

ஆடி 1979 புரட்டாதி 1980

தொகுதி: 7 இல. 4, 5, 6.

தொகுதி: 8 இல. 1, 2, 3.

ஊற்று நிறுவனம், 215, கொழும்பு வீதி கண்டி.

உள்ளே 🔫

1 அரங்கு

💯 சேதனவுறுப்பிரசாயனம்

௶ சூரியனி<mark>ன்</mark> சுதிர்க<mark>ளும் அவற்</mark>றின் பிரயோகங்களும்

💯 சாளரம்

💯 மனித உடலும் தொழிற்பாடும்

🗓 உலக உணவின் எதிர்காலம்

💯 நீரும் விவ்சாயமும்

<mark>ഖീമ</mark> 2.50

IN THIS ISSUE

Articles

Authors

OPINION - Mr. S. Srikantha

ORGANIC CHEMISTRY (10) - Dr. S. Sotheeswaran Ph.D.

SOLAR RAYS AND ITS USES — Mrs. M. Umarani HUMAN BODY AND FUNCTION (2) — Dr. R. Sivakanesan

FUTURE OF WORLD FOOD

SITUATION -

WATER AND AGRICULTURE (5) - Dr. A. Kandiah

Ootru Organisation

President: Prof. T. Jogaratuam Vice President: Prof A. Thurairajah

Secretary: Dr. R. Narendran Assistant Secretary:

Dr. K. Krishnananthasivam

Treasurer: Mr. I. Ariyaratnam

Administrative Editors: R. Mahalinga Iyer B. Sc., Ph.D.

R. Sivakanesan B. V. Sc, Ph. D.

Chief Editor : V. Pavanasasivam B. Sc. (Agri) M.Sc.,

M. S., Ph. D.

Compilling Editor : R. Mahalinga Iyer. B. Sc., Ph. D.

Editorial Board

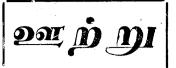
K. Krishnananthasivam B. V. Sc., M. V. Sc.,

A. Sivarajah B. A., M. A

S. V. Parameswaran B. Sc., M. Sc., Ph. D.

K. K. Navaratnam B. So., (Agri)

S. Srikantha B. Sc., M. Sc., (Agri)


N. Sriharan M. B. B. S., M. D., M. R. C. P., Ph. D

N. Sayanolibavan,

Publishers:
Administrative Editor

Correspondence:
Administrative Editor

OOTRU ORGANISATION
215, Colombo Street, Kandy. T' Phone: 2388.

•• அறிஞர் **தம் இத**ய ஓடை ஆழநீர் தீன மொண்டு செறி தரும் மக்**கள்** எண்ணம் செழித்திட ஊற்றி ஊற்றிப் புதியதோர் உலகம் செய்வோம்.''

தொகுதி 7 ஆடி—மார்கழ தொகுதி 8 தை—புரட்ட	
தொகுதி 8 தை—புரட்ட	1 j 1700 gjav — 1, 2, 0.
நிர்வாக ஆசிரியர்	
இ. மகாலிங்க ஐயர் B.Sc., (Eng), Ph.D இ. சிவகணேசன் B.V.Sc., Ph. D	அரங்கு சச்சி சிறீகாந்தா
பிரதம ஆசிரியர் வே. பாவநாசசிவம் B. Sc., (Agri) M.Sc., M.S., Ph.D	சேதனவுறுப்பிரசாயன ம் கலாநிதி சோ தீ ஸ்வரன்
ஆசிரிய ர் கு ழு	சூரியனின் கதிர் களும் அ வற்றி ன் பிர யோகங் களும் திரு ம தி. ம. உமாராணி
க. கிருஸ்ணுணந்துசிவம் B.V . Sc., M. V. Sc.	தாரு ம் சாளரம்
அ. சிவராசா B. A., M. A. எஸ். வி. பரமேஸ்வரன் B. Sc., M. Sc., Ph. D	மனி த உ டலும் தொழிற்பாடும் கலாநிதி இ. சிவகணேசன்
க. க. நவரத்தினம் B. Sc., (Agri) ச. சிறிகாந்தா B. Sc., M. Sc., (Agri)	உல க உ ணவின் எதிர்காலம்
ந. சிறிகரன் M. B. B. S. M. D., M.R.C.P., Ph.D ந. சய ெளிபைவான்	நீரும் விவசாய மு ம் கலாநிதி ஆ. க ந்தைய ா

தொகுப்பாசிரியர் இ, மகாலிங்க ஐயர்

ஆண்டுச் **சந்தா** ருபா- 12/=

இச் சஞ்சிகையில் வெளியாகும் கட்டுரைகளின் பொருளடக்கங்கட்கு கட்டுரை ஆசிரியர்களே முற்றிலும் பொறுப்பாவர். கட்டுரை தரும் கருத்துக்கள் ஆசிரியர் குழுவைச் சேர்ந்தவர்களின் எண்ணங்களேப் பிரதிபலிப்பன அல்ல,

தொடர்பு கொள்ள வேண்டிய முக**வரி**

நிர்வாக ஆசிரியர், ஊற்று நிறுவனம், 215, கொழும்பு வீதி, கண்டி,

அறிவுவளர்ச்சியில் நூலகத்தின் பங்களிப்பு

சச்சி சிறீகாந்தா (உயிரிரசாயனத்துறை, பேராதுணப் பல்கலேக் கழகம்)

அறியாமைதான் எல்லா சிக்கல்களுக்கும் அடிப்படை என்பது யாவரும் அறிந்த தொன்று. முன்னேற்றத்தின் அடிப்படை அறிவு. இதை இதயமாகக் கொண்டது நூல், நூஃத் தன்னிடத்தே கொண்டது நூலகம். சிறந்த நூலகமொன்றின் பணி என்ன?

- 1. உலக அறிவு முழுவதையும் காட்டும் வகையில் நூல்களேச் சேகரிக்க வேண்டும்.
- 2. சேகரித்தவற்றைப் பட்டியிட வேண்டும் அடுக்க வேண்டும்.
- 3. இவற்றை அணேவரும் அறியச் செய்ய வேண்டும்.

இம் மூன்று பணிகளேயும் இலங்கையில் உள்ள நூலகங்கள் நிறம்படச் செய்கின்ற னவா என்றுல், ஆம் என விடையளிக்கும் அறிவாளிகள் மிகச்சிலரே இருப்பர்.

இன்றைய நில்யில் பல்கலேக் கழகங்களிலும் அவற்றின் சூழலிலுள்ள நூலகங்களிலும் 1ம் பணியும் 3ம் பணியும் ஆற்றப்படும் விதமானது நகைப்புக்கொடமானதாயும் கவலேக் கொடமானதாயும் உள்ளது. இலங்கையிலே உள்ள பிரச்சின் என்னவெனில் பொதுமக்களுக்கோ மாணவர்க்கோ ஒய்வு கிடைக்கும் வேளேயில் நூலகம் இறக்கப்படுவதில்லே பேராதனேப் பல் கலேக் கழகத்தையும் சூழ உள்ள கண்டி நகர நூல் நிலேயங்களேயும் நோக்குகையில் இங்கே வார இறுதி நாட்களில் பொழுதைப் போக்குவது நூலகப் பிரியர்களுக்கும் கல்வி கற்கும் மாணவர்க்கும் நரக வேதுணயாக உள்ளது. சினிமா பார்க்க விரும்புவோர்க்கோ, விளே யாட்டுப் பிரியர்களுக்கோ, உல்லாச கேளிக்கைப் பிரியர்களுக்கோ வார இறுதி நாட்களில் இப்படியான சங்கடம் எழுகின்றதா? இல்லவே இல்லே

மேற்கத்திய நாடுகளில் நிலவும் நிலே எப்படிப் பட்டது? சமீபத்தில் என் கைக்குக் கிட்டிய அமெரிக்காவிலுள்ள ஒரு பிரபல பல்கலேக் கழகத்தின் (இலினேய் பல்கலேக்கழசம்) ஒரு குறிப்பிட்ட துறையிலுள்ள உப நூல் நிலேயம். புதிதாக வரும் மாணவருக்கு அளித் துள்ள விளக்க விவரங்கள் சிலவற்றை சுட்டிக் காட்ட விரும்புகிறேன்.

நூல் நிலேய நேரங்கள்

வாசிக அறை: ''எந்நேரத்திலும் வாசிக அறை படிப்பதற்கு திறக்கப்பட்டிருக்கும், இவ்வறையினுள் புக ஒரு சாவி தேவை.

உப நூல் நிலேயம்: கீழ் வரும் நேரங்கள் கடைப்பிடிக்கப்படுகின்றன.

திங்கள் முதல் வெள்ளி காலே 8 மணியிலிருந்து இரவு 10 மணிவரை சனி காலே 9 மணியிலிருந்து இரவு 10 மணி வரை.

சுனா காண **ச ம**ணாயாலருந்து இரவு 10 மணி **வரை.** ஞாயிறு பிற்பகல் 1 மணியிலிருந்து இரவு 10 மணி**வரை.**

இந்நாட்களில் சாவி உம்மிடமிருந்தால் நீர் இரவு 12 மணிவரை நூலகத்தினுள் இருக்கலாம்.

பிரதான நூலகம் திங்கள் முதல் சனி காலே 8 மணியிலிருந்து இரவு 10 மணிவரை. ஞாயிறு பிற்பகல் 1 மணியிலிருந்து இரவு 10 மணிவரை. சாவிகள்: 、

சாவிகளே ஒரு சாவி தேவை பத்திரத்தை நிரப்பி நீர் சார்ந்த துறை ஆசிரியருடைய ஒப்புதஃப் பெற்று, திரு—————விடம் வழங்கிஞல், அவரிடமிருந்து சாவிகள்ப் பெறலாம். சாவிகள் தொஃந் தால், ஒரு சாவிக்கு 50 சதம் வீதம் தண்டப்பணம் கட்டிஞல், புதிய சாவி வழங்கப்படும். மாணவர் இந்தப் பல்கஃக்கழகத்துடன் தொடர் பைத் துண்டிக்கும் போது, சாவி திரு————————விடம் கையளிக்கப்பட வேண்டும்."

மேலும், சோஷலிச நாடுகளான ரஷ்யா போன்றவற்றில் 24 மணி நேரமும் திறக் கப்பட்டு வைத்திருக்கும் நூலகங்கள் பல உண்டு. இதனுல் அந்நாட்டிலுள்ளோர் அடை யும் பலன் சொல்லொணுனது, இலங்கையிலே நூலகங்கள் திறக்கப்பட்டிருக்கும் நேரத்தை சற்று நோக்குவோம்.

(1) பிரிட்டிஷ் கவுன்சில் நூலகம்:-

திங்கள் ,முதல் வெள்ளி: – காலே 9 மணியிலிருந்து மாலே 6 மணி வரை. சனி :- காலே 8 மணியிலிருந்து பிற்பகல் 1 மணிவரை, ஞாயிறு மற்றைய பொது விடுமுறைகள்: - முற்ருகப் பூட்டப்படும்.

(2) அமெரிக்கன் சென்டர் நூலகம்:-

இங்கள் முதல் வெள்ளி:- காலே 10 மணியிலிருந்து மாலே 7 மணி வரை. சனி :- காலே 10 மணியிலிருந்து பிற்பகல் 1 மணி வரை மாலே 4 மணி யிலிருந்து மாலே 7 மணி வரை. ஞாயிறு மற்றைய பொது விடுமுறைகள்:- முற்ருகப் பூட்டப்படும்.

(3) பேரா**த**னே பல்கலேக்கழக நூலக**ம்:**-

திங்கள் முதல் சனிவரை:- காலே 8 மணியிலிருந்து இரவு 8 மணிவரை. ஞாயிறு :- காலே 8 மணியிலிருந்து பகல் 12 மணிவரை.

பொதுவிடுமுறை நாட்கள் முற்றுகப் பூட்டப்பட்டிருக்கும். மேலும் பொதுவான தவணே விடுமுறை நாட்களிலோ வார நாட்களில் , காலே 8 மணியிலிருந்து மாலே 4 மணி வரை மட்டும் திறக்கப்பட்டு வைக்கப்பட்டிருக்கும்.

மேலெழுந்தவாரியாக நோக்குகையில் பொதுமக்களுக்கும், மாணவர்களுக்கும் ஆசிரியர்களுக்கும் ஓய்வு கிடைக்கும் வார விடுமுறை நாட்களிலோ, பொது விடுமுறை நாட் களிலோ நூலகங்கள் மூடப்பட்டோ ஒரு சிறிதளவு நேரத்திற்கு மட்டும் திறக்கப்பட்டோ வைத்திருக்கப்படுவதால் நூலகத்தின் பலின அதினப் பாவிப்போர் பெறுவதில்ஃ.

மேற்கத்திய நாடுகளில் அறிவு வளர்ச்சியடைந்திருப்பதற்கும், மாணவர்கள் பல் துறை அறிவை அகலக் கற்றுப் பெறுவதற்கும், அங்கே நூலகங்களின் வளர்ச்சியும் அவை பேணப்படும் முறையும் முக்கிய பங்களிக்கின்றன. இத‰யே ஒளைவையார்,

> ' நீரளவே ஆகுமாம் நீராம்பல்—தாம் கற்ற நூலளவே ஆகுமாம் நுண்ணறிவு - - - - -''என்ருர்.

(ஜுன் 1980 மஞ்சரி இதழிலே நூலகங்கள் பற்றி இடம் பெற்ற கட்டுரையை வாசித்த பின்னர் எழுந்த சில நின்வலேகளே இவை.) பால்வேன மணல் காற்றிலே பவனி

சகாராப் பாலேவனத் திலிருந்து உலகத் தின் பல திக்குகளுக்கும், பாலேவனக் தின் மணல் பெருமளவில் காற்றினுல் உந்தப்படு கின்றது. மேலும் சகாராவைத் தவிர்ந்த ஆபிரிக்காவின் ஏனேய பாலேவனப் பகுதி யாகிய சகெல்லிலி நேந்தும் பூமியின் மேற் படை மண் வியக்கத்தக்க அளவில் காற்றி ஞெல் கவர்ந்து செல்லப்படுகின்றது.

ஆகாய விமான ஆராய்வுகளிலிருந்தும் வேறு அளவீடுகளிலிருந்தும் பெறப் பட்ட மாதிரிகளேக் கணித்த பொழுது வரு டாந்தம் 40-60 மில்லியன் தொன் மணல் வட ஆபிரிக்காவிலிருந்து அத்திலாந்திற்கு வீசப்படுவதாக அறியப்படுகின்றது. அத்தி லாந்திக் சமுத்திரத்தின் மேற்குப் பகுதியி லுள்ள பகாமாஸ் (Bahamas) பேர்மூடா (Bermuda) மேற்கு இந்தீஸ் (West Indies) தீவுகளிலுள்ள மண், சகாராப் பாவேனத் தின் தூசுகளிலிருந்து உற்பத்தியாகியிருக்கக் கூடுமென விஞ்ஞ்ரானிகள் கருதுகின்றனர். சகாராப்பாலேவனத் தூசுகள் ஐரோப்பாவின் வடக்குப் பகுதியாகிய ஸ்கன்டினேவியா வரை காணப்படுகின்றது என்பதற்கு ஆதா ரங்கள் உண்டு. இஸ்ரவேல், நைல் பள்ளத் தாக்கு, கேப் வேர்டீ தீவு (Cape verde island) போன்ற பகுதிகளிலும் இவை பெருமளவில் சேர்ந்திருக்கின்றன.

இவ்விதமான மணல் உந்தல் பெரும் பாலும் மேற்குத் திசையை அல்லது அத்தி லாந்திக்கை நோக்கியே நிகழ்கின்றன. இந் நிகழ்ச்சிக்கான ஆதாரங்கள் இன்னும் தகுந் தளவில் கிடைக்கவில்லே.

ஆதாரம்: The Sunday Times 4-9-77 தகவல்: இ. சிவா.

வாசக நேயர்களுக்கு,

ஊற்றிற் பிரசரிப்பதற்குத் தரமான கட்டுரைகள், சாளரத் தேணுக்குகள், கருத் துரைகள் முதலியன உங்களிடமிருந்து வர வேற்கின்ரும். ஆசிரியர் குழுவினது பரிசீ லினயின் பின் பிரசுரிக்கப்படும். அவை இதழிலிருந்து கேள்வி மேலும் வருகின்ற பதில் பகுதியை மீண்டும் ஆரம்பிக்க இருக் கின்*ரு*ம். நீங்கள் அறிய **வி**ருப்பும் விடயங் களே எமக்கு எழுதி அனுப்புங்கள். முடிந்த **வற்**றிற்**குப்** பதிலிறுப்போம்.

சேதனவுறுப்பிரசாயனம்

கலாநிதி சு. சோதீஸ்வரன், சிரேஷ்ட இரசாயன விரிவுரையாளர், பேராதணப் பல்கஃக்கழகம்

10ம் அத்தியாயம் அமீன்கள்

அமீன்கள் — NH₂ தொகுதியைக் கொண்ட சேர்வைகள். இத்தோகுதி நேரடி யாக அரோமற்றிக்கு வட்டத்திற்கிணக்கப்பட்டிருப்பின் சே**ர்வை**யை அரோமற்றிக்க மீன் எனவும் ஏனேய சேர்வைகளே அலிபற்றிக்கமீன்களெனவும் அழைக்கப்படும்.

 $C_6H_5NH_2$ — அனிலீன் (அரோமற்றிக்கமீன்) CH3CH2CH2NH2 – புரப்பைலமீன் (அலிபற்றிக்கமீன்)

— NH₂ தொகுதி அரோமற்றிக்கு வட்டத்திற்கு இணக்கப்பட்டிருந்தால் இவ்வமீன்கள் அலிபற்றிக்கமீன்களிலும் வூத்தியாசமான தாக்கங்களேச் சில சந்தார்ப்பங்களில் தரும். ஆகவே அரோமற்றிக்குச் சேர்வை C₆H₅CH₂CH₂NH₂ (2 - பீணேலீதைல் அமீன்) அலிபற் றிக்கமீனின் தாக்கத்தைத்தரும். நைதரசனணுவைச்சுற்றியுள்ள அற்கைல், ஏரைல் (அரோமற்றிக்குத்) தொகுதியின் எண்ணிக்கையைப் பொறுத்து அமீன்களே முதலமீன், வழியமீன், புடையமீன் என மூன்று வகுப்புக்களாகப்பிரிக்கலாம்.

> CH₃NH₂ மீதைலமீன்

முதலமீன்

C₆H₅NH₂ அனிலீ**ன்**

(CH3)2 NH இருமீதைலமீன் வழியமீன்

CaHaNHCH8

N-ഥീ**ടെ**ച്ചെതിെൽ്ൽ

(CH₃)3N ഗ്രഥീകളേഖഥീങ് படையமீன்

 $C_6H_5N(CH_3)_2$ N. N-இருமீதைவனிலீன்

10.1 தொகுப்புமுறைகள்

அ) ஒபுமான முறை (Hofmann's method)

அற்கைல் ஏஃட்டுக்கள் (6.3 ஐப்பார்க்க) அமோனியாவின் அற்ககோலிக்க ரைசலோடு முதல், வழி, புடையமீன்களேத்தரும்

தாக்கம் கட்டுப்படுத்தப்படாவிடில் நாற்பகுதிய அமோனியச் சேர்வை R₄NX ஐக் கொடுக்கும்.

ஆ) அற்ககோல்களிலிருந்து: அற்ககோல்களே அமோனியாவுடன் உயர்வெப்ப நிலேயி லும் அமுக்கத்திலும் தாக்கவிட அலிபற்றிக்கமீன்கள் பெறப்படும்.

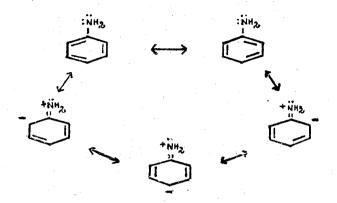
இ<u>) நைத்</u>திரோ சே**ர்வையிலிருந்து**: அரோமற்றிக்கு ஐதரோகாப**ன்களிலிருந்து** அரோ மற்றிக்கு நைத்திரோ சேர்வையை இலகில் பெறலாமாகையால் (5.1.2. ஐப் பார்க்க) இம்முறையை அரோம**ற்**றிக்கமீன்**க**ோப் பெற உபயோகிக்கலா**ம்**.

Ar NH₂ + sn O₃

ஈ) நைத்தி⇔ரல்களிலிருந்து: நைத்திரைல்களே (R—CΞN)த் தாழ்த்த அமீன்கள் பெறப்படும்,

$$C_6 H_5 CE_2 C \equiv N \xrightarrow{H_2/Ni} C_6 H_6 CH_2 CH_2 NH_2$$

நைத்திரைல்களே ஏஸ்ட்டுக்களிலிருந்து பெறலாம். (6.3 ஐப்பார்க்க)


உ) ஒபுமான்படியிறக்கம் (Hofmann degradation) ஏமைட்டுக்களே, பொற்று சியமைத ரொட்சைட்டு, புரேர்மீனுடன் தாக்கவிட அமீன் பெறப்படும்:

$$\begin{array}{ccc} & & & & & & \\ \textbf{KOH/Br}_2 & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

இம்முறைப்படி அரோமற்றிக்கு, அலிபற்றிக்கு அமீன்களப் பெறலாம்.

10.2 இயல்புகள்

10.2.1 மூலத்தன்மை: அமீன்கள் மூலத்தன்மையுடயவை அலிபற்றிக்க மீன்கள், அமோனியாவை விடச்சிறந்த மூலங்கள். அலிபற்றிக்கமீன்கள் இலத்திரன் தள்ளும் அற்கைற் தொகுதி(களே) கொண்டிருக்கின்றபடியால், நைதரசனணுவில் உள்ள தனிச்சோடி இலத்திரன்கள் இலகில் ஒரு புரத்தனுக்கு வழங்கப்படும். அரோமற்றிக்கமீன்களில் இலத்திரனிழுக்கும் பீணேல் தொகுதியிருக்கின்றபடி யால் இவை குறைந்த மூலத்தன்மையுடையவை. இவ் இலத்திரனிழுக்கும் தன்மையி ஞல் பீணல் தொகுதியின் ஒத்தோ, பரா இடங்களில் இலத்திரன் செறிவு கூடும்.

மூலத்தன்மையினுல் அமீன்கள் அமிலங்களோடு உப்புக்களேத் தரும்.

அமீன் உப்புக்கள் Na OH உடன் மீண்டும் அமீன்களேத்தரும்.

$$CH_3 NH_3 Cl$$
 NaOH $CH_3 NH_3 NH_3 Cl$

10. 2 2 ஏசைலற்றம்; முதல், வழியமீன்கள், அமிலக்குளோரைட்டுக்கள்,அமிலநீரிலிகள் உடன் N—அற்கைலேற்றப்பட்ட சேர்வைகளேத்தரும்.

$$RNH_2 + (CH_3 CO)_2O$$
 \longrightarrow $CH_3 CONHR + CH_3 CO_2 H$
 $R_2 NH + CH_3 COCl$ \longrightarrow $CH_3 CONR_2 + HCl$

அசற்றைலேற்றம் (ஏசைலேற்றம்) அசற்றைல் குளோரைட்டு (CH3 COCl) உடனும் நடைபெறும். இங்ஙனம் சல்பினற்குளோரைட்டுக்களும் சல்பினேமைட்டுக் கீளத்தரும்,

 $C_6 H_4 SO_2 Cl$ + $C_2 H_5 NH_2 \rightarrow C_6 H_4 SO_2 NHC_2 H_5$ பென்சின் சல்பணேற்றுக்குளோரைட்டு சல்பணேமைட்டு இச் சல்பணேமைட்டு பொற்ருசியமைதரொட் சைட்டுடன், நீரிற்கரையுத் தன்மையுடைய உப்பைக் கொடுக்கும்.

$$C_6 H_5 SO_2 NH C_2 H_6 + KOH - \rightarrow (C_6 H_5 SO_2 N C_2 H_6) K + H_2O$$

பென்சோயிற்குளோரைட்டுடன் இங்ஙனம் நடைபெறுந்தாக்கத்தை பென்சோயி லேற்றமென அழைக்கப்படும்.

10.2.3. ஐ**சோ**சயணேட்டுத்தாக்கம் மூதலமீன்கள், குளோரோபோம் **முன்**னிஃயில் பொற்று சிய மைதரொட்சைட்டுடன் அருவருப்பான மணமுள்ள ஐசோசயஃபைட்டுகள் த் தரும்.

இத்தாக்கம் முதலமீன்களேப் பரிசோதிப்பதற்குச் சிறந்ததாகும்.

10. 2. 4. அலிடிகைட்டுகளுடன் தாக்கம்: முதலமீல்கள் அலிடிகைட்டுகளுடன் இமீன் களேத்தரும்.

RCHO +
$$H_2$$
 NR \longrightarrow RCH = NR

10. 2. 5 நைதரசமிலங்களுடன்: நைதரசமிலங்களுடன், அலிபற்றிக்கமீன்கள் அற்க கோல்களேத்தரும்.

$$RNH_2 + HNO_2 \longrightarrow ROH + N_2 + H_2 O$$

இத்தாக்கம் ஈரசோனியமுப்பு இடைநிஃமூலம் நடைபெறும். அலிபற்றிக்கமீனிலி ருந்து பெறப்படும் இடைநிஃ உறுதியற்றது. அரோமற்றிற்கு ஈரசோ னி ப முப் பு 0—10° c இல் உறுதியுள்ளது. 10° cக்கு மேற்பட்ட வெப்பநிஃயில் இது பிரிகையடை ந்து பீஞேஃத்தாரும்.

$$^+$$
 $50^{\circ}\mathrm{C}$ Ar N \equiv N Cl $+$ H $_2$ O \longrightarrow ArOH $+$ N $_2$ $+$ HCl ஏரைல் ஈரசோனியமுப்பு பீடுவேல்

பின்வரும் அரோமற்றிக்கு ஈரசோனியமுப்பின் தாக்கங்கள் உபயோகமுள்ளன.

அ) பீனேலின் சோடியமுப்புடன் நிறச்சாயங்களேத்தருவன. சாயங்கள், பருத்தி, சில்க், செயற்கைத் துணிகளே நிறமாக்கும் சாயக்கைத் தொழிலில் உபயோக முள்ளவை.

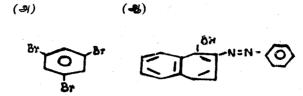
விதம் விதமான பீ**ே**ஞல்களேயும், ஈரசோனியமுப்புக்களேயு**ம்** பா**வித்**து வெவ் வேறு நிறச்சாயங்களேய் பெறலாம்

ஆ)
$$C_6$$
 H_6 N_2 Cl $\xrightarrow{H_3$ PO_2} C_6 H_6 $+$ H_3 PO_3 $+$ HCl C_6 இன்ற ஈரசோனியம் பென்சீன் குளோரைட்டு C_2 H_5 OH , C_6 H_6 $+$ CH_3 CHO

இ)
$$C_6H_5N_2Cl \xrightarrow{\triangle} C_6H_5Cl$$
 கு G னாரே பென் சின் C_6H_5 Br C_6H_5 Cr C_6H_5 Cr

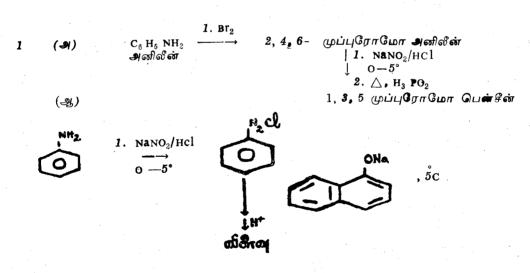
10. 2. 6 அரோமற்றிக்கமீன்களின் விசேடதாக்கங்கள்;

— NH₂ தொகுதி அரோமற்றி கு வட்டத்தை ஏவற்படுத்**துகின்**ற**து (**காரணம்: 10.2.1 இலுள்ள பரிவமைப்புக்கள்ப்பார்க்க) ஆகவே நைத்திரேற்றம், புரோமினேற்றத்தாக் கங்கள் ஒத்தோ, டரா விளேவுகளேயே தரும் (5.1.2 ஐப்பார்க்க).


2, 4, 6-முப்புரோமோ அனிலீன்

நைத்திரேற்றத்தில் ஒட்சியேற்றும் கருவியான HNO3 பாவிக்கின்றபடியால், அனிலீன் ஒட்சியேற்றமடையு**ம்**. ஆக**வே இதைத்தடுக்கப்பின்வரும் முறை பாவிக்கப்படுகின்றது.**

— NH₂ தொகுதியின் ஏவற்படுத்**து**ம் தன்மை அசற்றைலேற்றத்தின் பொழுது குறைக் கப்படுகின்றது அசற்றனிஃட்டு ஒரு அரோமற்றிக்கு ஏமைட்டு. ஆகவே நீர்பகுப் படைந்து அமீணேத்தரு**ம்**


பயிற்சி 10

1. கீழ் வருவனவற்றை எங்ஙனம் தொகுப்பீர்?

- 2. C₆ H₆ CH₂ NH₂ ஐயும் C₈ H₅ NH CH₃ ஐயும் எங்ஙனம் வித்தியாசம் காண்டீர்?
- 3. C_{. H.} N அமைப்புடைய எத்த²ன முதலமீன்களினமைப்புகளே எழுத**லாம்**? **அவை** யாவை?
- 4. முதல், வழி, புடையமீன்களே எங்ஙனம் வித்தியாசம் காண்டீர்?

விடைகள்

3. நான்கு

CH₃ CH₂ CH₂ CH₂ NH₂

புயூற்றைலமீன்

CH₃ CH CH₂ NH₂ | CH₃ 2 மீதைல் புரப்பைலமீன்

CH₃ CH₂ CH NH₂

1-மீதைல் புரப்பைலமீன்

CH₃

 $(CH_3)_3$ C NH_2

1.1-இருமீதைல் ஈதைலேமீன்

4. $RNH_2 + C_6 H_5 SO_2 Cl \rightarrow C_6 H_5 SO_2 NHR$

 R_2 NH + C_6 H_5 SO $_2$ Cl ightarrow C_6 H_5 SO $_3$ NR $_2$ சல்பனேமைட்டு

 $\mathbf{R}_3\;\mathbf{N}\;+\;\mathbf{C}_6\;\mathbf{H}_5\;\mathbf{SO}_2\;\mathbf{Cl}$ —/ightarrow தாக்கமில்லே.

முதலமீனிலிருந்து பெறப்படும் சல்ப**ேனமைட்டு Na**OH கரைசலில் கரையும். இங்கு அமிலத்தன்மையுடைய ஐதரசனனு உள்ளது.

சூரியனின் கதிர்களும் அவற்றின் பிரயோகங்களும்

திருமதி. ம. உமா ராணி, B. Sc.. (Eng) பொறியியற்பீடம், பேரா**தனே.** (சென்றே இதழ் தொடர்ச்சி)

அகச் சிவப்புக் கதிர்கள் (Infar red rays)

2-ம் உலகப்போரின் இரகசிய போர்கருவி களில் அகச் சிவப்புக் கதிரும் ஒன்றென நாம் கேள்விப்படும் போது ஆச்சரியமடைவது இயல்பே.கண்ணுக்கு தெரியா த இக்கதிர்களே எவ்வாறு கண்டுபிடிக்க முடியும். முடியும். உபயோகிக்க முடியும் என்பதைச் சிறிது பார்ப்போம் லத்தீன் மொழியில் Infra என்றுல் கீழே' என்று அகச்சிவப்புக் கதிர்கள் கண்ணுக்குப் ஞகா. அவைமின்காந்தக் கதிர்களின் குடும் பததில் கண்ணுக்குப் புலனுகும் சிவப்பு நிறத திற்கு அடுத்தாற்போல் வருகின்றன. அவை ஒளியின் வேகத்தில் செல்கின்றன அவற் நின் அஃலநீளம் சி**வப்பு** அஃலகளின் நீள**த்** தை விட அதிகமானது. ஆகையால் அவற் றின் அதிர்வு எண் குறைவானது. அகச் சிவப்புக் கதிர்களின் அதிர்வெண் விழைக் குப் பத்து லட்சத்திலிருந்து ஐம்பது கோடி மெகா சைக்கிள் (Mega cycle) வரை செல் கிறது.

அகச் சிவப்புக் கதிர்கள் போட்டோக் கீலயில் முக்கிய இடம் பெறுகின்றன மப் பும் **மந்தாரமுமான நாட்**சவி**ல் அதிக <u>த</u>ூரத்** கிலுள்ள பொருள்களேப் படம்பிடிக்க முடி யாது. பொருள்கள் படத்தில் தெளிவாய்த் தெரியா. ஆணுல் 1925 ம் ஆண்டில், அதச் சிவப்புக் கதிர்க**ு** க் **சிகாண்டு படம்** பிடித்**த** போது, 60 மைல் தூரத்திலுள்ள பொருள் களும் தெளிவாய்த் தெரிந்தன. வெள்ளே-கறுப்பு நிற பேதங்களும் மிக மாய்த் தோன்றின. உதாரணமாகக் காடு களும் புல் வெளிகளும் ஏறக்குறைய வெள்ளே நிறமாகத் தோன்றின. அவ்வாறே, துருப் பிடித்த இரும்பு, கறுப்பான முகம் இவை களும் வெளிறித் தோன்றின. இலேகள் காற் றை உட்கொண்டு வெப்ப அஃகளாசப் பிரதி பலிக்கின்றன. ஆகையால இஃலகள் வெண்

மையாகத் தெரிகிறது. ஆணுல் நீர் ரிலே கள் வெப்பக் கதிர்களே உறிஞ்சி விடுகின்றன. ஆகையால் அகச் சிவப்புப் படத்தில் நிலே கறுப்பாகத் தெரிகிறது. ஆராய்ச்சியின் பயஞக ஈரம் வெப்பத்தைக் கிரகிக்கின்றது என்றும் ஆகாயத்தின்ஈரப்பதத்திற்கும் உறிஞ் சப்படும் அகச்சிவப்பு அலே நீளத்திற்குமிடை யே தொடர்புண்டு எனத் தெரிய வந்தது இத் தத்துவக்கை கொண்டு அகச்சிவப்பட் போட்டோக் கருவிகள் நிர்மாணிக்கப்பட் டன செந்திரனின் கதிர்களில் 75% வெப்பக் கதிர்களாகையால், சந்திரன் மேகத்திற்குப் பின்னுல் மறைந்திருந்தாலும் படம் பிடிக்க லாம்.

இரண்டாம் உலகப்போரில், எதிரிக ளின் பாசறைகளேப் பற்றிய தகவல்களே யெல் லாம் பெரும்பாலும் அகச்சிவப்புப் படங் களேக் கொண்டே கண்டுபிடித்தனர். தந்தி ரமாய் மறைக்கப்பட்டிருந்த தளவாடங் கள் சாதாரணப் போட்டோக் காமிராக்கீன ஏமாற்றலாம். ஆனுல் `வெப்பக் கதிர்களேக் கொண்டு படம் பிடிக்கும் அகச் சிவப்பக் காமிராக்களே ஏமாற்றமுடியாது. ஒவ்வொரு பொருளும் தனது மூலக்கூறுகளின் இயக் கச் சக்தியை வெளிவிடுவதால், சிறிதளவோ அதிகளவோ டவப்பக்கதிர்களே ் வெளிவிடு கின்றது. வெளிவரும் கதிரின் அளவு வெவ் வே று சந்தர்ப்பங்க**ு**ப் பொறுத்தது பொருளின் நிறம், அதன் செறிவு, சுற்றுப் புறங்களின் வெப்பநிலே, அதன் மூலம் மின் சாரம் பாய்கிறதா என்ற பல நிஃகைஃப் பொறுத்தது. எப்படி இருந்தபோதும், பொருளின் மூலக்க<u>ுற</u>கள் 🤶 யங்கிக் கொ**ண்** டே இருப்பதால், அதன் வெப்ப பூஜ்ய (Absolute zero) நின்ச்குக் $\mathcal{E}_{\mathbb{Q}}$ குறைக்க முடியாது 🕉 அதிலிருந்து சிறிதள வாவதுவெப்பக்கதிர்கள் வெளிவந்து கொண் டேயிருத்தல் வேண்டும் இதைக் கொண்டு

அகச் சிவப்புக் காமிராவினுல் பொருளின் படத்தைப் பிடிக்கலாம் மோட்டார் வண் டிகளே நிறுத்திவைக்கும் வெளியை அகச் சிவப்பப்பேரட்டோ எடுத்தால் வண்டிகளும், கான்கிரீட் செய்த நிலமும் வெவ்வேறு அலே அலேகளேச் சிதறடிக்கின்றன. நீளமு**ள்ள** எவ்வளவக்கெவ்வளவ அ சி க வேறுபாடு அவ்வளவ கெளிவாகப் படம் GLAT விழும். அகச் சிவப்புக் கதிர்கீளக் கொண்டு மிகத் தெளிவான படங்கள் எடுக்க கின்றமையால் அவை எதிரிகளின் பிராந்தி யங்களேயும் ருண்டுவீச்சிக்குத் தேவையான உ கவகின் றன படங்கவேப் பிடிக்க மிகவும் போர் விமானங்கள் 5 மைல் உயரத்தில் பறந்து, ஆகாயத்தின் மப்பு. மந்தாரத்தி ணாடே எதிரிகளின் பிரதேசத்தைப் படம் அவ்வேலேக்கு பிடிக்க வேண்டியிருந்ததால் அகச் சிவப்புக் காமிராக்கள் மிகவும் பயன் பட்டன.

அகச் சிவப்புக் கதிர் சாதனங்க~ுக் கொண்டு வான் ஆராய்ச்சியாளர் கோள்கள். விண்மீன்கள் இவற்றின் வெப்பநிஃ ,கைதிர் வீச்சு, அமைப்பு முதலியவற்றைக் குறித்த பல முக்கியமான உண்மைகளேக் பிடித்துள்ளனர். அகச் சிவப்புக் கதிர்களிஞல் பொருள்களின் மூலக் கூற்று அமைப்பைக் கண்டுபிடித்துள்ளனர் அகச்சிவப்புக் காமி ராக்களி⊚ல் பாகறைகளின் வயது, அமைப்ப என்பவற்றையும் தெளிவாக அறிய முடிகி றது அகச் சிவப்புக்கதிர் வீச்கச் சிகிச்சை யே மருத்துவத்தில் மிகவும் அறிமுகமான உபயோகம். அகச் சிவப்புக் கதிர்கள் மிக வும் எளிதாக எமது தோலினூடே சென்று நமது 'தசை, நரம்புகளுக்குச் சுகமளிக்கின் றன. அவை நமது ரத்த ஓட்டத்தைத் துரிதப்படுத்தி,கை கால் குடைச்சல்போன்ற வலிகளேப் போக்குகின்றன. அகச் சிவப்புச் சா தனங்களேக் கொண்டு காபனீரொட்சை ட்டு அளக்கும்முறை மருத்துவத்தில் வும் பயன் படுகின்றது ஓர் 'ஆபரேசன்' நடக்கும் போது நோயாளியின் சுவாசம் எவ்வித மாறுதல்களே அடைகிறது என்பதை கண்டறிய இச்சாதனங்கள் உபயோகப்படு கின்றன.

தொழிற்சாஃயி<u>லு</u>ம் அகச் சிவப்பக் கதிர்கள் பாவிக்கப்படுதின்றன. ்பதிதோக வர்ணம் பூசப்பெற்ற மோட்டார் வண்டி கள் அகச் சிவப்பு கதிர் விளக்குகள் பதிக் கப்பட்ட ஒரு கண்டின் வழியாகச் செலுத் தப்படுகின்றன. கதிர்களின் வெப்பம் ணத்தை வெகு சீக்கிரத்தில் காயலைக் கின்றன பீங்கான் மாச் சாமான்கள். சாமான்கள், செருப்பு,பூட்ஸ், துணி, காகித என்பவையாவம் அகச்சிவப்புக் கதிர்களால் வெகு துரிதமாகக் காய்ந்<u>த</u>ு விடுகின்றன அகச் சிவப்புக் காமிராக்கள் அகச் சிவப்புக் கதிர்களேக்கண் கை டா கக் காணும் எளிக்கதிர்களாக மாற்றுவதால், ஒரு மேற்பரப்பில் வெவ்வேறு வெப்பநிலே யில் உள்ள இடங்களே எளிதில் கண்டு பிடிக்க முடிகிறது. இம்முறையைக் கொண்டு எஃகு ஆஃ. தொழிற்சா ஃகேளின் நீராவியுஃ முத லியவற்றின் சுவர்கள் எவ்வித வெப்ப நிலே யில் உள்ளன என்பதை அவ்வப்போது ஆராயலாம். சுவரின் சில இடங்கள் மற்ற இடங்க**ோ விட அ**திக வெப்பமாயுள்ளன தெரிவித்தால், என்று அகச்சிவப்புமானி அவ்விடங்கள் விரைவில் வெடித்துவிடக் கூடியன என்று தெளிவு. உடனே அவற் றைப் பழுது பார்த்து ஆபத்து நேராமல் தடுக்கலோம்.

புற ஊதாக் கதிர்கள் (Ultra Violet Rays)

ளியைவிட அதிகச் சக்தியும் குறை ந்த அலே நீள்மும் உடையன. புறவூதாக் சதிர்கள் ஊதாவுக்கடுத்தாற்போல் வருகின் றன அவை 1801 ம் ஆண்டில்தான் கண்டு பிடிக்கப்பட்டன.புற ஊதாக் கதிர்கள் மருத் துவத்தில் பயன்படுத்தப்படுகின்றன ஒளி சரியான அளவு பெருத குமந்தைக ளின் எலும்பு மிருதுவாகவும், விகாரமாக அமைந்து, ரிக்கெட்ஸ் (Rickets) வம் என்னும் வியாதியால் பீடிக்கப்படுவார்கள். இவ்வியாதி உடம்பில் போதியளவு கல்சி யம் இல்லாததால் உண்டோகும். உண்மை யில் சூரிய ஒளியிலுள்ள புற ஊதாக்கதிர் களே கல்சியத்தை உண்டு பெண்ணி, எலும்பு

செய்கின்றன. கள் சரியாக வளருப்படி இக்கதிர்கள் நமது தோலின் மீது தாக்கம் பரிவதால், எர்காஸ்ட்ரோல் (Ergosterol) என்னும் பொருள் விற்றமின் — 🕽 உண்டு குழந்தைகளின் பண்ணுகிறது. எலும்பு வளர்ச்சிக்கு விற்றமின்—D மிக அவசிய மானது விற்றமின் —D யின் அவசியத்தை உணர்ந்தபின் விஞ்ஞானிகள் இவ்விற்றமின் தேவையான குழந்தைகளுக்கு காட்லிவர் எண்ணேயை (Cod liver oil) ஊட்டினர்: இக்காலத்தில் பால், ரொட்டி முதலிய சாதாரண உணவுப் பொருள்களின் புற ஊதோக் கதிர்க**ீனப் பாய்**ச்சி. மின் D யைப் பெறுகின்றனர். இக்க**தி**ர்கள் பக்டுரியாக் கதிர்களே வெகு எளிதில் கொள் ளும் திறமை வாய்ந்தவை மருந்து வகை கீளயும், உணவுப் பொருள்களேயும், கிருமி களின்றிச் சுத்தப்படுத்துவதற்கு, செயற்கை புறஊதாக்கதிர்கள் வெகுவாகப் பயன்படு ஆஸ்பத்திரிகளில் ரணசிகிச்சை கின்றன. அறைகவோக் கிருமிகளின்றிச் சுத்தமாக்கு வதற்கு இக்கதிர்கள் பாதரச ஆவி விளக்கு (Mercury Vapour Lamp) மூலம் படுகின்றன. சிறிதளவான பாதரச காற்று வெளி யும். மந்த வாயு ஒன்றும் யேற்றப்பட்ட ஒரு குழாயினுள் பாய்ச்சப் படுகின்றன. மின்சாரம் பாய்ச்சினுல்* பாதரச அணுக்களில் இருக்கும் இலத்திரன் கள் கதிர்வீச்சு வீசுகின்றன இக்கதிர்கள் புறவூதாக் கதிர்களாய் இருப்பதால், சூரிய ஓளியின்றியே இக் கதிர்குளப் பெறுகின் ோம் சாதாரண ஒளியைக் கொண்டு கண்டு பிடிக்க முடியாத வியாதிப் பட்ட தசைகேவ புற ஊதாக் கதிர்களேக் கொண்டு ஆராய்ந்து சில வியாதிகளேக் கண்டுபிடிக்கலாம்.

உணவுப் பொருள்களில் வேறு பொருள் களின் கலப்பு இருந்தால், புறவூதாக் கதிர் குளேக் கொண்டு வெகு எளிதில் கண்டு பிடித்து விடலாம் கலப்புப் பொருள் உணவு பொருளேஷ்ட வேறு விதமான நிறமாகத் தென்படும். உதாரணமாக ஜெலி, பழரசம் முதலிய பொருள்களுடன் வேறு செயற்கைச் சாயப் பொருட்கள் கலக்கப்பட்டிருந்தால் புறவூதாக் கதிர்கள் பட்டவுடன் அவை வேறு நிறமாகத் தோன்றும். இம் முறையைக் கொண்டே மாமிச வகைகள் புதிய வையா, பழையவையா என்பதையும் பால் வகைகளிலுள்ள கொழுப்பு எவ்வளவு என் பதையும் கண்டறியலாம். குடி நீரின் மீது புறவூதாக் கதிர்களேச் செலுத்தினுல் நிறம் ஒன்றும் தோன்றுது. ஆனுல் அந்நீரில் ஏதா வது சேதேனப் பொருட்கள் (Organic matter) இருந்தால் அவை திரையின் மீது நீல நிறமாகத் தோன்றும். அத்துடன் சாராயத் தில் ஏதாவது நீரோ, வேறு திரவங்களோகலந்திருந்தால் இக் கதிர்கள் மூலம் கண்டு பிடிக்கலாம்.

புறவூதாக் கதிர்களேக் கொண்டு கள் ளக் கையெழுத்தின் ஒவ்வோர் அடியையும் நன்கு ஆராயலாம். உதாரணமாக வேறு வகையான காகிதங்கள் வெவ்வேறு விதமாக ஒளிரும். ஆகவே ஒரு பத்திரம் மாற்றப்பட்டிருந்தால். அதை கண்டுபிடித்துவிடலாம்.ஒரே விதமான காகி உபயோகப்படுத்தியிருந்தா லும். பத்திர**ம் எழுதிய பலநாட்க**ளுக்குப் பிறகு போடப்பட்டிருந்தா லும் அதையும் இக் க**திர்கள் வெளி**ப்படுத்தும். இவ்வித ஆராய்ச்சியின் மூலம் எழுத்துகள் ஏதேனும் அளிக்கப்பட்டிருந்தால், அதுவும் வெளிபட்டுவிடும். இவ்வாராய்ச்சிகளில் கதிர் களுடன் பலவடிகருவிகளேயும் உபயோகப் படுத்தி. வெவ்வேறு அஃலநீளமுடையை கதிர் களே மட்டும் சிதறடிக்கச் செய்து ஆராய் வர். இம்முறையைக் கொண்டே நோட்டுகளேயும் கண்டுபிடிக்கின்றனர்.

சரீத்திர ஆராய்ச்சியில் கள்ளப் பிரதி களே கண்டறிவது மிகவும் முக்கியம் பல சாசனங்களின் மூலங்கள் மாற்றப்பட்டிருப் பதை புறவூதாக்கதிர் சோதணே வெளிப் படுத்தியுள்ளது. சிலவற்றில் முன்னே எழு தியதற்கு நேர்மாருகவும் சாசனங்கள் மாற் றப்பட்டுள்ளன.

பிரசித்திப் பெற்ற சித்திரக்காரரால் தீட்டப் பெற்றதாகக் கூறப்படுப் ஒவியம் உண்மையானதா இல்லேயா என்பதையும் புறவூதாக்கதிர்களேக் கொண்டு அறியலாம். சித்திரத்தின் அடிப்பாகங்களேயும் வரையப் படுதாவையும் ஆராய்ந்தால். பட்டுள்ள கள்ளப் பிரதியா, மூலமா என்பது தெரிய வரு**ப். அ**ல்லது அனிலீ**ன் ச**ாயப்பொருள் களா**ன** வர்ணக் சுழம்பு**க**ோக் கொண்டு தீட்டிய சித்திரத்தைப் பழங்காலச் ாம் என்று பொய்யாகக் கூறப்படுவதையும் புறவூதாக் கதிர் கொண்டு கண்டுபிடித்து விடலாம், கெட்டிக்காரக் கள்ளச் சித்திரக் காரர் சில சமயங்களில் பழங்காலப் படுதா ஒன்றை எடுத்து, அதன் மேல் வரையப் ஓவியத்தைச் பட்டுள்ள உபயோகமற்ற சுரண்ட எடுத்து விட்டு அதன் மேல் பிர ஓவியம் ஒன்றை தீட்டிவிடுவ சுத்திபெற்ற துண்டு. ஆனுல் புறவூதாச் கதிர் கொண்டு ஆராய்ந்தால் சித்திரத்திற்கடியில் படைய படத்தின் அறிகுறிகள் எளிதில் தென்டடும். புறவூதாக் கதிர்கீளக் கொண்டு மங்கிப் பழம் ஓவியங்களேயும் புதுப்பிக்க போன கதிர்களேக் கொண்டு லாம். புறவு தாக் ஆராய்ந்தால், பழைய சித்திரத்தின் கோடு களும் வர்ணங்களும் தெரியவரும். றைக் கொண்டு ஓவிய நிபுணர்கள் பிரசித்தி பெற்ற சித்திரங்களே புதுப்பிப்பர்.

இதுவரை சூரியனிலிருந்து வீசப்படும் வெவ்வேறு கதிர்களேப் பற்றியும் அவற்றின

பிரயோகங்களேப் வெவ்வேறு வகையான பற்றியம் பார்த்தோம். நம<u>து</u> இக்கால **உ**லகின் தேவைகளுக்கு வேண்டிய சக்கி ஏராளமானது. அதை உபயோகிக்கும் வழி களும் பல்லாயிரக் கணக்காணவை. நமது வீடுகளுக்குப் தொழிற்சாஃகளுக்கும் தேவை யான ஒளி, வெப்பம், எரிபொருள் லிய வசதிகளேத் தரவும். ஆ‰யில் யந்திரங் களே ஓட்டவும்**,** போக்கு வரவு ச**ாதன**ங்களே எண்ணெய், இயக்கவும் நிலக்கரி, சாரம் முதலிய பல்வேறு சத்தி மூலங்கள் தேவைப் படுகின்றன. நாம் சக்**தியை** யோகிக்கும் அளவு நாளுக்குநாள் **அதிகரி**ப் பதாலும், உலகின் ஜனத்தொ**கை** போவதாலும் நிலக் கரித்துக் கொண்டே கரி, எண்றுவோ, மின்சாரம் போன்ற மூலங்கள் உலகின் தேவைக்கு - போதாத நாள் ஏற்படலாம். அத்து நிலேமை ஒரு டன் இச்சக்தி மூலங்களே உற்பத்தி செய்ய வும் சேமித்து வைக்கவும் அதிகளவு பணம் செலவாகிறது என்பதும் அடுத்த பிரச்சீண யாகும். ஆனல் சூரிய சக்கி எல்லேயில்லா சேக்தி ஊற்று; அதனே எண்ணுக்கடங்கா வழிகளில் உபயோகப்படுத்தலாம் என்ப**தால்** சூரிய சக்தியின் பிரயோகங்களேப் பற்றிய ஆராய்ச்சி எமக்கு இன்றியமையாத தொன் ருகும்.

சாளரம்

மரங்களில் நீர் ஏறும் மர்மம்!

மிகவும் உயார்த்த மரங்கள், 100 மீற் றைருக்கும் அதிகமான உயரத்திற்கு நீரை எடுத்துச் செல்கின்றன என்பது குறிப்பிடத் தக்கது ஆனுல் மனிதனுல் செய்யப்பட்ட பொறிமுறைப் பம்பிகள் கிட்டத்தட்ட 11 மீற்றருக்கு மட்டுமே நீரை உயர்த்தக் கூடி யது மரங்கள் எவ்வாறு அதிக திந்கு நீரை எடுத்துச் செல்கின்றன என்பது அறியப்படவில்லே. இன்னும் தெளிவாக இழுவிசைச் நீரின் உயாந்த மயிர் த்து*ள* த்தன்மை (Tensile strength),

யுமே (Capillary action) காரணமாகும். மரங்களில் 1 மி. மீ. இற்கும் குறைவான விட்டமுள்ள குழாய்களில் நீர் உயர்த்தப் படுகின்றது. நீரின் இரு மூலக்கூறுகள் ஐத ரஜன் பிஃணப்பால் இணேக்கப்பட்டுள்ளது. இப்பிணேப்பு மிகவும் வலிமையானது படைக்குமேல் இன்னுரு படை நீர் வழுக் **கக்கூடியதா**க இருந்தாலும் கூட, இரு நீர் மூலக்கூறுகுணப் பிரிப்பது மிகவும் கடினம். இதனுல் நீரின் இழுவிசைத் தகைப்பு மிக வும் உயர்ந்ததாகும்

11 மீற்றரிலும் குறைவான உயர முடைய மரங்களில் நீர் உறிஞ்சல் மூலமே உயர்த்தப்படுகிறது. வளியமுக்கததிஞல் 11 மீற். உயரமான நிரஃயெ தாங்கமுடி யும். இவ்வுயரத்திற்கு மேல் வளியமுக்க மானது 0 . 1 மீற். வளி/மீற்றார் உயரேம் என் னும் வீதத்தில் குறைகின்றது. ஆகவே மரத்தின் உச்சியில் 100 மீற். உயரமான அழுக்கமானது -9 வளியமுக்கமாகும். மரத் திலுள்ள இழுவை விசைகளேயும் (dragforce) கணக்கெடுத்தால் மர உச்சியில் அமுக்கம் -20 இலிருந்து -30 வளியமுக்கமாகும். அமெ ரிக்காவைச் சேர்ந்த Dr. P F. Scholander என்பவர் மிக உயர்ந்த மரவுச்சியை வெட் **டியவுடனேயே அதிலுள்ள** இழுவிசையை அமுக்கக்கலத்தில் ஆராய்ந்த போது கிட்டத்தட்ட −20 → -30 என அறிந்தார், அதாவது மரம் வெட்டப்பட்டதும் தண்\ ணீர் கடத்தப்படும் குழாய்களில் நீர் மட் டம் இறங்கியது. இது + 20→+30 வளி யமுக்கத்தைப் பிரயோகித்ததும் நீர் மட் டம் பழையை நிலேக்க வந்தது.

ஒரு மயிர்த்துளக் குழாயை நீர்நிர

லினுல் நிரப்பி (மிகவும் குறைந்**தளவு கா**ற்**று** உள்ளிருக்கக் கூடியதாக) குழாயின் இரு முனேயையும் அடைத்த பின் சூடாக்கப பட்டது. சூடாக்கும்போது நீர் விரிந்து குழாய் முழுவதையும் நிரப்பியது. அதாவது உள்ளடக்கப்பட்ட காற்று நீரில் கரைந்து விட்டது சூடாக்கலே நிறுத்தியதும். சிறிது நேரத்தின் பின் நீர் சடுதியாக சுருங்கி, நிரல், உடைந்து வளிக்குமிம் மீண்டு**ம்** தோன்றியது. (அனுமானிக்கப்பட்ட அமுக் கம் கிட்டத்**தட்ட -**30 வளியமுக்**க**மாகும்) இதுவே அதிகளவு உயரத்திற்கு நீரை உயர்த் தும் பொறிமுறை ப**ம்**பிக**ோ** உண்டோக்க முடியோமைக்குக் காரணமாகும். அதாவது அமுக்கம் குறையும் போது வளிச்குமிழ் தோன்றுவதால் நீர்நிரல் உடைகிறது இது (Cavitation) எனப்படும். ஆணை் இயற்கை எவ்வாறு பிரச்சணேயை வென்றுள்ளது என் பது இன்னும் மர்மமாகவே உள்ளது.

ஆதாரம் Science Today, Feb. 1979

நீங்கள் மில்க்வைற் தயாரிப்புகளுக்குத் தரும் அதரவின் பயன்

- 🔵 வசதி, வாய்ப்பு, பெயன் கருதி மேரங்க~ோ நடுதெல்.
- 🔾 வீட்டுத் தோட்டம் விருத்தி செய்தல்.
- ் பணே வளம் பெருக்கிப் பயன் பல பெறுதல். ் பசஃனதரும் செடிகள் மரங்களே உண்டாக்குதல்
- ் ஊர்கள் தோறும் குளங்களே ஆளமாக்கி மழை நீரைத் தேக்கு**த**ல்.
- ் சன**ச**மூக நிலேயங்களில் வாசிக்க வழிசெய்தல்.
- 🔾 பக்தி நெறியில் பரமணப் பணிந்து லாழப் பயிற்றுதல்
- ் எல்லோரும் எல்லோருக்கும் சேவை செய்தல்.
- ் வள்ளுவர் நெறியில் வையகம் வாழ வழி வகுத்தல்.
- O எல்லோரு**ம் ப**யாகாசனம் பயி**ல வை**த்தல்

மில்க்**வை**ற் மேலுறைகளே சேகரித்**து** பெறும**தி வாய்ந்த பரி**சில்களேப் பெற்றுக்கொள்ளுங்கள்

மில்க்வைற் சவர்க்காரத் தொழிலகம்

த. பெ. இல. 77, யாழ்ப்பாணம்.

குளிரும் கம்பளிச் சட்டையும்

எமது உடம்பினுள் மிக முக்கிய மான உயிரியல் செய்முறைகள் நடைபெறு வதற்குத் தேவையான வெப்பநிலே கிட்டத் தட்ட 37°C யாகும். எனவே உடம்பின் வெப்பநிலே அதிகளவு மாற்றங்களுக்கு உட் படாமல் இருத்தல் அவசியமாகும் காலத்தில் அணியப்படும் கம்பளி போன்ற உடைகள் குளிரான சூழ்நிஃயில் உடலுக்கு கவசைம் போல் வீளங்குகின்றன. இக் குளி ருடைகள் உடம்பிலிருந்து வெப்பம் வெளி யேருமல் பாதுகாக்கின்றன. ஆனுல் இவை மேலதிகமாக சூட்டை உண்டுபண்ணுவகு இல்லே. அதாவது இவற்றை வெப்பக் காவ லிகள் என்றும் கூறலாம். கம்பளி போன்ற எல்லா நார்களுமே நீண்டை மூலக் கூற்றுச் சங்கிலிகளாலானவை கம்பளி நார் நூலாக மாற்றப்படும்போது அவற்றுள் நிரையக் காற்று சேகரிக்கப்படும் காற்றுனது எளி தில் வெப்பத்தைக் கடத்தா தாகையால். கம்பளிநூலால் செய்யப்படும் உடைகள் உடம்பில் வெப்பத்தைப் பாதுகாக்கிறது.

காற்று எளிதில் வெப்பத்தைக் கடத் தாததன் காரணம் என்ன? ஒரு திரவத்தி லோ வாயுவிலோ சூடாக்கப்பட்ட மூலக் கூறுகள் குளிர்ந்த மூலக்கூறுகளே நோக்கிச் செய்வதால் வேப்பமாற்றம் நடைபெறு

கின்றது. ஆனுல் ஒரு திண்மப் பொருளில் அணுக்கள் மிகமிக நெருக்கமாக அடுக்கப் பட்டுள்ளன. கிட்டத்தடட 10² அணைக்கள் உள்ளன. இவ்வணுக்கள் ஒன்றன்பின் ஒன்றுக வரிசையாக அடுக்கப் பட்டுள்ளன. இவற்றுள் **⊕(**/ħ **ച്ച**ത്ത്വതെ அதன் இடத்திலிருந்து சிறிதளவு இடம் பெயர்த்தாலும் அது மீண்டும் சமநிலேக்க திண் மத்தின் வரவே முயற்சிக்கும். ஒ(**/**₺ ஒரு முணே சூடாக்**கப்ப**டும்போ**து அ**ப் பகுதி யில் அணுக்கள் அதிரத்தொடங்கும். இதனுல் இவற்**றை** அடு த்தோள்ள அணுக்**கள்** அதிரத்தொடங்கும். அணுக் களிடையே உள்ள இணப்பு விசையானது மின்காந்த விசையாகும். இவ் விசைகள் வேகத்தில் ளியின் கடத்**தப்ப**டுவதால் அடுத்தடுத்த அணுக்களில் ஏற்படும் பெயர் ச்சி உடனடியாக **நடை பெ**றும் எனவே இந்த மாற்றம் சூடான இடத் சிலிருந்து **குளி**ரான இடத்திற்கு அ**ஃமொ**திரிக் கடக் தப்படும். ஆகவே திறமையான வெப்பக் அணுக்களுக்கிடையேயுள்ள கடத்தலுக்கு விசை குறிப்பிடத்தக்க அளவு பெரிதாயும். அணுக்கள் ஒரு ஒழுங்கான முறையில் அடுக் கப்பட்டிருத்தலும் அவசியம். அணுக்க**ள்** சிறிதளவு ஒழுங்கில்லாமல் அடுக்கப்பட்டி ருந்தாலும் அது வெப்பக் கடத்தலே ஒரளவு குறைக்கும். காற்றிற்கு ஒரு திட்டமான அமைப்பில்லாததால், காற்று மிகவும் குறை ந்த ஒரு வெப்பக் கடத்தியாகும்.

ஆதாரம் Science Today, Dec. 78

மனித உடலும் தொழிற்பாடும்

|| உணவுச் சமிபாடு

இ. சிவகணேசன் B. V. Sc., Ph. D.

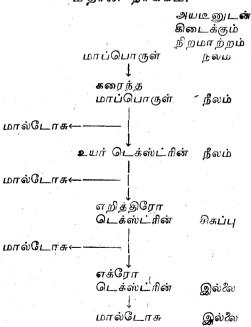
சத்துக்களில் உணவில் காணப்படும் பெரும் பகுதிகள் தகுந்த முறையில் மாற் செய்யப்படுவ*த*னுலேயே உறிஞ்சப் பட்டு உடலின் தேவைகட்கு உபயோக மாகின்றன. நீர், குளுக்கோசு, விட்டமின் கள் உப்புச் சத்துக்கள் ஆகியவை றம் **செ**ய்யப்படாத பொழுதும், குறிப் சமிபாடடையும் பொழுது மேற் பிட்ட சத்துக்களின் உறிஞ்சப்படும் தன்மை கூடக் கூடிய வாய்ப்பு ஏற்படுகின்றது. உதாரணமாக கொழுப்பில் கரையும் விட் டமின்கள் சாதாரண முறையில் றிஞ்சப்பட வேண்டில், கொழுப்பச் பாடும் சாதாரண முறையில் நிகழ வேண் டும். சமிபாட்டின் பொழுது நிகமும் மாற் றங்கள், உணவுக் கால்வாயின் வெவ்வேற பகு திகளிலிருந்து சுரக்கப்படும் நொதியங் களின் தொழிற்பாட்டிஞல் சா**த்**தியமாகி<mark>ன்</mark> றன. நாம் உட்கொள்ளும் உணவின் அள வும், தன்மையும் நேரத்திற்கு நேரம்வேறு படுவதனுல் உணவுக் கால்வாயின் அங்கங் செயற்பாடு கிரமமான யில் இணந்தும், தேவைக்குத் தக்கவாறு மாற்றி அமைத்துக் கொள்ளக் கூடிய விக மாகவும், இருக்க வேண்டியது மிகவும் அத் தியாவசியமாகின்றது. இத்தேவைகளேப் பூர் *து* ண்டுமுற்சுர**ப்புகளும்** செய்வதில் (ஓமோன்களும்) நரம்புப் பொறிமுறைகளம் பெருமேளவில் உதவுகின்றன.

சில உணவுப் பொருள்களில், அவற்றை உட்கொள்ளுமுன்பே, சமிபாட்டின் பொழுது ஏற்படும் மாற்றங்களேப் போல சில மாற் றங்கள் நிகழ்கின்றன. சில காய்கள் பழங்க ளாகும் பொழுது, உதாரணமாக வாழைப் பழத்தில், மாப் பொருட்கள் டெக்ஸ்ட்ரினுக (dextrin) மாறுகின்றன. இறைச்சியை சேமி த்து வைக்கும் பொழுது, அது சிறிதளவு தன்னிச்சையாக சமிபாடு (self digestion or autolysis) அடைகின்றது. உணவைச் சமைக்கும் பொழுது இணேயுறு இழைய நார்கள் ஜெலட்டிஞ்கவும் (gelatin) மாப் (grunales) பொருட் குருணல்கள் வுண்டு பின் டேக்ஸ்ட்ரிகைவும் மாற்ற மடைகின்றன. உணவைச் சமைக்கும் பொழுது அவை உருகியுள்ள பண்டமாக மாறுவதால் சமிபாட்டுச் சாறுகள் து தே தாண்டுவதற்கு ஏதுவாக அமைகின் றது.

வாய்ப் பகுதியில் நிகழும் சமிபாடு

பந்கள் உணவைச் சிறு துண்டுகளாக ஆக்குகின்றன. பற்கள் உணவை அரைக் கும் அதே வேளேயில் உமிழ்நீரும் சுரத்த லால், நாக்கின் உதவியோடு உணவும் உமிழ் நீரும் நன்று தலைக்கின்றன. கன்னச் சுரப்பி (parotid) மேற்றுடைக்குக் கீழ்ப்பக்கமான சுரப்பி (sub maxillary) நாவுச்கு கீழான சுரப்பி (sub maxillary) தாவுச்கு கீழான சுரப்பி (sub lingual) ஆகியன உமிழ் நீரின் பெரும் பகுதியின் சுரக்கின்றன. வாயின் உட்பகுதியில் காணப்படும் சிறு சிறு சுரப் பிகள் சிறியளவில் உமிழ் நீரைச் சுரக்கின் றன.

உயிழ் நீர் 99.5 வீதம் நீரையும், 0 . 5 வீதம் திடப் பொருளேயும் கொண் டுள்ளது. திடப்பொருளின் பெரும் பகுதி சேதனவுறப்புப் பொருட்களாகும். அவை யாவன மியூசி**ன்,** அல்பியூமின், குளொபி யூலின், அமைலேசு நொதியம், யூரியோ, யூரிக்கமில**ம், கொலஸ்தி**ரோல், விட்டமின். பொசுப்போலிப்பிட் ஆகியனவாகும். அசேதனவுறுப்புப் பொருட்களாக யம். பொசுபரஸ், குளோரைட், பொற்று சியம்**,** தயோசயனேற் **ஆகியன** காணப் படுகின் றன.


உமிழ் நீரின் pH 6.8.பற்சூ**த்தையா**ல் அவதியுறும் நோயாளிகளின் உமிழ் நீரி**ன்** рн அனேகமாக குறைந்து காணப்ப**டு**கிறது. இந் நோய் கொடங்கி சில காலத்தின் பின்பே **அவ**தானிக்கக் இ**ம்**மாற்றத்தை **கூ**டியதாக இருக்கின் றது. வாய்க்குழியில் அமிலத்தன்மை (acidity) கூடுவதனுலேயே பற்கள் கரைகின்றன. இவற்றிற்கு பற்றீரி யங்களும் உறு துணேயாகவிருக்கின் றன. இனிப்புப் பண்டங்களே அடிக்கடி **இடு**க்குக்கு**ள்** ணும் பொழுது அவை பல் அடைந்து விடுகின்றன. இவற்றை தகுந்த முறையில் தூரிகை கொண்டு நீக்கம் செய் யாவடத்து பற்றீரியங்களின் தாக்குதலினுல் அமிலங்கள் விளேபொருட்களாகக் கிடைக் கின்றன. அமிலங்கள் பற்களின் எறைமேக் (enamel) கரைக்கும் சக்கி கொண்டவை. சிறு வயதினெரிலே மேற்கூறிய பல் பெருமளவில் காணப்படுகின்றன. இந் நோ**ையக்** கட்டுப்படுத்**துவதா**ளுல் இனி ப்புப் பொருட்களின், உதாரணமாக சாக்க உட்கொள்ளலே லேட்டு. வெகுவாகக் குறைத்துக் கொள்ள வேண்டும். இருந்து**ம்** ஆசைக**ோத் தடுத்து அணேபோட** முடியா**த வர்கள்,** இனிப்புப் பொருட்களே பிறகு தகுந்த முறையில் பற்களேச் சுத்தம் செய்து கொள்வதைத் தவிர வேறு முறைக ளால் இந்நோயைக்கட்டுப்படுத்த முடியாது.

பற்களில் படியும் காவி (tartar) கல் மக்னீசியம் சியம் பொசுபேற்றுக்கள் வீழ்படிவதனுல் உண்டாகின்றது. சாதாரண நிலேயில் பொசுபேற்றுக்கள் நீரில் இப் கரைந்த நிஃயில் இருக்கும். அமிலத்தன்மை குறைந்து காரத்தன்மை (alkalinity) மிடத்தே அவை வீழ்படிகின்றன. அமோ னியாவை **வி~ா பொருட்க**ளாகக் கும் பெற்றீரியங்களும். உமிழ் நீரிலிருந்து CO2 அகல்தலுமே வாய்க்குழிக்குள் தன்மையை அதிகரிக்கின்றன. மேற் கூறிய பொசுபேற்றுக்கள் வீழ்படியு**ம்** பொழுது கல்சியம் காபனேற்று, மியூசின் மேலணிக் கலங்கள், உணவின் எஞ்சிய துகள்கள்யாவும் இழுபட்டுவருகின் றன எனவே பற்களின பாதுகாப்பில் வாய்க்குழியின் சுத்தத்தின் முக்கியத்துவத்தை எவராலும் புறக்கணிக்க முடியா*து* .

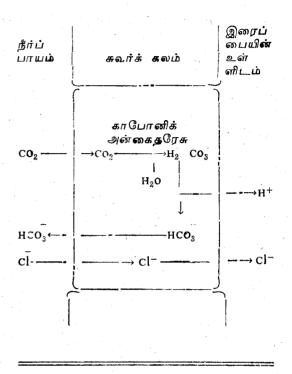
உணவுச் சமிபாட்டில் உமிழ் திறு பங்கையே வகிக்கின் றது. ஆலைம் நணைவை அரைக்கும் பகுதிக**ோப் பா**துகாக் கின்றது. உணவை அரைத்து அதை விழுங் கூடியதாகின்றது. உமிழ் நீரில், ∝– அமைலேசு என்ற நொதியம் ஒன்றே பொருட் காணப்படுகின்றது. இது களேக் தாக்கும் நொதுயமாகும். இந்நொதி யத்தின் தொழிற்பாடு pH 4.0 அல்லது அதற்குக் குறைவாகும் பொழுது தடைப் வயிற்றை படுகின் றது. எனவே உணவ தாக்க**ம்** அமைலோ சின் அடைந்தவுடன் மாப் விடுகின்றது. நிறு**க்**கப்பட்டு பொருட்கள் தாக்கமடைந்து ஏற்படும் விளே இருக்கும் வாய்க்குழிக்குள் பொருட்கள் நேரத்தைப் பொறுத்திருக்கின்றன.

பரிசோதுகுகைக் குழாய்களில் அமை லோசின் மாப்பொருடகள் (starch) மீதான தாக்கத்தைப் படிக்கும் பொழுது, அயட னின் உதவி கொண்டு படிப்படியாக நிக ழும் மாற்றத்தை அவதானிக்கலாம். அம் மாற்றங்கள் க்டுழ சுருக்கமாகத் தரப்பட் டுள்ளன. அட்டவணே I (அமைலேசின் தாக்கப் பொறிமுறைகள் வேறு இடத்தில் விளக்கப்பட்டிருக்கின்றன.)

அட்டவணோ I அமைலேசின் மாப்பொருட்கள் மீதான நாக்கம்.

உமிழ் நீர் ∞ — அமைலோசின் தொழிற்பாடு குளோரைட் அயனில் தங்கி யுள்ளது. குளோரைட் அயீன கூழ்ப்பளிங்கு வேருக்கத்தினுல் (dialysis) பிரித்தெடுப்ப தால் நொதியத்தின் தாக்கம் வெகுவாகப் பாதிக்கப்படுகினறது அஸ்பரஜீன் (asparagine) என்னும் அமினுவமிலம் தாக்கத் தைத் தூண்டுவதாக அமைகின்றது மேலும் வெள்ளி பாதரசம் போன்ற உலோக உப் புக்கள் அமைலோசின் தொழிற்பாட்டை குறைக்கின்றது இது நொதியத்தின் புரதத்தி லுள்ள - SH கூட்டங்களுடன் சேர்வதா வேயே நிகழ்கின்றது.

இரைப்பையில் நிக**ழும்** சமிபாடு.


இரைப்பைச் சுரப்பு, நரம்புப் பொறி முறைகளாலும் அனிச்சைச் செயற் (reflex) பொறிமுறைகளாலும் ஆரம்பிக்கப்படுகின் றது. உணவின் சுவை, மணம், காட்சி போ**ன்**றவை, விடுகால் (vagus) நரம்புகவோத் தூண்டுவதால் இது நிகழ்கின்றது விடுகால் ந்தம்புகளேத் துண்டப்பதனல் நிகம்ச்சி த**ைடப்படுக**ின் றது. நரம்புப் பொறிமுறையை விட தூண் டுமுற்சுரப்புகளும் ஒமோன்) இரைப்பைச் சுரப்பில் பங்கெடுக்கின்றது. உணவு இரைப் **அ**டைந்து அதைப் பெருக்கச் பையை செய்வதால் படவேக் காவலியில் (ptloric) காணப்படும் கலங்கள் கஸ்ரின் (gastvin) சுரக்கின்றன. **என்**ற தூண்டுமுற்சுரப்பை கஸ்ரின் குருதியை அடைந்து திரும்பவம் இரைப்பைக்குக் கொண்டு சேர்க்கப்படுவ தால் அங்கே காணப்படும் சுரப்பிகளேத் தொழிற்படச் செய்கின்றது.

இரைப்பையின் சீதமுளியில் (mucosa) மூன்று வகையான கலங்கள் காணப்படு கென்றேன. அவையாவன.

- பிரதான கலங்கள் (chief cells). இக் கலங்கள் பெப்சிஞேஜின் (pepsinogen) என்ற செயலற்ற புரத சமிபாட்டு நொதியத்தை உற்பத்தி செய்கின்றன.
- சுவர்க் கலங்கள் (parietal cells) இக் கலங்கள் ஐதரோ குளோரிக் அமிலத் தை உற்பத்தி செய்கின்றன.
- 3) சீதக் கலங்கள் (mucous cells) இக்கலங் மியூசின் (mucin) உருவாக்குகின்றன. மியூசின் ஐதரோ குளோரிக் அமிலம் இரைப்பை மேலனியை பழுதடையா வண்ணம் பாதுகாக்கின்றது.

சுவர்க் கலங்கள் ஐதரோகுளோரிக் அமிலத்தை உண்டுபண்ணுவது வரைபடம் மூலம் விளக்கப்பட்டுள்ளது.

படம் 1 இரைப்பைக்குரிய ஐதரோ குளோரிக்கமிலத் தயாரிப்பு

எனவேதான் உணவு உட்கொண்ட் பின் கழிக்கப்படும் சிறுநீர் காரத்தன்மை யாகவிருக்கின்றது. இது ஏனென்ளுல் படத்தில் விளக்கியுள்ளபடி ஐதரோகுளேச ரிக்கமிலம் தயாரிக்கப்படும் அதே வேளே யில் பைகாபனேற்றும் (HCO3⁻) உருவாகி குருதியை அடைந்து சிறுநீருடன் உடலி லிருந்து அகற்றப்படுவதாலாகும்.

இரைப்பைச் சாறு 97—99 வீதம் நீரைக் கொண்டுள்ளது. மிகுதியாக மியூ சின், அசேதேனவுறுப்பு உப்புக்கள், சமி பாட்டு நொதியங்கள் ஆகியன காணப் படுகின்றன. இரைப்பைச் சாற்றில் மூன்று நொதியங்கள் உள்ளன. அவையாவன பெப் சின் (pepsin) ரெனின் (rennin) ஃப்பேசு (lipase). பெப்சின், பெப்சிஞேஜின் என்ற செயலற்ற நொதியமாக உற்பத்தி செய்யப் படுகின்றது ஐதரோகுளோரிக்கமிலத்தின் தாக்கத்திஞைலும், பெப்சினின் தாக்கத்திஞ லும் பெப்சிஞேஜின், பெப்சிஞைக மாற்ற மடைகின்றது.

Hcl பெ**ப்சிஞேஜின்** → பெப்சி**ன்** † மூலக்கூறி**ன்** பெப்சின் 1/5 பகுதி

புர**த**ச் சமிபாட்டில் ஈடுபடும் பெப் சின், புரதத்தை புரட்டியோசஸ் (proteoses) பெட்டோன்ஸ் (peptones) என்பேனவாக மாற்**று**கின்றது. இந் நொதியம் பெரும் பாலும் பீன்லை அலனின் (phenyl alanine) தைரோசீன் (tyrosine) **ஃ**சீன் (lysine) அமி னே அமிலங்கள் உள்ள பெப்டைட் (peptide) தாக்குகின்றன. பெப்சின் பி 2ணப்பையே இயற்கையாகக் காணப்படும், கெராட்டின் (keratin) புரோட்டமின் (protamine) தவி ர்ந்த ஏனேய புரதங்களே தாக்கவல்லது. பு ரோட்டமினில் ப്**മാസ്** കൗരതി**ത്.** ரோசி**ன் அ**மினே அமிலங்**கள்** காண**ப்படா** கதாலும், கெராட்டினில் பொலி பெப் டைட் சங்கிலிகள் மிகவம் இறுக்**கமான** நிஃயில் பின்னப்பட்டிரைப்பதாறுமே, பெப் சின் இப்புரதங்களேத் தாக்க முடியாமலிரு க்கக் காரணமாகும். ்பெப்சினின் தொழிற் பாட்**ட**ற்கு அனுகலமான pH 2.0

ரெனினின் தொழிற்பாடு, பெப்சினி லிருந்து வேறுபட்டதாகும். இந் நொதியம் குழந்தைகளில் மட்டும் தான் காணப்படு கிறது. ரெனினின் தாக்கத்திருல் பாலிற் காணப்படும் கேசீன் (casein) என்ற புர கட்டியாக்கப்படுகின்றது. இதனுல் பால் இரைப்பையில் தங்கும் நேரம் அதி கேசீணச் பெப்சின் கரிக்கப்படுவ தால். ச மிக்கும் **ஆற்றலுக்**கு வாய்ப்பு சூடிய கிடைக்கின்றது. கேசீன் கட்டியாக மாறும் வித**த்தை** பின்வருமாறு விளக்கலாம்.

ரெனின் **Ca**²+ கேசீ**ன்——** →பராகேசீ**ன்** — →கல்சியம் பராகே சனேற் (கட்டி)

ரெனினி**ன் தாக்கத்தி**ற்கு அனுகூலமான pH 6.0

இரைப்பைச் சாற்றில் காணப்படும் லேப்பேசின் இயக்கம் மிகவும் முக்கியம் வாய்ந்ததல்ல. இந்நொதியம் பெரும்பாலும் சிறுகுடற் பொருட்கள் இரைப்பையை நோக்கி படலேக் காவலியால் மேல் நோக்கி தள்ளப்படுவதால் கொண்டு வந்து சேரீக்கப்பட்டிருக்கலாம்,

சிறுகுடலில் நிகமும் சமிபாடு

ம**னித உ**ணவுக் கால்வாயின் குடற் பகுதியை மூன்று பிரிவுகளாகப் பிரிக் அவையாவன கலொம். முன் சிறுகுடல். இடைச் சிறுகுடல், சுருட் குடல் ஆகும் (சென்ற இதழைப் பார்க்கவும்). இப்பகுதி உணவுச் சமிபாட்டிலும், சமிபாட**ை**ந்**க** வற்ண**ற அ**கத்து நஞ்சலி ஆம் மிக முக்கிய பங்கை வகிக்கின்றது. உணவுச் டல் ஈடுபடும் துணேச் சுரப்பிகளான ஈாஸ் (liver) சதையம் (pancreas) ஆகியன முன் சிறுகுடுற் பகுதியில் படவேக் அருகாமையில் காணப்படும் ஈரலுக்கும்— சதையத்திற்கும் உரிய (hepato - pancreatic duct) கான் மூலமாக தம் சுரப்பினே வெளிப் படுத்துகின்றன. மேலும் சிறுகுடற் சுவரி லுள்ள பிர**ன்னர்ஸ்** சுரப்பிகள் (Brunner's glands) லீபர்க்கூன் சுரப்பிகள் (Glands of iebarkuha) ஆகியவற்றிலிருந்தும் ஏராள மான நொதியங்கள் சுரக்கப்படுகின்றன.

இரைப்பையில் அரை குறையாக சமிபாடடைந்த உணவு பட ஃ யி றுக்கி (pyloric sphinctor) வழியாக சிறுகுட ஃ அடைகின்றது. சிறுகுட ஃ வந்தடையும் உணவு சதையநீர், பித்தம் ஆகியவற்றுடன் சேரும் பொழுது, உணவின் அமிலத்தன்மை நடுநில்யாகி பின் காரத்தன்மையாக்கப்படு கின்றது. இந் நிகழ்ச்சி சிறுகுடலில் சமி பாட்டில் ஈடுபடும் நொதியங்களின் தாக் தத்திற்கு மிகவும் அத்தியாவசியமாகும்.

1. சதையத்தின் பங்கு

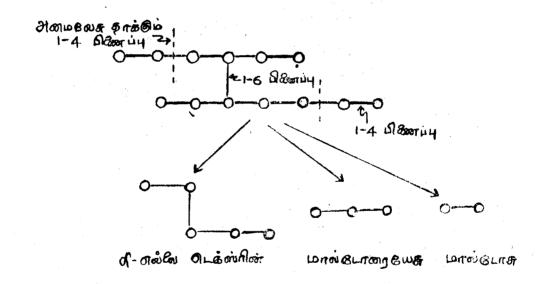
தூண்டுமுற்சுரப்புகளின சகையம். வேயே சுரத்தலே ஆரம்பிக்கின்றது. முன் பகுதி**க**ளே சிறு குடல். இடைச் சிறுகுடல் அடையும் ஐதரோகுளோரிக்கமிலம், கொழு ப்ப**.** புரதம், மாப்பொருள்**, அ**ரை சமிபாடடைந்த உணவ ஆகியன இப் பகு திகளில் தூண்டு முற்சுரப்புகளே சுரக் கப்பண்ணுகின்றன. இவை குருதிவழியாக துணேச்சுரப்பிகளே அடைகின்றன. சிறுகுடற் பகு கியில் சுரக்கப்படும் தூண்டுமுற்சுரப்பு களும் அவை ஏற்படுத்தும் தாக்கங்களும் த**ி**மே தரப்பட்டுள்ளன.

- செக்கிறீட்டின் (secretin) இது சதை யத்தில், நீரையும், பைகாபனேற்றைப் பெருமளவிலும், நொதியங்களேச் சிறு அளவிலும் கொண்ட சதையநீர்த் தயாரித்தலேத் தூண்டுகின்றது.
- 2 பங்கிரியோசைமின் (pancreozymin) இது சதையத்தில், நீரையும், பைகாப னேற்றையும் சிறிய அளவிலும், நொதி யங்களேப் பெருமளவிலும் கொண்ட சதையநீர்த் தயாரித்தலேத் தூண்டுகின் றது
- கெப்படோகிரைனின் (hepatocrinin) இது ஈரலில் உப்புக்கள் குறைந்த பித் தத்தை தயாரிக்கச் செய்கின்றது.
- கோலிசிஸ்டோகைனின் (chole ystokinin) பித்தப் பையை சுருங்கச் செய்து பித்தத்தை வெளியேற்றுகின்றது.
- 5. என்டரோகிரைனின் (enterocrinin) இது சக்கஸ் எண்டரிகஸ் (succus entericus) என்ற குடற் சாறு சுரத்தலேத் தூண்டு ன்றது.

சதைய நீரி**ன் p**∺ 7.5 தொடக்கம்

8.0 ஆகும். இது உடிழ் நீரைப் போன்று பெருமளவில் நீரைக் கொண்டுள்ளது. இதைவிடை, சில புரதங்களும், Na+, K+, HCO3⁻, Cl⁻ காணப்படுகின்றன. சதைய நீரில் காணப்படும் நொதியங்களும் அவற்றின் தாக்கத்தினுல் ஏற்படும் விளேபொருட்களும் ஏனேய தகவேல்களும் அட்டவணே 11ல் சுருக்கமாகத் தேரப்பட்டுள்ளன.

அட்டவஃண llல் உள்ள முதல் மூன் றும் புரத சமிபாட்டில் ஈடுபடும் நொதி யங்களாகும். டிரிப்சின். ஃசீன். ஆர்றினீன் போன்ற அமினே அமிலங்களின் காபொக்சி தொகுதி உள்ள பெப்டைட் பிணப்பிணத் தாக்குகின்றது கைமோடிரிப்சின். அலனின், தைரோசின் போன்ற அமினே அமிலங்களின் காபொக்சித் தொகுதி உள்ள பெப்டைட்பிணேப்பிணேத் தாக்கின்றது டிரிப் சின், கைமோடிரிப்சின் மற்றும் இரைப்பைச் சாற்று பெப்சின் ஆகியன புரதத்தின் உட் பகுதியை தாக்குவதால் அகப் பெப்டிடேசு (endo-peptidase) ass அழைக்கப்படுகின் றண. காபொக்சி பெப்டிடேசு பொலிபெப் СООН டை**ட்டின் முனே பை**க் காக்கி அமினே அமிலங்களே விளேபொருட்களாகக் (பெப்டைட்டுடன்) கொடுப்பதால் பெப்டிடேசு (exo-peptidase) என அழைக் **கப்படுகின்றது**. இயக்கம**ற்ற** நி*ஜ*ேயில் கப்படும் புரதச் சமிபாட்டு நொதியங்கள் இயக்சமான நிஃக்கு மாற்றப்படும் பொழுது ஏற்படும் நிகழ்ச்சியிண பின்வருமாறு எமுத லாம்.


அட்டவண் (II) உணவுச் சம்பாட்டில் சதைய நீரின் பங்கு

1 : 1	தொதியம் டிரிப்சின் (trypsin)	செயற்பாடு டிரிப்சினேஜன் என்ற இயக்கமற்றதொதிய மாகச் சுரக்கப்பட்டு சிறுகுடல் தொதியம் என்டரோகைனேசினுஅம் டிரிப்சினுஅம் ம எ ற்றப்படுகின்றது pң 8.0	தாக்கப்பொருட்கள் புரதம், புரட்டியோசஸ், பெப்டோன்ஸ்	ஷீன்பொருட்கள் பொலிபெப்டைட்டு இருபெப்டைட்டு
1,0	கைமோடிரிப்9ன் (chymotr y psin)	கைமோடிரிப்சிலேஜைஞகச் சுரக்கப்பட்டு டிரிப்சிஞல் கைமோடிரிப்சிஞக மாற்ற மடைகின்றது pH 8.0	புரதம். புரட்டியோசல் பெப்டோன்ஸ்	போசஸ்
٠.	காபொக்சிபெப்டிடேசு (carboxypeptidase)	புரோகாபொக்கிபெப்டிடேசாக சுரக்கப் பட்டு டிரிப்கிஞல் மாற்றப்படுகின்றது.	பொகிடைப்டைட்டின் cooH முன்னிலுள்ள பெப்டைட் மினேப்ப	டைட்டி ன் பிலுள்ள பிணேப்பு
4	அமைலேசு (amylase)	рн 7.1	மாப்பொருள் கிளேக்கோசன்	பாருள் காசன்
5	ஃப்பேசு (lipase)	பித்தவுப்புக்களால் தாக்கம் தூண்டப் படுகிறது. pн8.0	கொழுப்பின் எஸ் பிணேப்புக்கள்	கொழுப்பின் எஸ்தர் பிணேப்புக்கள்
6.	ரைபோநியூக்கிலியேக (ribo u clease)		ரைபோதியூக்கிலிக்கமில ம்	கிலிக்கமிலம்
7.	டீஒக்சிரைபோநியூக் கி - லியேசு (deoxy ribonuclease)		சுதக்கி மைடு சும்	டி ஒக்சி ரைபோநியூக்கிலி க் கமில ம்
8.	8. கொலஸ்திரைல் எஸ் தர் ஐதரலேசு cholesteryl ester hydrolase	பித்தவுப்புக்களால் தாக்கம் தூண்டப்படு கின்றதா.	கொலஸ்தின	கொலஸ் திரைல் ` எஸ் தர்

சதையநீர் அமைலேசை உமிழ் நீர் அமைலேசிலும் பார்க்க கேடிய சமிபாட்டு ஆற்றஃக் கொண்டது. இந் நொதியத்தின் தாக்கத்திற்கு அனுகலமான (H 7.1. புதி தாகப் பிறந்த குழந்தைகளின் சதைய நீரில் ஆரம்பத்தில் சில கிழமைகளுக்கு அமைலேசு இருப்பதில்ஃ.

சதையநீர், உமிழ்நீர் ஆகியவற்றில் காணப்படும் ம- அமைலேசின் தாக்கப் பொறிமுறைகளேப் பற்றி சிறிது அவதா னிப்போம். இந் நொதியம் மாப்பொருட் களின் 1 4பிணேப்பிணத்தாக்கினுலும், எல்லா வற்றிற்கும் வெளியேயுள்ள குளுக்கோக –குளுக்கோசு பிணப்பிணத் தாக்குவைதில்லே. சுயேச்சையான முணகளிலிருந்து இரண்

டாவது 1 4 பிணேப்பிணேயே தாக்கவல்லது. மேலும் ∝-அமைலேசு,1-6 பிணேப்புகளேயும். அப் பிணுப்பகளுக்கு ஆண்டையி<u>ல</u>ுள்ள 1·4 பிணேப்பகளேயும் சூடக் தாக்குவதில்லே. எனவே மாப்பொருட்களி**ன்** சமிபாட்டு விளேபொருட்களாக மால்டோசு. மால்டோ ரையேக.∝ுஎல்லே டெக்ஸ்ரின் ஆகியன கிடைக்கின்றேன. மாப்பொருள்களின் பிணப்ப இருக்கும் இடத்தைப் பொறுத்து, என்று அல்லது ஒன்றுக்கு மேற்ப**ட்ட** பிணேப்புக்கள் கொண்ட 🗠 எல்லே டெக்ஸ்ரி ன்கள் உண்டாகலாம். இவை ஐந்து அல் லது **அத**ற்கு மேற்பட்ட குளுக்கோசு மூலக் சு றுகளேக் கொண்டும் அமைந்திருக்கலாம். படம் 2 மேற் கூறிய நிகழ்ச்சிகளேத் தெளி வாகக் காட்டுகின்றது.

படம் 2 மாப்பொருளின் கட்டமைப்பும், அமைலேசுத்தாக்கமும்

சதையநீரில் உள்ள ஃப்பேசை மூக் கியமான தொதியமாகும். இதன் தாக்கத்தி ஞல் ஏற்படும் விளேபொருட்கள் அட்ட வைண 11 ல் குறிப்பிடப்பட்டுள்ளன. சதை யத்திற்குரிய கானில் தடைகள் ஏற்படும் பொழுது ஃப்பேசு உணவுக் கால்வாயை அடையாமற்போக உணவில் உள்ள கொழு ப்புக்கள் சமிபாடடையாமல் மலத்துடன் கழிவகற்றப்படுகின்றன. இது கொழுப்புக் கழிச்சல் (steatorrhoea) என அழைக்கப் படும்.

2. ஈரலின் பங்கு

எண்ண ந்ற இடைநிலே அனுசேபங் களில் ஈடுபடுவதுடன், பித்தத்தையும் உண் டுபண்ணுவதால் ஈரல் சமிபாட்டில் முக் கெய பங்கெடுத்துக் கொள்கின்றது. ஈரலில் உருவாகும் பித்தம் பித்தப்பையில் சேகரி த்து வைக்கப்படுகின்றது. அத்தோடு பித் தப்பையில் அடர் கரைசலாக்கப்படுகின்றது. இதஞல் ஈரலில் உருவாகும் பித்தம், பித்தப் பையில் இருக்கும் பித்தத்திலிருந்து சேர்க் கையில் வித்தியாசப்படுகின்றது (அட்டவணே 111)

அட்டவ ² ண III. ஈர <u>லு</u> க்கும், ப	ித்தப் பை க்கு ம் உ ரிய பித்	தத் தின் சேர்க்கை
	ஈரலுக்குரிய பித்தம் மொ த்தப் பி த் தத்தின் வீதம்	பித்தப்பைப் பித்தம் மொத்தப் பித்தத்தின் வீதம்
நீ ர்	97.00	85.92
திடப்பொ ருட்கள்	2.52	14.08
பி த் த அமிலங்கள்	1.93	9.14
மி யூசினும் நிறப்பொருட் ⊭ளு ம்	0.52	2.98
கொல்ஸ் திரோல்	0. 06	0.26
கொழுப்பமிலங்களும் கொழுப்பும்	0.14	0.32
அசேதன வுறுப்பு உப்புக்கள்	0.84	0. 6 5
தன்னீர்ப்பு	1 .01	1.04
рн	7.1 - 7.3	6.9 - 7.7

கோலிசிஸ்டோகைனின் என்ற தாண் டுழுற்சுரப்பு பித்தப்பையின் இறுக்கியைத் தளர்த்துவதுடன் அதைச் சுருங்கச் செய்வ தாலும் பித்தத்தை வெளியேற்றுகின்றது. இது உணவுச் சமிபாட்டின் பொழுதே நடைபெறுகின்றது.

முன்பு குறிப்பிட்டபடி, பித்தம்.இரை பையிலிருந்து சிறுகுடல் வந்தடையும் உணவின் அமிலத்தன்மையை காரத்தன்மையாக்க உதவுகின்றது. மேலும பித்தத்துடன் சேர்ந்து மருந்துகள் நச்சுப் பொருட்சள். பித்த நிறப்பொருட்கள், Cu ++, Zn++, Hg++ கொலஸ்திரோல் ஆகியனவும் கழிவகற்றப் படுகின்றன. கடைசியாகக் குறிப்பிட்டது பித்தத்தின் மூலம் மட்டுமே கழிவகற்றப் படுகின்றன.

பித்**த** அமிலங்க**ள்,** கொலஸ்திரோல் அனு**சேபத்**தின் முடி**பி**டப் பொருட்களா கு**ம்.** பித்**த**த்தில் நான்கு பித்த அமிலங்கள் உள்ளன. அவையாவன.

- 1) கோலிக்கமிலம் (cholic acid)
- 2) டீ ஒக்சி கோலிக்கமிலம் (deoxy cholic acid)
- 3) கீனே டீஒக்சி கோலிக்கமிலம் (cheno deoxy cholic acid)
- 4) விதோகோலிக்கமிலம் (lithocholic acid)

இவ்வமிலங்கள் சுயேட்சையான நில யில் கழிக்கப்படு அதெல்லே. ஈரலில் கிள்சீன் (glycine) அல்லது டோரின் (taurine) அமினே அமிலங்களுடன் இணேந்து கரை யக்கூடிய நிலேயை அடைந்த பின்பே வெளி யகல்கின்றன. இப்படி இண்ந்த அமிலங்கள் Na+ அல்லது K+ த்துடன் சேர்ந்து பித்த உப்புக்கள் கொடுக்கின்றன. பித்த உப்புக் கள் கொழுப்பின் சமிபாட்டிற்கு பெரி துல் துண் செய்கின்றன. சதையநீர் ஃப் பேசின் தாக்கம் இவற்றினுல் தாண்டைப்படு கின்றது பித்த உப்புக்கள் நீரின் மேற்பரப் பிழு**விசையை (surface tension) வெகு** வாகக் குறைப்பதால் கொழுப்பினே குழம் பாக்கின்றது. இதஞல் அவற்றின் கரையும் தன்மையும் கூடுகின்றது. மேலும் உணவி லுள்ள கொழுப்பு நன்கு சமிபாடடைந்து உறிஞ்சப்படும் பொழுது, கொழுப்பில் கரை யும் விற்றமின்களும் அகத்துறிஞ்சப்படுகின் றது. கொழுப்பு சரியான முறையில் சமி பாடடையாவிடத்து அவை மூடியிருக்கும் ஏணேய உணவுப் பதார்த்தங்களும் தகுந்த முறையில் சமிபாடடைவதில்லே.

3. சிறு குடற் சுரப்பிகளின் பங்கு

சிறுகுடற் சுரப்பிகள் (பிரண்னர், லீபர்க்கன்) என்டரோகிரைனின் என்கின்ற தூண்டுமுற்சுரப்பியினுல் சிறுகுடற் சாற்றி கேனத் தயாரிக்கின்றன. இச் சாறு முன் சிறுகுடல், இடைச் சிறுகுடல் பகுதிகளில் பெரு மளவில் காணப்படுகின்றன. சிறுகுடற் சாற்று நொதியங்கள் மற்றைய நொதியங்களுடன் சேர்ந்து சமிபாட்டிகோப் பூர்த்தி செய்வதில் பெரும் பங்கெடுத்துக் கொள் கின்றன. பின் வரும் நொதியங்கள் சிறுகுடற் சாற்றிலே காணப்படுகின்றன.

(1) அமைஞே பெப்டிடேசு. இந் கோதியம் பொலிபெப்டைட் சங்கிலியின் NH₂ முண்யிலுள்ள பெப்டைட் பிண்ப் பிணத் தாக்குவதால் புறப் பெப்டிடேசு என அழைக்கப்படுகின்றது.

- (2) காபோஐதரேசு. இக் கூட்டத் தைச் சேர்ந்த நொதியங்கள் சிறு குடேற் சுவரின் சீதமுளியிலே காணப்படுகின்றன. இவற்றின் தாக்க விவரங்கள் அடுத்த இத ழில் அகத்துறிஞ்சலுடன் விளக்கப்படும்.
- (3) பொஸ்பட்டேசு. சேதனவுறுப்பு பொஸ்பேட்டி**ணத்** தாக்குகின்றது.
- (4) பொலிநியூக்கிலியோடைடேசு. நியூக்கிலிக்கமிலங்களே நியூக்கிலியோடைட்ஸ் ஆக மாற்றுகின்றன.
- (5) நியூக்கிலிபோசைடேசஸ். நியூக் கிலியோசைட்சைத் தாக்கி பியூரின் (purine) பிரிமிடீன் (pyrimidine) பென்டோஸ் ஆகியவற்றைக் கொடுக்கின்றன.
- (6) பொஸ்போ ஃப்பேசு. பொஸ் போ இலிப்பிட்டுகளேத் தாக்கி கிளிசரோல், கொழுப்பமிலங்கள், பொஸ்போரிக்கமிலம் மற்றும் பொருட்களேக் கொடுக்கின்றன.

(அடுத்த இதுழில் அகத்துறிஞ்சல்)

உலக உணவின் எதிர்காலம்??

David Pimental, William Dritschilo, John Krummel, John Kutzman (1975 Jan. Science பத்திரிகையில் வெளியான ''Energy and Land Constraints in Food Protein Production என்னும் கட்டுரையின் தமிழ்ச் சுருக்கம்)

தற்போ குப உவக சனத்தொகை 400 கோடிக்கு மேலே உயர்ந்துள்ளது. இதுவே 2000 ஆண்டில் 700 கோடியாக அதிகரிக்குமென எதிர்**பா**ர்க்க**ப்படுகின்**ற**து.** இவ்வுயர்வுக்கு முக்கிய காரணங்களாகச் சிறந்த சுகாதாரத்தினுல் ஏற்பட்ட குறைந்த இறந்**த வீ**தமும். தொடர்ந்து குறையா**த** பிறப்பு வீதமும் எனக் கொள்ளலாம். உலக சனத்தொகையின் இவ்வதிகரிப்பால் வுக்கு வேரவரை கியாதி () ஏற் பட்டுள்ளது வியாதிகளேக்கட்டுப்படுத்துவது மாதிரி உணவுற்பத்தியை பெருக்கமுடியா தென்பது அனுபவபூர்வமான உண்மையா கு**ட். த**ற்சமயம் சு**மார் 5 கோ**டி புரதக்குறைவினல் பீடிக்கப்பட்டிருக்கிருர் கள் என்பது உண்மையாஞல், மே<u>லு</u>ம் அளர் ந்துவரும் சனத்தொகைக்கான உணவை உற்பத் நி செய்வது பற்றி கவஃலப்படுவதில் ஆச்சரியமில்ஃ.

எமது உணவில் போதுமான அளவு புரதமும், மாச்சத்தும் சேர்**த்துச் சா**ப்பிட வேண்டும். மரச்சத்து குறையும்போது உடம் பிலுள்ள புரதம் மோச்சத்தாக மாற்றப்பட்டு எமக்குச் சக்தியை கொடுக்கிறது. மாச்சத்து ஒருபோதும் புரதமாக மாற்றப் படுவதில்ஃ. எனவே தான் இவ்விரண்டும் போதிய அளவில், உணவில் சேர்க்கப்பட வேண்டும். அத்துடன் உணவிலுள்ள தத்தில் ஆகக்குறைந்த அளவில் யான எட்டு அமினே அமிலங்களும் இருத் தல் வேண்டும். இவை ஆகக் கூடிய அள வில் மாமிச புரதத்திலேயே இருக்கின்றன. மரக்கறிகளி லுள்ள *புரதங்கள்* குறைந்த தரமுடையன. ஏனெனில் சராசரி மனித னுக்குத் தேவையான அமினே ் அமிலங்க ளும் விட்டமின்களும் மரக்கறிமூலம் பெறு

வதற்குப் பலவகையான தானிய வகை களும், கீரைகளும் தேவைப்படுகின்றது.

கனிவளை சக்தி (உரவகைகள், யந்தி ரங்கள், எண்ணே மற்றும் பல) நிலம், கேலி ஆகிய மூன்றுமே பயிர், மிருக உற்பத்திக்கு மூலதனமாக உள்ளன. இவை கொன்று சம்பந்தப்பட்டவை. உதாரண மாக யந்திர சக்திக்குப் **பதிலாக மனித ச**க் தியைப் பாவிக்கலாம். ஆனுலும் யந்திரசக்தி பாவிப்பதி**ல் (கைத்**தொழில் **விருத்தியடை**் ந்த நாடுகளில்) ந<mark>ன்மைகள் உண்டு. மேலும்</mark> பயிர்ச்செய்கை நிலமும்,கனிவளச் சக்தியும் ஓர் குறிப்பிட்ட அளவுள்ள மூலதனமாகும். உலக நிலப்பகுதியில் 11 வீதம் மட்டுமே பயிர்ச்செய்கைக்கு **உக**ந்**தது** என மதிப்பிட**ப்** பட்டிருக்கிறது. இவற்றுள் கிட்டத்**த**ட்ட முழு நிலமும் தற்போது **ப**யிர்ச்செய்**கை** யில் ஈடுபெடுத்**த**ப்பட்டுள்ளது. சுமார் வீ தம் நிலப்பகுதியில் தற்**ச**மய**ம்** மிருக (Livestock) உற்பத்திக்கு உபயோகப்படுத் தப்படுகின்றது. பயிர்ச்செய்கை நிலத்தின் உற்ப**த்**தித் தர**த்**தை நீர்ப்பாசனம் உயாத்த முடியும். ஆனுல் இதற்கு பெரு மளவிலான சக்தி **வேண்**டும். இது மாத்தி ரமல்லாது உலகின் நிலத்தில் பெருமளவு அரிப்பினுல் பாதிக்கப்படுகின்றது. அமெ ரிக்காவில் மாத்திரம் வருடத்திற்கு **3**60 கோடி தொன் மேல் மண் அரிப்பின் மூலம் கொண்டுசெல்லப்படுகின்றது கனிவள சக்தி உலகில் பெருமளவு விரயமாக்கப்படுகின் ற**து அ**தஞல் இப்போதுள்ள கனிவளசக்தி 25 வருடங்களில் பாதிக்கு மேலாகக் குறைக் கப்பட்**டுவி**டும் எனவும் மதிப்பிட**ப்பட்** டுள்ளது.

மரக்கறிப் புரத உற்பத்தி

நிலம், கூலி, சக்தி முதலியவற்றை உள்ளூட்டமாகக் கொண்டோல் மரக்கறிப் புரத உற்பத்தியே மிகவும் சிக்கணமானது. தற்சமயம் உலகின் 70 % மக்கள் தங்க ளின் புரதத் தேவையை மரக்கறி தானிய வகைகளில் மட்டுமே பெறுகின்றனர். இப் போது கிடைக்கக்கூடிய 12 கோடி தொன் புரதத்தில் 8.6 கோடி மரக்கறிப் புரதமா கும். உலகின் பல பாகங்களில் மரக்கறியே முக்கிய உணவாகக் கொள்ளப்படுகின்றது.

ஓரலகு மரக்கறி புரதத்தை உற் இரண் டிலி பத்தி செய்ய சாதாரணமாக ருந்து நான்கு அலகு கனிவள சக்தி தேவைப் படுகிறது. உதாரணமாக 1 அலகு சோயா புரதத்தை உற்பத்தி செய்ய 2.06 சக்தி தேவைப்படுகிறது. அதேபோல் இது வித்தியாசப்படுகி வும் இடத்திற்கு இடம் றது. அமெரிக்காவில் நெல் உற்ப**த்**தி செய்ய 10 அலகு கனிவள சக்தி பயன் படுகிறது. ஆணுல் பிலிப்பைன்ஸ். இலங்கை ஆகிய நாடுகளில் 1 அலகு நெல் திற்கு 0.65 கனிவள சக்தியே பயன் படு சரி கின்றது. மிகுதி மனித **ச**க்தியா**ல் செய்யப்படுகிறது**.

மாமிசப் புரத உற்பத்தி

உலகில் கிடைக்கக் கூழு**ய** தெல் 25% மட்டுமே மாமிசப் புரதமாகும். இது சுமார் 3 கோடி தொன்னுகும். மாமிசப் புரதத்தில் 1.3 கோடி தொன் புர தத்தை உற்ப**த்**தி செய்ய 5.1 சுமார் கோடி மரக்கறி புரதம் மிருகங்**க**ளுக்கு நிலத்திலிருந்து ஊட்டப்படுகிறது. மிகுதி மிருகங்கள் த**ானே** உண்ணுபவை. புர**தம் உலகப்** புரதத்தில் மிகக் குறைவான பகுதியையே (5%) கொண்டுள்ளது. மீன் புரதம் பிற்காலத்தில் பாவிக்கக் கூ டிய **த**ற்சமய**ம்** கென்றை கருதப்பட்டாலும். பொதுவாக மீன்கள் அதிகமாகப் பிடிக்கப் படுவதனுல் சாதாரண ரக மீன்கள் றுப்போகலா**ம் என்று** நம்பப்படுகிறது. அத் துடன் 1 கிலோ மீன் பிடிப்பதற்குச் சுமார் 20 இலோ கனிவள சக்தி தேவையென மதிப் பிடப்பட்டுள்ளது.

உலக உணவு

வளர்ந்துவரும் சனத்தொகையினருக் குத் தேவையான உணவு எவ்வளவு? னைல் மனி**த வ**ர்க்**கத்தை** எ 🛭 ர் நோக்கி யுள்ள பிரச்சணேணையப் பார்ப்போம். தற்சம யம் இருக்கின்ற சு**மா**ர் 400 **கோ**டி ளுக்கு 150 கோடி *ஹெக்ட*ர் (Hectre) ம**ட்டு**மே பயிர்ச்செ**ய்கைக்கு**ரிய<u>து</u> நிலம் அதாவது ஒருவருக்கு 0.32 ஹெக்டா நிலம் மட்டுமே உள்ளது. ஆனுல் **த**ற்சமய**ம்** அமெரிக்காவில் உட்கொள்ளப்படும் வை உற்பத்திச் செய்ய 0.62 ஆளுக்கு தற்போதைய நிலேயிலான ஹெக்டரும் உயர்ந்த சக்தி பாவனேயும் வேண்டும். என வே உலகிலுள்ள பயிர்ச்செய்கை மனி**த** உற்பத்திக்**குப்** போதாது. உலகின் மொத்த கனிவள சக்தியின் மூலம் ரிக்கத் தொழில் நுட்பத்**தைப்** பாவித்**து** 400 கோய் மக்கட்கு உணவளித்தால், கனி தா**க்குப்** வளம் 13 வருடங்கள் மட்டுமே பிடிக்கும். தற்சமயம் பயிர்ச் செய்கை நிலத் தில் 11% மட்டுமே நீர்ப்பாசன வசதியுடை யது. நீர்ப்பாசன வசதியை அதிகரித்தால் பயிர்ச் செய்கையை அதிக**ரிக்க** யினும், அதற்கு தேவையான சக்தி கம். தற்போதுள்ள கனிவளம் முழுவதும் **நீர்ப்**பா[்]∍னத்திற்கே செலவிட்டால் கனிவளம் நீர்ப்பாசனத்திற்கு மட்டும் 20 வருடங்களுக்கு உபயோகிக்க முடியும்.

மேலும் தற்போதைய உற்பத்தி விதத்தில் 1975ம் ஆண்டில் 12.2 கோடி தொன்னிலிருந்த புரத உற்பத்தி 2000 ம் ஆண்டில் 216 கோடி தொன்னுக உயரும். ஆளுல் இவை அப்போதுள்ள 700 கோடி மக்களுக்குப் போதக் கூடியதாக இருக்காது. நிலம், நீர், சக்தி, மனிதவளம் வற்றின் கவனமானசேர்க்கையுடனும், உல கிலுள்ள நாடுகளின் கூட்டு மு**யற்**சியாலும் தற்போ**தைய உணவ** நி**ஃைய**ச் 25 **வருட**ங்களுக்**காவது** நீடிக்கல**ாம் என நம்** பப்படுகிறது. இவற்றுடன் முக்கியமானதாக நில அரிப்பினுல் ஏற்படும் இழப்பு காலநில மாற்றத்தினைல் உண்டாகும் பயிர் இழப்பு முதலியவற்றையும் கவனத்தில் கொண்டே பிற்கால பயிர், மிருக செய்கைகளுக்கான திட்டங்கள் வகுததல் வேண்டும். முடிவாக தற்போது விருத்தியடைந்துவரும் பிரச்சுன்களில் முக்கியமான உணவுபிரச்சுன பைத் தீர்ப்பதற்கு விஞ்ஞானம் **தான்** கை கொடுக்க வேண்டும்

் **அ**மிழாக்கம் – மாலி

நீரும் விவசாயமும்

5. நீர்ப்பாசன கருவிகளும் அமைப்புகளும். (Irrigation implements and structures)

வீவசாயப் பயிர்ச் செய்கையில் வேறு பட்ட நீர்ப்பாசன முறைகளே நிர்ணயிக் கும் காரணிகள், அம்முறைகளின் அனு கூலங்கள், பிரதிகூலங்கள் என்பவற்றை **கடந்த அங்கத்⊊ல் ஆர**ாய்ந்தோம். நீர்ப் பாசன வினேத்திறனு. உயர் பெறுமான மாக பேணை மேற்கொள்ளப்பட வேண்டிய நடவடிக்கைக*ு*ளயும். அதற்குத் **தேவையான** நீர்ப்பாசன கருவிக**ன்**, அமைப்புகள் பற்றி யும் ஆராய்வது நீரும் விவசாயமும் தொட ரின் 5-ம் அங்கத்தின் நோக்கமாகும்.

ஒரு குறிப்பிட்ட முறையில் நீரைப் பாய்ச்சும்போது மொத்தமாக வழங்கப்ப டும் நீரின் அளவு இரு அம்சங்களில் தங்கி யுள்ளது. அவை.

- 1. பயிரி**ன்** நீர்த்**தே**வை.
- 2. நீர் இழப்புகள்.

நீர்ப்பாசன செயன் முறையின்போது ஏற்படும் நீர் இழப்புகள் இருவகையாகப் பாகுபடுத்தப்படலாம்.

- 1. தவிர்க்க முடியாத நீர் இழட்புகள்.
- உ-ம். (I) ஆழமான கீழ்வடிதல் (Deep perculation losses)
 - (ll) ஆழமான பக்கப்பாய்ச்சல் (Deep seepage losses)
 - (!!!) வயலில் ஏற்படும் ஆவியாதல் இழப்புகள்.
- 2. தவிர்க்கப்படக் கூ**டிய இ**ழ**ப்**பு**கள்**.
- உ**-ம்.** நீர்க்**கடத்த**லின்போது ஏற்படும் இழப்புகள், பண்ணேயில் மேலதிக நீர்ப்பாசனம், சீரற்ற நீர் விநியோ

கம் காரணமாக ஏற்படும் இழப்பு கள். மேற்கண்டவாறு பாகுபடுத் தப்பட்ட நீர் இழப்புகளுள் தவிர்க்க முடியாத நீர் இழப்புகளின் அளவு களே கூடுமானவரை இழிவுப் பெறு மானத்தில் பேணவும், தவிர்க்கப் படக் கூடிய நீர் இழப்புகளே பூரண மாக தவிர்க்கவும் பொருத்தமான நீர்ப்பாசனக் கருவிகள், நீர்ப்பாசன அமைப்புக்களேப் பற்றி அறிந்திருப் வது அவசியமாகும்.

நீர்ப்பாசுவக் கருவிகள்.

நீரப்பா**சனக் கருவிகள்** மூன்று தே**வை** கட்காகப் பாவிக்கப்படுகின்ற**ன**.

- 1. நிலத்தை மட்டப்படுத்தல்.
- 2. வரம்புகள், சால்கள் அமைத்தல்.
- 3. வர**ம்**புகள் சால்கள் என்பவற்றை சு**த்** தம் செய்தல்.

மட்டப்படுத்தலின் நோக்கம் சீராக நீர் பரவுதலே உறுதிப்படுத்தலாகும். இத ஞல் ஒப்பமற்ற மேற்பரப்புடைய இடங்க ளில் வெட்டுதலும் நிரப்புதலும் செய்து நிலத்தை மட்டப்படுத்த Scraper பாவிக்கப் படுகிறது. Scraper பாவித்தலே தொடர்ந்து Soil plane பாவித்து மட்டப் டுத்தல் செயன் முறை பூரணப்படுத்தப்படும் இந்தக் கருவி கள் உழவு இயந்திரத்தில் இணக்கப்பட்டு பாவிக்கப்படும்.

வரம்புகள் அமைப்பதன் நோக்கம் நீனர குறிப்பிட்ட எல்லேக்குள் கட்டுப்படுத்தி வைப்பதேயாகும். சரிவான நிலத்தை பொறுத்தவரை வரம்புகள் அமைத்தல் அத்தியாவசியமானதாகும். இதற்கு வரம் பாக்கிகள் பயன்படுத்தப்படுகின்றன. இவை யும் உழவு இயந்திரத்தில் **இ**ணேத்தே பயன்படுத்தப்படுகின்றன.

சால்கள் அமைப்பதற்கு பொதுவாக இறகுக் கலப்பைகள் (MBP) உழவு இயந் திரத்தில் இணேக்கப்பட்டு பயன் படுத்தப் படும்.

வரம்புகள் சால்களேத் துப்பரவாக்கி களேப் பயன்படுத்தித் துப்பரவு செய்வத ஞல் நீரின் அசைவு எல்ஃப்படுதல் தவிர்க் கப்படும். மேலும் துப்பரவாக்கிகள் வரம்பு கன், சால்களின் மேற்பரப்பில் பிரயோகிக் கும் உதைப்புக் காரணமாக நெருக்கல் (Compaction) ஏற்பட நீரின் பக்க இழப்பு கள் (Seepage losses) குறைக்கப்படுகின்றன.

நீர்**ப்பாசன**் அமைப்புகள்

நீர்ப்பாசன அமைப்புகள் பெரிய நீர்**க் கால்வாய்களி**லிருந்து ரீ,**ரை** சால்களுக்கு திசை திருப்ப உதவவுகாடன். வேர் வைலயம் சீராக நீரால் நீணக்கப்படுவை தை **யும் உறு**தி செய்கின்ற**ன**. இதனுல் இவ ற் றை அமைக்கும் போது பொருளாதார ரீதி யில் பொருத்தமானவையாகவும். கேவை யான கொள்ளளவு தொண்டதாகவும். நீர் ஓட்ட**த்தை கட்**டுப்படுக்கக்கூடிய வாயந்தனவாகவும் அமைக்கவேண்டும்.

நீர்ப்பாசன அமைப்புகள் தேவையை பொறுத்து தற்காலிகமானதாகவோ அல்லது நிரந்தரமானதாகவோ அமைக்கப்படலாம்.

நிரந்தர அமைப்புகள் அமைக்கப் படும் போது அவை பெரும்பாலும் கொன் கிறீற்றிஞல் அல்லது பலம் வாய்ந்த உலோ கத்திஞல் செய்யப்பட்டவையாக இருக்கும்.

நீர்ப்பாசன அமைப்புகளின் பாவணே யைப் பொறுத்து மூன்று வனகயாகப் பிரிக் கலாம்

- 1. Diversion structures
- 2. Conveyance structures
- 3. Distribution structures

Diversion Structures

இவை பெரும்பாலும் பெரிய அருவி களுக்கு குறுக்காக அமைக்கப்படும், இவற் றின் நோக்கம் பகுதியாக அல்லது முழு மையாக அருவியை திசை திருப்புவதாகும். இதன் மூலம் மாருதளவு நீர் வயலுக்கு கொடுக்கப்படுவதோடு மேலதிக நீர் பாய் வதையும் தவிர்க்கமுடியும்.

உ-ம்; Check gates

Conveyance Structures

இவை பெரும்பாலும் மரம், உலோகம், இரப்பர் அல்லது கொன்கிறீற்றிஞல் ஆனதாக இருக்கும். இவற்றின் நோக்கம் நீரிழய்பு, மண்ணரிப்பைத் தவிர்த்து நீரைக்கடத்தலாகும்.

சிலவேளே கொள்ளை நிற்றிஞல் செய் யப்பட்ட குழாய்கள் நிலததின் கழ் அமைக் கப்பட்டு நீர் கடத்தப்படலாம். இங்கே குழாயினுள் நிலவும் அமுக்கப்படித்திறன் நீர் கடத்தலுக்கு சாதகமாகின் ஐது.

Distribution Structures

இவை அமைக்கப்படலின் நோச்கம் வயலில் சீராக நீரைப்பாய்ச்சுவதன் மூலம் சீராக நணேக்கப்பட்ட வேர்வலயத்தை உறுதி செய் தலாகும். இதற்கென Conveyance structures உடன் பொருந்திய வகையில் sipton குழாய் கள் முதலானவை அமைக்கப்படும்.

தற்காலிகமான தாக நீர்ப்பாசன அமைப் புகளே அமைக்கும்போது இவை தீர்மானித்த இடத்தில், தேவைப் படும் நேரத்தில் இலகுவாக நீரைக் கடத்தக் கூடியவையாகவும் அமைக்கப்பட வேண்டும் இவை அலுமினியம் போன்ற உலோகத்தாள் அல்லது பிலாஸ்டிக்கினுல் அல்லது கன்வெசி ஞல்செய்ய பட்டவைவாக இருக்கலாம்.பொது வாகத் தற்காலிக நாப்பாசன அமைப்புகள் வயல் நிபந்த களிலேயே அமைக்கப்டடுக் ன் றன.

தொடரின் ஆறும் அங்கத்தில் நீர் மூலத்திலிருந்து நீரை உயர்த்தப் பயன்படும் பம்பிகீளப்பற்றி ஆராய்வோம்.

நா**ம் தொட**ர்ந்**து பின்** நிற்**க வேண்டுமா**?

பி**ன் தங்கிய** நா**டுகள்** தொடர்ந்தும் பின் தங்கியே இருக்கின்றன. பெரும் *பாலான ஏழைகள் இதாட*ர்ந்தும் ஏழைகளாகவே வரழ்**கின்**றனர். ஓட்டப்பந்தயத் தில் முன்னுல் ஒடுபவனிலும் பார்க்க ஆயிரம் அடிகள் பின்னுல் ஓடுபவன் எவ்வ ளவோ முயன்றும் முன்னுக்கு வர முடியவில்லே. இதே நிலேதான் எமக்கும் ஏற் பட்டுள்ளது. தற்போது உங்கள் கையிற் தவழும் ஊற்று இதழ் 1979ம் ஆண்டு ஆடி **மாதம்** வெளி **வ**ந்**திரு**க்**க** வேண்டியது. ஆ**ஒல்** துர்ப்**பா**க்கியமாக கிட்ட**த்**் தட்ட ஒரு வருடத்திற்கு மேல் தாமதித்து வந்துள்ளது. இந்த குறிப்பிட்ட இதழில் ஏற்பட்டதல்ல. இது கடந்த மூன்று வருடங்களாகப் பல இதழ்களில் செறிது செறிதாக ஏற்பட்ட தாமதங்களின் விடுவை. அக்கால ஆசிரியார் குழுவினரும்**, நிர்வர்க ஆசிரியர்க**ளும் **இடை**யரு**து** முய**ன்றும் இத**ழ்க**ோம்** சுரிப்பதில் ஏற்பட்ட இக் கால இடைவெளியை நிவர்த்தி செய்ய முடியவில்ஃ. இதற்குப் ப**ல** காரணங்கள் பொறுப்பாயிருந்தன. தொடர்ந்தும் நாம் பின் நின் கொண்டிருக்க வேண்டுமா. ஏற்பட்ட இக்கால தாமதத்தை எம்மால் உண் மையிலேயே நிவர்த்தி செய்ய முடியுமா என்பன போன்ற யதார்த்தமான கேள்வி கள் எம்ம**னதில் நியாயமாக எழுந்தன. அதன் விளேவே இ**வ்விதழில் காணு**ம்** மாற்றத்திற்குச் கா**ர**ணம் இந்த ஒரு இதழ் ஆடி 1979 புரட்டாதி 1980 வரையிலான நீண்ட கால கட்டத்தைப் பூர்த்தி செய்கின்றது. எனினும் இந்த சந்தாதாரருக்கு இவ்விதழ் அவர்கள் ஒரு வருடத்திற்குப் பெற இ**ருந்த ஆறு இத**ழ்களில் ஒ**ன்**ருக**வே க**ரு**த**ப்படும் எ**ன்**பதைத் **தெரிவிக்கின்** ரோம்.

நா**ம்** ஏற்படுத்திய **மா**ற்தத்தின் ஊ**டா**க இனிமேல் வெளி வரு**ம் இதழ்** கள் உரிய காலத்தில் காலதாமதமின்றி தொடர்த்து வெளிவருமென உருதியளிக் கின்ருேம். மேலும் இனி **வெ**ளி **வ**ரும் இதழ்கள் முன்பு போல இரு மாதத் திற்கு ஒருமுறையன்றி மூன்று மாதத்திற்கு ஒரு முறை வெளிவரும். விரைவில் ஊற்று மீண்டும் இரு திங்கள் ஏடாக வெளிவர ஏற்பாடு செய்வோம்.

இம் மாற்றங்கள் அவசெயமானவை என்பதை உணர்ந்து கடந்த எட்டு வருடங்களாக வாசகர்களாகிய நீங்கள் எமக்கு அளித்த ஆதரவைத் தொடர்ந் தும் நல்குவீர்களென உறுதியாக நப்புகிரும். உங்களின் இந்த ஆதரவை நாடி இவ்விதழினுள்ளே சந்தா விண்ணப்பப் பத்திரங்களேயும் சேர்த்துள்ளோம். சமு தாயததிற்கு ஊற்றின் பணி எத்துணே அவசியமானதோ அதே போன்று ஊற் றிற்கு சமுதாயத்தின் ஒத்தாசை மிக அவசியமானது.

—பிர**தம ஆ**சிரியர்.

սնֆեյնե

தென் ஆசியக் கருத்தரங்குக் குழுவும் ஊற்று நிறுவனமும் கூட்டாக ஒழுங்கு செய்யும்:

"மாறிவரும் சமுதாயத்தில் பல்கலேக்கழகத்தின் பங்கு-சிறப்பாக யாழ் பல்கலேக்கழகத்தினது);

> இடம்: யாழ் பல்கலேக் கழகம் காலம்: புரட்டாதி 20, 1980 நேரம்: காலே 8.30—மாலே5.30

பல்கலேக் கழகமும் சமுதாயமும் பல்கலேக்கழகத்தல்வியின் கருதுகோள் பல்கலேக்கழகத்தில் மானிடவியல் பல்கலேக்கழகத்தில் விஞ்ஞ்ரனவியல் மருத்துவ பிடத்தின் பங்கு இயந்திரவியற் பிடத்தின் பங்கு விவசாய பீடத்தின் பங்கு பல்கலேக்கழகத்தில் சமுதாயலியல் பேராசிரியர் K. சிவதம்பி
கலாநிதி. V. இராமகிருஷ்ணன்
பேராசிரியர் K. கைலாசபதி
பேராசிரியர் V. தர்மரத்தினம்
பேராசிரியர் N. சிறீகரன்
பேராசிரியர் A. துரைராசா
கலாநிதி. V. பவநாசசிவம்
திரு. N. பாலகிருஷ்ணன்

ளைற்று அறிவியல் ஏட்டை சந்தாகட்டி பெற விரும்பிஞல் உங்கள் பெயர், முகவரி என்ப வற்றைத் தெளிவாகக் குறிப்பிட்டு ஆண்டுச் சந்தா ரூபா 12.00 சேர்த்து நிர்வாக ஆசி ரியர்; ஊற்று நிறுவனம், 215, கொழும்பு வீதி, கண்டி. என்ற முகவரிக்கு அனுப்பி வைக்கவும்.

அச்சுப்பதிவு: நெப்டியூன் அச்சகம் 563, பேராதெனிய ரோட், கண்டி.