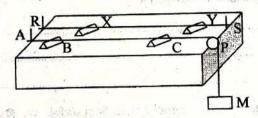
Problems & Solutions.

10.00

4

100

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org


and short & smaller 100

In Indiana Rape Man பின்னிணைப்பு

2005 Aug

Michael Martine

35. உருவில் காணப்படும் சுரமானி W₁,W₂ என்னும் இரு ஈர்த்த கொணர்டுள்ளது. w, இன் மெல்லிய உலோகக்கம்பிகளைக் ஒரு நுனி ஓர் ஆணி A உடன் தொடுக்கப்பட்டிருக்கும். அதே வேளை மற்றைய நுனி உருவில் காட்டப்பட்டுள்ளவாறு ஒரு திணின M ஆக் காவுகின்றது. கப்பி P ஒப்பமானது.w₂ ஆனது R, S என்னும் இரு ஆணிகளுடன் தொடுக்கப்பட்டு இழுவையின் கீழ்ப் பேணப்படுகின்றது.

(a) (i) BCயின் நடுவில் w, ஜத் நெருட்டும் போது கம்பி அடிப்படை மீடிறனுடன் அதிருகின்றது. அப்போது Bயிற்கும் Cயிற்குமிடையே உண்டாக்கப்படும் கம்பியின் அலைக் கோலத்தைப் பின்வரும் உருவில் வரைக.

THE ME CH & HAR SHE

(ii) இவ்வியல்பை உடைய நிலையான அலை எங்ஙனம் உண்டாகின்றது?

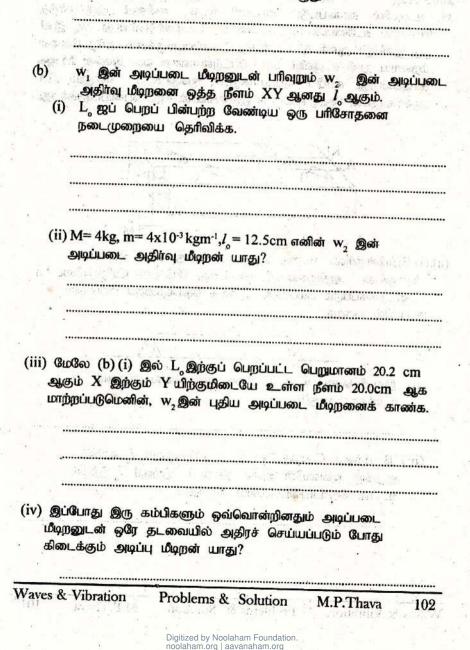
HERE CONTRACTOR

the there and have

法律师 自定于自己的问题

Waves & Vibration

(iii) B யிற்கும் C யிற்குமிடையே உள்ள தூரம் l_a எனின், குறுக்கு அலையின் அலை நீளம் λ இற்கும் l இற்கும் உள்ள தொடர்புடைமையை எழுதுக.


Problems & Solution

M.P.Thava

101

and the set the set of the

(ii) W₁ இன் இழுவை T ஆகவும் ஓரலகு நீளத்துக்கான திணிவு m ஆகவும் இருப்பின் அடிப்படை மீடிறன் f₀ இற்கான கோவையை T₁, m₁, I₀ ஆகியவற்றின் சார்பில் எழுதுக.

2006 Aug

CAP STOR

Waves & Vibration

36. ஒரு திரவத்தின் மேற்பரப்பில் x- திசையில் இயங்கும் குற்றலைகள் காணப்படுகின்றன. மேற்பரப்பில் உள்ள உருவில் கிரவம் O(Th நிலைக்குத்துத் திசையில் எளிய இசை இயக்கத்தை ஆற்றுகின்றது. அலையின் செலுத்துகையின் விளைவாகத் திரவ மேற்பரப்பின் ஒரு

– முதல்/ உணரி is mean strike share interiment Partitutasan B. un \$ BIGHNARD TOUS ADAL STAR astandentine, dennation

குறித்த இடத்தில் உள்ள நிலைக்குத்து இயக்கத்தைப் பரிசீலிப்பதற்காகத் திரவ மேற்பரப்பிற்கு மேலே ஒரு நிலையான ஒலி முதல்/ உணரி வைக்கப்பட்டுள்ளது. ஒலி முதல் உருவில் காணப்படுகின்றவாறு ஒலிச் சைகைகளை நிலைக்குத்தாகக் கீழ்நோக்கி அனுப்புகின்றது. அலையும் திரவ மேற்பரப்பிலிருந்து தெறித்த சைகையானது உணரியினால் உணரப்படுகின்றது. உணரியினாது ஒலி முதலினால் காணப்படுகின்ற அலைகளினாலும் திரவமேற்பரப்பிலிருந்து தெறித்த பின்னர் கிடைக்கும் அலைகளினாலும் உண்டாக்கப்படும் அடிப்பகளின் மீடிறனைத் துணியவும் தக்கது. முதலினால் உண்டாக்கப்படும் ஒலி அலைகளின் மீடிறன் 680k Hz உம் வளியில் ஒலியின் கதி 340ms⁻¹ உம் ஆகும்.

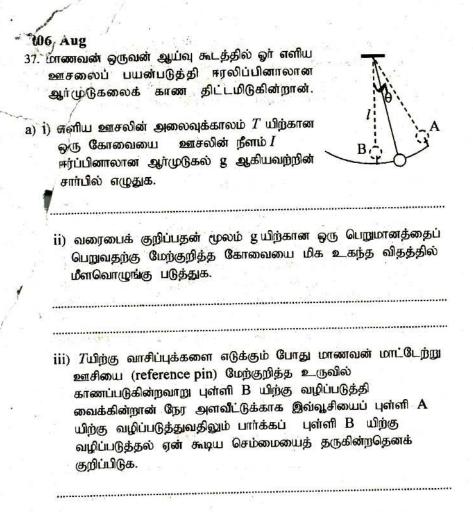
- (i) (a) உருவில் காணப்படும் எத்தானத்தில் (A அல்லது B) திரவ மேற்பரப்பின் கதி இழிவாகும்? அக்கதியின் பெறுமானம் யாது?
 - (b) திரவ மேற்பரப்பின் கதி இழிவாக இருக்கும் கணத்தில் தெறித்த ஒலி அலைகளின் மீடிறன் யாது?

in the state of the second

paradito (manangerope en max alià il ma daleras ambe anned third entry many courter

Problems & Solution

M.P.Thava


- (ii) (a) வளியில் ஒலியின் கதி. ஒலி முதலினால் காலப்படும் ஒலி அலைகளின் மீடிறன் ஆகியன முறையே u.f எனின்,திரவ மேற்பரப்பு ஒலி முதலிலிருந்து அப்பால் கதி v யில் இயங்கும் போது திரவமேற்பரப்பில் அவதானிக்கின்றவாறு மீடிறன் f,இற்கான ஒரு கோவையை v,f,u ஆகியவற்றின் சார்பில் எழுதுக.
- (b) மேலே(ii) (a) இல் விவரித்த நிலைமைக்கு உணரியினால் அளக்கப்படும் மீடிறன் f இற்கான ஒரு கோவையை v,f,v ஆகியவற்றின் சார்பில் எழுதுக.
- (c) மேலே (ii) (a) இலும் (ii) (b) இலும் பெற்ற உமது கோவைகளைப் பயன்படுத்தி, v <<u ஆக இருக்கும் போது உணரியினால் அளக்கப்படும் அடிப்பு மீடிறன் 2f_ov/u எனக் காட்டுக.
- (d) திரவ மேற்பரப்பின் எத்தானத்தில் (A அல்லது B) உயர் அடிப்பு மீடிறனை உணரலாம்? இம்மீடிறன் 600Hz எனின் இத்தானத்தில் திரவ மேற்பரப்பின் வேகத்தின் பருமனைக் காண்க.
- (e) நிலைமை v << u விற்குத் திரவ மேற்பரப்பின் ஒரு முழுமையான அளவுக் காலத்திற்கு உணரியினால் அளக்கப்படும் அடிப்பு மீடிறனின் பெறுமானத்தை நேரத்தின் ஒரு சார்பாகப் பரும்படியாய் வரைக.
- (iii) (a) அடிப்பு மீடிறனின் இரு அடுத்துவரும் பூச்சியப் பெறுமானங்களுக்கிடையே உள்ள நேர ஆயிடை 0.05s எனின் குற்றலைகளின் மீடிறன் யாது?

Waves & Vibration

Problems & Solution Digitized by Noolaham Foundation.

noolaham.org | aavanaham.org

M.P.Thava

(b) i) மாணவன் ஓர்அலைவிற்கு மாத்திரம் நேரத்தை அளந்த போது அவனுடைய வாசிப்பு 2.0s ஆக இருந்தது. நேர அளவீட்டில் உபகரண வழு 0.1s எனின் அலைவுக்காலத்தின் பெறுமானத்தின் சதவீத வழுவைத் துணிக.

Waves & Vibration Problems & Solution M.P.Thava 105

ii) அவன்ஓர் அலைவுக்கான நேரத்தை அளப்பதற்குப் பதிலாக 25 அலைவுகளுக்கான நேரத்தை அளந்து பெற்ற பெறுமானம் 50.2s ஆகும். நேர அளவீட்டின் பெறுமானத்தின் சதவீத வழுவைத் துணிக (உமது விடையை கிட்டிய முதலாவது தசம தானத்தில் தருக) AN ANY (c) மாணவன் ஊசற்குண்டாக ஆரை r ஐ உடைய ஓர் சீர் உலோகக் கோளத்தைப் பயன்படுத்தினான். அவன் ஊசலின் நீளத்திற்காகப் பயன்படுத்திய நீளம் L உருவில் காணப்படுகின்றது. L எதிர் T² வரைபைக் குறித்த பின்னர் அதன் படித்திறன் 4.0s²m⁻¹ எனவும் வெட்டுத்துண்டு 0.04s² எனவும் கண்டான். i) மேலே (a) (ii) இல் உள்ள கோவையை L, r, g ஆகியவற்றின் சார்பில் மறுபடியும் எழுதுக. Last (1996) (ast opens ii) தயை துணிக (π யை 3.1 என எடுக்க) iii) கோளத்தின் ஆரை r ஐத் துணிக. and the state of the second states and the Elization destroy

Problems & Solution

Waves & Vibration

M.P.Thava

(d) வளி ஈருகை (air drag) காரணமாக அலைவுகளின் வீச்சம் நேரத்துடன் படிப்படியாக குறைந்து ஊசற்குண்டு இறுதியாக ஒய்வுக்கு வருகின்றதென மாணவன் அவதாளித்தான். அவன் அதே ஆரையை உடைய ஒரு மரக்கோளத்தைப் பயன்படுத்தி மேற்குறித்த பரிசோதனையை மறுபடியும் செய்தான். எந்த ஊசற்குண்டு ஓய்வுக்கு வருவதற்குக் குறைந்த அளவு நேரத்தை எடுக்கும்? உமது விடைக்கான காரணங்களைத் தருக.

1 Low Low

SHIRIT LU WE DE MARKER

2007 Aug

- 38. பரிவுத் தோற்றப்பாட்டினைப் பயன்படுத்தி, மாறா இழுவையின் கீழ் வைக்கப்பட்டுள்ள ஒரு சுரமானிக் கம்பியில் குறுக்கு அலைகளின் கதி (V) யைத் துணிவதற்கான ஒரு பரிசோதனையை வடிவமைக்குமாறு மாணவன் ஒருவனிடம் கூறப்பட்டுள்ளது. இம்மாணவன் ஒரு வரைபு முறையைப் பயன்படுத்துவானென எதிர்பார்க்கப்படுகின்றது. இந் நோக் கத் திற்காக இசைக் கவைத் தொகுதி ஒன்று வழங்கப்பட்டுள்ளது.
- a) மீடிறன் F ஐ உடைய ஓர் இசைக் கலையுடன் அடிப்படை வகையில் (mode) பரிவு பெறப்பட்டதெனின், V யிற்கான ஒரு கோவையைப் பரிவு நீளம் l,f ஆகியவற்றின் சார்பில் எழுதுக.
- b) மேலே (a) இல் பெற்ற கோவையை y = mx என்னும் வடிவத்தில் மீளவொழுங்குபடுத்துக. இங்கு y ஆனது சார் மாறியாகும். இப்பரிசோதனையில் y யை ஓர் அளவீட்டின் நிகர்மாற்றாக அமையாதவாறு தெரிந்தெடுக்க. x ஐ இனங்காண்க.

Waves & Vibration

AFER INS

Problems & Solution Digitized by Noolaham Foundation. noolaham.org | aavanaham.org M.P.Thava

a Table Sol. Nollingary, (1)

20.25

1.250

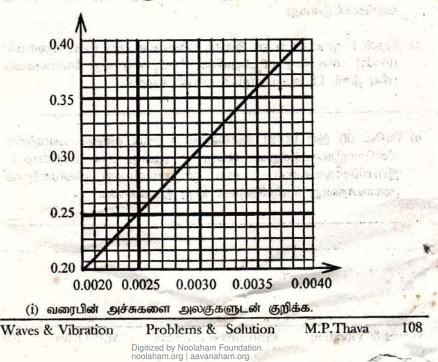
c) நீர் பரிசோதனையை முதலில் மிகப் பெரிய மீடிறன் உள்ள இசைக் கவையுடனா, மிகச் சிறிய மீடிறன் உள்ள இசைக் கவையுடனா ஆரம்பிப்பீரென கூறுக. உமது விடைக்கு காரணங்களைத் தருக.

terre and the second second

13 HULLER CARLO

19388-131101 Ale 1

NHG TO AL DI LAS


d) தரப்பட்டுள்ள இசைக் கவைத் தொகுதியிலிருந்து இசைக் கவைகளின் பௌதிகப் பரிமாணங்களை மாத்திரம் கருத்திற் கொண்டு மிகப் பெரிய மீடிறனை உடைய இசைக் கவையை எங்ஙனம் இனங்காண்பீர்?

后期除出了。 动物的复数的 化防止的现在分词

What we have been the state of the state of

e) கம்பியின் பரிவு நிலையை ஒரு மேற்றொனியிலும் பார்க்க அதன் அடிப்படை அதிர்வு வகையில் (mode) அவதானித்தல் ஏன் எளிதானது?

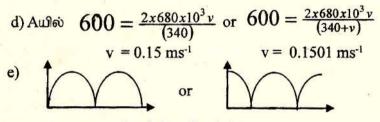
f) மாணவன் பெற்ற y எதிர் x வரைபு கீழே காணப்படுகின்றது. எல்லாக் கணியங்களும் SI அலகுகளில் தரப்பட்டுள்ளன.

(ii) வரைபிலிருந்து V யைக் கணிக்க. V யைக்கணிப்பதற்கு நீர பயன்படுத்திய இரு புள்ளிகளை வரைபில் தெளிவாகக் காட்டுக.

g) பரிவு நீளம் l இன் வழு Δl இரு கூறுகளை உடையது; அவை lஐ அளக்கப் பயன்படுத்தும் உபகரணத்தின் வாசிப்பு வழு (Δl ,), பரிவு நிலையைப் பெறுவதன் உறுதியின்மையின் விளைவாக உள்ள வழு (Δl_2) என்பனவாகும். Δl_2 ஐ எங்ஙனம் பரிசோதனை முறையாகக் துணிவீர்?

வினடகள்

- 2. எதிர் திசையில் நகரும் 35. a) 1. இரு சர்வசமமான குறுக்களைகளின் மேற்பொருந்துகையால் அல்லது படு அலையினாலும் தெறி அலையினதும் மேற்பொருந்துகையால்.
 - 3. $\lambda_o/2 = l_o \rightarrow \lambda_o = 2l_o$ 4. $f_0 = \frac{1}{2I}\sqrt{\frac{T}{T}}$
- b) 1) பாலங்கள் X உம் Y உம் அருகே கொண்டு வரப்பட்டு W, நெருட்டப்பட்டு அடிப்புகள் கேட்காதவரை XY இற்கிடைப்பட்ட தூரம் அதிகரிக்கப்படும்.


2) $f_0 = \frac{1}{2x0.125} \sqrt{\frac{4x10}{4x10^3}} = 400 \text{HZ}$: W₂ இன் அடிப்படை மீழ்நன் $f_{e} = 400 HZ$ $f \propto \frac{1}{20 \ r 10^{-2} m}$(2) $(1),(2) \Rightarrow f = \frac{0.202}{0.2} \times 400 = 404H$

4) அடிப்பு மீடிறன் = 404 - 400 = 40Hz Waves & Vibration M.P.Thava Problems & Solution

36.1) (a) B ullov, Ujšeflunio (b) 680 KHZ 2) a) $f^{1} = \left(\frac{u-v}{u}b\right) f_{0}$ $f^{11} = \left(\frac{u}{u+v}\right) f^{1}$ $f^{11} = \left(\frac{u}{u+v}\right) \left(\frac{u-v}{u}\right) f_{o} = \left(\frac{u-v}{u+v}\right) f_{o}$

c) அடிப்பதிர் வெண்
$$= f_0 - f''$$

 $= \left[1 - \left(\frac{u - v}{u + v}\right)\right] f_o = \frac{2f_o v}{u + v} = \frac{2f_0 v}{u}$

இங்கு v << u

3) a) அதிர்வுகாலம் T = 0.05 x 2 = 0.1 செக் மீடிறன் f = 1/T = 1/0.1 = 10 HZ

b)
$$f\lambda = \sqrt{\frac{2\pi T}{\lambda \rho}} \Longrightarrow T = \frac{f^2 \lambda^3 \rho}{2\pi} \implies T = \frac{10^2 x (12x10^3)^3 x13600}{2x3}$$

= 0.392 Nm⁻¹

37)a)1) $T = 2\pi \sqrt{\frac{l}{g}}$ 2) $T^2 = \frac{4\pi^2}{g} l$ 3) Bullல் உயர்கதி அல்லது Bullல் நேரஅளவீடு செம்மை (வழு வீதம் குறைவு)

b) 1) சதவீத வழ = $\frac{0.1}{2}x100 = 5\%$ 2) வழ = $\frac{0.1}{50.2}x100 = 0.2\%$

c) 3)
$$T^2 = \frac{4\pi^2}{g} (L+r) \Rightarrow T^2 = \frac{4\pi^2}{g} L + \frac{4\pi^2 r}{g}$$

Waves & Vibration

Problems & Solution

M.P.Thava

110

2) படித்திறன் $\frac{4\pi^2}{g} = 4$

 $g = 9.6 m s^{-2}$

3) வெட்டுத்துண்டு $= \frac{4\pi^2}{g}r = 0.04$

கோளவகத்தின் ஆரை r = 0.01m or 1cm d) மரக்கோளம் : மரஊசற்கோளம் குறைந்த சடத்துவ திருப்பம் உடையது. அல்லது மரஊசற் கோளத்தில் ஆரம்பத்தில் சேகரிக்கப்பட்ட சக்தி இழிவு அல்லது மரக்கோளத்தின் திணிவு குறைவு

38. a)
$$\lambda = 2l \Rightarrow v = 2fl$$
 b) $l = \frac{v}{2}\frac{1}{f}$

c) வகை 1: மிகச்சிறிய மீடிறன் உடைய இசைக்கவையுடன் ஆரம்பித்து பரிவு நீளம் அளக்கப்படும் ஏனெனில் எல்லா மீடிறன்களுக்கும் பரிவு நீளம் பெறப்படும் என்பதை உறுதிப்படுத்த

வகை 2 : மிகப் பெரிய மீடிநனுள்ள இசைக்கவையுடன் ஆரம்பித்தல். ஏனெனில் பரிவு நீளம் அதிகரிக்கப்பட அடிப்படை வகையில் குறைந்து செல்லும் மீடிந<mark>ன்க</mark>ளுக்குப் பரிவு பெறலாம் என்பதை உறுதிப்படுத்த

d) மிகச்சிறிய இசைக்கவை e) அடிப்படைவகை அதிர்வில் அதிர்வின் வீச்சும் அதி உயர்வு.

f) 1) Y அச்சு : l(m) X அச்சு : $1/f(Hz^{-1})$ ors

 $\binom{2}{l(m)}$

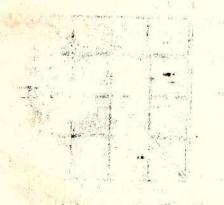
0.0025 0.0030 0.0

0.35

0.30

0.25

0.20


0.0020

படித்திறன் = <u>0.39-0.21</u> 0.0038-0.0021 m = 105 . 88 ms⁻¹

 $V = 2m = 211.76 \text{ ms}^{-1}$

$$\frac{1}{f} (HZ^{-1}) orS$$

g) பாலத்தை அல்லது முளையை செப்பம் செய்து பலமுறை பரிவு பெற்று அதிலிருந்து Δl₂ துணிதல் அல்லது பரிவு வீச்சினுள் முளையின் (பாலத்தின்) நிலையை மெதுவாக நகர்த்தி எல்லைகளைத்துணிவதால். Waves & Vibration Problems & Solution M.P.Thava 111

....

i fel

Digitized by Noolaham Foundation. noolaham.org | aavanaham.org

8) 21 million (8)

A. Sec.

8. 14

நூல் பற்றிய விபரம்

இரண்டாம் புகிப்பு	: 2007 Au
இரண் டாம் பதிப்பு	: 2007 ஆடி
மூன்றாம் பதிப்பு	: 2008 வைகாசி
பக்கங்கள்	: 112 + (i - ii)
அச்சு	: லெட்சுமி பதிப்பகம்
പിതல	: 200/-