AIR

Chemistry
M.C.Q & Essay
(Past Questions)
(Gases &

Chemical Equilibrium)

Physical Chemistry

V. Parameshwaran

B.Sc., Dip. in Ed.

Royal College. Colombo 7

வாயுக்கள்

- இலட்சிய வாயுச் சமன்பாட்டைப் பெறுவதில் பின்வரும் எது பயன்படுத்தப் படுகின்றது?
 டால்ற்றனின் பகுதி அமுக்கவிதி (2) இரவோற்றின் விதி
 கிரகாமின் விதி (4) அவகாதரோவின் விதி
 - (5) மேற்கூறிய எதுவுமல்ல.

(1979 Aug. 30)

- 2. பின்வருங் கூற்றுகளில் எது / எவை சரியானது / சரியானவை?
 - (a) உயர்வெப்பநிலைகளிலும், உயர் அமுக்கங்களிலும் HBr ஐப் பொறுத்தவரையில் PV = nRT உண்மையாகும்.
 - (b) எல்லா வெப்பநிலைகளிலும் அமுக்கங்களிலும் இலட்சிய வாயு ஒன்றைப் பொறுத்தவரையில் PV = nRT உண்மையாகும்.
 - (c) உயர் வெப்பநிலைகளிலும் தாழ் அமுக்கங்களிலும் Ne ஐப் பொறுத்த வரையில் PV = nRT உண்மையாகும்.
 - (d) தாழ் வெப்பநிலையிலும் உயர் அமுக்கங்களிலும் SO, ஐப் பொறுத்த வரையில் PV = nRT உண்மையாகும்.

(1979 Aug, 35)

- 3. அகில வாயு ஒருமை R சமன்,
 - (1) 8.314 ஜுல் கெல்வின்¹
 - (2) 0.082 இவீற்றர் வளிமண்டலம் முல் '
 - (3) 1.987 கலோரி கெல்வின்!
 - (4) 8.314 ஜுல் மூல் கெல்வின்
 - (5) 8.314 ஜுல் மூல்⁻¹

(1980 Aug, 14)

- 4. இலட்சியமாக ஒழுகும் வாயுவொன்றின் கனவளவு தங்கியிருக்கும் காரணி
 - (a) வாயுவின் திணிவு
 - (b) வாயுவின் வெப்பநிலை
 - (c) வாயுவின் சார்மூலக்கூற்றுத் திணிவு
 - (d) வாயுவின் மூலக்கூறு ஒன்றிலுள்ள அணுக்களின் எண்ணிக்கை (1980 Aug. 40)
- 27°C யிலும் 720 mm Hg அமுக்கத்திலும் 2.500 g வாயுவொன்றின் கனவளவு 1.480 / ஆகும். வாயுவின் சார்மூலக்கூற்றுத் திணிவு என்ன?
 - (1) 42.84

(2) 43,45

(3) 43.92

(4) 44.48

(5) 44.96

(1980 Aug, 54)

6.	300K இலும் ஒரு வளிமண்டல அமுக்கத்திலும் சமகனவளவுள்ள நைதரசனினதும் Y எனும் வாயுவினதும் நிறைகள் முறையே 0.28 g உம் 0.88 g உம் ஆகும். Y இன் சார்மூலக்கூற்றுத்திணிவு யாது? [நைதரசனின் சார் அணுத்திணிவு = 14]
	(1) 44 (2) 14 (3) 176
	(4) 71 (5) 88
	(1981 Aug. 56)
7.	'சம கனவளவுடைய வாயுக்கள் ஒரே வெப்பநிலையிலும் ஒரே அமுக்கத் திலும் சம எண்ணிக்கையுள்ள மூலக்கூறுகளைக் கொண்டிருக்கும்' என்பதை முதன்முதலிற் பிரேரித்தவர் பின்வருபவர்களில் யாராவார்?
	(1) போயில் (2) டோல்றன் (3) கேலுசாக்
	(4) அவோகாதரோ (5) கிரகாம்
	(1982 Aug, 08)
8.	பின் வரு வனவற் றில் எதில் மெய் வாயு வொன் றின் நடத்தை இலட்சியவாயுவொன்றின் நடத்தையை அணுகுகின்றது? (a) உயர்ந்த வெப்பநிலையில் (b) உயர்ந்த அமுக்கத்தில் (c) குறைந்த அமுக்கத்தில் (d) குறைந்த வெப்பநிலையில் (1982 Aug. 32)
9.	ஒரு வாயு இலட்சிய நடத்தையுடையதாயின் அதன் குறிப்பிட்ட கனவளவின் அமுக்கம் பின்வருவனவற்றில் எதில் / எவற்றில் தங்கியுள்ளது?
	(a) வாயுவின் திணிவில்
	(b) வாயுவின் மூலக்கூறு ஒன்றிலுள்ள அணுக்களின் எண்ணிக்கையில் (c) வாயுவின் வெப்பநிலையில்
	(d) வாயுவின் சார் மூலக்கூற்றுத்திணிவில்
	(1982 Aug, 38)
10.	நியம் அமுக்கத்திலும், 315 K யிலும் 1.04 g வாயு 240 ml ஐ அடைத்துக் கொள்கிறது. வாயுவின் சார்மூலக்கூற்றுத் திணிவு : (1) 76 (2) 44 (3) 80 (4) 56 (5) 112 (1983 Aug, 04)
11.	அகில வாயு மாறிலியைத் தெரிவிக்கப் பின்வரும் அலகுகளில் எவை பாவிக்கப்படுகிறது? (a) இலீற்றர் - வளிமண்டலம் mol ⁻¹ K ⁻¹ (b) யூல் mol ⁻¹ K ⁻¹ (c) k cal mol ⁻¹ (d) வளிமண்டலங்கள் mol ⁻¹ K ⁻¹

Digitized by Noolahan Foundation. noolaham.org | aavanaham.org

V. Frameshwaran

Physical Chemistry

- பின்வரும் அலகுகளினால் அகில (Universal) வாயு மாறிலி 12. குறிக்கப்படலாம் J mol-1 K-1 (a) (b) 1 atm mol-1 K-1 (c) J atm⁻¹ K⁻¹ (d) J atm⁻¹ mol⁻¹ (1984 Aug, 39)
- 13. N. இலட்சியவாயுவின் நடத்தையைக் கொண்டிருக்கும் எடுத்துக்கொண்டால், 7.0 g. N.

(a) N.T.P (பொ.வெ.அ) இல் 5.60 இலீற்றர்கள் இடத்தைப் பிடிக்கும்.

0.5 மூல்கள் N, ஐக் கொண்டிருக்கும். (b)

மாறிலி அமுக்கத்தில் வெப்பநிலை 100°C இலிருந்து 200°C க்கு (c)

ஏற்றப்பட்ட அதன் கணம் இரட்டிக்கும்.

N.T.P. (பொ.வெ.அ) வில் 22.4 இலீற்றர் பாத்திரத்தில் 4.0 g (d) ஐதரசனுடன் கலக்க, அது 0.25 atmospheres (வளிமண்டலவ/மக்கம்) பகுதியமுக்கத்தைக் கொண்டிருக்கும்)

(1984 Aug, 40)

14. pV = nRT எனும் சமன்பாடு மெய்வாயு ஒன்றிற்குப் பின்வரும் எச்சந்தர்ப்பத்தில் செல்லுபடியாகும்?

உயர் வெப்பநிலையிலும் உயர் அமுக்கத்திலும்.

- குறைந்த வெப்பநிலையிலும் குறைந்த அமுக்கத்திலும். (2)
- குறைந்த வெப்பநிலையிலும் உயர்ந்த அமுக்கத்திலும். (3)
- உயர்ந்த வெப்பநிலையிலும் குறைந்த அமுக்கத்திலும். (4)

மேற்கூறிய ஒன்றுமில்லை. (5)

(1984 Aug, 58)

300 K யிலும் 0.82 வளிமண்டல அமுக்கத்திலுமுள்ள வாயுவொன்று 1.20 g 15. i¹ என்ற அடர்த்தியைக் கொண்டுள்ளது. இவ்வாயுவின் சார் மூலக்கூற்றுத் திணிவ

(1) 48

24 (2)

(3) 36

(4) 12 (5) 72

(1986 Aug, 11)

16. அறைவெப்பநிலையிலுள்ள பாத்திரமொன்று ஒட்சிசனும் நைதரசனும் கொண்ட கலவையொன்றினால் நிரப்பப்பட்டுள்ளது. இலட்சிய நடத்தையைக் கருதி, எச்சூழ்நிலைகளின் கீழ் இவ்விரு வாயுக்களின் திணிவுகள் ஒரேயளவாயிருக்கும்?

(1) O₂ இன் பகுதியமுக்கம் N₂ இனத்திற்குச் சமமாயிருக்கும்போது

(2) இவ்விரு வாயுக்களின் பகுதியமுக்கங்களும் $p_{o_2} = p_{N_2} = 16:14$ என்ற விகிதத்திலிருக்கும்போது

(3) இவ்விரு வாயுக்களின் பகுதியமுக்கங்களும் $p_{o_2} = p_{N_2} = 14:16$ என்ற விகிதத்திலிருக்கும்போது

(4) ஊக்கியொன்றின் பிரசன்னத்தில் இக்கலவை தாக்கமுறச் செய்யப்பட்டு சமநிலைக்கு வர அனுமதிக்கப்படும்போது.

(5) $N_2 = O_2$ என்ற மூல் விகிதம் 1:1 ஆயிருக்கும்போது

(1986 Aug, 12)

17. பின்வருவனவற்றுள் எது இலட்சிய வாயுவுக்கு நெருங்கிய நடத்தையைக் காண்பிக்கும்?

(1) H₂O(g)

(2) HI

(3) N₂

(4) CHCl,

(5) Ne

(1986 Aug, 22)

- 18. 100°C இல் குறிப்பிட்ட வாயுவொன்றின் மூலக்கூறுகளின் சராசரிக் கதி 600 m s⁻¹ ஆகும். இக்கதி 1200 m s⁻¹ ஐ நெருங்கும் எப்போதெனில்,
 - (1) கனவளவை நான்கு மடங்காக அதிகரிக்க அனுமதிக்கப்படும் போது.

(2) அமுக்கம் அரைவாசியாக்கப்படும்போது

- (3) வெப்பநிலை 200°C இற்கு உயர்த்தப்படும்போது
- (4) வெப்பநிலை 400°C இற்கு உயர்த்தப்படும்போது

(5) வெப்பநிலை 1200°C இற்கு உயர்த்தப்படும்போது

(1986 Aug, 23)

19. 1 dm³ கனவளவுடைய மூடிய பாத்திரமொன்றினுள் அடங்கியுள்ள ஒட்சிசன் வாயுத் திணிவொன்று, மின்முறையொன்றின் மூலம், ஓசோன் வாயு O₃ யாக, பகுதியளவில் மாற்றப்பட்டது. மாற்றத்தின் பின்னர், வாயுக்கலவை அதன் ஆரம்ப வெப்பநிலைக்குக் கொணரப்பட்டபோது கலவையின் தற்போதைய அமுக்கம் ஒட்சிசனிது ஆரம்ப அமுக்கத்தின் 90% மாகக் காணப்பட்டது வாயுக்கலவையின் கனவளவுக்கு ஏற்ப, ஓசோன் சதவீதம் எவ்வளவாகும்?

(1) 33.33%

(2) 30%

(3) 20%

(4) 22.22%

(5) 11.11%

(1987 Aug, 09)

- 20. 1.20 atm இலும் 300 K யிலும், ஐதரோகாபனொன்றினது 0.308 g இன் கனவளவு 0.150 l ஆகும். இந்த ஐதரோக்காபனின் மூலர்த்திணிவு எவ்வளவு?
 - (1) 42.09 g mol⁻¹
- (2) 44.01 g mol⁻¹
- (3) 44.83 g mol⁻¹

- (4) 56.05 g mol⁻¹
- (5) 58.07 g mol-1

(1987 Aug, 19)

- 21. இரு மூலகங்களைக் கொண்ட XY எனும் வாயுவானது சூடாக்கப்படும் போது, பூரணமாக அன்றியும், மீளும் தன்மையுடனும் வாயு விளைவுகளை மாத்தரம் தோற்றுவித்தபடி கூட்டப்பிரிகையடைகின்றது. மாறா அமுக்கத்தில் இக் கூட்டப்பிரிகையை நிகழ்த்தும் போது, சான்ஸ் விதியில் எதிர்பார்க்கப்படும் கனவளவு விரிவு தவிர வேறேதும் கனவளவு வேறுபாடுகள் நிகழ்வதில்லை. இங்கு நடைபெறும் தாக்கம் தொடர்பாகப் பின்வரும் எக்கூற்று மிகவும் பொருத்தமானதாக அமைகின்றது?
 - (I) தாக்கத்தின் விளைவுகள் X அணுக்களும் Y அணுக்களுமாகும்.
 - (2) தாக்கத்தின் விளைவுகள் X அணுக்களும் Y_2 மூலக்கூறுகளுமாகும்.
 - (3) தாக்கத்தின் விளைவுகள் X_2 மூலக்கூறுகளும் Y அணுக்களுமாகும்.
 - (4) தாக்கத்தின் விளைவுகள் \mathbf{X}_2 மூலக்கூறுகளும் \mathbf{Y}_2 மூலக்கூறுகளுமாகும்.
 - (5) கூட்டப்பிரிகையின் அளவு குறிப்பிடப்படாமையால் மேற்படி கூற்றுக்களுள் எதனையும் தெரிவு செய்ய இயலாது.

(1987 Aug, 56)

- 22. A எனும் வாயு, 1000 cm³ கனவளவுடைய பாத்திரமொன்றினுள் 300 K வெப்பநிலையிலும் 2 atm அமுக்கத்திலும் காணப்படுகின்றது. B எனும் வாயு 2000 cm³ கனவளவுடைய பாத்திரமொன்றுள், 300 K வெப்பநிலையிலும் 1 atm அமுக்கத்திலும் காணப்படுகின்றது. பாத்திரங்கள் இரண்டிலுமுள்ள வாயுத்திணிவுகளிரண்டும் தொடுக்கப்பட்டு, வெப்பநிலை 150 K க்கு கொணரப்படுகின்றது. A யும் B யும் இரசாயன இடைத்தாக்கங்களைக் காட்டுவதில்லையெனின், வாயுக் கலவையின் அமுக்கம் எவ்வளவாக இருக்கும்
 - (1) $\frac{4}{3}$ atm (2) $\frac{2}{3}$ atm (3) $\frac{1}{2}$ atm (4) $\frac{1}{4}$ atm
 - (5) உறுதியான விடையெதனையும் குறிப்பிடமுடியாது.

(1988 Aug, 17)

முதலாம் கூற்று	இரண்டாம் கூற்று
உயர் அமுக்கத்திலும் உயர் வெப்பநிலையிலும் மெய் வாயுக்களுக்காக (P+ n²a / V²) × (V - nb) = nRT எனும் சமன்பாட்டைப் பிரயோகிக்கமுடியாது.	உயர் அமுக்கங்களில் மெய் வாயுக்கள் இலட்சிய வாயு நடத்தையிலிருந்து விலகிச் செல்கின்றன

(1988 Aug. 48)

- 24. வாயுக்கள் பற்றிய இயக்கப்பண்புக் கொள்கை தொடர்பாகப் பின்வரும் எக்கூற்று உண்மையானது?
 - (1) மெய்வாயு மூலக்கூறுகள் எப்போதும் புள்ளித்திணிவு நடத்தையைக் காட்டுகின்றன.
 - (2) உச்ச நிகழ்தகவு வேகத்தை விடக்குறைந்த வேகத்தைக் கொண்ட மூலக்கூறுகளின் எண்ணிக்கை வெப்பநிலை உயரும் போது குறைவடைகின்றது.
 - (3) மூலக்கூறுகளின் சராசரி இயக்கப்பண்புச் சக்தி T² இற்கு விகிதசமனானது (T = தனி வெப்பநிலை).
 - (4) மூலக்கூறுகளின் சராசரி இயக்கப் பண்புச் சக்தி \sqrt{T} இற்கு விகிதசமனானது (T= தனி வெப்பநிலை)
 - (5) வாயுக்கள் பற்றிய இயக்கப் பண்புக் கொள்கை தொடர்பாக, மேற்படி கூற்றுக்களுள் எதுவும் உண்மையானதல்ல.

(1988 Aug. 53)

25. பின்வருவனவற்றுள் எது வந்தர்வாலிசுச் சமன்பாடாகும்?

(1)
$$\left(P + \frac{n^2 a}{V}\right)(V - n^2 b) = nRT$$
 (2) $\left(P + \frac{n^2 a}{V^2}\right)(V + nb) = nRT$

(3)
$$\left(P - \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$
 (4) $\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$

(5)
$$\left(P + \frac{na}{V^2}\right)(V - nb) = nRT$$

(1989 Aug. 05)

26.

முதலாம் கூற்று	இரண்டாம் கூற்று
இலட்சிய நடத்தையுள்ள ஒரு வாயுவுக்கு வந்தர் வாலிக சமன்பாட்டைப் பிரயோகிக்க முடியாது.	வந்தர் வாலிசு சமன்பாடு, மெய்வாயுக்கள் செய்யும் விலகல்களை நிவர்த்தி செய்வதற்கான திருத்தங்களை அடக்கியுள்ளது.

(1990 Aug, 48)

27. 10.01 கனவளவுள்ள ஒரு மூடிய பாத்திரத்தில் 1.0 g ஐதரசன் வாயு வைக்கப்பட்டிருந்தது. இதன் வெப்பநிலை 400°C க்கு உயர்த்தப்பட்டது. இப் பாத்திரத்தில் என்ன அமுக்கம் உண்டாகியது?

(1) 1.38 atm

(2) 2.76 atm

(3) 5.52 atm

(4) 6.90 atm

(5) 7.59 atm

(1990 Aug, 53)

28.

முதலாம் கூற்று	இரண்டாம் கூற்று
மெய் வாயுக்களின் நடத்தையானது	She iso de communes dos, (C)
$\left(P + \frac{n^2 a}{V^2}\right) \times V = nRT$	இச்சமன்பாட்டிலே மூலக்கூறுகளின் கனவளவுக்குத் திருத்தம் எதுவும் இல்லை.
என்னும் சமன்பாட்டுடன் இணங்குவதில்லை.	mine Deelin enlighed in the Second Company of the Second Company o

(1991 Aug, 46)

- 29. வாயுச் சேர்வை ஒன்றின் தொடர்பு (சார்) மூலக்கூற்றுத் திணிவு 48 ஆகும். நியம வெப்பநிலை அமுக்கத்தில் இச்சேர்வையின் மூலர்க் கனவளவு 20.4 / எனின், 5°C இலும் 24 atm இலும் இச்சேர்வையினுடைய 9.6 g இன் கனவளவு யாது?
 (1) 190.1 ml (2) 173.1 ml (3) 166.9 ml (4) 183.3 ml (5) இக்கனவளவுக்குத் திட்டமான பெறுமானம் ஒன்றைக் குறிப்பிட முடியாது.
 (1992 Aug, 5)
 30. வாயு ஒன்றின் 1 மூலானது மாறூங் கனவளவுள்ள பாத்திரம் ஒன்றினுள்ளே குறித்த அமுக்கம் ஒன்றின்கீழ் 27°C இல் வைக்கப்பட்டுள்ளது. அப்பாத்திரத்திற்குள்ளே அதேவாயுவின் வேறோரு 1.5 மூலைப் புகுத்தி
- 30. வாயு ஒன்றின் 1 மூலானது மாறுங் கனவளவுள்ள பாத்திரம் ஒன்றினுள்ளே குறித்த அமுக்கம் ஒன்றின்கீழ் 27°C இல் வைக்கப்பட்டுள்ளது. அப்பாத்திரத்திற்குள்ளே அதேவாயுவின் வேறோரு 1.5 மூலைப் புகுத்தி அது குறித்த வெப்பநிலை ஒன்றுக்கு வெப்பமாக்கப்பட்டது. இவ்வெப்பநிலையிலே பாத்தரத்தினுள்ளே இருக்கும் அமுக்கம் தொடக்க அமுக்கத்தின் இரு மடங்காக இருந்தது. கனவளவும் தொடக்கக் கனவளவின் இரு மடங்காக இருந்தது. வாயு இலட்சிய வாயுவாக நடந்துகொள்கிறதெனின், புதிய வெப்பநிலை
 (1) 800°C
 (2) 527°C
 (3) 500°C

(1) 800°C (4) 480°C (2) 527°C (5) 207°C

(1993 Aug. 04)

- 31. தரப்பட்ட வாயுத்திணிவு ஒன்றில் உள்ள மூலக்கூறுகளின் இடை இயக்கப்பாட்டுச் சக்திபற்றிப் பின்வரும் கூற்றுகளில் எது மிகவும் பொருத்தமானது?
 - (1) அது அமுக்கத்துடன் அதிகரிக்கின்றது.
 - (2) அது அமுக்கத்துடன் குறைகின்றது.
 - (3) அது கனவளவுடன் மாறுகின்றது.
 - (4) அது வெப்பநிலையுடன் மாறுகின்றது.
 - (5) மேலே உள்ள கூற்றுகளில் யாவும் பிழையானது.

(1994 Aug, 11)

32. தொடர்பு (சார்) மூலக்கூற்றுத் திணிவு M ஐக் கொண்டதும் இலட்சியமுறையாக நடந்துகொள்வதுமான வாயு ஒன்று வெப்பநிலை T யிலும் அமுக்கம் P யிலும் வைக்கப்பட்டுள்ளது. வாயுவின் அடர்த்தி

 $(1) \quad \frac{PR}{MT}$

(2) $\frac{PT}{MR}$

 $(3) \frac{M}{PRT}$

 $(4) \quad \frac{\text{PTM}}{\text{R}}$

 $(5) \frac{PM}{RT}$

(1994 Aug, 51)

- 33. மெய் வாயு ஒன்றைப் பற்றிப் பின்வரும் கூற்றுகளில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) மூலக்கூறுகளிடையே விசைகள் இருக்கின்றன.
 - (b) மூலக்கூறுகளின் கனவளவு புறக்கணிக்கத்தக்கதன்று
 - (c) தரப்பட்ட வாயுத் திணிவு ஒன்றுக்கு PV யின் பெறுமானம் அமுக்கத்துடன் மாறுவதில்லை.
 - (d) PV மின் பெறுமானம் வெப்பநிலையிலுடன் மாறுவதில்லை.

(1995 Aug, 37)

முதலாம் கூற்று	இரண்டாம் கூற்று
வன்டர் வால்ஸ் சமன்பாடு நியம வெப்பநிலை அமுக்கத்திலே தவறுகின்றது.	நியம வெப்பநிலை அமுக்கத்திலே எல்லா வாயுக்களும் PV = nRT என்னும் சமன்பாட்டுக்கு அமைய நடந்துகொள்கின்றது.

(1996 Aug, 47)

- 35. இலட்சியமுறையாக நடந்துகொள்ளும் வாயு ஒன்றின் 0.80 mol ஆனது அடைக்கப்பட்ட பாத்திரம் ஒன்றிலே 300 K வெப்பநிலையிலும் 4.157 × 105 N m⁻² அமுக்கத்தின் கீழும் இருக்கின்றது. இப்பாத்திரத்தின் கனவளவு
 - (1) 480 × 10⁻⁵ m³ ஆகம்
- (2) 480 × 10⁻³ dm³ ஆகும்.
- (3) 720 × 10⁻⁵ m³ ஆகும்.
- (4) 720 × 10⁻³ dm³ ஆகும்.
- (5) 900 × 10⁻⁵ m³ ஆகம்.

(1997 (New Syllabus) Aug, 06)

 $PV = \frac{1}{3} \, \text{mNc}^{\frac{1}{2}}$ என்னுஞ் சமன்பாட்டைப் பயன்படுத்திப் பின்வருவனவற்றில்

எதனை உய்த்தறியலாம்?

(a) போயிலின் விதி

- (b) मानामीन वीट्टी
- (c) வாயு விதிகளிலிருந்தான விலகல்கள்
- (d) அவகாதரோ மாறிலி L

(1997 (New Syllabus) Aug, 35)

37. பின்வரும் சமன்பாடுகளில் எந்தவகை CO, வாயுவின் நடத்தையை மிகவும் பொருத்தமான விதத்தில் பிரதிபலிக்கக்கூடியது?

(1)
$$(P+x)(V-y) = nRT$$
 (2) $PV = nRT$

(3)
$$M = \frac{d}{P} \times RT$$
 (4) $\left(P + \frac{na}{V}\right)\left(V - n^2b\right) = nRT$

(5)
$$\left(P + \frac{n^2 a}{V}\right) \left(V - \frac{b}{n}\right) = nRT$$

(1998 Aug, 51)

38. $PV = \frac{1}{2} \, \text{mNc}^{\,\overline{2}}$ என்னும் சமன்பாடு சம்பந்தமாக பின்வரும் கூற்றுகளில்

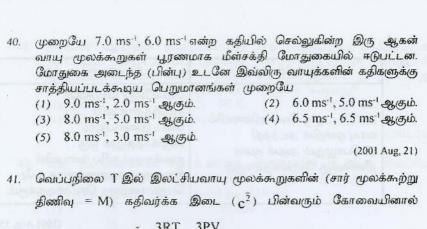
எது உண்மையானது?

(1) m, மூலர்திணிவாகும்.

வெப்பவுயர் வொன்றை

அடைந்தது.

- (2) N, மூல்களின் எண்ணிக்கையாகும்.
- (3) c, மூலக்கூறுகளின் சராசரி வேகமாகும்.
- (4) c² மூலக்கூறுகளின் சராசரி வேகத்தின் வர்க்கமாகும்.
- (5) மேலுள்ள கூற்றுகளில் ஒன்றும் உண்மையில்லை.


(1999, 26)

முதலாம் கூற்று	இரண்டாம் கூற்று
10°C இலிருந்து 185°C இற்கு வெப்பமேற்றிய போது ஏகவினக் கரைசல் ஒன்று வெப்பநிலை 448.15 K இற்கு சமமனான	சென்ரிகிறேட்டு அளவு திட்டத்திலிருந்து கெல்வின் அளவுத்திட்டத்திற்கு வெப்பநிலையொன்றை

ான்றை மாற்றுவதற்கு °C எனக் கொடுக்கப்பட்ட வெப்பநிலைக்கு 273.15 ஐக் கூட்ட வேண்டும்.

(2000 Aug, 46)

39.

தரப்பட்டுள்ளது. $c^2 = \frac{3RT}{M} = \frac{3PV}{mN}$

227°C இல் சார்மூலக்கூற்று திணிவு 50 ஆகவுள்ள ஈரணு இலட்சிய வாயுவின் கதிவர்க்க இடை $(c^{\overline{2}})$ SI (m^2S^{-2}) அலகில்

(1) 0.249

(2) 2.49×10^5

(3) 4.99×10^5

(4) 4.99×10^2 (5) 2.49×10^2

(2001, 24)

42. 727°C வெப்பநிலையிலும் 10° Nm-² அமுக்கத்திலும் இலட்சிய வாயுவொன்றின் அடர்த்தி 1.20 kgm-³ ஆகும். இவ்வாயுவின் சார்முலக்கூற்று திணிவு?

(1) 96

(2) 98

(3) 100

(4) 102

(5) 104

(2001, 29)

43. 164.6g சோடியம் அமல்கம் Na(Hg) நீருடன் முற்றாக தாக்கமடைந்தபோது வெளிவந்த வாயுவின் கனவளவு STP இல் அளந்தபோது 2.24 dm³ ஆக இருந்தது. இவ்வாயு இலட்சிய வாயு நடத்தை கொண்டதென கொள்க. (சார் அணுத்திணிவுகள் Na = 23; Hg = 200) அமல்கத்திலுள்ள Na மூல் பின்னம்

(1) 0.1

(2) 0.2

(3) 0.4

(4) 0.6

(5) 0.8

(2001, 30)

முதலாம் கூற்று	இரண்டாம் கூற்று
தரப்பட்ட ஒரு வெப்பநிலை வாயு ஒன்றின் அடர்த்தி எப்பொழுதும் அதன் மூலர் திணிவுக்கு நேர்விகிதமாகும்	வெப்பநிலைபிலும் அமுக்கத்திலும் ஒரு

(2001 Aug, 55)

45. 27°C வெப்பநிலையொன்றிலும் 10° Pa அமுக்கமொன்றிலும் வளிக்கனவளவு ரீதியில் 21% ஒட்சிசனை கொண்டுள்ளது. இந்தவளியில் 10m³ அதே வெப்பநிலையில் 1m³ இற்கு அமுக்கப்பட்டது. அமுக்கப்பட்ட வளியில் (Pa அலகில்) ஒட்சிசனின் பகுதி அமுக்கமானது

(1) 1.0×10^4

- (2) 2.1×10^4
- (3) 2.1×10^{5}

(4) 1.0×10^6

(5) 21 × 10⁵

(2002, 20)

46, 47 வினாக்களுக்கு பின்வரும் தரவுகளை கவனிக்கவும். ஒரு வாயுக்குமிழ், வாயு A ஐயும் இன்னொரு வாயுக்குமிழ் வாயு B ஐயும் கொண்டுள்ளன. இவ்விரு வாயுக்குமிழ்களும் ஒரே வெப்பநிலையில் உள்ளன. வாயு Aயின் அடர்த்தி வாயு B இன் அடர்த்தியை விட அரைப்பங்கு. வாயு B இன் கதிவர்க்க இடை வாயு A இனதிலும் பார்க்க இருமடங்கு.

46. k Pa இல் B வாயுவின் அமுக்கம்

(1) 4000

(2) 2000

(3) 1000

(4) 500

(5) 250

(2002 Aug, 25)

47. இரு வாயு குமிழ்களும் ஒரே கனவளவாக இருந்தால் A வாயுவின் மூலக்கூறுகளின் எண்ணிக்கை : B வாயுவின் மூலக்கூறுகளின் எண்ணிக்கை விகிதம் ஆனது

(1) 4:1

(2) 2:1

(3) 1:1

(4) 1:2

(5) 1:4

(2002, 26)

- நியோன் வாயுவின் மாதிரியொன்று ஒரு காத்திரமான பாத்திரத்தின் 48. அடைக்கப்பட்டுள்ளது. பாத்திரத்திலுள்ள 30°C யில் அமுக்கம் மும்மடங்காகும் வரைக்கும், பாத்திரம் வெப்பமேற்றப்பட்டது. அப்போது நியோன் வாயுவின் வெப்பநிலையாக இருக்க கூடியது?
 - (1) 90°C (2) 90 K (3) 363 K
 - (4) 636°C (5) 090°C

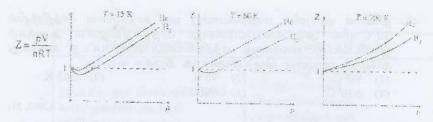
(2003, 21)

எந்த நிபந்தகைளின் கீழ் உண்மை வாயுக்களின் நடத்தை இலட்சிய வாயுக்களின் நடத்தைக்கு அண்மிக்க கூடியதாக இருக்கும். அமுக்கம் / 103 Pa

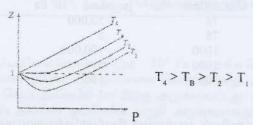
வெப்பநிலை / k 78

- (1)50,000
- 78 5 (2)
- 100,000 1000 (3)
- 1000 (4)
- (5) 300 100

(2003, 22)


- இயக்கவியல் மூலக்கூற்று கோட்பாட்டிற்கமைய தரப்பட்ட கனவளவில் இருக்கும். இலட்சிய வாயுவின் அமுக்கம் வெப்பநிலையுடன் பின்வரும் எக் காரணத்தினால் / காரணிகளால் அதிகரிக்கும்?
 - அதியுயர் வெப்பநிலைகளில் மூலக்கூற்றிடை விசைகள்
 - புறக்கணிக்கத்தக்கவை ஆகின்றன. உயர் வெப்பநிலைகளில் மூலகங்களின் இயக்கவியற் சக்தியானது மூலக்கூற்றிடை கவர்ச்சிகளை உடைக்கத்தக்க அளவிற்கு
 - உயர்வானது. உயர் வெப்பநிலைகளில் மோதுகைகளில் ஏற்படும் சக்தி இழப்பு (c)
 - உயர்வானது. தரப்பட்ட ஒரு நேரத்தில் வெப்பநிலை அதிகரிப்புடன் வாயு அடங்கிய (d) பாத்திரத்துடன் மூலக்கூறுகளின் மோதல்களின் எண்ணிக்கை அதிகரிக்கிறது.

(2003, 40)


51, 52 ஆம் வினாக்களுக்கு விடை எழுத கீழே தரப்பட்டுள்ள தகவல்களையும் இரசாயனவியல் பற்றிய உமது அறிவையும் பயன்படுத்துக.

பல்வேறு வெப்பநிலைகள் (T) இல் (P) அமுக்கம் உடன் வாயு நிலையில் உள்ள ஐதரசன், ஈலியம் அணுக்களின் அமுக்கப்படும் தன்மை (Z) இன் மாறலை பின்வரும் வரைபுகளைப் பயன்படுத்தி எடுத்துரைக்கலாம். Z < 1 ஆக இருக்கும் போது ஒரு வாயு ஓர் இலட்சிய வாயுவை காட்டிலும் கூடிய அளவில் எளிதாக அமுக்கப்படலாம்.

Z > 1 ஆக இருக்கும்போது ஒரு வாயு ஓர் இலட்சிய வாயுவை காட்டிலும் குறைந்த அளவில் எளிதாக அமுக்கப்படலாம்.

யாதாயினும் ஒரு வாயுவிற்கு பல்வேறு வெப்பநிலைகளில் அமுக்கத்துடன் அமுக்கப்படும் தன்மையின் மாறல் கீழே தரப்பட்டுள்ளது.

51. பின்வரும் கூற்றுகளில் எது சரியானது?

 வெப்பநிலை அதிகரிக்கும்போது H₂ உம் He உம் இலட்சிய வாயுக்களாக நடந்துகொள்ள எத்தனிக்கின்றன.

(2) வெப்பநிலை குறையும் போது H₂ உம் He உம் எல்லா அமுக்கங்களிலும் இலட்சிய வாயுக்களின் நடத்தையிலிருந்து விலகுவதற்கு எத்தனிக்கின்றன.

(3) தரப்பட்ட எவ்வெப்பநிலையிலும் அமுக்கம் குறைவாக இருக்கும்போது H₂ உம் He உம் இலட்சிய வாயுக்களிலும் பார்க்க குறைந்தளவில் எளிதாக அமுக்கப்படக்கூடியவை.

(4) தரப்பட்ட எவ்வவெப்பநிலையிலும் அமுக்கம் கூடியதாக இருக்கும்போது H₂ உம் He உம் இலட்சிய வாயுக்களிலும் பார்க்க குறைந்தளவில் எளிதாக அமுக்கப்படக்கூடியவை.

(5) போயில் வெப்பநிலை T_B யில் அமுக்கத்தின் மிக கூடிய அளவு வீச்சுக்கு H₂ உம் He உம் இலட்சிய வாயுக்களைப் போன்று நடந்து கொள்கின்றன.

(2004, 39)

52. பின்வரும் கூற்றுகளில் தவறான கூற்று எது?

(1) Z < 1 ஆக இருக்கும்போது மூலக்கூற்றிடை விசைகள் காரணமாக மூலக்கூறுகளிற்கிடையே ஓட்டு மொத்தமான கவர்ச்சி உண்டு.

(2) Z > 1 ஆக இருக்கும்போது மூலக்கூற்றிடை விசைகள் காரணமாக மூலக்கூறுகளிற்கிடையே ஓட்டு மொத்தமான தள்ளுகை உண்டு.

(3) மூலக்கூற்றிடை விசைகள் இல்லாத போதெல்லாம் வாயுநிலையில் உள்ள H., He ஆகியன இலட்சிய வாயு நடத்தையை காட்டும்.

(4) P ஆனது பூச்சியத்தை நாடும் போது (P→0), வாயு நிலையில் உள்ள H₂, He ஆகியன மேலும் மேலும் இலட்சிய வாயுக்களாக நடந்துகொள்வதற்கு எத்தனிக்கின்றன.

(5) H₂, He ஆகியவற்றின் தனித்தனி இயல்பைச் சாராமல் அவற்றின் அமுக்கப்படுத்தன்மையின் நடத்தைகள் அடிப்படையில்

ஒத்தனவாகும்.

(2004, 40)

53. இரு சர்வசம கண்ணாடிக் குமிழ்களில் ஒன்று X மூல்கள் இலட்சிய வாயு ஒன்றினாலும் மற்றையது X மூல்கள் மெய் வாயு ஒன்றினாலும் நிரப்பப்பட்டுள்ளன. இவ்விரு வாயுக்களையும் பற்றிய பின்வரும் கூற்றுகளில் சரியாயிருப்பதற்கு மிகவும் குறைவான சாத்தியமுள்ளது எது?

(1) திரவமாக்கல் நடைபெறாத எந்த வெப்பநிலையிலும் இரு

வாயுக்களினதும் கனவளவுகள் ஒரே அளவானவை.

(2) ஒரே வெப்பநிலையில் இலட்சிய வாயுவின் அமுக்கம் மெய் வாயுவின் அமுக்கத்திலும் பார்க்க ஒரு போதும் சிறியதாகாது.

(3) சில வெப்பநிலைகளில் இரு வாயுக்களினதும் அமுக்கங்கள் ஒரே

அளவினதாகலாம்.

(4) சில வெப்பநிலைகளில் இரு வாயுக்களி**னதும்** அமுக்கப்படுதன்மைகள் சமமாகலாம்.

(5) எந்த வெப்பநிலையிலும் இரு வாயுக்களினதும் சராசரி வர்க்கக் கதிகள் சமம்.

(2005, 10)

- 54. இலட்சியவாயு ஒன்றிற்கான இயக்கவியல் மூலக்கூற்றுக் கொள்கைக்கான சமன்பாடு PV = ¹/₃ mNc² ஆகும். பின்வரும் கூற்றுகளில் எது / எவை ஓர் இலட்சிய வாயுவிற்கு உண்மையானது / உண்மையானவை?
 - (a) $\mathbf{c}^{\overline{2}}$ வெப்பநிலையில் தங்கியிருக்கவில்லை.
 - (b) மாறா வெப்பநிலையில் $c^{\bar{2}}$ ஒரு மாறிலியாகும்.
 - (c) மாறா வெப்பநிலையில் PV ஒரு மாறிலியாகும்.
 - (d) PV ஆனது மூல்களின் எண்ணிக்கையைில் தங்கியிருக்கவில்லை.

(2005, 42)

- 55. பின்வருவனவற்றில் எது / எவை மெய்வாயுக்களின் இலட்சியமற்ற இயல்பிற்கு சான்றாக எடுக்கப்படக்கூடியது / எடுக்கப்படகூடியவை?
 - (a) வெவ்வேறு மெய்வாயுக்கள் வெவ்வேறு கொதிநிலைகள் உடையன.
 - (b) சில மெய்வாயுக்கள் நிறமுள்ளவையாக இருக்கும் அதேவேளை மற்றவை அப்படியல்ல.
 - (c) ஒத்த நிபந்தனைகளின் கீழ் வெவ்வேறு மெய்வாயுக்கள் வெவ்வேறு அடர்த்திகளை உடையன.
 - (d) சில மெய்வாயுக்கள் ஒன்றுடனொன்று இரசாயன ரீதியாக தாக்க புரிகின்றன.

(2005, 44)

- 56. பின்வரும் கூற்றுகளில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) தாழ் அமுக்கத்தில் எல்லா மெய்வாயுக்களினதும் அமுக்கப்படுதன்மையின் பெறுமானம் 1 இற்கு (unity) அண்மிக்கின்றது.
 - (b) அமுக்கம் தேவையான அளவு உயர்ந்தாகின் எந்த மெய்வாயுவும் அறை வெப்பநிலையில் திரவமாக்கப்படலாம்.
 - (c) வெப்பநிலை, கனவளவு ஆகியவற்றின் ஒத்த நிபந்தனைகளின் கீழ் இலட்சிய வாயுவொன்றின் அமுக்கம் மெய்வாயுவொன்றினதும் பார்க்கக் குறைவானதாகும்.
 - (d) தேவையான அளவு தாழ்வெப்பநிலையில் எந்த மெய்வாயுவும் 1 இற்கு (unity) குறைவான அமுக்கப்படுதன்மையைக் காட்டலாம். (2006, 45)

- 57. இலட்சியவாயு ஒன்றிற்கான இயக்கவியல் மூலக்கூற்று கொள்கைக்கான சமன்பாடு PV = \frac{1}{3} mN \frac{c^2}{2} ஆகும். பின்வரும் கூற்றுகளில் எது / எவை ஒரு இலட்சிய வாயுவின் மாதிரி ஒன்றிற்கு உண்மையானது / உண்மையானவை?
 - (a) மாறா வெப்பநிலையில் Р $\,$ உடன் $\,\overline{c}^2\,$ அதிகரிக்கிறது.
 - (b) மாறா வெப்பநிலையில் V உடன் c^2 அதிகரிக்கின்றது.
 - (c) வெப்பநிலையுடன் c^2 அதிகரிக்கிறது.
 - (d) மாறா வெப்பநிலையில் மாதிரியினுள் மேலும் அதிக வாயுவின் மூலக்கூறுகளை சேர்க்கும்போது _____ அதிகரிக்கிறது.

(2006, 50)

முதலாம் கூற்று	இரண்டாம் கூற்று
இலட்சிய வாயுவொன்றினது மூலக்கூறொன்று பாத்திரத்தின் சுவரில் மோதித்திரும்பி வரும் பொழுது அதன் திணிவு வேகம் மாறுகிறது.	மூலக்கூறொன்று சுவரில் மோதித் திரும்பி வரும் பொழுது அதன் கதியுடன் அது நகரும் திசையும் மாறுகின்றது.

(2006, 54)

- 59. இலட்சிய வாயுக்களைப் பற்றிய பின்வரும் கூற்றுகளில் எது உண்மையானதன்று?
 - (1) மூலக்கூறுகளிடையே கவர்ச்சி விசையோ அல்லது தள்ளு விசையோ இல்லை.
 - (2) மூலக்கூறுகளின் இயக்கப்பண்புச் சக்திகளின் சராசரிப் பெறுமானம் வெப்பநிலையில் மாத்திரம் தங்கியுள்ளது.
 - (3) மூலக்கூறுகள் ஒரே கதியுடன் நேர் கோடுகளில் எழுந்தமானமாக நகருகின்றன.
 - (4) அம்மூலக்கூறுகளுக்கு இடையேயுள்ள தூரத்துடன் ஒப்பிடும்போது வாயு மூலக்கூறுகளின் பருமன் புறக்கணிக்கத்தக்களவு சிறியது.
 - (5) மூலக்கூற்று மோதுகைகள் மீள்சக்திக்கு (clastic) உரியன.

(2007, 26)

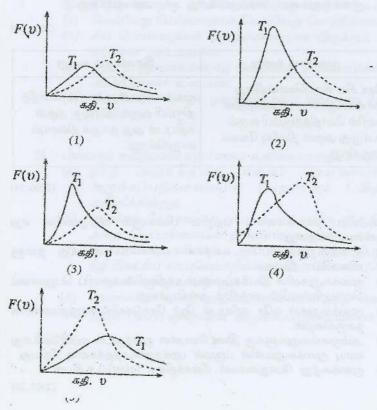
$$A(g) + 3B(g)$$
 \Longrightarrow $2C(g)$ ஐக் கருதுக.

A(g) இனதும் B(g) இனதும் சமமூலர் கலவையொன்று மாறா வெப்பநிலையில் பாத்திரமொன்றினுள் வைக்கப்படுகின்றது. 10% A(g) ஆனது B(g) உடன் தாக்கம்புரியும்போது அமுக்கம் குறைகின்றளவு

(1) 5%

(2) 8%

(3) 10%


(4) 12%

(5) 15%

(2007, 35)

 T₂ > T₁ ஆகவுள்ள T₁, T₂ ஆகிய இரு வெப்பநிலைகளில் வாயு ஒன்றின் மூலக்கூறுகளினது கதிகளின் பரம்பல்கள் கீழே காட்டப்பட்டுள்ளது.
 1 - 5 வரையான வரைபுகளில் எது T₁, T₂ ஆகிய வெப்பநிலைகளில் மூலக்கூறுகளினது கதிகளின், பெரும்பாலும் நிகழக்கூடிய மாறல்களைக் காட்டுகின்றது.

[F(v) = கதி v ஐ உடைய மூலக்கூறுகளின் பின்னம்]

முதலாம் கூற்று	இரண்டாம் கூற்று
மெய்வாயுக்களுக்கு அதி	அதிகுறைந்த அமுக்கங்களில்
குறைந்த அமுக்கங்களில்	மூலக்கூற்றிடை விசைகள்
அமுக்கப்படுதன்மை காரணி,	வாயு மூலக்கூறுகளின்
Z(=pV/nRT) அலகு	நடத்தைகளைப்
ஒன்றுக்கு அண்மிக்கிறது.	பாதிப்பதில்லை.

(2008, 59)

- 63. ஒரு இலட்சிய வாயுவினது மாதிரி ஒன்றிற்கு பின்வரும் கூற்றுக்களில் எது / எவை சரியானது / சரியானவை?
 - (a) மூலக்கூற்று வேகங்களின் பரம்பல் வெப்பநிலையில் தங்கியுள்ளது.
 - (b) மாறா அமுக்கத்தில் வெப்பநிலையுடனான கனவளவினது மாறுகை வீதம் வெப்பநிலையின் அளவு செல்சியசா அல்லது கெல்வினா என்பதில் தங்கியிருக்கவில்லை.
 - (c) வெப்பநிலையை மாறிலியாக வைத்திருக்கும்போது மாதிரியினுடைய கனவளவு மாறிலியாயிருக்கும்.
 - (d) வாயுவினது அமுக்கம், ஒரு அலகு நேரத்தில் நடைபெறும் மோதுகைகளின் எண்ணிக்கையின் வர்க்கத்தில் (2nd power) தங்கியுள்ளது.

(2009, 50)

64.

முதலாம் கூற்று	இரண்டாம் கூற்று
உயர்வான அமுக்கங்களிலும் தாழ்வான வெப்ப நிலைகளிலும் மெய் வாயுக்கள் இலட்சிய நடத்தையிலிருந்து அதிகம் விலகுகின்றன.	ஒரு இலட்சிய வாயு மூலக் கூறிலும் பார்க்க, ஒரு மெய் வாயு மூலக்கூறு குறைந்த கனவளவைக் கொண்டிருக்கும்.

(2009, 59)

இரசாயனச்சமநிலை

முதலாம் கூற்று	இரண்டாம் கூற்று
SO ₂ க்கும் O ₂ க்குமிடையிலான தாக்கத்தை உயர் வெப்பநிலைகள் ஆதரிப்பதில்லை.	ஒரு தாக்கத்தின் ஏவற் சக்தி, வெப்பநிலை அதிகரிப்புடன் அதிகரிக்கும்.

(1980, 47)

- 2. ஒரு குறிப்பிட்ட தொகுதியின் சமநிலைமாறிலியை மாற்றுவதற்கு:
 - (1) தாக்கிகளின் செறிவை மாற்ற வேண்டும்.
 - (2) விளைவுகளின் செறிவை மாற்ற வேண்டும்.
 - (3) தாக்கம் நடைபெறும் பாத்திரத்தின் கனவளவை மாற்ற வேண்டும்.
 - (4) தொகுதியின் வெப்பநிலையை மாற்ற வேண்டும்.
 - (5) தொகுதிக்கு பயன்படு ஊக்கி சேர்த்தல் வேண்டும்.

(1981 Aug, 25)

- 3. CaCO, ← CaO + CO₂ எனும் சமநிலைக்கு
 - (a) அமுக்கம் கூடுதல் முற்தாக்கத்திற்கு அநுகூலமாயிருக்கும்.
 - (b) அமுக்கம் குறைதல் முற்தாக்கத்திற்கு அநுகூலமாயிருக்கும்
 - (c) $K_p = K_c$
 - (d) $K_p = p[CO_2]$

(1981 Aug, 36)

 T°C எனும் வெப்பநிலையில் ஒரு மூடிய பாத்திரத்திற் சூடாக்கப்படும் பொழுது XO₃ எனும் வாயுவொன்று பின்வரும் சமநிலையை அடைகின்றது.

2XO¸(வாயு) => 2XO¸(வாயு) + O¸(வாயு)
T°C இன் பாத்திரத்தினுள் உள்ள மொத்தவமுக்கம் 10 வளி மண்டலங்களாகவும், பாத்திரத்தினுள் உள்ள XO¸ இன் அளவு ஆரம்பத்திணிவின் அரைப்பங்காகவும் இருப்பின் இவ்வெப்பநிலையில் இத்தாக்கத்தின் Kp இன் எண்ணுக்குரிய மதிப்பு யாது?

(1) 8

(2) 16

(3)

(4) 2

(5) 20

(1982 Aug, 60)

- $A_{s}(s) + 2B(s) \rightleftharpoons 2AB(g)$ $\Delta H = +85.0 \text{ kJmol}^{-1}$ எனும் சமநிலைத் தாக்கத்திற்கு
 - சூடாக்கலின் மூலம் சமநிலையை இடதுபக்கத்திற்குப் பெயர்க்கலாம்.
 - அமுக்கத்தினால் சமநிலை பாதிக்கப்பட மாட்டாது.
 - முன்தாக்கத்தை அமுக்க அதிகரிப்பு ஆதரிக்கும்.
 - B இன் செறிவைக் கூட்டுவதால் சமநிலை வலப்பக்கம் பெயர்க்கப்படும் (1984 Aug, 38)
- பின்வருந்தொகுதியில் : 6.

 $C(s) + H_2(g) \rightleftharpoons CO(g) + H_2(g), \qquad \Delta H = 131.8 \text{ kJmol}^{-1}$ பின்வரும் எந்நிபந்தனையில் சமநிலையானது பின்திசையில் அசையும்?

- தாக்கத்திற்கு ஒரு எதிர் ஊக்கி கூட்டப்பட
- திண்மக்காபன் மேலும் கூட்டப்பட (2)
- கொதிநீராவி மேலும் கூட்டப்பட (3)
- (4) தொகுதியின் வெப்பநிலை கூட்டப்பட
- (5) நீரற்ற CaCl, கூட்டப்பட.

மூன்று தாக்கங்களுக்குரிய சமநிலைமாறிலிகள் (Kp) கீழே சுட்டிக் 7. காட்டப்பட்டவாறுள்ளன.

$$C(s) + \frac{1}{2}O_2(g) \iff CO(g), K_1$$

$$CO(g) + \frac{1}{2}O_2(g) \rightleftharpoons CO_2(g), \qquad K_2$$
 $C(s) + O_2(g) \rightleftharpoons CO_2(g), \qquad K,$

 $K_1,\,K_2,\,K_3$ ஆகியவற்றிற்கிடையிலுள்ள தொடர்பு

- (1) $K_1 = K_2 K_3$ (2) $K_2 = K_1 K_3$ (3) $K_3 = K_1 K_2$ (4) $K_3 = (K_1 K_2)^{1/2}$ (5) $K_1 = (K_3)^{1/2} K_2$ (1986 Aug, 17)

ஒரு தாக்கப் பாத்திரம் முறையே 100, 10, 50 ஆகிய 8. வளிமண்டலங்களிலான பகுதியமுக்கங்களையுடைய நைதரசன், ஐதரசன், அமோனியா ஆகியவற்றைச் சமநிலையில் கொண்டுள்ளது. சமநிலை வெப்பநிலையில்

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

என்ற தாக்கத்துக்குரிய சமநிலை மாறிலி,

(1) 40 (2) 20 (3) $\frac{1}{20}$

4) $\frac{1}{30}$ (5) $\frac{1}{40}$

(1986 Aug, 21)

9. A(s) + B(g) ← → L(s) + M(g): ΔH > 0 பின்வருவனவற்றுள் மேலே தரப்பட்டுள்ள சமன்பாட்டிற்குப் பொருத்தமுடைய கூற்று எது? / கூற்றுக்கள் யாவை?

a) மாறா வெப்பநிலையில் K யானது தொகுதியின் முழு

அமுக்கத்துடன் வேறுபடுகின்றது.

(b) மாறா வெப்பநிலையில் K, யானது, B, M ஆகியவற்றின் செறிவுடன் வேறுபடுகின்றது.

(c) K_c யானது வெப்பநிலையுடன் வேறுபடுகின்றது.

(d) K_c யும் K_p யும் ஒன்றுக்கொன்று சமனானவையாகும். (1987 Aug, 37)

10. $C(s) + H_2O(g)$ \longrightarrow $CO(g) + H_2(g)$; $\Delta H > 0$ மேற்படி சமநிலையை வலப்புறமாக நகர்த்துவதற்காக,

(1) தொகுதியின் வெப்பநிலையை அதிகரித்தல் வேண்டும்.

(2) தொகுதியின் அமுக்கத்தை அதிகரித்தல் வேண்டும்.

(3) தொகுதியிலிருந்து கொதிநீராவியை அகற்றுதல் வேண்டும்.

(4) தொகுதியுடன் காபன் சேர்த்தல் வேண்டும்.

(5) மேற்குறிப்பிட்ட எதன் மூலமும் சமநிலையை வலப்புறமாக நசுர்த்த முடியாது.

(1988 Aug, 07)

(1) $K_p = K_c \times RT$ (2) $K_c = K_p \times RT$ (3) $K_p = K_c \times (RT)^2$

(4) $K_{c} = K_{p} \times (RT)^{2}$ (5) மேற்கூறிய எதுவுமல்ல

(1989 Aug, 06)

12. இரண்டு தாக்கங்களின்
$$K_{
m p}$$
 தரவுகள் கீழே தரப்பட்டுள்ளன.

(4)
$$\frac{K_2}{K_1}$$
 (5) $\frac{K_1}{K_2}$

(1990 Aug, 25)

13. 2NOCl(g)

2NO(g) + Cl₁(g)

என்னும் சமநிலையைக் கருதுக. இச்சமநிலை தொடர்பாகப் பின்வருவனவற்றில் எது உண்மையானது?

(1)
$$K_C = \frac{[NO] \times [Cl_2]^{\frac{1}{2}}}{[NOCI]}$$
 (2) $K_C = \frac{[NO] \times [Cl_2]^2}{[NOCI]}$

(3)
$$K_C = \frac{[NO]^2 \times [Cl_2]}{[NOCI]^2}$$
 (4) $K_C = \frac{[2NO] \times [Cl_2]}{[2NOCI]}$

(5) இது ஒரு வாயுத் தொகுதி ஆகையால், இத்தொகுதிக்கு $K_{\rm c}$ பெறுமானம் இல்லை.

(1991 Aug, 03)

14. பின்வரும் தாக்கத்தைக் கருதுக.

 $A(g) + B(g) \longrightarrow C(g) + D(g);$ $\Delta H = + 100 \text{ kJ mol}^{-1}$ பின்வருவனவற்றில் எது இத்தாக்கத்திலே D யின் விளைவை அதிகரிக்கச் செய்யும்?

- (1) தொகுதியின் மொத்த அமுக்கத்தை அதிகரிக்கச் செய்தல்.
- (2) தொகுதியின் மொத்த அமுக்கத்தைக் குறைத்தல்.
- (3) தொகுதியின் வெப்பநிலையைக் குறைத்தல்.
- (4) தொகுதியிலிருந்து B யை அகற்றுதல்.
- (5) மேலுள்ளவற்றுள் எதுவும் D யின் விளைவை அதிகரிக்கச் செய்யாது. (1991 Aug, 19)

- சமநிலை நிலை ஒன்றில் உள்ள தாக்கம் ஒன்றைப் பற்றிப் பின்வரும் சுற்றுக்களில் எது / எவை உண்மையானது / உண்மையானவை?
 - தாக்கத்தின் K, ஆனது அமுக்கத்துடன் மாறுகின்றது.
 - (b) தாக்கத்தின் K ஆனது அமுக்கத்துடன் மாறுகின்றது.
 - தாக்கத்தின் K ஆனது வெப்பநிலையிலே தங்கியிருக்கின்றது (d)
 - தாக்கத்தின் ஏவற் சக்தியானது அமுக்கத்திலே தங்கியிருப்பதில்லை. (1991 Aug, 31)
- சமநிலை $2H_2(g) + 2X(g) \iff X_2H_4(g)$ பற்றிப் பின்வரும் சமன்பாடுகளுள் எது உண்மையானது?

(1)
$$K_P = \frac{pX_2H_4(g)}{p^2H_2(g) \times pX(g)}$$

(2)
$$K_p = \frac{pX_2H_4(g)}{p^2H_2(g) \times p^2X(g)}$$

(3)
$$K_C = \frac{[X_2H_4(g)]^2}{[H_2(g)]^2 \times [X(g)]^2}$$

(4)
$$K_C = \frac{[X_2H_4(g)]}{[2X(g)]^2 \times [2H_2(g)]^2}$$

(5)
$$K_C = \frac{[X_2H_4(g)]}{[H_2(g)]^2 \times [X(g)]^2}$$

(1992 Aug, 22)

தரப்பட்ட ஏகவின வாயு இரசாயனத் தாக்கம் ஒன்றிலே சமநிலை மாறிலி 17. K_p யின் பெறுமானம்

தாக்கிகளின் அமுக்கத்திலே தங்கியிருக்கின்றது.

- தாக்கிகளின் பகுதி அமுக்கங்களிலே தங்கியிருக்கின்றது. (2) (3)
- விளைபொருள்களின் பகுதி அமுக்கங்களிலே தங்கியிருக்கின்றது. (4)
- தொகுதியில் இருக்கும் ஊக்கியிலே தங்கியிருக்கின்றது.

மேலே உள்ளவற்றில் எதிலும் தங்கியிருப்பதில்லை.

(1993 Aug. 15)

முதலாம் கூற்று	இரண்டாம் கூற்று
சமநிலைத் தொகுதி 2NO ₂ ₹—— № ₂ O ₄ கபில நிறம் அமுக்கத்துடன் அதிகரிக்கின்றது.	N ₂ O ₄ ஆனது இருண்ட கபில நிறச் சேர்வையாகும்.

(1993 Aug, 44)

19. $A_{1}(g) + 2B_{2}(g)$ \iff $2AB_{2}(g)$; $\Delta H < 0$ என்னும் சமநிலையைக் கருதுக. இச்சமநிலை பற்றிப் பின்வரும்

சுற்றுகளில் எது உண்மையானது? (1) மொத்த அமுக்கத்தை அதிகரிக்கச் செய்வதன் மூலம் சமநிலை

இடப் பக்கமாகப் பெயர்க்கப்படுகின்றது. (2) [A,(g)] ஐக் குறைப்பதன் மூலம் சமநிலை வலப் பக்கமாகப்

(2) $[A_2(g)]$ ஐக் குறைப்பதன் மூலம் சமநிலை வலப் பக்கமாகப் பெயர்க்கப்படுகின்றது.

(3) [AB₂(g)] ஐ அதிகரிக்கச் செய்வதன் மூலம் சமநிலை வலப் பக்கமாகப் பெயர்கக்ப்படுகின்றது.

(4) வெப்பநிலையை அதிகரிக்கச் செய்வதன் மூலம் சமநிலை இடப் பக்கமாக பெயர்க்கப்படுகின்றது.

(5) வெப்பநிலையைக் குறைப்பதன் மூலம் சமநிலை இடப் பக்கமாகப் பெயர்க்கப்படுகின்றது.

(1993 Aug, 55)

 மாறா வெப்பநிலையிலே அமுக்கம் அதிகரிக்கப்படும்போது பின்வரும் சமநிலைகளில் எது வலப்பக்கமாகச் செல்வதற்கு நாடும்?

(1) $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

- (2) $2H_2(g) + O_2(g) \implies 2H_2O(g)$
- (3) $H_2(g) + Br_2(g) \iff 2HBr(g)$

(4) $S(s) + O_2(g) \Longrightarrow SO_2(g)$

(5) $C,H,OH(g) \rightleftharpoons C,H_4(g) + H,O(g)$

(1994 Aug, 03)

21. பின்வரும் சமநிலையைக் கருதுக.

$$AB_{1}(g) + 2AB(g) \rightleftharpoons A_{1}B_{2}(g)$$

 ${
m AB}_2({
m g}), {
m AB}({
m g})$ ஆகியன 1:2 என்னும் மூல் விகிதத்தில் மூடப்பட்ட பாத்திரம் ஒன்றினுள்ளே வைக்கப்பட்டு, குறித்த வெப்பநிலை ஒன்றிலே சமநிலையை அடைய விடப்பட்டன. சமநிலையிலே ${
m AB}_2({
m g})$ இன் 50% ஆனது வாயுக் கலவையில் எஞ்சியிருக்கின்றது. இக்கலவையில் ${
m A}_3{
m B}_4({
m g})$ இன் முற் பின்னம்

(1)
$$\frac{1}{4}$$
 (2) $\frac{1}{3}$ (3) $\frac{1}{2}$ (4) $\frac{1}{5}$

(5) மேலே உள்ளவற்றில் எதுவுமன்று

(1994 Aug, 04)

22. பின்வரும் சமநிலைகளைக் கருதுக

$$XO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow XO_3(g)$$
 $K_p = K_1$
 $2XO_3(g) \Longleftrightarrow 2XO_2(g) + O_2(g)$ $K_p = K_1$

K, இற்கும் K, இற்குமிடையே உள்ள தொடர்புடைமை

(1) K, = K, என்பதாகும்.

(2) K, ² = K, என்பதாகும்.

(3)
$$K_2^2 = K_1$$
 என்பதாகும். (4) $K_2 = \frac{1}{K_1}$ என்பதாகும்.

(5)
$$K_2 = \frac{1}{K_1^2}$$
 என்பதாகும்

(1994 Aug, 25)

தரப்பட்ட வாயுச் சமநிலை ஒன்றுக்கு K_p யின் பெறுமானம் 23.

விளைபொருள்களின் பகுதி அமுக்கங்களிலே தங்கியிருக்கின்றது.

தாக்கங்களின் மூற் பின்னங்களிலே தங்கியிருக்கின்றது. (b)

வெப்பநிலையிலே தங்கியிருக்கின்றது. (c)

- ஊக்கிகள் இருப்பதிலோ, இல்லாமையிலோ தங்கியிருப்பதில்லை. (d) (1995 Aug, 36)
- 24. K_p யையும் K_c யையும் பற்றிப் பின்வரும் கூற்றுகளில் எது உண்மையானது?

(1) K_p ஆனது வெப்பநிலையுடன் மாறுகின்றது.

(2) அமுக்கம் அதிகரிக்கும்போது K_p அதிகரிக்கின்றது.

(3) நேர் ஊக்கிகள் இருக்கும்போது K_c அதிகரிக்கின்றது.

(4) மறை (எதிர்) ஊக்கிகள் இருக்கும்போது K அதிகரிக்கின்றது.

மேலுள்ள கூற்றுகளில் எதுவும் உண்மையானதன்று

(1996 Aug, 24)

25. பின்வரும் தாக்கத்தைக் கருதுக. $N_2(g) + 3H_2 \rightleftharpoons 2NH_2(g)$ $\Delta H = -46kJ$ (உண்டாகும் NH₃ இன் ஒரு மூலுக்கு) மேலே உள்ள தாக்கம் பற்றிப் பின்வரும் கூற்றுகளில் எவை / எது உண்மையானவை / உண்மையானது?

(a) எல்லா வெப்பநிலைகளிலும்
$$K_{p} = \frac{(P_{NH_{3}})^{2}}{P_{N_{2}} \times (P_{H_{2}})^{3}}$$

(b) மாறா வெப்பநிலையில் P_N அதிகரிக்கப்படும்போது K_p அதிகரிக்கின்றது. (c) மாறா வெப்பநிலையில் $P_{N_{i}}$ அதிகரிக்கப்படும்போது $K_{p_{i}}$ குறைகின்றது. மாறா அமுக்கத்தில் வெப்பநிலை குறைக்கப்படும்போது சமநிலைத் (d) தாக்கக் கலவையில் இருக்கும் NH, இன் அளவு அதிகரிக்கின்றது. (1997 Aug, 33) $A_2B_4(g)$ என்னும் சமநிலையை கவனத்தில் $A_{,}(g) + 2B_{,}(g) \rightleftharpoons$ 26. கொள்க. இத்தாக்கத்திற்கு K இன் அலகுகள் (1) mol³ dm⁻⁹ ஆகும். (2) mol⁻³ dm⁹ ஆகும். (4) mol⁻² dm⁶ ஆகும். (3) mol² dm⁻⁶ ஆகும். (5) mol⁻² dm⁻⁶ ஆகும். (1998, 24)பின்வருவனவற்றில் எவை / எது சமநிலைத் தாக்கத்தின் $K_{_{\mathrm{p}}}$ உம் $K_{_{\mathrm{C}}}$ உம் சம்பந்தமாக உண்மையானவை / உண்மையானது? (a) $K_p = K_C (RT)^{\Delta n}$ (b) $K_c = K_p (RT)^{\Delta n}$ (c) தொகுதியின் முழு அமுக்கத்திலும் K_p தங்கியுள்ளது. (d) தொகுதியின் வெப்பநிலையில் K தங்கியுள்ளது. (1998, 32) $2P(g) + 3Q_{2}(g) \longrightarrow P_{2}Q_{6}(g)$ என்ற விதத்தில் வாயுத்தொகுதி ஒன்றின் சமநிலை தரப்பட்டுள்ளது. 1000
m K இல் $m mol^4 J^4$ அலகில் சமநிலை மாறிலிகளின் விகிதம் $m {K_p \choose K_p}$ नलंन? வாயுத்தொகுதி இலட்சிய நடத்தையுள்ளதென கொள்க. (1) 4.8×10^{15} (2) 2.1×10^{-16} (3) 1.2×10^{-2} (5) 6.0×10^{-5} (4) - 1.0(2001, 27)A(g) மற்றும் B(g) இற்கிடையே பின்வரும் சமநிலை நடைபெறுகின்றது. $A(g) \Longrightarrow xB(g)$

A, B ஆகியவற்றின் வெற்றிடமாக்கப்பட்ட பாத்திரமொன்றில் A(g) இன் 3 மூல்களை ஆரம்பத்தில் வைத்தபோது சமநிலையில், A, B ஆகியவற்றின் சமமூலர் கலவைபொன்று உருவாகியது. x இன் பெறுமானம்

(1) 1 (2) 2 (3) 3 (4) 4

(5) 5

(2008, 7)

27.

28.

- இலச்சற்றலியேயின் கொள்கை சம்பந்தமாக பின்வரும் கூற்றுகளில் எது / எவை சரியானது / சரியானவை?
 - (a) எவ் ஏகவினச் சமநிலைத் தொகுதிக்கும் இதைப் பயன்படுத்தலாம்.
 - (b) இரசாயனத் தாக்கங்களின் வீதங்கள் செறிவில் சார்ந்திருத்தலை விளக்குவதற்கு இதை உபயோகிக்கலாம்.
 - (c) இது வாயு வெளியேற்றலை உள்ளடக்கிய சமநிலைத் தாக்கங்களைப் பற்றிய சரியான செய்திகளைக் கொடுப்பதில்லை.
 - (d) வாயு அவத்தை சமநிலைத் தொகுதி ஒன்றில் சடத்துவ வாயு ஒன்றைச் சேர்ப்பதால் ஏற்படும் விளைவை விளக்குவதற்கு இதைப் பயன்படுத்தலாம்.

(2008, 48)

முதலாம் கூற்று	இரண்டாம் கூற்று
மீளத்தக்க தாக்கமொன்று சமநிலையிலிருக்கும்போது முற்தாக்கத்தின் வீதம் பிற்தாக்கத்தின் வீதத்திற்குச் சமனாகும்.	சமநிலையில் முற்தாக்கத்தின் ஏவற் சக்தி பிற்றாக்கத்தின் ஏவற் சக்திக்குச் சமனாகும்.

(2008, 52)

32. 25°C இல் Al³+(நீர்) + 6F (நீர்) — AlF ஃ-(நீர்) எனும் தாக்கம் 1.0 × 10²5 mol⁻6 dm¹8 ஐ சமநிலை மாறிலியாகக் கொண்டுள்ளது. 25.0 cm³, 0.010moldm³ Al(NO₃), ஐயும் 25.0cm³, 0.10 moldm³ NaF ஐயும் ஒன்றுடனொன்று கலக்கும்போது பெறப்படும் கரைசலில் AlF ஃ- (நீர்) இன் செறிவு moldm³ இல்

(1) 0.010

(2) 0.0050

(3) 0.017

(4) 0.0084

(5) 0.060

(2009, 29)

- 33. இயக்கவிசைச் சமநிலையிலுள்ள ஏகவின இரசாயனத் தாக்கத் தொகுதியொன்று சம்பந்தமாகப் பின்வரும் கூற்றுக்களில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) முற்தாக்கத்தினதும் பிற்தாக்கத்தினதும் வீத மாறிலிகள் சமனானவை.
 - (b) எந்த நேரத்திலும் தாக்கத்தினது எல்லா கூறுகளினதும் செறிவுகள் மாறிலியாகும்.
 - (c) தாக்கி ஒன்றினது சேர்க்கை, தொகுதியில் என்ன விளைவை உண்டாக்குமென்பதை எதிர்வு கூறுவதற்கு இலச்சற்றலியேயின் கொள்கையை உபயோகிக்கலாம்.
 - (d) சமநிலை அகவெப்பத்திற்குரியதாக இருந்தால் மாத்திரம், வெப்ப நிலையின் அதிகரிப்பு முற்தாக்கம், பிற்தாக்கம் ஆகிய இரண்டு தாக்கங்களினதும் வீதங்களை அதிகரிக்கச் செய்யும்.

(2009, 47)

கட்டுரை வினாக்கள்

(a) (i) $PV = \frac{1}{2} \text{ m Nc}^{2}$ என்னும் சமன்பாட்டை கருத்திற் கொண்டு இலட்சியவாயுவிற்குரிய PV = nRT என்னும் சமன்பாட்டை பெறுக.

இலட்சிய நடத்தை இல்லாத வாயு ஒன்றுக்கும் பொருந்தும் (ii) வகையில் PV = nRT என்னும் சமன்பாடு எங்கனம் மாற்றி அமைக்கப்படுகின்றதென்பதை விளக்குக.

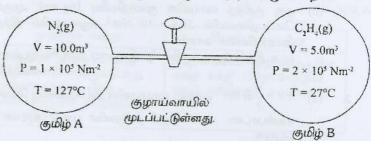
இப்படி மாற்றி அமைக்கப்பட்டதன் பின்னர் பெற்ற வன்டர்வால்சின் சமன்பாட்டை தெளிவாக எழுதுக.

ஒரு குறித்த வாயுவின் மூலர்திணிவு 16g mol-1 ஆகும். 29.5°C வெப்பநிலையில் 30.4 × 105 Nm-2 அமுக்கத்தில் இந்தவாயுவின் அடர்த்தியைக் காண்க. மு.க. இந்நிபந்தனைகளின் கீழ் இவ்வாயு இலட்சிய நடத்தையுடையது.

 $PV = \frac{1}{2}$ m $Nc^{\frac{3}{2}}$ என்னும் வாயுக்களின் இயக்கப்பண்பு கொள்கைக்குரிய (a) சமன்பாட்டை பயன்படுத்தி தாற்றனின் பகுதி அமுக்க விதியைப் பெறுக.

கனவளவு ரீதியில் வாயுக் கலவையொன்று N வாயுவின் 75% (b) ஐயும் O, வாயுவின் 25% ஐயும் கொண்டிருக்கிறது. இவ்வாயுக் கலவையின் அமுக்கம் 1.00 × 105 Nm-2 ஆக இருக்கும்போது வெப்பநிலை 300K ஆகும். இலட்சிய நடத்தையைக் கொண்டுள்ளதேன கருதி பின்வருவனவற்றை கணிக்க.

இவ்வாயுகலவையிலுள்ள O, இன் பகுதியமுக்கம்


(ii) இவ்வாயுக் கலவைக்கு பொருத்தமான சார்மூலக்கூற்றுத்திணிவு (சார் அணுத்திணிவு N = 14.0, O = 16.0)

(iii) இவ்வாயுக் கலவையின் அடர்த்தி

உமக்கு மெய்வாயு ஒன்று தரப்பட்டுள்ளது. அதன் (c) மூலக்கூற்றுத்திணிவு உமக்கு அறியத்தரப்படவில்லை. மெய்வாயு இலட்சிய நடத்தையை கொண்டிருக்கவில்லை என காட்ட நீர் எவ்வாறு எத்தனிப்பீர் என்பதை விளக்குக.

ஒட்சிசன் வாயுவின் மூலர்கனவளவை துணியும் பொருட்டு நீர் (d) ஆய்வுகூடத்தில் பரிசோதனையை செய்திரக்க அப்பரிசோதனையை சுருக்கமாக விவரித்து நி.வெ.அ. இல் 🔾 இன் மூலர்கனவளவை எவ்வாறு துணியலாம் என விளக்குக. (1999, 5(a), (b), (c), (d))

- (a) (i) அவகாதரோ விதியை எழுதுக. இவ்விதி எந்தவகையான தொகுதிக்கு பிரயோகிக்கப்படகூடியது.
 - (ii) $PV = \frac{1}{3} \text{ m Nc}^{\frac{7}{2}}$ என்னும் சமன்பாட்டிலிருந்து ஆரம்பித்து அவகாதரோ விதியைப் பெறுக.
 - (b) குமிழ்கள் Aயும் Bயும் ஒரு குழாய்வாயில் மூலம் தொடுக்கப்பட்டன. ஆரம்பத்தில் குழாய்வாயில் மூடப்பட்டிருந்தது. வாயுநிலை நைதரசனை மாத்திரம் Aயும் வாயுநிலை எதீனை மாத்திரம் Bயும் வைத் திருக் கின்றன. கீழுள்ள வரிப்படத்தில் குறிப்பிட்ட நிபந்தனைகளின் கீழ் ஒவ்வொரு வாயுவும் இருக்கின்றன.

அதன்பின்பு குழாய்வாயில் திறக்கப்பட்டு இரு குமிழ்களிலுமுள்ள வாயுக்கள் சுயாதீனமாகவும் முற்றாகவும் கலக்கவிடப்பட்டன. அதேவேளை ஒவ்வொரு குமிழினதும் அதில் அடங்கிய வாயுக்கிளனதும் வெப்பநிலை மாறாமல் அவற்றின் ஆரம்ப வெப்பநிலைகளிலேயே வைக்கப்பட்டது. N₂(g), C₂H₄(g) உம் இலட்சியவாயுக்களாக நடப்பவை எனவும் குழாய் வாயிலில் கனவளவு கவனிக்காமல் விடலாம் எனவும் கருதிக்கொண்டு SI அலகிலே பின்வருவனவற்றை காண்க.

- (i) குமிழ் Bயில் ஆரம்பத்தில் எதீன் வாயுவின் மூல்களின் எண்ணிக்கை
- (ii) குமிழ் Aயில் ஆரம்பத்தில் நைதரசன் வாயுவின் மூல்களின் எண்ணிக்கை
- (iii) இருகுமிழ்களிலும் இருக்கும் வாயுக்களின் மொத்த அளவு
- (iv) குமிழ் Bயில் வாயுநிலையிலுள்ள கலவையின் இறுதி அமுக்கம்
- (v) குமிழ் Aயில் முடிவில் பெற்ற வாயுநிலையிலுள்ள கலவையில் இருக்கும் எதீன் வாயுவின் பகுதி அமுக்கம் (2000, 5(a), (b))

இலட்சிய நடத்தையுள்ள P என்னும் வாயுநிலையிலுள்ள சேர்வையினால் 4. (a) 5.0 dm கனவளவுள்ள கண்ணாடிப் பாத்திரமொன்று நிரப்பப்பட்டது. 27°C இலே அந்தப் பாத்திரத்தினுள் வாயுவின் அமுக்கம் 1.955 × 105 Nm-2 到底的.

> வெப்பநிலை 100°C இற்கு மேலே P கூட்டற்பிரிகையடைந்து பின்வரும் சமநிலையைக் கொடுக்கும்.

> > $P(g) \rightleftharpoons Q(g) + R(g)$

27°C யிலே P ஐ வைத்துள்ள மேற்படி பாத்திரம் 127°C இற்கு வெப்பமேற்றப்பட்டபோது பாத்திரத்தினுள் அமுக்கம் 4.656 × 105 Nm² என்னும் மாறா பெறுமானத்தை அடைந்தது.

பாத்திரத்தின் கனவளவு வெப்பமெற்றிய போது மாற்றமடையவில்லை.

- பின்வரும் நிபந்தனைகளில் பாத்திரத்திலுள்ள வாயுவின் மூல்களின் முழு எண்ணிக்கையை முதல் தசமதானத்திற்கு கிட்டவாக கணிக்க.
 - (I) 27°C இல்

(II) 127° இல் சமநிலை அடையவிட்டபோது

எனவே 127°C இல் மேலுள்ள சமநிலைக்குரிய சமநிலை (ii)

மாறிலி K, ஐக் கணிக்க.

(iii) பின்பு Z என்னும் சடத்துவ வாயு ஒன்று பாத்திரத்தினுள்ளே செலுத்தப்பட்டது. அதன்பின்பு 127°C இலே மேற்படி தொகுதி திரும்பவும் சமநிலையடைந்தபோது பாத்திரத்தினுள்ளே அமுக்கம் 6.651 × 105 Nm-2 ஆகும். இந்த நிபந்தனைகளின் கீழ் P, Q, R, Z ஆகியவற்றின் பகுதி அமுக்கங்களையும், மூல்பின்னங்களையும் காண்க.

ஏதாவது எடுகோள்கள் நீங்கள் மேற்கொண்டால் அவைபற்றி மு.க. கூறுக.

(2001, 6(a))

(a) உயர் அமுக்கத்திலும் வெப்பநிலை 450°C இற்கு மேலேயும் நீராவி 5. காபனுடன் தாக்கம் புரிந்து "Syn gas" என அழைக்கப்படும். சமமூலர் H., CO கொண்ட கலவை ஒன்றை உற்பத்தி செய்கிறது. இச் சம்நிலைத்தாக்கம் பின்வரும் சமன்பாட்டிற்கமைய நடைபெறுகிறது.

$$C(s) + H_2O(g) \iff CO(g) + H_2(g)$$

மாறாகனவளவாக 5.0dm³ உடைய ஒரு கடினமான பாத்திரத்தினுள் 0.843dm³ காபன் பவுடரும் N, வாயுவும் 105 Pa அமுக்கத்திலும் 127°C வெப்பநிலையிலும் இருக்கின்றன. பின்பு இப்பாத்திரத்தினுள் 0.5mol நீராவி செலுத்தப்பட்டு பாத்திரத்தின் வெப்பநிலை 527°C இற்கு அதிகரிக்கப்பட்டது. இவ்வெப்பநிலையில் மேலே குறிப்பிட்ட பாத்திரத்தினுள் அமுக்கம் 13.2 × 10⁵ Pa என காணப்பட்டது.

மேற்படி தாக்கத்தினால் ஏற்படும் காபன் பவுடரின் கனவளவு மாற்றம் புறக்கணிக்கத் தக்கதென கருதிக் கொண்டு "வேறு ஏதாவது கருதுகோள் மேற் கொண்டால் அதையும் எழுதி" பின்வருவனவற்றிற்கு விடையளிக்க.

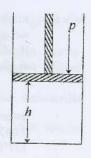
பாத்திரத்தினுள் N₂ வாயு மூல்களின் எண்ணிக்கையைக் கணிக்க.

(ii) 527°C இல் சமநிலை அடந்தபின்பு பாத்திரத்தினுள் பிரசன்னமாயிருக்கும் பின்வருவனவற்றை கணிக்க.

(A) வாயு மூல்களின் முழு எண்ணிக்கை

(B) நீராவி, H₂, CO ஆகிய ஒவ்வொன்றினதும் மூல் எண்ணிக்கை
 (C) நீராவி, H₂, CO, N₂ ஆகியவற்றின் பகுதி அமுக்கங்கள்

(iii) 527°C இல் மேற்குறிப்பிட்ட தாக்கத்திற்குரிய சமநிலை மாறிலி K_p ஐக் கணிக்க.


- (iv) மேற்குறிப்பிட்ட பரிசோதனை அதே விதத்தில் மீளவும், ஆனால் N₂ வாயு இல்லாத நிலையில் செய்யப்படின் பாத்திரத்திலுள்ள பின்வருவனவற்றை உய்த்தறிக.
 - (A) நீராவியின் பகுதியமுக்கம்
 - (B) CO இன் பகுதியமுக்கம்
 - (C) H₂ இன் பகுதியமுக்கம்

(D) முழு அமுக்கம்

(v) "Syn gas" இற்கு சாத்தியப்படக்கூடிய கைத்தொழில் ரீதியான ஒரு உபயோகம் தருக.

(2002, 5(c)

6. (a) நிறையற்ற உராய்வற்ற, வாயுபுகாத பிஸ்டனொன்றுடன் பொருத்தப்பட்ட ஒரு கடினமான உருளை வடிவமான பாத்திரத்தை இத்துடன் தரப்பட்ட படம் காட்டுகிறது. பாத்திரத்தில் வாயு இருக்கும்போது, பிஸ்டினின் வேலை செய்கின்ற வெளிப்புற அமுக்கம் 'P' ஆக இருக்கும் போது பாத்திரத்தின் அடிப்பாகத்தின்மேல் பிஸ்டனின் உயரம் 'h' ஆகும். பிஸ்டனினுடைய குறுக்கு வெட்டுபரப்பு 8.314 × 10-2 m² ஆகும்.

- (i) பாத்திரம் ஆரம்பத்தில் வாயு X இனால் நிரப்பப்பட்டது. பாத்திரத்தினதும் அதனின் உள்ளேயுள்ள பொருட்களினதும் வெப்பநிலை 27°C ஆகவும் P, 10⁵ Pa ஆகவும் உள்ள போது h, 3.0m ஆகும். பாத்திரத்திலுள்ள X இன் மோல்களின் எண்ணிக்கையைக் கணிக்க.

P ஐ 10⁵ Pa இல் மாறாமல் வைத்து கொண்டு மேற்கூறிய (i) இலுள்ள பாத்திரம் வெப்பமேற்றப்பட்டு அதனுள் உள்ள பொருள்கள் 127°C இல் சமநிலையடைய விடப்படுகின்றன. இந்நிபந்தனைகளின் கீழ் பாத்திரம் 4.0 mol X ஐக் கொண்டிருந்தது.

- (A) h இன் பெறுமானம்
- (B) வாயுக்கள் X, Y, Z இன் பகுதியமுக்கம்
- (C) 127°C இல் மேல் தரப்பட்ட சமநிலைக்குரிய சமநிலை மாறிலி K_p ஐக் கணிக்க.
- (iii) பின்பு மேலே தரப்பட்ட (ii) இன் பாத்திரத்தினுள் ஒரு சடத்துவ வாயு S இன் 10.0mol சேர்க்கப்பட்டு, h ஐ மாறிலியாக மேற்கூறிய (ii)(A) ஐப் போன்று அதே பெறுமானத்தில் வைத்து, 127° இல் தொகுதி சமநிலையடைய விடப்பட்டது. இந்நிபந்தனைகளின் கீழ் X, Y, Z, S ஆகியவற்றின் பகுதியமுக்கங்களையும் P இனது பெறுமானத்தையும் கணிக்க.
- (iv) பின்பு மேலே தரப்பட்ட (iii) இன் கலவையின் வெப்பநிலை 127° இல் மாறிலியாக வைத்து P, 10° Pa இற்கு திரும்பவும் மாறுவதற்கு விடப்பட்டது. புதிய சமநிலை நிபந்தனைகளின் கீழ் X, Y, Z, S ஆகிய வாயுக்களின் பகுதியமுக்கங்களையும் h இன் பெறுமானத்தையும் கணிக்க.
- இக்கணிப்புகளில் நீர் ஏதாவது எடுகோள்கள் உபயோகித்திருப்பின் அவற்றை கூறுக.

 (a) (i) சமநிலையிலிருக்கும் பின்வரும் தாக்கத்தைக் கவனத்திற் கொள்க.

$$aA(g) + bB(g) \iff cC(g) + dD(g)$$

இந்தச் சமநிலைக்கு K_p இற்கும் K_c இற்கும் இடையேயுள்ள தொடர்புடைமையைப் பெறுக.

(ii) பின்வரும் சமநிலையை கவனத்தில் கொள்க.

$$QR_3(g) + R_2(g) \rightleftharpoons QR_4(g)$$

QR₃ இன் 5mol உம் R₂ இன் 3mol உம் ஒரு மூடிய பாத்திரத்தினுள்ளே வைக்கப்பட்டன. சமநிலையிலே பாத்திரத்தினுள் வெப்பநிலை 469K ஆகிய பொழுது பாத்திரத்தினுள்ளே அமுக்கம் 10.13×10° Nm² ஆகும். இந்த நிபந்தனைகளின் கீழ் QR₃(g) இன் ஆரம்பத் தொகையிலிருந்து 30% ஆனது மேற்படி தாக்கத்தில் பங்குபற்றி விட்டது. இத்தாக்கத்தின் K_p ஐக் கணிக்க.

(1998, 7(c))

- 8. (a) ஒரு குறிப்பிட்ட வெப்பநிலையில் H₂(g) + I₂(g) ← 2HI(g) என்னும் சமநிலையின் K₂ இன் பெறுமானம் ஏறத்தாழ 25 ஆகும். இத்தாக்கம் ஆரம்பிக்கப்பட்டபோது சமமூலர் அளவு H₂(g) உம் I₂(g) உம் இருந்தனவெனக் கொள்க. மேற்குறிப்பிட்ட வெப்பநிலையில் இத்தாக்கத்திற்கு H₂(g) செறிவும் HI(g) செறிவும் நேரத்துடன் மாறுபடுவதை காட்டக்கூடிய விதத்தில் வரைபுகளின் வரிப்படம் ஒன்றை வரைக.
 - (b) கனவளவு 0.0200m³ உள்ள மூடிய பாத்திரம் ஒன்றினுள் 0.200mol NO(g) உம் 0.100 mol H₂(g) உம் 0.200mol H₂O உம் ஆரம்பத்தில் இடப்பட்டன. வெப்பநிலை 500K இல் பின்வரும் சமநிலை ஏற்பட்டது. 2NO(g) + 2H₂(g)

 N₂(g) + 2H₂O(g)

சமநிலையில் இருந்த NO(g) இன் அளவு 0.150 mol ஆகும்.

(i) இச்சமநிலைக்குரிய K ஐக் கணிக்க.

(ii) மேந்பெறப்பட்ட K_c இன் பெறுமானத்தைப் பயன்படுத்தி இச்சமநிலைக்குரிய K_p ஐக் கணிக்க.

(1999, 6(a), (b))

 (a) வெப்பநிலை 100°C யிற்கு மேல் வாயு அவத்தையிலுள்ள சமநிலையொன்று பின்வருமாறு

A(g) + B(g) — P(g) + Q(g) கண்ணாடிக்குமிழ் ஒன்று A, B ஆகிய வாயுக்களின் சமமூலர்கலவையொன்றால் மாத்திரம் நிரப்பப்பட்டுள்ளது. குமிழும் அதனுள் அடங்குபவையும் வெப்பநிலை 200°C இற்கு வெப்பமேற்றப்பட்டன.

Physical Chemistry

V. Prameshwaran

(பரிசோதனை 1) சமநிலையடைய விடப்பட்ட பின் குமிழுக்குள் இருக்கும் Pயின் மூல் பின்னம் X_p ஆனது 0.2 எனத் துணியப்பட்டது.

அதன்பின்பு குமிழினதும் அதனுள் இருப்பவையினதும் வெப்பநிலை 400° C இற்கு உயர்த்தப்பட்டது. இந்த வெப்பநிலையில் இத்தொகுதி சமநிலையடைய விடப்பட்டது. இச்சமநிலை கலவையில் இருக்கும் A யின் மூல்பின்னம், $X_{\rm A}$ ஆனது 0.2 எனத் துணியப்பட்டது.

- (i) 200°C இல் B, A, Q ஆகியவற்றின் சமநிலை மூல் பின்னங்களை கணிக்க.
- (ii) 200°C இல் சமநிலைக்கு K, ஐக் கணிக்க.
- (iii) 400°C இல் B, P, Q ஆகியவற்றின் சமநிலை மூல் பின்னங்களை கணிக்க.
- (iv) மேலுள்ள தரவுகள், கணிப்புகள் ஆகியவற்றிலிருந்து காரணங்கள் தந்து முன்முகத் தாக்கத்தின் வெப்பவுள்ளுறை மாற்றத்தின் குறியை உய்த்தறிக.
- (v) மேலுள்ள சமநிலை நடத்தையை எதிர்வுகூறப் பயன்படுத்தக்கூடிய கோட்பாட்டை பெயரிடுக.
- (vi) முன்பு பயன்படுத்திய குமிழைவிட அரைப்பங்கு கனவளவுள்ள குமிழைப் பயன்படுத்தி 200°C இலே பரிசோதனை I ஐ அதே ஆரம்ப அளவு A, B இட்டு அதே வெப்பநிலையில் மீண்டும் செய்தால் சமநிலை கலவையின் அமைப்புபொருள்கள் என்னவாக இருக்கும்?

(2000, 6(c))

 (a) (i) திறக்கப்படாத சோடா நீர் அடங்கிய சோடாப் போத்தலிலுள்ளே CO₂(g) இற்கும் CO₂(aq) இற்குமிடையே பின்வரும் சமநிலை அமையும்.

$$CO_2(g) \rightleftharpoons CO_2(aq)$$

 $(27^{\circ}\text{C}$ இல் சமநிலை மாறிலி $K_c = 0.9$)

அத்துடன் $CO_2(aq)$, $H^+(aq)$, $HCO_3^-(aq)$ ஆகியவற்றிற்கிடையே பின்வரும் சமநிலையுமுண்டு.

$$CO_2(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

(27°C இல் சமநிலை மாறிலி = K¹_c)

இங்கே $CO_2(g)$ ஒரு இலட்சியவாயு நடத்தையுடையதாக கருதலாம். அத்துடன் HCO_3^- (aq) இன் பிரிகையைப் புறக்கணிக்கலாம்.

 $\mathrm{K_{c}}\,,\;\mathrm{K'_{c}}$ ஆகியவற்றிற்கான கோவையை எழுதுக.

- (ii) 27°C இல் திறக்கப்படாத சோடா நீர்ப் போத்திலினுள் CO₂(g) இன் அமுக்கம் 498 840 Pa ஆகவும் சோடா நீரின் pH 4.0 ஆகவும் இருந்தன. பின்வருவனவற்றைக் கணித்து முதலாவது தசம தானத்தில் விடையளிக்க.
 - (A) mol dm 3 இல் $CO_2(g)$ இன் செறிவு
 - (B) mol dm-3 இல் CO,(aq) இன் செறிவு
 - (C) K' இல் இன் பெறுமானம்
- (iii) சோடா நீர்ப் போத்தில் திறக்கப்பட்டு அதில் அடங்குபவை ஒரு முகவையில் ஊற்றப்பட்டது. பின்பு சோடா நீர் 27°C இல் வளியில் சமநிலை அடைய விடப்பட்டது. இந்த நிபந்தனைகளின் கீழ் வளியில் CO₂ இன் பகுதியமுக்கம் 30 Pa ஆகும். 27°C இல் வளிமண்டலத்திலுள்ள CO₂ உடன் சமநிலையிலுள்ள சோடா நீரின் pH ஐக் கணிக்க.

(2002, 6(b))

11. (a) (i) $SO_2(g)$ நீரில்க் கரையும் போது கீழ்வரும் சமநிலை உண்டாகிறது. $SO_2(g) \Longleftrightarrow SO_2(aq)$

இம்முறைக்கு சமநிலைமாறிலி, K_c இற்கு கோவையை எழுதுக. அத்துடன் இருக்கக்கூடிய மற்றும் எல்லா சமநிலைகளையும் பிரதிநித்துவப்படுத்தக்கூடிய பொருத்தமான சமநிலை மாறிலிகளுக்குரிய, K_c, சமன்படுத்திய இரசாயன சமன்பாடுகளையும் கோவைகளையும் எழுதுக.

- (ii) SO₂(aq) கரைசலொன்றின் pH ஐ தூய நீரின் pH உடன் பண்பறி ரீதியாக ஒப்பிடுக.
 SO₂ இன் நீர்க்கரைசலுக்கூடாக வளியை குமிழ் குமிழாகச் செலுத்தி அதனை வாயுவேற்றப்பட்டபோது அக்கரைசலின் pH இற்கு என்ன நடைபெறும் என்பதைக் காரணங்கள் தந்து எதிர்வு கூறுக.
- (iii) பின்வரும் ஒவ்வொன்றுக்கும் சுருக்கமான காரணங்கள் தந்து SO₂ நீர்க்கரைசலுக்குள் சேர்க்க வேண்டிய ஒவ்வொரு இரசாயனப் பதார்த்தத்தைப் பெயரிடுக.
 - (I) SO₂ (aq) இன் செறிவை அதிகரிப்பதற்கு
 - (II) SO₂ (aq) இன் செறிவை குறைப்பதற்கு

(b) வாயுநிலையிலான A என்னும் ஒரு சேர்வை வெப்பநிலை 10°C இற்கு மேல் கூட்டற்பிரிகையடைந்து வாயுநிலையிலான விளைபொருட்கள் Bஐயும் D ஐயும் தந்து கீழே தரப்பட்ட சமன்பாட்டிற்கமைய சமநிலை அடையும்.

$$A(g) \iff B(g) + D(g)$$

- (i) மேற்படி சம்நிலையின் K_n, K_c ஆகியவற்றிற்குரிய கோவைகளை எழுதுக. ஏதாவது எடுகோள்கள் மேற்கொண்டிருப்பின் அவற்றையும் தெரிவித்து K_p, K_c ஆகியவற்றிற்கிடையே உள்ள தொடர்பை பெறுக. இந்த தொடர்பிற்குரிய பதங்களை இனங்காண்க.
- (ii) வெப்பநிலை 5°C இற்கு குறைவாக 6.5mol He(g) உம் 2.0 mol A(g) உட்செலுத்துவதன் மூலம் ஒரு மீள்சக்தியுடைய பலூன் நிரப்பப்பட்டது. பின்பு 27°C இல் மேற்படி சமநிலை அடையவிடப்பட்டது. இந்நிபந்தனைகளின் கீழ் பலூனிற்குள் இருக்கும் மொத்த அமுக்கம் 1 × 10⁵ Pa ஆகவும் பலூன் 0.5 mol A(g) ஐயும் கொண்டிருந்தது.
 - 27°C இல் மேற்படி சமநிலைக்குரிய K_p, K_c ஆகியவற்றை கணிக்க. (K_c இன் பெறுமானத்தை moldm³ இல் வெளிப்படுத்துக.)
- (iii) மேலே (ii) இல் குறிப்பிட்ட பலூன் பின்பு வளிமண்டலத்தில் உயர்ந்து செல்ல விடப்பட்டது. ஒரு குறித்த உயரத்தில் பலூனுக்குள் உள்ள வெப்பநிலை 17°C ஆக இருக்கும்போது மொத்த அமுக்கம் 4.9 × 10⁴ Pa ஆகவும் He(g) இன் பகுதியமுக்கம் 3.5 × 10⁴ Pa எனவும் காணப்பட்டது.
 - 17° C இல் மேற்படி சமநிலைக்குரிய K_{p} ஐக் கணிக்க.
- (iv) மேலே (ii), (iii) களில் முறையே 27°C, 17°C இல் உள்ள A(g), B(g), D(g) ஆகியவற்றின் சமநிலை மூல் பின்னங்களைக் கருத்திற் கொண்டு முன்முகத் தாக்கம் புறவெப்பத்திற்குரியதா அல்லது அகவெப்பத்திற்குரியதா என உய்த்தறிக.
- (v) மேலே (ii) இல் 27°C இல் இருக்கும் சமநிலையைக் கருதிற் கொள்க. இவ்வெப்பநிலையில் சமநிலையடைவதற்கு இத்தொகுதி 10 நிமிடங்கள் எடுக்கும் எனக் கொள்க. பின்பு அதிக D(g) சமநிலைத் தொகுதிக்குள் செலுத்தப்பட்டது. D(g) செலுத்திய நேரத்திலிருந்து முதல் 15 நிமிடங்களில் பலூனின் கனவளவுக்கு நடைபெறப்போகும் மாற்றங்களை காரணங்கள் தந்து கூறுக.

(2003, 6(b), (c))

12. (a) A, B, D, P, Q, R ஆகியன இலட்சிய நடத்தையை உடைய வாயுச் சேர்வைகளாகும். 100°C தொடக்கம் 800°C வரையுள்ள வெப்பநிலை வீச்சில் A(g) கூட்டற்பிரிவுற்று A(g) \ P(g) + Q(g) என்னும் சமநிலையைத் தருகின்றது. அதே வெப்பநிலை வீச்சில் B(g) ஆனது D(g) உடன் தாக்கம் புரிந்து

> B(g) + D(g) — R(g) என்னும் சமநிலையைத் தருகின்றது. இந்த ஆறு சேர்வைகளுக்கிடையில் வேறு தாக்கமில்லை.

> X, Y, Z என்பன மூன்று சர்வசம விறைப்பான பாத்திரங்கள் இவை ஒவ்வொன்றினதும் கனவளவு 8.314dm³ ஆகும் வெப்பமாக்கும்போது அவற்றின் கனவளவுகள் மாறாமல் இருக்கும். X இல் A(g) இன் 0.2mol உம் 0.2 mol உம், Y இல் B(g), D(g) ஆகிய ஒவ்வொன்றினதும் 0.2 mol உம் Z இல் A(g), B(g), D(g) ஆகிய ஒவ்வொன்றினதும் 0.2 mol உம் தடங்கும். இம்மூன்று பாத்திரங்களிலும் சமநிலை அடையப்படும் வரை இப்பாத்திரத்தின் 127°C இலே ஒரு கனலடுப்பில் வைக்கப்படுகின்றன. சமநிலையில் X, Y யில் மொத்த அமுக்கங்கள் முறையே 1.2 × 10° Pa, 1.4 × 10°Pa ஆகும்.

(i) 127°C இல் X, Y, Z ஆகியவற்றில் சமநிலைகளுக்கு

பின்வருவனவற்றை கணிக்க

(I) X இனுள்ளே A(g), P(g), Q(g) ஆகியவற்றின் பகுதியமுக்கங்களும் X இனுள்ளே சமநிலைக்கு சமநிலை மாறிலி K_p யும்.

(II) Y யினுள் B(g), D(g), R(g) ஆகியவற்றின் பகுதியமுக்கங்களும் Y யினுள் சமநிலைக்குச் சமநிலை மாறிலி K, யும்.

(III) Z இனுள் மொத்த அமுக்கம்

(IV) Z இனுள்ளே B(g), A(g) ஆகியவற்றின் பகுதியமுக்கங்களினது விகிதம் P_B/P_A

(ii) $25\,^{\circ}$ C இல் மேற்குறித்த சேர்வைகளின் நியம ஆக்க வெப்பவுள்ளுறைகள் (Δ_{f} H) கீழே தரப்பட்டுள்ளன.

A(g)	B(g)	D(g)	P(g)	Q(g)	R(g)
50	35	45	40	30	60

கனலடுப்பின் வெப்பநிலை 227° C இற்கு அதிகரிக்கப்படும்போது Z இனுள்ளே விகிதம் $P_{B}_{p_{A}}$ குறையுமா, கூடுமா, மாறாமல் இருக்குமா என எதிர்வு கூறுக. உமது விடைக்கான காரணத்தை தருக.

(2004, 7(b))

- 13. (a) A(g) ஆனது 400K இற்கு மேலான வெப்பநிலைகளில் aA(g) B(g) + D(g) என்னும் சமநிலையை விளைவாகக் கொண்டு B(g), D(g) ஐக் கொடுக்கக்கூடியதாக கூட்டற்பிரிகையடையும்.
 - (i) மேலுள்ள சமநிலையின் சமநிலைமாறிலிகள் K உம் K உம் ஒரே எண் பெறுமானம் உடையன. மேலுள்ள தாக்கத்திறகான K , K , களினதும் வரைவிலக்கணங்களில் தொடங்கி மேலுள்ள சமன்பாட்டின் சமப்படுத்தும் குணகம் 'a' ஆனது 2 இற்கு சமமென உய்த்தறிக.
 - (ii) 500K இல் வாயுக்கள் A, B, D ஆகியவற்றின் ஒரு குறித்த சமநிலைக் கலவையில் வாயுக்களின் பகுதியமுக்கங்கள் முறையே

 $P_{A} = 2 \times 10^{5} \text{ Pa}$ $P_{B} = 8 \times 10^{5} \text{ Pa}$ $P_{D} = 2 \times 10^{5} \text{ Pa}$

500K இல் மேலே தரப்பட்ட சமநிலைக்குரிய K_p இனது பெறுமானம் காண்க.

(iii) 4.157m³ கனவளவுடைய ஒரு விறைப்பான பாத்திரம் 2.7°C இல் A(g) இனால் மாத்திரம் நிரப்பப்பட்டுள்ளது. இந்நிபந்தனைகளின் கீழ் வாயுவின் அமுக்கம் X ஆகும் பாத்திரம் அதில் உள்ளடங்கியனவும் 500K இற்கு சூடாக்கப்பட்டு இவ் வெப்பநிலையில் தொகுதியைச் சமநிலையடைய விட்டபோது அப்பாத்திரத்திலுள்ள மொத்த அமுக்கம் Y ஆகவும் அப்பாத்திரத்திலுள்ள B யினது பகுதியமுக்கம் Z ஆகவும் காணப்பட்டன. சூடாக்கும்போது பாத்திரத்தின் கனவளவு

மாற்றமடையவில்லை எனக்கொண்டு $Y=\frac{5}{2}Z$ எனவும் $\frac{Y}{X}=\frac{5}{3}$ எனவும் காட்டுக.

ஏதாவது எடுகோள் எடுத்திருப்பின் அவற்றை கூறுக. $Y=8\times 10^5 \, \text{Pa}$ எனின் X,Z ஐத் துணிக.

(iv) Y = 8 × 10⁵ Pa ஆக இருக்கும் மேலே (iii) இலுள்ள சமநிலைக் கலவைக்கு n மூல்கள் A சேர்க்கப்படுகின்றது. இத்தொகுதி மீண்டும் 500K இல் சமநிலையடையும் போது பாத்திரத்தினுள் மொத்த அமுக்கம் 2.5 × 10⁶ Pa ஆகக் காணப்பட்டது. n ஐயும் புதிய சமநிலை நிபந்தனைகளின் கீழ் A(g), B(g), D(g) ஆகியவற்றின் பகுதியமுக்கங்களையும் காண்க.

(2005, 5(a))

- 350 K இற்கு உயர்வான வெப்பநிலைகளில் A(g) ஆனது, மீளத்தக்க 14. (a) முறையில் கூட்டற்பிரிகையுற்று B(g) யும் C(g) ஐயும் உண்டாக்குகின்றது. 4.157 dm³ கனவளவுடைய வெற்றிடமாக்கப்பட்ட பாத்திரமொன்று A(g) இன் 2.0 mol இனாலும் B(g) இன் 1.0 mol இனாலும் C(g) இன் 1.0 mol இனாலும் நிரப்பப்பட்டு 500 K இற்கு வெப்பமேற்றப்பட்டது. இவ்வெப்பநிலைக்கு தொகுதி சமநிலை அடைந்தபோது அப்பாத்திரம். A(g) இன் 1.6 mol ஐயும் B(g) இன் 1.2 mol ஐயும் C(g) இன் 1.6 mol ஐயும் கொண்டிருந்தது.
 - B(g) ஐயும் C(g) ஐயும் உண்டாக்கும் A(g) இன் கூட்டற் பிரிகைக்கான சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டை உய்த்தறிக.

மேற்கூறிய (i) இலுள்ள தாக்கத்திற்கான சமநிலை மாநிலி K_c (ii)

இற்கான கோவையை எழுதுக.

(iii) 500 K இல் K இன் பெறுமானத்தைக் கணிக்க.

- (iv) 700 K இல் இத்தாக்கத்தினது K இன் St அலகுகளிலான பெறுமானம் 5.1 × 10¹³ ஆகின், A(g) இனது கூட்டற்பிரிகை புறவெப்பத்துக்குரியதா என்பதை உய்த்தறிக.
- 400 K இற்கு உயர்வான வெப்பநிலைகளில் X(g), Y(g), Z(g) (c) (i) ஆகியவற்றிற்கிடையே பின்வரும் இரசாயனச் சமநிலை காணப்படுகிறது.

$$X(g) + Y(g) \rightleftharpoons 2Z(g)$$

16.628 dm³ கனவளவுடைய வெற்றிடமாக்க்பபட்ட பாத்திர மொன்று X(g) இன் 2 mol ஐயும் Y(g) இன் 2 mol ஐயும் கொண்டுள்ளது. இப்பாத்திரம் 500 K இற்குச் சூடாக்கப்பட்டு மேற்கூறிய சமநிலையை அடைய விடப்பட்டது. இவ்வெப்பநிலையில் சமநிலை மாறிலி K = 4.

- பாத்திரத்தினுள் உள்ள X(g), Y(g), Z(g) ஆகியவற்றினது மூல்களில் எண்ணிக்கையைக் கணிக்க.
- பாத்திரத்தினுள் உள்ள மொத்த அமுக்கத்தைக் கணிக்க.
- மேலே தரப்பட்ட (i) இல் சமநிலையை அடைந்த பின்பு, வெப்பநிலயை 500 K இல் பேணிக்கொண்டு பாத்திரத்தினுள் Z(g) இன் 1 mol சேர்க்கப்பட்டது. புதிய சமநிலையை அடைந்தபோது பாத்திரத்தினுள் உள்ள X, Y, Z ஆகியவற்றினது மூல்களின் எண்ணிக்கையைக் கணிக்க.
- (iii) மேற்கூறிய (i) இல் சமநிலையையடைந்த பின்னர், வெப்பநிலையை 500 K இல் பேணிக்கொண்டு பாத்திரத்தினுள் Y(g) இன் 1 mol உம், Z(g) இன் 1 mol உம் சேர்க்கப்பட்டன. தொகுதியின் சமநிலை எத்திசையை நோக்கி நகரும் என்பதைக் கணிப்புகளின்றித் தர்க்கரீதியாக உய்த்தறிக்.

(2007, 5(b), (c))

15. 27°C இல் NH4SH பின்வருமாறு பிரிகையடைகின்றது:

$$NH_4SH(s) \rightleftharpoons NH_3(g) + H_3S(g)$$

 27° C இல், இத்தாக்கத்திற்கான சமநிலை மாறில் $K_{c}=1.44\times10^{2}\,\mathrm{mol^{2}m^{-6}}$

- (i) 27°C இல் மேற்கூறிய தாக்கத்திற்கான சமநிலை மாறிலி, K_p **ஐக்** கணிக்க.
 - கவனிக்க: பொருத்தமான சமன்பாடுகைள நேரடியாகப் பாவிக்கலாம். மூலத்திலிருந்து பெறுதல் வேண்டியதில்லை.
 - NH₃(g) உம் H₂S(g) உம் இலட்சிய வாயு நடத்தையைக் கொண்டுள்ளதாக எடுத்துக் கொள்க.
 - 27°C இல், RT = 2.5 kJ mol-1
- (ii) 27°C இல். 1.0 × 10⁻² m³ ஐக் கொண்ட வெற்றிடமாக்கப்பட்ட பாத்திரமொன்றில் சமநிலைக்கான நிலையை அடைவதற்காக வைக்கப்பட வேண்டிய NH₄SH இன் அதிகுறைந்த திணிவைக் கணிக்க.

(NH₄SH இன் சார் மூலக்கூற்றுத் திணிவு = 51)

(2008, 5(a))

 (i) 2.0 mol X(g) மூடிய பாத்திரமொன்றினுள் 450 K இற்குச் சூடாக்கப்பட்டு

$$X(g) \rightleftharpoons 2Y(g)$$

எனும் சமநிலை நிலை நாட்டப்பட்டது. இச்சமநிலையில் X(g) இனது 25% பிாகையடைந்து Y(g) உருவாக்கப்பட்டதாகவும், மொத்த அமுக்கம் $6.0 \times 10^5 \ \mathrm{Nm}^{-2}$ ஆகவும் காணப்பட்டது. பின்வருவனவற்றைக் கணிக்க.

- I. சமநிலையில் X(g) இனதும் Y(g) இனதும் மூல் பின்னங்கள் II. சமநிலை மாறிலி, $K_{\mathfrak{p}}$
- (ii) மேற்கூறிய தொகுதியின் வெப்பநிலை 600 K இற்கு அதிகரிக்கப்பட்ட போது Y(g) உம் பிரிகையடைந்து பின்வரும் சமநிலை நிலை நாட்டப்பட்டது.

$$X(g) \iff 2Y(g) \iff Z(g)$$

2.0 mol X(g) ஐ ஆரம்பத்தில் உபயோகப்படுத்தப்பட்ட போது சமநிலையில் Y(g) உடன் சேர்ந்து 1.0 mol X(g) உம் 0.50 mol Z(g) உம் இருக்கக் காணப்பட்டன.

- பின்வருவனவற்றைக் கணிக்க.
 - (A) சமநிலையிலுள்ள Y(g) இனது மூல்களின் எண்ணிக்கை
 - (B) சமநிலையிலுள்ள X(g), Y(g), Z(g) ஆகியவற்றினது மூல் பின்னங்கள்
 - (C) சமநிலையில் தொகுதியினுடைய மொத்த அமுக்கம்.
 - (D) X(g) = 2Y(g) இற்குரிய சமநிலை மாறிலி
- (A) மேலுள்ள C பகுதியில் நீர் உபயோகித்த எடுகோள்கள் யாதுமிருப்பின் அவற்றைக் கூறுக.
 - (B) தாக்கம் X(g) → 2Y(g) புறவெப்பத்திற்குரியதா அல்லது அகவெப்பத்திற்குரியதா? உமது விடையைச் சுருக்கமாக விளக்குக.

(2009, 5(a))

Conducting Classes at

Noble Academy

No.15, 36th Lane, Wellawatte, Colombo 6. Tel : 011-4915649, 011-2505816

வெள்ளவத்தையில்

கொட்டாஞ்சேனையில்

Brilliant Institute

No.136, Sangamitha Mawatha, Kotahena, Colombo 13. Tel: 011-2347728, 011-2473792

ในหูกเกลาบ์ก่

And

B-EDS

China Ford, Beruwala. Tei: 077-7889794, 077-3017102